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Abstract8

Pain relief, or a decrease in self-reported pain intensity, is frequently the primary outcome of pain9

clinical trials. Investigators commonly report pain relief in one of two ways: using raw units (additive)10

or using percentage units (multiplicative). However, additive and multiplicative scales have different11

assumptions and are incompatible with one-another. In this work, we describe the assumptions and12

corollaries of additive and multiplicative models of pain relief to illuminate the issue from statistical13

and clinical perspectives. First, we explain the math underlying each model and illustrate these points14

using simulations, for which readers are assumed to have an understanding of linear regression. Next, we15

connect this math to clinical interpretations, stressing the importance of statistical models that accurately16

represent the underlying data; for example, how using percent pain relief can mislead clinicians if the17

data are actually additive. These theoretical discussions are supported by empirical data from four18

longitudinal studies of patients with subacute and chronic pain. Finally, we discuss self-reported pain19

intensity as a measurement construct, including its philosophical limitations and how clinical pain differs20

from acute pain measured during psychophysics experiments. This work has broad implications for21

clinical pain research, ranging from statistical modeling of trial data to the use of minimal clinically22

important differences and patient-clinician communication.23

1 Introduction24

Pain is highly prevalent, burdensome, and a common reason for doctor visits [Gaskin and Richard, 2012,25

St Sauver et al., 2013, Vos et al., 2020, Mntyselk et al., 2001]. In an attempt to understand the severity26

of the patients’ pain, doctors and researchers ask patients about the intensity of the their pain, requiring27

patients to condense and transmute their subjective experience to a single number. Despite its abstract28

and reductionist nature, self-reports of pain intensity are moderately-to-strongly correlated with several29

patient-reported outcome variables, including quality of life, disability, and more [Yazdi-Ravandi et al., 2013,30

Nasution et al., 2018]. Moreover, self-reports of pain intensity are remarkably easy and inexpensive to collect.31

These pragmatic and measurement properties make a reduction in self-reported pain, which we define as32

pain relief, the gold standard for assessing pain improvement.33

Clinical studies of pain commonly quantify pain relief as the primary outcome. However, how pain34

relief is quantified and reported roughly falls into one of two categories: absolute reductions in pain and35

relative (or percent) reductions in pain. For example, studies that report absolute reduction may state36

that a drug decreased pain by 2/10 numerical rating scale (NRS) units or 23/100 visual analog scale (VAS)37

units. Alternatively, studies that report relative reductions may state that pain decreased by 13 percentage38

units more in the drug group relative to the placebo group. Although both approaches to reporting pain39

reductions are common, they are conceptually incompatible (unless baseline pain is perfectly homogeneous;40

see Statistical Background). Their incompatibility begs the question as to whether one approach is more41

appropriate than the other.42

In this paper, we aim to illuminate the issue of absolute versus relative pain relief.1 We rely on statistical43

theory to provide researchers and statistically-minded clinicians with the background necessary to understand44

1For simplicity, herein, we will refer to self-reported pain intensity simply as pain.
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Figure 1: Graphical illustration of the hierarchical model from which patients’ pain scores are sampled. The
broad yellow (light grey) distribution is the between-patient distribution (level 2), from which each patient’s
mean pain score is sampled. Each red (dark grey) distribution is a within-patient distribution (level 1), from
which single measurements are sampled.

these measurement models, for which readers are assumed to be familiar with linear regression. In addition,45

we empirically analyze four datasets to reinforce and make tangible our conceptual discussion.46

2 Statistical Background47

Whenever one uses data to make a calculation, they are building a model. Every model has assumptions,48

but still, models should accurately reflect the data they are intending to simplify and thus represent. With49

regards to modeling pain relief, when reporting absolute changes in pain, one is assuming the process is50

additive. Alternatively, when reporting percent changes in pain, one is assuming the process is multiplicative.51

These assumptions have corollaries that prima facie may be unclear. In this section, we aim to explain the52

processes that would generate each of these models and the theoretical implications of these measurement53

and modeling assumptions.54

2.1 Additive Model55

The additive model and its implications are best understood by defining a data-generating process. This56

involves creating a mathematical model that reflects how one thinks the data are created. Because longi-57

tudinal pain relief is of interest, there is commonly at least one pain rating at the beginning of the study58

(xi) and at least one or more follow-up ratings (yi) for each subject i. The additive model of pain relief59

uses the simple difference between these pain ratings to calculate absolute pain relief (δi = yi − xi), where60

negative δi’s indicate relief and positive δi’s indicate worsening of pain. Although straightforward, this is a61

gross oversimplification.62

In reality, the pain data are messy. For one, between-patient heterogeneity is appreciable—pain ratings at63

intake will often range from the minimum required for study entry (e.g., 4/10 NRS) to the scale’s maximum64

(e.g., 10/10 NRS). In addition, patients’ pain fluctuates from minute-to-minute, hour-to-hour, day-to-day,65

and so on. To complicate matters further, the process of converting a qualia to a number is undoubtedly66

fuzzy, meaning the pain ratings themselves will have noise associated with them. Thus, there are two sources67

of variance to consider: between patients and within patients. These sources of variance can be thought of68

hierarchically (Figure 1).69

Between-patient heterogeneity is a natural place to start. The entire sample of patients will have a mean70

pain score µ. Each patient’s mean at baseline, αi, will be dispersed around this group mean according to71
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Figure 2: Properties of additive and multiplicative
data. We simulated data with additive (top) and mul-
tiplicative (top) assumptions. (A) Relationships be-
tween pre- and post-intervention pain scores when im-
provements are additive (top) and multiplicative (bot-
tom). Note the additive post-intervention scores are
relatively homoscedastic, while the variance of mul-
tiplicative post-intervention scores increases with in-
creasing pre-intervention scores. (B) Negative rela-
tionships between change scores and pre-intervention
scores. Grey areas in (B) represent regions where
points are not possible due to measurement con-
straints; that is, because a change score cannot be
> |100|.

the between-subject variance τ2. We can say that patient means are distributed72

αi ∼ N
!
µ, τ2

"
.

This distribution of patient means is illustrated in yellow in Figure 1.73

The notion of within-patient heterogeneity implies there will be variance around each patient’s mean pain.74

When we ‘sample’ a patient’s pain rating, we do not observe αi; rather, we obtain a value αi ± σ. These75

within-patient distributions are illustrated in red in Figure 1. Together, the within- and between-patient76

models form a hierarchical model (Appendix A).77

Because the patient’s pre- and post-intervention pain ratings have variability associated with them, the78

observed difference scores are subject to regression toward the mean (RTM). RTM is a statistical phenomenon79

whereby higher initial scores are likely to be followed by lower measurements, and similarly, lower initial80

scores are likely to followed by higher measurements. For example, suppose someone’s diastolic blood pressure81

is normally around 70 mmHg. If a doctor measures that individual’s blood pressure and finds it to be 9082

mmHg, it is highly probable that the next time it is measured, it will be lower than 90 mmHg. Individuals83

whose measurements deviate more from their mean will thus appear to undergo greater changes. In the84

case of a pain study, those who start off with greater pain levels will regress toward the mean, in turn85

creating larger change scores. Importantly, this phenomenon is purely statistical and can be explained by86

the reliability of the measurement.87

Measurement reliability is commonly quantified using the intraclass correlation coefficient (ICC). The88

simplest version of the ICC is the ratio of the between-patient variance to the total variance,89

τ2

τ2 + σ2
,

where τ2 is the between-patient variance and σ2 is the within-patient variance. Since σ2 defines the variance90

between individual measurements from a single patient, the ICC can be improved by using the mean of several91

measurements from a single patient rather than a single measurement. Doing so allows us to substitute σ2
92

with the variance of the sample mean, σ2

n , giving us an ICC that is a function of the number of data points93
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Figure 3: Simulations of additive and multiplicative changes reveal the effect of different intraclass correlation
coefficients on the slope between change scores and pre-intervention scores. Additive effects have slopes that
trend towards zero with increasing ICC’s, while multiplicative effects always have a negative slope no matter
their ICC.

sampled from each patient,94

τ2

τ2 + σ2

n

.

Note, this quantity approaches 1 (perfect reliability) as n → ∞.95

Importantly, the above concepts generalize to post-intervention scores as well. If we assume τ2 and σ2 do96

not change, and instead, there is a simple shift in mean scores without ceiling and floor effects, then the ICC97

also defines the Pearson correlation between pre- and post-intervention scores. The Pearson correlation is98

useful because it gives us direct insight into RTM—the slope between the pre-intervention scores and change99

scores approaches zero as the correlation between pre- and post-intervention scores approaches 1 (Figure 3).100

This is depicted graphically in Figure 2b, which shows that those who have greater pre-intervention pain101

scores (x-axis) have smaller change scores (y-axis).102

All of these properties come together and should be considered when statistically modeling pain relief103

and the effect of an intervention.104

2.2 Multiplicative Model105

The multiplicative model is still mathematically simple but its implications are more complex. If pain relief106

is multiplicative, then it can be modeled as a relative reduction; i.e., φ = δi
xi
. This would imply that each107

person’s post-intervention pain (yi) is a fraction of their starting pain (xi); i.e., yi = (φ + 1)xi. However,108

ratios and relative reductions have unfavorable statistical properties. Instead, it is preferable to work on109

the log scale [Keene, 1995, Senn, 2006, Senn and Julious, 2009]. In particular, recall log yi

xi
= log yi − log xi,110

enabling us to linearize the multiplicative process. Similarly, from this, one may realize that it is natural to111

model multiplicative effects as being generated from log-normal distributions rather than normal distributions112

(Appendix B).113

The implications of the log-normal distribution and its multiplicative properties are shown and described114

in Figure 2 and Figure 3. Note that the multiplicative pain reductions follow different distribution than115

additive effects owing to their errors compounding rather than adding. This results in a ‘fanning’ (or116

heteroscedasticity) of post-intervention scores as a function of greater pre-intervention scores Figure 2a.117

This is a hallmark of multiplicative processes that can be evaluated empirically. In addition to this fanning,118

it is quickly apparent that even with zero measurement error (Figure 3), multiplicative effects can look like119

RTM since greater pre-intervention scores will result in greater decreases in pain (Figure 2b). However,120

as opposed to additive processes in which greater pre-intervention scores are attributable to RTM (i.e.,121

measurement error), this relationship is indeed ‘real’ for multiplicative processes.122

The multiplicative nature does not only apply to the relationship between pre- and post-intervention123

pain, but also the effect of a treatment. This is described in further detail in the next subsection.124
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2.3 Statistical Models of Pain Relief125

Randomized controlled clinical trials aim to compare pain between two groups. To do so, investigators126

commonly compare the absolute or percent pain relief itself (e.g., a t-test on the change scores). However,127

such analyses are ill-conceived. Instead, especially for studies that record one or few follow-up measures (as128

opposed to time-series), it is recommended that the data-generating process be modeled using an analysis of129

covariance (ANCOVA) with pre-intervention scores as a covariate [Vickers and Altman, 2001, Senn, 2006].130

The reasons for this are manifold:131

1. The response variable in a statistical model should be the result of an experiment. Because patients132

enter studies with their baseline score, it is not the result of the experiment so it should not be treated133

as a dependent variable (e.g., like in a group×time analysis of variance).134

2. Accounting for RTM. Instead of a group×time analysis of variance, one could perform a simple t-test135

on the change scores. However, such an analysis ignores RTM, and, especially in the case of baseline136

imbalances, can produce biased estimates. ANCOVA can adjust for such effects.137

3. Improving statistical efficiency. ANCOVA has greater statistical efficiency, resulting in greater power138

and more precise intervals.139

4. Post-intervention scores are arguably more interesting than change scores. Patients must live with the140

pain following the intervention, not the change in pain. However, regressing post-intervention pain or141

change in pain produces the same group effect [Senn, 2006].142

These statistical and philosophical advantages are well-established in the biostatistics literature [Vickers and Altman, 2001,143

Vickers, 2001, Vickers, 2014, Frison and Pocock, 1992, Borm et al., 2007, Senn, 2006]. Note, the benefits144

of ANCOVA primarily apply to randomized studies, as ANCOVA may produce biased estimates in non-145

randomized studies depending on the allocation mechanism [Van Breukelen, 2006].146

For the additive case, the ANCOVA model takes the form147

yi = β0 + β1xi + β2gi + εi,

where εi ∼ N (0,σ2) and gi is dummy-coded for group (e.g., 0 = placebo and 1 = drug). β2 is the effect148

of interest: the average difference in post-intervention pain scores between groups after adjusting for pre-149

intervention scores. β1 will typically be < 1, indicative of RTM, and the intercept may be nonsensical unless150

xi is mean-centered. Of course, like any regression, one can add more covariates, especially those with151

prognostic value, which will further increase statistical efficiency.152

The ANCOVA can also be generalized to the multiplicative case. Since multiplicative effects can be153

linearized by taking the log-transform, we can write the model as154

yi = B0 · xβ1

i ·Bgi
2 · Ei (1)

= exp {β0 + β1 log xi + β2gi + εi} (2)

=⇒ log yi = β0 + β1 log xi + β2gi + εi. (3)

This model reveals a few things. First, in (1), residuals will compound with increasing values of the predicted155

yi (i.e., ŷi). Indeed, this is consistent with what we observed in the simulations above, so this functional156

form can capture the compounding error. Second, in (3), both yi and xi are logged, so when β1 = 1,157

it is equivalent to modeling the percent change; however, when β1 ∕= 1, there is a scaling to account for158

nonlinearities and RTM. Finally, B2 is a multiplicative effect: when B2 = 1, both groups are expected to159

have the same post-intervention score for a given pre-intervention score; when B2 > 1, the experimental160

group is expected to have a greater post-intervention score for a given pre-intervention score; and so on.161

Since we are fitting β2 rather than B2, the fit coefficient will be on the log scale, so exponentiating the162

coefficient will make it more interpretable despite the log scale having nicer mathematical properties. Note,163

even this multiplicative ANCOVA is more efficient than analyzing percent changes [Vickers, 2014].164
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Figure 4: Simulations of additive and multiplicative changes reveal differential residual behavior for raw
and log-transformed ANCOVA models. (Left) data generated with have an additive structure have ho-
moscedastic residuals when fit with a standard ANCOVA (top) but heteroscedastic residuals when fit with
a log-transformed ANCOVA (bottom). (Right) data generated with a multiplicative structure have ho-
moscedastic residuals when fit on their raw scale (top) but homoscedastic residuals when log-transformed
(bottom).

3 Empirical Data165

As a proof of principle, we assessed the properties of four separate datasets. Two of the datasets were166

collected in patients with subacute back pain and the other two consist of patients with chronic back pain.167

Ideally, data are analyzed using intention-to-treat. However, here, we included individuals for whom we had168

enough ratings to complete our analyses as the data are being used for illustrative purposes and we are not169

looking to draw inferences.170

3.1 Datasets171

3.1.1 Placebo I (Chronic back pain)172

Overview. The purpose of this study was to investigate factors associated with placebo analgesia in chronic173

pain patients [Vachon-Presseau et al., 2018]. This was the first trial designed to study chronic pain patients174

receiving placebo versus no treatment. The total duration of the study lasted ∼ 15 months. Protocol and175

informed consent forms were approved by Northwestern University IRB and the study was conducted at176

Northwestern University (Chicago, IL, USA).177

Participants. To meet inclusion criteria, individuals had to be 18 years or older with a history of lower178

back pain for at least 6 months. This pain should have been neuropathic (radiculopathy confirmed by179

physical examination was required), with no evidence of additional comorbid chronic pain, neurological, or180

psychiatric conditions. Individuals had to agree to stop any concomitant pain medications and had to be181

able to use a smartphone or computer to monitor pain twice a day. Additionally, the enrolled patients had182

to report a pain level of at least 5/10 during the screening interview, and their averaged pain level from the183

smartphone app needed to be higher than 4/10 during the baseline rating period before they were randomized184

into a treatment group. A total of 82 patients were randomized. Here, we include 18 participants from the185

no treatment group and 42 participants from the placebo group for whom we had complete rating data (cf.186

Supplementary Figure 1 in [Vachon-Presseau et al., 2018]).187
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Pain data. Data were collected using a custom pain rating phone app through which patients could rate188

their pain (0–10 NRS). Patients were asked to enter their pain 2 times/day over the course of the entire189

study. For the purposes of demonstration, here we averaged pain ratings within a single day.190

3.1.2 Placebo II (Chronic back pain)191

Overview. The purpose of this study was to validate a prognostic model for classifying chronic pain patients192

based on their predicted improvement with placebo [Vachon-Presseau et al., 2021]. Protocol and informed193

consent forms were approved by Northwestern University IRB and the study was conducted at Northwestern194

University (Chicago, IL, USA).195

Participants. Individuals with chronic low back pain were recruited for this study. Patients must have196

had low back pain for at least 6 months, with or without symptoms of radiculopathy, a minimum VAS score197

of 5/10 at the screening visit and a minimum average pain of 4/10 over a two-week period prior to their first198

visit. A total of 94 patients were randomized to no treatment, placebo, or naproxen. Here, we include 12199

participants from the no treatment group, 33 participants from the placebo group, and 35 participants from200

the naproxen group for whom we had complete rating data (cf. Figure 1 in [Vachon-Presseau et al., 2021]).201

Pain data. Data were collected using a custom pain rating phone app through which patients could rate202

their pain (0–10 NRS), as in Placebo I. Patients were asked to enter their pain 2 times/day over the course203

of the entire study. For the purposes of demonstration, here we averaged pain ratings within a single day.204

3.1.3 Levodopa trial (Subacute back pain)205

Overview. The purpose of this trial was to investigate whether levodopa (l-DOPA) can block patients’206

transition from subacute to chronic back pain. This 24-week double-blind parallel randomized controlled207

trial was conducted at Northwestern University (Chicago, IL, USA). Protocol and informed consent form208

were approved by Northwestern University IRB as well as NIDCR/NIH. All enrolled participants provided209

written informed consent. The trial was registered on ClinicalTrials.gov, under registry NCT01951105 and210

is preprinted on medRχiv [Reckziegel et al., 2021].211

Participants. Individuals with a recent onset of lower back pain were recruited. Criteria for enrollment212

included history of lower back pain with duration between 4-20 weeks with signs and symptoms of radicu-213

lopathy and average reported pain intensity > 4 (on an NRS scale from 0 to 10) on the week before baseline214

assessments and the week preceding treatment start. Participants were randomized to one of three groups:215

no treatment (completed n=10), naproxen + placebo (n=28), naproxen + l-DOPA/c-DOPA (n=21). Here,216

we will use data from 47 patients who had complete rating data (naproxen + placebo = 27; naproxen +217

l-DOPA/c-DOPA = 20) (cf. Figure 1b, [Reckziegel et al., 2021]).218

Pain data. Data were collected using a custom pain rating phone app through which patients could rate219

their pain (0–10 NRS). Patients were asked to enter their pain 3 times/day over the course of the entire220

study (28 weeks). For the purposes of demonstration, here we averaged pain ratings within a single day.221

3.1.4 Prospective cohort (Subacute back pain)222

Overview. The purpose of this study was to identify predictive biomarkers to identify individuals who will223

vs. will not recover from subacute back pain [Baliki et al., 2012]. Protocol and informed consent forms224

were approved by Northwestern University IRB as well as NIDCR/NIH, and the study was conducted at225

Northwestern University (Chicago, IL, USA). All enrolled participants provided written informed consent.226

All participants were righthanded and were diagnosed by a clinician for back pain. An additional list of227

criteria was imposed including: pain intensity > 40/100 on the visual analog scale (VAS) and duration < 16228

weeks.229

Participants. Eighty individuals with a recent onset (within 16 weeks) of lower back pain and an average230

reported pain intensity > 40/100 (on the VAS) who completed at least three follow-up visits (i.e., 30 weeks231

following the initial visit).232

Pain data. Data were collected at 5 separate visits using the short form of the McGill Pain Questionnaire233

(MPQ). The computed sensory and affective scores from the MPQ for each visit are used as individual pain234

scores for each subject.235
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3.2 Data Properties236

To evaluate whether each dataset was more compatible with an additive or multiplicative process, we con-237

ducted the same analyses from the Statistical Background section (Figures 2–4) on these data. In particular,238

we investigated properties of the raw and log-transformed data, in addition to the properties of ANCOVAs239

fit to the data. To do so, all data were converted to a 0–100 scale. Before log-transforming, we added 1 to240

the raw scores to avoid log(0) = NaN. In doing so, we demonstrate how the aforementioned principles apply241

to real data.242

All datasets have positive relationships between pre- and post-intervention scores(Figure 5, top row).243

Interestingly and in contrast to the other studies, the variance of the post-intervention scores in the levodopa244

trial appears to increase with greater pre-intervention scores, consistent with a multiplicative effect. Finally,245

with the exception of the prospective cohort study, there are negative relationships between changes in pain246

and pre-intervention scores. These negative relationships may be explained by multiplicative effects or RTM.247

Further examination is needed to ascertain the nature of these data.248

Placebo 1 Placebo 2 Longitudinal cohort Levodopa
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Figure 5: Relationships between pre-intervention scores and change scores (top) and pre-intervention scores
(bottom). (Top) Relationship between pre-intervention scores and change scores. Note that most of the
studies have a negative relationship. This could be explained by regression toward the mean or multiplicative
effects, in addition to ceiling/floor effects. (Bottom) Relationship between pre-intervention and post-
intervention pain scores across all studies. Each study shows a positive relationship between pre- and
post-intervention scores; however, the Levodopa study appears to have greater variance in post-intervention
scores with greater pre-intervention scores.

Including more points in the calculation of pre-intervention and post-intervention scores increases the249

ICC, thereby increasing the reliability and decreasing the effect of RTM (Figure 3). Since three of the four250

datasets contained ecological momentary assessments of pain, we were able to sample and average more251

than one point from the beginning and end of each study. We averaged an increasing number of a pre- and252

post-intervention points and recalculated the slope between change score and pre-intervention score (i.e.,253

plot from Figure 5, top). If the slopes strongly trend towards zero by increasing the number of points, this254

indicates that the data have additive properties. Slopes that stay negative regardless of increasing reliability255

(number of points) indicate that the data may be multiplicative. For the studies included in this analysis256

(Placebo I, Placebo II, Levodopa Trial), Placebo I and Placebo II’s slopes have slight upward trends: as the257

number of points in the calculation of pre-intervention and post-intervention scores increases, the negative258

slope due to RTM increases. In contrast, the Levodopa trial’s negative slopes remain stable (Figure 6). This259
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again hints at the notion that the levodopa trial’s data may be multiplicative, while Placebo I and Placebo260

II may be additive.261

Placebo 1 Placebo 2 Levodopa

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
-1.00

-0.75

-0.50

-0.25

0.00
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Figure 6: Increasing the number of points used for each patient’s pre- and post-intervention scores increases
the slope between change scores and pre-intervention scores. Each patient’s pre- and post-intervention scores
were calculated using the mean of x points. By averaging over more points, we should increase the intraclass
correlation coefficient. Negative slopes between change scores and pre-intervention scores are indicative of
one of two things: (1) regression toward the mean or (2) multiplicative effects. In the datasets that show
evidence of being additive, we see marked increases in slopes, indicating that we are decreasing regression
toward the mean by including more points. However, because the Levodopa Trial displays multiplicative
properties, it is only minimally affected by adding more points.

Perhaps the most direct assessment of additive versus multiplicative properties is to model the data and262

assess the model fits. When assessing and utilizing a model, one should ensure that the model’s assumptions263

are met and that the model captures salient features of the data. Because multiplicative data-generating264

processes lead to compounding residuals, we can observe these effects when fitting ANCOVAs. In Figure 7,265

we focus specifically on the variance observed in Figure 5, illustrating the relationship between fitted values266

(using the ANCOVA models from Figure 5) and the absolute value of the residuals. As shown in Figure 2,267

multiplicative relationships possess higher variance as pre-intervention scores increase, compared to additive268

relationships which are homoscedastic. For this reason, we should observe a null correlation between fitted269

values and absolute residual error for data that have exhibited additive properties (Placebo I, Placebo II,270

Prospective Cohort) thus far, and observe a positive correlation between fitted values and absolute residual271

error for data that have exhibited multiplicative properties (Levodopa Trial). As predicted, the Placebo I,272

Placebo II, and Prospective Cohort data all display this additive quality, as their residual error does not273

increase as fitted values increase. In contrast, the Levodopa Trial data display multiplicative properties, as274

its residual error increases as fitted values increase. The description and analyses of these data can be seen275

below (Figure 7).276
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Figure 7: Absolute values of residuals from additive ANCOVA models. We fit an ANCOVA to each dataset
using pre-intervention score and group membership as covariates. From these models, we plotted the absolute
values of the residuals as a function of the fitted value. Additive models should be homoscedastic, meaning
the magnitudes of the residuals do not change as a function of the response variable. However, multiplicative
models have compounding error, such that if you fit them using an additive model, greater predicted values
will be associated with larger magnitudes of residual error. Placebo I, Placebo II, and the Prospective Cohort
study all exhibit features of additive data. However, the Levodopa Trial exhibits multiplicative properties,
as evidenced by the increasing error residual magnitude with increasing fitted values.

From these plots, it is clear that the Placebo I, Placebo II, Prospective Cohort demonstrate additive277

properties while the Levodopa Trial demonstrates multiplicative properties. An understanding of these278

concepts and model assumptions have real implications. In Table 1, we include the average absolute (additive)279

and log-transformed (multiplicative) change in pain scores for each dataset. As an example, the effect of280

naproxen relative to no treatment in Placebo II is -15 (-27,-3) for the additive model but 0.7 (0.4, 1.1) for281

the multiplicative model. The 95% CI is much wider for the multiplicative model since it is misspecified,282

which in turn may lead an investigator or clinician to less certain conclusions about the treatment effect.283

Dataset
Additive model (NRS),

β̂ (CI)

Multiplicative model (AU),

β̂ (CI)

Placebo I -3 (-12, 5) 0.9 (0.8, 1.1)
Placebo II Placebo: -9 (-21, 4)

Naproxen: -15 (-27, -3)
Placebo: 0.8 (0.5, 1.3)
Naproxen: 0.7 (0.4, 1.1)

Levodopa Trial 4 (-7, 15) 1.5 (0.7, 3.3)

Table 1: Additive and multiplicative effects by dataset. All effects were modeled using ANCOVA with
pre-intervention scores as a covariate. Multiplicative effects use the log-transformed scores and represent the
exponentiated coefficients which can be interpreted as the relative effect of treatment group versus the control
group (e.g., post-intervention pain in the placebo group (Placebo I) will be 90% of the post-intervention pain
in the no treatment group).
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4 Discussion284

Pain relief is a ubiquitous clinical trial outcome with direct treatment implications. Treatments that yield285

appreciable pain relief will be employed in the clinic, and findings from these trials may be communicated286

to patients. However, if data from trials are not properly modeled, then the resulting treatment effects287

may be both biased and highly variable, which in turn may mislead researchers, clinicians, and patients.288

In this theory-based paper, we have emphasized the difference between additive and multiplicative treating289

effects from mathematical, statistical, and empirical perspectives. It is clear that the assumptions behind290

these effects are not interchangeable and thus should be more thoughtfully considered when planning and291

analyzing clinical trial data. Moreover, how pain relief is conceptualized will propagate into the interpretation292

of effects, which we briefly discuss herein.293

4.1 Minimal Clinically Important Differences294

Pain intensity ratings can be difficult to interpret—they are a reductionist, unidimensional measurement in-295

tended to capture a single aspect of a private, complex, incommunicable experience [Chapman and Loeser, 1989,296

Turk and Melzack, 2011]. To help make sense of improvements, researchers and clinicians commonly rely297

on minimal clinically important differences (MCID). In clinical pain research, MCIDs are commonly de-298

rived by mapping changes in pain ratings onto a different scale, such as global impression of change299

[Farrar et al., 2001]. For example, what absolute change in NRS and relative change in NRS correspond300

to “much improved”? This mapping is then commonly used a guidepost for interpreting other studies, and301

in some cases, individual patient changes [Smith et al., 2020].302

Although commonly derived and used without justification, absolute and relative MCIDs are not inter-303

changeable since they are mathematically incompatible with one another. Suppose patient A starts with an304

8/10 pain and patient B starts with a 4/10 pain. If the treatment has an additive effect, both patients may305

improve by 2/10, but this would result in markedly different percent reductions: 25% and 50% for patients306

A and B, respectively. Farrar et al. [Farrar et al., 2001] suggest that an MCID for pain relief is 2/10 NRS or307

30%; here, these would yield two different conclusions since both patients achieved a 2/10 decrease but only308

one patient achieved a 30% decrease. Much attention has been and continues to be given to both additive309

and multiplicative MCIDs without considering the conceptual difference between the two. This conceptual310

incompatibility needs to be reconciled if MCIDs are to be used in a meaningful way. However, there are also311

larger issues that warrant addressing.312

Across studies and ignoring the numerical nature of treatment effects, MCIDs have a linear relationship313

with baseline pain ratings, with an x-intercept corresponding to roughly 30/100 and a slope of 1 (i.e.,314

MCID ≈ baseline− 30) [Olsen et al., 2018]. This relationship calls into question both absolute and relative315

MCIDs. If absolute MCIDs were valid, then we would expect the MCID to be constant across all baseline316

pain scores. If relative MCIDs were valid, then we would expect a y-intercept of 0 and a slope equal to the317

MCID. Rather, this relationship suggests MCIDs are more compatible with a post-intervention pain rather318

than change score, and this post-intervention pain is equal to 30/100. In other words, the MCID is the319

change in pain needed to obtain a 30/100. If true, this would be consistent with the idea that it is a patient’s320

pain, not change in pain, that is important.321

More generally, MCIDs arguably represent a conflation of constructs. MCIDs typically involve di-322

chotomizing a measurement by mapping it onto some other measurement using some loss function—a form323

of ‘dichotomania’ [Senn, 2005]. For example, researchers may threshold and dichotomize changes in VAS324

into improvement versus non-improvement using the global impression of change scale [Farrar et al., 2001].325

This dichotomization of pain scores is then applied to other studies. Yet, such an approach is curious—it326

implies we are actually interested in global impression of change but use pain scores as a noisy proxy. If327

a researcher is interested in global impression of change, they should measure global impression of change328

as an outcome in their sample. Further, the ontological basis for dichotomous change scores is arguably329

ill-conceived. The insipid use of MCIDs in pain research and practice deserves greater scrutiny. From this330

perspective, it has been argued that greater context is needed in deriving metrics of clinical importance331

[Ferreira et al., 2012, Ferreira, 2018] for which decision theory may provide a rigorous foundation.332

In addition to using MCIDs for interpreting findings, researchers have used MCIDs for ‘responder anal-333

ysis’. For example, a researcher may split patients into groups of ‘responders’ and ‘non-responders’ based334
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on whether their change in pain exceed the MCID (see Section 4.5 in [Smith et al., 2020]). However, such335

analyses have undesirable properties on both the individual and group levels. On the individual level, in-336

ferences cannot be made regarding response magnitude for several reasons. First, individual counterfactuals337

are not observed in parallel group trials; for example, we do not know what what an individual’s pain would338

have been had they been randomized to the placebo group instead of the drug group. An individual’s339

observed improvement or worsening may have been due to the intervention or alternatively, RTM, natural340

history, or some other unmeasured, stochastic process. Second, the individual may not reliably attain the341

same improvement each time the trial is performed; for example, 60% of individuals may respond 100%342

of the time or 100% of individuals may respond 60% of the time (or some mixture of the two). Third,343

this dichotomization assumes an improvement of, say, 30% and 100% are equivalent, and similarly, that344

an improvement of 29% and 0% are equivalent (assuming MCID = 30%) by treating improvements as a345

binary step function rather than continuous—such an assumption strains credulity. These issues have been346

previously discussed in great detail [Senn, 2001, Senn, 2004, Senn, 2016, Senn, 2018]. On the group level,347

dichotomizing individual responses turns each patient’s pain improvement into a 0 (‘non-responder’) or 1348

(‘responder’), which discards information and, in turn, markedly decreases statistical efficiency and power349

[Cohen, 1983, Altman and Royston, 2006]. Thus, the dichotomization of improvements is arguably unethical350

since it discards information, effectively decreasing the sample size [Cohen, 1983] and, in turn, the ability351

to quantify (or rule out) meaningful intervention effects. Rather than being treated as an analytical tool,352

MCIDs are perhaps better viewed from an interpretive and decision-making perspective.353

Notwithstanding MCID’s limitations, it is perhaps most useful at the planning stage of clinical research.354

A clinically important difference is just one approach to justifying an effect size of interest for a study355

[Cook et al., 2018], which may be used for sample size calculations or stopping rules in adaptive trials.356

However, beyond planning, dichotomizing trial and especially individual patient outcomes using an MCID357

is a questionable practice that commonly ignores context and variability [Senn and Julious, 2009].358

4.2 Scale Assumptions359

Psychological measurement scales have a rich history across the fields of psychometrics and psychophysics360

[Stevens, 2017]. Anchors determine the extremes within which a participant must rate their experience,361

ultimately constraining the measurement construct and how accurately participants understand what they362

are rating [Yokobe et al., 2014]. Bounded by these anchors, the measurements themselves can be on one363

of a number of scales: nominal, ordinal, interval, ratio, and absolute. Nominal scales assume a one-364

to-one mapping between the desired quantity x′ and the measured quantity x; ordinal scales assume a365

monotonic mapping; interval scales assume an affine mapping (x′ = ax + b); ratio scales assume a lin-366

ear mapping with an absolute zero (x′ = ax); and absolute scales assume a perfect mapping (x′ = x)367

[Bolanowski Jr and Gescheider, 2013]. Several renowned psychophysicists have argued—not without criti-368

cism [Ellermeier and Faulhammer, 2000, Zimmer, 2005]—that perceptual ratings are or can easily be con-369

verted to ratio scale [Stevens, 2017, Bolanowski Jr and Gescheider, 2013]. Importantly, the additive and370

multiplicative models rely on interval and ratio assumptions, respectively. Thus, the validity of these as-371

sumptions for clinical pain must be considered.372

The numerical nature of clinical pain is an open, controversial, and perhaps unanswerable question. Early373

psychophysics work argues that VAS and NRS pain scales are ratio for both experimental and clinical pain. In374

1983, Price et al. [Price et al., 1983] used cross-modality matching to argue that clinical pain, like heat pain,375

is a ratio scale. However, by mapping clinical pain onto heat pain, this finding is arguably tautological—376

they assessed whether clinical pain-matched heat pain follows the same power law as heat pain. Others377

have used item-response theory to argue that pain ratings are ordinal scale (nonlinear) rather than ratio or378

interval scale [Kersten et al., 2014]. Since the authors used unidimensional measures and a Rasch model, this379

conclusion is based on stationarity assumptions and ratings’ reliability, which are not necessary conditions380

for interval or ratio scales. Although the perceptual ratings from psychophysics are undoubtedly related to381

clinical pain, assessing the measurement properties of clinical pain is much more complex since we cannot382

precisely control the sensory input. Thus, clinical pain measurement scale assumptions arguably cannot be383

rigorously evaluated, reinforcing that they are indeed assumptions. However, the strength of assumption384

varies, with interval scales (additive) having weaker assumptions than ratio scales (multiplicative). The385

assumptions a researcher makes directly affects the model they should choose.386
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4.3 Statistical Modeling and Applications387

The choice of a statistical model can greatly affect the inferences drawn from the same dataset. Here, we388

observed that applying a multiplicative model to a dataset that exhibits additive properties can create wide389

CIs, making it difficult to interpret the results of an experiment (Table 1). This is consistent with the390

idea that a properly specified model will be more statistically efficient [Vickers, 2014], and perhaps most391

importantly, they better represent the underlying data.392

We presented two ways of modeling data: additively and multiplicatively. Both rely on ANCOVA,393

with the former using raw pain scores and the latter using log-transformed pain scores. These models394

have different assumptions about the underlying data and, as a result, have different interpretations. If395

authors feel the linearity and ratio assumptions are too strict, there are other models that can be used;396

e.g., ordinal regression and semiparametric (or nonparametric) ANCOVA [Harrell, 2017], in addition to397

intensive longitudinal and time-series analysis [Fitzmaurice, 2011]. Indeed, there are good examples in398

the pain literature of ANCOVA-type models being implemented with more complicated data structures399

(e.g., multiple study endpoints, see [Mathieson et al., 2017]). In any case, researchers should be aware of400

the assumptions of their statistical models of the properties of their data, and of course, researchers are401

encouraged to collaborate with statisticians [Sainani et al., 2021].402

4.4 Recommendations403

We have clearly demonstrated the mathematical, conceptual, and interpretive differences between additive404

and multiplicative effects. From this explication, there are tangible takeaways and recommendations for405

clinical researchers. Specifically, we suggest that researchers include and consider the following:406

1. When deciding which metric to use—absolute pain decreases or percent pain decreases—use the data as407

a guide unless there is a principled reason to choose one or the other. Since it is unclear what influences408

the presence of additive or multiplicative characteristics in pain data, it is safer to use the metric that409

exhibits the properties of the data accurately. Table 2 summarizes the differences between additive410

and multiplicative properties. In time, we may develop a better understanding of pain conditions and411

improvements such that more general recommendations can be provided. We view this as being no412

different than checking statistical model assumptions.413

Table 2: Hallmarks of additive and multiplicative effects.

Plot Additive Multiplicative

Slope of change score vs.
pre-intervention score (y)
vs. number of points (x)

Slopes approach zero as the
number of points utilized in
calculating pre- and
post-intervention pain scores
increases by increasing ICC
(Figure 3, left).

Slopes increase minimally with
increasing number of points
(Figure 3, right).

Absolute value of residuals
(y) vs. fitted values (x)

No relationship between
absolute residual error and fitted
(post-intervention) values.

Positive, heteroscedastic
relationship between absolute
residual error and fitted
(post-intervention) values.

2. When reporting descriptive statistics, use the arithmetic mean to calculate between-subject (average)414

intervention for additive data; conversely, use geometric mean for multiplicative data.415

3. Ensure that patients’ pre-intervention scores are heterogeneous for drawing conclusions about the416

nature of the data. By including a wide range of pre-intervention scores, it makes the additive or417

multiplicative properties more apparent. If the data are not heterogeneous, false conclusions may be418

made about the data’s additive or multiplicative properties.419
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5 Conclusion420

The properties of changes in self-reported pain are commonly implicitly assumed to be additive, multiplica-421

tive, or are conflated. Ignoring the properties of pain relief can result in model misspecification, in turn422

leading to bias and statistical inefficiency. These errors further propagate into metrics such as minimal423

clinically important differences. We contend that more attention should be paid to the statistical properties424

of pain relief to ensure model assumptions are met. By paying closer attention to these properties, we can425

gain more insight from and make better use of data from pain clinical trials.426

A Data Generating Processes427

A.1 Additive Model428

The additive model can be conceptualized hierarchically. First, we will assume each individual’s average429

pre-intervention pain, αi for patient i, is sampled from a larger population,430

αi ∼ N
!
µ, τ2

"
.

Since αi represents an individuals average pre-intervention pain, it is a latent construct and ignores mea-431

surement error and natural pain variability; for example, minute-to-minute, hour-to-hour, and day-to-day432

fluctuations in pain intensity. In actuality, an experiment will sample an individual’s pain ratings and will433

be affected by measurement error. Thus, a given measurement of a patient’s pre-intervention pain will be434

xij = αi + εij ,

where εij ∼ N
!
0,σ2

"
for measurement j from patient i, assuming all patients have the same within-patient435

variability (Figure 1). If we sample and average n measurements from patient i, we obtain436

xi· ∼ N
#
αi,

σ2

n

$
.

Similarly, assuming homogeneous improvement and treatment effects, the average post-intervention pain437

rating for patient i is438

yi· ∼ N
#
αi + δ + θgi,

σ2

n

$
,

where δ is the improvement in the control group, θ the treatment effect of interest, and gi is a dummy439

variable for group (0 = control; 1 = intervention). Without loss of generality via the additive assumption of440

treatment effects, we will ignore treatment groups (θ) to simplify the problem and describe the properties of441

these distributions, giving us the simplified post-intervention pain distribution442

yi· ∼ N
#
αi + δ,

σ2

n

$
.

For both the pre and post model, the intraclass correlation coefficient (ICC) is443

ICC =
τ2

τ2 + σ2

n

,

which is also the correlation between pre- and post-intervention scores. Luckily, ICC is sensitive to the444

number of data points from which each patient’s pre- and post-intervention mean pain scores are calculated,445

lim
n→∞

σ2

n
= 0 =⇒ lim

n→∞

τ2

τ2 + σ2

n

= 1.

With more data points, the slope attributable to RTM disappears. Since the ICC is equivalent to a Pearson’s446

r in this case, we can write the joint pre-post distribution of averaged pain scores can be written as a447

multivariate normal,448 #
xi·
yi·

$
∼ N

%#
µ

µ+ δ

$
,

&
τ2 + σ2

n τ2

τ2 τ2 + σ2

n

'(
.
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A.2 Multiplicative Model449

The log-normal distribution is an exponentiated normal distribution, meaning the log of the log-normal450

distribution is a normal distribution. Therefore, we have451

logαi ∼ N
%
log

%
µ2

)
µ2 + τ2

(
, log

#
1 +

τ2

µ2

$(
.

And like the additive case, a single pre-intervention score j pain for patient i can be described as being452

centered around their individual mean,453

log xij ∼ N
#
logαi,

σ

µ

$
.

Similarly, a patient’s post-intervention pain is scaled rather than shifted by the change in pain, δ,454

log yij ∼ N
#
logαi + log

#
1 +

δ

µ

$
,
σ

µ

$
.
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