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Abstract—Many studies have shown that the transmission con-
trol protocol (TCP) which is the major transport protocol in the
Internet today is finding it increasingly difficult to cope with the
growth of communication network capacities and applications.
TCP’s inability to properly utilize network links is one of the
problems. Besides, TCP takes a long time to achieve fairness
between flows. Many of the new modification of TCP inherit
these main problems of TCP.

Clean-slate protocols such as the explicit Congestion control
Protocol (XCP) which get congestion feedback from routers
can fully utilize the links and reduce queueing delays in the
path of the flows. But XCP, in addition to having many router
computation overheads also takes many rounds to allocate fair
shares to flows. To solve the drawbacks of XCP and TCP, we
have previously presented a network control protocol (NCP).
NCP allocates fair share to flows in one round resulting in
increased average file completion time (AFCT) as short flows are
not blocked by big file transfer flows. Although smaller than that
of XCP, NCP uses a 32 bit additional header in every packet to
carry a congestion feedback from the routers in the path of every
flow to each source of the flow. Apart from the inconvenience of
modifying the TCP/IP packet formats, the additional header may
accumulate to cause some increase in AFCT.

In this paper we present an efficient implementation scheme
(algorithm) of the Network Congestion Control (NCP) protocol
using Explicit Congestion Notification (ECN) bits (eNCP). Using
this implementation scheme, NCP does not need any additional
packet header, avoiding the per packet overhead. In addition
to the convenience of not having to change the TCP/IP packet
header format, numerical results show that a significant amount
of data overhead can be saved using eNCP. Not having to add
a layer can also make NCP easily deployable and backward
compatible.

I. I NTRODUCTION

Transport protocols which control the rate of data transfer
in communication networks play an important in avoiding
network congestion. The transmission control protocol (TCP)
is the major transport protocol in the Internet today. In spite of
avoiding congestion in the early stages on the Internet, TCP
is finding it increasingly difficult to cope with the growth of
communication network capacities and applications as shown
in the literature [1]. TCP’s inability to properly utilize network
links is one of the problems of TCP. Any delay or packet loss
can cause TCP to dramatically reduce its congestion window
and hence under-utilize the link. This is mainly because TCP
doesn’t have a direct way of finding the available capacity in
the path of the flows. So it takes many rounds for TCP to find
the correct rate at which flows need to send data. This means
that flows take unnecessarily long time to finish. Besides, TCP
takes long time to achieve fairness between flows. For instance
flows which are sending at a higher rate and others sending
at a lower rate are both told to reduce their sending rates
(congestion window size) by half on event of congestion. This

means that the flows which are sending at a higher rate keep
sending at a higher rate. This results in long (big file transfer)
flows starving short flows, which are the majority of flows in
the Internet today [1].

To solve the problems of TCP, there have been some works
in the literature. Many of them make some modification of
TCP resulting in protocols which inherit the main problems
of TCP presented above. On the other hand there are clean-
slate protocols such as the explicit Congestion control Protocol
(XCP) [6]. The design of XCP gets congestion feedback from
routers to fully utilize the links and reduce queueing delays
at the routers in the path of the flows. However XCP inherits
some of the unfairness problems of TCP as it takes many
rounds to allocate a fair share to flows. Besides, causes many
router computation overheads.

Recently we presented a network control protocol (NCP)
which avoid the weaknesses of TCP and XCP and which can
generalize XCP. NCP can allocate fair share to flows in one
round. This implies that big file transfer flows which have
already opened their window size big and hence are sending
at a higher rate do not cause short flows, the majority of the
Internet flows to take longer than necessary to finish. NCP
uses a 32 bit additional header in every packet to carry a
congestion feedback from the routers in the path of every flow
to each source of the flow. In addition to the requirement of
a change in the TCP/IP header format, the additional NCP
header may cause some overhead which can accumulate to
cause unnecessary delays in file transfers.

In this short paper we present an implementation scheme
(algorithm) of our Network Congestion Control (NCP) proto-
col using ECN bits and we call the resulting protocol eNCP.
This implementation avoids the extra packet header overhead
which NCP uses. To the best of our knowledge there is no
such an implementation algorithm to NCP-like algorithms.
As described by some exemplary numerical results, some
data overhead can be avoided using eNCP in addition to the
simplicity of the eNCP implementation.

The rest of the paper is organized in such a way that we
first present the implementation scheme in Section II. We then
present preliminary numerical results showing some gains of
the new implementation scheme in Section III. Finally we
give a brief summary and description of work in progress in
Section IV.

II. eNCP: NCP IMPLEMENTATION USING ECN BITS

The Network Control Protocol (NCP) [3], [4] is a new cross-
layer congestion control and routing protocol. As discussed in
[3], [4], it can outperform the XCP [6] and other congestion
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control protocols. The implementation of NCP needs an ad-
ditional shim throughput (cwnd) header between the IP and
TCP layers as shown in Figure 1. In this section we show

NCP
Header

TCP HeaderIP Header Data Segment

Fig. 1. Packet headers

an implementation of NCP using ECN bits of one or more
than one packets as shown in [8], [9]. This helps NCP work
without any additional packet header and makes it easier to
implement.

A. Derivation of the Feedback

As shown in [3], [4] let’s denote the link capacity, link
buffer size, control interval and current (timet) sending rate
of a flow carried in packetj of the L packets (per control
interval) at a bottleneck link withC,Q, d,Rj(t), respectively.
The rateR(t+ d) by a router at timet+ d as derived in [3]
is given by

R(t+ d) =
Cd−Q

∑L

j (1/Rj(t)
). (1)

As packet j carrying inter packet interval lengthℓj =
1/Rj(t) of a flow crosses a router with the rateR(t + d),
it sets itsℓj as

ℓj =
1

Rj(t)
:= max

(

1

Rj(t)
,

1

R(t+ d)

)

. (2)

In the next section we will show how the value ofℓj is
encoded using ECN bits. The receiver copies the encoded ECN
bit values of the data packets to their corresponding ACK
packets and sends them back to the sender (source). The source
currently sending at the rate ofRj(t) sets its rateRj(t + d)
for the next round to the new valueRj(t) it receives from the
ACK packets. It also calculates its congestion window sizewj

using its round trip time (RTT)RTTj , round as

wj(t+ d) = RTTjRj(t+ d). (3)

For our implementation of NCP using ECN bits, the feedback
which has to be carried back from the network to senderj
is ℓj = 1/Rj(t) = RTTj/wj(t) which is the inter-packet
interval length carried by packetj of a the flows.

B. Encoding the Feedback

The feedback valueℓj can be encoded in the ECN bits
of single packet like in the VCP [7], two packets like in
[8] or even more packets like in the UNO [13] case. The
schemes in [7], [8], [13] encode a load factor which gives
some information to a TCP-like source to adjust its sending
rate. However since the load factor alone doesn’t give enough
feedback to the source, such resulting load-based congestion
control algorithms take a long time to converge to the desired
sending rates. This results in increased AFCT.

In this section of the paper we present a scheme which
encodes the actual rate at which sources send data to fully

utilize the bottleneck links in their paths without causing
significant queue at the routers. Even though using more
packets to encode the rate gives more information to a source,
the source may have to wait for the ACKs of all the packets
which encode the rate to adjust its sending rate. In this report
we demonstrate our encoding and implementation scheme
using three packets. Our scheme can also take advantage of
using more packets to encode the rate. This can be done by
having the first few packets encode the most common (higher)
rate (lower inter-packet interval) values.

Figure 2 shows the IPv4 header along with the ECN bits.
Details of the ECN bit and other fields can be obtained in [10],
[12]. The IP header is one of the headers a packet carries as
shown in Figure 1. Taking each packet independently, the two
ECN bits of each packet can encode 4 values (00, 01, 10, 11)
where 00 encodes a default value ofℓj at the sender. The value
of ℓj is such that0 < ℓj ≤ ℓu whereℓu is the upper bound
of ℓj . We will discussℓu below.

Version IHL Differentiated Services Total Length

Flags

Header Checksum

Fragment offsetIdentification

TTL Protocol

Options and padding

Destination IP address

Source IP address

00 | 01 | 02 | 03 04 | 05 | 06 | 07 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 16 | 17 | 18 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 

ECNDS Field, DSCP

00 |  01 | 02 | 03 | 04 | 05 06 | 07 

Fig. 2. IP Header (IPv4) with the ECN Bits

Each packet can encode three distinct values (other than the
default value) independently. Three packets can then encode
9 values of ℓj . The default unmarked ECN value of all
the packets can as well encode an additional value. So the
three packets can encode a total of 9 distinct values. As the
cwnd wj and sending rateRj of flows increase, the inter
packet interval length shrinks. If the maximum round trip
time (RTT) of a flow is 400ms, and the cwnd is increas-
ing exponentially as 16, 32, 64, 128, 256,ℓj can take the
values25, 12.5, 6.25, 3.125, 1.5625ms. Our choice of 16 as
a minimum congestion window size value is motivated by
recent recommendations [2] of an increase of the initial cwnd
by 10. The use of 400ms as a maximum RTT is motivated
by some Internet measurement results [14] which shows that
about 75% ∼ 90% of flows have RTTs less than 200 ms.
Another work on RTT measurements of TCP [11] shows that
about 90% of flows in the experiment have an RTT of less
than 400 ms. Hereℓu = 400/16 = 25ms.

If the maximum cwnd is256pkts and the slow start thresh-
old is 128pkts, then more ECN bits can be made to encode
values smaller than1.5625ms. So by making some simple
approximations, the three packets can be made to encode
the intervals(0, 0.25], (0.25, 0.5], (0.5, 0.75], (0.75, 1], (1, 1.5],
(1.5, 3.0], (3, 6], (6, 13], (13, 25] in ms. Here the ECN bits
of packet i can be made to encode the tripleti where the
intervals are sorted in ascending order. The advantage of this
type of encoding where packets with small IPID’s encode
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smaller intervals is that the very small intervalℓj indicating
higher bandwidth in the path is quickly detected by the ACK
of the first or second packet. If the value ofℓj is higher
and is encoded in packet 3 then, the feedback is delayed
by two packets. This delay can however be compensated by
spreading the increase in inter-packet interval delayℓj among
the remaining packets the flow is sending in that same RTT.
With more packets many more tighter intervals can be encoded
for better accuracy and convergence of eNCP. For example 6
packets can encode 18 intervals. The intervals we used above
are just examples. Other intervals and better mappings can be
used based on some experimental or analytic results.

The eNCP encoding scheme is presented in Figure 3. The
sender (source) and the routers in the path of the flow share the
same mapping functionm(IPID,ECNvalue) which maps
the ECN bits and IPID combination of the packets to an
interval I of ℓj . The source uses the mapping function to
encode the highest rate (lowestℓj) which is in the range
(0, 0.25]. Each router uses the inverse mapping function of
the ECN bit value and IPID combination in the packets to
decode theℓj value in each packet to use in Equation 1. It
then compares itsℓj value with the one it decoded from the
packet. If its value is greater than the value in the packet, then
it over-writes the value in the packet (Equation 2). So for the
two routers in Figure 3, because theirℓj is greater than the
one in packet they receive, they over-write the ECN bits of
the packets according the mapping function.

Packet1 Packet2 Packet3

0 0 0 00 1

Packet1 Packet2 Packet3

00 0 01 1

Packet1 Packet2 Packet3

0 0 0 01 1

ACK1 ACK2 ACK3

0 0 0 01 1

ACK1 ACK2 ACK3

0 0 0 01 1

ACK1 ACK2 ACK3

0 0 0 01 1

I = 0 < ℓj ≤ 0.25 I = 0.75 < ℓj ≤ 1.0 I = 1.5 < ℓj ≤ 3.0

I = m(IPID,ECNvalue)
I = m(IPID,ECNvalue) I = m(IPID,ECNvalue)

Fig. 3. The eNCP Encoding Scheme

C. Router Operations

When a source sends packets, it sets its ECN bits according
to the encoding scheme discussed in Section II-B above. When
a router which had computed its fair rate using Equation 1
receives a packet, it checks the packet IPID (IP identification
field) and the ECN bit values. It then decodes theℓj value
using a mapping or a look-up table as discussed in the previous
section. The router identifies the packets as either packet 1,
packet 2 or packet 3 using a modulo 3 operation of the packet’s
IPID. If n packets are used for encoding the rate the router
identifies each packet as its IPID modulon. The router then
updates the denominator sum component of Equation 1 as

Sm := Sm + ℓj (4)

and increments the numberLm of marked packets for the
calculation ofR(t + d) of the next round if the ECN bits of
the packet are set. If the ECN bits of the packet are not marked,

the router just increases the countL of the total number of
packets passing through the link by 1. The router also sets

ℓj := max

(

ℓj ,
1

R(t+ d)

)

. (5)

If the updatedℓj cannot fit into packetj due to encoding
mismatch, then it unmarks the ECN bits of packetj as it will
encode the higher value ofℓj in the packets of the flow with
higher IPID values that follow.

Now sinceLu = 2/3L ≈ L − Lm packets are not marked
(unmarked), the total denominator sum of Equation 1

S =

L
∑

j

1/Rj(t) = Sm + Lu

Sm

Lm

. (6)

We can estimate the value of the control intervald as
follows. First it has to be noted that

S =

L
∑

j

1/Rj(t) =

L
∑

j

RTTj/wj(t) =

N
∑

i

RTTj

whereN is the total number of concurrent (active) flows at
a router. Initially we set the value ofd = 200ms and obtain
the valueN = S/d. For the subsequent control intervals we
updated in termsN in one round andN in terms ofd in the
next round.

In our eNCP scheme, the senders, the receivers and the
routers first agree on the encoding scheme and initialization
parameters. An encoding scheme other than the one we use
above and something like the once presented in [8], [13] can
as well be used here.

D. Decoding the ECN Bits

The interval ofℓj encoded by the ECN bits of the packets
needs to be decoded by the routers in the path of the flow
and by the sender. Each router needs to decodeℓj for the
calculation of the rate given by Equation 1. The routers and
the sender decode the ECN bits of the packets to find the
interval within which the value ofℓj lies. Once the routers and
the sender get the interval, they perform binary search every
RTT, to find the exact value ofℓj ’s. For instance if the ECN
bits of packet 2 are set to 10 indicating the interval(1, 1.5],
then the sender first setsℓj = (1+1.5)/2 = 1.25. The sender
then observes the value ofℓj it gets from the ACK packets
after one RTT. If the interval is the same, the sender sets the
ℓj = (1+1.25)/2. This decrease in inter packet interval length
ℓj implies an increase in the rate of the flow. If the interval
increases to(1.5, 3.0], the sender setsℓj to (1.25 + 1.5)/2.

The router on the other hand monitors its queue sizeQ to
perform the sort of binary search. A router decodes the ECN
bits of each packet to get the intervals of theℓj it needs for the
calculation of the rate given by Equation 1. So if the interval
decoded from the ECN bits of packetj is (ℓlj , ℓ

u
j ], then the

router first usesℓj = ℓaj = (ℓlj+ℓ
u
j )/2 of each packet to obtain

the rate. The router also records its queue lengthQ. If the
queue length in the next round (control interval) at the router
increases (compared with the previous queue length) by some
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constantKQ, the router usesℓj = (ℓaj+ℓ
u
j )/2 of all packets for

the calculation of the rate to increase the inter packet interval
length and hence decrease the rate allocation. If the queue
length decreases by some constantKQ or remains the same,
then the router usesℓj = (ℓlj + ℓaj )/2 for the calculation
of the rateR. Such a distributed binary search helps the
senders maximize their sending rates and the routers minimize
their queue length and hence delay. Other interpretations of
the interval can also be used. For instance the routers may
set ℓj = ℓuj to obtain their rate, to be cautious in avoiding
congestion (conservative) and vice-versa.

Our scheme tolerates packet losses as the information of the
bottleneck link in the path of each flow is encoded in about
one third of the packets a flow sends. The eNCP protocol
resembles to the active queue management (AQM) protocols
like RED (the random early detection) [5] in that both eNCP
and AQM schemes mark the ECN bits to signal congestion.
However AQM schemes do not encode the rate at which flows
should send data to avoid congestion and to fully utilize link
capacities.

E. Security Analysis of eNCP

To analyze the performance of eNCP under malicious
attacks or ECN bit errors we consider the following threat
model.

1) eNCP Threat Model: ECN Bit Flips: Under this threat
model, an attacker flips the ECN bits of packets 1, 2 or 3.
The worst threat is when an attacker flips the ECN bits of
packet 3 of eNCP making the value ofℓj appear very large
by for instance setting (marking) the two ECN bits of packet
3. This threat model can be dangerous as the source wrongly
sets its inter-packet intervalℓj to be very long which also
translates into a very small sending rate. This is because the
source thinks that there is a very congested link in the path of
its flows.

2) Remedy for the Threat Model (ECN Bit Flips): If an
attacker flips the ECN bits of packet 2, the throughput of a
flow is not degraded to the lowest possible value as packet
3 carries the lowest throughput (highestℓj) values. To flip
packet 3 an attacker has to check all incoming packets. This
threat model is unlikely because the value ofℓj is encoded in
one third of the total number of packets a flow sends. So flips
of some packets can be detected and corrected by the other
packets. This assumes that the attacker does not have enough
resources to check and flip all of these packets.

III. N UMERICAL RESULTS

The original NCP needs a 32 bit field to record thℓj values.
So to transmit a file of sizeψ pkts, the original NCP needs an
overhead of32ψbits = 4ψBytes. Figure 4 shows the byte
over-head reduction by eNCP for a packet size of 1000 Bytes
as a linear function of file size. As can be seen from the plot,
the reduction in overhead increases as the file size increases.

Figure 5 shows the gain in download speed (in seconds)
of using the new implementation algorithm of NCP (eNCP)
over the the old implementation of NCP. As shown in the plot
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the gain in speed increases linearly as the file size increases.
To transmit a file of sizeψ pkts NCP needs to transmit
ψ pkts+32ψ bits = (103ψ+4ψ)Bytes while eNCP needs to
transmit only103ψBytes. Hence the download time of eNCP
decreases accordingly.
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Fig. 5. Download speed gain of eNCP over NCP

IV. SUMMARY AND ONGOING WORK

We have presented an efficient design of an implementation
algorithm of a network congestion control protocol (NCP)
using ECN bits (eNCP). Unlike the previous implementation
algorithm of NCP and NCP-like algorithm, the design of
eNCP encodes the rate information from the routers back to
the sources without any additional packet header. This avoids
the inconvenience of having to change the TCP/IP packet
header format which new congestion control protocols like
NCP require. Numerical results also show that some packet
overhead can be saved by using this new implementation
algorithm resulting in an increase in file download time. We
are working on more simulation experiments to evaluate eNCP
and compare its performance with other protocols. We will
also implement eNCP in Linux end hosts and routers to
prototype our design.
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