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a b s t r a c t 

Infection with Mycobacterium leprae, the causative organism of leprosy, is still endemic in numerous parts of the 

world including the southwestern United States. The broad variation of symptoms in the leprosy disease spectrum 

range from the milder tuberculoid leprosy (paucibacillary) to the more severe and disfiguring lepromatous leprosy 

(multibacillary). The established thinking in the health community is that host response, rather than M. leprae 

strain variation, is the reason for the range of disease severity. More recent discoveries suggest that macrophage 

polarization also plays a significant role in the spectrum of leprosy disease but to what degree it contributes is not 

fully established. In this study, we aimed to analyze if different strains of M. leprae elicit different transcription 

responses in human macrophages, and to examine the role of macrophage polarization in these responses. 

Genomic DNA from three different strains of M. leprae DNA (Strains NHDP, Br4923, and Thai-53) were used 

to stimulate human macrophages under three polarization conditions (M1, M1-activated, and M2). 

Transcriptome analysis revealed a large number of differentially expressed (DE) genes upon stimulation with 

DNA from M. leprae strain Thai-53 compared to strains NHDP and Br4923, independent of the macrophage 

polarization condition. We also found that macrophage polarization affects the responses to M. leprae DNA, with 

up-regulation of numerous interferon stimulated genes. 

These findings provide a deeper understanding of the role of macrophage polarization in the recognition of 

M. leprae DNA, with the potential to improve leprosy treatment strategies. 

1. Introduction 

Mycobacterium leprae is an acid-fast, obligate-intracellular bacterium 

and the causative organism of leprosy, a disease still endemic in nu- 

merous parts of the world ( Programme, 2016 , Fischer, 2017 ), including 

the southwestern United States ( Sharma et al., 2015 , Program, 2016 ). 

It causes various degrees of skin abnormalities, eye damage, respiratory 

damage, and peripheral neuropathy in humans leading to stigmatization 

of individuals and communities throughout human history, and still af- 

fecting millions of people worldwide to this day (Fisher 2017). The spec- 

trum of disease ranges in severity from the milder tuberculoid leprosy 

(paucibacillary) to the more severe and disfiguring lepromatous leprosy 

(multibacillary) ( Gaschignard et al., 2013 ) ( Fig. 1 ). 

The established thinking in the health community is that strain vari- 

ations of M. leprae are of little consequence to disease symptoms and 

that differential expression of tuberculoid leprosy and lepromatous lep- 
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rosy are due only to variations in host response, such as TH1 or TH2 

and macrophage polarization ( Kibbie et al., 2016 , Mi et al., 2020 ). Dif- 

ferential macrophage polarization in skin lesions of leprosy has been 

described, with M1 phenotype predominantly present in granulomas of 

TT patients, whereas macrophages in LL granulomas exhibit an M2 phe- 

notype ( Mi et al., 2020 , Fachin et al., 2017 ). 

Although the genome of M.leprae has been highly conserved over the 

past ten centuries ( Schuenemann et al., 2013 ), comparison of variable- 

number tandem repeats polymorphisms has shown to be useful in effec- 

tively discriminating M. leprae strains ( Truman et al., 2004 ). Further 

genetic differences, which led to the establishment of a new species 

such as Mycobacterium lepromatosis , are associated with a more severe 

presentation, known as diffuse lepromatous leprosy ( Sharma et al., 

2019 )(Sharma CID 2020). 

Genetic analysis has also shown the geographic restriction of strains 

in humans ( Matsuoka et al., 2006 ) and primates ( Honap et al., 2018 ). 
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Fig. 1. Leprosy spectrum and mechanisms of patho- 

genesis. From least to most severe: tuberculoid (TT), 

intermediate borderline tuberculoid (BT), borderline 

borderline (BB), borderline lepromatous (BL), leproma- 

tous leprosy (LL). Macrophage polarization: M1 showing 

granulomas and M2 displaying “foamy ” macrophages. 

Boxes depict the cytokine profile in the clinical pole of 

disease. 

Fig. 2. (A) Venn diagram of the number of DE 

genes in human macrophages across the DNA 

from strains NHDP (Yellow), Thai-53 (Blue), and 

Br4923 (Green) used for stimulation. (A) M1, 

(B) M1activated and (C) M2 macrophages. All 

DE genes comprise those whose fold change is 

greater than 2 and adjusted p-value less than 0.05 

in each NHDP, Thai-53, and Br4923. 

Some evidence exists suggesting that specific M.leprae genotype may 

be associated with a particular clinical pole. Multibacillary form, LL, is 

more frequent in places like Saudi Arabia ( Alotaibi et al., 2016 ). Anal- 

ysis of LL skin samples from India has demonstrated that TTC repeats 

are abundant in these samples, and differ from other M.leprae strains 

from India ( Chokkakula et al., 2014 ). Geographical patterning is also 

observed in the Pacific Islands ( Blevins et al., 2020 ), where multibacil- 

lary disease predominates ( Woodall et al., 2011 ). Paucibacillary disease, 

on the other hand, is predominant in other parts of the world like Brazil 

( Marciano et al., 2018 ). 

In this study, we aim to analyze if bacterial genomic DNA from differ- 

ent strains of M. leprae ( Singh and Cole, 2011 , Truman et al., 2011 ) elicit 

different responses in human macrophages and the role of macrophage 

polarizations in these responses. 

2. Material and methods 

2.1. Cells and cell stimulation conditions 

We utilized human monocytic cells (THP-1) under an established 

protocol for macrophage induction and polarization, creating M1, M1 

activated (M1a), and M2 macrophages ( Rey–Giraud et al., 2012 ). 

5 × 10 5 cells/ml in 12-well tissue culture treated plates for 6 days in the 

presence of either 100 ng/ml rHuGM-CSF (M1) or 100 ng/ml rHuM-CSF 

(M2). For M1 activation, monocytes were first incubated with rHuM- 

CSF (Peprotech) for 3 days followed by stimulation with 10 ng/ml LPS 

(Sigma) and 50 ng/ml rHuIFN- 𝛾 (Roche) for 3 additional days ( Rey–

Giraud et al., 2012 ). Stimulation was performed with 500 ng of ge- 

nomic DNA from three different strains of M. leprae, NHDP (NT-19350), 

Br4923 (NR-19351), and Thai-53 (NR-19352), acquired from BEI Re- 

Fig. 3. Venn diagrams comparing the DE genes after M. leprae DNA strain stim- 

ulation for compared to M1a against M1 (magenta) and M2 (cyan) (absolute 

fold change value > 2 and an adjusted p-value < 0.05). A: M. leprae Br4923, B: 

M. leprae NHDP and C: M. leprae Thai-53 DNA stimulation. 

sources (Manassa, VA). We utilized these strains as each one of them be- 

longs to a different genetic subtype ( Singh and Cole, 2011 , Truman et al., 

2011 ). 

Genomic DNA was isolated from contaminating proteins and 

polysaccharides by organic extraction and precipitation with iso- 

propanol respectively ( Belisle and Sonnenberg, 1998 ). Polyethilenimine 

(PEI) (Polyplus) was used as an endo-lysosomal bacterial nucleic acid 

delivery system ( Cervantes et al., 2013 , Suh et al., 2012 , Bieber et al., 

2002 ), according to manufacturer’s instructions. 
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Fig. 4. Heat Map indicating DE genes in polarized macrophages. A. M1a compared to either M1 or M2 macrophages upon stimulation with either NHDP or Tha- 

53 DNA but downregulated by stimulation with the other strain. B. Heat map showing DE expression switches within a strain treatment. Genes are listed on the 

right-hand size. Green represents up-regulation and red represents down-regulation. C. Network analysis of genes presented in A . 

2.2. RNA Seq and Transcriptome analysis 

Total RNA was extracted after cell stimulation assays. Unstimulated 

cells were used as controls. A cDNA library was prepared and sequenced 

in an Illumina NextSeq 500 v2 High Output 150 cycle sequencing at the 

Center for Genomic Innovations (UConn, CT) to generate paired end 

(PE) 75bp reads. Sequence reads were trimmed and filtered based on 

read quality using Sickle ( N et al., 2011 ) and Trimmomatic ( Bolger et al., 

2014 ). Reads were aligned with Hisat2 to the grch38 human reference 

genome ( Pertea et al., 2016 ). Aligned reads were counted using ht- 

seq ( Anders et al., 2015 ). Reproducibility of the sample replicates was 

checked by Principle Component Analysis (PCA) in R ( RC, 2017 ). Com- 

putation of differentially expressed (DE) genes was done using DESeq2 

( Love et al., 2014 ) comparing the stimulated to unstimulated cells. A 

comparison of the significant genes with an absolute fold change of 

greater than 2 was done between the different M. leprae strains for the 

different cell types (M1, M1a, and M2) compared to the unstimulated 

control, i.e. M1 stimulated with Thai-53, Br4923, or NHDP DNA. The 

number of DE genes that overlap was displayed in a venn diagram using 

the VennDiagram (v.1.6.20) package in R (v.3.5.2) Chen (2018) . Asso- 
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Fig. 5. Network analysis of DE genes presented in M1 macrophages upon stimulation with genomic DNA M.leprae strain Thai-53. A. Highly correlated genes in 

pairwise gene expression. B Genes that were upregulated together in a similar manner shown as connected nodes in the network. C Detail of B. 

ciation networks and GO term analysis were performed using the online 

STRING program (v.11) ( Szklarczyk et al., 2019 ) for the identified over- 

lapping DE genes. 

Additionally, comparisons were also made across the three types of 

cells (M1 and M2 expression compared to M1a) for each the M. leprae 

strain Thai-53, NHDP, Br4283, i.e. M2 versus M1a where both were 

stimulated with Thai-53 DNA. Heatmaps were created using the log- 

fold change of the genes where there was at least one value had an 

absolute fold change value > 2 and adjusted p -value < 0.05 in the various 

comparisons. The values were normalized across the row and displayed 

within the R package gplots (v3.0.4) using heatmap.2 ( Warnes et al. 

2020 ). 

Network analyses were performed based on NetworkAnalyst tool 

( Zhou et al., 2019 ). The overrepresentation analysis using hypergeo- 

metric test was performed to identify significant overlap with gene-sets 

or pathways. The enrichment analysis was performed against KEGG. 

Macrophage specific gene co-expression networks were constructed 

based on significant genes. Highly correlated genes in pairwise gene 

expression profile were measured and mapped to immuno-navigator 

database. Genes that were up-regulated together in a similar manner 

were shown as connected nodes in the network. 

3. Theory 

Deciphering the process of macrophage polarization to enhance 

anti ‐microbial defense or to dampen detrimental inflammation is of 

great importance in the pathogenesis of leprosy, as it affects clini- 

cal disease ( Shapouri-Moghaddam et al., 2018 ). Macrophage polariza- 

tion appears to play a significant role in the spectrum of leprosy dis- 

ease but to what degree it contributes to the clinical presentation is 

not fully established ( Pinheiro et al., 2018 , Fallows et al., 2016 ). We 

have recently shown that different strains of Mycobacterium tuberculo- 

sis elicit differential NF-kB and IRF responses in human macrophages 

( Cervantes et al., 2019 ). We aim to first determine if different strains 

of M. leprae ( Singh et al., 2015 ) elicit different transcription responses 

in human macrophages and second to evaluate the role of macrophage 

polarization in the response to M. leprae DNA. Our study will provide a 

deeper understanding of the role of macrophage polarization and acti- 

vation in the recognition of M. leprae which could lead to better future 

treatment strategies. 

4. Results 

4.1. DNA from different strains of M. leprae elicited different gene 

expression in human macrophages 

To observe if DNA from the different strains would elicit different 

DE genes in stimulated macrophages, we first filtered out all expressed 

genes with at least one zero (missing) value sample and then used the 

fold change of each of NHDP, Br4923, and Thai-53 compared to unstim- 

ulated macrophages for each of the expressed genes. We observed each 

of the different M. leprae strains elicited different gene expression in 
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Fig. 5. Continued 

M1 M2 M2 

Thai-53 and Br4923 NHDP and Thai-53 Thai-53 and Br4923 

OASL MDGA1 IFIT1 

IFIT1 SLAMF7 

IFIT2 IL4I1 

CXCL10 C3 

human macrophages ( Fig. 2 ) (A complete list of genes is shown in Sup- 

plemental file 1). Common genes found between M1 stimulated with 

Thai-53 and Br4923 DNA included: OASL, IFIT2, IFIT1, and CXCL10 

( Fig. 2 A and Table 1 ) . These four overlapped genes from the M1 stim- 

ulated with Thai53 and Br4923 DNA had eight significant GO terms 

and formed one significant STRING network cluster: 4Fe-4S single clus- 

ter domain, and Interferon-induced protein with tetratricopeptide. In- 

terestingly, 311 distinct DE genes were observed in M1 uniquely stimu- 

lated by Thai-53 strain. We found 204 significant GO terms for the M1 

macrophages stimulated with Thai53 DNA with top terms including “de- 

fense response to virus ” (GO:0051607), “defense response to other or- 

ganism ” (GO:0098542), and “innate immune response ” (GO:0045087). 

Stimulation of M1 activated (M1a) macrophages with DNA from each 

of three different strains identified 0, 61, and 1 DE genes for the NHDP, 

Thai-53, and Br4923 DNA respectively ( Fig. 2 B). For M1a, Thai53 DNA- 

stimulated cells had 157 significant GO terms and 13 network clusters. 

Finally, M2 showed 14, 514, and 2 DE genes for the NHDP, Thai-53, 

and Br4923 DNA stimulations ( Fig. 2 C). M2 cells stimulated with Thai- 

53 and Br4923 DNA both contained IFIT1, while M2-stimulated with 

Thai-53 and NHDP DNA contained MDGA1, SLAMF7, IL4I1, and C3. 

Commonly expressed DE genes upon stimulation of different M. leprae 

strains are summarized in Table 1 . Thai53 DNA-stimulated M2 cells 

showed 410 significant GO terms and 42 network clusters. All GO terms 

and network cluster lists can be found in Supplemental file 2 with 

the associated genes for each. In this aim, we challenged macrophage 

with DNA from different M.leprae strains and observed that there were 

both commonly and uniquely expressed genes by each M.leprae strains. 

These genes were identified to belong to various immune cellular 

pathways. 
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Fig. 5. Continued 

4.2. Macrophage polarization in the responses to M. leprae DNA exposure 

4.2.1. Unique gene expression profile in M1a compared to M1 and M2 

polarization 

We then aimed to analyze the role of macrophage polarization 

in the response to M.leprae DNA. We were particularly interested 

in the activated M1 phenotype (M1a) that were generated by addi- 

tional LPS and IFN- 𝛾. DE genes occurring in M1a compared to M1 

and M2 were identified for Thai-53, Br4923 and NHDP DNA stim- 

ulations. M1a phenotype expressed 4 unique DE genes compared to 

M1 when M.leprae strain Br4923 was applied ( Fig. 3 A ). Using DNA 

from different M. leprae strains for stimulation showed different pro- 

files based on macrophage polarization status. When DNA from M.leprae 

strain NHDP was used, M1a expressed 259 and 234 unique DE com- 

pared to M1 and M2 respectively, while expressing 416 common genes 

( Fig. 3 B) . Lastly, when M1a cells were stimulated with DNA from 

M.leprae strain Thai-53, we observed 387 and 240 unique DE com- 

pared to M1 and M2 respectively, while expressing 815 common genes 

( Fig. 3 B) . ( Supplemental file 3 displays the list of these significant DE 

genes, and supplemental file 4 lists the significant GO terms and network 

clusters). 

4.2.2. Gene differential expression on macrophage polarization 

From the list of significant genes, we selected a list of 18 genes that 

were up-regulated in M1a compared to either M1 or M2 upon stimu- 

lation with either NHDP or Tha-53 DNA, but down-regulated by stim- 

ulation with the other strain ( Fig. 4 ) . These included genes SCUBE2, 

AMOTL2, GCNT4, SELL, PAX5, TMCC3, and HEPH, which were up- 

regulated in M1a upon Thai-53 DNA stimulation but down regulated 

with NHDP DNA. It also showed that SEMA3D, CCL4, PGTGER3, and 

MMP1 were in turn up-regulated with NHDP DNA stimulation but some 

of these genes (SEMA3D and CCL4) only showed down-regulation in 

M1a/M1 of Thai-53 DNA stimulated, while others (PTGER3, and MMP1) 

showed down-regulation in M1a/M2 of Thai-53 DNA stimulated. CCL3 

was unique in showing down-regulation on M1a/M2 upon either, NHDP 

or Thai-53 DNA stimulation ( Fig. 4 A) . When looking at expression 

switches within a strain treatment, we identified CCL13 as being the 

sole gene that had opposite DE in M1a compared to M1 vs. M1 com- 

pared to M2 ( Fig. 4 B) . CCL13 showed co-regulation with MMP1, PT- 

GER3, CCL4, and TMCC3 ( Fig. 4 C) . GO term analysis of these genes 

showed three significant pathways: leukocyte migration (GO:0050900), 

negative regulation of viral transcription (GO:0032897), and cellular 

response to interferon-gamma (GO:0071346). 
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Fig. 6. Network analysis of DE genes presented in M1 activated macrophages upon stimulation with genomic DNA M.leprae strain Thai-53. A. Highly correlated 

genes in pairwise gene expression. B. Genes that were upregulated together in a similar manner shown as connected nodes in the network. C. Detail of B. 

4.2.3. Network analysis for pathway identification 

We then constructed a global enrichment network on cells stimulated 

with Thai-53 strain, given the large number of DE genes observed. We 

observed that DHX58, DDX58, IFIT1, CXCL10, MX1, RSAD2, IFIH1, and 

TNFS10 genes co-regulate influenza A ( p = 0.0114), RIG-I-like receptor 

signal ( p = 0.0224), and Hepatitis C pathways ( p = 0.0305) ( Fig. 5 A ) in 

M1 cells. When the network was constructed specifically for macrophage 

gene expression, CCL8, CXCL11, OASL, SP110, CXCL9, AIM2, GBP5, 

GBP1, and IL-6 were co-regulated in M1 cells ( Fig. 5 B ). These genes 

were observed to significantly contribute to 5 macrophage gene path- 

ways: toll-like receptor signal ( p = 0.0044), cytokine-cytokine receptor 

signal (p = 0.0077), cytosolic DNA-sensing ( p = 00001), NOD-like recep- 

tor signaling ( p = 0.0092), and chemokine signaling ( p = 0.0095). For 

M1a gene expression, the enrichment network analysis did not show 

any significant pathways based on our DE genes ( Fig. 6 A ), after mul- 

tiple comparison adjustments. However, the macrophage specific net- 

work analysis indicated 3 significantly distinct pathways: The toll-like 

receptor signal ( p = 0.0134), chemokine signaling ( p = 0.0246), and 

cytokine-cytokine receptor signaling ( p = 0.038). CXCL11 along with 

HERC5 were major hubs controlling the expression of numerous inter- 

feron stimulated genes (ISGs) ( Fig. 6 B ), and interferon regulatory fac- 

tor (IRF)-7 ( Fig. 6 C ). M2 cells showed cytokine-cytokine receptor sig- 

nal ( p = 0.0129) pathway as a distinct profile from enrichment network 

analysis. M2 macrophages showed numerous co-regulations of ISGs as 

well, including CXCL9, CXCL10, CXCL11, CCL7, CCL8, IFNB1, IFNL1, 

CCR4, OSM and CCL13 ( Fig. 7 ). The macrophage specific network anal- 

ysis didn’t lead to any significant pathway based on our DE genes, after 

multiple comparison adjustment. 

5. Discussion 

When investigating an infectious disease the environment, host, and 

pathogen all play a role in disease progression. Variation in M. leprae 

genome has been shown in findings from current molecular epidemiol- 

ogy studies in China ( Xing et al., 2009 , Weng et al., 2011 ) and Brazil 

( Fontes et al., 2017 ), as well as in a study comparing strains and phy- 

logeny from ancient and modern M. leprae strains ( Schuenemann et al., 

2018 ). Genetic analysis has shown that Thai-53 strain displays remark- 
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Fig. 6. Continued 

able genetic variability ( Truman et al., 2004 ). Despite the genetic vari- 

ability within this pathogen ( Singh et al., 2015 , Benjak et al., 2018 ), 

the current consensus is that symptoms and disease course are dictated 

by host response ( Fischer, 2017 ), with a focus on T-helper lymphocytes 

as the primary host mediators ( de Sousa et al., 2017 ). However, recent 

research is now indicating that macrophage polarization also plays a 

central role in the clinical presentation of leprosy ( Fachin et al., 2017 , 

Pinheiro et al., 2018 , Fallows et al., 2016 ). We herein showed that ge- 

nomic DNA from various strains of M. leprae can induce different tran- 

scriptomes in human macrophages and that these responses are affected 

by macrophage polarization. 

We utilized genomic DNA from three strains as each one of them be- 

longs to a different genetic subtype ( Singh and Cole, 2011 , Truman et al., 

2011 ). 

We observed a large number of DE genes upon stimulation with DNA 

from M. leprae strain Thai-53 compared to strains NHDP and Br4923, in- 

dependent of the macrophage polarization condition. A few genes were 

common in M1 macrophages after stimulation with DNA from different 

strains. These included OASL, which inhibits antimicrobial peptides ex- 

pression and bacterial killing preventing M. leprae clearance ( de Toledo- 

Pinto et al., 2016 ), IFIT1, and CXCL10). All these three genes have pre- 

viously shown to be associated with type I IFN–activated pathway in 

THP1 derived macrophages ( Zhang et al., 2019 ). Type I IFNs are associ- 

ated with disseminated and progressive lepromatous lesions ( Teles et al., 

2013 , P et al., 2019 ). Shared genes observed in M2 macrophages in- 

cluded MDGA1, SLAMF7, IL4I1, and C3. MDGA1 has been reported in 

integrated stress response ( Kovaleva et al., 2016 ). SLAMF7 is observed 

in all forms of leprosy ( Belone Ade et al., 2015 ) and in M1 macrophages 

as well ( Schulz et al., 2019 ). IL4I1 has been seen up-regulated in DCs 

after NOD2 stimulation with correlation with leprosy patients with lim- 

ited disease ( Schenk et al., 2012 ). C3 plays a role in opsonization of M. 

leprae ( Schorey et al., 1997 ). 

We also found that macrophage polarization affects the responses 

to M. leprae DNA. Genes DE in M1 macrophages upon stimulation with 

DNA from strain Thai-53 included pro-inflammatory receptor TARM1 

( Radjabova et al., 2015 ), M2-associated SELL ( Mould et al., 2019 ), and 

IFN- 𝛾 and IFN- 𝛽 associated TMCC3 ( Zhang et al., 2010 ). On the other 

hand, stimulation of NHDP DNA on M1 macrophages induced CCL4, an 

innate immunity cytokine associated with leprosy occurring in house- 

holds ( van Hooij et al., 2020 ), M2-associated MMP-1 ( Jager et al., 2016 ), 

and PGE2 receptor PTGER3, which is associated with immune evasion 

of mycobacteria ( Behar et al., 2010 ). CCL13 was clearly up-regulated 

in M1 activated cells compared to M1 regardless of the strain, as well 

in M2 macrophages upon Thai-53 DNA stimulation. This cytokine is in- 

volved in many chronic inflammatory diseases ( Mendez-Enriquez and 

Garcia-Zepeda, 2013 ). No common genes were found upon stimulation 

with Br4923 DNA. 
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Fig. 6. Continued 

As stimulation with DNA from strain Thai-53 yielded a large amount 

of DE genes, we were able to construct a comprehensive network anal- 

ysis of co-regulated genes in each of the macrophage polarization con- 

ditions. We observed that in M1 and M1a cells there were numerous 

up-regulated ISGs. In M1a specifically, CXCL-11 and IFNB1 were up- 

regulated, underscoring Type I IFN pathway activation. CXCL10 and 

CXCL11 are induced by IFN- 𝛾 and by IFN- 𝛽, whereas CXCL9 induc- 

tion is restricted to IFN- 𝛾 Groom and Luster (2011) . The inflammatory 

chemokines CXCL9, CXCL10, and CXCL11 share an exclusive chemokine 

receptor named CXC chemokine receptor 3 (CXCR3). The CXCL11- 

CXCR3 axis is crucial for macrophage resistance to mycobacterial infec- 

tion ( Torraca et al., 2015 ). Increased CXCL10 without correlation with 

IFN- 𝛾, is characteristic of Type 1 reaction, a systemic inflammatory syn- 

drome seen in BL ( Scollard et al., 2011 ). IFNL1 (IL-29), reported to be 

greatly down-regulated in LL and BL forms of leprosy, was also an impor- 

tant node in M1a ( Berrington et al., 2014 ). CXCL11 along with HERC5 

were major hubs controlling the expression of numerous (ISGs). HERC5 

is up-regulated by M. leprae -induced Type I IFN signature, and is a major 

regulator of this pathway ( P et al., 2019 ). 

IRF-7 was revealed from the network in M1a cells, which is in line 

with knowledge of THP-1 derived macrophages utilizing this transcrip- 

tion factor after recognition of Mycobacterium tuberculosis (Mtb), and 

hypothesized to help patients resist Mtb infection ( Zhang et al., 2019 ). 

TLR-9 has been shown to sense M. leprae DNA ( Dias et al., 2016 ), and 

may be using IRF-7 as a transcription factor for Type I IFN induction. 

In summary, despite the accepted thinking that genomic variation 

of M. leprae may not substantially contribute to the clinical manifesta- 

tions of the disease, we have shown here that DNA from different M. 

leprae strains are able to induce differential gene expression in human 

macrophages. M1 activated macrophages presented a marked differen- 

tial expression of genes involved in Type I IFN regulation, macrophage 

activation, pathogen DNA recognition, and recruitment of effector 

cells to site of inflammation upon stimulation with M. leprae genomic 

DNA. 
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Fig. 7. Network analysis of DE genes presented in M2 macrophages upon stimulation with genomic DNA M.leprae strain Thai-53. A. Highly correlated genes in 

pairwise gene expression. B Genes that were upregulated together in a similar manner shown as connected. 
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Fig. 7. Continued 

6. Conclusions 

While the current belief in the science and health community in- 

dicate that only host response effects gene expression and clinical ex- 

hibitions of leprosy, our data suggests M. leprae strain genomic vari- 

ations may be able to induce differential gene expression in human 

macrophages. Activated M1 polarized macrophages presented a marked 

differential expression of genes involved in Type I IFN regulation, 

macrophage activation, pathogen recognition, pathogen DNA recogni- 

tion, and recruitment of effector cells to site of inflammation upon stim- 

ulation with M. leprae genomic DNA. 
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