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RESEARCH ARTICLE Open Access

Selection shapes the landscape of
functional variation in wild house mice
Raman Akinyanju Lawal1* , Uma P. Arora1,2 and Beth L. Dumont1,2*

Abstract

Background: Through human-aided dispersal over the last ~ 10,000 years, house mice (Mus musculus) have recently
colonized diverse habitats across the globe, promoting the emergence of new traits that confer adaptive
advantages in distinct environments. Despite their status as the premier mammalian model system, the impact of
this demographic and selective history on the global patterning of disease-relevant trait variation in wild mouse
populations is poorly understood.

Results: Here, we leveraged 154 whole-genome sequences from diverse wild house mouse populations to survey
the geographic organization of functional variation and systematically identify signals of positive selection. We
show that a significant proportion of wild mouse variation is private to single populations, including numerous
predicted functional alleles. In addition, we report strong signals of positive selection at many genes associated
with both complex and Mendelian diseases in humans. Notably, we detect a significant excess of selection signals
at disease-associated genes relative to null expectations, pointing to the important role of adaptation in shaping
the landscape of functional variation in wild mouse populations. We also uncover strong signals of selection at
multiple genes involved in starch digestion, including Mgam and Amy1. We speculate that the successful
emergence of the human-mouse commensalism may have been facilitated, in part, by dietary adaptations at these
loci. Finally, our work uncovers multiple cryptic structural variants that manifest as putative signals of positive
selection, highlighting an important and under-appreciated source of false-positive signals in genome-wide
selection scans.

Conclusions: Overall, our findings highlight the role of adaptation in shaping wild mouse genetic variation at
human disease-associated genes. Our work also highlights the biomedical relevance of wild mouse genetic diversity
and underscores the potential for targeted sampling of mice from specific populations as a strategy for developing
effective new mouse models of both rare and common human diseases.

Keywords: Genetic diversity, Mus musculus, Commensalism, Genetic disorder, Mendelian disease, Adaptation,
Positive selection, Evolution, Amylase, Metabolism

Background
House mice (Mus musculus) are the premier mammalian
model system for biomedical research. However, as a
consequence of their unique origins from a small pool of
founder animals [1], classical inbred mouse strains cap-
ture a limited subset of the genetic variation found in

wild mouse populations [2, 3]. Indeed, inbred mice form
a monophyletic group within Mus musculus [2]. Add-
itionally, at > 97% of genomic loci, genetic variation
across inbred mice can be reconciled into fewer than ten
distinct haplotypes [1]. Thus, inbred mouse genomes
harbor numerous “blindspots” over which there is lim-
ited genetic diversity that can be linked to phenotypic
variation. Furthermore, due to their history of selective
breeding for traits of interest and outcrossing between
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divergent house mouse subspecies, the complex multial-
lelic nature of trait variation in current panels of inbred
strains may not faithfully model complex trait architec-
ture in natural populations, including humans [4].
Wild house mouse genomes represent a largely unex-

plored reservoir of potential disease-associated genetic
variation. Several lines of evidence serve to powerfully il-
lustrate this unrealized potential. First, wild-derived in-
bred mice, which capture natural variation in a fixed,
inbred state, are commonly outliers in strain surveys of
disease-related phenotypes [5]. Second, a recent exome
sequence analysis of a panel of 26 wild-derived inbred
strains identified 18,496 non-synonymous variants that
are not segregating among common classical inbred
strains [2]. Although the phenotypic effects of these vari-
ants are not known, many are undoubtedly functional.
Finally, phenotypic surveys of wild-caught house mice
have already uncovered significant variation in multiple
disease-associated traits, including body mass, metabol-
ism, and behavior [6, 7].
Although wild mice harbor increased genetic variation

relative to the classical inbred strains, the population
genomic organization and global distribution of wild
mouse diversity remain largely unknown. In humans, a
significant body of genetics research has underscored
the role of adaptation in shaping global patterns of di-
versity, including variants linked to disease risk and inci-
dence [8]. For example, alleles that conferred a survival
advantage to ancient humans during times of starvation
have been linked to metabolic disorders in contempor-
ary, food-secure modern human societies [9]. The evolu-
tion of malaria resistance has also led to high rates of
sickle cell anemia in certain human populations [8, 10].
Similarly, many genes associated with the adaptive evo-
lution of the human brain are linked to neuropsychiatric
and neurodevelopmental diseases, including autism and
schizophrenia [11–15]. In contrast, the extent to which
natural selection may have shaped genetic diversity and
disease susceptibility in wild house mice has not been
thoroughly explored.
House mice are a species complex composed of three

principle subspecies that diverged from a common an-
cestral population on the Indian subcontinent ~ 500,000
years ago [16]. Mus musculus castaneus is endemic to
Southeast Asia. The native range of M. m. musculus ex-
tends from Eastern Europe to Northern Asia. M. m.
domesticus is native to the Middle East and Western
Europe. Approximately 10,000 years ago, M. musculus
developed a commensalism with human agricultural so-
cieties. This ecological transition was likely accompanied
by dietary shifts, changes in environmental pathogens,
and the emergence of new behaviors. Through human-
aided dispersal over the last ~ 10,000 years, M. musculus
have expanded their home range to Africa, Australia,

and the Americas. This incredible and recent geographic
expansion required further local adaptation to multiple
distinct ecosystems, including arid, high-altitude, cold,
and extreme heat environments, as well as exposure to
new pathogens. Adaptation to these new environmental
pressures has potentially left unique and detectable foot-
prints in patterns of genomic diversity across contem-
porary wild mouse populations.
To evaluate the impact of local adaptation and popula-

tion history on the global patterning of putatively func-
tional wild mouse genetic variation, we analyze a set of
154 publicly available diverse wild house mouse genome
sequences in an evolutionary framework. We profile the
global organization of predicted functional variants
across multiple populations from each of the three core
house mouse subspecies and perform genome-wide
scans for positive selection to assess the role of adapta-
tion in shaping the organization of genetic diversity
across populations. Overall, our study reveals the land-
scape of functional variation in wild house mouse popu-
lations and underscores the promise of targeted
sampling of mice from specific populations and environ-
ments as a strategy for developing new models of both
rare and common human diseases.

Results
Wild house mice capture significant, and potentially
functional, diversity that is absent from inbred laboratory
mice
We utilized 154 publicly available wild mouse whole-
genome sequences for this study [6, 17, 18]. This panel
features genome sequences from M. spretus (Spretus)
and multiple populations from each of the three
principle M. musculus subspecies: M. m. domesticus (4
populations: Eastern United States (America), France,
Germany (including samples from Heligoland, a small is-
land archipelago in the North Sea off the coast of
Germany), Iran), M. m. castaneus (2 populations: India,
Taiwan), and M. m. musculus (3 populations:
Afghanistan (Afghan), Kazakhstan (Kazakhstani), Czech
Republic (Czech)). The combined Mus dataset yields ~
154 million biallelic autosomal single nucleotide poly-
morphisms (SNPs), including 617,156 missense, 7615
nonsense, and 985,873 synonymous SNPs. Of these,
15,104 SNPs in 6788 unique genes are predicted to be
highly deleterious and disrupt gene function. Within M.
musculus (n = 146 genomes), there are ~ 121 million
autosomal SNPs, including 772,614 synonymous,
493,090 missense, 6216 nonsense, and 12,396 highly
deleterious SNPs. Consistent with prior work [19], we
observed the highest genome-wide nucleotide diversity
in M. m. castaneus (0.0249), followed by M. m domesti-
cus (0.0172), and M. m. musculus (0.0160). Variant
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statistics for each population and subspecies are pro-
vided in Figs. 1a, b.
Approximately 69.3% of the autosomal variants in M.

m. domesticus, 63.9% of M. m. castaneus autosomal vari-
ants, and 53.7% of M. m. musculus autosomal variants
are not segregating in panels of common inbred mouse
strains. Within M. musculus, 13,023 of the variants
found only in wild mice are predicted to be highly dele-
terious. Although a subset of these variants may be false
positives, it is nonetheless evident that wild house mouse
genomes harbor substantial unexplored and potentially
functional genetic variation.

Patterns of genetic relatedness among wild mouse
samples
As our dataset was compiled from multiple prior studies
[6, 17, 18], we next examined kinship and relatedness
metrics among samples from each population to identify
any close relatives. Fourteen pairs of animals have kin-
ship coefficients > 0.08, indicating first- or second-
degree relatedness (Additional file 1: Table S1). Import-
antly, we obtained qualitatively identical findings

regardless of whether closely related individuals are in-
cluded or excluded from our analyses (Additional file 2:
Figure S1). Given the small sample sizes for several of
the wild mouse populations and the robustness of our
findings to the relatedness among samples, we opt to in-
clude all samples in the analyses presented below.
We then performed phylogenetic and principal com-

ponent analyses (PCA) to assess genetic relationships
among populations. As expected, populations from the
same subspecies group together in both PCA and phylo-
genetic analyses (Figs. 1c, d). We utilized two independ-
ently sampled populations from the Massif Central
region in France. There is no clear evidence for genetic
stratification of these samples (Figs. 1c, d), and we com-
bine these two independent population samples in our
analyses. We observe greater differentiation between M.
m. castaneus populations from India and Taiwan than
between populations within other subspecies. This result
is expected given the presumed ancestral origins of
house mice on the Indian subcontinent and the large ef-
fective population size of this population [20], in con-
trast with the recent colonization of Taiwan (Fig. 1c

Fig. 1 Functional annotation of wild mouse genetic diversity. a Venn diagram of shared and private autosomal SNPs (%) in each house mouse
subspecies and species. Percentages are calculated from all ascertained variants in these samples. b Total numbers of autosomal variants (genome),
intergenic, intron, missense, and synonymous SNPs in each M. musculus population. Total number of missense and synonymous variants identified in
each population are annotated on their respective bar plots (kb - kilobase). c Principal component analysis for all 154 wild mouse genomes. The inset
zooms into the two M. m. castaneus populations and reveals greater diversity among samples from the Indian population than the population from
Taiwan. d Maximum likelihood phylogenetic tree from all 154 wild mouse genomes. For ease of visualization, samples from most populations are
collapsed, with triangle width scaled by the number of samples in that population. One node with < 100% bootstrap support is labeled. All other
nodes are supported by 100% of bootstrap replicates. The population labels are America (AMR), France (FRA), Germany (GER), Heligoland (HEL), Iran
(IRA), India (IND), Taiwan (TAI), Afghanistan (AFG), Kazakhstan (KAZ), and Czech Republic (CRP), M. spretus (SPR)
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inset). Further, consistent with these differences in
population history [18, 21], genome-wide heterozygosity
is markedly reduced in the Taiwanese population com-
pared to the Indian population (4% vs 25%). The Ameri-
can population and German samples from Heligoland of
M. m. domesticus are differentiated from those of main-
land Europe and Iran (Figs. 1c, d), underscoring the gen-
etic impact of founder effects during the recent
colonization of these geographic regions.

Predicted functional properties of population-private
variants
As a by-product of their unique demographic origins
and history of local adaptation from new or low-
frequency mutations, individual house mouse popula-
tions are expected to harbor unique suites of private var-
iants, including alleles with effects on fitness. To
understand the prevalence and functional impact of such
alleles, we identified variants private to each population,
limiting our attention to those with a minimum allele
count of 2 in the focal population to alleviate the influ-
ence of sequencing and genotyping errors. Because of
the small sample sizes for each population, we acknow-
ledge the likelihood that many of the variants marked as
“private” are potentially present at low frequency in
other populations.
Overall, we identified ~ 31.7 million population-private

autosomal variants, representing approximately 20.6% of
all segregating autosomal variants in M. musculus. Thus,
there is considerable geographic structuring of global
mouse genomic diversity. Despite the prominent role of
human-facilitated migration and colonization in recent
house mouse history [22], individual populations con-
tinue to harbor large loads of private variants. As ex-
pected and based on the estimates of effective
population sizes and recent demographic histories [20],
we find the highest numbers of population private

variants in the M. m. castaneus populations and the
Iranian M. m. domesticus population.
Although most population private variants are in inter-

genic regions and are likely neutral, an appreciable frac-
tion resides in coding regions where they may exert
effects on individual fitness (Table 1). Specifically, we
identified 1483 predicted loss-of-function (LOF) variants
in 1205 unique genes across the nine surveyed M. mus-
culus populations. Of special note, we find a private
stop-gain mutation at codon position 72 of Mdm4 (chr1:
133,011,141) that is at ~ 42% frequency in the Afghan
population. Mdm4 is a negative regulator of p53 and is
upregulated in several human cancers [23, 24]. Mouse
Mdm4 homozygous knockouts are associated with em-
bryonic lethality, decreased cellular proliferation, and
neuronal developmental defects [25]. As expected given
the severity of these phenotypes, we find only heterozy-
gous carriers for the predicted loss-of-function mutant
allele in wild-caught mice from the Afghan population.
Similarly, in the German population, a private mutation
in Mutyh (chr4:116815563; ~ 14% frequency) disrupts a
splice acceptor site and is predicted to abolish gene
function. Mutyh is involved in oxidative DNA damage
repair and mutations in this gene are associated with
hereditary forms of colorectal cancer [26] and biases in
the spectra of both germline [27, 28] and somatic muta-
tions [29]. In mice, single knockouts of Mutyh are not
associated with observable increases in tumor incidence,
but double knockouts of Mutyh and Ogg1, a base exci-
sion repair gene, exhibit increased rates of tumor forma-
tion and shortened lifespans [30]. There are currently
multiple knockout and/or targeted mutation mouse
models available from commercial vendors for each
Mdm4 and Mutyh [31]. Our analyses reveal that organic
evolutionary processes have already generated natural
loss-of-function alleles for these, and presumably many
other, important disease-related genes.

Table 1 Number of coding and predicted functional variants per population

Populations Number of
private
variants

Number of
synonymous private
variants

Number of
missense private
variants

Number of stop
private variants

Number of predicted
deleterious variants

Number of
predicted LOF
variants

America 1,025,466 8675 9637 155 242 151

France 2,208,483 10,190 11,521 221 350 218

Germany 545,881 2178 2506 51 74 39

Iran 3,333,440 15,430 11,548 149 235 145

India 16,025,598 70,201 35,493 447 745 359

Taiwan 3,917,054 19,969 15,957 244 410 225

Afghanistan 1,472,430 7657 6566 124 170 102

Czech
Republic

1,315,866 6582 6489 112 169 106

Kazakhstan 1,872,782 9403 8902 174 230 138

Total 31,717,000 150,285 108,619 1677 2625 1483
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Detecting signals of positive selection in wild mouse
genomes
Just as observed in human populations [8], local adapta-
tion has almost certainly molded the geographic distri-
bution of disease-associated trait variation in wild mice.
To directly investigate this possibility, we carried out
genome-wide scans for positive selection in each of the
nine surveyed wild mouse populations.
Strong positive selection on an adaptive allele will re-

sult in its rapid sweep to high frequency or fixation in a
population. This process will yield a localized reduction
in genetic diversity at the selected site, a signature re-
ferred to as a “selective sweep.” The strength of this
trademark signal is governed by a complex interplay of
population genetic variables, including the magnitude of
selection, the initial frequency of the selected allele, and
the local rate of recombination.
A key challenge for the interpretation of genome-wide

scans for selection is to distinguish regions truly evolving
via positive selection from outliers of the neutral diver-
sity distribution. For example, certain demographic sce-
narios can induce genome-wide reductions in diversity
that may masquerade as pervasive positive selection [32].
One powerful approach to circumvent this challenge is
to apply coalescent simulations that realistically model
the ancestry of the analyzed sample to derive an empir-
ical distribution of the test statistic under the assump-
tion of neutrality. We estimated population-specific
demographic parameters and applied coalescent simula-
tions to approximate the neutral distribution of three
population genetic diversity summary statistics in each
population: Hp (pool heterozygosity) [33], π (nucleotide
diversity) [34], and Tajima’s D [35] (see the “Methods”
section). Statistics were computed in 20 kb sliding win-
dows (10 kb step size) across the genome. This window
size is less than the expected scale of linkage disequilib-
rium decay in previously surveyed wild mouse popula-
tions [3]. Comparing the observed and simulated
distributions of each diversity statistic allowed us to de-
fine population-specific empirical cut-offs for identifying
loci evolving via positive selection (Additional file 3: Fig-
ure S2). We focus on regions detected as outliers by the
Hp statistic and by at least one of the other two statis-
tics. Additional files 4, 5 and 6: Figures S3–S5 display
the genome-wide distributions of these three summary
statistics in each population.
Overall, we identified 280 putative sweep regions

across the four M. m. domesticus populations, including
18 in the American population, 145 in the French popu-
lation, 132 in the German population, and 8 in the Iran-
ian population. A total of 272 selective sweep loci were
identified in M. m. castaneus, including 15 in the Indian
population and 258 in the Taiwanese population. We
uncovered 532 putative selective sweep loci in M. m.

musculus. Of these, 58 were observed in the population
from Afghanistan, 47 in the Kazakhstani population, and
434 in the Czech population. We also identified 101 can-
didate selective sweeps in M. spretus. Additional files 7,
8, 9 and 10: Tables S2–S5 present comprehensive cata-
logs of these candidate regions, including shared signals
of positive selection between populations.
Positive selection is expected to operate exclusively on

functional genomic regions, but there is no a priori ex-
pectation that neutrally evolving loci should be enriched
for functional annotations [36]. Approximately 98.9% of
the selective sweep loci reported in our analysis span at
least one protein-coding gene. In contrast, in 1000 inde-
pendent simulations of random size-matched genomic
intervals, at most 67.8% overlapped protein-coding genes
(p < 0.001). The marked enrichment for protein-coding
annotations in our selective sweep windows suggests
that our candidate regions are strongly enriched for
bonafide targets of positive selection.

Cryptic structural variation manifests as false-positive
signals of selection
We noted that many candidate selective sweep regions
overlapped annotated segmental duplications and poly-
morphic structural variants previously described in la-
boratory mouse strains. For instance, in the Indian
population of M. m. castaneus, we observed a sharp de-
crease in Hp, π, and Tajima’s D at chr4:112.23–112.61
Mb, a locus spanning a cluster of paralogs in the Skint
gene family (Additional file 11: Figure S6a). Relative to
the C57BL/6 J mouse reference genome, at least 13 in-
bred strains carry a deletion spanning three paralogs in
this region (Skint3, Skint4, and Skint9) [37, 38]. We ana-
lyzed patterns of read depth at the Skint locus in our
wild mouse samples and confirmed that a single deletion
allele segregates at frequencies 57%, 80%, and 82% in
wild M. m. domesticus, M. m. castaneus, and M. m. mus-
culus populations, respectively. The deletion frequency
was 90% in the Indian population (Additional file 11:
Figure S6b and S6c). These findings raise the possibility
that cryptic deletions or other structural variants may
commonly lead to local reductions in the number of sur-
veyed haplotypes, and as expected, concomitant loss of
diversity. Critically, prior studies demonstrate that wild
house mouse populations harbor high loads of structural
variation [17, 39] which, if ignored, could yield abundant
false-positive signals of positive selection.
We applied a post-hoc read depth filter to mask re-

gions of the genome present in a non-diploid state (see
the “Methods” section). After applying this key quality
control step, the number of putative selection regions
decreased from 1180 to 1084. Thus, approximately 8%
of all regions originally identified in our analysis are
likely false-positive signals attributable to structural
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variation. Our findings underscore the significant impact
of cryptic structural variation on the genome-wide infer-
ence of positive selection and emphasize the importance
of masking copy number variable regions in QC process-
ing for genome-wide scans (e.g., [40]). All analyses pre-
sented below focus on this refined set of candidate
positive selection regions.

Functional classification and annotation of putative
selection regions
We sought to probe the functional impact of the puta-
tive positive selection signals documented in each popu-
lation. First, we asked whether selection windows are
enriched for non-synonymous sites relative to genome-
wide expectations. In three surveyed populations, we
find evidence for a significant excess of missense variants
in selection windows relative to genome-wide expecta-
tions (Fig. 2; India: P = 0.03, Kazakhstan: P = 0.009, M.
spretus: P = 0.038). Six populations exhibit a significant
excess of synonymous variants (Fig. 2; France: P = 0.405,
Germany: P = 0.017, Iran: P = 0.0479, Czech Republic: P
= 0.003, Kazakhstan: P = 0.002, M. spretus: P = 0.002).
Next, to understand the broad biological impact of se-

lection across the genome, we performed Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analyses using all Mus musculus
gene annotations as background and selective sweep
genes from each population as the foreground sets. Fig-
ure 3; Additional files 7, 8, 9 and 10: Tables S2–S5, and
Additional files 12, 13, 14 and 15: Figures S7–S10

provide comprehensive summaries of findings from
these functional enrichment analyses.
KEGG analysis uncovered several biologically enriched

pathways associated with multiple metabolic functions
(see Fig. 3). For instance, genes related to “starch and su-
crose metabolism” (Amy2a5, Amy1, Sis) are enriched
among selection targets in the French population. In the
German population, genes implicated in “fat digestion
and absorption” (Pla2g2f, Pla2g2d, Pla2g2a, Pla2g5, Cel)
and “insulin secretion” (Gnaq, Kcnmb2, Kcnn1, Adcy8)
are over-represented among putative selective sweep
genes. In the Indian population, we find an excess of
genes involved in “linoleic acid metabolism” (Cyp2j8,
Cyp2c38). KEGG analysis also highlights several path-
ways associated with disease including “basal cell carcin-
oma” (Wnt6, Gli2, Wnt10a) and “htlv-i infection”
(Smad4, Wnt10a, Prkacb, Wnt6, Tgfbr2) in M. spretus.
A GO analysis of selection signals also uncovered sig-

nificant enrichment for annotations linked to diverse
biological functions. For instance, in the M. m. domesti-
cus American population (Additional file 12: Figure S7),
we report enrichment of genes with functions in “chro-
matin organization” (Cdan1, Zfp462). Genes that func-
tion in “cell cycle arrest” (Tgfb2, Il12b, Apbb2, Brinp3),
“response to hypoxia” (Acvrl1, Tgfb2, Epas1, Cd38, Ece1,
Plod1), “rhythmic process” (Suv39h2, Prkdc, Cry1, Rora,
Csnk1d), and “sensory perception of sound” (Thrb, Strc,
Map1a, Nav2, Ccdc50, Fam107b) are over-represented
among selection targets in the French population. In the
German population, we report an excess of putative

Fig. 2 Functional classification of variants found within selective sweep windows. Boxplots display the distribution of the number of missense
(red) and synonymous (blue) variants in 1000 sets of randomly sampled windows size-matched to the number of positive selection regions
identified in each population. Outliers are designated by gray points. The observed number of missense and synonymous variants in candidate
positive selection regions are designated by a triangle. *P < 0.05; **P < 0.01
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sweep genes with roles in “negative regulation of t-cell
proliferation” (Pla2g2f, Pla2g2d, Pla2g2a) and “autoph-
agy” (Map1lc3a, Lrrk2, Mfn2, Trp53inp2, Vps39). Genes
implicated in “t-RNA binding” (Xpo5, Trmt1) are over-
represented among selection signals in the Iranian
population.
In the Indian M. m. castaneus population, selection

windows are enriched for genes annotated to the GO
term “innate immune response” (Cr2, Cr1l, Herc6).
Within the Taiwanese M. m. castaneus population,
genes under selection are over-represented in the bio-
logical processes “hemopoiesis” (Lyn, Meis1, Cdk6,
Txnrd2, Brca2), “erythrocyte differentiation” (Acin1, Lyn,
Fech, Jak2), and “detection of chemical stimulus involved
in sensory perception of smell” (Olfr853, Olfr830,
Olfr866, Olfr832, Olfr870, Olfr851, Olfr872, Olfr829,
Olfr845, Olfr869) (see more at Additional file 13: Figure
S8). Selection targets in M. m. musculus are similarly
over-represented in diverse biological processes includ-
ing “behavioral response to nicotine” (Afghan popula-
tion; Chrna3, Chrna5); “postsynaptic membrane”
(Kazakhstani population; Grin3a, Grid1, Lrrtm4, Psd3),

and “regulation of cardiac muscle contraction” (Czech
population; Ryr2, P2rx4, Adora1, Ank2, Tnni3k, Smad7)
(Additional file 14: Figure S9). In M. spretus, genes
evolving via positive selection are enriched for the GO
terms “cellular response to hypoxia” (Fndc1, Clca1,
Mgarp, S100b), “regulation of cell proliferation” (Smad4,
Sparc, Fanca, Pbx1, Tgfbr2), and “kidney development”
(Pkhd1, Smad4, Fbn1, Gli2) (Additional file 15: Figure
S10)

Targets of positive selection in wild house mouse
populations
Our catalogs of positive selection emphasize several
known and recurrent targets of adaptive evolution in
mammals. Below, we highlight several of the strongest
signals identified in each surveyed population.
In the American population of M. m. domesticus, the

strongest peak (chr4: 129.62–129.64Mb) overlaps a
gene-rich locus spanning Txlna, Ccdc28b, and
Tmem234. Txlna is an interleukin 14 gene expressed in
various tumor cells and involved in cell proliferation of
hepatocellular carcinomas [41]. Ccdc28b functions in

Fig. 3 KEGG pathway analysis of genes within positive selection windows. Only populations with significant enrichment (p < 0.05) for each
specified pathway are shown. See Additional files 12, 13, 14 and 15: Figures S7–S10 for GO analysis results in each population
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ciliogenesis and is associated with Bardet–Biedl syn-
drome [42], a syndrome linked to vision loss, obesity,
speech impairment, and intellectual disability. Tmem234
is poorly studied. Future work is needed to pinpoint the
target(s) of selection in this window.
In the French population, the strongest signal of posi-

tive selection is at chr10:85.1–85.2Mb. This locus in-
cludes four genes: Cry1, Mterf2, Fhl4, Tmem263. Cry1 is
a core regulatory component of the circadian clock. Var-
iants in this gene have been associated with sleep disor-
ders and altered sleep patterns in diverse organisms [43].
Mterf2 is involved in regulating mitochondrial mRNA
and rRNA transcription [44], and Fhl4 mutations can
lead to hemophagocytic lymphohistiocytosis [45].
Tmem263 plays a role in bone mineral deposition and is
associated with autosomal recessive dwarfism in chick-
ens [46]. We also identified a strong selection signal
around Epas1 (chr17:86.77–86.80Mb). Epas1 is a tran-
scription factor that is activated under hypoxic condi-
tions and prior studies have linked variation at this gene
to high-altitude adaptation in mammals and birds [47,
48]. Intriguingly, mice from this population were col-
lected from the mountainous Massif Central region of
France [17], where oxygen levels may be reduced to 81%
of their values at sea level.
In the German population of M. m. domesticus, the

strongest peak spans Cdan1, Ttbk2, and Stard9 on
chromosome 2 (120.63–120.81Mb). Cdan1 functions in
chromatin assembly with mutations in the gene linked
to congenital dyserythropoietic anemia [49]. Ttbk2 plays
a key role in ciliogenesis, the development of the cere-
bellum, and balance coordination [50]. Stard9 is in-
volved with the regulation of spindle pole assembly and
has been linked to mitotic arrest and cancer [51]. A se-
lective sweep was also found around Cdan1 and Ttbk2
in the American and French populations of the same
subspecies (Additional file 7: Table S2), suggesting that
this locus may have been targeted by selection in mul-
tiple M. m. domesticus populations. To our knowledge,
our report represents the first evidence for adaptive evo-
lution at the Cdan1/Ttbk2 locus, although the specific
environmental pressures that have led to these sweep
signals remain to be determined.
The most notable peak in the Iranian population local-

izes to chr6:40.67–40.79Mb and spans a single gene,
Mgam (Fig. 4). Mgam also exhibits signals of adaptive
evolution in the Afghan population of M. m. musculus
(Additional files 7 and 9: Tables S2 and S4). Mgam en-
codes a starch digestion enzyme and prior work has im-
plicated this gene in the adaptation to starch-rich diets
during dog domestication [52] and the transition to agri-
culture in ancient Andean humans [53].
The strongest peak in the Indian population of M. m.

castaneus spans Zswim2 and Fam171b (chr2:83.87–

83.93Mb). Zswim2 is an E3 ubiquitin-protein ligase that
is involved in the regulation of apoptosis [54]. Fam171b
is less well studied. The strongest selection signal in the
Taiwanese population bridges Ttpal, Serinc3, and Pkig at
chromosome 2:163.59–163.67Mb. This locus is also
under positive selection in the Indian, Iranian, and
Kazakhstani populations. Ttpal is a lipid transporter,
Serinc3 functions in viral immunity [55], and Pkig plays
a role in osteogenesis (Additional file 8: Table S3).
In both the Afghan and Czech populations of M. m.

musculus, the most pronounced selective sweep signal
encompasses Lrp5 (chr19:3.65–3.73Mb; Additional file
9: Table S4). Lrp5 has diverse roles in the maintenance
of bone mass, eye development, and cholesterol homeo-
stasis [56], and has been implicated in osteoporosis [57].
In the Kazakhstani population, the strongest signal of
positive selection resides on chromosome 15 (3.25–3.31
Mb) and spans Ccdc152 and Selenop. This locus also ex-
hibits a weaker signal of positive selection in the Czech
population. Ccdc152 is poorly studied. Selenop encodes a
seleno-protein that transports selenium to the plasma,
where it is functionally important in thyroid metabolism
and protection against oxidative stress [58]. Another
notable peak located at chr7:56.23–56.25Mb in the
Kazakhstani population spans Herc2 and Oca2. Genetic
variation in both Herc2 and Oca2 is associated with pig-
mentation of skin, hair, and eyes. Oca2 plays a role in
melanin synthesis and eye color determination and has
been linked to albinism [59, 60]. Analyses of selection in
diverse human populations have revealed parallel selec-
tion pressures at this locus [60].
The most prominent selective sweep signal in M. spre-

tus is found at chr8:67.69–67.75Mb (Additional file 10:
Table S5). This interval spans a single gene–Psd3–that
has been associated with immune disease and cancer
[61]. Two other prominent peaks are found at chromo-
somes 16 (29.58–29.65Mb) and 14 (27.48–27.51Mb)
overlapping Opa1 and Ccdc66, respectively. Opa1 is a
dynamin-like GTPase gene that functions at the inner
mitochondrial membrane and plays a critical role in vis-
ual perception [62]. Ccdc66 is implicated in retinal mor-
phogenesis [63].

Selective sweeps are enriched for GWAS hits and genes
implicated in Mendelian diseases
We noted that many regions of positive selection in wild
mouse genomes overlapped known disease-associated
and disease-causal genes in humans (Additional file 16:
Table S6). Across all surveyed populations, 54.3% of
genes with signals of positive selection can be assigned
to at least one disease-relevant phenotype in the Online
Mendelian Inheritance in Man (OMIM) database. This
represents a significant increase over simulation-based
expectations (p = 0.03). Similarly, 55.4% of all candidate
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genes within selective sweep windows overlap at least
one trait in the genome-wide association study (GWAS)
catalog, again in excess of expectations from random
simulations (p = 0.005).
To investigate these trends on a per-population basis,

we estimated the fraction of sweep genes that overlap
OMIM genes in each population. This quantity varies
considerably across the surveyed populations, ranging
from 26% in the Indian population of M. m. castaneus
to 70% in the Kazakhstani population of M. m. musculus
(Fig. 5). Similarly, populations vary in the proportion of
sweep genes that overlap GWAS hits (33%–68%, Fig. 5).

Overall, these results suggest that targets of positive se-
lection in most of wild mouse populations are signifi-
cantly enriched for disease-associated genes.

An initial test of the effect of adaptive evolution on gene
expression changes
An enduring question in evolutionary biology concerns
the relative roles of adaptation on coding sequence
changes versus gene expression [6, 64, 65]. We leveraged
published RNA-seq data [17] from a subset of the wild
M. m. domesticus mice used in these genome-wide selec-
tion scans to ask whether genes under positive selection

Fig. 4 Signatures of positive selection in the Iranian population of M. m. domesticus. a The genomic distribution of normalized Hp, Tajima’s D, and
π (Pi). Horizontal lines on the first three panels correspond to the genome-wide significance threshold derived from neutral diversity simulations.
Each dot represents a 20-kb window. b provides a close-up of ZHp across the Mgam locus on chromosome 6: 40.67–40.79 Mb. A pronounced
drop in ZHp is specifically localized to the coding region of Mgam
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show stronger patterns of differential regulation across
populations than expected. Overall, we find clear evi-
dence for differential regulation of genes under positive
selection in the brain (P < 0.0049), heart (P < 0.0001),
muscle (P < 0.0002), spleen (P < 0.0051), lung (P <
0.038), and testis (P < 0.01) (Additional file 7: Table S2
and Additional file 17: Figure S11). Of note, Epas1 is
under positive selection in the French population and is
significantly upregulated in liver and muscle tissues of
mice from France as compared to mice from the Ger-
man population. However, we do not observe differential
expression of this gene in the heart, as previously shown
for high-altitude adapted deer mice [66]. We find no sig-
nificant differences in Mgam expression levels in digest-
ive tissues (gut, liver) among M. m. domesticus
populations (Additional file 17: Figure S11), suggesting
that positive selection at this locus may act on coding
sites that alter enzymatic activity. This finding aligns
with the pronounced drop in diversity (see Fig. 4b) re-
stricted to coding portions of the gene, to the exclusion
of upstream regulatory regions. Cry1, a highly conserved
gene implicated in the maintenance of circadian rhythm,
shows upregulation across multiple tissues in French
mice compared to mice from Germany and Iran, con-
sistent with the signal of adaptation at this locus which
is restricted to the French population. Finally, Amy1 is
under positive selection in the French population and is
upregulated in gut tissues from both the Iranian and
French populations relative to mice from the German
population. This finding is consistent with possible

regulatory modes of adaptive evolution at this locus. In
summary, our findings suggest that a subset of the sig-
nals identified in our genome-wide selection scan may
be caused by variants with effects on gene expression,
rather than protein-coding mutations.

Discussion
Here, we analyzed the genomes of 154 wild-caught mice
to assess the population-wide distribution of functional
genetic diversity and establish the contribution of posi-
tive selection to the global patterning of disease-relevant
trait variation. We show that a large fraction of wild
mouse variation is specific to individual populations, in-
cluding numerous predicted loss-of-function variants
that could be useful in the context of disease modeling.
Further, our work has synthesized a comprehensive cata-
log of candidate genes and genomic regions evolving via
positive selection in diverse wild house mouse popula-
tions. Our surveyed populations inhabit distinct environ-
ments that differ in altitude, average temperature,
aridity, and human population density. These environ-
mental differences have created unique opportunities for
population- and subspecies-specific adaptations, includ-
ing the emergence of adaptive traits that may confer dif-
ferences in disease susceptibility. Several exciting themes
emerge from this catalog.
First, like many other animal species [67], genes in-

volved in immunity and sensory perception are common
targets of adaptive evolution in wild house mice. Across
populations and subspecies, we identified multiple sweep

Fig. 5 Percentage of genes in selective sweep windows that overlap genes in the OMIM database and human GWAS catalog. Boxplots display
the distribution of the number of overlapping GWAS (red) and OMIM (blue) genes in 1000 sets of randomly sampled windows size-matched to
the number of positive selection regions identified in each population. Outliers are designated by gray points. The observed number of positive
selection genes overlapping GWAS and OMIM database hits are designated by a triangle. *P < 0.05; **P < 0.01; ***P < 0.001
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regions spanning genes with immune-related functions
(e.g., Serinc3, Stat3, Cr2, Cr1l, Herc6, Dclre1c, Il12b,
Prkdc). The diverse suite of pathogens endemic to each
population’s environment has likely imposed strong se-
lective pressures on the immune system. We also docu-
ment positive selection signals at multiple olfactory
receptors (ORs). The OR repertoire is known to evolve
rapidly, with notable gains and losses across the mam-
malian tree [68]. Interestingly, we find few shared signals
of selection at ORs across wild mouse populations (Add-
itional files 7, 8 and 9: Tables S2–S4). We speculate that
positive selection has likely led to population-specific
OR portfolios tuned to the detection of specific aromatic
compounds in the prevailing environment.
Second, several genes that are evolving via positive se-

lection in house mice are also targets of adaptive evolu-
tion in human populations. For example, Epas1 has been
implicated in high altitude adaptation in several human
populations and we observed a genetic signature of re-
cent selective sweep at this locus in mice from a moun-
tainous region in France. Similarly, Mgam is evolving
under adaptive evolution in both an Andean human
population [53] and in wild mouse populations from
Iran and Afghanistan. These instances of parallel evolu-
tion suggest that wild mice could serve as powerful
models for dissecting the molecular basis of some adap-
tative traits in humans.
Third, our study uncovers loci that may have contrib-

uted to the development of successful commensalism
between house mice and humans. Recent archeological
evidence shows that mice emerged as commensals with
humans approximately 14,500 cal. BP, coinciding with
the establishment of the first sedentary hunter-gatherer
settlements [22]. The earliest human-domesticated
plants were grains [69], which also comprise a staple of
wild mouse diets. However, commensalism was likely
linked to an increased dietary reliance on grains and
starch-rich foods, at the expense of seeds, fruits, insects,
and other components of the wild mouse diet. This diet-
ary shift potentially imposed strong selection to improve
the efficiency of nutrient absorption from grains and
starches. Indeed, we found clear evidence for recent
positive selection at Mgam, a maltase-glucoamylase that
plays a key role in the final stages of starch digestion. It
is particularly noteworthy that signals of selection on
this gene are limited to the mouse populations from Iran
and Afghanistan, as these two populations coincide with
some of the earliest human agricultural settlements [70]
and overlap the presumed ancestral region of M. muscu-
lus [71, 72]. Strikingly, prior studies have also linked sig-
nals of positive selection at Mgam to the successful
transition to agriculture in Andean human populations
[53] and dietary shifts that accompanied the domestica-
tion of dogs [52]. We also identified a signal of selection

near Amy1 on chr3qF3 in the mouse population from
France. Amy1 is a presumed target of positive selection
in human populations, with increased copy number
linked to increased starch digestion capacity [73]. How-
ever, our data show that genetic adaptation at Amy1 in
French mice is likely rendered through short nucleotide
variants, rather than copy number changes (Additional
file 18: Figure S12), an observation consistent with find-
ing in another human population [53].
Fourth, many selective sweeps in wild house mice have

occurred at genes that have been implicated in human
diseases and disorders (Additional file 16: Table S6). In-
deed, we show that targets of positive selection in several
wild mouse populations are significantly enriched for
disease-associated genes compared to null expectations.
For example, multiple mouse populations harbor signals
of selection associated with autism spectrum disorder
and speech-related impairment (e.g., Cntnap2, Trrap,
Herc2, Nlgn1, and Nalcn), deafness (e.g., Met, Ubr1,
Pcdh15, Ccdc50, Dnmt1, Col11a1, Myo3a, Otogl,
Ppip5k2, Slc26a4), diabetes (e.g., Retn, Cel, Hnf4a), glau-
coma (e.g., Opa1, Asb10), and intellectual disability (e.g.,
Auts2, Trmt1, Slc4a4, Trappc9, Kcnk9, Lingo1). Under-
standing the mechanisms of adaptation at these genes in
wild mouse populations could provide critical insights
into the evolutionary basis of these diseases in humans.
In addition to these major themes, our analysis also

presents a cautionary tale regarding the importance of
integrating data on local genomic copy numbers with di-
versity metrics used in selection scans. Notably, several
regions of significantly reduced diversity that emerged in
our analysis proved to be false positives due to the pres-
ence of cryptic segregating structural variants. For ex-
ample, a signal consistent with the positive selection at
the Skint gene cluster on chr4:112.08–112.60Mb in the
Indian M. m. castaneus population is an artifact due to a
high-frequency deletion spanning this region (Additional
file 11: Figure S6). This finding reinforces the critical im-
portance of imposing quality control filters to eliminate
structurally variant regions from genome-wide scans for
selection (e.g., [40]).
Overall, our findings mirror conclusions for human

populations, revealing that natural selection has shaped
the geographic landscape of wild mouse variation in a
manner that influences the distribution of likely disease-
associated alleles. However, we note that our approach
for identifying signals of positive selection is not de-
signed to find signals of polygenic adaptation. In con-
trast to the hard selective sweep signatures reported
here, wherein a single haplotype or variant is driven to
high frequency within a population, signals of adaptation
on polygenic traits typically yield so-called “soft sweep”
signatures, marked by milder increases in allele fre-
quency of the high-fitness haplotype [74, 75]. Powerful
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approaches for detecting polygenic adaptation have been
developed in recent years (e.g., [76]), and future efforts
would be well spent by applying these methodologies to
the wild mouse populations studied here.

Conclusions
Successful adaptation to a commensal environment set
the stage for subsequent human-aided dispersal of house
mice across the globe, including the colonization of new
environments in recent history. As a consequence of this
demographic history and subsequent local adaptation,
mice from different geographic regions are genetically
and phenotypically differentiated, and notably at many
loci associated with traits with immediate relevance to
human health and disease. Our analysis reveals that nat-
ural selection has played an important role in shaping
global patterns of wild mouse diversity and spotlights
key pathways and genes targeted by positive selection
during recent house mouse evolutionary history. We an-
ticipate that our catalog could help prioritize specific
geographic areas for sampling wild mice to develop new
natural mouse models of human disease or conduct
genome-wide association studies in natural populations
[7].

Methods
Whole-genome sequences
We analyzed a total of 154 previously published whole-
genome sequences [6, 17, 18], including multiple popu-
lations from each of the three principle house mouse
subspecies. In total, we surveyed four populations of M.
m. domesticus, including 50 samples from the Eastern
United States, 28 from France, nine from Germany (in-
cluding three samples from Heligoland, a small island
archipelago in the North Sea off the coast of Germany),
and seven from Iran. We analyzed 30M. m. castaneus
genomes from two populations (Taiwan, n = 20; India, n
= 10), and 22M. m. musculus genomes from three popu-
lations (Afghanistan, n = 6; Czech Republic, n = 8;
Kazakhstan, n = 8). The sequence dataset also includes
eight M. spretus genomes from Spain. The distributions
of average quality scores and read depth for each gen-
ome are shown in Additional file 19: Figure S13.

Sequence alignment and variant calling
Fastq reads were mapped to the mm10 reference gen-
ome using the default parameters in BWA version 0.7.15
[77]. We followed the standard Genome Analysis Tool-
kit (GATK; version 3.8.0) pipeline for subsequent pre-
processing before variant calling [78, 79]. Next, variant
calling was performed on each sample using the “-ERC
GVCF” mode in the GATK “HaplotypeCaller”. Samples
were then jointly genotyped using the “GenotypeGVCFs”
GATK function. The “output” from the joint genotyping

was subjected to a series of hard filters using “--filterEx-
pression “QD < 2.0 || FS > 60.0 || MQ < 40.0 ||
MQRankSum < -12.5 || ReadPosRankSum < -8.0.” The
resulting hard filtered variants and previously ascer-
tained mouse variants [80] were then used as training
data for the “output” during the variant recalibration
stage using both the “VariantRecalibrator” and
“ApplyVQSR” option of GATK. For the latter, the truth
sensitivity level to initiate filtration was set to its default
(i.e., 99). Only biallelic variants passing the variant recal-
ibration stage were included in downstream analyses.

Variant annotation and statistics
We used SnpEff (version 4.3 t) for both variant annota-
tion and the determination of the total number of vari-
ants within each functional class per sample and per
population [81]. The numbers of shared and unique var-
iants between each subspecies and between species were
calculated using the “vcf-stats” and “vcf-isec” commands
within VCFtools (version 0.1.16) [82]. Variant sharing
between taxonomic groups was visualized using the
“VennDiagram” R package (version 1.6.20) [83].

Assessing genetic relatedness
Closely related samples were identified using KING (ver-
sion 2.2.6) [84]. The full dataset includes 5 pairs of pre-
sumed first-degree relatives, 5 pairs of second-degree
relatives, and 4 pairs of putative third-degree relatives
(Additional file 1: Table S1).
To assess the impact of including close relatives in our

selection scans, we randomly excluded one individual
from each close-relative pair and re-estimated ZHp on
the downsampled data. We then estimated the Pearson
correlation between matched genomic regions in each
downsampled and complete population. Data were plot-
ted using the “ggpubr: ‘ggplot2’” package in R (version
0.4.0) [85].
We used two approaches to assess levels of genetic re-

latedness among populations. We first thinned SNPs to
one variant per 1 kb interval for all samples using
VCFtools (version 0.1.16) [82] and then projected the
thinned data into two dimensions using a principal com-
ponent analysis (Plink version 1.9) [86]. We also con-
structed a maximum likelihood phylogenetic tree from
the 154 wild mouse genomes using PhyML (version 3.0)
[87]. The best-fit nucleotide substitution model was de-
termined using jModeltest (version 2.1.7) [88]. The
resulting tree was visualized in MEGA (version 7) [89].

Demographic estimation and the distribution of neutral
diversity
The evolutionary history of the house mouse is a com-
plex web of demographic processes, including migration
and changes in population size. To distinguish regions
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of true positive selection from outliers of the neutral dis-
tribution of diversity, we derived the expected distribu-
tion of neutral diversity in each surveyed population.
First, we used angsd (version 0.935) to calculate the site
allele frequency likelihood based on individual genotype
likelihoods, assuming that each population is in Hardy-
Weinberg Equilibrium [90]. This output was then used
to generate the site frequency spectrum across each
population using angsd realSFS.
For each surveyed population, we then inferred

population-specific demographic parameters using ∂a∂i
[91]. Parameter estimation was performed from 1000
putatively neutral autosomal non-coding regions, each
300 kb in length. Assuming two generations per year
and a mutation rate of 5.7 × 10−9 per bp [92], we ran a
“one population two changes model” which assumes that
the initial population split from an ancestral population,
experienced a bottleneck, and subsequently expanded.
The parameter estimation optimization procedure was
repeated 10 times to ensure that maximum likelihood
estimates were insensitive to different starting values
and ranges.
Estimated demographic parameters from ∂a∂i were

used to seed neutral population-specific coalescent sim-
ulations in ms [93]. A total of 10,000 independent simu-
lations were performed for each population. The
invoked commands for each population are: America (-t
783 -eN 0.037518545 2.946817641 -eN 0.056984026
0.048572057), France (-t 198 -eN 2.47046851
0.914897206 -eN 0.122115052 0.247412073), Germany
(-t 620 -eN 0.216181765 1.537319741 -eN 0.175112317
0.13052885), Iran (-t 2449 -eN 0.13237575 0.039843163
-eN 0.08026151 0.152704587), India (-t 1230 -eN
0.368975226 0.406795355 -eN 0.233061222
0.640302075), Taiwan (-t 1017 -eN 0.00605714
0.069121519 -eN 0.005099528 0.024048706),
Afghanistan (-t 878 -eN 0.140051542 0.07599747 -eN
0.073712335 0.320965943), Czech (-t 1229 -eN
0.06273194 0.124720872 -eN 0.124106941 0.051288075),
Kazakhstan (-t 702 -eN 0.047809205 0.314506899 -eN
0.100143924 0.114369593), and M. spretus (-t 721 -eN
0.038447928 0.191823599 -eN 0.095940492
0.113808736). Additional file 3: Figure S2 shows that the
simulated neutral diversity distribution broadly matches
the observed distribution of diversity for each
population.

Identifying footprints of positive selection
As a beneficial allele increases in frequency under posi-
tive selection, it carries linked genetic variants with it,
leaving behind a reduction in diversity at the targeted
locus. To identify this signature of locally depressed di-
versity in the mouse genome, we computed three popu-
lation genomic diversity statistics in 20 kb windows (10

kb sliding steps) across the genome: pool heterozygosity
(Hp) [33], nucleotide diversity (π) [34], and Tajima’s D
[35]. Our analysis was restricted to variants on the
autosomes.
Windows with < 50 SNPs were excluded, resulting in

the elimination of ~ 0.3 to ~ 4% of all windows, depend-
ing on the population. Diversity statistics were normal-
ized for each population to enable comparison across
analyses. The significance threshold was obtained based
on the extreme value from the coalescent simulation in
a one-tailed direction of the selective sweep. Adjacent
windows were then collapsed to form single candidate
regions, similar to a previous study [94].
We focus on extreme regions in the observed Hp dis-

tribution that are also supported by at least one of the
other tested statistics: π or Tajima’s D. Although the
computed statistics are not strictly independent of one
another, they do encapsulate slightly different aspects of
the patterning of genetic variation.

Filtering for windows exhibiting non-diploid state
Read depth was computed in 1000 bp windows across
each sequenced mouse genome using mosdepth [95].
Absolute read depth values were corrected for GC-
content biases following established methods [96] and
standardized by the genome-wide average read depth to
convert to copy number (CN) estimates. We approxi-
mated all CN estimates to their nearest whole number
(e.g., CN > 1.5 and CN < 2.5 correspond to CN = 2) and
then retained only windows with CN = 2 in each sample.
Next, we used the “—intersect” option of the bedops
version 2.4.39 [97] to retain only windows where CN = 2
for all the analyzed samples. Finally, we used these CN
metrics to filter and discard positive selection regions
carrying a non-diploid copy number using the “intersect”
option of bedtools version 2.29.2 [98]

Association with Mendelian traits and functional
classification of putative sweep genes
We estimated the fraction of candidate sweep genes that
overlap with genes in the OMIM database (https://www.
omim.org/, retrieved October 22, 2020; Additional file
16: Table S6) and GWAS catalog (https://www.ebi.ac.uk/
gwas/, accessed March 6, 2021). We then compared this
fraction to the genome-wide null expectation using a
simulation procedure. Briefly, we randomly selected a
set of non-overlapping genomic regions size-matched to
the distribution of the observed sweep windows. We
then identified genes within the simulated windows and
computed the fraction of simulated regions that overlap
with entries in the OMIM and GWAS databases. We re-
peated this simulation procedure 1000 times to derive
the expected frequency of both OMIM and GWAS
genes in sweep windows.
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For functional classification, we retrieved genes within
each candidate selective sweep region using Ensembl
BioMart version 102 [99]. These gene lists were used for
GO and KEGG analyses using the Database for Annota-
tion, Visualization, and Integrated Discovery (DAVID
version 6.8) [100]. We used all RefSeq genes in the M.
musculus genome as background. Overrepresented gene
clusters were identified by Fisher’s exact tests (p < 0.05)
and visualized in ggplot2 [85].

Gene expression analyses
Publicly available transcriptome sequencing reads from
10 different tissues (gut, brain, heart, liver, lung, spleen,
kidney, testis, thyroid, muscle) were obtained from wild-
caught M. m. domesticus mice from Iran, France, and
Germany [17]. Mapped reads were compiled into a
count matrix using the “featureCounts” command in the
Rsubread package (version 2.6.4). The resulting count
matrix was then used to run a differential gene expres-
sion analysis across populations with the edgeR [101]
and DESeq2 [102] pipelines. The threshold for signifi-
cance was set at p < 0.01 in edgeR and adjP < 0.05 in
DESeq2. Both methods produced largely overlapping sets
of significantly differentially expressed genes across the
populations. The resulting data from the DESeq2 was
further analyzed.
We performed simulation analysis to assess the signifi-

cance of the overlap between genes under selection and
differentially expressed genes. Simulations were inde-
pendently executed for each of the 10 surveyed tissues.
Briefly, for a given tissue, we randomly sampled the
number of genes under positive selection from the full
set of gene expression measures. This subsampling pro-
cedure was repeated 10,000 times. For each simulated
dataset, we then calculated the fraction of randomly
sampled genes that are significantly differentially
expressed across populations. An empirical p value was
calculated by determining the proportion of times the
simulated overlap was greater than the true overlap be-
tween selection genes and differentially expressed genes
(Additional file 7: Table S2).
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overrepresentation (p<0.05) of putative signals of positive selection in M.
m. castaneus.

Additional file 14: Figure S9. Pathway and functional
overrepresentation (p<0.05) of putative signals of positive selection in M.
m. musculus.

Additional file 15: Figure S10. Pathway and functional
overrepresentation (p<0.05) of putative signals of positive selection in M.
spretus.

Additional file 16: Table S6. Candidate selective sweep genes and
their association with Mendelian and complex traits.

Additional file 17: Figure S11. RNA expression levels of Amy1, Cry1,
Epas1, and Mgam in various tissues (A-J) collected from M. m. domesticus
populations of Germany (GR), Iran (IR), and France (FR). RNA expression
level is represented by log normalized counts of reads (y-axis) in the
populations (x-axis). Genes highlighted in red have significant (Likelihood
ratio test, adjP < 0.05) differential gene expression across populations in
the particular tissue.

Additional file 18: Figure S12. Copy number architecture across the
amylase locus in M. m. domesticus populations. “Sweep” is the locus
experiencing positive selection, “SV” corresponds to a region of structural
variation, and “mm10 gap” labels a gap in the mm10 reference genome.

Additional file 19: Figure S13. The distribution of average quality
scores and read depth across samples.
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