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Abstract

This paper studies an interaction between one prey and one predator following Lotka-Volterra model with additive Allee effect in predator. The
Atangana-Baleanu fractional-order derivative is used for the operator. Since the theoretical ways to investigate the model using this operator are limited,
the dynamical behaviors are identified numerically. By simulations, the influence of the order of the derivative on the dynamical behaviors is given. The
numerical results show that the order of the derivative may impact the convergence rate, the occurrence of Hopf bifurcation, and the evolution of the
diameter of the limit-cycle.
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1. Introduction

A relationship between preys with their predators has an important role to preserves the balance in an
ecosystem. The presence of predators may endanger the existence of prey with their direct killing. To investigate
this phenomenon, some scientists use mathematical tools to study several points of view such as dynamical
behaviors and forecasting. At the present moment, a deterministic approach using differential equations
becomes a well-known method for scientists. The classical one is given by A. J. Lotka [1] defined by

dx
dt

= ax − bxy,

dy
dt

= cxy − dy,
(1)

where x, y, a, b, c, and d represent the density of prey, the density of predator, the intrinsic growth rate of prey,
the predation rate, the predator growth rate which converted from the predation process, and the predator death
rate. For ecological purposes, model (1) is modified to cover the specific biological process in nature. For instance,
see [2–7]. In this time, we study the dynamical behavior of a Lotka-Volterra model which assumes the growth
rate of the predator decreases as the impact of the intraspecific competition and difficulty in finding mates. This
condition was first introduced by Warder Cyle Allee in 1931 [8], and becomes popular nowadays, see [9–12]. By
using the additive Allee effect [13–15] and applying it into predator growth, we obtain the following model.

dx
dt

= ax − bxy,

dy
dt

= cxy − dy − my
y + n

,
(2)

where m and n are the Allee constant which called strong Allee effect if m > n and weak Allee effect when
0 < m < n [13, 16].

Since the present state for each population is naturally related which all of their previous condition, the operator
using the fractional derivative becomes the best preference for most mathematicians. The famous fractional
derivative which used in biological modeling are Riemann-Liouville [17], Caputo [18], Caputo-Fabrizio [19],
and Atangana-Baleanu [20] operators. The kernel of Riemann-Liouville and Caputo derivatives are single and
local which means that these two operators are considered does not suitable to describe the local dynamics [21].
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Panigoro and Savitri [3] discuss the dynamics of model (2) using Caputo fractional derivative as the operator.
In this paper, we study model (2) using a fractional derivative with Mittag-Leffler kernel known as Atangana-
Baleanu operator. Atangana-Baleanu fractional derivative has a non-local and non-singular kernel to cover the
limitation of Riemann-Liouville, Caputo, and Caputo-Fabrizio fractional derivative. The Atangana-Baleanu in
Caputo sense (ABC) fractional derivative is given by the following definition.

Definition 1. [20] Suppose 0 < α ≤ 1. The Atangana–Baleanu fractional integral and derivative in Caputo sense
of order−α (ABC sense) are respectively defined by

ABCIα
t f (t) =

1 − α

N (α)
f (t) +

α

Γ(α)N (α)

∫ t

0
(t − s)α−1 f (s) ds,

ABCDα
t f (t) =

N (α)

1 − α

∫ t

0
Eα

[
− α

1 − α
(t − s)α

]
f ′(s) ds,

where t ≥ 0, f ∈ Cn([0,+∞), R), Eα is the Mittag–Leffler function defined by Eα(t) = ∑∞
k=0

tk

Γ(αk+1) , and N (α) is
a normalization function with N (0) = N (1) = 1.

By following the similar procedure as in [21, 22], model (2) with ABC sense is

ABCDα
t x = ax − bxy = F1(x, y)

ABCDα
t y = cxy − dy − my

y + n
= F2(x, y)

(3)

According to our literature review, model (3) has never been studied although this model is simple and classic.
Therefore, we give the following results in the next sections. In Section 2, the existence and uniqueness condition
of model (3) is given. In Section 3, we show numerically the dynamics of model (3). We finally give the conclusion
at last Section of our article.

2. Existence and Uniqueness

To guarantee the validity of the model, the existence and uniqueness of model (3) is shown. As the preliminaries,
the following theorem is given.

Theorem 2. [20] The following fractional differential equation

ABCDα
t f (t) = Ψ(t) (4)

can be written as

f (t) =
1 − α

N (α)
Ψ(t) +

α

Γ(α)N (α)

∫ t

0
Ψ(s)(t − s)α−1 ds. (5)

We start by investigating the kernels of model (3). We obtain the following theorem.

Theorem 3. The kernels Fi(x, y), i = 1, 2, are contracted and satisfy the Lipschitz conditions if 0 ≤ ζ1 < 1 and 0 ≤ ζ2 < 1

where ∥x∥ ≤ σ, ∥y∥ ≤ σ̄, ζ1 = a + bσ̄, and ζ2 = cσ + d +
m
n

,

proof. Let x, x̄, y, and ȳ are functions for Fi(x, y), i = 1, 2. Therefore, we obtain

∥F1(x, y)− F1(x̄, ȳ)∥ = ∥(ax − bxy)− (ax̄ − bx̄y)∥
= ∥a(x − x̄)− by(x − x̄)∥
≤ ∥a(x − x̄)∥+ ∥by(x − x̄)∥
≤ a ∥x − x̄∥+ bσ̄ ∥x − x̄∥
= ζ1 ∥x − x̄∥ ,

(6)
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and

∥F2(x, y)− F2(x̄, ȳ)∥ =

∥∥∥∥(cxy − dy − my
y + n

)
−
(

cxȳ − dȳ − mȳ
ȳ + n

)∥∥∥∥
=

∥∥∥∥cx(y − ȳ)− d(y − ȳ)−
(

my
y + n

− mȳ
ȳ + n

)∥∥∥∥
=

∥∥∥∥cx(y − ȳ)− d(y − ȳ)− mn
(

y − ȳ
(y + n)(ȳ + n)

)∥∥∥∥
≤ ∥cx(y − ȳ)∥+ ∥d(y − ȳ)∥+

∥∥∥∥mn
(

y − ȳ
(y + n)(ȳ + n)

)∥∥∥∥
≤ cσ ∥y − ȳ∥+ d ∥y − ȳ∥+ m

n
∥y − ȳ∥

= ζ2 ∥y − ȳ∥ ,

(7)

where ∥·∥ is the Euclidean norm. From eqs. (6) and (7) the kernels Fi(x, y), i = 1, 2, satisfy the Lipschitz
conditions. Moreover, since 0 ≤ ζ1 < 1 and 0 ≤ ζ2 < 1 then the kernels Fi(x, y), i = 1, 2, are also contracted. ■

Now, by employing fixed-point theorem, the existence of solution of model (3) is identified. Obeying Theorem 2,
the following following Volterra-type integral equations are achieved.

x(t)− x(0) =
1 − α

N (α)
F1(x(t), y(t)) +

α

N (α)Γ(α)

∫ t

0
(t − s)α−1F1(x(s), y(s)) ds,

y(t)− y(0) =
1 − α

N (α)
F2(x(t), y(t)) +

α

N (α)Γ(α)

∫ t

0
(t − s)α−1F2(x(s), y(s)) ds,

(8)

Equation (8) can be written by the following recursive formula

xn(t) =
1 − α

N (α)
F1(xn−1(t), yn−1(t)) +

α

N (α)Γ(α)

∫ t

0
(t − s)α−1F1(xn−1(s), yn−1(s)) ds,

yn(t) =
1 − α

N (α)
F2(xn−1(t), yn−1(t)) +

α

N (α)Γ(α)

∫ t

0
(t − s)α−1F2(xn−1(s), yn−1(s)) ds,

(9)

with initial conditions x0(t) = x(0) and y0(t) = y(0). The successive terms which acquired by obeying eq. (9)
given by

Ψ1,n(t) = xn(t)− xn−1(t)

=
1 − α

N (α)
(F1(xn−1(t), yn−1(t))− F1(xn−1(t), yn−1(t)))

+
α

N (α)Γ(α)

∫ t

0
(t − s)α−1 (F1(xn−1(s), yn−1(s))− F1(xn−2(s), yn−2(s))) ds,

Ψ2,n(t) = yn(t)− yn−1(t)

=
1 − α

N (α)
(F2(xn−1(t), yn−1(t))− F2(xn−2(t), yn−2(t)))

+
α

N (α)Γ(α)

∫ t

0
(t − s)α−1 (F2(xn−1(s), yn−1(s))− F2(xn−2(s), yn−2(s))) ds.

(10)

Therefore, from eq. (10), we get

xn(t) =
n

∑
i=1

Ψ1,i(t), and yn(t) =
n

∑
i=1

Ψ2,i(t). (11)

The norm of eq. (10) together with eqs. (6) and (7) given by

∥Ψ1,n(t)∥ ≤ 1 − α

N (α)
F1 ∥Ψ1,n−1(t)∥+

α

N (α)Γ(α)
F1

∫ t

0
∥Ψ1,n−1(s)∥ (t − s)α−1 ds,

∥Ψ2,n(t)∥ ≤ 1 − α

N (α)
F2 ∥Ψ2,n−1(t)∥+

α

N (α)Γ(α)
F2

∫ t

0
∥Ψ2,n−1(s)∥ (t − s)α−1 ds.

(12)

Finally, the following theorem arises.
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Theorem 4. Model (3) has a unique solution if we can find tmax such that

(1 − α)ζi
N (α)

+
tα
maxζi

N (α)Γ(α)
< 1, i = 1, 2 (13)

proof. Let x(t) and y(t) are assumed as bounded functions. According to Theorem 3, kernels F1(x, y) and F2(x, y)
satisfy Lipschitz conditions and also contractions. Using eq. (12), the following inequalities are obtained.

∥Ψ1,n(t)∥ ≤ ∥x0∥
(
(1 − α)F1

N (α)
+

tαF1

N (α)Γ(α)

)n
,

∥Ψ2,n(t)∥ ≤ ∥y0∥
(
(1 − α)F2

N (α)
+

tαF2

N (α)Γ(α)

)n
.

(14)

Therefore, the solution given by eq. (11) are exists and smooth since ∥Ψ1,n(t)∥ → 0 and ∥Ψ2,n(t)∥ → 0 as n → ∞
and t = tmax. To show that the functions which satisfy eq. (8) are the solutions of eq. (3), we suppose that

x(t)− x(0) = xn(t)− Φ1,n(t),
y(t)− y(0) = yn(t)− Φ2,n(t).

(15)

where Φi,n(t), i = 1, 2 are the remainder terms of series solutions. The norm of Φi,n(t) satisfies

∥Φ1,n(t)∥ ≤ 1 − α

N (α)
∥F1(x(t), y(t))− F1(xn−1(t), yn−1(t))∥

+
α

N (α)Γ(α)

∫ t

0
∥F1(x(s), y(s))− F1(xn−1(s), yn−1(s))∥ (t − s)α−1 ds,

∥Φ2,n(t)∥ ≤ 1 − α

N (α)
∥F2(x(t), y(t))− F2(xn−1(t), yn−1(t))∥

+
α

N (α)Γ(α)

∫ t

0
∥F2(x(s), y(s))− F2(xn−1(s), yn−1(s))∥ (t − s)α−1 ds.

(16)

By applying this relation iteratively, we get at t = tmax

∥Φ1,n(t)∥ ≤
(

1 − α

N (α)
+

tα
max

N (α)Γ(α)

)n+1
ζn+1

1 ,

∥Φ2,n(t)∥ ≤
(

1 − α

N (α)
+

tα
max

N (α)Γ(α)

)n+1
ζn+1

2 .

(17)

Therefore, we obtain ∥Φi,n(t)∥ → 0, i = 1, 2 for n → ∞. This means, when eq. (8) are satisfied by the functions,
then they are the solutions of eq. (3). Furthermore, we will show that the solution is unique by suppossing that
x∗(t) and y∗(t) are another solution of eq. (3). Thus, we obtain

x(t)− x∗(t) =
1 − α

N (α)
(F1(x(t), y(t))− F1(x∗(t), y∗(t)))

+
α

N (α)Γ(α)

∫ t

0
(F1(x(n), y(n))− F1(x∗(n), y∗(n)))(t − s)α−1 ds,

y(t)− y∗(t) =
1 − α

N (α)
(F2(x(t), y(t))− F2(x∗(t), y∗(t)))

+
α

N (α)Γ(α)

∫ t

0
(F2(x(n), y(n))− F2(x∗(n), y∗(n)))(t − s)α−1 ds.

(18)

By utilizing the similar ways as in (12) and (14), eq. (18) become

∥x(t)− x∗(t)∥
(

1 − (1 − α)ζ1

N (α)
− tαζ1

N (α)Γ(α)

)
≤ 0,

∥y(t)− y∗(t)∥
(

1 − (1 − α)ζ2

N (α)
− tαζ2

N (α)Γ(α)

)
≤ 0.

(19)

For t = tmax, we have eq. (13). Hence, ∥x(t)− x∗(t)∥ = 0 and ∥y(t)− y∗(t)∥ = 0 which conclude that x(t) =
x∗(t) and y(t) = y∗(t). Hence, model (3) has a unique solution. ■
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3. Numerical Results

In section, we perform some numerical simulations of model (3) including the bifurcation diagram, phase
portraits, and time series. The predictor-corrector scheme developed by Baleanu et.al. [23] is utilized. The
predictor for the solution of model (3) is given by the following equations.

xP
i+1 = x0 +

hα
N

N (α)Γ(α)

i

∑
j=0

b̂(α)i+1,jF1
(
tj, xj, yj

)
,

yP
i+1 = y0 +

hα
N

N (α)Γ(α)

i

∑
j=0

b̂(α)i+1,jF2
(
tj, xj, yj

)
,

where

b(α)i+1,j = − (i − j)α + (i − j + 1)α,

b̂(α)i+1,j =


b(α)i+1,j , j = 0, . . . , i − 1,

1 +
(1 − α)Γ(α)

hα
N

, j = i.

while the corrector for the solution of model (3) is given by

xi+1 = x0 +
αhα

N
N (α)Γ(α + 2)

(
â(α)i+1,i+1F1

(
ti+1, xP

i+1, yP
i+1

)
+

i

∑
j=0

a(α)i+1,jF1
(
ti, xj, yj

))
,

yi+1 = y0 +
αhα

N
N (α)Γ(α + 2)

(
â(α)i+1,i+1F2

(
ti+1, xP

i+1, yP
i+1

)
+

i

∑
j=0

a(α)i+1,jF2
(
ti, xj, yj

))
,

where

â(α)i+1,i+1 = 1 +
(1 − α)Γ(α + 2)

αhα
N

,

a(α)i+1,j =

 −(i − α)(i + 1)α + iα+1 , j = 0,
(i − j)α+1 − 2(i − j + 1)α+1 + (i − j + 2)α+1 , 1 ≤ j ≤ i,
1 , j = i + 1.

.

The numerical error of this scheme is Oq where q = min(2, 1 + α).

3.1. Simulations

Now, numerical simulations are performed. We choose the hypothetical parameter values: a = 0.5, b = 0.3,
c = 0.25, d = 0.1, m = 0.1, and n = 0.2. By computing the equilibrium point, we have (x, y) ≈ (0.614, 1.667) as
the unique interior point. Since all parameters are fixed, we focus on observing the influence of the order of the
derivative α to the dynamical behaviors of model (3) around the interior point. We first show the bifurcation
diagram of model (3) in interval 0.92 ≤ α ≤ 0.99. The bifurcation diagram is given by Figure 1(a). For
0.92 ≤ α < 0.943, the interior point becomes stable. We show this condition by pick α = 0.94 and portray the
phase portrait and time series in Figure 1(b,d). Furthermore, when α crosses 0.943, the interior point becomes
unstable and the solution tends to a periodic signal known as limit-cycle. This condition is maintained for
0.943 < α ≤ 0.99. We give an example for the solution by setting α = 0.98. The phase portrait and time series are
performed in Figure 1(c,e). As in the model with Caputo sense shows in [3], this phenomenon is also happening
which is called Hopf bifurcation where α is the bifurcation parameter and α = 0.943 is the bifurcation point.
Therefore, Hopf bifurcation occurs both in Caputo and Atangana-Baleanu operators. In [21, 22], it has been
shown numerically that the differences of Hopf bifurcation are driven by the order of the derivative given by
Caputo and Atangana-Baleanu operator lie on the bifurcation point and the diameter of limit-cycle. To show the
evolution of the diameter of the limit-cycle, we give Figure 2. The diameter of the limit-cycle increases when
α → 1.

3.2. Discussion

From the numerical simulation, an interesting phenomenon has been shown. The changes in stability namely
Hopf bifurcation occurs around the interior point. When the order of the derivative below of the bifurcation
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Figure 1. Numerical simulations of model (3) with parameter values: a = 0.5, b = 0.3, c = 0.25, d = 0.1, m = 0.1,
and n = 0.2 (a) Bifurcation diagram driven by α in interval [0.92,0.99] (b) Phase portrait when α = 0.94
(c) Phase portrait when α = 0.98 (d) Time series when α = 0.94 (e) Time series when α = 0.98

point, all nearby solutions converge to a unique point in the interior. This means the population densities of
prey and predator eventually converge to positive constant values. Both populations managed to maintain their
existence in nature constantly. When the order of the derivative above of the bifurcation point, the interior
point losses its stability via bifurcation point which means all nearby solutions away from the interior point and
converges to a periodic signal called limit-cycle. Although the density of prey and predator cannot be maintained
constantly, both populations will never go extinct. The densities will eventually change periodically where the
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Figure 2. The evolution of limit-cycle (3) driven by α with parameter values : a = 0.5, b = 0.3, c = 0.25, d = 0.1,
m = 0.1, and n = 0.2 (a) 3D−Bifurcation diagram in (x, y, α)−space (b) The diameter evolution

evolution of their densities depends on the value of the order of the derivative. Since the order of the derivative
means the index of memory, the behaviors of both prey and predator to maintain their existence depend on how
all of their previous conditions affect them.

If we compare the numerical results given by Panigoro and Savitri [3] with model (3), although model with
Caputo operator in [3] also undergoes Hopf bifurcation, in our works we show more detail about that bifucation
phenomenon. The value of bifurcation point, the bifurcation diagram, and the evolution of limit-cycle have been
presented numerically which does not exist in [3].

4. Conclusion

The dynamical behaviors of a Lotka-Volterra model with additive Allee effect involving Atangana-Baleanu
fractional derivative have been studied numerically. The existence and uniqueness of the solution have been
shown to demonstrate that the model is biologically viable. The predictor-corrector numerical scheme is
successfully applied to the model to demonstrate the occurrence of Hopf bifurcation, the evolution of the
diameter of the limit-cycle, and their suitable solutions. The numerical simulations also effectively demonstrate
the impact of the memory on the prey and predator behaviors in maintaining their existence.
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