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ABSTRACT

In this paper, a discrete-time predator-prey model involving prey refuge proportional to
predator density is studied. It is assumed that the rate at which prey moves to the refuge
is proportional to the predator density. The fixed points, their local stability, and the existence
of Neimark-Sacker bifurcation are investigated. At last, the numerical simulations consisting of
bifurcation diagrams, phase portraits, and time-series are given to support analytical findings.
The occurrence of chaotic solutions are also presented by showing the Lyapunov exponent
while some parameters are varied.
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1. Introduction

The interaction between prey and predator is the most important process in maintaining
the balance of the ecosystem. Several investigators studied the predator-prey model in
the continuous-time domain. Depending on time, we can divide predator-prey model
into two types, discrete domain system [1–9] and continuous domain system [10–15].
The discrete-time predator-prey model has reached dynamics, and interesting qualitative
behavior for the study incorporating refuge, different functional responses, harvesting,
delays, etc.

The predator-prey model is a substantial concept in different quarters of Ecology. Species
are fighting continuously with each other for food and space with an existing relation
among different species. Some degree of protection is naturally preserved to a certain
amount of prey populations by establishing some safe places called refuges [6, 16–18].
The safe places are preserved in nature to reduce the predation rate and increase the life
opportunity of prey.

If we consider the way to model the predator-prey interaction, the differential equation
is used as the operator for the continuous domain and the difference equation for the
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discrete domain. The differential equation is usually used for populations with
overlapping generations where the birth process occurs continuously. For example,
some models use first-order derivative [16, 19] and also we can find the model with
fractional-order derivative [14, 15, 20]. Some organisms have regular breeding seasons
for their births such as monocarpic plants and semelparous animals. Thus, the discrete
approaches are regarded as more suitable for these cases. The predator-prey interactions
with discrete-time models show the complexity of dynamical behavior rather than the
continuous ones [1–3].

Ruxton [21] presented a different term refuge to investigate the stability of
predator-prey models. Cressman and Garay [22] discussed the evolutionary stability of
the ecosystem of the predator-prey refuge model. Tao et.al [18] presented the effect of
prey refuge and harvesting on the dynamics of a predator-prey model with a
generalized functional response. Many comprehensive reseaches have been carried out
by scientists in involving refuge to predator-prey interaction [10, 11, 18, 21–29]. Most of
the literature on the predator-prey model considered refuge as a constant amount of
prey species or proportional to prey density incorporating through a different form of
functional responses [2, 4–6, 10, 11, 18, 21–29].

In our works, the different points of view in expressing the prey refuge term are
considered. We assume that the prey refuge is proportional to predator density. The
earlier research works presented that the use of refuges by a fraction of prey, or the
constant number of prey exerts a stabilizing effect in the dynamics of the interacting
populations. For now, we examine those pronouncements which assume that the
quantity of prey in refugia is proportional to predators, and we analyze the dynamic
properties of such a predator-prey model with prey self-limitation.

We present this article as follows. In Section 2, the model formulation of a discrete-time
predator-prey model with refuge is given. Section 3 deals with results and discussion
consist of the fixed points, their existence conditions, their local stability, the occurrence
of Neimark-Sacker bifurcation, the chaos control, and some numerical simulations. We
end our works with conclusion in Section 4.

2. Model Formulation

In this section, the mathematical modeling is presented. The model is constructed based
on the gause-type predator-prey model where the prey growth logistically and hunting
by predator for foods. The generalized form is given by

dx
dt

= rx
(

1− x
k

)
− cϕ(x)y

dy
dt

= dϕ(x)y− f y
(1)

where variables and parameters given by Table 1. Denote that ϕ(0) = 0, ϕ
′
(x) > 0

for x > 0. There is a quantity xr of prey population which incorporates refuges for
the functional responses ϕ(x) replaced by ϕ(x − xr), then incorporating prey refuges
considering ϕ(x) = x and xr = by. The discrete-time is obtained by the discretization

scheme as follows:
dx
dt

=
xt+h − xt

h
,

dy
dt

=
yt+h − yt

h
, where xt and yt are respectively the
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Table 1. Variables and parameters biological descriptions for model (3)

Variables and parameters Biological description
x The density of prey
y The density of predator
t Time
r The intrinsic growth rate of prey
k The environmental carrying capacity of prey
c The predation rate
d The efficiency with which predator convert consumed

prey into new predator
ϕ(x) The predator functional response

prey and predator populations densities at time t. For (n+ 1)th generation, f = 1, h→ 1,
and replacing t by n, we obtain

xn+1 = (r + 1)xn

(
1− r

k(r + 1)
xn

)
− c(xn − byn)yn

yn+1 = d(xn − byn)yn

(2)

To reduce the parameters of the model, we use the rescale
r

k(r + 1)
= 1 and (r + 1) = a.

Therefore, the following simplified discrete-time model is obtained.

xn+1 = axn(1− xn)− c(xn − byn)yn

yn+1 = d(xn − byn)yn
(3)

where are all of the biological parameters a, b, c, and d are positive.

3. Results and Discussion
3.1. Dynamical Analysis of Proposed Discrete-Time Predator-Prey Model

The fixed points of the model (3) are obtained by investigating the positive solutions of
the following equations.

x = ax(1− x)− c(x− by)y
y = d(x− by)y

Hence, three fixed points are achieved as follows.

1. The origin P0 = (0, 0) which always exists,

2. The axial point P1 =

(
a− 1

a
, 0
)

, which exists if a > 1,

3. The interior point P2 = (x2, y2) which exists if x2 is positive solution of the quadratic

equation x2 + Ax + B = 0, A =
1− a

a
+

c
abd

, B = − c
abd2 , y2 =

x2

b
− 1

bd
, and

x2 >
b

bd
.

The fixed points Pi, i = 0, 1, 2 are respectively represent both populations extinction
point, predator extinction point, and co-existence point.
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Now, the local dynamics for each fixed point is discussed. Using linearization, the
following Jacobian matrix at (x, y) given by

J =
[

a(1− 2x)− cy −c(x− 2by)
dy d(x− 2by)

]
, (4)

which gives characteristic equation: λ2 − Tr (J) λ + Det (J) = 0, where

Tr (J) = a + x(d− 2a)− y(c + 2bd) (Trace of J),
Det(J) = ad(1− 2x)(x− 2by) (Determinant of J).

(5)

Hence, model (3) is said to be

(i) a dissipative dynamical system if |ad(1− 2x)(x− 2by)| < 1, and
(ii) a conservative dynamical one if and only if |ad(1− 2x)(x− 2by)| = 1.

Furthermore, the stability of each fixed point is given by the following theorem.

Theorem 1. The origin P0 = (0, 0) is sink if 0 < a < 1, saddle if a > 1, and non hyperbolic if
a = 1.

proof. At P0, we have the Jacobian matrix J(x,y)=(0,0) =

[
a 0
0 0

]
, which gives eigenvalues

λ1 = a and λ2 = 0. Since |λ1| = 0 < 1, the stability depends on λ1. It is clear that
|λ1| = |a| = a. Following Lemma 1 in [7], we have Theorem 1.

Theorem 2. The axial point P1 =

(
a− 1

a
, 0
)

is

(i) a sink if |2− a| < 1 and
∣∣∣∣d(a− 1)

a

∣∣∣∣ < 1,

(ii) a source if |2− a| > 1 and
∣∣∣∣d(a− 1)

a

∣∣∣∣ > 1,

(iii) a saddle if |2− a| > 1 and
∣∣∣∣d(a− 1)

a

∣∣∣∣ < 1or |2− a| < 1 and
∣∣∣∣d(a− 1)

a

∣∣∣∣ > 1, and

(iv) a non hyperbolic if |2− a| = 1 or
∣∣∣∣d(a− 1)

a

∣∣∣∣ = 1.

proof. In this fixed point, we have J(x,y)=( a−1
a ,0) =

[
2− a − c(a−1)

a
0 d(a−1)

a

]
, and hence the

eigenvalues are λ1 = 2− a and λ2 =
d(a− 1)

a
. Thus, we obtain Theorem 2 by obeying

Lemma 1 in [7].

Theorem 3. The local stability of the interior point P2 = (x2, y2) satisfies one of the following
statements.

(i) a sink if 1 + Tr
(

Ĵ
)
+ Det

(
Ĵ
)
> 0 and Det

(
Ĵ
)
< 1,

(ii) a source if 1 + Tr
(

Ĵ
)
+ Det

(
Ĵ
)
> 0 and Det

(
Ĵ
)
> 1,

(iii) a saddle if 1 + Tr
(

Ĵ
)
+ Det

(
Ĵ
)
< 0, and

(iv) a non hyperbolic if 1+ Tr
(

Ĵ
)
+Det

(
Ĵ
)
= 0 and Tr

(
Ĵ
)
6= 0, 2, or

[
Tr
(

Ĵ
)]2− 4Det

(
Ĵ
)
<

0 and Det
(

Ĵ
)
= 1,
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where Tr
(

Ĵ
)
= a + x2(d− 2a)− y2(c + 2bd) and Det( Ĵ) = ad(1− 2x2)(x2 − 2by2).

proof. Let F(λ) = λ2 − λTr( Ĵ) + Det( Ĵ). Thus, we get

F(1) = 1− Tr
(

Ĵ
)
+ Det

(
Ĵ
)

= 1− [a + x2(d− 2a)− y2(c + 2bd)] + [ad(1− 2x2)(x2 − 2by2)] ,

f (−1) = 1 + Tr
(

Ĵ
)
+ Det

(
Ĵ
)

= 1 + [a + x2(d− 2a)− y2(c + 2bd)] + [ad(1− 2x2)(x2 − 2by2)] .

By applying Lemma 2 in [7], the given stability conditions hold.

At the interior fixed point P2 (x2, y2) , if 1− Tr
(

Ĵ
)
+ Det

(
Ĵ
)
> 0, 1+ Tr

(
Ĵ
)
+ Det

(
Ĵ
)
= 0,

and Tr
(

Ĵ
)
6= 0, 2 then at (x2, y2) the model can undergo flip bifurcation.

Again at P2 (x2, y2) , if 1− Tr
(

Ĵ
)
+ Det

(
Ĵ
)
> 0,

(
Tr
(

Ĵ
))2 − 4Det

(
Ĵ
)
< 0 and Det

(
Ĵ
)
= 1

then at (x2, y2), the model can undergo Neimark-Sacker bifurcation.

3.2. Neimark-Sacker Bifurcation of Proposed Model

Neimark-Sacker bifurcation occurs when a fixed point losses its stability and nearby
solutions are isolated by an invariant closed curve simultaneously when a parameter is
varied. In this subsection, we present the occurrence of Neimark-Sacker bifurcation
around the interior point P2 of model (3) driven by a parameter in the following set.

A = {(a, b, c, d) : 1− Tr
(

Ĵ
)
+ Det

(
Ĵ
)
> 0,

(
Tr
(

Ĵ
))2 − 4Det

(
Ĵ
)
< 0, Det

(
Ĵ
)
= 1}

We analyze the existence of Neimark-Sacker bifurcation by set the parameter b as the
bifurcation parameter. Further b∗ (|b∗| ≪ 1) is the perturbation of b, we consider a
perturbation of the model as follows:

xn+1 = axn(1− xn)− c(xn − (b + b∗)yn)yn ≡ f (xn, yn, b∗)
yn+1 = d(xn − (b + b∗)yn)yn ≡ g(xn, yn, b∗)

(6)

Now, we transform the fixed point P2 (x2, y2) into the origin by using equations un =
xn− x2 and vn = yn− y2 simultaneously with applying a Taylor series at (un, vn) = (0, 0)
to the model (6). Hence, we obtain

un+1 = α1un + α2vn + α11u2
n + α12unvn + α22v2

n + α111u3
n

+ α112u2
nvn + α122unv2

n + α222v3
n + O((|un|+ |vn|)4)

vn+1 = β1un + β2vn + β11u2
n + β12unvn + β22v2

n + β111u3
n

+ β112u2
nvn + β122unv2

n + β222v3
n + O((|un|+ |vn|)4)

(7)

Where α1 = fx(x2, y2, 0) = a(1 − 2x2) − cy2, α2 = fy(x2, y2, 0) = −c(x2 − 2by2),
α11 = fxx(x2, y2, 0) = −2a, α12 = fxy(x2, y2, 0) = −c, α22 = fyy(x2, y2, 0) = 2bc,
α111 = fxxx(x2, y2, 0) = 0, α112 = fxxy(x2, y2, 0) = 0, α122 = fxyy(x2, y2, 0) = 0,
α222 = fyyy(x2, y2, 0) = 0, β1 = gx(x2, y2, 0) = dy2, β2 = gy(x2, y2, 0) = d(x2 − 2by2),
β11 = gxx(x2, y2, 0) = 0, β12 = gxy(x2, y2, 0) = d, β22 = gyy(x2, y2, 0) = −2bd,
β111 = gxxx(x2, y2, 0) = 0, β112 = gxxy(x2, y2, 0) = 0, β122 = gxyy(x2, y2, 0) = 0,
β222 = gyyy(x2, y2, 0) = 0.
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If we compute the Jacobian matrix of model (7) at (un, vn) = (0, 0), the following
characteristic equation and eigenvalues are obtained.

λ2 − Tr (J1(b∗)) λ + Det (J1(b∗)) = 0

λ1,2(b∗) =
Tr (J1(b∗))± i

√
4Det (J1(b∗))− (Tr (J1(b∗)))2

2
.

From |λ1,2(b∗)| = 1, when b∗ = 0 we have |λ1,2(b∗)| = [Det (J1(b∗))]
1
2 and

l =
[

d |λ1,2(b∗)|
db∗

]
h∗=0
6= 0. In addition to that when b∗ = 0, λi

1,2 6= 1, i = 1, 2, 3, 4, which

is equivalent to Tr (J1(0)) 6= −2,−1, 1, 2.

Now, the normal form is investigated. Let γ = Im(λ1,2), δ = Re(λ1,2), and T =

[
0 1
γ δ

]
.

Taking
[

un
vn

]
= T

[
x̄n
ȳn

]
to the model (7), we attain

x̄n+1 = δx̄n − γȳn + f1(x̄n, ȳn)

ȳn+1 = γx̄n + δȳn + g1(x̄n, ȳn)
(8)

where the functions f1 and g1 denote the terms in the model (8) in variables (x̄n, ȳn) with
the order at least two.

In order to undergo Neimark-Sacker Bifurcation it requires that the following
discriminatory quantity Ω be nonzero:

Ω = −Re
[
(1− 2λ̄)λ̄2

1− λ
ξ11ξ20

]
− 1

2
|ξ11|2 − |ξ02|2 + Re(λ̄ξ21)

where

ξ20 =
1
8

δ (−4bd− 2δbc + c + 8γbc)− 1
4

γc +
bc
2

δi (2γ− 1− δ)

+
1
2

i
(
−2γbd + γ2bc + a

)
+

1
8

d +
−2δa

4γ
+

2bcδ3 + 2bdδ2

4γ
− −cδ2 − δd

4γ
,

ξ11 =
1
2

γ(−2bd− 2bcδ) +
1
2

i(2bcγ2 − 2a− cδ + 2bcδ2) +
δa
γ

+
δd + cδ2

2γ
− −2δ2bd− 2bcδ3

γ
,

ξ02 =
1
4

γ(4δbc− c− 2bd) +
1
4

i(d− 4δbd + 2cδ + 2a)− 2δa + δd + cδ2

4γ

+
1
2

bci(γ2 − 3δ2)− δ2bd + bcδ3

2γ
,

ξ21 = 0.

(9)

Finally, the following Theorem is achieved

Theorem 4. Let eq. (9) holds. When the parameter b∗ varies in a small neighborhood of b, the
model (3) undergoes a Neimark-Sacker bifurcation around the fixed point P2 = (x2, y2). If Ω < 0
(or Ω > 0) then an attracting (or repelling) invariant closed curve bifurcates from the fixed point
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P2 = (x2, y2) for b∗ > 0 (or b∗ < 0).

3.3. Control Chaos

To stabilize the chaotic orbits, the feedback control method is employed. The controlled
form of model (3) is given by

xn+1 = axn(1− xn)− c(xn − byn)yn + S,
yn+1 = d(xn − byn)yn,

(10)

with the feedback control law as the control force is S = −q1 (xn − x2) − q2 (yn − y2),
where q1 and q2 are the feedback gain. By computing the Jacobian Matrix of the model

(10) at (x2, y2), we have J =
[

a11 − q1 a12 − q2
a21 a22

]
, where

a11 = a(1− 2x)− cy, a12 = −c(x− 2by), a21 = dy, a22 = d(x− 2by),

and the characteristic equation is

λ2 − (a11 + a22 − q1) λ + a22 (a11 − q1)− a21 (a12 − q2) = 0.

Therefore we have the following eigenvalues properties.

λ1 + λ2 = a11 + a22 − q1 and λ1λ2 = a22 (a11 − q1)− a21 (a12 − q2) (11)

The lines of marginal stability are determined by solving the equation λ1 = ±1 and
λ1λ2 = 1. These conditions guarantee that the eigenvalues λ1 and λ2 have modulus less
than 1.

Suppose λ1λ2 = 1; from (11), we have line l1 as a22q1 − a21q2 = a22a11 − a21a12 − 1.

Suppose λ1 = ±1; from (11), we have line l2 and l3 as follows:

(1− a22) q1 + a21q2 = a11 + a22 − 1− a22a11 + a21a12

and

(1 + a22) q1 − a21q2 = a11 + a22 + 1 + a22a11 − a21a12

The stable eigenvalues lie within a triangular region bounded by the lines l1, l2 and l3.

Example: Let a = 4.42, b = 0.08, c = 3, d = 3.5. For initial value (x0, y0) = (0.6, 0.3),
we have an unstable fixed point P2 = (0.35, 0.76) and nearby solution show the chaotic
behavior, see Figure 1(a). Applying feedback control with feedback gain q1 = 0.2 and
q2 = −0.5,, the stability of P2 change sign as Figure 1(b).

3.4. Numerical Simulations

In this subsection, some numerical simulations are provided in order to depict the
previous analytical results. The parameter values a = 3, b = 0.08, c = 3, andd = 3.5 are
given hypothetically along with initial population (x0, y0) = (0.6, 0.3).

The bifurcation analysis of the proposed discrete predator-prey model with quantitative
behavior has been presented to the parameter value. The bifurcation diagram is a
numerical process that takes up a lot of time because it requires a humongous number
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Figure 1. Chaos Control of discrete predator-prey model

Figure 2. Bifurcation diagram driven by parameter a

Figure 3. Lyapunov exponents by varying a

of points to describe the trajectory structure of the solution by varying the parameter.
The Lyapunov exponents are also provided to investigate the rate of divergence of
nearby trajectories as a key component of chaotic dynamics. The model with negative
Lyapunov exponents is characteristic of dissipative or non-conservative, which are
exhibited asymptotic stability. The resultant of more negative exponent implies the
model’s stability increase. The orbit is unstable and chaotic for positive Lyapunov.

By varying the parameter a in the interval [2.5, 4.5], we obtain Figure 2 which depicts the
existence of Neimark-Sacker bifurcation indicated by a change in behavior of the interior
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Figure 4. Phase portraits of the model for (i) a = 3, (ii) a = 3.12, (iii) a = 3.15,
(iv) a = 3.2

Figure 5. Bifurcation diagram driven by parameter b

Figure 6. Lyapunov exponents by varying b

point and the occurrence of a smooth invariant circle. We also have a period-4 solution
when a > 4. To show the rate of the divergence, the appropriated Lyapunov exponent
is given in Figure 3. The largest Lyapunov exponent is more significant than zero when
a > 3.9, except in periodic windows, which implies the occurrence of a chaotic solution.
We set a = 3, 3.12, 3.15, 3.2 to describe some phase portrait as in Figure 4, which shows
that the stable interior-point losses its stability, and the nearby solution tends to a smooth
invariant closed curve.
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Figure 7. Phase portraits for (i) b = 0.074, (ii) b = 0.075, (iii) b = 0.076, (iv)
b = 0.08

Figure 8. Bifurcation diagram driven by parameter c

Figure 9. Lyapunov exponents by varying c

If we set parameter b as the bifurcation parameter in interval [0, 0.1], we obtain the
bifurcation diagram, Lyapunov exponent, and some phase portraits in Figures 5 to 7,
respectively. The invariant circle which isolates the unstable interior-point vanishes and
the interior point becomes stable via Neimark-Sacker bifurcation. The largest Lyapunov
exponent indicates the chaotic behavior doesn’t exist in this parameter interval. Four
phase portraits are given to support this phenomenon.
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Figure 10. Phase portraits for (i) c = 3, (ii) c = 3.1, (iii) c = 3.2, (iv) c = 3.3

Figure 11. Bifurcation diagram driven by parameter d

Figure 12. Lyapunov exponents by varying d

Now, we set c as the bifurcation parameter. For 3 ≤ c ≤ 3.9, the dynamical behaviors
qualitative similar with the previous circumstance when a is varied. The stable interior-
point change sign and a smooth invariant circle appear simultaneously via Neimark-
Sacker bifurcation and finally, the chaotic attractor occurs. These conditions show by
the bifurcation diagram Figure 8, the Lyapunov exponents Figure 9, and phase portraits
Figure 10.

The last simulation is shown by setting d as the bifurcation parameter. In interval 3 ≤
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Figure 13. Phase portraits for (i)d = 3.5(ii)d = 4.0(iii)d = 4.6(iv)d = 4.9

d ≤ 5, we obtain bifurcation diagram, largest Lyapunov exponent, and phase portraits
as in Figures 11 to 13. The Neimark-Sacker bifurcation occurs when b passes through the
bifurcation point approximately in 3.5 < d < 4, and a big visible periodic window exists
for 4.5 < d < 5. Again, a chaotic solution appears indicated by the value of the Lyapunov
exponent larger than zero, and a chaotic attractor is shown by Figure 13(d).

4. Conclusion

The dynamical behaviors of a predator-prey model with effects of refuge have been
successfully studied in both analytical and graphical approaches. Three fixed points are
investigated including their biological existence and their local stability conditions. The
existence of Neimark-Sacker bifurcation is also investigated analytically by considering
the effect of refuge as the bifurcation parameter. The feedback control method has been
given to stabilize the chaotic solution. From a numerical approach, some results have
been given. Some parameters in this model may affect the occurrence of
Neimark-Sacker bifurcation, chaotic attractor, and some periodic solutions shown by the
existence of periodic windows. This study of bifurcations in a discrete predator-prey
model with refuge has been revealed that the model has complexity in dynamical
behaviors shown by the existence of various bifurcations of codimension one, including
flip bifurcations and Neimark-Sacker bifurcation, as the values of parameters vary.
Generally, analytical and numerical results show that the refuge has impacts on predator
density and changes the way of the predator and prey maintain their existence in nature.
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