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Abstract—Advent of next generation gene sequencing machines
has led to computationally intensive alignment problems that
can take many hours on a modern computer. Considering the
fast increasing rate of introduction of new short sequences
that are sequenced, the large number of existing sequences
and inaccuracies in the sequencing machines, short sequence
alignment has become a major challenge in High Performance
Computing.

In practice gaps as well as mismatches are found in genomic
sequences, resulting in an edit distance problem. In this paper
we describe the design of a distributed filter, based on shifted
masks, to quickly reduce the number of potential matches in
the presence of gaps and mismatches. Furthermore, we present
a hybrid dynamic programming method, optimized for GPGPU
targets, to process the filter outputs and find the accurate number
of insertions, deletions and mismatches. Finally we present results
from experiments performed on an NCSA cluster of 128 GPU
units using the Hadoop framework.

I. I NTRODUCTION

The Next Generation of high-throughput Sequencing tech-
nologies (NGS) has fundamentally changed the landscape of
the basic and applied biomedical researches. The NGS tech-
nologies are now widely applied to the transcription binding
intensity measurement through CHIP-seq, RNA expression
profiling through RNA-seq, DNA Structural Variation detec-
tion and Genome Assembly [1]. The modern NGS machines
generate enormous amount of sequences in a span of a
few hours. A fundamental problem is aligning these short
sequence reads back to a reference genome. There are many
algorithms that can perform this task, however a majority of
them [2][3][4][5][6] are not complete, meaning that they find
only one or a fixed few locations that a short sequence matches
within the reference, and move on to the next short sequence.
This creates a problem for the biologists trying to use the data,
since the few first matching locations might not be the correct
location they need to study.

In this paper we introduce a new technique to find all the
possible locations within a reference sequence that match a
short sequence read within a pre-specified edit distance. Our
technique is based on a distributed filtering scheme which
applies the pigeon hole principle to find all potential matches
within the reference sequence for each read. Moreover, the
distributed filter transforms the non-structured computational
problem of finding all matches for each read into the reference
sequence to a structured problem of pairs of potentially
matching read / patterns. The structured problem can then be

delegated to a hardware accelerator such as GPU to accurately
weed out all false positives. In the end, our results are exact:
There will be neither be a false positive nor a false negative
result.

The rest of the paper is as follows. Section II introduces the
problem, while table III provides the fundamental formaliza-
tion of the distributed shifted masks. Section V then provides
some detail about our implementation. The evaluation results
are described in VI. Finally section VII provides related work
and section VIII concludes the paper.

II. GENE ALIGNMENT PROBLEM DEFINITION

A DNA is a sequence of nucleic acid base pairs consisting of
nucleotides Adenine, Thymine, Guanine and Cytosine. Gene
sequencing is a chemical process that finds the order of the
nucleotides in the DNA sequence and stores them in a file. The
next generation sequencing techniques typically create mil-
lions of short ‘reads’ (or ‘reads’ or ‘snips’ in other literature),
typically between 25 to 100 base pairs and in some cases (such
as 454 sequencing) up to 1000. The FASTA representation of
a DNA sequence (which is a simple ASCII based file format
for genetic data) represents the four bases with the single
letter codes A,T,G,C and the additional character N, which is a
wildcard character. The N character represents an unidentified
base pair in the chemical sequencing process, which means
the machine could not identify which nucleotide was read at
that location.

The read length we use in our implementation is 30 base
pairs, however we can easily adapt the implementation to uti-
lize larger read sizes. A next-generation sequencing machine
can create up to 6 GB or around 180 million reads per day
as of 2010. This number is only increasing with the newer
generation of sequencing machines. The precise sequence of
a long string of DNA can be queried with these shorter reads
by finding the locations of these reads within the genome
sequence. The reconstruction of the located reads into a larger
string through the process of genome assembly will be the job
of another pass (that typically require graph constructionand
traversal).

One main goal of the gene alignment, perhaps a few decades
down the road, is to have a clear understanding of which genes
(sub-sequences) in the human gene sequence are the cause of
diseases. With this information at hand, and with advanced
chemical gene sequencing machines of the future, a physician
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can get a DNA sample from a patient and find the potential
diseases that can endanger him. In such a scenario, the known
set of problematic genes (reads) will be constant and the
human genome sequence will be different from one patient
to the next. However, currently the situation is the other way.
Only a few generic human genomes have been sequenced,
so that currently we have a semi-constant selection of 3 to 4
human genomes (for example typical African genome, Typical
Asian genome, etc.) What is changing in current research
scenarios is the read (’read’) set, where researchers look for
the potentially troubling genes. The choice of the fixed and
dynamic data sets is important, since the fixed (or semi-fixed)
data sets can be preprocessed and stored in more efficient data
structures. This fact is one of the principles of the current
research, as seen later in the rest of the paper. Please note that
the algorithm presented in this paper is not relying on which
data set is fixed, it only requires either the reads or the genome
to be fixed (or semi-fixed).

The problem of matching reads into the genome sequence
here is defined as follows: Given a (long) DNA sequence
and a set of short reads, for each read create an output list
that contains all the positions into the DNA sequence where
the following 30 nucleotides after that position exactly match
that read. This problem is called the ”exact gene sequence
alignment problem”, and is a simplified sub-problem of a
more complex class, ”approximate gene sequence alignment”.
In its more complex form, the problem is to find positions
into the DNA which match a read within a maximum edit
distance (including insertions, deletions and mismatches), and
is the problem our system targets. Note that some systems
simplify the problem by finding the first (approximate) match-
ing position within the DNA, however our aim is to find
all the matches. Other systems such as Bowtie[5] solve the
simpler Hamming distance problem where the only possible
disagreements are mismatches at the same offsets.

We define any consecutive 30-character sequence from
the genome DNA sequence as apattern. A human genome
sequence has 3 billion nucleotides thus contains 3 Billion
minus 29 patterns. We can build the pattern set using a sliding
window on the human genome. It is well known within the
bioinformatics community that there is no value in considering
‘plain’ pattern/reads pair. These are the sequences where all 32
nucleotides are of the same type (AAAA...A, CCCC...C, etc.)
Therefore these reads are filtered out and ignored. Moreover,
any pattern or read that contains anyN will be ignored,
sinceN signifies an unknown value read during the chemical
process, in which case there is no point in matching that read.

A mismatch is defined as unequal base pairs at the same
offset in both the pattern and read. An insertion in a read
(pattern) is defined as an extra base pair inserted at an offset
only in the read (pattern), not the pattern (read). Likewise, a
deletion in a read (pattern) is defined as a missing base pair
at an offset only in the read (pattern), not the pattern (read).
Note that an insertion in the pattern is equal to a deletion in
the read and vice versa.
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Fig. 1. Pigeon hole filter. Our proposed distributed filter shown in this figure
is based on the pigeon hole principle. In this example we are looking for
pattern/reads which are 1 mismatch apart. First the pattern/reads are divided
into 3 divisions. The pigeon hole principle states that at least one of divisions
should be exactly matching. Leveraging this fact, we can mask the divisions
that might have errors and search for exact matches in the unmasked divisions.
In this case there are only three ways to mask one division outof the 3: 0FF,
F0F and FF0.

III. P IGEON HOLE FILTERING

In this section we introduce the pigeon hole filters. In
section III-A we provide an incentive for the filtering. Section
III-B will build the mathematical foundations of the pigeon
hole filters and finally section III-C will show through a
probabilistic analysis that our filter can reject the majority of
random candidates.

A. The Need for a filtering phase

Consider a brute force approach comparing each pattern
to all of the reads, and marking down the matching ones
(accepting a maximum number of mismatches) for each read.

Theoretically, the number of operations in a brute force
approach is the number of patterns multiplied by the number
of reads, multiplied by the number of operations for each
pattern/read pair (we will later see in section IV how a
matching pair in a simplified Hamming distance problem
can be distinguished in only 6 bit manipulation instructions).
There are of course more instructions required to mark down
the matching pairs, but considering the successful outcomes
of this problem is usually very small compared to the total
number of pairs, we ignore it in this simple analysis. For an
example problem size of 3 billion base pair in human genome
and 20 million reads, the total pattern/read pairs sum up to



3 · 230 · 20 · 220 · 6 = 360 · 250 bit manipulation operators for
all the pattern/read pairs. Considering a quad-core processor
running at 3 Ghz, and assuming each core can work on two
data sets in parallel using SSE instructions, the maximum
theoretical limit on the number of bit manipulation operations
is 3 · 230 · 4 · 2 = 24 · 230 per second. (Of course this is
the top limit, since it is impossible in a real scenario This will
translate into a runtime of(360·250)/(22.4·230) = 13.4·220 =
16,861,101 seconds = 195 days, which is too long to consider
for practical purposes.

These lower limit figures of the brute force approach clearly
show that a naive implementation would not be good enough
for practical purposes, if feasible at all, and thus we definitely
require a filtering phase, described in the next section.

B. Definition and properties

Our proposed distributed filter shown in figure 1 is based on
the pigeon hole principle. Letr′, r′′, r′′′ be the total number of
allowed mismatches, insertions and deletions respectively, and
let r = r′+r′′+r′′′ denote them collectively as ‘disagreements’.
Consider a pattern and read pair each containingn nucleotides,
such that their edit distance is withinr. The r disagreements
are distributed over then positions and each type of disagree-
ment has a different effect on the sequence of nucleotides. A
mismatch at positioni implies that the nucleotide at position
i is replaced with a different one. An insertion at positioni
implies that an extra nucleotide is inserted in the read sequence
at positioni. This results in all the nucleotides from positions
i to n being shifted one position to their right. Similarly a
deletion at positioni results in the nucleotide at positioni
being deleted and nucleotides originally at positioni + 1 to n
are shifted to positionsi to n− 1.

Given a sequence of lengthn, we define a group of
consecutive nucleotides as a ‘division’ and let the sequence
be divided intok < n such divisions. For simplicity, we
describe equal sized divisions in the following description,
but these techniques are equally applicable to variable sized
divisions. Each of these divisions could contain one or more
disagreements. Letri represent the number of disagreements
in division i. We defineδi = (r0, r1, · · · , rk) as a k-tuple
representing thei’th arbitrary distribution of disagreements
in k divisions, where

∑k

x=0 rx = r. We can also defineδi

in more detail as((r′0, r
′′
0 , r′′′0 ), (r′1, r

′′
1 , r′′′1 ), · · · , (r′k, r′′k , r′′′k )),

where(r′j , r
′′
j , r′′′j ) represent mismatches, insertions and dele-

tions respectively. We will use these notations interchangeably.
∆ is defined as the set of allδi.

Having the problem modeled this way, we can now consider
the pigeon hole principle to design a filter.

Definition 1: Pigeon hole filter.
To determine whether a read/pattern pair are in fact within

r edit distance of each other, the filter divides them intok
divisions such thatk = r + p. Then all combinations ofp out
of k divisions are exhaustively explored, and in each iteration
the value of the selectedp divisions in the corresponding
pattern/read are compared to each other (ignoring the value
of the otherr divisions). The divisions are location aware,

based on how many disagreements have happened to the left
of a certain division.

Theorem 1:All read/pattern pairs whose edit distance are
r will pass through a pigeon hole filter which divides them
into k > r divisions.

Proof: From definition 1, in a pigeon hole filter all
combinations ofp out ofk divisions are exhaustively explored.
From the pigeon hole principle we know that if we have
k = r + p divisions and distribute the disagreements in any
arbitrary distribution among these divisions, at leastp of the
divisions will not have any disagreements (rx = 0 for these
divisions). For a read/pattern pair withinr edit distance of
each other there will be at least one case out of all the filters
will select thep disagreement-free divisions, and for that case
the p selected divisions will match. Hence, if a pattern/read
pair are withinr edit distance of each other, at least one of
the pigeon hole filter tests will indicate a match.

Note that this pigeon hole filter design can have false
positives, but it does not allow for any false negative. If a
pattern/read pair are withinr edit distance, they will pass
the filter. On the other hand there can be cases when a
pattern and read are more thanr edit distances apart, but
they can pass the filter. This case happens when more than
one disagreement happens inside one division. The pigeon
hole filter’s guarantees are based on worst case assumptions,
where the disagreements are completely spread out. Therefore
an accurate second phase is needed to single out the false
negative cases.

To implement the above described filter, we can con-
struct a maskmi directly for every δi. Each maskmi =
((q0, s0), (q1, s1), · · · , (qk, sk)) is ak-tuple such that for every
rj in δi, the corresponding division will be masked (qj = 0)
if there are disagreements in that division(rj > 0), or passed-
through(qj = F ) if there are no disagreements in the division
(rj = 0). Moreover, eachqj has an accompanying offsetsj

representing the shifted position of that division.
To construct a mask, we define the operatorΓ(δi) → mi.

The operatorΓ performs as follows:

mi = Γ(δi) = ((q0, s0), (q1, s1), · · · , (qk, sk)) (1)

qj =

{

0, rj > 0
F, rj = 0

(2)

sj =
∑j−1

x=0 r′′x − r′′′x (3)

wherer′′x andr′′′x are the number of insertion and deletion
disagreements in division x.

The number of masks found by following this procedure
is equal to the size of the set∆, which is the number
of permutations that the different disagreements can be
distributed across the divisions with an upper bound value
of P (n,r)

r′!r′′!r′′′! . Obviously the memory requirement of a naive
implementation will be all but impossible. However, we can
reduce the number of required masks considerably, using the
following lemmas.
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Fig. 2. Shifted masks creation. We start by considering all the possible disagreement distributions. Each disagreement distribution can be written in its
k-tuple representation (δi). The next step is to transform eachδi into a mask (mi). Finally, lemma 1 can combine multiple masks.

Lemma 1:We can reduce the mask notation by setting each
sj ← 0 when its correspondingqj = 0

Proof: This is because only the divisions whose
qj 6= 0 contribute towards matching and the other divi-
sions are simply ignored. Therefore there is no information
lost due to this reduction. For example, the two masks
((0, 0), (0, 1), (0, 1), (F, 1)) and ((0, 0), (0, 0), (0, 1), (F, 1))
can both be reduced to((0, 0), (0, 0), (0, 0), (F, 1)).

Lemma 2:∃δi, δj s.t. Γ(δi) = Γ(δj)
Proof: Without loss of generality, consider two sequence

δi = (p0, p1, p2, · · · , pk) and δj = (p1, p0, p2 · · · , pk) where
p2 = p3 = · · · = pk = 0 andp0, p1 > 0. Trivially we can see
that qx = qy∀k ≥ 2 and qx = qy for k < 2 by equation (2).
sx = sy for k < 2 by Lemma 1, andsx = sy∀k ≥ 2 since
p0+p1 = p1+p0 and using equation (3). HenceΓ(δi) = Γ(δj)

Definition 2: Mask assimilation.
We define a mask assimilation operation using the following

three rules:

(0, 0) · (F, k) = (0, 0)

(F, k) · (F, k) = (F, k)

(F, p) · (F, q) = (0, 0)

If mi ·mj = mj , the we can say thatmj assimilatesmi,
denoted bymi ⊂ mj .

Lemma 3: If mi ⊂ mj , anyδi that passes through the filter
mi will also pass through the filter bymj .

Proof: Sincemi successfully masks the divisions of the
δi that have disagreements, all the corresponding division
locations inmi contain (0, 0). From the above definition 2
the corresponding location inmj will also contain(0, 0).

In fact the assimilation increases the false positive ratioof
the filter in exchange for smaller number of masks and hence
lower memory footprint.

Definition 3: Class of masks.
Class ofp-masks, written asMp, is defined as the set of all
masks that have exactlyp non zero divisions. To be able to
generate this class, the number of divisionsk should be at
leastr + p. To createp-masks, we start from all direct masks
derived from members of∆, and using Lemma 1, Lemma 2
and mask assimilation procedure will reduce them until all

the remaining masks arep-masks.

Theorem 2:For constant values ofr, the number of masks
present in the setMp is bound by a polynomial function ofp.

Proof: Consider a read/pattern pair whose edit distance
is within r and divided intor + p divisions. Thep non-zero
divisions in the mask can be chosen from ther + p divisions
in

(

r+p
p

)

different ways. For every such combination, each
of the remainingr divisions have a disagreement that could
either be an insertion or a deletion or a mismatch. There are
a maximum of3r different ways in which the disagreements
could be ordered. Hence the total number of possible masks
is bounded by3r ×

(

p+r

p

)

. As
(

p+r

p

)

≤ ( (r+p)·e
r

)r, wheree is
the base of natural logarithms,|Mp| is O(pr).
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Fig. 3. Application of Shifted Masks: In this figure we show how shifted
masks are applied to a read/pattern pair. There is one insertion, one mismatch,
one deletion and one correct division in the sequences shownabove. The
pattern is masked with the shifted masks and saved into masked arrays. The
read is shifted for each mask and the value is matched with themasked pattern.

C. Probabilistic Analysis on the Pigeon Hole Filter

The genomic sequences contain highly correlated data,
therefore the probability of having two randomly similar
sequences in a reference genome is small. However in this
section we study how effectively the pigeon hole filter can



reduce the potential matches by rejecting the majority of
random sequences.

The Pigeonhole Filter’s rejection ratio is defined as the
ratio of the read/pattern pairs that it passes over the total
number of pairs it encounters as input, and is data dependent.
The rejection ratio is also related to the number of correct
divisions in each masked array. in this analysis, we seek to
formulate the probability of the random exact matches and the
expected number of random matches for the Human genome.
If a reference pattern sequence is a true match to a read, it will
pass the Pigeon hole Filter. However, there are also potential
random patterns which might pass.

Assume that the length of the sequences in question aren
and the total number of divisions arek = p+r. Without loss of
generality and for a simpler analysis we assume all divisions
are the same lengthl = n

k
, the probability of a random pattern

of lengthn havingp non-masked divisions exactly matching
their counterparts in the read is:

Pm =

(

k

p

)

(
1

4
)l·(p)

For a givenr, Pm changes drastically with different value of
p. For example, ifn = 30, r = 2, p = 1, then

Pm =

(

3

2

)

(
1

4
)
⌈
30

3
⌉·(1)

= 3 · (
1

4
)10

Therefore for a given read and assuming that the allNp ≈ 3×
109patterns in the genome reference sequence are completely
random, the expected number of matched patterns would be:

Exp(random matches) = Np · Pm ≈ 8583

We can see that there are a lot of random exact matches when
p = 1. However, ifp is set to 2,

Pm =

(

4

2

)

(
1

4
)
⌈
30

4
⌉·(2)

= 6 · (
1

4
)16

and the expected number of matched sequences is reduced to

Exp(random matches) = Lh · Pm ≈ 4.19

Therefore we see that by using proper settings for pigeon
hole filter, the majority of the random matched sequences are
filtered out, saving a large number of unnecessary computation
in the Post-Filter processing. In a following section we will
show how the filter’s rejection ratio responds to the changes
of p when using real data.

IV. POST-FILTER SEQUENCEMATCHING

Once the input patterns are filtered for the reads and a set of
potential matching patterns are found, we need to do a more
thorough analysis and find out the exact number of insertions,
deletions and mismatches. In other words, the filter might have
passed a number of masked pattern/read pairs whose number
of disagreements are more than the required threshold, which
can happen if more than one disagreements occurred in one
divisions. In the post-filter phase, the exact number of gapsand

mismatches is identified and the run-away cases are rejected.
While weeding out the impossible matches, the filter has an
interesting side effect as well. It in fact puts structure onan
unstructured data set. Having a structured set of data past the
filter enables us to look into data-parallel SIMD accelerators
as possible candidates to perform the heavy processing work.
In our implementation we decided to leverage the massive
parallelism potential of GPU accelerators, which we will talk
about in detail in a later section.

The best known way to accurately determine the edit
distance of two sequences is through dynamic programming.
To find the best alignment of the two sequences, we need
to perform global alignment. A general global alignment
technique is the Needleman-Wunsch algorithm [7], which was
the first application of dynamic programming to biological
sequence comparison. There have been other variations of the
dynamic programming solutions in literature [8], [9]. In [7] to
find the alignment of two strings A and B, a two-dimensional
matrix is allocated. As the algorithm progresses, the(i, j)’th
entry of the matrix will be assigned to be the optimal score
for the alignment of the firsti characters in A and the first
j characters in B. This value will be computed based on the
i’th character in A, thej’th character in B and the alignment
scores at(i−1, j−1), (i, j−1) and(i−1, j) which are already
computed and stored in the matrix. The algorithm also keeps
track of how the maximum alignment was selected for each
cell (up, left or diagonal) and stores them in a second shadow
matrix. Once the matrices are computed, the bottom right hand
corner of the matrix will contain the maximum score for any
alignments. To compute which alignment actually gives this
score, we start from the bottom right cell, follow the directions
stored in the second matrix to construct the alignment.

The runtime and memory requirement of [7] are both
O(m ·n). This rather high memory usage makes it unsuitable
for the SIMD cores of a GPU, since the amount of fast shared
memory per computing core is quite limited. There are other
variations of [7] based on the longest common subsequence
(LCS) implementation presented in [8], where they try to
reduce the memory usage. In [8], the regular dynamic pro-
gramming LCS problem is mixed with a divide and conquer
strategy, based on the principle of optimality, to reduce the
memory footprint of the algorithm toO(min(m, n)) while
the run-time stays in the same order ofO(m · n). In practice
this algorithm requires about an order of magnitude more
computation, however the algorithmic order remains the same.

A variation of [8] has been proposed in a slightly different
way in [9], and our work is a variation of this algorithm. In
[9] the matrix is divided into 4 quadrants. The pivot point
for division can be conveniently placed on the center of
the matrix, although there is no theoretical obligation to do
so. The algorithm takes a divide and conquer approach and
divides each quadrant until the point that the alignment in
each quadrant becomes ‘trivial’.

To find the alignment inside a quadrant the algorithm only
needs the left and top boundaries of the quadrant, as well
the corresponding subsets of the original strings. Note that
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Fig. 4. Accurate alignment computation in the GPU. A) The first pass of the algorithm keeps only two active rows of the alignment matrix while scanning
it from top to bottom. During this scanning pass, it computesthe boundary values of the smaller trivial quadrants for later access by the second pass of the
algorithm, shown as shadowed cells in (B). B) The second passof the algorithm relies on the boundary values calculated inthe previous pass. Having these
values ready for each quadrant, we can start from the last quadrant and compute the inner values using a simple Needleman-Wunch dynamic programming
variant. We then start tracking back from the last element ofthe matrix and follow the directions to find the exit cell, denoted by letter ‘X’. (C) Keeping
a record of the trace-back so far, it is continued in a new quadrant using the exit value of the previous quadrant. (D) The algorithm finally exits the larger
alignment matrix through a quadrant either on the left edge or top edge of the alignment matrix.

as long as the boundaries are the only goal, they can be
computed using a simplified form of [7] that only keeps
two consecutive rows of the matrix for storage space, using
Θ(2 ·m) memory. Therefore, the algorithm calls the boundary
calculation function for each trivial quadrant and finds the
optimal alignment in that quadrant. Then it does the back-
tracing, following the ‘directions’ and finds where the global
alignment path exits this specific quadrant. It then passes the
exit point as entrance point to the next quadrant.

Our algorithm is an adaptation of [9], in which the recur-
sions are replaced with loops. Our implementation is however
hand-tuned for best performance on current generation GPUs.
Starting with an analysis on the available resources of the
GPU to maximize its utilization, we find the size of a ‘trivial’
quadrant, which in our current implementation is set to 4 by
4. As such, we divide the large matrix required for global
alignment into 64 quadrants, numbered from(0, 0) to (7, 7)
based on their location in the alignment matrix. The trivial
quadrant problem is solved with a dynamic programming
variation of [7] in Θ(m

4 ·
n
4 ) run time andΘ(m

4 ·
n
4 ) memory.

Similar to [9], the first step to process a trivial quadrant is
to compute its top and left boundaries. As depicted in part(A)
of figure 4, each time the boundaries of a trivial quadrant is
required a pass on the alignment matrix is performed and the
required boundaries are passed along for the trivial quadrant
calculation. The memory requirement for this pass is twice the
size of each sequence.

The next pass of the algorithm starts from quadrant(7, 7).
In this pass, the entrance point of the trace-back route is set to
the last element of this quadrant, which is also the last element
of the larger alignment matrix. From here, after calculation of
the alignment in this trivial quadrant using the pre-computed
boundary values, the exit point on the trace-back path is found
in another quadrant. This new quadrant is either on the left,
top or top left of the previous quadrant, as the alignment trace-
back route is monotonically increasing from bottom right of
the alignment matrix to its top left. This pass of the algorithm

is depicted in parts(B), (C) and(D) of figure 4 (albeit shown
for a simpler case).

A. Final Phase

In the last phase, the program creates a list of pattern
locations (chromosomeid:index into chromosome) into the
genome that approximately match (within the allowed limits)
each original read, along with the number of mismatches found
in that particular approximate match. The output is generated
using the SAM format, including correct CIGAR strings for
easy verification. Because the masks are distributed acrossa
cluster, it is possible that a truly matching patter/read pair are
identified in each machine they run in. Therefore duplicate
pattern/read matches will exist after the second phase across
the cluster. To consolidate the results a simple reducer is run
across the cluster that unifies the results and writes them to
disks.

V. I MPLEMENTATION

We implemented the proposed algorithm on a cluster of
GPU-enabled computers. The open source Hadoop project,
an implementation of the MapReduce programming paradigm,
was selected. To be able to run Hadoop on the target cluster
which is mainly configured for batch jobs, we utilized a
special Hadoop virtual provisioning system called ‘Hadoopon
Demand’ (HOD), that uses the Torque resource manager to do
node allocation. On the allocated nodes, it can start Hadoop
Map/Reduce and HDFS daemons. Once in Hadoop, we use
‘Hadoop streaming’, which lets the programmer to write two
program, one for “map” and another to act as “reduce”, in
a language of his choice and provide the binary files to the
framework to be executed in a distributed manner. The input
stream is still provided by the framework, and each program’s
output to the standard-out will be parsed by the framework
as either intermediate key/value pairs in case of the mapper
or the final results ready to be written on the disk for the
case of the reducer. The choice of Hadoop streaming was



mandatory to allow integration with the CUDA framework for
GPGPU programming. The whole program is implemented
and evaluated on the NCSA’s AC cluster, consisting of 32
nodes. Each node has Two dual-core 2.4 GHz AMD Opterons,
8 GB of memory and one NVIDIA Tesla S1070 containing 4
GT200 GPUs, each with 4 GB of memory.

A. Distributed Filtering

The central key to implementing the distributed filtering
scheme is to find the right set of masks and distribute them
across the computing nodes of the cluster. Once the masks are
found, each ‘mapper’ program creates its corresponding setof
masked arrays in the memory and starts processing through
the reads one by one. If any read after being masked (and
shifted in the process) can be matched in a masked array, it
will be inserted in a buffer along with the matching pattern
for further processing. Because GPUs are take a considerable
time to start processing a computing job, it is not efficient to
send a matching pair to it as soon as they are found, hence the
buffering. In our current implementation the buffer can contain
2 million pairs before being dispatched to the GPU.

B. Post-Filter Sequence Matching

The implementation of the algorithm described in section IV
involved many optimizations required to reduce the memory
usage of each thread. Since the amount of computation per
each data input (and eventually output) is quite considerable,
the computation is not memory bound, therefore we thrive
to increase the utilization of the GPU to maximize the per-
formance of this algorithm. We can calculate the maximum
amount of register and shared memory available to the pro-
gram for each thread for a certain device occupancy. Balancing
the resources and the occupancy proved to be a challenging
optimization task. Eventually we managed to balance the
occupancy and requirements in a way that the device works
at 62.5% occupancy, while each thread uses 25 registers
and 15 bytes of shared memory. With more optimization
we can theoretically increase the device occupancy to100%
by reducing the register usage to 16 registers. However we
decided to stop optimizing the program at62.5% occupancy
since it was already in a balance with our Distributed masked
filtering implementation.

VI. EVALUATION

We evaluated the system on the NCSA AC cluster, using
a set of 7 million reads containing 30 nucleotides each,
and processed them against the NC123456 Genomic Mixed
human genome sequence reference, which contains around
3 billion nucleotides within 21 chromosomes. This section
describes the evaluation results.

A. Distributed Filtering

As mentioned earlier, the total number of masks has a
polynomial relationship to the number of correct divisionsin
the filter. Increasing the number of correct divisions for a fixed
number of mismatches increases the accuracy of filtering. In

the limit, if we set (p + r) = n, we can surely know that
this pattern should be an acceptable pattern, and the exact
location of the mismatches will also be known if any division
has at most one disagreement. However, increasing the number
of divisions increases the computational power and memory
requirements for the fine grained matching. Therefore we need
to find an acceptable tradeoff based on how much processing
power and memory is available, and let the second phase of
computation pick the correct set of matches out of the potential
acceptable results passed by the filter (which will surely have
false positives).

Table I shows the total number of masks for a select number
of configurations. For a constant edit distance, the total number
of masks is small enough to run the whole distributed filter
on our 32-node cluster.

TABLE I
NUMBER OF UNIQUE MASKS REQUIRED

Mismatches Ins Dels Correct Divisions Unique masks

1 1 1 1 10
1 1 1 2 40
1 1 1 3 104
1 1 1 4 215
1 1 1 5 386
2 2 2 1 31
2 2 2 2 346

Table II depicts the efficiency of the filter in a few config-
urations which we experimented with.

TABLE II
PERCENTAGE OF PROBES THAT PASS EACH FILTER

Filter Passed Percent Avg. number of patterns matched Mask used

85.38 13.6 1-1-1-2
13.39 21.38 1-1-1-3
2.84 46.66 1-1-1-4

To measure the effectiveness of our GPU implementation
against a traditional CPU, figure 5 shows the runtime on a
CPU, GPU 1 dimensional block and GPU 2 dimensional grid.

VII. R ELATED WORK

Due to the rapid development of next generation sequencing
technology, billions of sequence data is generated every day.
One of the fundamental problems is to map the massive
amount of short sequences to the genome. Sequence alignment
is the process of scanning a reference genome for matches to
a small subsequence or read. This poses a great challenge
to the Bioinformatics community to develop algorithms that
can align large number of short sequences to the genomes
in an efficient way. To address this problem, a number of
several algorithms have been developed. They can be classified
as a variation of two fundamental technologies for short-
read sequence alignment: (1) Seed and Extend; (2) Burrows
Wheeler transform (BWT)-based methods.



Fig. 5. Runtime on CPU vs GPU

Several tools identify the exact matching seeds and then
extend to the final results. ELAND[2], RMAP[10], ZOOM
[?] and SeqMap[3] index the reads, while SOAP[4], BFAST
and MOSAIK index the whole genome at the expense of
more memory usage. ZOOM[11] builds a hash table of the
reads using the spaced seeds in which 1s represent matching
positions and 0s representing irrelevant positions. A new
generation of BWT-based approaches, including BOWTIE,
BWA [6] and SOAP2, have gained much attention recently.
They are built on the compressed suffix array data structure
call FM index, which has two advantages: First, it can do
subsequence search very efficiently – the runtime performance
of these methods usually outperforms other methods by 10
folds. Secondly, the final index for the human genome only
requires about 2.3 GB in size, which make it possible to store
the whole index of a big genome in main memory.

Although these algorithms are effective to the short se-
quence mapping. They are all designed to be run in a single
process, or a naive multithreading model in a multi-processor
machine. As the scale of data increases, parallel algorithms
designed to run on multiple machines become promising. To
the best of our knowledge, CloudBurst [12] and Crossbow[?]
are the only two program using the MapReduce framework to
parallelize the short sequence alignment. However, CloudBurst
requires a huge amout of disk space in the Reduce phase.
Also, it takes a long time to generate the outputs, since a
large number of intermediate results are generated. Although
Crossbow [?] runs faster, it aims at finding Single Neucleotide
Polymorphism by employing a naive implementation with the
Hadoop framework on top of the Bowtie algorithm.

Our research is also related to the sensitive pair-wise
alignment problem which has been previously addressed us-
ing global and local alignment techniques. For example, the
Needleman-Wunsch algorithm [7] is a general global align-

ment technique which is based on dynamic programming,
with computational complexity ofO(m · n), where m and
n is the length of the two sequences respectively. On the
other hand, the Smith-Waterman[13] algorithm is a general
local alignment method addressing the problem of finding
local similarity segments in two dissimilar sequences. This
algorithm is also based on dynamic programming with time
complexity ofO(m · n).

Recently, GPU computation techniques are employed to
speed up the local and global pair-wise alignment methods.
For example, MummerGPU [14], [15] uses suffix tree based
algorithm on GPUs and provide 13x performance speedup.
Striemer et al. [16] implement the Smith-Waterman algorithm
for local alignment on GPUs and achieve a 23x speedup. Liu
et al. [17] tackled the problem of protein similarity using bio-
sequence database scanning on GPUs implementing the Smith-
Waterman algorithm.

VIII. C ONCLUDING REMARKS AND FUTURE WORK

With the growing importance of Next Generation Sequenc-
ing technologies, fast sequence query systems are necessary to
handle the growing volume of information collected. Unlike
existing bioinformatics tools which use imprecise alignment
algorithms to achieve satisfactory speed, we introduce a novel
2 phase algorithm that performs accurate sequence alignment
by distributing filtering using the pigeonhole principle and a
cluster of GPUs.
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