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Developing a Monte Carlo Simulation for
Time-Series Analysis of 225Ac Decay

April 19, 2016

1 Introduction

The goal of this simulation is to develop a new method by which one may
determine the equilibrium ratios of isotopes in a single radioactive decay chain
over time. In a radioactive decay chain, it is most common for isotopes to be
produced at a different rate than they are decaying. Radioactive equilibrium
occurs when the rate at which an isotope is being produced (the parent ac-
tivity) is the same as the rate at which the isotope is decaying (the daughter
activity) [4]. Studying the parent-to-daughter ratios at radioactive equilibrium
has applications in several areas of physics. For example, in medical physics,
radioactive substances are used for imaging purposes, as many radioactive de-
cays produce photons [5]. In order to draw conclusions from the detected light
at any point in time, understanding the long-term behavior of the decay and
isotope ratios is crucial. Equilibrium can also be used in radioactive dating
techniques. Naturally occurring isotopes, that should be in equilibrium but
are not, were separated from the original substance by physical or chemical
processes; the age of these fragmented isotopes can be determined by how
much the isotope has restored equilibrium.

There are a few methods that can be used to determine the equilibrium ra-
tios of isotopes in a decay chain. This can be accomplished mathematically
by solving a system of first-order linear differential equations. However, to
understand ratios between isotopes that are several elements down the decay
chain, the derivation of the equation can be cumbersome and take a substan-
tial amount of time. In addition, the resultant equation may be such that it
is difficult to ascertain information about the long term behavior of the decay.
I sought to instead develop a script using the programming language Python
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that would simulate radioactive decay over time using Monte Carlo methods,
taking advantage of the probabilistic nature of radioactive decay.

2 Deriving the Equilibrium Ratios of Radioac-

tive Isotopes Mathematically

The long term behavior of the radioactive decay can be mathematically derived
by solving a system of first-order linear differential equations. A differential
equation is an equation that relates a function to it’s derivatives [1].The change
in amount of a daughter isotope at a given time is dependent on the amount
of the parent isotope at that same time. Therefore, the function describing
the rate of change in the daughter isotope is a differential equation dependent
on the function describing the parent isotope.

Isotopes decay at a rate directly proportional to the amount present,

dP (t)

dt
= −aP (t), (1)

where P (t) refers to the amount of isotope over time, t, and a refers to a
proportionality constant. Equation 1 is an example of a differential equation.
Solving this differential equation for P (t),

P (t) = P (0)e−at, (2)

where P (0) refers to the initial amount of the isotope. The proportionality
constant a can be determined by mathematically interpreting the half-life of
radioactive isotopes. All radioactive isotopes have a quantitative property
known as a half-life, τ , such that

P (nτ) = .5nP (0), (3)

where n is a positive integer. By substituting τ and .5P (0) for t and P (t) in
Equation 2, the constant a is equal to

a =
ln(2)

τ
. (4)
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This gives a final form for the function describing the present amount of a
radioactive isotope at a given time,

P (t) = P (0)e−
t ln(2)
τ . (5)

In order to understand the ratio of parent isotope to daughter isotope over
time, it is necessary to derive a function describing the amount of a daughter
isotope over time, D(t). If the daughter isotope is stable, then the change
in amount of the daughter isotope over time is equal to the change in the
amount of the parent isotope over time, and D(t) = P (0)− P (t). However, if
the daughter isotope is not stable, both the decay of the parent isotope and
the decay of the daughter isotope must be taken into account. This yields the
differential equation

dD(t)

dt
= − ln(2)

τD
D(t) +

ln(2)

τP
P (t). (6)

This differential equation can be solved to return

D(t) =
P (0)τD
τP − τD

(
e

−t
τP − e

−t
τD

)
. (7)

Equation 7 is the final equation describing the present amount of an unstable
daughter isotope at any point in time. However, in this form, analysis of the
equilibrium behavior is difficult. If t is allowed to approach infinity, the final
amount of the daughter isotope goes to zero, as expected.

For some decays, approximations can be made that simplify Equation 7 and
allow us to glean information about the equilibrium state. One such decay is
the beta decay by which 90Sr decays into 90Y. For this particular decay, a few
approximations can be made based on the following assumptions:

1. τY � τSr

2. τY � t

The first proposition states that the half-life of 90Y, approximately 64 hours,
is far less than the half-life of 90Sr, approximately 28 years [6]. Because of this,
the approximation τY − τSr ≈ τP can be made, which simplifies Equation 7 to
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Y (t) =
Sr(0)τY
τSr

(
e

−t
τSr − e

−t
τY

)
. (8)

The second proposition, that the amount of time past is greater than the half-

life of 90Y, allows us to say that as the time increases, the value e
−t
τY goes to

zero, while e
−t
τSr does not. This further simplifies Equation 8 to a final form of

Y (t) =
Sr(0)τY
τSr

e
−t
τSr . (9)

Notice that this expression contains Equation 5, the function for Sr(t). Sub-
stituting in Sr(t) and performing a little algebra, the proportion

Sr(t)

Y (t)
=
τSr
τY
, (10)

is obtained. This expression directly gives us the equilibrium ratio of 90Sr to
90Y over time. In order to get such a distinct and clear solution, approxima-
tions must be made that are reliant on a Strontium-90 decay. While many
decay chains can make the same approximation, the majority cannot. In ad-
dition, understanding the equilibrium ratio of a parent isotope to the eighth
isotope down the decay chain would require a time consuming calculation and
most likely yield an equation that is impractical to try to analyze.

3 Monte Carlo Methods

Because deriving an equation to analyze the equilibrium ratios of a decay-
ing isotope over time is time consuming and not always illustrative, I sought
an alternative method in the form of simulation. Our simulation relies on
Monte Carlo methods to model the decay of radioactive isotopes. A Monte
Carlo method refers to any algorithm that relies on drawing from a random
distribution to obtain numerical results [2]. The produced random numbers
simulate a physical process and information about the process is inferred from
the results. This approach works best for probabilistic processes, such as ra-
dioactive decay. While half of the atoms of a radioactive substance will decay
after one half-life, individual atoms may decay much earlier or much later than
one half-life. The time at which an individual atom decays is determined by
a random distribution dependent on the half-life of the isotope. Treating the
function in Equation 5 as a distribution, it is possible to randomly generate a
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decay time from said distribution. This would simulate the amount of time it
takes for a particular atom to decay into its daughter isotope.

4 Development of Simulation to Model Ra-

dioactive Decay

4.1 Inputs

In order to implement the Monte Carlo approach for determining equilibrium
ratios, I developed a programmed script that simulates the decay of N atoms
of a single isotope to a stable isotope in the decay chain. To do this, I used
Python: a high-level, object oriented programming language[7]. The script
takes an input of a CSV file containing information on the half-life and daugh-
ters of an isotope. For our purposes, I used only the information for the 225Ac
decay chain, obtained from the LBNL Nuclear Data Search [6]. The script also
requires arguments for the number of atoms of the original isotope (in this case
225Ac) and resolution information for the resultant plot. The script outputs a
stacked histogram illustrating the amounts of each isotope in the decay chain
over a period of time. The combined height of all isotope histograms is equal
to the amount of atoms originally specified in the argument and the resolution
of the plot is determined by the width of the bins.

4.2 Overview of Algorithms

After reading in the CSV file, the program will generate a number of objects
from the Atom Class equal to the atom_count argument provided upon run-
ning. Objects of the Atom Class contain variables storing the isotope name,
half-life, daughter produced by alpha decay, daughter produced by beta decay,
probability of alpha decay, and probability of beta decay. The Atom Class also
contains one key method that utilizes a Monte Carlo approach by generating
the time of the next decay based on the aforementioned distribution. This
process is illustrated in Figure 4.2.1. The method also determines whether
or not the object decays into it’s alpha-daughter or beta-daughter, using a
uniform distribution. A random number is chosen from a uniform distribution
between 0 and 1; if the chosen number is less than the probability that an
alpha decay occurs, then the isotope is changed to the alpha daughter. Else,
the isotope is changed to the beta daughter. This method does not take into
account other types of decay, but the probability of a decay in the 225Ac chain
that is not alpha or beta is negligible.

5

Wood: Simulation for Time-Series Analysis of Actinium-225

Published by Opus: Research & Creativity at IPFW, 2014 5

Wood: Developing a Monte Carlo Simulation for Time- Series Analysis of

Published by Digital Showcase @ University of Lynchburg, 2014



Figure 4.2.1: Decay of One Object of the Atom Class

Instance of
Atom (225Ac)

Decay time
from random
distribution

Alpha/Beta
status from

uniform
distribution

Update
Atom Isotope
Information

Is the new
isotope
stable?

No; Store
the decay

time and new
isotope name

together
in a list

Yes; BREAK

Each Atom object created by the script undergoes a full “decay” into the
stable isotope. The time of decay at each stage is recorded in a list unique
to each object, called the “tracking list”. These lists are eventually used to
fill the bins of the final output histogram. First, for each isotope in the decay
chain, there is a Pandas DataFrame row with number of elements E, which
is default 50. Pandas is a python package used for data analysis, while the
DataFrame is one of the data structures available through the Pandas library
[8]. Each element of the row represents a period of time corresponding to the
bin width of the final histogram and initially contains a value of zero. For
example, if the bin width of the histogram was 30 seconds, the first element of
each row represents the time interval from 0 seconds to 30 seconds. Likewise,
the second element represents 30 seconds to 60 seconds. The number of bins
E multiplied by the bin width returns the full time-interval represented in the
histogram. Figure 4.2.2 illustrates how each tracking list is used to fill the
DataFrame.

Figure 4.2.2: Filling the Bins for One Atom

6

Journal of the Advanced Undergraduate Physics Laboratory Investigation, Vol. 2 [2014], Iss. 1, Art. 2

http://opus.ipfw.edu/jaupli/vol2/iss1/2 6

The Journal of Advanced Undergraduate Physics Laboratory Investigations, JAUPLI-B, Vol. 3 [2014], Art. 2

https://digitalshowcase.lynchburg.edu/jaupli-b/vol3/iss1/2



Get first
element of
tracking

list (Isotope
Name)

Consider
DataFrame
row associ-
ated with

isotope type

Check Bin:
Is the decay
time within

this bin?

No; Increase
the value
of this bin
by one and

move to
next bin

Yes; Is this
the stable
isotope?

Yes; BREAK

No; Move
on to next
isotope in

tracking list

4.3 Output

Once all tracking lists have been used, the resulting DataFrame contains the
information needed to create histograms representing the amount present of
each isotope over time. A histogram is created for each isotope, then all his-
togram are stacked one atop the other to ensure the total number of atoms
remains constant.

Figure 1 displays an example of what is output by the script, after feeding
through the information for a 90Sr decay to compare to the earlier derived
equations. The thin blue line separating the white 90Zr and green 90Sr illus-
trates the amount of 90Y present. The amount of 90Y present at any given
time agrees with our expected ratio of 90Sr to 90Y of about 3942:1.

4.4 Challenges

The chosen method of displaying the simulated information poses a few chal-
lenges. First, because some isotopes in both the 225Ac and 90Sr decay chains
have vastly larger half-lives than others, the isotopes with smaller half-lives
are difficult to accurately represent visually. This can be seen in Figure 1.
Analytically, I account for the smaller half-lives with “partial binning”, a pro-
cess done when filling the bins. If an atom decays into a particular isotope,
then decays into its daughter during the same bin, the bin is filled with only a
fraction of an atom, proportional to the amount of time it spent in that state.
This provides more accurate values for the amount of a given isotope at any
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Figure 1: Atoms Present Over Time in the Decay of 90Sr.An example
output histogram, using the Sr-90 chain for ease of comparison to earlier equa-
tions. The atom count was 100 atoms and the bin size was 100000 seconds,
spanning an interval of 5000000 seconds.
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point in time.

5 Evaluation of Results

5.1 Comparison Between Methods

Comparing the mathematical calculation to the Monte Carlo simulation, the
Monte Carlo simulation can provide both a visual representation of the long-
term behavior and specific values for the present amounts of isotopes. The
simulation provides a more realistic view of the phenomenon. The mathemat-
ical approach is the perfect method for deriving theoretical equations and ideal
values. However, in nature, the behavior of the system has more irregularity
than can be accounted for in an equation. The probabilistic Monte Carlo ap-
proach more closely models the true behavior of a radioactive decay chain in
that it allows room for reasonable irregularity in the results.

5.2 Continuing Research

The Monte Carlo approach better suits the plans for continued work with this
decay chain as well. As previously mentioned, understanding the equilibrium
behavior of isotopes in a radioactive decay chain is important in imaging for
medicine. For decay chains that produce light, understanding the ratios of
specific isotopes over time is important in determining what the measured
values of light correspond to. Continued work on this project will incorporate
the production of Cerenkov light, which is produced when a charged particle
passes through a medium faster than the speed of light in that medium [3]. By
simulating the production of Cerenkov light for the Actinium-225 decay chain
as well as other medically relevant decay chains, the script will contribute to
the vast body of knowledge utilized in progressing cancer treatment research.
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“DecayChainPlotting.py”

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#SETUP ∗∗∗∗∗∗∗∗ I n i t i a l Module Imports :
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

import random
from math import exp , l og
import matp lo t l i b . pyplot as p l t
import numpy . random as np
import numpy as npy
import c o l o r s y s
import pylab as P
import pandas as pd

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#SETUP ∗∗∗∗∗∗∗∗ ACCESSING THE DATA ON THE ISOTOPE DECAY CHAIN:
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

#Opens the Decay Chain f i l e
f = open( ”DecayChains . csv ” , ” r ” )

#Reads the l i n e s o f the f i l e i n t o a l i s t , wi th each i s o t o p e s ’ s
in format ion

#be ing an element in the l i s t
DecayChain List = f . r e a d l i n e s ( )
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#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#SETUP ∗∗∗∗∗∗∗∗ MODIFYING THE DATA TO A USABLE FORM:
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

#Takes out the new l i n e charac t e r in each element o f the
DecayChain List

#Ex . [ ’ Ac225 in format ion ’ , ’ Fr221 in format ion ’ , . . . , ’ Tl205
in format ion ’ ]

DecayChain List = [ item . s t r i p ( ”\n” ) for item in DecayChain List ]

#Makes each element o f the DecayChain List i t s own l i s t w i th in the
o r i g i n a l l i s t

#Ex . [ [ ’ Ac225 ’ , ’ some in f o ’ , ’more i n f o ’ ] , [ ’ Fr221 ’ , ’ some in f o ’ , ’more
i n f o ’ ] . . . ]

DecayChain List = [ item . s p l i t ( ” , ” ) for item in DecayChain List ]

#Prompts f o r f i r s t i s o t o p e o f the Decay Chain
i s o t o p e i n i t i a l = ’ Sr090 ’#input (” F i r s t I so tope o f Chain : \n”)
#Prompts f o r s imu la ted number o f atoms to work wi th
atom count = 100#in t ( input (”Number o f Atoms : \n”) )

#Prompts f o r d e s i r ed width o f p l o t b in
bin width = 100000#f l o a t ( input (”Bin width in minutes : \n”) )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#SIMULATION ∗∗∗∗∗∗∗∗ DEFINITION OF ATOM CLASS:
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

class Atom :
def i n i t ( s e l f ) :

”””Creates atom with i n i t i a l i s o t o p e s t a t u s . ”””
#Loops through the Decay Chain L i s t to f i nd the i s o t op e

s p e c i f i e d p r i o r
for idx in range ( len ( DecayChain List ) ) :

i f DecayChain List [ idx ] [ 0 ] == i s o t o p e i n i t i a l :
i d x i n i t = idx

#Creates c l a s s−g l o b a l v a r i a b l e s based on the i n i t i a l
i s o t o p e ’ s data :

#Iso tope Type − S t r ing
s e l f . i s o t ope = DecayChain List [ i d x i n i t ] [ 0 ]
#Probab i l t y t h a t i t w i l l decay a lpha − Float
s e l f . a lpha prob = f loat ( DecayChain List [ i d x i n i t ] [ 1 ] )
#Probab i l t y t h a t i t w i l l decay be ta − Float
s e l f . beta prob = f loat ( DecayChain List [ i d x i n i t ] [ 2 ] )
#Resu l t i ng i s o t o p e o f a lpha decay − S t r ing
s e l f . a lpha daughter = DecayChain List [ i d x i n i t ] [ 3 ]
#Resu l t i ng i s o t o p e o f be ta decay − S t r ing
s e l f . beta daughter = DecayChain List [ i d x i n i t ] [ 4 ]
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#Iso tope H a l f l i f e − Float
s e l f . h a l f l i f e = f loat ( DecayChain List [ i d x i n i t ] [ 5 ] )
#Creates the ”Time Tracker” l i s t to s t o r e the decay−

i s o t o p e pa i r s f o r
#each atom
s e l f . t imet racke r = [ [ 0 , s e l f . i s o t op e ] ]

def decay once ( s e l f ) :
””” Simula tes one ins tance o f decay o f a s i n g l e atom . ”””
#Determines the p r o b a b i l t y va lue a s s o c i a t e d wi th the time

o f decay

t = np . exponent i a l ( s e l f . h a l f l i f e / l og (2 ) )
#Determines new i s o t o p e type and updates o b j e c t

in format ion acco rd ing l y
s e l f . abcheck ( )
#Creates a temporary l i s t con ta in ing decay time and new

i s o t op e type
t emp l i s t = [ t , s e l f . i s o t op e ]
#Appends the temporary l i s t to the l a r g e r ”Time Tracker”

l i s t t h a t
#s t o r e s a l l method−generated data f o r the o b j e c t ’ s decay
s e l f . t imet racke r . append ( t emp l i s t )

def abcheck ( s e l f ) :
”””Determines the new i s o t o p e type and updates atom

informat ion
acco rd ing l y . ”””
#Chooses random p r o b a b i l t y from a uniform d i s t r i b u t i o n
r1 = random . random ( )
#Determines whether the i s o t o p e underwent a lpha or be ta

decay
i f r1 < s e l f . a lpha prob :

#In the case o f a lpha decay
i s o t op e nex t = s e l f . a lpha daughter

else :
#In the case o f be ta decay
i s o t op e nex t = s e l f . beta daughter

#Updates the i s o t op e in format ion based on what i t decayed
in t o

for idx in range ( len ( DecayChain List ) ) :
i f DecayChain List [ idx ] [ 0 ] == i s o t ope nex t :

idx next = idx
s e l f . i s o t ope = DecayChain List [ idx next ] [ 0 ]
s e l f . a lpha prob = f loat ( DecayChain List [ idx next

] [ 1 ] )
s e l f . beta prob = f loat ( DecayChain List [ idx next

] [ 2 ] )
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s e l f . a lpha daughter = DecayChain List [ idx next ] [ 3 ]
s e l f . beta daughter = DecayChain List [ idx next ] [ 4 ]
s e l f . h a l f l i f e = f loat ( DecayChain List [ idx next

] [ 5 ] )

def d e c a y f u l l ( s e l f ) :
””” Simula tes the f u l l decay to s t a b l e o f an i n d i v i d u a l

atom . ”””
#Decays u n t i l t he atom i s s t a b l e
while s e l f . h a l f l i f e != 0 :

s e l f . decay once ( )
#Adjus ts the time to be cont inuous as d i f f e r e n t i s o t o p e

t ype s decay
for set in range (1 , len ( s e l f . t imet racke r ) ) :

s e l f . t imet racke r [ set ] [0 ]+= s e l f . t imet racke r [ set −1 ] [ 0 ]
return s e l f . t imet racke r

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#SIMULATION ∗∗∗∗∗∗∗∗ PROCESSING THE SIMULATED DATA:
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

#Creation o f ”A l l L i s t s ” t ha t conta ins one l i s t f o r each i s o t o p e
in the chain

t ime in fo2 = [ ]
for atm in range ( atom count ) :

#Creates an o b j e c t o f the Atom c l a s s
atom = Atom( )
#Ret r i e v e s the o b j e c t ’ s ”Time Tracker” data
t ime in f o = atom . d e c a y f u l l ( )
t ime in fo2 . append ( t ime in f o )

Time = [ c∗bin width for c in range (100) ]
#actinium = [ 0 . 0 f o r c in range (100) ]
#francium = [0 . 0 f o r c in range (100) ]
#a s t a t i n e = [ 0 . 0 f o r c in range (100) ]
#bismuth213 = [ 0 . 0 f o r c in range (100) ]
#polonium = [ 0 . 0 f o r c in range (100) ]
#bismuth209 = [ 0 . 0 f o r c in range (100) ]
#tha l l i um205 = [ 0 . 0 f o r c in range (100) ]
#tha l l i um209 = [ 0 . 0 f o r c in range (100) ]
yttr ium90 = [ 0 . 0 for c in range (100) ]
s r90 = [ 0 . 0 for c in range (100) ]
zr90 = [ 0 . 0 for c in range (100) ]
l ead = [ 0 . 0 for c in range (100) ]
data = {#’Ac225 ’ : pd . Se r i e s ( actinium , index=Time) ,

#’Fr221 ’ : pd . Se r i e s ( francium , index=Time) ,
#’At217 ’ : pd . Se r i e s ( a s t a t i n e , index=Time) ,
#’Bi213 ’ : pd . S e r i e s ( bismuth213 , index=Time) ,
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#’Po213 ’ : pd . Se r i e s ( polonium , index=Time) ,
#’Pb209 ’ : pd . Se r i e s ( lead , index=Time) ,
#’Bi209 ’ : pd . S e r i e s ( bismuth209 , index=Time) ,
#’ Tl205 ’ : pd . Se r i e s ( tha l l ium205 , index=Time) ,
#’ Tl209 ’ : pd . Se r i e s ( tha l l ium209 , index=Time) ,
’ Sr090 ’ : pd . S e r i e s ( sr90 , index=Time) ,
’Y090 ’ : pd . S e r i e s ( yttrium90 , index=Time) ,
’ Zr090 ’ : pd . S e r i e s ( zr90 , index=Time) }

df = pd . DataFrame ( data )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
for t ime in f o in t ime in fo2 :

for pa i r in range ( len ( t ime in f o ) ) :
#Fi r s t Pair
i f pa i r == 0 :

#” i s o t op e ” i s s e t to be the f i r s t i s o t o p e
i s o t ope = t ime in f o [ 0 ] [ 1 ]
#”decaytime” i s s e t to be the f i r s t decay time
decaytime = t ime in f o [ 1 ] [ 0 ]
#”next ” i s s e t to be how much time the atom remains

in the next b in
next = decaytime%bin width
#”a” i s used to i t e r a t e through b in s
a=0.0
#I f i t decays w i th in the f i r s t b in
i f decaytime < bin width :

#Put a f r a c t i o n o f an atom in to the f i r s t b in
df [ i s o t op e ] [ 0 . 0 ] += f loat ( ( decaytime ) /

bin width )
#Populate wi th ones
else :

#whi l e a i s not the b in o f decay and we arent
out o f time

while a < decaytime−next and a < bin width ∗(
len ( df [ i s o t ope ] ) ) :
#Put a one in the b in
df [ i s o t op e ] [ a ] += 1 .0
#Increment a
a+=bin width

#Par t i a l Binning
i f a == decaytime−next :

d f [ i s o t op e ] [ a ] += f loat (next/ bin width )
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

#Last Pair
e l i f pa i r == len ( t ime in f o )−1:

i s o t ope = t ime in f o [ pa i r ] [ 1 ]
decaytime = t ime in f o [ pa i r ] [ 0 ]
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#Jump to l a s t used time
a=decaytime−decaytime%bin width
i f a<=bin width ∗( len ( df [ i s o t ope ] ) ) :

d f [ i s o t op e ] [ a ] += ( a+bin width−decaytime ) /
bin width

a+=bin width
while a!=bin width ∗( len ( df [ i s o t ope ] ) ) :

d f [ i s o t op e ] [ a ] += 1
a += bin width

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#Middle Pairs
else :

#” i s o t op e ” i s the current i s o t o p e
i s o t ope = t ime in f o [ pa i r ] [ 1 ]
#”decaytime1” i s the time the curren t i s o t o p e was

decayed in to
decaytime1 = f loat ( t ime in f o [ pa i r ] [ 0 ] )
#”decaytime2” i s the time the curren t i s o t o p e i s

decayed out o f
decaytime2 = f loat ( t ime in f o [ pa i r +1 ] [ 0 ] )
#f r a c t i o n o f curren t i s o t op e in l a s t b in
next1 = f loat ( decaytime1%bin width )
#f r a c t i o n o f curren t i s o t op e in next b in
next2 = f loat ( decaytime2%bin width )
#Jump to l a s t used time
a=decaytime1−next1
#In the case o f decay in /out same bin
i f a<bin width ∗( len ( df [ i s o t ope ] ) ) :

i f decaytime1−next1 == decaytime2−next2 :
df [ i s o t op e ] [ a ] += f loat ( ( decaytime2−

decaytime1 ) / bin width )
else :

d f [ i s o t op e ] [ a ] += 1.0− f loat ( ( next1 ) /
bin width )

a+=bin width
while a < decaytime2−next2 and a<

bin width ∗( len ( df [ i s o t ope ] ) ) :
d f [ i s o t op e ] [ a ] += f loat (1 )
a+=bin width

#Par t i a l Binning
i f a==decaytime2−next2 :

df [ i s o t op e ] [ a ] += f loat ( next2 /(
bin width ) )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#PLOTTING ∗∗∗∗∗∗∗∗
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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ax = df . p l o t ( kind=”bar” , s tacked=True , colormap = ”ocean” , sharex =
False )

ax . s e t x l a b e l ( ”Time in seconds , bin s i z e = 100000” )
ax . s e t y l a b e l ( ”Atom Count” )
p l t . show ( )
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