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Abstract. In this extended abstract, we address the problem of classify-
ing MRI images of different brain tumours to facilitate the development
of an automated system for early brain cancer detection. In particu-
lar, we adapt the convolutional neural network based on the AlexNet
architecture to develop a model that achieves a classification accuracy
of 97.5% on average on a real-world dataset containing MRI images of
healthy brains and three different kinds of tumours.
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1 Introduction

Brain cancer is a life-threatening disease, and a fast and accurate diagnosis could
be the difference between life and death. The diagnosis of brain cancer usually
involves manual segmentation and classification of brain tumours by doctors.
However, this is not always a fast process, especially in remote areas with a
limited number of doctors. A solution to this problem is to create an automatic
and accurate classification system that speeds up the process without human
intervention and allows patients to be diagnosed faster and receive appropri-
ate treatment more quickly. Automatic classification of a brain tumour is very
challenging because it involves extracting high-level features from the Magnetic
Resonance Imaging (MRI) images. Deep learning classification techniques are
being used for decision-making support in medicine [4]. Such methods include
Convolutional Neural Network (CNN) [3]. A CNN is a form of neural network
that uses convolutions to learn image patterns and perform pattern analysis
without requiring explicit feature extraction. One of the earliest CNN was the
pioneering LeNet by Yann LeCun et al. [3], used for Optical Character Recog-
nition (OCR). Following the success of the LeNet CNN in OCR, the method
has been adapted for many other medical applications including, X-ray image
classification [1]. This paper aims to build upon the success of CNN in medical
image analysis by adapting a CNN that is based on AlexNet architecture [2] for
accurate classification of a brain tumour in MRI scans.
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Fig. 1. Four samples of the MRI images used in this paper.

2 Methodology

2.1 Dataset Description and Preprocessing

The dataset used in this paper contains 7022 MRI images of the human brains,
categorised into four types of tumour groups: Glioma, Meningioma, Pituitary,
and No Tumour (healthy). To prepare the MRI images for our modelling process,
we cropped out parts of the images that are not informative and centred images
to maintain an aspect ratio of 1:1. We resize the centred images to 224x224 to
allow for a consistent input data size for the classification model. Because clas-
sical CNN requires large training data to generate a good model, we augmented
the image set by duplicating it four times. For each image in the image set, we
rotated it at an angle of 45, 90, -45, and -90 degrees, respectively. The dupli-
cated images were then merged with the original image set. We split the image
set into training and evaluation set on a ratio of 80:20, respectively. Figure 1
shows samples of the training set.

2.2 Classifier Modelling

The CNN developed in this paper is inspired by the AlexNet-like network [2].
In our design however, we modified the input layer to accept gray-scale images
instead of the intended RGB images. Because of the low spatial resolution of
the MRI images, a relatively high number of convolutional layers is required for
distinguishing the different brain tumours. Thus, we used the same number of
convolutional layers as in [2]. Figure 2 shows the proposed CNN model built for
the classification task in this work. The CNN architecture is defined sequentially
and is built layer by layer. The first layer is the input layer, which accepts the
input image defined as a 224 x 224 matrix. The next layer is the first convo-
lutional layer with 96 convolutional filters, a kernel size of 11x11, and a stride
of 4. Batch normalisation and a ReLU activation function are added before a
max-pooling layer of size 2x2 and stride of 2. The second convolutional layer has
256 convolutional filters, a kernel size of 5x5, and a stride set to 2. The batch
normalisation and a ReLU activation function are added before the max-pooling
layer. The third and fourth convolutional layers are identical, with both having
384 convolutional filters, a kernel size of 5x5, a stride of 1, batch normalisation,
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Fig. 2. A diagram of the CNN network, showing the pipeline from input to output
through the convolutional layer and the fully connected layer.

and a ReLU activation function. The fifth and last convolutional layer has a
filter size of 256, a kernel size of 3x3, and a stride of 1, with batch normalisation,
ReLU activation function, and max pooling. The outputs of the convolutional
layer are flattened and provided as input to the fully connected layer. The fully
connected layer begins with a dense layer with 4096 neurons, batch normalisa-
tion, and ReLU activation function, followed by a dropout that is set to 0.4.
The second and third layers are identical to the first connected layer, except the
third layer has 1000 neurons instead of 4096. The last layer is the output layer
which consists of a dense with 4 neurons: one for each of the four categories of
the brain tumour, a batch normalisation, and a soft-max activation function.

3 Experimentation and Preliminary Results

We implemented the proposed CNN model using Keras with Tensorflow; a col-
lection of machine learning libraries for the Python programming language. We
trained the CNN with a categorical cross-entropy loss function and the ’Adam’
optimiser with a learning rate of 0.001. We used the dataset described in sec-
tion 2.1 for the training and evaluating the model. Table 1 shows the results
of two experiments performed. We performed the first experiment (a) using the
CNN model trained with the augmented image data appended to the training
data. We conducted the second experiment (b) with the CNN model developed
without augmenting the training data. The CNN model trained in the first ex-
periment performed better with a classification accuracy of 97.5% compared to
that trained with only the original data that achieved 93.3% accuracy on the
evaluation dataset. Figure 3 shows a confusion matrix of the true labels of the
brain tumour compared to the predicted labels by the CNN model in Experiment
(a). The CNN model correctly predicted all the test MRI images for the glioma,
and obtained at least 97% accuracy for the other types of brain tumours. The
preliminary results are encouraging and show the effectiveness of the proposed
approach, nevertheless, there is a need for extensive simulations to further assess
the quality of the results (both in terms of accuracy and computational cost).
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Table 1. Classification accuracy for the two experiments conducted.

Experiment Setup Accuracy

(a) Experiment using both original data and image augmentation 0.975
(b) Experiment without using any image augmentation 0.933

Fig. 3. A confusion matrix of the brain tumour classification results of experiment (a).

References

1. Gomes, D., Lawal, I.A.: X-ray image classification using two-step densenet classifiers.
In: 14th PErvasive Technologies Related to Assistive Environments Conference. p.
550–555 (2021)

2. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet Classification with Deep Con-
volutional Neural Networks. In: Advances in Neural Information Processing Systems
(2012)

3. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W.,
Jackel, L.D.: Backpropagation Applied to Handwritten Zip Code Recognition. Neu-
ral Computation 1, 541–551 (1989)

4. Lundervold, A.S., Lundervold, A.: An overview of deep learning in medical imaging
focusing on mri. Zeitschrift für Medizinische Physik 29(2), 102–127 (2019)


