
QuickFeed on Programming Assignments

Hein Meling

University of Stavanger, 4036 Stavanger, Norway hein.meling@uis.no

1 Introduction

In the last decade, programming has become an increasingly important tool for
almost all science and engineering disciplines. To this end, programming exercises
have become an essential tool for students to learn the craft of programming and
apply, model, and evaluate other scientific techniques.

Unlike traditional assignments typically handed in on paper, programming
assignments hold the unique property that their content and correctness can be
evaluated automatically. This allows students to receive immediate feedback on
their assignments. Instead of waiting days, or even weeks for assignments to be
evaluated, students can receive feedback within minutes or even seconds. This
allows students to submit assignments repeatedly and rapidly discover and fix
their mistakes. Further, the feedback received from the automatic evaluation
is not limited to a simple pass/fail decision. This allows students to work in a
new manner, where instead of submitting an assignment once, they can repeat-
edly submit partial solutions and observe how their score improves. This helps
students to find mistakes early and provides motivation.

The goal of QuickFeed is to strengthen the learning outcomes for students in
programming courses with near-instantaneous feedback to students. The author
has led a multi-year effort to develop and maintain QuickFeed, a web-based
system for providing feedback on submitted code assignments. This poster aims
to summarize QuickFeed’s features and some of the technical solutions that
others may find interesting.

2 QuickFeed’s Approach

The University of Stavanger uses QuickFeed in six different courses. Figure 1
shows a screenshot of a small portion of QuickFeed’s teacher view. In the follow-
ing, we outline how students and teachers interact with QuickFeed.
How Students Interact With QuickFeed: To use QuickFeed, students must
sign up for an account via GitHub. Once students have signed up, they can access
programming assignments published by the teaching staff in a course. There
are two types of assignments, individual and group assignments. Students must
then try to solve the assignments within the deadline for each assignment. When
students submit a solution to an assignment, this solution is picked up by the
QuickFeed system, which runs a predefined set of solution checkers against the
submitted code, in order to validate its correctness, and to give a weighted score

2 H. Meling

Fig. 1: QuickFeed screenshots.

for the different checks and a total percentage score for the whole assignment.
Typically, a submission with a total score of 90 % is considered sufficient to pass
a given assignment. QuickFeed will display a textual description explaining what
the student’s code is expected to do if a check fails. This feedback usually arrives
in less than 30 seconds. Based on the feedback, students may revise their solution
and resubmit multiple times until they are satisfied. In our experience, most
students will continue to resubmit until they reach 100 % on the assignment.
How Teachers Interact With QuickFeed: The teaching staff of a course
must do a fair bit of preparatory work before assignments can be published and
provide automated feedback.

The teaching staff must create the course on GitHub and QuickFeed. When
creating a course, QuickFeed creates separate repositories for assignments and
solution checkers. The assignments repository will be made available to all course
students and is populated with assignment descriptions and code templates that
students may need to solve the assignments. The repository for solution checkers
is only accessible to the teaching staff and the QuickFeed system. Such solution
checkers must also be developed by the teaching staff and comprise a set of
checks to evaluate and score student submissions. These checks must be designed
so that they can provide textual responses to the students explaining why their
solution failed, and at the same time, provide a weighted score for the checks
that passed. Further, each assignment can be configured in various ways, e.g.,
individual vs. group, minimum passing score, automated vs. manual approval,
and more.

During the course, teachers can view the results achieved by each student
or group, and can manually approve assignments. Current practice has been
to automate approval for the first few assignments, with the remaining assign-
ments requiring in-lab approval, to ensure that students do not copy each other’s
solutions or at least that they understand what their code does.

3 QuickFeed Technical Details

This section gives a brief overview of QuickFeed’s system architecture, as shown
in Figure 2. QuickFeed is comprised of the QuickFeed server written in Go,

QuickFeed on Programming Assignments 3

Docker containers for running solution checkers, a SQLite database to store
course, user, and other relevant information. In addition, we use the Envoy proxy
to mediate external traffic. The QuickFeed server performs many tasks, among
them (1) authenticate and authorize user accesses based on their course role,
(2) to serve the React-based web application code to the student and teacher
browsers, (3) to receive webhook events from GitHub when students or teachers
modify a source code repository, (4) run solution checkers using Docker, (5) col-
lect score and log output and record this in the database, and (6) to service data
requests from the React-based frontend application to be displayed to users.

Student BrowserStudent BrowserStudent Browser

Student BrowserStudent BrowserTeacher Browser

Envoy
Proxy

QuickFeed
Server

GitHub

Student BrowserStudent BrowserDocker Container

Database:
Courses and

Users

Access
Control

Run
Solution

Checkers

Score and
Result Log

Source, Course,
Group and User

WebHook
Events

Fetch
Results

Fetch
Results

Repository and
User Management

Score and Log

Fig. 2: QuickFeed’s System Architecture.

4 Designing Assignments and Solution Checkers

In this section, we explain QuickFeed’s approach to organizing assignments and
solution checkers. QuickFeed uses the following repository structure within an
organization on GitHub. These will be created automatically when a course is
created using QuickFeed.

Repository Description Access

info Holds information about the course Public
assignments Contains a folder for each assignment Students, Teachers, QuickFeed
username-labs One for each student Student, Teachers, QuickFeed
tests One folder for each assignment Teachers, QuickFeed

The assignments repository has a separate folder for each assignment at the
root level. Each assignment has a corresponding folder in the tests reposi-
tory, that contains an assignment.yml file describing the assignment (see be-
low). The tests folder also contain solution checkers for each assignment. The

4 H. Meling

username-labs repository is initially empty, and the student must fetch tem-
plate code from the course’s assignments repository.

When QuickFeed receive a notification from GitHub that a student has made
changes to their codebase, QuickFeed creates a Docker container that fetches the
student’s code and the solution checkers from the tests repository, and merges
the content of the two repositories, and runs the solution checkers to test the
student’s code. The checkers produce log output that the student can later view
in the web application. In addition, the checkers emit several JSON score objects
that QuickFeed picks up, which are used to calculate the overall score of the
assignment.

assignmentid: 1
title: "Introduction to Unix"
deadline: "2020-08-30T23:59:00"
autoapprove: true
scorelimit: 90
isgrouplab: false

tests-|
|--- scripts
| |-- Dockerfile
| |-- run.sh
|--- lab1
| |-- assignment.yml

As shown above, the tests repository of a course can provide their own
Dockerfile and run.sh file. These are used to run solution checkers for the
specific course, giving the necessary flexibility to support different course re-
quirements, such as programming languages, tools, and compilers. We have used
QuickFeed in courses using Java, C#, Python, and Go.

The (partial) code snippet in Figure 3 shows a simple solution checker in
Go for an assignment where the students must implement a concurrent version
of the popular fizz buzz game. The init() function adds the checker function
to the set of checkers, along with the maximum score (len(fizzBuzzTests))
and weight (20). The TestFizzBuzz checker function obtains a score object sc,
whose initial value is the max score. For each check whose result is incorrect,
the score is decremented using the sc.Dec() method. The defer sc.Print(t)
statement is executed at the end of the checker and emits a JSON encoded score
object that QuickFeed can extract from the log output.

1 func init() {
2 scores.Add(TestFizzBuzz , len(fizzBuzzTests), 20)
3 }
4
5 func TestFizzBuzz(t *testing.T) {
6 sc := scores.Max()
7 defer sc.Print(t)
8 for _, test := range fizzBuzzTests {
9 gotResult := FizzBuzz(test.n)

10 if diff := cmp.Diff(test.result , gotResult); diff != "" {
11 sc.Dec()
12 t.Errorf("fizzbuzz.FizzBuzz (%d): (-want +got):\n%s", test.n, diff)
13 }
14 }
15 }

Fig. 3: Example solution checker.

