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Abstract. We describe our envisioned architecture for an ecosystem
built around the Magnolia research programming language. The com-
piler for the language is built by interconnecting a core monolithic chunk
with modular, extensible program transformations. “Plugins” are then
constructed around a common input format, including composable pro-
gram transformations—both at the syntactic and semantic level. This
submission is a poster submission.
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1 Introduction

Magnolia [1] is designed as an embodiment of a language for generic program-
ming. It offers no primitive types (beyond predicates), and is meant to be param-
eterized by a backend programming language, and data structures implemented
in that language. Magnolia allows expressing generic algorithms in their most
general form, and specifying their syntactic and semantic requirements explic-
itly. The language is based on the theory of institutions [3]. Magnolia code is
written in different kinds of modules that mix purely abstract specifications of
types and operations with their concrete implementations. Listing 1.1 shows the
specification of a Semigroup in Magnolia.

Listing 1.1. Specifications in Magnolia.

s i gna tu re Magma = {
type T;
f unc t i on bop ( t1 : T, t2 : T) : T;

}

concept Semigroup = {
use Magma;
axiom bop I sAs soc i a t i v e ( t1 : T, t2 : T, t3 : T) {

a s s e r t bop ( t1 , bop ( t2 , t3 ) ) == bop ( bop ( t1 , t2 ) , t3 ) ;
}

}

Concepts [4] constitute the core building blocks in Magnolia programs. A
concept consists of abstract types and operations, along with axioms defining
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semantic requirements on them. Listing 1.2 shows how to use these axioms
to restrict (and give information about) the intended behavior of a concrete
implementation. The IntAndAdd implementation describes a concrete, external
C++ API, and IntAndAdd_models_Semigroup establishes a modeling relation
between IntAndAdd and the Semigroup concept.

Listing 1.2. A satisfaction relation in Magnolia.

implementation IntAndAdd = ex t e rna l C++ base . i n t i m p l {
type i n t ;
f unc t i on add ( i 1 : int , i 2 : i n t ) : i n t ;

}

s a t i s f a c t i o n IntAndAdd models Semigroup =
IntAndAdd models Semigroup [ T => int , bop => add ] ;

As we declare modeling relations between concrete implementations and ab-
stract specifications (or between abstract specifications), we build a database
of knowledge about our Magnolia code. There are many ways in which this
database of knowledge can be used, e.g., axioms can be used as unit tests [2],
for formal verification of source code, or to produce rewriting rules (e.g. for
optimizations)—much like in the Haskell GHC compiler [6].

Optimizations are typically implemented as passes in layered, but mono-
lithic compilers. Rewriting rules derived from the specifications can however
also be used, e.g., to perform arbitrary semantic-preserving transformations on
the source code—i.e. for refactoring. Oftentimes, refactoring is done manually,
at the IDE level.

The relevance of axiom-based rewriting outside of the automatic optimization
case motivate the design of an extensible, modular ecosystem for Magnolia—in
order to maximize code reusability.

2 Design of the Ecosystem

At the core of the ecosystem is the “monolithic” chunk of the Magnolia compiler.
It has three parts: first, a parser. Second, a checker that simultaneously ensures
that the parsed Abstract Syntax Tree (AST) is consistent and well-typed, and
adds annotations to the AST. And third, a code generator for each available
backend (currently C++, and Python). The fully annotated AST produced by
the checker can be serialized, and serves as a common input format for the other
plugins in the ecosystem (e.g. an IDE, a pretty printer, verification tools, and so
on).

The database of knowledge contained in the fully annotated AST can then be
fully exploited. Source code transformations are implemented as fully-annotated-
AST to fully-annotated-AST transformations, ensuring their composability and
that their output can be used by the other plugins in the ecosystem. Optimiza-
tions expressible in the form of axiom-based rewrites (and other semantic-based
rewrites) are such transformations. Syntactic-level source transformations based
on Syntactic Theory Functors [5] are also of interest. The ecosystem includes
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plugins for both semantic and syntactic transformations. By pretty printing the
AST resulting from the transformations, it can be fed back to the monolithic
chunk of the compiler: the full Magnolia compiler is not a monolith, but instead
a collection of small interconnected units—in a microservice-like fashion. Thus,
as the ecosystem grows organically, so does the set of features of the compiler.

The experimental monolithic chunk of the Magnolia compiler is available at
https://github.com/magnolia-lang/magnolia-lang. The development of
an IDE for Magnolia is currently underway.
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