
An Ecosystem Architecture for the Magnolia
Programming Language

Benjamin Chetioui1[0000−0002−7458−9079], Mikhail Barash1[0000−0002−7067−2588],
and Magne Haveraaen1

University of Bergen, Norway
{benjamin.chetioui,mikhail.barash,magne.haveraaen}@uib.no

Abstract. We describe our envisioned architecture for an ecosystem
built around the Magnolia research programming language. The com-
piler for the language is built by interconnecting a core monolithic chunk
with modular, extensible program transformations. “Plugins” are then
constructed around a common input format, including composable pro-
gram transformations—both at the syntactic and semantic level. This
submission is a poster submission.

Keywords: Magnolia · Tooling Ecosystem.

1 Introduction

Magnolia [1] is designed as an embodiment of a language for generic program-
ming. It offers no primitive types (beyond predicates), and is meant to be param-
eterized by a backend programming language, and data structures implemented
in that language. Magnolia allows expressing generic algorithms in their most
general form, and specifying their syntactic and semantic requirements explic-
itly. The language is based on the theory of institutions [3]. Magnolia code is
written in different kinds of modules that mix purely abstract specifications of
types and operations with their concrete implementations. Listing 1.1 shows the
specification of a Semigroup in Magnolia.

Listing 1.1. Specifications in Magnolia.

s i gna tu re Magma = {
type T;
f unc t i on bop (t1 : T, t2 : T) : T;

}

concept Semigroup = {
use Magma;
axiom bop I sAs soc i a t i v e (t1 : T, t2 : T, t3 : T) {

a s s e r t bop (t1 , bop (t2 , t3)) == bop (bop (t1 , t2) , t3) ;
}

}

Concepts [4] constitute the core building blocks in Magnolia programs. A
concept consists of abstract types and operations, along with axioms defining

2 B. Chetioui et al.

semantic requirements on them. Listing 1.2 shows how to use these axioms
to restrict (and give information about) the intended behavior of a concrete
implementation. The IntAndAdd implementation describes a concrete, external
C++ API, and IntAndAdd_models_Semigroup establishes a modeling relation
between IntAndAdd and the Semigroup concept.

Listing 1.2. A satisfaction relation in Magnolia.

implementation IntAndAdd = ex t e rna l C++ base . i n t i m p l {
type i n t ;
f unc t i on add (i 1 : int , i 2 : i n t) : i n t ;

}

s a t i s f a c t i o n IntAndAdd models Semigroup =
IntAndAdd models Semigroup [T => int , bop => add] ;

As we declare modeling relations between concrete implementations and ab-
stract specifications (or between abstract specifications), we build a database
of knowledge about our Magnolia code. There are many ways in which this
database of knowledge can be used, e.g., axioms can be used as unit tests [2],
for formal verification of source code, or to produce rewriting rules (e.g. for
optimizations)—much like in the Haskell GHC compiler [6].

Optimizations are typically implemented as passes in layered, but mono-
lithic compilers. Rewriting rules derived from the specifications can however
also be used, e.g., to perform arbitrary semantic-preserving transformations on
the source code—i.e. for refactoring. Oftentimes, refactoring is done manually,
at the IDE level.

The relevance of axiom-based rewriting outside of the automatic optimization
case motivate the design of an extensible, modular ecosystem for Magnolia—in
order to maximize code reusability.

2 Design of the Ecosystem

At the core of the ecosystem is the “monolithic” chunk of the Magnolia compiler.
It has three parts: first, a parser. Second, a checker that simultaneously ensures
that the parsed Abstract Syntax Tree (AST) is consistent and well-typed, and
adds annotations to the AST. And third, a code generator for each available
backend (currently C++, and Python). The fully annotated AST produced by
the checker can be serialized, and serves as a common input format for the other
plugins in the ecosystem (e.g. an IDE, a pretty printer, verification tools, and so
on).

The database of knowledge contained in the fully annotated AST can then be
fully exploited. Source code transformations are implemented as fully-annotated-
AST to fully-annotated-AST transformations, ensuring their composability and
that their output can be used by the other plugins in the ecosystem. Optimiza-
tions expressible in the form of axiom-based rewrites (and other semantic-based
rewrites) are such transformations. Syntactic-level source transformations based
on Syntactic Theory Functors [5] are also of interest. The ecosystem includes

An Ecosystem Architecture for the Magnolia Programming Language 3

plugins for both semantic and syntactic transformations. By pretty printing the
AST resulting from the transformations, it can be fed back to the monolithic
chunk of the compiler: the full Magnolia compiler is not a monolith, but instead
a collection of small interconnected units—in a microservice-like fashion. Thus,
as the ecosystem grows organically, so does the set of features of the compiler.

The experimental monolithic chunk of the Magnolia compiler is available at
https://github.com/magnolia-lang/magnolia-lang. The development of
an IDE for Magnolia is currently underway.

References

1. Bagge, A.H.: Constructs & Concepts: Language Design for Flexibility and Reliabil-
ity. Ph.D. thesis, Research School in Information and Communication Technology,
Department of Informatics, University of Bergen, Norway, PB 7803, 5020 Bergen,
Norway (2009), http://www.ii.uib.no/~anya/phd/

2. Bagge, A.H., David, V., Haveraaen, M.: Testing with axioms in C++ 2011. Journal
of Object Technology 10, 10:1–32 (2011). https://doi.org/10.5381/jot.2011.10.1.a10,
https://doi.org/10.5381/jot.2011.10.1.a10

3. Goguen, J.A., Burstall, R.M.: Introducing institutions. In: Clarke, E., Kozen, D.
(eds.) Logics of Programs. pp. 221–256. Springer Berlin Heidelberg, Berlin, Heidel-
berg (1984)

4. Gregor, D., Järvi, J., Siek, J., Stroustrup, B., Reis, G.D., Lumsdaine, A.:
Concepts: linguistic support for generic programming in C++. OOPSLA
’06: Proceedings of the 21st annual ACM SIGPLAN conference on Object-
oriented programming systems, languages, and applications pp. 291–310 (2006).
https://doi.org/http://doi.acm.org/10.1145/1167473.1167499

5. Haveraaen, M., Roggenbach, M.: Specifying with syntactic theory functors. Jour-
nal of Logical and Algebraic Methods in Programming 113, 100543 (2020).
https://doi.org/https://doi.org/10.1016/j.jlamp.2020.100543, https://www.scie

ncedirect.com/science/article/pii/S2352220820300286

6. Peyton Jones, S., Tolmach, A., Hoare, T.: Playing by the rules: rewriting as a
practical optimisation technique in ghc. In: 2001 Haskell Workshop. ACM SIGPLAN
(September 2001), https://www.microsoft.com/en-us/research/publication/p
laying-by-the-rules-rewriting-as-a-practical-optimisation-technique-

in-ghc/

