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Abstract
Feature engineering, including feature selection, plays a key role in data
science, knowledge discovery, machine learning, and statistics. Recently,
much progress has been made in increasing the accuracy of machine
learning for complex problems. In part, this is due to improvements in
feature engineering, for example by means of deep learning or feature
selection. This progress has, to a large extent, come at the cost of
dramatic and perhaps unsustainable increases in the computational resources
used. Consequently, there is now a need to emphasize not only accuracy
but also computational cost in research on and applications of machine
learning including feature selection. With a focus on both the accuracy
and computational cost of feature selection, we study stochastic local search
(SLS) methods when applied to feature selection in this paper. With an eye
to containing computational cost, we consider an SLS method for efficient
feature selection, SLS4FS. SLS4FS is an amalgamation of several heuristics,
including filter and wrapper methods, controlled by hyperparameters. While
SLS4FS admits, for certain hyperparameter settings, analysis by means of
homogeneous Markov chains, our focus is on experiments with several real-
world datasets in this paper. Our experimental study suggests that SLS4FS
is competitive with several existing methods, and is useful in settings where
one wants to control the computational cost.

1 Introduction
Context. Feature selection (FS), i.e., finding the best features or attributes among a large
number of them, plays an important role in machine learning (ML), knowledge discovery,
and data mining [21, 10, 3, 4]. Reasons for feature selection include improved accuracy,
explainability, understandability, and computational efficiency of the resulting machine
learning model [21, 10]. There is an important distinction between filter and wrapper
methods for feature selection [21]. The filter approach selects features in a preprocessing
step, and the features selected do not depend on the ML algorithm used. The wrapper
approach, in contrast, uses an ML algorithm as an integral part of the FS process. Variants
of local search (such as backward selection and forward selection) have traditionally been
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employed for wrapper-based FS [10]. Methods such as genetic algorithms [18], regression
[19], stochastic local search [23] and item sets [20] have also been used.

This paper encourages cross-fertilization between research on FS and stochastic local
search (SLS). An SLS algorithm is a generalization of local search where stochasticity
(or randomization) is also applied. Thus, SLS algorithms make occasional random search
steps in order to avoid getting stuck or trapped in local but non-global optima. SLS
is among the best methods to solve many computationally hard problems [15]. For
example, SLS performs well in solving the satisfiability (SAT) problem [15, 35] as well
as in computing the maximum a posteriori (MAP) hypothesis [28] and the most probable
explanation (MPE) [22, 25] in Bayesian networks (BNs). SLS and its variants have
also been widely used in other applications, such as sparse signal recovery [27], neural
architecture search [34], sentence summarization [29], and subset selection [1, 30].

Problems. Clearly, recent advances in AI and ML have been impressive. At the same
time, one may want to reflect on the massive computational, energy, and human resources
brought to bear in today’s AI and ML efforts, and how such resource consumption has
recently increased. For example, OpenAI, a prominent AI development and deployment
company, made the following observations on May 16, 2018:1

[S]ince 2012, the amount of compute used in the largest AI training runs
has been increasing exponentially with a 3.4-month doubling time (by
comparison, Moore’s Law had a 2-year doubling period). Since 2012, this
metric has grown by more than 300,000x (a 2-year doubling period would
yield only a 7x increase).

While a 300,000x growth in compute over a 6-year period is impressive, there may also
reason to be concerned. If this growth continues, where does it lead to? What are
the sustainability implications? And which individuals and organizations can afford to
participate in and drive AI and ML research forward, if such massive compute resources
are dramatically beneficial or (even worse) required to stay competitive?

Contributions. The contributions in this paper are in part motivated by concerns
about the dramatic increases in resources being consumed in AI or ML. We make resource
utilization, in particular computational cost measured in terms of compute time, more of
a consideration compared to much previous research. At the same time, we acknowledge
that FS research has, with notable exceptions [2, 10], often been heavily experimental.

In this paper, we integrate filter and wrapper methods for FS via SLS4FS, “Stochastic
Local Search (SLS) for (4) Feature Selection (FS),” and provide experimental results.
Compared to the most closely related work [23], SLS4FS adds and integrates three
heuristics, detailed in this paper: soft greedy search, FS filters, and a randomized
neighborhood relation [26]. Key intuitions underlying the results with our hybrid SLS4FS
method include (i) in FS, the computational cost of a wrapper’s greedy search step is
typically much greater than the computational cost of a noisy or an initialization (or filter)
search step and (ii) the greedy steps are still useful in FS for refining a filter’s results
when optimizing a feature subset. Our experiments with SLS4FS with three different
classifiers and several real-world datasets provide further details about these intuitions and
demonstrate the competitiveness of SLS4FS. SLS4FS is formulated such that a Markov
Chain analysis is possible (see [22, 23]), however such analysis is not pursued here.

1https://openai.com/blog/ai-and-compute/
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2 The Challenges of Feature Selection
We focus here on two goals for SLS: maximizing fitness and controlling computational
cost. In SLS for FS specifically, maximizing fitness corresponds to maximizing ML model
accuracy, and controlling computational cost corresponds to controlling the training time
of ML models. We further discuss these two FS goals below.
Maximizing Fitness. We study search spaces consisting of bit-strings B = {0,1}n.
Fitness f is a pseudo-boolean function (PBF) that maps from B to the non-negative real
numbers R≥0. Our focus is to optimize (without loss of generality, maximize) the fitness
function f and find a global optimum bbb∗:

bbb∗ = argmax
bbb∈B

f (bbb) . (1)

When considering FS problems, a bit b in a bitstring bbb indicates whether a corresponding
feature in a dataset is present (b = 1) or absent (b = 0) for purposes of learning. One
can generalize (1) in order to handle multiple optima bbb∗1, bbb∗2, . . . and multiple fitness (or
objective) functions f1, f2, . . .. But we here keep it simple, in order not to complicate the
notation and discussion.
Controlling Computational Cost. What is the time it takes for an algorithm to search for
and find bbb∗ or a good approximation? There are several factors, but let us highlight these.
First, it depends on the cost g, for example compute time, it takes to compute f (bbb) for a
state bbb ∈ B: g(bbb). Here, g maps from B to R≥0. Second, it depends on the complexity
of the search landscape induced by f , and how that landspace interacts with the search
algorithm. An SLS algorithm will in general evaluate g(bbb) for many bbb ∈ B when running.
Given these factors, controlling computational cost of FS is an important goal. We are
motivated by the fact that the amount of compute used in the largest AI training runs has
recently increased exponentially with a 3.4-month doubling time2 and with runtimes of
days or weeks. In contrast, the compute time per experiment in Section 4 is cut off at a
maximum of 100 seconds, thus enabling an exploratory and human-centric workflow that
includes ML as a component.
Hyperparameters and Heuristic Settings. In order to maximize fitness and control cost
as discussed above, we need to optimize SLS hyperparameter and heuristic settings. This
could be done via recent hyperparameter tuning methods including Bayesian optimization
(BO) [32, 31, 8]. Unfortunately, while such methods are often general and mathematically
elegant, they do not always scale well [36]. We focus in this paper on fast experiments
with SLS under limited computing resources, on the order of seconds or minutes, while
BO typically takes hours or days.

Multi-objective optimization algorithms (MOOAs), for example multi-objective
evolutionary algorithms [6, 5], may seem like another alternative to adress the above
two goals related to fitness f and cost g. A MOOA would compute a Pareto front
that approximates Pareto optimality, trading off the two objectives of fitness f and
computational cost g of the resulting model, for example a classifier. However, we are
in this paper interested in a different problem. We study the computational cost g of the
SLS process itself when searching for bbb∗, a bitstring of maximal fitness f ∗ = f (bbb∗) .

Specifically, we study the effect of varying several heuristics and hyperparameters
for real-world FS problems. This is a challenge, as both the FS problems and the
configuration of SLS4FS are potentially high-dimensional and complex multi-modal
search spaces.

2See above and https://openai.com/blog/ai-and-compute/.
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3 SLS4FS: SLS for Feature Selection
We now discuss our algorithm for SLS-based feature selection, “Stochastic Local Search
(SLS) for (4) Feature Selection (FS)” (or SLS4FS). The algorithm is presented briefly in
previous work [26]. In this paper we provide a detailed discussion of SLS4FS, including
pseudo-code, and its performance in three experiments with real-world datasets. In this
section we first discuss the components or search steps of SLS4FS in Section 3.1 before
presenting the algorithm’s overall structure in Section 3.2.

3.1 SLS Search Steps
Local search takes place in the proximity, or in the neighborhood, of the current state bbb,
and we introduce these definitions.

Definition 1 (Neighborhood) Let bbb = b1 . . .bi . . .bn ∈ {0,1}n and bbb′ = b′1 . . .b
′
i . . .b

′
n ∈

{0,1}n. Further, use ⊕ for exclusive or and define Hamming distance H as H(bbb′,bbb) =
∑

n
i=1(b

′
i⊕ bi). The neighborhood N(bbb) ⊂ {0,1}n of bbb is defined as all bitstrings with a

Hamming distance H of one to bbb: N(bbb) = {bbb′ ∈ {0,1}n | H(bbb′,bbb) = 1}.

In FS [3] and other problems with non-trivial g, working with the neighborhood N(bbb) may
be too compute-intensive and we therefore introduce a subset of it, N(bbb,Nr), as follows.

Definition 2 (Randomized Neighborhood) Let Nr ∈N+ with 0< Nr ≤ n. A randomized
neighborhood is defined as a set N(bbb,Nr) ⊆ N(bbb):

N(bbb,Nr) = {bbb′ ∈ N(bbb)|bbb′ is picked randomly from N(bbb)}, (2)

such that |N(bbb,Nr)|= Nr.

“Picked randomly” in (2) means “picked uniformly at random without replacement.” The
computational benefit of N(bbb,Nr) compared to N(bbb) is perhaps clearer when considering
SLS4FS search, which we do now.

SLS4FS seeks to find or approximate an optimal state bbb∗. This is done via repeated
application of a greedy step GreedyStep, a noise step NoiseStep, and a restart step
RestartStep, given the current state bbb. These search steps are formally defined as follows.

Definition 3 (Greedy Step) A greedy step GreedyStep(bbb, Nr, f , L, D) computes from
bitstring bbb a bitstring bbb′ ∈ N(bbb,Nr) while maximizing the objective function f (bbb′) by
using the learning algorithm L with dataset D. If there is a tie in f (bbb′) among neighbors
N(bbb,Nr), one of these neighbor is picked uniformly at random. A strict greedy step
GreedySteps stays with bbb if f (bbb) ≥ f (bbb′) for all bbb′ ∈ N(bbb,Nr), while a loose or soft
greedy step GreedyStep` always moves to the best-fit neighbor.

The GreedyStep highlights the wrapper nature [21] of SLS4FS, via its use of the
learning algorithm L. Definition 3 introduces two variants of the GreedyStep. For
both variants we move to a neighbor bbb′ ∈ N(bbb). The first variant, for Nr = n, is a
complete greedy step. The second variant, for Nr < n, is a randomized greedy step. This
randomized variant’s purpose is to reduce the computational cost of a complete greedy
step. Thus, when Nr < n, GreedyStep(bbb, Nr, f ) in Definition 3 employs randomization as
follows. First, it randomly chooses Nr neighbors among N(bbb) and then picks a neighbor
maximizing the objective function f (bbb′) among them. Intuitively, with high-dimensional



datasets (large n) and Nr � n, this provides substantial computational saving relative to
using N(bbb), at the obvious drawback of not necessarily finding the best neighbor.

The goal in FS is to find a global optimum bbb∗ (a best feature subset) or an
approximation thereof. However, in many cases there are in FS problems local but non-
global optima, as demonstrated in Section 4.2, where search can get stuck. SLS4FS
contains two search operators, the NoiseStep and the RestartStep, to handle this problem.

Definition 4 (Noise Step) A noise step NoiseStep(bbb) randomly jumps from bitstring bbb to
a neighbor bbb′ ∈ N(b); note that bbb′ 6= bbb.

While there are different ways to randomize noise steps [22, 24], we focus in this paper
on the simple and easy-to-analyze NoiseStep of picking a neighbor uniformly at random.

Definition 5 (Restart Step) A restart step RestartStep(F,D) randomly computes a
bitstring bbb ∈ {0,1}n, using a filter algorithm F with a dataset D.

Clever restart and initialization algorithms can have a very positive impact on SLS
optimization [25, 24]. For FS specifically, a filter F should ideally start search close
to bbb∗ at low computational cost. For the RestartStep, we study in this paper both naive
methods and more advanced filter algorithms from the FS literature [10, 3, 4]. We consider
the following three naive filter methods.

Definition 6 (Zeros Filter) The all-zeros filter F0s creates an initial feature subset in this
way: We set each bit bi to zero, bi = 0, 1≤ i≤ n.

Definition 7 (Ones Filter) The all-ones filter F1s creates an initial feature subset in this
way: We set each bit bi to one, bi = 1, 1≤ i≤ n.

Definition 8 (Uniform (at Random) Filter) The uniform at random filter FU creates an
initial feature subset in this way: For each bit bi, where 1 ≤ i ≤ n, we flip an unbiased
coin. If the coin comes up heads, we set bi = 1. If it comes up tails, we set bi = 0.

The advanced filters studied can be defined as follows.

Definition 9 (Score-Based Filter) A score-based filter creates an initial feature subset
by assigning a score to every feature. For each bit bi, if the corresponding feature’s score
is in the 90th percentile or above, bi = 1, else bi = 0.

The following 8 score-based filters are used in this paper: mutual information (FMI),
ANOVA (FA), χ2 (Fχ2), variance (FV), random forrest impurity (FRFI), random forrest
permutations (FRFP), lasso regression (FLR) [33], and ridge regression (FRR) [13]. Both
the advanced, score-based filters as well as the naive FU, F0s, and F1s filters are studied
experimentally in Section 4.

3.2 The SLS4FS Algorithm
The SLS4FS algorithm, summarized in Algorithm 1, searches the bitstring space {0,1}n

representing feature subsets while optimizing accuracy f as discussed below. An
optimized feature subset, represented as a bitstring bbb+, is the output of SLS4FS. SLS4FS
is tailored to FS [26] but is based on previous SLS algorithms [22, 23].



Algorithm 1: SLS for FS (SLS4FS).
Input : Probability of restart Pr, noise step Pn, dataset D with number of instances d and

features n, machine learner L, filter F , accuracy f (bbb,D,L) for L on dataset D with
subset bbb, termination threshold τ, strict or soft GreedyStep X , number of
neighbors Nr for the GreedyStep.

Output: Optimized feature subset bbb+

1 bbb← RestartStep(F ,D), c← 0, f+← 0, bbb+← bbb
2 while ¬ Terminate() do
3 c← c+1
4 if Rand(0,1) < Pr then
5 bbb← RestartStep(F ,D) { Def. 5 }

6 else
7 if rand(0,1) < Pn then
8 bbb← NoiseStep(bbb) { Def. 4 }

9 else
10 old_b← bbb
11 bbb← GreedyStepX (bbb,Nr, f ,L,D) { Def. 3 }
12 if old_b = bbb then
13 { We may be stuck in a local optimum }
14 Pr = Pr + P̄rαr { Increase Pr }
15 Pn = Pn + P̄nαn { Increase Pn }

16 else
17 Pr = Pr(1−αr/2)
18 Pn = Pn(1−αn/2)

19 if f (bbb)> f+ then
20 { Update the current best subset bbb+ }
21 f+← f (bbb,D,L)
22 bbb+← bbb

23 return bbb+

Input and Output. Given a machine learner L, the objective function f is computed
in wrapper fashion [21]. For a feature subset bbb, we run L on D using the features indicated
by bbb; f (bbb) gives the estimated accuracy of L [21, 26]. The estimated accuracy is obtained
by cross-validation (CV) on a training set or by validation on a separate test set.

Initialization and Search. SLS4FS starts, using RestartStep(F ,D), from a random
initial state bbb among the 2n possible bitstrings.3 RestartStep(F ,D) initializes a feature
subset using a filter method F operating on the dataset D. In each search step, SLS4FS
performs (i) a GreedyStep with probability (1− Pr)(1− Pn); (ii) a NoiseStep with
probability (1−Pr)Pn; or (iii) a RestartStep with probability Pr. During search, SLS4FS
keeps track of a best-so-far bbb+. If, for the i-th search step f (bbb) > f (bbb+), then bbb is
the new best-so-far. Upon termination, SLS returns bbb+ as an approximation to bbb∗.
Hyperparameters αr and αn can be used to dynamically adapt Pr and Pr.4

3Note that (i) a deterministic initialization, for example at bbb = 0...0 using F0s, is a special case of a
randomized initialization and (ii) randomized initialization may or may not be uniformly at random.

4To enable a homogeneous Markov chain analysis [22, 23], one can use probabilistic restart and not
adapt the probability parameters Pr and Pn when running SLS4FS [23, 36].



Table 1: Datasets for experimental evaluation.

ID Name # Features n # Instances d
1 breast cancer (UCI) 9 700
2 m-of-n-3-7-10 (UCI) 10 1,324
3 checklists 575 63,634
4 cleve (UCI) 9 202
5 madelon [11] 500 2,000
6 bioresponse [16] 1,776 3,751
7 gas-drift (UCI) 128 13,910
8 crime (UCI) 124 2,215

Termination. Different termination criteria can be used in SLS4FS, as suggested by
Terminate() in Algorithm 1. In this work, SLS4FS terminates upon reaching an upper
bound on compute time τ or when a local optimum is found.

We identify a special case of SLS4FS when only initialization is randomized:

Definition 10 (Purely greedy SLS4FS) SLS4FS run with input parameters Pr = 0, Pn =
0, Nr = n, GreedySteps, F = FU, and Terminate() at a local optimum is denoted purely
greedy SLS4FS.

Remark 1. A key advantage of the SLS4FS algorithm is its ability to handle local
optima due to its randomized NoiseStep and RestartStep. Further, the RestartStep can
provide fruitful starting points due to the use of a filter F in RestartStep(F , D). For
simplicity, one can use an all-zeroes filter F0s. Alternatively, a more advanced filter F
may result in SLS4FS computing better feature sets.

Remark 2. When applying SLS to FS, a significant difference from many other
applications of SLS is the greatly varying computational cost of search steps.

We study both of these points, and others, in experiments in Section 4.

4 Experimental Results
We conduct three experiments to analyze SLS4FS. First, in Section 4.2, we analyze
several FS problems for real-world datasets to find out if they exhibit local optima. One
of the advantages of SLS4FS is the possibility of it using noise and restart steps to escape
local optima in the search space. In the second experiment, in Section 4.3, we evaluate
the performance of SLS4FS when varying its noise parameter, restart parameter, and the
filter. Third, in Section 4.4, we compare and analyze the performance of SLS4FS against
other FS methods on several real-world datasets.

4.1 Datasets and Methods
Using Naive Bayes, Decision Tree, and Support Vector Machine classifiers, we conduct
experiments on 8 real-world datasets to validate our hybrid SLS4FS method. For this
work, we focus on small and medium sized datasets to ensure that meaningful results
can be obtained within a reasonable amount of time.5 Most of these are also real-world
datasets, which are often limited in size. Table 1 lists the datasets with the number of
features and instances used in our experiments. The datasets are taken from the UCI

5Some FS methods can take hours or even days to fully complete on one of our medium-sized datasets.
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Figure 1: Experimental FS results for three datasets breast cancer, m-of-n-3-7-10, and
cleve. In each panel, the x-axis shows the accuracies achieved by solutions (feature
subsets) computed by SLS4FS for a dataset. The y-axis counts the number of occurrences
at each accuracy level. This clearly demonstrates that there are multiple local optima in
each of these FS problems.

repository6 or the literature. We have also included a new dataset called checklists.7 A
similar dataset has also been used for constructing new checklists [9]. Experiments 2
and 3 are executed in NTNU’s IDUN cluster environment, using one CPU and 24 GB of
memory per run. Implementations are in Python using Scikit-learn.8

4.2 Experiment 1: Multiple Local Optima in Feature Selection
Goal. The challenge of local but non-global optima in FS motivated us to design the noise
and restart steps in SLS4FS. To what extent does FS for real-world datasets exhibit such
local optima?
Method and Data. To investigate this question, we run purely greedy SLS4FS (see
Definition 10) 1,000 times for three FS problems. SLS4FS terminates upon finding a
bitstring bbb+ with higher accuracy than all neighbors N(bbb+). We use a Decision Tree
model as L in SLS4FS and compute accuracy f (bbb+) of the model. For each problem, we
report a histogram reflecting the model’s accuracy, see the plots in Figure 1.
Results and Discussion. We report the results for three small-scale problems (breast
cancer, m-of-n-3-7-10, and cleve) to get a comprehensive picture. The results are shown
in Figure 1. Among the 1,000 experiments, about 600 find suboptimal solutions on the
breast cancer dataset. Similar observations can be made for the other two datasets; clearly
m-of-n-3-7-10 is most difficult in that about 730 experiments terminate with suboptimal
solutions. These results suggest that real-world FS problems contain local but non-
global optima. Local optima are problematic for traditional greedy FS algorithms, like
ForwardSelection and BackwardSelection. At the same time, the randomization in SLS
algorithms such as SLS4FS are able to handle local optima, using Pr > 0 or Pn > 0.
Motivated by these results, we carefully study the impact and optimization of Pr, Pn, and
other SLS4FS heuristics in Section 4.3.

4.3 Experiment 2: Varying SLS4FS Heuristics and Settings
Goal. How do different settings of heuristics and hyperparameters impact SLS4FS’s
accuracy? We assess how SLS4FS performance is affected by varying these heuristics:

6UCI repository: http://archive.ics.uci.edu/ml/
7The checklists dataset consists of 63,634 inspections conducted by the Norwegian Labour Inspection

Authority. The dataset contains 575 features related to the economical and organisational information about
the target organisation. Each instance also has a binary target label, denoting whether the target organisation
was found non-compliant or not at the inspection.

8https://scikit-learn.org/stable/.
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Dataset Classifier Time τ (sec) NNNrrr///nnn
breast cancer SVM 0.2 1.0
m-of-n-3-7-10 SVM 2.0 1.0
madelon DT 60.0 1.0
bioresponse NB 60.0 0.1
checklists DT 60.0 0.1
gas-drift DT 60.0 0.2
crime NB 10.0 1.0

Table 2: Experimental setting in Section 4.3. The ratio of neighbors considered in the
greedy step is Nr/n.

Figure 2: Runtimes for 8 different FS filters (on x-axis) on 7 different datasets (on y-
axis). Runtimes are classified from extremely low (dark green) to extremely high (dark
red). The filters are, left to right, mutual information (FMI), ANOVA (FA), χ2 (Fχ2),
variance (FV), random forrest impurity (FRFI), random forrest permutations (FRFP), lasso
regression (FLR) and ridge regression (FRR). Per-filter runtime averages, which vary quite
dramatically, are in the bottom row. Figure 3 contains corresponding accuracies.

strict versus soft Greedy, F , Pn, and Pr.
Method and Data. To inform the F-parameter of SLS4FS, we test different FS filters
and record runtime and accuracy. These filters are either well-known or prominent in
the FS literature [17, 4]; see Section 3. Runtimes are shown in Figure 2; Fχ2 or FV have
the best performances on almost every dataset. Fχ2 also has the highest recorded mean
accuracy when applied to the datasets, see Figure 3. Thus, for our experiment below we
use F = Fχ2 in our SLS4FS algorithm. Further, we include F = F0s as a simple baseline.

Based on these filter results, we test each configuration of SLS4FS using several
datasets, see Table 2. Each problem consists of a dataset, an ML method L, a compute
time bound τ, and a neighborhood size Nr. The neighborhood size determines the fraction
of neighbors included in the randomized neighborhood. The time limit and neighborhood
size are set to limit the overall running time of SLS4FS. SLS4FS hyperparameters and
heuristics that are varied are: Pn, Pr, F , and GreedySteps versus GreedyStep`.

Every evaluation in the experiment is done by restricting the dataset based on the
SLS4FS-selected features, initializing the ML method, training the ML method on 2/3 of
the dataset and calculating the accuracy based on the other 1/3.



Figure 3: Accuracy scores for 8 different FS filters (on x-axis) on 7 different datasets (on
y-axis). Per-filter accuracy averages are in the bottom row. While χ2 (Fχ2) has the highest
average accuracy, the differences in averages for the best methods are very small and not
statistical significant. This table corresponds to the table with runtimes in Figure 2.

Results and Discussion. Four configurations of SLS4FS, each tested with 20 different
values of noise probability Pn, are shown in Figure 4.9 The plots are consistent with
findings about local optima in Section 4.2 as well as previous Markov chain analyses
and experiments with SLS [14, 22, 25]: Pn being varied clearly has a significant impact
on performance. And the optimal noise probability varies between different problem
instances. Plots 4(a) and 4(b) do not show large differences between strict GreedySteps
and soft GreedyStep`. However, soft outperforms strict on the m-of-n-3-7-10 dataset, and
in general seems to be at least as good. As seen in Plot 4(d), restart has little effect on most
problems, and a slight negative effect on a few. This is a small surprise, given previous
research highlighting the benefit of restart [22, 25], and an area for future research.

Figure 4: Accuracy (on y-axis) versus Pn (on x-axis) for four configurations of SLS4FEVE
(in plots (a), (b), (c), and (d)) as applied to six datasets. Each datapoint in a plot is the
average over 10 runs, with the error bars showing the 95% confidence interval.

Subjectively, we deem these to be the most promising configurations of SLS4FS: soft
Greedy, Pr = 0, Pn ∈ [0.1,0.5], and with either F = F0s or F = Fχ2 as filter depending on
the selected dataset. These results inform our experiments with four different SLS4FS
configurations in Section 4.4.

9Other configurations were also tested, but the ones in Figure 4 illustrate the main findings well.



Algorithm Configuration
RFE N/A
ForwardSelection (F0s) N/A
BackwardSelection (F1s) N/A
AdaptiveNoise φ = 0.2, θ = 1/6
AdaptiveSLS Pn = 0.0, Pr = 0.0, αn,αr = 0.32
SoftSLS Pn = 0.5, Pr = 1/n, αn,αr = 0.0
SLS4FS (Fχ2) Pn = 0.5, Pr = 0.0, αn,αr = 0.0, Fχ2

SLS4FS (Pr = 0.1) Pn = 0.5, Pr = 0.1, αn,αr = 0.0, Fχ2

SLS4FS (F0s) Pn = 0.5, Pr = 0.0, αn,αr = 0.0, F0s

SLS4FS (adaptive) Pn = 0.0, Pr = 0.0, αn,αr = 0.32, Fχ2

Table 3: Algorithms and configurations used in Section 4.4. RFE [12], AdaptiveNoise
[14], AdaptiveSLS [23], and SoftSLS [23] are from the literature, the other algorithms
are well-known or described in this paper.

4.4 Experiment 3: Comparing SLS4FS to Other Algorithms
Goal. How does SLS4FS compare to other FS wrappers using local search?
Method and Data. We test four configurations of SLS4FS and six other algorithms,
recording the accuracy of the best feature subset for each algorithm (see Table 3). The
algorithms are tested on problem instances from Table 1 and evaluations are performed
similar to in Section 4.3. However, a time limit of τ = 100 sec is used in every problem
instance, Here, Nr = dn/10e and GreedyStep` are used for SLS4FS while αn = αr = 0.32
are used for AdaptiveSLS and SLS4FS (adaptive).10

Results and Discussion. The results are summarised in Table 4.11 The top three
performers, ranked by mean accuracy (in the right-most column), are all variations of
SLS4FS. SLS4FS is quite robust across all problems compared to existing algorithms.
For example, ForwardSelection achieves the highest accuracy for three problems but is
far behind for other problems, leading it to be ranked as one of the last overall.

For the checklists dataset, there were differences in the number of features that were
found by the best performing FS configurations. On average, ForwardSelection selected
8 features while AdaptiveSLS and SoftSLS selected 7 features. SLS4FS (F0s) selected
47 features with similar performance in terms of accuracy. The same pattern was also
observed for the other large datasets when comparing SLS4FS to ForwardSelection and
the existing SLS algorithms. Generally, by using a randomized neighborhood, SLS4FS
is able to take more steps per time unit and explore a larger fraction of the search space
which yields more features with approximatly the same computational cost.

5 Conclusion and Future Work
In this paper, we adapt and apply stochastic local search (SLS) to the problem of
feature selection. We study an SLS algorithm SLS4FS for feature selection; it
is a hybrid approach that integrates the well-known filter and wrapper approaches.
Relative to the most closely related research [23], SLS4FS adds and integrates three
heuristics: soft greedy search, filters, and a randomized neighborhood relation [26].
Experimentally, motivated by constraining computational resources, we study different
FS filter algorithms with SLS4FS and three ML classifiers: Decision Tree, Naive Bayes,

10The hyperparameters αn and αr were optimized empirically in pilot studies. In the pilot studies both
synthetic and real-world problems were used. In the results reported here, αn and αr are kept constant.

11The main conclusion, but not the dataset-specific results, of this table has been presented earlier [26].



Table 4: Mean accuracy and standard deviation for 4 versions of SLS4FS and 6 other
algorithms, applied to 7 datasets. The two right-most columns show Mean accuracy
(higher is better) and Rank (lower is better) for all 10 algorithms across the 7 datasets.
Overall, SLS4FS (F0s) is the best algorithm among the 10 for these datasets.

breast
cancer

m-of-n-
3-7-10

madelonbiores-
ponse

check-
lists

gas-
drift

crime Mean Rank

RFE 0.978 ±
0.000

1.000 ±
0.000

0.738 ±
0.000

0.636 ±
0.000

NA 0.976 ±
0.000

0.808 ±
0.000

0.734 9

ForwardSelection 0.991 ±
0.000

0.780 ±
0.000

0.582 ±
0.000

0.797 ±
0.000

0.751 ±
0.000

0.982 ±
0.000

0.818 ±
0.000

0.803 8

BackwardSelection 0.996 ±
0.000

1.000 ±
0.000

0.726 ±
0.000

0.628 ±
0.000

0.675 ±
0.000

0.970 ±
0.000

0.784 ±
0.000

0.826 6

AdaptiveNoise 0.996 ±
0.000

1.000 ±
0.000

0.731 ±
0.029

0.620 ±
0.017

0.667 ±
0.000

0.973 ±
0.002

0.854 ±
0.004

0.834 5

AdaptiveSLS 0.996 ±
0.000

1.000 ±
0.000

0.732 ±
0.024

0.623 ±
0.025

0.751 ±
0.000

0.974 ±
0.003

0.830 ±
0.007

0.844 4

SoftSLS 0.996 ±
0.000

1.000 ±
0.000

0.796 ±
0.005

0.626 ±
0.023

0.749 ±
0.001

0.974 ±
0.003

0.848 ±
0.007

0.856 3

SLS4FS (Fχ2) 0.996 ±
0.000

1.000 ±
0.000

0.803 ±
0.006

0.734 ±
0.008

0.678 ±
0.002

0.982 ±
0.002

0.845 ±
0.002

0.862 2

SLS4FS (Pr = 0.1) 0.996 ±
0.000

1.000 ±
0.000

0.795 ±
0.006

0.717 ±
0.008

0.673 ±
0.000

0.982 ±
0.001

0.829 ±
0.003

0.856 3

SLS4FS (F0s) 0.996 ±
0.000

1.000 ±
0.000

0.804 ±
0.012

0.774 ±
0.005

0.749 ±
0.003

0.980 ±
0.002

0.843 ±
0.004

0.878 1

SLS4FS (adaptive) 0.996 ±
0.000

0.790 ±
0.019

0.796 ±
0.008

0.724 ±
0.007

0.677 ±
0.001

0.982 ±
0.001

0.684 ±
0.009

0.807 7

and Support Vector Machine. SLS4FS produces competitive results on several different
datasets in experiments, at modest computational cost, thus reflecting our goals of
maximizing model accuracy while controlling training time.

These are a few areas for future work: First, it would be useful to more systematically
vary SLS4FS hyperparameters including Pr and Pn. Second, we plan to investigate other
classifiers and even larger datasets with more features. Third, it would be interesting
to automatically optimize the hyperparameters of SLS4FS [7, 23, 36], considering the
varying computational costs of search steps for different computers and datasets. Fourth,
it could be interesting to compare SLS4FS to other methods, such as tabu search,
simulated annealing, and evolutionary algorithms. Fifth, we plan to further study SLS4FS
from a theoretical perspective, using Markov chain hitting time analysis.
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