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Abstract. The present study aims at improving corrosion resistance of magnesium 

nanocomposites through autocatalytic Ni-P coating. Electroless Ni-P coatings with 

different concentration of sodium hypophosphite are deposited on 2% WC 

incorporated magnesium nanocomposites (AZ31-2WC) and the coated samples are 

further heat-treated. Basic characterizations and compositional analyses are done by 

using scanning electron microscope (SEM), energy dispersive x-ray analysis (EDAX), 

and X-ray diffraction analysis (XRD). Microhardness values of the developed 

materials are also evaluated. The attempt is made to improve corrosion resistance of 

AZ31-2WC by modifying surface roughness. Corrosion characteristics of Ni-P coated 

AZ31-2WC nanocomposites are examined by performing potentiodynamic polarization 

test and electrochemical impedance spectroscopy (EIS). Corrosion resistance improves 

with enhancement of surface quality. Corrosion resistance of AZ31-2WC 

nanocomposite also improves due to application of Ni-P coating. Finally, corrosion 

morphologies are scrutinized by SEM micrographs of corroded surface. 
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1. INTRODUCTION 

Automobile industries are in search of lightweight materials due to the sky rocketing 

price of fuels and ever-stricter emission norms. In this regard, magnesium and 

magnesium-based composites have got attention of research fraternity, as they possess 

noticeable properties like high strength/weight ratio, superior hardness, high stiffness and 

good castability [1]. Accordingly, automotive sectors are trying to reinstate different 

ferrous components (transmission cases, steering shaft, power trains, housings, pistons 
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etc.) with magnesium based lightweight materials [2]. Literature reveals that incorporation 

of ceramic-based reinforcements can provide enhanced mechanical and tribological 

properties. However, particle size (micro/nano) of reinforcement phases also has 

noteworthy importance along with types of reinforcements while trying to attain enhanced 

properties. Usually, a higher amount of reinforcement is needed for micron size 

reinforcement compared to nano-sized reinforcements. Researchers reported that nearly 

two percentage of nano-sized reinforcement is adequate to achieve desired properties [3]. 

In this context, the researchers have fortified nanoparticles like SiC, TiC, TiB2, WC, 

ZrO2, Al2O3, BN, ZnO, graphite in magnesium matrix [3-9]. It was observed that 

mechanical and tribological properties are enhanced due to incorporation of those 

nanoparticles having varying weight percentage. Consequently, Banerjee et al. [9-12] 

incorporated different wt. % of WC nanoparticles in AZ31 matrix through ultrasonic 

vibration associated stir casting method and evaluated mechanical as well as tribological 

behavior at different experimental conditions. Microhardness, nanohardness and elastic 

modulus of 2% WC incorporated magnesium nanocomposites (AZ31-2WC) were found 

to be enhanced by 53%, 122% and 170%, respectively, compared to AZ31 alloy. Even 

tribological behavior (friction and wear) of Az31-2WC nanocomposite possessed 

significant improvement comparing to AZ31 alloy in dry sliding, under elevated 

temperature conditions and also in abrasive conditions for different parametric variations 

of sliding speed, load, and sliding distance. Thus, overall AZ31-2WC nanocomposite is 

found to possess excellent mechanical and tribological properties. However, the chemical 

affinity of magnesium-based materials in aqueous solution makes it difficult to conduct 

electrochemical treatment. Even the existence of other alloying elements possesses 

electrochemical heterogeneity and increases complicacy [13]. Accordingly, corrosion 

characteristics of AZ31-2WC nanocomposite get deteriorated compared to AZ31 alloy 

[14]. However, improved corrosion resistance is essential for better durability; the same 

can be achieved through surface modification and treatment. Consequently, surface 

treatments of magnesium-based materials are of immense importance for various 

applications. In this respect, enhancement of surface quality and employment of coating 

(organic, inorganic, metallic) on magnesium are widely acknowledged [15]. To enhance 

surface quality, sample surface should be polished properly. Alvarez et al. [16] revealed 

the importance of surface roughness on corrosion behavior. Walter and Kannan [17] 

iterated that corrosion tendency of AZ91 alloy enhanced with enhancement in surface 

roughness.  

Among different coating methods, electroless nickel (EN) coating on magnesium is 

increasingly used to enhance corrosion resistance since a uniform layer can be formed on 

the material surface without having any curtailment on shape [18]. Literature shows that 

EN coating can impart a high level of corrosion resistance making it important for 

electronic industry [19]. Microstructure of coatings can be further modified by applying 

heat treatment that influences corrosion behavior. Mahallawy et al. [20] have investigated 

the effect of Ni-P coating on corrosion characteristics of AZ31B, AE42 and ZRE1 

magnesium alloys and reported significant improvement in hardness and corrosion 

resistance. Elsentriecy and Azumi [21] deposited Ni-P coating on AZ91D alloy and 

examined corrosion characteristics in 3.5% NaCl solution. Experimental results revealed 

the highest corrosion resistance since the coated sample and coating layer provided 

complete coverage to the substrate. Wang et al. [22] deposited Ni-P coating on AZ31 
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alloy using electroless plating technique and annealing was also done on the coated 

sample. The coated sample possessed higher hardness than the substrate; crystallization 

further improved hardness value. Electrochemical polarization study revealed the best 

corrosion resistance for the coated sample followed by crystallized sample and substrate. 

Abdi-Alghanab et al. [23] developed electroless Ni-P coating on AM60B magnesium 

alloy considering LDH coating as under-layer and hydrothermal processing was further 

conducted for different processing time. Corrosion resistance was found to enhance 

linearly with increase in processing time. Corrosion current density (iCorr) of sample 

processed for 8 hours was almost 1/7 times of sample processed for 2 hours. Buchtik et al. 

[24] investigated corrosion behavior of electroless Ni-P coated ZE10 magnesium alloy in 

0.1 M NaCl solution. Presence of Ni-P coating resulted in significant improvement in 

corrosion resistance.  

Thus, extensive review of existing literature reveals that incorporation of nanoparticles 

improves the strength and tribological characteristics while deposition of electroless Ni-P 

coating may impart higher corrosion resistance. This will essentially yield high strength 

magnesium-based material having higher corrosion resistance. To the best of authors’ 

knowledge, such studies have not been reported in literature. The present study tries to fill 

in that gap in the referential literature. In this study, autocatalytic Ni-P coating is 

deposited on AZ31-2WC nanocomposite to enhance its corrosion resistance. Role of 

surface roughness, Ni-P coating and heat treatment on corrosion resistance is 

experimentally evaluated. Corrosion morphology is further studied using scanning 

electron microscopy. 

2. EXPERIMENTAL DETAILS 

2.1 Fabrication of nanocomposites 

In the present study, AZ31 magnesium alloy is considered as base matrix and 2 wt% 

of WC nanoparticles (80 nm) are used as reinforcement to produce AZ31-2WC 

nanocomposite. Compositional details of AZ31 alloy and WC particles are presented in 

Table 1 and Table 2, respectively. AZ31-2WC nanocomposite is developed in a specially 

oriented furnace that has resistance heating facility, powder heating set up, mechanical 

stirrer, ultrasonic vibrator, mold heater, and bottom pouring arrangement (Fig.1). Initially, 

AZ31 alloy is fed into the crucible of the main furnace and temperature is set at 750°C. 

Simultaneously, the required amount of WC particulates is heated at 300°C before 

fortifying in the melt. Pre-heating typically helps to eliminate moisture content, enhance 

wettability and protect reinforcements from getting burn out. Alloy ingots melt after a 

definite time. The mechanical stirrer is used inside the melt at a speed of 500 rpm to 

generate vortex. Pre-heated WC particulates are injected inside that vortex constantly.  

Table 1 Chemical conformation of AZ31 alloy 

Element Si Fe Zn Al Mn Mg 

Wt. % 0.10 0.005 1.20 3.20 0.28 Balance 
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After completion of particle injection, the stirring speed is escalated to 600 rpm and 

continued for 5 minutes. Afterwards, the mechanical stirrer is replaced by the ultrasonic 

horn to provide a high frequency ultrasonic vibration in the mixture. Ultrasonic vibration 

is continued for 5 minutes. Next, vacuum pouring is done through the bottom pouring 

hole. Finally, the solidified bar is removed from the split die. Samples are then machined 

properly to produce desired samples. Fabrication method is minutely discussed elsewhere 

[9]. 

Table 2 Features of WC particles 

Features WC nano-powder 

Purity 99.9% 

Elastic modulus (E) 530-700 GPa 

Melting point 2870°C 

Color Black 

Particle Size 80 nm 

Table 3 Specifications for electroless Ni-P bath 

Bath parameters Details 

Nickel sulfate 20 g/l 

Nickel chloride 20 g/l 

Lead acetate 1 mg/l 

Sodium succinate 12 g/l 

Sodium hypophosphite 10-20 g/l 

Temperature 90 ºC 

pH 4.5 

Volume of bath 200 ml 

Coating duration 2 hours 

2.2 Coating deposition  

AZ31-2WC nanocomposite samples with size (20×20×8) mm of roughness grade Ra = 

0.4 μm are prepared for Ni-P coating deposition. Coating deposition set up is shown as 

Fig. 2. Primarily, the substrates are rinsed properly to get rid of any foreign particle and 

corrosion products. Then the samples are air dried followed by pickling treatment in 18% 

HCl for 1 min and rinsed in deionised water. Initially, a number of trials were performed 

to finalize composition of bath. Bath decomposition after 15-30 minutes was encountered. 

Bath decomposition was prevented by adding a limited amount of lead acetate. Details of 

the bath constituents and the operating parameters are tabulated in Table 3. Acid-pickled 

and rinsed sample is dipped in palladium chloride solution for 30 sec to activate it and 

finally dipped in the heated bath (90°C). Palladium chloride helps to achieve good 

deposition rate from the very beginning. Coating process is continued for 2 hours during 

which pH of solution is maintained at 4.5. After completion of coating process, samples 

are taken out of the bath and washed in distilled water. Two different levels of sodium 
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hypophosphite (10 g/l & 20 g/l) are considered. Some coated samples are also heat treated 

at 400°C for 1 hour and air-cooled. 

 

Fig. 1 Pictorial view of fabrication unit 

 

Fig. 2 Pictorial view of coating deposition set up 

2.3 Characterization 

Basic characterization of base alloy, AZ31-2WC nanocomposite and coated samples 

are performed with the help of SEM (JEOL, Japan & Zeiss) micrographs. Compositional 

analyses of those samples are carried out using EDX (JSM-6360, Japan) and XRD 
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analysis (Rigaku, Ultima III). For XRD, Cu Kα source is employed and analysis is 

performed between scanning ranges of 20°-90° for scanning rate of 2° 2θ/min. 

Characterization of base alloy and nanocomposite is performed after preparing the sample 

surfaces. Samples are initially polished with different grit (1500, 2000 & 2500) emery 

paper. Then those samples are polished on fine clothes using distilled water and polishing 

agent. Final polished samples are etched in acetic-picral solution (4 g picric acid, 10 ml 

acetic acid, 70 ml ethanol and 10 ml distilled water). Corroded samples are finally 

characterized using SEM micrographs. 

2.4 Microhardness 

Vicker’s microhardness of AZ31 alloy, AZ31-2WC nanocomposite, as-coated Ni-P 

sample and heat-treated sample are studied according to ASTM E384-16 with the help of 

the UHL microhardness tester (Technische Mikroskopie). A diamond indenter having 

apex angle 136° is used for this study. As experimental condition, 50 gf load and 10 s 

dwell time have been fixed. Typically, the average of five readings is taken as 

microhardness value. 

2.5 Surface Roughness Test 

Effect of surface roughness (SR) on corrosion behavior is widely acknowledged by 

scientific community. Accordingly, in this study initial SR of the specimens is assessed 

with 3D surface profiler (Bruker). Afterwards, a similar sample is smoothened with 

abrasive paper (400 grit, SiC) and SR is measured with the same instruments. Surface 

profiler provides 2D as well as 3D surface plots of the tested specimens in attached 

computerized system. 

2.6 Corrosion Study 

Corrosion behavior of the developed samples is investigated by performing 

potentiodynamic polarization test and electrochemical impedance spectroscopy (EIS) using 

3.5% NaCl solution in a potentiostat (Gill AC, UK). Contact area of each sample with 

electrolyte is 1 cm2. Composite and coated specimens are cleaned properly using acetone 

and employed as working electrode. The working electrode is attached to the potentiostat at 

actual position. Saturated calomel electrode is chosen as reference electrode because it 

comes up with steady potential. Here, platinum electrode is considered as auxiliary electrode 

as it helps alternate current to find an alternative way in electrolyte. These two electrodes are 

placed properly in the glass cylinder and working electrode (sample) is clamped properly so 

that 1 cm2 area comes in contact with electrolyte solution. Open circuit voltage takes 15 

minutes to become steady. The potentiostat coupled with a computerized system helps to 

explore the corrosion results. For this study, the corrosion potentials at the beginning and 

end of study are -250 mV and 250 mV whilst the scanning rate is 1 mV/s. EIS results are 

scrutinized with the pre-installed software with the best fitting semi-circle technique. 

Corrosion current density (icorr) and potential (Ecorr) are examined from the Tafel plot by the 

Tafel extrapolation technique. 
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3. RESULTS AND DISCUSSION 

3.1 Characterization 

Basic characterization of the developed materials is performed using SEM 

micrographs, EDX analysis and XRD analysis. Primarily, SEM micrographs are 

examined to check the distribution of reinforcement phase in matrix. SEM micrographs of 

AZ31, AZ31-2WC, as-coated sample and heat-treated sample are presented in Figs. 3a, 

3b, 3c & 3d, respectively. In SEM micrographs of AZ31 and AZ31-2WC, α-Mg and β-

Mg17Al12 are present. SEM micrograph of nanocomposite (Fig. 3b) discloses clear 

composite structures having finer grain structures. WC particles are almost uniformly 

dispersed in matrix without having any significant agglomeration. SEM micrograph of as-

coated sample surface (Fig. 3c) is optically smooth without having any significant 

porosity and surface damage. Many globular particles are observed on the surface of as-

coated sample. SEM micrograph of heat-treated sample (Fig. 3d) possesses some 

modifications in both microstructure and crystal structure. After heat treatment, crystal 

growths of microcrystalline deposits enhance. 

 

(a)  (b) 

(c)  (d) 

Fig. 3 SEM micrograph (a) AZ31 alloy, (b) AZ31-2WC, (c) Ni-P coating and (d) Heat-

treated Ni-P coating 

Furthermore, compositional details of samples are scrutinized using EDAX and XRD 

analysis. EDAX spectrum of AZ31-2WC and as-coated Ni-P coating is shown in Figs. 4a 

and 4b, respectively. Fig. 4a shows spectrums of Mg, Zn, W, C and O. Basic elements of 

base alloy are present. Peak of W confirms inclusion of WC particles. However, the exact 
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percentages of each element are not present as a small area is scanned and particles are of 

nano-metric scale. EDAX spectrum of as-coated (Fig. 4b) sample shows peak of Ni and 

P. Basic composition of as-coated sample is determined with regard to wt.% of Ni and P 

from EDAX spectrum. Weight percentages of Ni and P for as-coated and heat-treated 

samples are tabulated in Table 4. Amounts of phosphorous in as-coated and heat-treated 

sample are 9.2% and 11.4%, respectively. Hence, coatings recline in high phosphorous 

scale. Typically, crystallinity as well as microstructural integrity highly build upon the 

amount of phosphorous which consequently decides hardness value. From EDAX result 

amorphous nature of coating can be expected. Phase structures are further revealed by 

XRD study. XRD results (Fig. 5a) of AZ31-2WC reveals peak of Mg (2θ = 32.16°, 

34.58°, 48.14°, 57.17° & 63.54°), WC (36.01° & 48.18°) and W2C (36.01° & 48.18°). 

XRD result of heat-treated coating sample is illustrated in Fig. 5b. Fig. 5b possesses peak 

of Ni, Ni2P and Ni3P. This result is in line with phase transformation characteristics of 

amorphous coating (Ni-P) developed through EN method. 

(a  )  

 (b)   

Fig. 4 EDAX spectra (a) AZ31-2WC nanocomposite and (b) Ni-P coated AZ31-2WC 

sample 

Table 4 Wt. % of different elements in coatings 

Sample % of Nickel % of phosphorous Total 

As-coated 90.8 9.2 100 

Heat treated (400°C) 88.6 11.4 100 
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(a)  

(b)  

Fig. 5 XRD plot (a) Mg-2WC nanocomposite and (b) Heat-treated coating sample 

 

Fig. 6 Microhardness plot: a comparison between base alloy AZ31, nanocomposite 

AZ31-2WC, as-deposited Ni-P coating and heat treated Ni-P coating 
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3.2 Microhardness 

It is well established in literature that incorporation of reinforcements or deposition of 

coating enhances microhardness of base alloy. Effects of incorporation of WC particles 

and deposition of Ni-P coating on microhardness are shown in Fig. 6. It is observed that 

incorporation of 2wt. % of WC enhances microhardness by 52.45% as compared to AZ31 

alloy. As-coated Ni-P (20 g/l) helps to enhance microhardness value significantly. 

Microhardness value enhances by almost seven times than the base alloy for as-coated Ni-

P sample while the heat-treated coating sample possesses around ten times enhancement. 

3.3 Corrosion test 

Potentiodynamic polarization plots of AZ31, AZ31-2WC and polished sample (AZ31-

2WC polished with 400 grit SiC paper) are shown in Fig. 7. Each plot contains anodic 

section and cathodic section. Study of anodic section is necessary to examine corrosion 

characteristics as anodic section mainly helps to understand transformation technique of 

material from sample surface [25]. For clarity, surface roughness profile of polished 

AZ31-2WC sample is shown in Fig. 8 and surface roughness values of normal sample and 

polished sample are tabulated in Table 5. Fig. 7 illustrates that corrosion performance 

initially decreases due to incorporation of 2wt. % of WC but polished sample possesses 

better corrosion resistance. However, no noticeable differences in cathodic current values 

are observed. Hence, corrosion characteristics of examined materials are mainly 

contingent on anodic characteristics. However, clarity can be brought by precisely 

calculating current density (icorr) and corrosion potential (Ecorr). Potentiodynamic 

polarization plots are extrapolated by tafel extrapolation to compute values of Ecorr and 

icorr for each curve. Computed values are presented in Table 6. Literature reported that 

subordinate value of icorr and superior value of Ecorr imply better corrosion characteristics 

[26]. Table 6 yields that polished sample possesses better corrosion resistance than base 

alloy and AZ31-2WC nanocomposite as corrosion potential of polished sample is -1.42V 

whereas that of AZ31 is -1.43V. This trend is in line with observations reported in 

literature [16]. 

 

Fig. 7 Potentiodynamic polarization plot for AZ31, AZ31-2WC and polished samples 
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Table 5 Surface roughness of normal sample & polished sample 

Sample Roughness (Ra), μm 

Normal sample 0.916 

Polished sample 0.568 

 

Fig. 8 Surface roughness profile of polished AZ31-2WC sample 

Potentiodynamic polarization plot of as-coated Ni-P samples with different NaH2PO2. 

H2O concentrations (10 g/l & 20 g/l) and corresponding heat-treated samples are 

presented in Fig. 9. Tafel extrapolation results of these plots are presented in Table 6. It is 

noticed that icorr value decreases remarkably compared to base alloy and AZ31-2WC 

sample due to application of Ni-P coating on AZ31-2WC sample. Ecorr value of as-coated 

sample also swings toward positive direction compared to substrate sample (AZ31-2WC). 

Moreover, icorr decreases further and Ecorr enhances as concentration of NaH2PO2. H2O 

changes from 10 g/l to 20 g/l. These results iterate that corrosion resistance of AZ31-

2WC enhances due to application of Ni-P coating and corrosion resistance enhances 

further with enhancement in concentration of NaH2PO2.H2O. Similar conclusion has been 

drawn by Diegle et al. [27]. Potentiodynamic polarization curves of heat-treated coated 

samples are also presented in Fig. 9 and Tafel extrapolation results are presented in Table 

6. For heat-treated samples, no specific trend is available as corrosion resistance 

deteriorates compared to as-coated sample for 10 g/l heat-treated sample while corrosion 

resistance enhances for 20 g/l heat treated sample compare to as-coated sample. The 
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highest corrosion resistance is observed for the heat-treated sample having 20g/l sodium 

hypophosphite. Literature reveals that a higher amount of sodium hypophosphite 

accompanies to incorporate a higher amount of phosphorous which helps to resist pitting 

corrosion [28]. 

Table 6 Tafel extrapolation results 

Material Ecorr (V) icorr (mA/cm2) 

AZ31 -1.43 0.0714 

AZ31-2WC -1.50 0.1162 

Polished sample  -1.42 0.0687 

As-coated (10 g/l) -0.485 0.0056 

Heat-treated (10 g/l) -0.502 0.0101 

As-coated (20 g/l) -0.394 0.0028 

Heat-treated (20 g/l) -0.377 0.0025 

 

Fig. 9 Potentiodynamic polarization plot of Ni-P coated samples and heat-treated samples 

 

Fig. 10 Nyquist plots of AZ31, AZ31-2WC and polished sample 
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Fig. 11 Nyquist plot of as-coated Ni-P samples heat-treated samples 

Corrosion characteristics are further analyzed with the help of Nyquist plot. Nyquist 

plots of AZ31, AZ31-2WC and polished sample tested at 3.5% NaCl are presented in Fig. 

10. Nyquist plots of each sample contain a high frequency capacitive loop, one medium 

frequency capacitive loop along with a low frequency inductive loop. Typically, 

rudimentary nature of plots is similar for AZ31, AZ31-2WC and polished samples apart 

from diameter of plots. This nature is similar to the findings of Wu et al. [29] who 

reported that polarization resistance is proportional to the diameter of capacitance loop. 

On the other hand, diameter of capacitance curve is also proportional to corrosion 

resistance. Thus, it can be concluded from Fig. 10 that sample polished with 400 grit 

paper is the most corrosion resistive one. Literature also reveals that high frequency 

capacitive arc relates electrolyte-surface film interface while low frequency capacitive arc 

signifies diffusion of ion between material and generated film. Low frequency inductive 

arc indicates localized corrosion due to electrolyte diffusion between film and material 

[25]. As the polished sample possesses the highest capacitive loop (Fig. 10) among these 

three samples (AZ31, AZ31-2WC & polished sample), it can be said that there must have 

more protective layer at film-electrolyte interface, which helps to protect the sample 

surface from destructive ions. 

Nyquist plot of as-coated Ni-P samples with varying sodium hypophosphite and 

corresponding heat-treated samples are presented in Fig. 11. Here Nyquist plot of all 

samples possess high frequency capacitive loop having single semicircular shape with 

varying diameter within frequency range of 10 kHz to 0.01 Hz. Similar shape with 

variation in diameter of semicircle signifies similar elementary mechanism of corrosion 

but for different amount of area. Literature reveals that diameter of capacitive loop 

indicate charge transfer resistance which is directly related to corrosion resistance of that 

sample. Hence, sample having capacitive loop with highest diameter is the most corrosion 

resistive one within experimental range. Among as-coated samples, the sample with 

sodium hypophosphite concentration 20 g/l shows semicircle with the highest diameter. 

Hence, that sample has the highest corrosion resistance. It is obvious from Fig. 11 that 

samples possess charge transfer controlled behavior in electrolyte solution. However, as-

coated sample having sodium hypophosphite concentration 10 g/l possesses proneness of 
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starting another semicircle. Probable reason of such nature is piercing by electrolyte and 

forming local electrochemical cell which deteriorates corrosion resistance. Similar 

observation is noted by Zhang et al. [30]. Obtained curves are analyzed to obtain values 

of Rct and Cdl. Among tested samples, as-coated sample with sodium hypophosphite 

concentration 20 g/l shows the highest Rct value (34 kohm.cm2) and the lowest Cdl value 

(26 μF). Rct value and Cdl value of as-coated sample with sodium hypophosphite 

concentration 10 g/l is 14.7 kohm.cm2 and 41 μF, respectively. Literature revealed that 

corrosion characteristics of Ni-P coating mainly rely on amorphous nature of coating and 

amount of phosphorous. Ni-P coating having high phosphorous content results higher 

corrosion resistance because of more amorphous and homogeneous structure. Structural 

homogeneity and higher phosphorous content reduce porosity of coating. Reduced 

porosity also protects sample surface from infiltration of corrosive parameters. These 

findings are in line with literature [30]. Nyquist plot of heat-treated coated samples are 

also presented in Fig. 11. It is observed that the largest semicircle is present for heat-

treated coating sample with 20 g/l sodium hypophosphite. Hence, this sample is the most 

corrosion resistive one among all tested samples. EIS results are following same trend of 

previously discussed tafel plot. Among heat-treated samples, sample with sodium 

hypophosphite concentration 20 g/l shows the highest Rct value (59.5 kohm.cm2) and the 

lowest Cdl value (21.9 μF). Hence, this is the most corrosion resistive sample among heat-

treated sample. Literature reveals that Ni-P coating become denser as well as less porous 

after heat treatment. Heat treatment also generates secondary phase like NiaPb which 

protects the sample surface from corrosion [31]. Similar phenomenon may have occurred 

for the present study. 

3.4 Corrosion morphology 

Corrosion characteristics of the developed materials are further analyzed using SEM 

images of corroded surfaces. SEM micrograph of corroded surface helps to understand 

typical corrosion mechanism which occurred during experimentation. SEM images of 

corroded surfaces of AZ31, AZ31-WC nanocomposite and polished sample are presented 

in Fig. 12. SEM micrographs of corroded zones of these three specimens are filled with 

volcano-like sediments which are mainly insoluble corrosion by-products. Cracks of 

different shapes and sizes are also present in corroded surfaces. Similar nature is also 

mentioned by Ascencio et al. [32] in their study. Literature also illustrated that cracks are 

usually formed because of dehydration of deposited layers [33]. Destructive electrolytes 

(Cl-) of NaCl solution infiltrate through those cracks and touch material surface. As a 

result, corrosion rate increases [17]. Hence, illustration of position, nature and intensity of 

crack is necessary to predict corrosion characteristics of AZ31, AZ31-2WC 

nanocomposite and polished sample. SEM micrographs (Fig. 12) clearly show that the 

corroded surface of the polished sample (Fig. 12c) contains lesser amount and intensity 

cracks than the corroded surfaces AZ31 (Fig. 12a) and AZ31-2WC (Fig. 12b). On the 

other hand, the corroded surface of AZ31 possesses lesser intensity cracks than the 

corroded surface of AZ31-2WC. Hence, the intensity of cracks lies in order of AZ31-

2WC > AZ31 > polished sample. So, the chances of penetration of Cl- ions are greater for 

AZ31-2WC followed by AZ31 and polished sample. Thus, corrosion resistance should lie 
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in order of polished sample > AZ31 > AZ31-2WC. Similar trend is observed in Tafel plot 

and Nyquist plot. 

(a) (b) 

(c) 

Fig. 12 SEM micrographs of corroded surface (a) AZ31, (b) AZ31-2WC and (c) Polished 

sample 

SEM images of as-coated and heat-treated (HT) samples are presented in Fig. 13. 

SEM images of as-coated and HT samples almost possess similar morphology; that is why 

coating having the highest corrosion resistance (Sodium hypophosphite-20 g/l) is 

discussed here for brevity. Very fine pores are present in the corroded surface of both as-

coated and heat-treated samples. These pores make route for electrolyte solution to reach 

the sample surface. Thus, galvanic cells are formed between Ni-P coat and substrate 

surface. Fig. 13 also shows that the pores in heat-treated samples are scanty compared to 

as-coated sample. That is why the heat-treated sample exhibits a much lesser deleterious 

effect compared to as-coated sample. Even the less porous nature of the heat-treated 

sample intercepts the propagation of harmful effect below the coating and protects the 

substrate surface. However, SEM images of both as-coated and HT samples do not 

possess cracks like substrates surface. Thus, as-coated and HT samples must result in 

superior corrosion resistance compared to base alloy, nanocomposite sample and polished 

sample, which is already shown by Tafel plot and Nyquist plot. Similar results are 

reported by El Mahallawy et al. [20]. 
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(a) (b) 

Fig. 13 Corroded surface (a) As-coated sample (Sodium hypophosphite-20 g/l) and (b) 

Heat-treated sample 

Over the years, EN coating has emerged as a widely acknowledged method for surface 

modification [34]. Nevertheless, the conventional coating methods (electro-deposition & 

electroless plating) suffer from environmental issues due to disposal of toxic elements 

[35]. As a result, the concepts of cleaner production using chemical vapor deposition 

(CVD) and physical vapor deposition (PVD) are coming up [36]. However, EN coating 

cannot be overlooked as it possesses some useful advantages like mass production 

capability, coating ability on any substrate and shape. Accordingly, incorporation of the 

concept cleaner production in electroless coating (making the bath more eco-friendly) is 

gradually drawing attention of researchers [37]. 

4. CONCLUSION 

In the present study, the result of fortification of WC nanoparticles in AZ31 alloy, 

surface roughness, Ni-P coating and its heat-treatment on corrosion behavior is examined 

using 3.5% NaCl solution. AZ31-2WC nanocomposites are produced using ultrasonic 

vibration supported stir casting technique. Electroless Ni-P coatings with different 

concentration of sodium hypophosphite (10 g/l & 20 g/l) are deposited on AZ31-2WC 

nanocomposite and the coated sample is further heat-treated. Conclusions from the 

present study are listed below: 

• SEM micrograph of nanocomposite reveals that the composite has finer grain 

structures. SEM micrograph of as-coated sample surface is optically smooth without 

having any significant porosity and surface damage. Many globular particles are observed 

on the surface of as-coated sample. EDAX analysis confirms inclusion of WC particles. 

Basic composition of as-coated sample is determined with regard to wt. % of Ni and P 

from EDAX spectrum. Amounts of phosphorous in as-coated and heat-treated sample are 

9.2% and 11.4%, respectively. XRD result of heat-treated coating sample illustrated peak 

of Ni, Ni2P and Ni3P. 

• Incorporation of 2wt. % of WC enhances microhardness by 52.45% compared to 

base alloy. Microhardness value enhances by almost seven times for as-coated Ni-P 
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compared to base alloy while heat-treated coating sample possesses around 10 times 

enhancement. 

• Potentiodynamic tests and EIS study are carried out using 3.5% NaCl solution for 

all samples. Among AZ31, AZ31-2WC and polished sample, polished sample possesses 

better corrosion resistance than base alloy and AZ31-2WC nanocomposite. Corrosion 

resistance of AZ31-2WC enhances due to deposition of Ni-P coating; it enhances further 

with higher concentration of NaH2PO2. H2O (20 g/l) in electroless bath. Heat-treated 

coating sample with 20 g/l sodium hypophosphite is the most corrosion resistive one 

among all tested samples. Very fine pores are present in corroded surface of both as-

coated and heat-treated samples. These pores make route for electrolyte solution to reach 

the sample surface. Pores in heat-treated samples are scanty compared to as-coated 

sample. That is why heat-treated sample exhibit a lesser deleterious effect compared to as-

coated sample. 
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