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Abstract. In this article, by using the same Fibonacci difference matrix F̂ and the no-
tion of ideal convergence of sequences in random 2–normed space in the same technique,
we have introduced new spaces of Fibonacci difference ideal convergent sequences with
respect to random 2 –norm and studied some inclusion relations, as well as topological
and algebraic properties of these spaces.
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1. Introduction

Let R and N denote the sets of real and natural numbers respectively. By ω
we denote the linear space of sequence of real numbers. c0, c and `∞ represent
sequence spaces of null convergent, convergent and bounded sequences respectively.
The approach to statistical convergence was done by Fast [6] and Steinhaus [19]
in 1951 independently. In 1999, Kostryko et al. [14] generalised the notion of
statistical convergence to ideal convergence and some properties of this interesting
generalization have been studied by Śalát et al. [17]. An ideal is a non–empty subset
of the set of natural numbers N which satisfies hereditary and additivity property,
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Corresponding Author: Ayhan Esi, Engineering Faculty, Department of Basic Engineering Sci-
ences, Malatya Turgut Ozal University, 44040 Malatya, Turkey | E-mail: ayhanesi@ozal.edu.tr
2010 Mathematics Subject Classification. Primary 40A35; Secondary 54E70, 46A70
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i.e., I ⊆ 2N such that A ∈ I with B ⊂ A implies B ∈ I and A ∪ B ∈ I whenever
A,B ∈ I. A non–empty family of sets F ⊆ 2N is said to be a filter on N if only if
φ /∈ F,A ∩ B ∈ F for A,B ∈ F and any superset of an element of F is in F . An
ideal I is non–trivial if I 6= 2N. A non–trivial ideal I is admissible if it contains all
singletons. A sequence x = (xn) ∈ ω is said to be I– convergent to L ∈ R if the
set {n ∈ N : |xn − L| ≥ ε} ∈ I for every ε > 0. If L = 0, then we say the sequence
is I– null. The concept of ideal convergence was studied from the sequence point
of view and linked with the summability theory by Hazarika and Savaş [11, 10].
The approach to construct sequence spaces by means of the domain of an infinite
matrix and with the help of the notion of ideal convergence was firstly used by
Śalát et. al [18] to introduce the sequence spaces (cI)A and (mI)A. The theory of
random 2–normed space was introduced by Gölet and studied some properties of
convergence and Cauchy sequence with respect to random 2–norm as well. Recently,
the notion of ideal convergence of sequences in the framework of random 2–normed
spaces defined by Mursaleen and Alotaibi [15].

In 2013, Kara defined the double band matrix matrix F̂ = (f̂nk) by:

f̂nk =


− fn+1

fn
, if k = n− 1

fn
fn+1

, k = n

0, 0 ≤ k < n− 1 or k > n

for all n, k ∈ N, where {fn}∞n=0 is the Fibonacci sequence defined by the recur-
rence relation f0 = f1 = 1 and fn = fn−1 + fn−2 satisfying some basic properties
and addressed the approach to construct sequence spaces by means of an infinite
matrix of particular limitation methods to introduced the Fibonacci difference se-
quence space

`∞(F̂ ) =
{
x = (xn) ∈ ω : sup

n∈N

∣∣∣ fn
fn+1

xn −
fn+1

fn
xn−1

∣∣∣ <∞}.
The domains c0(∆F ), c(∆F ) and l∞(∆F ) of the forward difference matrix ∆F in

the spaces c0, c and l∞ are introduced by Kizmaz [13]. Aftermore, the domain bvp of
the backward difference matrix ∆B in the space lp have recently been investigated
for 0 < p < 1 by Altay and Başar [1], and for 1 ≤ p ≤ ∞ by Başar and Altay [2].
Quite recently, by combining the definitions of ideal convergence and the Fibonacci
difference matrix F̂ , Khan et al. [12] have introduced some new Fibonacci difference
sequence spaces

λ(F̂ ) = {x = (xn) ∈ ω : F̂ x = ((F̂ x)n) ∈ λ},

for λ = cI0, cI and `I∞, the spaces of all I–null and I–convergent sequences,where the
sequence F̂ x = ((F̂ x)n) is the F̂–transform of the sequence x = (xn) ∈ ω defined
as follows:

F̂ (x) = ((F̂ x)n) =

{
f0
f1
x0, n = 0
fn
fn+1

xn − fn+1

fn
xn−1, n ≥ 1.
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For more work on difference sequence spaces and Fibonacci difference sequence
space please see the references [16, 4, 5].

In this article, by using Fibonacci difference matrix F̂ and the notion of ideal
convergence in random 2–normed space, we introduce new sequence spaces and
study their topological and algebraic properties.

We recall some definitions which will be used throughout this article.

Definition 1.1. [7] A sequence x = (xn) ∈ ω is said to be statistically convergent
to L ∈ R if for every ε > 0, the natural density of the set {n ∈ N : |xn − L| ≥ ε} is
zero. We write st– limxn = L.

Definition 1.2. [12] An ideal is a subset of the set of natural numbers N which
satisfies hereditary and additivity property, i.e., I ⊆ 2N such that A ∈ I with B ⊂ A
implies B ∈ I and A∪B ∈ I whenever A,B ∈ I. A non–empty family of sets F ⊆ 2N

is said to be a filter on N if only if φ /∈ F,A∩B ∈ F for A,B ∈ F and any superset
of an element of F is in F . An ideal I is non–trivial if I 6= 2N. A non–trivial ideal
I is admissible if it contains all singletons. A sequence x = (xn) ∈ ω is said to be
I–convergent to L ∈ R if n ∈ N : |xn − L| ≥ ε ∈ I for every ε > 0. If L = 0, then
we say that the sequence is I–null.

Definition 1.3. [15] A function f : R→ R+
0 is said to be a distribution function if

it is non–decreasing and left continuous such that inf
t∈R

f(t) = 0 and sup
t∈R

f(t) = 1. By

D+, we denote the set of all distribution functions with f(0) = 0. For a ∈ R+
0 , Ha ∈

D+

Ha(t) =

{
1, t > a

0, t ≤ a

Definition 1.4. [15] A triangular norm is a continuous map ∗ : [0, 1] × [0, 1] →
[0, 1], ([0, 1], ∗) is an abelian monoid with unit one and a ∗ b ≥ c ∗ d whenever a ≥ c
and b ≥ d for all a, b, c, d ∈ [0, 1]. A triangle τ is a binary operation on D+ which
is commutative, associative and τ(f,H0) = f for every f ∈ D+.

Definition 1.5. [8] Let X be a vector space with dimension more than 1. A func-
tion ‖., .‖ : X ×X → R with the following properties:

(1) ‖x1, x2‖ = 0 if and only if x1, x2 are linearly dependent,

(2) ‖x1, x2‖ = ‖x2, x1‖,

(3) ‖αx1, x2‖ = |α|‖x1, x2‖, α ∈ R,

(4) ‖x1 + x2, x3‖ ≤ ‖x1, x3‖+ ‖x2, x3‖.

Then (X, ‖., .‖) is called a 2–normed space.
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Definition 1.6. [9] Let X be a linear space of dimension greater than 1, ∗ denote
a t norm. F : X×X → D+ is said to be random 2–norm if the following conditions
are satisfied:

(1) F(x1, x2; t) = H0(t) if x1, x2 are linearly dependent,

(2) F(x1, x2; t) 6= H0(t) if x1, x2 are linearly independent,

(3) F(x1, x2; t) = F(x2, x1; t) for all x1, x2 ∈ X,

(4) F(αx1, x2; t) = F(x1, x2; t
|α| ) for t > 0, α 6= 0,

(5) F(x1, x2, x3; t1 + t2) ≥ F(x1, x3; t1) ∗ F(x2, x3; t2) for all x1, x2, x3 ∈ X and
t1, t2 ∈ R+

0 .

Then (X,F , ∗) is called a random 2–normed space (R2NS).

Definition 1.7. [15] A sequence x = (xn) ∈ X is F– convergent to L in (X,F , ∗)
if there exists n0 > 0 such that F(xn − L, z; ε) > 1 − θ whenever n ≥ n0 for every
ε > 0, θ ∈ (0, 1) and non–zero z ∈ X. We denote it as F– lim

n
xn = L.

Definition 1.8. [15] Let (X,F , ∗) be a R2NS. A sequence x = (xn) ∈ X is I–
convergent to L in (X,F , ∗) if for every ε > 0, θ ∈ (0, 1) and non–zero z ∈ X if the
set {n ∈ N : F(xn − L, z; ε) ≤ 1− θ} ∈ I. We write IR2N–lim x = L.

Definition 1.9. [17] A sequence space E is said to be solid if (αnxn) ∈ E for
(xn) ∈ E where (αn) is a sequence of scalars such that |αn| ≤ 1.

Definition 1.10. [17] Let K = {k1 < k2 < · · ·} ⊆ N and E be a sequence space.
A K step space of E is a sequence space λEk = {(xkn ∈ ω : (xn) ∈ E}. A canonical
pre-image of a sequence (xkn) ∈ λEk is a sequence (yn) ∈ ω defined as follows:

yn =

{
xn, if n ∈ K,
0, otherwise.

A canonical preimage of a step space λEk is a set of canonical preimages of all
elements in λEk , i.e., y is in canonical preimage of λEk if and only if y is canonical
preimage of some x ∈ λEk .

Definition 1.11. [17] A sequence space E is said to be monotone if it contains the
canonical preimage of all its step spaces i.e., if for all infinite K ⊆ N and (xn) ∈ E
the sequence (αnxn), where

αn =

{
1, if n ∈ K
0, otherwise.

Lemma 1.1. Every solid sequence space is monotone.
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2. Main Results

2.1. Some New Fibonacci Difference Ideal Convergent Sequence
Spaces

In the present section, we define Fibonacci difference spaces of I–convergent and
I–null sequences in a random 2–normed space. Also, we discuss some inclusion
relations topological and algebraic properties of these spaces. Throughout this
paper, ideal I is admissible ideal. For ε > 0, 0 < θ < 1 and non zero z in X, define

cIR2N
0 (F̂ ) := {x = (xn) ∈ X : {n ∈ N : F(((F̂ x)n), z; ε) ≤ 1− θ} ∈ I},

cIR2N (F̂ ) := {x = (xn) ∈ X : {n ∈ N : F(((F̂ x)n)− L, z; ε) ≤ 1− θ} ∈ I}.

Remark 2.1. We introduce an open ball with respect to R2N by means of the do-
main of the Fibonacci matrix, as follows:

B(((F̂ x)n), r, ε) := {y ∈ X : F((F̂ x)n)− ((F̂ y)n), z; ε) > 1−r for ε > 0, 0 < r < 1}.

Theorem 2.1. The spaces cIR2N
0 (F̂ ) and cIR2N (F̂ ) are vector spaces over R.

Proof. We shall prove the result for cIR2N (F̂ ). Let x = (xn) and y = (yn) ∈
cIR2N (F̂ ), then there exist L1, L2 ∈ X such that for ε > 0, θ ∈ (0, 1) and non–zero
z ∈ X, we have

A = {n ∈ N : F(((F̂ x)n)− L1, z;
ε

2|α|
) ≤ 1− θ} ∈ I,

B = {n ∈ N;F(((F̂ y)n)− L2, z;
ε

2|β|
) ≤ 1− θ} ∈ I,

where α and β are non–zero scalars in R. Choose η ∈ (0, 1) such that (1−θ)∗(1−θ) >
1− η. Consider

C = {n ∈ N : F((α(F̂ x)n) + (β(F̂ y)n))− (αL1 + βL2)) ≤ 1− η}.

We show C ⊆ A ∪ B or equivalently Ac ∩ Bc ⊆ Cc. Since Ac ∩ Bc ∈ F (I) so is
non–empty. Let m ∈ Ac ∩Bc ∈ F (I), then

F((α(F̂ x)n) + (β(F̂ y)n)− (αL1 + βL2), z; ε)

≥ F((α(F̂ x)m)− L1), z;
ε

2
) ∗ F((β(F̂ y)m)− L2), z;

ε

2
)

= F((F̂ x)m)− L1, z;
ε

2|α|
) ∗ F((F̂ y)m)− L2, z;

ε

2|β|
)

> (1− θ) ∗ (1− θ)
> 1− η.

Thus m ∈ Cc and therefore Ac ∩ Bc ⊆ Cc. Hence C ∈ I. The proof for cIR2N
0 (F̂ )

can be given in the same manner.
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Theorem 2.2. Let (X,F , ∗) be a random 2–space. Every open ball B((F̂ x)n), r, ε)
is an open set.

Proof.

B((F̂ x)n, r, ε) := {y ∈ X : F(((F̂ x)n)− ((F̂ y)n), z; ε) > 1− r, ε > 0, 0 < r < 1}

Let y ∈ B((F̂ x)n, r, ε) then by definition F(((F̂ x)n) − ((F̂ y)n), z; ε) > 1 − r, there
exists ε0 ∈ (0, ε) such that F(((F̂ x)n − ((F̂ y)n), z; ε0) > 1 − r. Put F(((F̂ x)n) −
((F̂ y)n), z; ε0) = r0, then for r0 > 1−r there exists s ∈ (0, 1) such that r0 > 1−s >
1 − r. For r0 > 1 − s, there exists r1 ∈ (0, 1) with r0 ∗ r1 > 1 − s. We show
B((F̂ y)n), 1− r1, ε− ε0) ⊂ B((F̂ x)n), r, ε).
Let w ∈ B(((F̂ y)n), 1−r1, ε− ε0). Then F(((F̂ y)n)− ((F̂w)n), z; ε− ε0) > r1. Now,

F(((F̂ x)n)− ((F̂w)n), z; ε)

≥ F(((F̂ x)n)− ((F̂ y)n), z; ε0) ∗ F(((F̂ y)n)− ((F̂w)n), z, ε− ε0)

≥ r0 ∗ r1
> 1− s
> 1− r

Thus we have, w ∈ B(((F̂ x)n), r, ε) so that
B(((F̂ y)n), 1− r1, ε− ε0) ⊂ B(((F̂ x)n), r, ε).

Remark 2.2. Let (X,F , ∗) be a random 2–normed space. Define τ IF (F̂ ) := {A ⊂
cIR2N (F̂ ) : for given x ∈ A, we can find ε > 0 and 0 < r < 1 such that
B((F̂ x)n), r, ε) ⊂ A}. Then τ IF (F̂ ) is a topology on cIR2N (F̂ ).

Remark 2.3. Since {Bx( 1
n ,

1
n )(F̂ ) : n ∈ N} is a local base at x, the topology τ IF (F̂ )

is first countable.

Theorem 2.3. Let (X,F , ∗) be a random 2–normed space. cIR2N
0 (F̂ ) and cIR2N (F̂ )

are Hausdorff spaces.

Proof. Let x, y ∈ cIR2N (F̂ ) with x 6= y. For ε > 0 and z 6= 0 ∈ X, r = F(((F̂ x)n)−
((F̂ y)n), z, ε) ∈ (0, 1). Given r0 ∈ (r, 1) there exists r1 such that r1 ∗ r1 ≥ r0. We
show the open balls B(((F̂ x)n), 1 − r1,

ε
2 ) and B(((F̂ y)n), 1 − r1,

ε
2 ) are disjoint.

Suppose on contrary w ∈ B(((F̂ x)n), 1− r1, ε2 ) ∩B(((F̂ y)n), 1− r1, ε2 ), then

F(((F̂ x)n)− ((F̂w)n), z;
ε

2
) > r1, and F(((F̂ y)n)− ((F̂w)n), z;

ε

2
) > r1

r = F(((F̂ x)n)− ((F̂ y)n), z; ε)

≥ F(((F̂ x)n)− ((F̂w)n), z;
ε

2
) ∗ F(((F̂w)n)− ((F̂ y)n), z

ε

2
)

> r1 ∗ r1
> r0

> r
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which is a contradiction. Hence cIR2N (F̂ ) is Hausdorff. Similarly we can prove for
cIR2N
0 (F̂ ).

Theorem 2.4. Let (X,F , ∗) be a random 2–normed space. Then cR2N (F̂ ) ⊂
cIR2N (F̂ ), where by cR2N (F̂ ) we denote the space of all Fibonacci convergent differ-
ence sequences defined as

{x = (xn) ∈ X : F(((F̂ x)n)− L, z; ε) > 1− θ}

where ε > 0, θ ∈ (0, 1) and z is non–zero element in X.

Proof. Let F– lim((F̂ x)n) = L. Then for every θ ∈ (0, 1) , ε > 0 and non–zero
z ∈ X, there exists N > 0 such that for all n ≥ N F(((F̂ x)n) − L, z; ε) > 1 − θ.
The set K(ε) = {k ∈ N : F(((F̂ x)k)− L, z; ε) ≤ 1− θ} ⊆ {1, 2, 3 · ··} and since I is
admissible, we have K(ε) ∈ I. Hence IR2N– lim F̂n(x) = L.

To show the strictness of the inclusion let us consider X = R2 with 2–norm
‖x, y‖ = |x1y2 − x2y1|, x = (x1, x2), y = (y1, y2) and a ∗ b = ab for all a, b ∈ [0, 1].
Define F(x, z; ε) = ε

ε+‖x,z‖ , for all x, z ∈ X. Define a sequence x = (xn) ∈ X such

that

((F̂ x)n) =

{
(
√
n, 0) if n is square,

(0, 0) otherwise.

For every 0 < θ < 1 and ε > 0, write

A(θ, ε) = {n ∈ N : F(((F̂ x)n)− L, z; ε) ≤ 1− θ}, L = (0, 0)

F(((F̂ x)n)− L, z; ε) =

{
ε

ε+
√
nz2

, if n is square,

1, otherwise.

Hence

lim
n
F(((F̂ x)n)− L, z; ε) =

{
0, if n is square,

1, otherwise.

Therefore x = (xn) is not convergent in (X,F , ∗). If we take I = Iδ = {M ⊆
N : δ(M) = 0}, then since A(θ, ε) ⊆ {1, 4, 9, 16, · · ·}, δ(A(θ, ε)) = 0. Thus
IR2N– lim((F̂ x)n) = L.

Theorem 2.5. The inclusion cIR2N
0 (F̂ ) ⊂ cIR2N (F̂ ) is strict.
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Proof. The inclusion cIR2N
0 (F̂ ) ⊂ cIR2N (F̂ ) is obvious. To show the strictness of the

inclusion, consider X = R2 with 2– norm ‖x, z‖ = |x1z2 − x2z1| and a ∗ b = ab.
Define F(x, z) = ε

ε+‖x,z‖ for ε > 0. Define x = (xn) ∈ X such that ((F̂ x)n) = (1, 1).

Then IR2N– lim((F̂ x)n) = 1, so x = (xn) ∈ cIR2N (F̂ ) \ cIR2N
0 (F̂ ).

Theorem 2.6. The space cIR2N
0 (F̂ ) is solid and monotone.

Proof. Let x ∈ cIR2N
0 (F̂ ). For θ ∈ (0, 1), ε > 0 and non–zero z ∈ X, we have

A = {n ∈ N : F(F̂ x)n), z;
ε

|α|
) ≤ 1− θ} ∈ I,

where α = (αn) is a sequence of scalars with |α| ≤ 1, then Ac ∈ F (I). Consider

B = {n ∈ N : F(((F̂αx)n), z; ε) ≤ 1− θ}.

If we show Ac ⊂ Bc, then we are done.

Let m ∈ Ac, then F(((F̂ x)m), z; ε) > 1− θ. Now

F(((F̂α x)m), z; ε) = F((α(F̂ x)m), z; ε) = F(((F̂ x)m), z;
ε

|α|
)

≥ F(((F̂ x)m), z; ε) ∗ F(0, z;
ε

|α|
− ε)

> 1− θ ∗ 1 = 1− θ

Thus B ∈ I so that (α x) ∈ cIR2N
0 (F̂ ). Therefore cIR2N

0 (F̂ ) is solid. By Lemma 1.1,

cIR2N
0 (F̂ ) is monotone.
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8. S. Gähler: 2-metrische räume und ihre topologische struktur. Math. Nachr. 26(1-4)
(1963), 115–148.

9. I. Golet: On probabilistic 2-normed spaces. Novi Sad J. Math. 35(1) (2005), 95–102.

10. B. Hazarika: Lacunary difference ideal convergent sequence spaces of fuzzy numbers.
J Intell Fuzzy Syst. 25(1) (2013), 157–166.

11. B. Hazarika and E. Savas: Some I-convergent lambda-summable difference sequence
spaces of fuzzy real numbers defined by a sequence of orlicz functions. Math Comput
Model. 54(11-12) (2011), 2986–2998.

12. V. A. Khan, R. K. Rababah, K. M. Alshlool, S. A. Abdullah and A. Ah-
mad: On ideal convergence fibonacci difference sequence spaces. Math. Nachr. 2018(1)
(2018), 199.

13. H. Kizmaz: Certain sequence spaces. Can. Math. Bull. 24(2) (1981), 169–176.
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