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Abstract. Using the domination parameters of Cayley graphs constructed out of Zp ×
Zm, where m ∈ {pα, pαqβ, pαqβrγ}, p, q, r are distinct prime numbers and α, β, γ are
positive integers, in this paper we have discussed the total and connected domination
number and diameter of these Cayley graphs.
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1. Introduction and Preliminaries

Let (G, ·) be a group and S = S−1 be a non empty subset of G not containing
the identity element e of G. The simple graph Γ whose vertex set V (Γ) = G
and edge set E(Γ) = {{v, vs}|v ∈ V (Γ), s ∈ S} is called the Cayley graph of G
corresponding to the set S and is denoted by Cay(G,S). By Zn we denote the
cyclic group of order n. For any vertex v ∈ V (Γ), the open neighborhood of v is
the set N(v) = {u ∈ V (Γ)|{u, v} ∈ E(Γ)} and the closed neighborhood of v is
the set N [v] = N(v) ∪ {v}. For a set X ⊆ V (Γ), the open neighborhood of X is
N(X) =

⋃
v∈X N(v) and the closed neighborhood of X is N [X ] = N(X) ∪ X [6].

A set D ⊆ V (Γ) is said to be a dominating set if N [D] = V (Γ) or equivalently,
every vertex in V (Γ)\D is adjacent to at least one vertex in D. The domination
number γ(Γ) is the minimum cardinality of a dominating set in Γ. A dominating
set with cardinality γ(Γ) is called a γ-set. A set T ⊆ V (Γ) is said to be a total
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dominating set if N(T ) = V (Γ) or equivalently, every vertex in V (Γ) is adjacent
to a vertex in T . The total domination number γt(Γ) is the minimum cardinality
of a total dominating set in Γ. A total dominating set with cardinality γt(Γ) is
called a γt-set. A graph Γ is said to be connected graph if there is at least one path
between every pair of vertices in Γ. The connected components of a graph are its
maximal connected subgraphs. A dominating set D of Γ is said to be a connected
dominating set if the induced subgraph generated by D is connected. The minimum
cardinality of a connected dominating set of Γ is called the connected domination
number of Γ and is denoted by γc(Γ), and the corresponding set is denoted by γc-set
of Γ. Let λ be the length of the longest sequence of consecutive integers in Zm,
each of which shares a prime factor with m. Dominating sets were defined by Berge
and Ore [1, 16]. The concept of total domination in graphs was initiated by E.J.
Cockayne and R.W. Dows and S.T. Hedetniemi [4]. S.T Hedetniemi, R.C. Laskar[7]
introduced the connected domination number in graphs. Madhavi [10] present the
concept of Euler totient Cayley graphs and their domination parameters studied by
Uma Maheswary and B. Maheswary [11]. Also some properties of direct product
graphs of Cayley graphs with arithmetic graphs discussed by Uma Maheswary and
B. Maheswary [13], and their domination parameters studied by Uma Maheswary
and B. Maheswary and M. Manjuri [12, 14, 15].

A walk is a sequence of pairwise adjacent vertices of a graph. A path is a walk
in which no vertex is repeated. The distance between two vertices of a graph is the
number of edges of the shortest path between them. The diameter of a connected
graph is the maximum distance between any two vertices of the graph. According
to this definition, the diameter of a disconnected graph is infinite, but if we consider
the diameter as the maximum finite shortest path length in the graph, this is the
same as the largest of diameters of the graph’s connected components. So in this
paper by diameter of a disconnected graph we mean the largest diameter of its
connected components. Let v, w ∈ V (Γ) then the distance between v, w is denoted
by d(v, w) and the diameter of Γ is denoted by diam(Γ) [2, 3].

Here we study the total and connected dominating sets and diameter of Cayley
graphs constructed out of Zp×Zm where m ∈ {pα, pαqβ, pαqβrγ}, p, q, r are distinct
prime numbers and α, β, γ are positive integers. The domination number of these
graphs are presented in [8] and we present some of the results without proofs .

Theorem 1.1. Let Γ = Cay(Zp × Zpα ,Φ) where Φ = ϕp × ϕpα . Then

1) γ(Γ) = 2 where p = 2 and α = 1.

2) γ(Γ) = 4 where p = 2 and α ≥ 2.

3) γ(Γ) = 3 where p ≥ 3 and α ≥ 1.

Theorem 1.2. Let Γ = Cay(Zp × Zpαqβ ,Φ) where Φ = ϕp × ϕpαqβ , p, q ≥ 2 and
α, β ≥ 1. Then γ(Γ) is given by Table 1.1.

Theorem 1.3. Let Γ = Cay(Zp ×Zpαqβrγ ,Φ) where Φ = ϕp ×ϕpαqβrγ , p, q, r ≥ 2
and α, β, γ ≥ 1. Then γ(Γ) is given by Table 1.2.
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Table 1.1: γ(Cay(Zp × Zpαqβ ,Φ))

Γ γ(Γ) Comments
Cay(Zp × Zpq,Φ) 4
Cay(Z2 × Z2αqβ ,Φ) 8 (α, β) 6= (1, 1)
Cay(Zp × Z2αpβ ,Φ) 6 (α, β) 6= (1, 1)
Cay(Zp × Zpαqβ ,Φ) 5 (α, β) 6= (1, 1)

p = 3, q ≥ 5 or q = 3, p ≥ 5
Cay(Zp × Zpαqβ ,Φ) 4 (α, β) 6= (1, 1)

p, q ≥ 5

Table 1.2: γ(Cay(Zp × Zpαqβrγ ,Φ))

.

Γ γ(Γ) Comments
Cay(Z2 × Z2qr,Φ) 8
Cay(Zp × Z2pr ,Φ) 8

Cay(Z2 × Z2αqβrγ ,Φ) 12 α 6= 1 or β 6= 1 or γ 6= 1
Cay(Zp × Z2αpβrγ ,Φ) 10 α 6= 1 or β 6= 1 or γ 6= 1

p = 3, r ≥ 5 or r = 3, p ≥ 5
Cay(Zp × Z2αpβrγ ,Φ) 8 α 6= 1 or β 6= 1 or γ 6= 1

p, r ≥ 5
Cay(Zp × Zpαqβrγ ,Φ) 6 ≤ γ(Γ) ≤ 8 α, β, γ ≥ 1

one of the prime factors is 3
Cay(Zp × Zpαqβrγ ,Φ) 5 p, q, r ≥ 5 and α, β, γ ≥ 1

Let p1, p2, . . . , pk be consecutive prime numbers, α, α1, α2, . . . , αk are positive inte-
gers and Φ = ϕ2 × ϕ

2αp
α1

1
p
α2

2
...p

αk
k
.

Theorem 1.4. Let Γ = Cay(Z2 × Z2αp
α1

1
p
α2

2
...p

αk
k
,Φ), where p1 = 3 and α ≥ 2.

Then γ(Γ) ≥ 4k + 4.

For p = 2, the Cayley graph Cay(Zp × Zm,Φ), where Φ = ϕp × ϕm and m
is a multiple of 2, is a disconnected graph with two connected components, say
Γ1 and Γ2, where V (Γ1) = {(1, v)|v is odd} ∪ {(0, v)|v is even} and V (Γ2) =
{(0, v)|v is odd} ∪ {(1, v)|v is even}. Since every Cayley graph Cay(G,S) is |S|-
regular (see for example [5]), we find that Γ is |Φ|-regular.

Let X be a set of consecutive integers in Zm such that for every x ∈ X , we have
gcd(x,m) > 1. In this case we call Xi a consecutive set. We use Xk

i to show that
the consecutive set Xi has k elements.

Let Γ = Cay(Zp × Zm,Φ). In Section 2. we calculate γt(Γ) and γc(Γ) and
diam(Γ) where m = pα. We consider the case m = pαqβ in Section 3. and the case
m = pαqβrγ is considered in Section 4.
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2. Total and connected domination number and diameter of

Cay(Zp × Zpα ,Φ)

Let p be a prime number, α a positive integer and Φ = ϕp×ϕpα . In this section, we
obtain the total and connected domination number and diameter of Γ = Cay(Zp ×
Zpα ,Φ).

Theorem 2.1. Let Γ = Cay(Zp × Zpα ,Φ). Then

1) diam(Γ) = 1 where p = 2 and α = 1.

2) diam(Γ) = 2 where p = 2, α ≥ 2 or p ≥ 3, α ≥ 1.

Proof. 1) In this case Γ ∼= 2K2, and clearly the diameter of Γ is 1.

2) Let p = 2 and α ≥ 2. Then Γ is a disconnected graph with two connected
components, say Γ1 and Γ2, where V (Γ1) = {(1, v)|v is odd} ∪ {(0, v)|v is even}
and V (Γ2) = {(0, v)|v is odd} ∪ {(1, v)|v is even}.

Let (u, v), (u
′

, v
′

) ∈ V (Γ1). Then we have the following two possibilities:

i) u = u
′

and v 6= v
′

. Obviously (u, v) and (u, v
′

) are not adjacent. This implies
that d((u, v), (u

′

, v
′

)) ≥ 2. On the other hand the vertex (u − 1, v − 1) is adjacent
to both vertices. So d((u, v), (u

′

, v
′

)) = 2.

ii) u 6= u
′

and v 6= v
′

. We know that u − u
′

∈ ϕ2 and v − v
′

is an odd integer.
Since all of the odd integers in Z2α to be included into a ϕ2α , hence v − v

′

∈ ϕ2α .
Thus (u, v) is adjacent to (u

′

, v
′

). So d((u, v), (u
′

, v
′

)) = 1.

Since (u, v) and (u
′

, v
′

) are arbitrary vertices of Γ1, hence the diameter of Γ1 is
2. Similarly the diameter of Γ2 is 2.

Let p ≥ 3 and α ≥ 1. Then Γ is connected graph where

V (Γ) = {(0, 0), . . . , (0, pα − 1), . . . , (p− 1, 0), . . . , (p− 1, pα − 1)}.

Assume that (u, v) and (u
′

, v
′

) are arbitrary vertices of Γ. Now we have the following
three possibilities:

i) u = u
′

and v 6= v
′

. Since (u, v) and (u
′

, v
′

) are not adjacent d((u, v), (u
′

, v
′

)) ≥
2. Let v and v

′

be multiple of p. Note that 0 is multiple of p. Then (u − 1, p− 1)
is adjacent to both (u, v) and (u

′

, v
′

). Let v and v
′

be non-multiple of p. Then
(u− 1, p) is common neighbor of (u, v) and (u

′

, v
′

). Now let one of either v or v
′

is
multiple of p. Without loss of generality let v is multiple of p and v

′

is non-multiple

of p. Suppose that v and v
′

are both even or odd. Then (u − 1, v+v
′

2
) is adjacent

to both (u, v) and (u
′

, v
′

). Since v − v
′

is even so v − v
′

is divisible by 2. Hence

v − v+v
′

2
= 2v−v−v

′

2
= v−v

′

2
∈ ϕpα and also v

′

− v+v
′

2
= v

′

−v
2

∈ ϕpα . Now assume

that one of either v or v
′

is even. Then (u − 1, 2v
′

) is common neighbor of (u, v)
and (u

′

, v
′

). Therefore d((u, v), (u
′

, v
′

)) = 2.

ii) u 6= u
′

and v = v
′

. In this case vertex (u
′′

, v−1) where u
′′

6= u, u
′

is adjacent
to both (u, v) and (u

′

, v
′

). Thus d((u, v), (u
′

, v
′

)) = 2.
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iii) u 6= u
′

and v 6= v
′

. If (u, v) and (u
′

, v
′

) be adjacent then d((u, v), (u
′

, v
′

)) =
1. If (u, v) and (u

′

, v
′

) be non-adjacent then similar to i) and ii), d((u, v), (u
′

, v
′

)) =
2. Therefore in this case diam(Γ) = 2.

Theorem 2.2. Let Γ = Cay(Zp × Zpα ,Φ). Then

1) γt(Γ) = 4 and γc(Γ) does not exist where p = 2 and α ≥ 1.

2) γt(Γ) = γc(Γ) = 3 where p ≥ 3 and α ≥ 1.

Proof. 1) Let p = 2 and α = 1. Then Γ ∼= 2K2, and obviously γt(Γ) = 4.

Assume that p = 2 and α ≥ 2. Then by [8, Theorem 2.1], γ(Γ) = 4 and
D = {(0, 0), (0, 1), (1, 0), (1, 1)} is a γ-set for Γ. Since (0, 0) and (0, 1) are adjacent
to (1, 1) and (1, 0), respectively. Hence D is a γt-set for Γ. Thus γt(Γ) = 4.

In this case Γ is a disconnected graph. Hence by the definition of connected
dominating set, γc-set does not exist for Γ

2) Let p ≥ 3 and α ≥ 1. By [8, Theorem 2.1], we find that γ(Γ) = 3 and
D = {(0, 1), (1, 0), (2, 2)} is a γ-set for Γ. Vertices of D dominate among themselves.
Therefore γt(Γ) = γc(Γ) = 3.

Example 2.1. Let Γ1 = Cay(Z2 × Z24 ,Φ) and Γ2 = Cay(Z3 × Z3,Φ), which are shown
in Figures 2.1 and 2.2, respectively. Clearly Γ1 is a disconnected graph with two con-
nected components. Thus γc-set does not exist for Γ1. Also, total dominating set of
Γ1, is {(0, 0), (0, 1), (1, 0), (1, 1)}. Note that total and connected dominating set of Γ2 is
{(0, 1), (1, 0), (2, 2)}.

(0, 0)

(1, 1)

(0, 1)

(1, 0)

(0, 3)

(0, 5)

(0, 7)

(0, 9)

(0, 11)

(0, 13)

(0, 15)

(1, 14)

(1, 2)

(1, 4)

(1, 6)

(1, 8)

(1, 10)

(1, 12)

(0, 2)

(0, 4)

(1, 15)

(1, 13)

(1, 11)

(1, 9)

(1, 7)

(1, 5)

(1, 3) (0, 14)

(0, 12)

(0, 10)

(0, 8)

(0, 6)

Fig. 2.1: The graph Γ1 = Cay(Z2 × Z24 ,Φ) and its total dominating set.
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(0, 0)

(0, 2)

(1, 0)

(1, 2)

(2, 0)

(2, 2) (0, 1)

(1, 1)

(2, 1)

Fig. 2.2: The graph Γ2 = Cay(Z3 ×Z3,Φ) and its total and connected dominating
set.

3. Total and connected domination number and diameter of

Cay(Zp × Zpαqβ ,Φ)

Let p, q be prime numbers, α, β positive integers and Φ = ϕp × ϕpαqβ . In this
section, we find the total and connected domination number and diameter of Γ =
Cay(Zp × Zpαqβ ,Φ).

Lemma 3.1. Let Γ = Cay(Z2 × Z2αqβ ,Φ), where α, β ≥ 1. Then diam(Γ) = 3.

Proof. Γ is a disconnected graph with two connected components, say Γ1 and Γ2,
where V (Γ1) = {(1, v)|v is odd}∪{(0, v)|v is even} and V (Γ2) = {(0, v)|v is odd}∪
{(1, v)|v is even}.

Let (u, v), (u
′

, v
′

) ∈ V (Γ1). Then we have the following two possibilities:

i) u = u
′

and v 6= v
′

. Clearly d((u, v), (u
′

, v
′

)) ≥ 2. Let v and v
′

be multiple of
2q. Then (u− 1, 2q − 1) is common neighbor of (u, v) and (u

′

, v
′

). Also if v and v
′

be non-multiple of 2q, then (u − 1, 2q) is adjacent to both (u, v) and (u
′

, v
′

). Note
that a trivial observation shows that v and v′ have the same parity. Let v and v

′

be both multiple of one of the prime factors 2 or q. Then the other prime factor
is adjacent to both v and v

′

. Now let one of either v or v
′

is odd and is multiple

of q. Then (u, v), (u
′

, v
′

) ∈ {(1, v)|v is odd}. If v+v
′

2
be even, then (u − 1, v+v

′

2
) is

common neighbor of (u, v) and (u
′

, v
′

). Also if v+v
′

2
be odd, then (u− 1, v+v

′

2
+ q)

is adjacent to both (u, v) and (u
′

, v
′

). Let one of either v or v
′

is multiple of 2q. So

(u, v), (u
′

, v
′

) ∈ {(0, v)|v is even}. If v+v
′

2
∈ ϕ2αqβ , then (u − 1, v+v

′

2
) is common

neighbor of (u, v) and (u
′

, v
′

). Moreover if v+v
′

2
be even, then (u − 1, v+v

′

2
+ q) is

adjacent to both (u, v) and (u
′

, v
′

). Thus in this case d((u, v), (u
′

, v
′

)) = 2.

ii) u 6= u
′

and v 6= v
′

. If v − v
′

∈ ϕ2αqβ , then d((u, v), (u
′

, v
′

)) = 1. Suppose

that v − v
′

/∈ ϕ2αqβ , since u 6= u
′

and u, u
′

∈ Z2, we have no common neighbor

between (u, v) and (u
′

, v
′

). This implies that d((u, v), (u
′

, v
′

)) ≥ 3. Without loss of
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generality assume that u = 0 and u
′

= 1. Since v − v
′

is an odd integer, we find
that v − v

′

+ 2 ∈ ϕ2αqβ . Thus (0, v)(1, v + 1)(0, v + 2)(1, v
′

) is a path of length 3

between (0, v) and (1, v
′

). So diam(Γ1) = 3 and similarly diam(Γ2) = 3. Therefore
diam(Γ) = 3.

Lemma 3.2. Let Γ = Cay(Z2 × Z2αqβ ,Φ), where α, β ≥ 1. Then γc(Γ) does not
exist and γt(Γ) = 8.

Proof. Γ is a disconnected graph with exactly two connected components Γ1 and Γ2

where V (Γ1) = {(1, v)|v is odd}∪{(0, v)|v is even} and V (Γ2) = {(0, v)|v is odd}∪
{(1, v)|v is even}. Hence by the definition of connected dominating set, γc-set does
not exist for Γ.

Assume first that (α, β) = (1, 1). Then by [8, Proposition 3.1], A = {(0, 0), (1, q)}
and B = {(0, 1), (1, q + 1)} dominate V (Γ1)\A and V (Γ2)\B, respectively. Hence
γ(Γ) = 4. Vertices of A are not adjacent to each other and A is not dominated
by one vertex. Note that (1, 1) and (0, q + 1) are adjacent to (0, 0) and (1, q), re-
spectively. Hence T1 = {(0, 0), (1, 1), (1, q), (0, q + 1)} is a γt-set for Γ1. Similarly
T2 = {(0, 1), (1, 0), (0, q), (1, q + 1)} is a γt-set for Γ2. Therefore γt(Γ) = 8.

Next consider the case where (α, β) 6= (1, 1). By [8, Lemma 3.2], γ(Γ) = 8 and
D = {(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (1, 3)} is a γ-set for Γ. Vertices
(0, 1), (0, 0), (0, 3),
(0, 2) are adjacent to vertices (1, 0), (1, 1), (1, 2), (1, 3) respectively. Thus D becomes
a γt-set for Γ. Hence γt(Γ) = 8.

Proposition 3.1. Let Γ = Cay(Zp × Z2αpβ ,Φ), where α, β ≥ 1. Then diam(Γ) =
3.

Proof. Let (u, v), (u
′

, v
′

) ∈ V (Γ). Then we have the following three possibilities:

i) u = u
′

and v 6= v
′

. In this case d((u, v), (u
′

, v
′

)) ≥ 2. Suppose that v and v
′

are both even or odd. Hence by case i) of Lemma 3.1, d((u, v), (u
′

, v
′

)) = 2. Since
in Z2 ×Z2αpβ we have two connected components, where in each of them, if u = u

′

then v and v
′

are both even or odd.

Assume that one of either v or v
′

is even. Without loss of generality let v
is even and v

′

is odd. Also let (u
′′

, v
′′

) where u
′′

6= u, is common neighbor be-
tween (u, v), (u

′

, v
′

). If v
′′

be even then v − v
′′

/∈ ϕ2αpβ and if v
′′

be odd then

v
′

− v
′′

/∈ ϕ2αpβ . Thus we have no common neighbor between (u, v) and (u
′

, v
′

).

Hence d((u, v), (u
′

, v
′

)) ≥ 3. We consider u
′′

, u
′′′

6= u, if v and v
′

be multiple of
p, then (u, v)(u

′′

, p − 2)(u
′′′

, p − 1)(u, v
′

) is a path of length 3 between (u, v) and
(u

′

, v
′

). If v and v
′

be non-multiple of p, then the path (u, v)(u
′′

, p)(u
′′′

, 2v
′

)(u
′

, v
′

)
is connected. If v be multiple of p and v

′

be non-multiple of p, since v− v
′

∈ ϕ2αpβ

then (u, v)(u
′′

, v
′

)(u
′′′

, v)(u
′

, v
′

) is a path of length 3 between (u, v) and (u
′

, v
′

).

ii) u 6= u
′

and v = v
′

. In this case (u
′′

, v − 1) where u
′′

6= u, u
′

is common
neighbor of (u, v) and (u

′

, v
′

). Hence d((u, v), (u
′

, v
′

)) = 2.
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iii) u 6= u
′

and v 6= v
′

. If (u, v) and (u
′

, v
′

) be adjacent then d((u, v), (u
′

, v
′

)) =
1. Now assume that (u, v) and (u

′

, v
′

) are not adjacent. Let v and v
′

be both even
or odd. Then by case i) of Lemma 3.1, we know that there is a vertex (u

′′

, v
′′

),
where u

′′

6= u, u
′

and v
′′

is adjacent to v and v
′

, that is adjacent to both (u, v) and
(u

′

, v
′

). Thus d((u, v), (u
′

, v
′

)) = 2.

Now let one of either v or v
′

is even. Then by second paragraph of case i) and
also by using of case ii) of Lemma 3.1, we see that d((u, v), (u

′

, v
′

)) = 3. Therefore
diam(Γ) = 3.

Proposition 3.2. Let Γ = Cay(Zp × Z2αpβ ,Φ), where α, β ≥ 1. Then

i) γt(Γ) = 6.

ii) γc(Γ) is given by Table 3.1.

Table 3.1: γc(Cay(Zp × Z2αpβ ,Φ)) where α, β ≥ 1.

Γ γc(Γ) Comments
Cay(Zp × Z2αpβ ,Φ) 7 p = 3
Cay(Zp × Z2αpβ ,Φ) 6 p ≥ 5

Proof. i) Let (α, β) = (1, 1). By [8, Proposition 3.1], we see that γ(Γ) = 4 and D =
{(0, 0), (0, 1), (1, p), (1, p+1)} is a γ-set for Γ. Vertices of D are not adjacent to each
other. Hence γt(Γ) > 4. Let a vertex say (u, v) dominates all vertices of D. Then
(u, v) is adjacent to (0, 0) hence (u, v) ∈ Φ. On the other hand (u, v) is adjacent
to (0, 1) thus (u, v) 6∈ Φ, which is impossible. We conclude that γt(Γ) > 5. Since
vertex (p−1, p−1) is adjacent to vertices (0, 1), (1, p) and also vertex (p−1, 2p−1)
is adjacent to vertices (0, 0), (1, p+1). Hence T = {(0, 0), (0, 1), (1, p), (1, p+1), (p−
1, p− 1), (p− 1, 2p− 1)} is a γt-set for Γ.

Finally (α, β) 6= (1, 1). In this case by [8, Proposition 3.3], γ(Γ) = 6 and D′ =
{(0, 0), (0, 1), (1, 2), (1, 3), (2, 4), (2, 5)} is a γ-set for Γ. If p = 3, then we find that
vertices (0, 0), (0, 1), (1, 3) are adjacent to vertices (2, 5), (1, 2), (2, 4), respectively
and if p ≥ 5 then vertices (0, 0), (1, 3), (2, 4), (0, 1), (1, 2) are adjacent to vertices
(1, 3), (2, 4), (0, 1), (1, 2), (2, 5), respectively. Thus D′ becomes a γt-set for Γ.

Note that both T and D
′

are two γt-sets for Γ, where α, β ≥ 1. Therefore
γt(Γ) = 6.

ii) By using a similar argument given in the proof of case i), we have γc(Γ) ≥ 6.

Assume first that p = 3. Then the subgraphs generated by T and D
′

are discon-
nected. Since the subgraph generated by D

′

has exactly three connected compo-
nents which are induced subgraphs generated by sets {(0, 0), (2, 5)}, {(0, 1), (1, 2)}
and {(1, 3), (2, 4)}, also the subgraph generated by T has exactly two connected com-
ponents which are induced subgraphs generated by sets {(0, 1), (1, p), (p− 1, p− 1)}
and {(0, 0), (1, p+ 1), (p− 1, 2p− 1)}. We conclude that γc(Γ) ≥ 7.
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Note that vertex (0, p) is adjacent to vertices (p−1, p−1) and (1, p+1). Therefore
C = {(0, 0), (0, 1), (1, p), (1, p+1), (p− 1, p− 1), (p− 1, 2p− 1), (0, p)} is a connected
dominating set for Γ with minimum cardinality. Therefore γc(Γ) = 7.

Now suppose that p ≥ 5. According to the proof of final part of case i), we
see that D

′

becomes a connected dominating set for Γ with minimum cardinality.
Therefore in this case γc(Γ) = 6.

Proposition 3.3. Let Γ = Cay(Zp×Zpαqβ ,Φ), where p, q ≥ 3 and α, β ≥ 1. Then
diam(Γ) = 2.

Proof. Let (u, v), (u
′

, v
′

) ∈ V (Γ). Then we have the following three possibilities:

i) u = u
′

and v 6= v
′

. Hence d((u, v), (u
′

, v
′

)) ≥ 2. Let v and v
′

be multiple of
pq, then (u− 1, pq− 1) is common neighbor of (u, v) and (u

′

, v
′

). Let v, v
′

∈ ϕpαqβ ,

then (u − 1, pq) is adjacent to both (u, v) and (u
′

, v
′

). Let v and v
′

be multiple of
p, then q is adjacent to both v and v

′

. Also let v and v
′

be multiple of q, then p is
adjacent to both v and v

′

. So d((u, v), (u
′

, v
′

)) = 2. Let v is multiple of p and v
′

is

multiple of q. If v and v
′

be both even or odd, then we show that (u− 1, v+v
′

2
) is a

common neighbor of (u, v) and (u
′

, v
′

). Assume that v = kp and v
′

= k
′

q; k, k
′

∈ Z.

Then v − v+v
′

2
= v−v

′

2
= kp−k

′

q
2

. Suppose that kp−k
′

q
2

/∈ ϕpαqβ and without loss

of generality assume kp−k
′

q
2

= k
′′

p; k
′′

∈ Z. Then kp − k
′

q = 2k
′′

p which implies

kp− 2k
′′

p = k
′

q. Hence (k−2k
′′

k
′ )p = q, which is impossible, since q is not a multiple

of p. Hence kp−k
′

q
2

∈ ϕpαqβ , and v is adjacent to v+v
′

2
. Similarly v

′

is adjacent to
v+v

′

2
. If one of either v or v

′

be odd, then 2(v + v
′

) is adjacent to both v and v
′

.

Assume that v = kp is even and v
′

= k
′

q is odd. Without loss of generality let

2(v + v
′

) − v = v + 2v
′

= k
′′

p. Then kp+ 2k
′

q = k
′′

p. This implies (k
′′

−k

2k
′ )p = q,

which is impossible. Thus v is adjacent to 2(v + v
′

). Similarly v
′

is adjacent to
2(v + v

′

). Hence d((u, v), (u
′

, v
′

)) = 2. Let v be multiple of p or q and v
′

∈ ϕpαqβ .

Assume that v and v
′

be both even or odd. If v − v
′

∈ ϕpαqβ then it is easy to see

that v+v
′

2
is adjacent to both v and v

′

and if v− v
′

/∈ ϕpαqβ then v − v
′

is adjacent

to both v and v
′

. Now suppose that one of either v or v
′

is odd. If v be multiple of
p then v

′

q is adjacent to both v and v
′

. If v be multiple of q then v
′

p is adjacent
to both v and v

′

. Moreover if v be multiple of pq then v
′

(p+ q) is adjacent to both
v and v

′

. Thus d((u, v), (u
′

, v
′

)) = 2. Let one of either v or v
′

is multiple of p or
q and other is multiple of pq. We know that +2 and −2 is adjacent to all of the
multiple of pq. Since by proof of [8, Proposition 3.1], λ = 2, hence v is adjacent
to +2 or −2 or both of them. So we have a common neighbor between (u, v) and
(u

′

, v
′

). Therefore d((u, v), (u
′

, v
′

)) = 2.

ii) u 6= u
′

and v = v
′

. In this case the vertex (u
′′

, v − 1) where u
′′

6= u, u
′

, is a
common neighbor of (u, v) and (u

′

, v
′

). Thus d((u, v), (u
′

, v
′

)) = 2.

iii) u 6= u
′

and v 6= v
′

. Hence by i) and ii), d((u, v), (u
′

, v
′

)) = 2.

Therefore diam(Γ) = 2.
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Proposition 3.4. Let Γ = Cay(Zp×Zpαqβ ,Φ), where p, q ≥ 3 and α, β ≥ 1. Then
γt(Γ) and γc(Γ) is given by Table 3.2.

Table 3.2: γt(Cay(Zp × Zpαqβ ,Φ)) = γc(Cay(Zp × Zpαqβ ,Φ)) where p, q ≥ 3 and
α, β ≥ 1.

Γ γt(Γ), γc(Γ) Comments
Cay(Zp × Zpαqβ ,Φ) 5 one of the prime factors is 3
Cay(Zp × Zpαqβ ,Φ) 4 p, q ≥ 5

Proof. Assume first that one of the prime factors is 3. Let (α, β) = (1, 1). Then
by [8, Proposition 3.1], γ(Γ) = 4 and D = {(0, 0), (0, 1), (1, x′), (1, y′)} is a γ-set
for Γ, where x, x′ and y, y′ are consecutive integers in Zpq, each of which shares a
prime factor with pq where x′ is a multiple of p and y′ is a multiple of q. Note that
vertices of D are not adjacent to each other. Hence γt(Γ) > 4. Also D is dominated
by {(2, 2)}. Thus T = {(0, 0), (0, 1), (1, x′), (1, y′), (2, 2)} is a γt-set and γc-set for
Γ.

The next case is where (α, β) 6= (1, 1). By [8, Table 1], γ(Γ) = 5 and D =
{(0, 0), (0, 1), (1, 2), (2, 3), (2, 4)} is a γ-set for Γ. Vertices (0, 0), (2, 4), (1, 2), (0, 1)
are adjacent to vertices (2, 4), (1, 2), (0, 1), (2, 3), respectively. Hence D dominates
all vertices of Γ and the subgraph generated by D is connected. Thus D becomes
a γt-set and γc-set for Γ. Therefore γt(Γ) = γc(Γ) = 5.

Finally assume that p, q ≥ 5. Then by [8, Proposition 3.1, Table 1], γ(Γ) = 4
and D = {(0, 0), (1, 1), (2, 2), (3, 3)} is a γ-set for Γ. Since p, q ≥ 5 then vertices of
D dominate among themselves. Therefore γt(Γ) = γc(Γ) = 4.

As an immediate consequence of Lemma 3.2 and Propositions 3.2, 3.4, we have
the following theorem.

Theorem 3.1. Let Γ = Cay(Zp × Zpαqβ ,Φ), where p, q ≥ 2 and α, β ≥ 1. Then
γt(Γ) and γc(Γ) is given by Table 3.3.

Table 3.3: γt(Cay(Zp × Zpαqβ ,Φ)), γc(Cay(Zp × Zpαqβ ,Φ)) where α, β ≥ 1.

Γ γt(Γ) γc(Γ) Comments
Cay(Z2 × Z2αqβ ,Φ) 8 does not exist
Cay(Zp × Z2αpβ ,Φ) 6 7 p = 3
Cay(Zp × Z2αpβ ,Φ) 6 6 p ≥ 5
Cay(Zp × Zpαqβ ,Φ) 5 5 one of the prime factors is 3
Cay(Zp × Zpαqβ ,Φ) 4 4 p, q ≥ 5
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Example 3.1. The graph Γ = Cay(Z2 × Z2×32 ,Φ), which is shown in Figure 3.1, is
a disconnected graph with two connected components, say Γ1 and Γ2. Thus γc-set

does not exist for Γ. In this graph two sets T1 = {(0, 0), (0, 4), (1, 1), (1, 3)} and T2 =
{(0, 1), (0, 3), (1, 0), (1, 4)} are γt-sets sets for Γ1 and Γ2, respectively. Hence γt(Γ) = 8.

(0, 1)
(0, 3)

(0, 5)

(0, 7)

(0, 9)

(0, 11)

(0, 13)

(0, 15)

(0, 17)
(1, 0)

(1, 2)

(1, 4)

(1, 6)

(1, 8)

(1, 10)

(1, 12)

(1, 14)

(1, 16)
(0, 0)

(0, 2)

(0, 4)

(0, 6)

(0, 8)

(0, 10)

(0, 12)

(0, 14)

(0, 16)(1, 1)
(1, 3)

(1, 5)

(1, 7)

(1, 9)

(1, 11)

(1, 13)

(1, 15)

(1, 17)

Fig. 3.1: Two connected components of Γ = Cay(Z2 × Z2×32 ,Φ), left Γ1, right Γ2

Example 3.2. Let p = 3, q = 5. Then total and connected dominating set of Γ =
Cay(Z3 × Z15,Φ), which is shown in Figure 3.2, is {(0, 0), (0, 1), (1, 6), (1, 10), (2, 2)}.

(0, 1)(0, 2)
(0, 3)

(0, 4)
(0, 5)

(0, 6)
(0, 7)

(0, 8)

(0, 9)

(0, 10)

(0, 11)

(0, 12)

(0, 13)

(0, 14)

(2, 14)(2, 13)
(2, 12)

(2, 11)
(2, 10)
(2, 9)

(2, 8)

(2, 7)

(2, 6)

(2, 5)

(2, 4)

(2, 3)

(2, 2)

(2, 1)

(1, 0)

(1, 1)

(1, 2)
(1, 3)

(1, 4)
(1, 5)

(1, 6)(1, 7)(1, 8)

(2, 0)

(1, 14)

(1, 13)
(1, 12)

(1, 11)
(1, 10)(1, 9)

(0, 0)

Fig. 3.2: The graph Γ = Cay(Z3 × Z15,Φ) and its total dominating set.

4. Total and connected domination number and diameter of

Cay(Zp × Zpαqβrγ ,Φ)

Let p, q, r be three prime numbers, α, β, γ positive integers and Φ = ϕp × ϕpαqβrγ .
In this section, we obtain the total and connected domination number of Cay(Zp ×
Zpαqβrγ ,Φ) and we extend the results in the previous section for diameter of this
graph.
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Lemma 4.1. Let Γ = Cay(Z2 ×Z2αqβrγ ,Φ), where p, q, r are distinct prime num-
bers and α, β, γ ≥ 1. Then diam(Γ) = 3.

Proof. Γ is a disconnected graph with two connected components, say Γ1 and Γ2,
where V (Γ1) = {(1, v)|v is odd}∪{(0, v)|v is even} and V (Γ2) = {(0, v)|v is odd}∪
{(1, v)|v is even}.

Let (u, v), (u
′

, v
′

) ∈ V (Γ1). Then we have the following two possibilities:

i) u = u
′

, v 6= v
′

. Since u = u
′

hence d((u, v), (u
′

, v
′

)) ≥ 2. Now by Table 4.1
we show that d((u, v), (u

′

, v
′

)) = 2. In this table, when v, v
′

are odd we have
u = u

′

= 1, u
′′

= 0 and when v, v
′

are even we have u = u
′

= 0, u
′′

= 1. We prove
the rows 6, 8 of the table and the rest is similarly proven.

Let v, v
′

are odd and v = kq, v
′

= k
′

qr, k, k
′

∈ Z. If v+v
′

q
be non-multiple of q

then we show that v+v
′

q
is adjacent to both v and v

′

.

Let k
′′

∈ Z. If v − v+v
′

q
= 2k

′′

, then k(q − 1) − k
′

r = 2k
′′

. This implies

k = 2k
′′

+k
′

r
q−1

. Since 2k
′′

+ k
′

r is odd and q− 1 is even hence k is non-integer, which

is impossible. If v− v+v
′

q
= k

′′

q, then v+v
′

q
= (k−k

′′

)q, which is inaccurate because

v+v
′

q
is non-multiple of q. Moreover if v − v+v

′

q
= k

′′

r, then k = (k
′

+k
′′

q−1
)r. But

we know that k is non-multiple of r. So v − v+v
′

q
∈ ϕ2αqβrγ and similarly v

′

is

adjacent to v+v
′

q
. Since u

′′

is adjacent to u, u
′

thus (u
′′

, v+v
′

q
) is common neighbor

between (u, v), (u
′

, v
′

). Similarly it is easy to see that if v+v
′

q
be multiple of q then

(u
′′

, v+v
′

q
+ 2r) is adjacent to both (u, v) and (u

′

, v
′

).

Let v ∈ ϕ2αqβrγ , v
′

= kq is odd and k, k
′′

∈ Z. If v − (v + v
′

)r = 2k
′′

, then

v = 2k
′′

+(v+v
′

)r. Hence v is even, which is inaccurate. Also if v−(v+v
′

)r = k
′′

q,

then v = (k
′′
+kr

1−r
)q and if v − (v + v

′

)r = k
′′

r, then v = (k
′′

+ v + v
′

)r, which are

impossible. Hence v is adjacent to (v + v
′

)r. Similarly it is easy to see that v
′

is
adjacent to (v+v

′

)r. Therefore (u
′′

, (v+v
′

)r) is adjacent to both (u, v) and (u
′

, v
′

).

ii) u 6= u
′

, v 6= v
′

. If v be adjacent to v
′

, then d((u, v), (u
′

, v
′

)) = 1. Suppose
that v be non-adjacent to v

′

, since u 6= u
′

and u, u
′

∈ Z2, hence we have no
common neighbor between (u, v) and (u

′

, v
′

). This implies that d((u, v), (u
′

, v
′

)) ≥
3. Without loss of generality assume that u = 0 and u

′

= 1. Now by Table 4.2 we
show that d((u, v), (u

′

, v
′

)) = 3. In this table u, u
′′′

= 0 and also u
′

, u
′′

= 1. Now
we prove the fifth row and the rest is similarly proven. Let v = 2kr; k ∈ Z and
v

′

∈ ϕ2αqβrγ . Clearly u, u
′′′

are adjacent to u
′

, u
′′

.

First we show that v is adjacent to q. Let k
′′

∈ Z.

If v − q = 2k
′′

, then q = 2(kr − k
′′

).

If v − q = k
′′

q, then r = (
k

′′

+ 1

2k
)q.
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If v − q = k
′′

r, then q = (2k − k
′′

)r.

In all three cases, we came across a contradiction. So v − q ∈ ϕ2αqβrγ .

Next we prove that q is adjacent to (q + v
′

)r.

If (q + v
′

)r − q = 2k
′′

, then k
′′

=
(q + v

′

)r − q

2
.

If (q + v
′

)r − q = k
′′

q, then v
′

= (
k

′′

− r + 1

r
)q.

If (q + v
′

)r − q = k
′′

r, then q = (q + v
′

− k
′′

)r.

which is impossible, since k
′′

is integer and v
′

∈ ϕ2αqβrγ and also q is non-integer
of r.

Finally we show that (q + v
′

)r is adjacent to v
′

.

If (q + v
′

)r − v
′

= 2k
′′

, then k
′′

=
(q + v

′

)r − v
′

2
.

If (q + v
′

)r − v
′

= k
′′

q, then v
′

= (
k

′′

− r

r − 1
)q.

If (q + v
′

)r − v
′

= k
′′

r, then v
′

= (q + v
′

− k
′′

)r.

Again which are impossible. This implies that (u, v)(u
′′

, q)(u
′′′

, (q + v
′

)r)(u
′

, v
′

)
is shortest path between (u, v) and (u

′

, v
′

). Thus diam(Γ1) = 3 and similarly
diam(Γ2) = 3. Therefore diam(Γ) = 3.

Lemma 4.2. Let Γ = Cay(Z2 × Z2αqβrγ ,Φ), where α, β, γ ≥ 1. Then γc(Γ) does
not exist and γt(Γ) = 12.

Proof. Clearly Γ is a disconnected graph with two connected components say Γ1 and
Γ2. Let V1 = V (Γ1) and V2 = V (Γ2). Then V1 = {(1, v)|v is odd}∪{(0, v)|v is even}
and V2 = {(0, v)|v is odd}∪{(1, v)|v is even}. Hence by the definition of connected
dominating set, γc-set does not exist for Γ.

Let (α, β, γ) = (1, 1, 1). Then we find by [8, Lemma 4.1], that γ(Γ) = 8 and
D1 = {(0, 0), (0, 2), (1, x4), (1, x

′
4)} and D2 = {(0, 1), (0, 3), (1, x5), (1, x

′
5)} are mini-

mal dominating sets for Γ1 and Γ2 respectively, where X5
i = {x1, x2, x3, x4, x5} and

X5
j = {x′

1, x
′
2, x

′
3, x

′
4, x

′
5} are consecutive integers in Z2qr , each of which shares

a prime factor with 2qr. Since vertices of D1 are not adjacent to each other,
we conclude that γt(Γ1) > 4. On the other hand it is clear that D1 is not
dominated by one vertex. Hence γt(Γ1) > 5. Vertex (1, 1) is adjacent to ver-
tices (0, 0), (0, 2) and vertex (0, 4) is adjacent to vertices (1, x4), (1, x

′
4). Thus

T1 = {(0, 0), (0, 2), (0, 4), (1, 1), (1, x4), (1, x
′
4)} dominates all vertices of Γ1. Sim-

ilarly T2 = {(0, 1), (0, 3), (0, 5), (1, 2), (1, x5), (1, x
′
5)} dominates all vertices of Γ2.

Hence γt(Γ) = 12.
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Table 4.1: Common neighbor between (u, v), (u
′

, v
′

) in Γ = Cay(Z2 × Z2αqβrγ ,Φ)

u = u
′

, v 6= v
′

common neighbor Comments

v, v
′

∈ ϕ2αqβrγ (u
′′

, 2qr)

v, v
′

are odd and multiple of q (u
′′

, 2r)

v, v
′

are odd and multiple of r (u
′′

, 2q)

v, v
′

are odd and multiple of qr (u
′′

, 2)

v is odd and multiple of q (u
′′

, v+v
′

2
) if v+v

′

2
be even

and v
′

is odd and multiple of r (u
′′

, v+v
′

2
+ qr) if v+v

′

2
be odd

v is odd and multiple of q (u
′′

, v+v
′

q
) if v+v

′

q
6= kq, k ∈ Z

and v
′

is odd and multiple of qr (u
′′

, v+v
′

q
+ 2r) if v+v

′

q
= k

′

q, k
′

∈ Z

v is odd and multiple of r (u
′′

, v+v
′

r
) if v+v

′

r
6= kr, k ∈ Z

and v
′

is odd and multiple of qr (u
′′

, v+v
′

r
+ 2q) if v+v

′

r
= k

′

r, k
′

∈ Z

v ∈ ϕ2αqβrγ and v
′

is odd and multiple of q (u
′′

, (v + v
′

)r)

v ∈ ϕ2αqβrγ and v
′

is odd and multiple of r (u
′′

, (v + v
′

)q)

v ∈ ϕ2αqβrγ and v
′

is odd multiple of qr (u
′′

, (v + v
′

)2)

v, v
′

are even and multiple of r (u
′′

, q)

v, v
′

are even and multiple of q (u
′′

, r)

v, v
′

are even and non-multiple of q and r (u
′′

, qr)

v, v
′

are even and multiple of 2qr (u
′′

, 2qr − 1)

v is even and multiple of q (u
′′

, v+v
′

2
+ qr) if v+v

′

2
be even

and v
′

is even and multiple of r (u
′′

, v+v
′

2
) if v+v

′

2
be odd

v is even and multiple of qr (u
′′

, v
′

2
) if v

′

2
∈ ϕ2αqβrγ

and v
′

is even and non-multiple of (u
′′

, v
′

2
+ qr) if v

′

2
/∈ ϕ2αqβrγ

q and r

v is even and multiple of qr (u
′′

, v
′

q
+ qr) if v

′

q
6= kq, k ∈ Z

and v
′

is even and multiple of q (u
′′

, v
′

q
+ r) if v

′

q
= k

′

q, k
′

∈ Z

v is even and multiple of qr (u
′′

, v
′

r
+ qr) if v

′

r
6= kr, k ∈ Z

and v
′

is even and multiple of r (u
′′

, v
′

r
+ q) if v

′

r
= k

′

r, k
′

∈ Z

Let (α, β, γ) 6= (1, 1, 1). Then by [8, Lemma 4.3], γ(Γ) = 12. Indeed D1 =
{(0, 0), (0, 2), (0, 4), (1, 1), (1, 3), (1, 5)} andD2 = {(0, 1), (0, 3), (0, 5), (1, 0), (1, 2), (1, 4)}
are minimal dominating sets for Γ1, Γ2, respectively. Vertex (1, 1) is adjacent
to vertices (0, 0), (0, 2) and vertex (0, 4) is adjacent to vertices (1, 3), (1, 5). Thus
D1 becomes a γt-set for Γ1. Similarly D2 becomes a γt-set for Γ2. Therefore
γt(Γ) = 12.

Proposition 4.1. Let Γ = Cay(Zp×Z2αpβrγ ,Φ), where α, β, γ ≥ 1. Then diam(Γ) = 3.
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Table 4.2: Shortest path between (u, v), (u
′

, v
′

) in Γ = Cay(Z2 × Z2αqβrγ ,Φ)

u 6= u
′

, v 6= v
′

shortest path between (u, v), (u
′

, v
′

) Comments

v = 2kqr, k ∈ Z, v
′

∈ ϕ2αqβrγ (u, v)(u
′

, v
′

) d((u, v), (u
′

, v
′

)) = 1

v is multiple of 2qr and (u, v)(u
′′

, 1)(u
′′′

, (1 + v
′

)r)(u
′

, v
′

)

v
′

is odd and multiple of q

v is multiple of 2qr and (u, v)(u
′′

, 1)(u
′′′

, (1 + v
′

)q)(u
′

, v
′

)

v
′

is odd and multiple of r

v is multiple of 2qr and (u, v)(u
′′

, 1)(u
′′′

, (1 + v
′

)2)(u
′

, v
′

)

v
′

is odd and multiple of qr

v = 2kr, k ∈ Z, v
′

∈ ϕ2αqβrγ (u, v)(u
′′

, q)(u
′′′

, (q + v
′

)r)(u
′

, v
′

)

v is multiple of 2r and (u, v)(u
′′

, q)(u
′′′

, q+v
′

2
)(u

′

, v
′

) if q+v
′

2
be even

v
′

is odd and multiple of r (u, v)(u
′′

, q)(u
′′′

, q+v
′

2
+ qr)(u

′

, v
′

) if q+v
′

2
be odd

v is multiple of 2r and (u, v)(u
′′

, q)(u
′′′

, 2r)(u
′

, v
′

)

v
′

is odd and multiple of q

v is multiple of 2r and (u, v)(u
′′

, q)(u
′′′

, q+v
′

q
)(u

′

, v
′

) if q+v
′

q
6= kq, k ∈ Z

v
′

is odd and multiple of qr (u, v)(u
′′

, q)(u
′′′

, q+v
′

q
+ 2r)(u

′

, v
′

) if q+v
′

q
= k

′

q, k
′

∈ Z

v = 2kq, k ∈ Z, v
′

∈ ϕ2αqβrγ (u, v)(u
′′

, r)(u
′′′

, (r + v
′

)q)(u
′

, v
′

)

v is multiple of 2q and (u, v)(u
′′

, r)(u
′′′

, r+v
′

2
)(u

′

, v
′

) if r+v
′

2
be even

v
′

is odd and multiple of q (u, v)(u
′′

, r)(u
′′′

, r+v
′

2
+ qr)(u

′

, v
′

) if r+v
′

2
be odd

v is multiple of 2q and (u, v)(u
′′

, r)(u
′′′

, 2q)(u
′

, v
′

)

v
′

is odd and multiple of r

v is multiple of 2q and (u, v)(u
′′

, r)(u
′′′

, r+v
′

r
)(u

′

, v
′

) if r+v
′

r
6= kr, k ∈ Z

v
′

is odd and multiple of qr (u, v)(u
′′

, r)(u
′′′

, r+v
′

r
+ 2q)(u

′

, v
′

) if r+v
′

r
= k

′

r, k
′

∈ Z

v = 2k, k ∈ Z, v
′

∈ ϕ2αqβrγ (u, v)(u
′′

, qr)(u
′′′

, (qr + v
′

)2)(u
′

, v
′

)

v is multiple of 2 and (u, v)(u
′′

, qr)(u
′′′

, qr+v
′

q
)(u

′

, v
′

) if qr+v
′

q
6= kq, k ∈ Z

v
′

is odd and multiple of q (u, v)(u
′′

, qr)(u
′′′

, qr+v
′

q
+ 2r)(u

′

, v
′

) if qr+v
′

q
= k

′

q, k
′

∈ Z

v is multiple of 2 and (u, v)(u
′′

, qr)(u
′′′

, qr+v
′

r
)(u

′

, v
′

) if qr+v
′

r
6= kr, k ∈ Z

v
′

is odd and multiple of r (u, v)(u
′′

, qr)(u
′′′

, qr+v
′

r
+ 2q)(u

′

, v
′

) if qr+v
′

r
= k

′

r, k
′

∈ Z

v is multiple of 2 and (u, v)(u
′′

, qr)(u
′′′

, 2)(u
′

, v
′

)

v
′

is odd and multiple of qr

Proof. We proceed along the lines of Theorem 4.1, and q := p. Let (u, v), (u
′

, v
′

)
are arbitrary vertices of Γ. Then we have following three possibilities:

i) u = u
′

, v 6= v
′

. We know that d((u, v), (u
′

, v
′

)) ≥ 2. Assume that v and v
′

are
both even or odd. Thus by case i) of Theorem 4.1, we have d((u, v), (u

′

, v
′

)) = 2.
Suppose that one of either v or v

′

is odd. Hence we have no path of length 2 between
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(u, v), (u
′

, v
′

). Now we show that d((u, v), (u
′

, v
′

)) = 3. Without loss of generality
assume that v is even and v

′

is odd. If v be multiple of 2pr and v
′

be multiple of
pr, then (u, v)(u

′′

, pr−2)(u
′′′

, pr−1)(u
′

, v
′

) is a path of length 3 between (u, v) and
(u

′

, v
′

), where u = u
′

6= u
′′

6= u
′′′

. If v be multiple of 2pr and v
′

∈ ϕ2αpβrγ , note

that v and v
′

are adjacent, then (u, v)(u
′′

, v
′

)(u
′′′

, v)(u
′

, v
′

) is a shortest path. For
other cases of v and v

′

we are using of Table 4.2, where u = u
′

6= u
′′

6= u
′′′

.

ii) u 6= u
′

, v = v
′

. In this case vertex (u
′′

, v− 1) is a common neighbor between
(u, v) and (u

′

, v
′

), where u
′′

6= u, u
′

. Thus d((u, v), (u
′

, v
′

)) = 2.

iii) u 6= u
′

, v 6= v
′

. Let v and v
′

be both even or odd. Then by Table 4.1, where
u

′′

6= u, u
′

, we see that d((u, v), (u
′

, v
′

)) = 2. Let one of either v or v
′

be even
and other be odd. Then by Table 4.2, where u = u

′′′

and u
′

= u
′′

, we see that
d((u, v), (u

′

, v
′

)) = 3. Therefore diam(Γ) = 3.

Proposition 4.2. Let Γ = Cay(Zp × Z2αpβrγ ,Φ), where α, β, γ ≥ 1. Then γt(Γ)
and γc(Γ) is given by Table 4.3.

Table 4.3: γt(Cay(Zp × Z2αpβrγ ,Φ)) and γc(Cay(Zp × Z2αpβrγ ,Φ))

Γ γt(Γ) γc(Γ) Comments
Cay(Zp × Z2αpβrγ ,Φ) 10 12 one of the prime factors is 3

p = 3
Cay(Zp × Z2αpβrγ ,Φ) 10 10 one of the prime factors is 3

p ≥ 5
Cay(Zp × Z2αpβrγ ,Φ) 8 8 p, r ≥ 5

Proof. Assume first that one of the prime factors is 3. In this case if (α, β, γ) =
(1, 1, 1) then by [8, Lemma 4.2], γ(Γ) = 8 and

D = {(0, 0), (0, 1), (0, 2), (0, 3), (1, x4), (1, x
′

4), (1, x5), (1, x
′

5)}

is a γ-set for Γ. Vertices of D are not adjacent to each other. Hence γt(Γ) >
8. Note that D is not dominated by one vertex, since every vertex (u, v) ∈ V ,
where v is an odd (even) integer, is not adjacent to the vertex (u

′

, v
′

), where
v

′

is an odd (even) integer. This implies that γt(Γ) > 9. Now we take an-
other dominating set with cardinality 10. By [8, Proposition 4.4], we have D

′

=
{(0, 0), (0, 1), (0, 2), (0, 3), (1, 4), (1, 5), (2, 6), (2, 7), (2, 8), (2, 9)} is a dominating set
of Γ. If the other prime factor is 5, then vertices (0, 0), (0, 1), (0, 2), (0, 3), (1, 5)
are adjacent to vertices (2, 7), (2, 8), (2, 9), (1, 4), (2, 6), respectively. Also let other
prime factor be ≥ 7 then vertices (0, 0), (0, 1), (0, 2), (0, 3), (1, 4) are adjacent to ver-
tices (1, 5), (2, 6), (2, 7), (2, 8), (2, 9), respectively. Hence D

′

becomes a γt-set for Γ.
Therefore γt(Γ) = 10.

Let (α, β, γ) 6= (1, 1, 1). By [8, Proposition 4.4], γ(Γ) = 10. By previous para-
graph, γt(Γ) = 10.
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Now we find the connected domination number of Γ where one of the prime
factors is 3. By above discussion γc(Γ) > 9. We use again from D

′

.

Let p = 3. Without loss of generality assume that r = 5. Then the subgraph
generated by D

′

has exactly five connected components which are induced the sub-
graphs generated by sets {(0, 0), (2, 7)}, {(0, 1), (2, 8)}, {(0, 2), (2, 9)}, {(0, 3), (1, 4)}
and {(1, 5), (2, 6)}. Hence γc(Γ) > 10. Let a vertex say (u, v) ∈ V (Γ), where v is
an odd integer, dominates all vertices (0, 0), (2, 8), (0, 2), (1, 4), (2, 6). Since u ∈ Z3,
it is impossible. This implies that γc(Γ) > 11. Next consider another dominating
with cardinality 12.

Let

A = {(1, 1), (2, 2), (1, 4), (2, 5), (1, 7), (2, 8), (1, 10), (2, 11)},

B = {(0, 0), (2, 2), (0, 3), (2, 5), (0, 6), (2, 8), (0, 9), (2, 11)}

and

C = {(0, 0), (1, 1), (0, 3), (1, 4), (0, 6), (1, 7), (0, 9), (1, 10)}.

Then A, B and C dominate {(0, v)|v ∈ Z2α3βrγ}, {(1, v)|v ∈ Z2α3βrγ} and {(2, v)|v ∈
Z2α3βrγ} respectively. Thus

D
′′

= {(0, 0), (1, 1), (2, 2), (0, 3), (1, 4), (2, 5), (0, 6), (1, 7), (2, 8), (0, 9), (1, 10), (2, 11)}

is a dominating set for Γ. Both vertices next to each other in D
′′

are adjacent.
Hence the subgraph generated by D

′′

is connected. Therefore γc(Γ) = 12.

Let p ≥ 5. ThenD
′′′

= {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (0, 5), (1, 6), (2, 7), (3, 8),
(4, 9)} is a dominating set for Γ. Both vertices next to each other in D

′′′

are adja-
cent. Thus the subgraph generated by D

′′′

is connected. Therefore γc(Γ) = 10.

Finally assume that p, r ≥ 5. By [8, Lemma 4.2, Proposition 4.4], γ(Γ) = 8 and
by using a proof of proposition 4.4, we know that D

′′′′

= {(0, 0), (1, 1), (2, 2), (3, 3),
(4, 4), (2, 5), (1, 6), (0, 7)} is a γ-set for Γ, where α, β, γ ≥ 1. Both vertices next to
each other in D

′′′′

are adjacent. Hence D
′′′′

is a γt-set and γc-set for Γ. Therefore
γt(Γ) = γc(Γ) = 8.

Proposition 4.3. Let Γ = Cay(Zp×Zpαqβrγ ,Φ), where p, q, r ≥ 3 and α, β, γ ≥ 1.
Then diam(Γ) = 2.

Proof. Let (u, v), (u
′

, v
′

) are arbitrary vertices of Γ. Then we have following three
possibilities:

i) u = u
′

, v 6= v
′

. By Table 4.5, we show that d((u, v), (u
′

, v
′

)) = 2. In this table
u

′′

6= u.

ii) u 6= u
′

and v = v
′

. In this case the vertex (u
′′

, v − 1) where u
′′

6= u, u
′

, is a
common neighbor of (u, v) and (u

′

, v
′

). Thus d((u, v), (u
′

, v
′

)) = 2.

iii) u 6= u
′

and v 6= v
′

. Hence by (i) and (ii), d((u, v), (u
′

, v
′

)) = 2.

Therefore diam(Γ) = 2.
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Table 4.4: Common neighbor between (u, v), (u
′

, v
′

) in Γ = Cay(Zp × Zpαqβrγ ,Φ)

u = u
′

, v 6= v
′

common neighbor Comments

v, v
′

∈ ϕpαqβrγ (u
′′

, pqr)

v, v
′

are multiples of pqr (u
′′

, pqr − 1)

v, v
′

are multiples of pq (u
′′

, r)

v, v
′

are multiples of pr (u
′′

, q)

v, v
′

are multiples of qr (u
′′

, p)

v, v
′

are multiples of p (u
′′

, qr)

v 6= v
′

and each of them is (u
′′

, v+v
′

2
) if v − v

′

∈ ϕpαqβrγ

multiple of one of the prime factor (u
′′

, 2(v + v
′

)) if v − v
′

/∈ ϕpαqβrγ

and both of them are even or odd

v is multiple of p (u
′′

, (v
p
)r + pqr) if v

p
∈ ϕpαqβrγ

and v
′

is multiple of pq (u
′′

, (v
p
)r + qr) if v

p
be multiple of p

v is multiple of p (u
′′

, (v
p
)q + pqr) if v

p
∈ ϕpαqβrγ

and v
′

is multiple of pr (u
′′

, (v
p
)q + qr) if v

p
be multiple of p

v is multiple of p (u
′′

, v+v
′

2
) if v, v

′

be both even or odd

and v
′

is multiple of qr (u
′′

, 2(v + v
′

)) if one of them be odd and other
be even

v is multiple of p (u
′′

, v
p
+ pqr) if v

p
be non-multiple of p

and v
′

is multiple of pqr (u
′′

, v
p
+ qr) if v

p
be multiple of p

v is multiple of p (u
′′

, (v + v
′

)qr) if v, v
′

be both even or odd

and v
′

∈ ϕpαqβrγ (u
′′

, v
′

qr) if one of them be odd and other
be even

v, v
′

are multiples of q (u
′′

, pr)

v is multiple of q (u
′′

, (v
q
)r + pqr) if v

q
∈ ϕpαqβrγ

and v
′

is multiple of pq (u
′′

, (v
q
)r + pr) if v

q
be multiole of q

v is multiple of q (u
′′

, (v
q
)p+ pqr) if v

q
∈ ϕpαqβrγ

and v
′

is multiple of qr (u
′′

, (v
q
)p+ pr) if v

q
be multiole of q

v is multiple of q (u
′′

, v+v
′

2
) if v, v

′

be both even or odd

and v
′

is multiple of pr (u
′′

, 2(v + v
′

)) if one of them be odd and other
be even

v is multiple of q (u
′′

, v
q
+ pqr) if v

q
be non-multiple of q

and v
′

is multiple of pqr (u
′′

, v
q
+ pr) if v

q
be multiple of q

v is multiple of q (u
′′

, (v + v
′

)pr) if v, v
′

be both even or odd

and v
′

∈ ϕpαqβrγ (u
′′

, v
′

pr) if one of them be odd and other
be even



Domination Parameters and Diameter of Abelian Cayley Graphs 713

Table 4.5: Shortest path between (u, v), (u
′

, v
′

) in Γ = Cay(Z2 × Z2αqβrγ ,Φ)

u = u
′

, v 6= v
′

common neighbor Comments

v, v
′

are multiple of r (u
′′

, pq)

v is multiple of r (u
′′

, (v
r
)q + pqr) if v

r
∈ ϕpαqβrγ

and v
′

is multiple of pr (u
′′

, (v
r
)q + pq) if v

r
be multiole of r

v is multiple of r (u
′′

, (v
r
)p+ pqr) if v

r
∈ ϕpαqβrγ

and v
′

is multiple of qr (u
′′

, (v
r
)p+ pq) if v

r
be multiole of r

v is multiple of r (u
′′

, v+v
′

2
) if v, v

′

be both even or odd

and v
′

is multiple of pq (u
′′

, 2(v + v
′

)) if one of them be odd

v is multiple of r (u
′′

, v
r
+ pqr) if v

r
be non-multiple of r

and v
′

is multiple of pqr (u
′′

, v
r
+ pq) if v

r
be multiple of r

v is multiple of r (u
′′

, (v + v
′

)pq) if v, v
′

be both even or odd

and v
′

∈ ϕpαqβrγ (u
′′

, v
′

pq) if one of them be odd

v is multiple of pq (u
′′

, v+v
′

p
) if v+v

′

p
∈ ϕpαqβrγ

and v
′

is multiple of pr (u
′′

, v+v
′

p
+ qr) if v+v

′

p
be multiple of p

v is multiple of pq (u
′′

, v+v
′

q
) if v+v

′

q
∈ ϕpαqβrγ

and v
′

is multiple of rq (u
′′

, v+v
′

q
+ pr) if v+v

′

q
be multiple of q

v is multiple of pr (u
′′

, v+v
′

r
) if v+v

′

r
∈ ϕpαqβrγ

and v
′

is multiple of rq (u
′′

, v+v
′

r
+ pq) if v+v

′

r
be multiple of r

v = kpq, k ∈ Z, v
′

∈ ϕpαqβrγ and (u
′′

, v+v
′

2
) if v − v

′

∈ ϕpαqβrγ

v, v
′

are both even or odd (u
′′

, v − v
′

) if v − v
′

/∈ ϕpαqβrγ

one of the v or v
′

is odd (u
′′

, v
′

r) if v − v
′

/∈ ϕpαqβrγ

v = kpr, k ∈ Z, v
′

∈ ϕpαqβrγand (u
′′

, v+v
′

2
) if v − v

′

∈ ϕpαqβrγ

v, v
′

are both even or odd (u
′′

, v − v
′

) if v − v
′

/∈ ϕpαqβrγ

one of the v or v
′

is odd (u
′′

, v
′

q) if v − v
′

/∈ ϕpαqβrγ

v = kqr, k ∈ Z, v
′

∈ ϕpαqβrγ and (u
′′

, v+v
′

2
) if v − v

′

∈ ϕpαqβrγ

v, v
′

are both even or odd (u
′′

, v − v
′

) if v − v
′

/∈ ϕpαqβrγ

one of the v or v
′

is odd (u
′′

, v
′

p) if v − v
′

/∈ ϕpαqβrγ

by Proposition 4.5[8], λ = 4

v = kpqr, k ∈ Z and v
′

(u
′′

,+4) or (u
′′

,−4) then pqr is adjacent by ±4
is multiple of pq or pr or qr and pq, pr, qr are

adjacent by +4 or −4

v is multiple of pqr (u
′′

, v+v
′

2
) if v, v

′

be both even or odd

and v
′

∈ ϕpαqβrγ (u
′′

, 2(v + v
′

)) if one of them be odd

Proposition 4.4. Let Γ = Cay(Zp×Zpαqβrγ ,Φ), where p, q, r ≥ 3 and α, β, γ ≥ 1.
Then γt(Γ) and γc(Γ) is given by Table 4.6.
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Table 4.6: γt(Cay(Zp ×Zpαqβrγ ,Φ)) and γc(Cay(Zp ×Zpαqβrγ ,Φ)) where p, q, r ≥ 3

Γ γt(Γ), γc(Γ) Comments
Cay(Zp × Zpαqβrγ ,Φ) 6 ≤ γt(Γ), γc(Γ) ≤ 8 one of the prime factors is 3
Cay(Zp × Zpαqβrγ ,Φ) 5 p, q, r ≥ 5

Proof. By using the [8, Proposition 4.5], D,D
′

, D
′′

, D
′′′

are minimal dominating
sets for various cases in this graph. Clearly the subgraphs generated by D, D

′

, D
′′

and D
′′′

are all connected. Therefore γ(Γ) = γt(Γ) = γc(Γ).

As an immediate consequence of Lemma 4.2 and Propositions 4.2, 4.4, we have
the following theorem.

Theorem 4.1. Let Γ = Cay(Zp × Zpαqβrγ ,Φ), where p, q, r ≥ 2 and α, β, γ ≥ 1.
Then γt(Γ)and γc(Γ) is given by Table 4.7.

Table 4.7: γt(Cay(Zp×Zpαqβrγ ,Φ)) and γc(Cay(Zp×Zpαqβrγ ,Φ)) where α, β, γ ≥ 1

Γ γt(Γ) γc(Γ) Comments
Cay(Z2 × Z2αqβrγ ,Φ) 12 does not exist
Cay(Zp × Z2αpβrγ ,Φ) 10 12 one of the prime factors is 3

p = 3
Cay(Zp × Z2αpβrγ ,Φ) 10 10 one of the prime factors is 3

p ≥ 5
Cay(Zp × Z2αpβrγ ,Φ) 8 8 p, r ≥ 5
Cay(Zp × Zpαqβrγ ,Φ) 6 ≤ γt(Γ) ≤ 8 6 ≤ γc(Γ) ≤ 8 one of the prime factors is 3
Cay(Zp × Zpαqβrγ ,Φ) 5 5 p, q, r ≥ 5

As an immediate consequence of Lemmas 3.1, 4.1 and Propositions 3.1, 3.3, 4.1, 4.3,
we have the following theorem.

Theorem 4.2. Let Γ = Cay(Zp × Zm,Φ), where m ∈ {pαqβ , pαqβrγ}. Then

1) diam(Γ) = 3 where one of the prime factors is 2.

2) diam(Γ) = 2 where p, q, r ≥ 3.

Remark 4.1. Let p1, p2, . . . , pk be consecutive prime numbers, p1 = 3, α, α1, α2, . . . , αk

are positive integers, α ≥ 2, and Φ = ϕ2 × ϕ
2αp

α1

1
p
α2

2
...p

αk
k

. Then by [8, Theorem 4.7], we

have γ(Cay(Z2×Z
2αp

α1

1
p
α2

2
...p

αk
k

,Φ)) ≥ 4k+4. Therefore γt(Cay(Z2×Z
2αp

α1

1
p
α2

2
...p

αk
k

,Φ)) ≥

4k + 4. Since Γ is a disconnected graph, the γc-set does not exist for Γ.
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