FACTA UNIVERSITATIS (NIŠ) SER. MATH. INFORM. Vol. 36, No 3 (2021), 585 - 593 https://doi.org/10.22190/FUMI201225043I Original Scientific Paper

# ON SOME EQUIVALENCE RELATION ON NON-ABELIAN CA-GROUPS

## Mohammad A. Iranmanesh and Mohammad Hossein Zareian

Department of Mathematical Science, Yazd University P. O. Box 89158-741, Yazd, Iran

**Abstract.** A non-abelian group G is called a CA-group (CC-group) if  $C_G(x)$  is abelian (cyclic) for all  $x \in G \setminus Z(G)$ . We say  $x \sim y$  if and only if  $C_G(x) = C_G(y)$ . We denote the equivalence class including x by $[x]_{\sim}$ . In this paper, we prove that if G is a CA-group and  $[x]_{\sim} = xZ(G)$ , for all  $x \in G$ , then  $2^{r-1} \leq |G'| \leq 2^{\binom{r}{2}}$ . where  $\frac{|G|}{|Z(G)|} = 2^r, 2 \leq r$  and characterize all groups whose  $[x]_{\sim} = xZ(G)$  for all  $x \in G$  and  $|G| \leq 100$ . Also, we will show that if G is a CC-group and  $[x]_{\sim} = xZ(G)$ , for all  $x \in G$ , then  $G \cong C_m \times Q_8$  where  $C_m$  is a cyclic group of odd order m and if G is a CC-group and  $[x]_{\sim} = x^G$ , for all  $x \in G \setminus Z(G)$ , then  $G \cong Q_8$ .

Keywords: CA-group, CC-group, centralizer of a group, derived subgroup.

### 1. Introduction

Throughout this paper all groups are assumed to be finite. We denote by Z(G),  $C_G(x)$ ,  $\operatorname{Cent}(G)$ ,  $|\operatorname{Cent}(G)|$ ,  $x^G$ , G' and k(G) the center of the group G, the centralizer of  $x \in G$ , the set of centralizers of the group G, the number of centralizers of the group G, the conjugacy class of  $x \in G$ , the derived subgroup of the group G, the number of conjugacy classes of the group G, respectively. The authors in [8], denoted by [m, n] the GAP ID of a group which is a label that uniquely identifies a group in GAP. The first number in [m, n] is the order of the group, and the second number simply enumerates different groups of the same order. We will use usual notation, for example  $C_n$ ,  $D_{2n}$  and  $Q_{2^n}$  denote the cyclic group of order n, the

Received December 25, 2020. accepted January 17, 2021.

Communicated by Alireza Ashrafi, Hassan Daghigh

Corresponding Author: Mohammad A. Iranmanesh, Department of Mathematical Science, Yazd University, P. O. Box 89158-741, Yazd, Iran | E-mail: iranmanesh@yazd.ac.ir

<sup>2010</sup> Mathematics Subject Classification. Primary xxxxx; Secondary xxxxx, xxxxx

<sup>© 2021</sup> by University of Niš, Serbia | Creative Commons License: CC BY-NC-ND

dihedral group of order 2n and the generalized quaternion group of order  $2^n$  respectively. The non-commuting graph  $\Gamma(G)$  with respect to G is a graph with vertex set  $G \setminus Z(G)$  and two distinct vertices x and y, are adjacent whenever  $[x, y] \neq 1$ . A non-abelian group G is called a CA-group (CC-group) if  $C_G(x)$  is abelian (cyclic) for all  $x \in G \setminus Z(G)$ . We say  $x \sim y$  if and only if  $C_G(x) = C_G(y)$ , and  $x \sim_1 y$  if and only if xZ(G) = yZ(G). We denote the equivalence class including x under  $\sim$  by  $[x]_{\sim}$ . The number of equivalence classes of  $\sim$  and  $\sim_1$  on the group G are equal with |Cent(G)| and  $\frac{|G|}{|Z(G)|}$  respectively. The influence of |Cent(G)| on the group G has been investigated in [3, 2, 4]. In [5], CA-groups whose  $[x]_{\sim} = xZ(G)$  for all  $x \in G$  has been investigated. In this paper we have investigated the equivalency of above relations. We will use the following lemmas to prove the main theorems.

**Lemma 1.1.** [1, Lemma 3.6] Let G be a non-abelian group. Then the following are equivalent:

- 1) G is a CA-group.
- 2) If [x, y] = 1 then  $C_G(x) = C_G(y)$ , where  $x, y \in G \setminus Z(G)$ .
- 3) If [x, y] = [x, z] = 1 then [y, z] = 1, where  $x \in G \setminus Z(G)$ .
- 4) If  $A, B \leq G, Z(G) \neq C_G(A) \leq C_G(B) \neq G$ , then  $C_G(A) = C_G(B)$ .

**Lemma 1.2.** [1, Proposition 2.6] Let G be a finite non-abelian group and  $\Gamma(G)$  be a regular graph. Then G is nilpotent of class at most 3 and  $G = A \times P$ , where A is an abelian group and P is a p-group (p is a prime) and furthermore  $\Gamma(P)$  is a regular graph.

**Lemma 1.3.** [5, Lemma 11] Let G be a non-abelian group. Then  $xZ(G) \subseteq [x]_{\sim}$ , for all  $x \in G$ . Also the equality happens if and only if  $|\text{Cent}(G)| = \frac{|G|}{|Z(G)|}$ .

**Lemma 1.4.** [5, Lemma 12] Let G be a finite non-abelian group. Then the following are equivalent:

- 1) If [x, y] = 1, then xZ(G) = yZ(G), where  $x, y \in G \setminus Z(G)$ .
- 2) G is a CA-group and  $[x]_{\sim} = xZ(G)$ , for all  $x \in G$ .
- 3) [x, y] = 1 and [x, w] = 1 imply that yZ(G) = wZ(G), where  $x, y, w \in G \setminus Z(G)$ .

**Lemma 1.5.** [5, Theorem 3] Let G be a non-abelian group. The following are equivalent:

- 1) G is a CA-group and  $|\text{Cent}(G)| = \frac{|G|}{|Z(G)|}$ .
- 2)  $G = A \times P$ , where A is an abelian group, P is a 2-group, P is a CA-group and  $|\text{Cent}(P)| = \frac{|P|}{|Z(P)|}$ .

3)  $G = A \times P$ , where A is an abelian group and  $C_P(x) = Z(P) \cup xZ(P)$ , for all  $x \in P \setminus Z(P)$ .

**Lemma 1.6.** [5, Lemma 13] Let G be a non-abelian group. Let  $[x]_{\sim}$  and  $[y]_{\sim}$  be two different classes of  $\sim$ . If  $[x_0, y_0] \neq 1$  for some  $x_0 \in [x]_{\sim}$  and  $y_0 \in [y]_{\sim}$ , then  $[u, v] \neq 1$  for all  $u \in [x]_{\sim}$  and  $v \in [y]_{\sim}$ .

**Lemma 1.7.** [5, Lemma 20] Let  $G_1$  and  $G_2$  be two groups. Let  $[g_1]_{\sim} = g_1Z(G_1)$ , for all  $g_1 \in G_1$  and  $[g_2]_{\sim} = g_2Z(G_2)$ , for all  $g_2 \in G_2$ . Then  $[X]_{\sim} = XZ(G_1 \times G_2)$ , for all  $X \in G_1 \times G_2$ .

**Lemma 1.8.** [6, Theorem 2.1] Let G be a non-abelian group and  $|\text{Cent}(G)| = \frac{|G|}{|Z(G)|}$ . Then  $\frac{G}{Z(G)}$  is an elementary abelian 2-group.

**Lemma 1.9.** [7, Corollary 2.3] Let G be a non-abelian nilpotent group. Then G is a CC-group if and only if  $G \cong C_m \times Q_{2^n}$ , where m and n are positive integers and m is odd.

In Section 2 we will provide some results about the equivalency of relations.

## 2. Proof of the main theorems

In this section we prove the main theorems. For doing this we first prove some lemmas.

**Lemma 2.1.** Let G be a CA-group. Then  $C_G(x) = Z(G) \cup [x]_{\sim}$ , for all  $x \in G \setminus Z(G)$ .

Proof. Since  $Z(G) \subseteq C_G(x)$  and  $[x]_{\sim} \subseteq C_G(x)$  we have  $Z(G) \cup [x]_{\sim} \subseteq C_G(x)$ . Suppose  $g \in C_G(x) \setminus Z(G)$ . Then [g, x] = 1. By Lemma 1.1,  $C_G(x) = C_G(g)$  which implies that  $[x]_{\sim} = [g]_{\sim}$ . Hence  $g \in [x]_{\sim}$  and we have  $C_G(x) \subseteq Z(G) \cup [x]_{\sim}$ . Therefore  $C_G(x) = Z(G) \cup [x]_{\sim}$ , for all  $x \in G \setminus Z(G)$ .  $\Box$ 

**Lemma 2.2.** Let G be a non-abelian group. Then G is a CA-group and  $[x]_{\sim} = xZ(G)$ , for all  $x \in G$  if and only if  $|G| = \frac{2|Z(G)|^2}{(3|Z(G)|-k(G))}$ .

Proof. Let G be a CA-group and  $[x]_{\sim} = [x]_{\sim_1}$ , for all  $x \in G$ . Let  $xZ(G) \neq yZ(G)$  for some  $x, y \in G \setminus Z(G)$ . Since  $XY \neq YX$  for all  $X \in xZ(G)$  and  $Y \in yZ(G)$ , therefore there exists an edge between X and Y. Hence there are  $|Z(G)|^2$  edges between elements of xZ(G) and yZ(G). Also there are  $\frac{|G|}{|Z(G)|} - 1$  different classes of xZ(G) for  $x \in G \setminus Z(G)$ . Thus  $|E(\Gamma(G))| = {|G|^2 - k(G)|G| - 1 \choose 2} |Z(G)|^2$ . Note that by [1, Lemma 3.27],  $|E(\Gamma(G))| = \frac{|G|^2 - k(G)|G|}{2}$ . Hence  $|G| = \frac{2|Z(G)|^2}{3|Z(G)| - k(G)}$ .

Conversely, suppose  $|G| = \frac{2|Z(G)|^2}{3|Z(G)| - k(G)}$ . So  $|G| = |Z(G)| + (k(G) - |Z(G)|) \frac{|G|}{2|Z(G)|}$ . Since for all  $x \in G \setminus Z(G), |x^G| \le \frac{|G|}{2|Z(G)}$  we have  $|x^G| = \frac{|G|}{2|Z(G)|}$ , for all  $x \in G \setminus Z(G)$ . So  $|C_G(x)| = 2|Z(G)|$ , for all  $x \in G \setminus Z(G)$ . Now by [5, Lemma 15] G is a CA-group and  $[x]_{\sim} = [x]_{\sim 1}$ .  $\Box$ 

**Example 2.1.** Let G be a CA-group and  $[x]_{\sim} = xZ(G)$ , for all  $x \in G$  and  $|G| \leq 100$ . Then G is one of the group with GAP ID in Table 2.1.

Table 2.1: The GAP ID of group G where  $|G| = \frac{2|Z(G)|^2}{3|Z(G)|-k(G)}$  and  $|G| \leq 100$ .

| [8,3]     | [8, 4]    |           |           |           |           |           |           |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| [16, 3]   | [16, 4]   | [16, 6]   | [16, 11]  | [16, 12]  | [16, 13]  |           |           |
| [24, 10]  | [24, 11]  |           |           |           |           |           |           |
| [32, 2]   | [32, 4]   | [32, 5]   | [32, 12]  | [32, 17]  | [32, 22]  | [32, 23]  | [32, 24]  |
| [32, 25]  | [32, 26]  | [32, 37]  | [32, 38]  | [32, 46]  | [32, 47]  | [32, 48]  |           |
| [40, 11]  | [40, 12]  |           |           |           |           |           |           |
| [48, 21]  | [48, 22]  | [48, 24]  | [48, 45]  | [48, 46]  | [48, 47]  |           |           |
| [56, 9]   | [56, 10]  |           |           |           |           |           |           |
| [64, 3]   | [64, 17]  | [64, 27]  | [64, 29]  | [64, 44]  | [64, 51]  | [64, 56]  | [64, 57]  |
| [64, 58]  | [64, 59]  | [64, 73]  | [64, 74]  | [64, 75]  | [64, 76]  | [64, 77]  | [64, 78]  |
| [64, 79]  | [64, 80]  | [64, 81]  | [64, 82]  | [64, 84]  | [64, 85]  | [64, 86]  | [64, 87]  |
| [64, 103] | [64, 112] | [64, 115] | [64, 126] | [64, 184] | [64, 185] | [64, 193] | [64, 194] |
| [64, 195] | [64, 196] | [64, 197] | [64, 198] | [64, 247] | [64, 248] | [64, 261] | [64, 262] |
| [64, 263] |           |           |           |           |           |           |           |
| [72, 10]  | [72, 11]  | [72, 37]  | [72, 38]  |           |           |           |           |
| [80, 21]  | [80, 22]  | [80, 24]  | [80, 46]  | [80, 47]  | [80, 48]  |           |           |
| [88,9]    | [88, 10]  |           |           |           |           |           |           |
| [96, 45]  | [96, 47]  | [96, 48]  | [96, 52]  | [96, 54]  | [96, 55]  | [96, 60]  | [96, 162] |
| [96, 163] | [96, 165] | [96, 166] | [96, 167] | [96, 221] | [96, 222] | [96, 223] |           |

**Theorem 2.1.** Let G be a CA-group and  $[x]_{\sim} = xZ(G)$ , for all  $x \in G$ . Then  $2^{r-1} \leq |G'| \leq 2^{\binom{r}{2}}$ , where  $\frac{|G|}{|Z(G)|} = 2^r, 2 \leq r$ .

Proof. Let G be a CA-group and  $[x]_{\sim} = xZ(G)$ , for all  $x \in G$ . First we show that  $|G'| \leq 2^{\binom{r}{2}}$ . Since  $[x]_{\sim} = xZ(G)$ , for all  $x \in G$ , by Lemmas 1.8 and 1.3, we find that  $\frac{G}{Z(G)}$  is an elementary abelian 2-group. Therefore  $G' \leq Z(G), g^2 \in Z(G)$ , for all  $g \in G$  and G' is an elementary abelian 2-group. Since G is a non-abelian group, there exist  $x, y \in G$  such that  $[x, y] = z \neq 1$  and  $[x, xy] \neq 1$  and  $[y, xy] \neq 1$ . By Lemma 1.4,  $xZ(G) \neq yZ(G), xZ(G) \neq xyZ(G)$  and  $yZ(G) \neq xyZ(G)$ . Let  $H_1 = Z(G) \cup xZ(G) \cup yZ(G) \cup xyZ(G)$ . Since  $\frac{G}{Z(G)}$  is an elementary abelian 2group,  $H_1 \leq G$ . By Lemma 1.6, none of the elements of xZ(G) are commute with elements of yZ(G) and xyZ(G). Also none of the elements of yZ(G) are commute with elements of xyZ(G). Therefore  $Z(H_1) = Z(G)$ . Since  $G' \leq Z(G)$  and  $t^2 = 1$ , for all  $t \in G'$ , we have the following:

$$[x,y]^{-1} = [y,x] = [x,y] = [x,xy] = [y,yx] = z, [eu, fw] = [e, f],$$

for all  $e, f \in \{x, y, xy\}$  and for all  $u, w \in Z(G)$ . Hence

$$\begin{aligned} H_1' &= \langle [g_1, h_1] | g_1, h_1 \in H_1 \rangle = \langle [eu, fw] | e, f \in \{x, y, xy\}, u, w \in Z(G) \rangle \\ &= \langle [e, f] | e, f \in \{x, y, xy\} \rangle = \langle [x, y] \rangle = \langle z \rangle = \{1, z\}. \end{aligned}$$

Thus  $|H'_1| = 2 \le 2^{\binom{2}{2}}$  and  $\frac{|H_1|}{|Z(H_1)|} = \frac{4|Z(G)|}{|Z(G)|} = 2^2$ . If  $G = H_1$  then proof is complete, so assume that  $G \ne H_1$ . Hence there exists  $a \in G \setminus H_1$ . Let  $H_2 = H_1 \langle a \rangle$ . Since  $a^2 \in Z(G)$  we have

$$H_2 = H_1 \langle a \rangle = H_1 \cup aH_1 = Z(G) \cup xZ(G) \cup yZ(G) \cup xyZ(G)$$
$$\cup aZ(G) \cup axZ(G) \cup ayZ(G) \cup axyZ(G)$$

and since  $\frac{G}{Z(G)}$  is an elementary abelian 2-group,  $H_2 \leq G$ . By Lemma 1.6  $Z(H_2) = Z(G)$ . Let  $[a, x] = t_1, [a, y] = t_2$ . Therefore  $1 \neq [a, xy] = [a, x][a, y] = t_1t_2$ . In above we had [x, y] = [x, xy] = [y, xy] = z. On the other hand  $[e_1u, f_1w] = [e_1, f_1]$ , for all  $u, w \in Z(G)$  and for all  $e_1, f_1 \in \{x, y, xy, a, ax, ay, axy\}$ . Also  $[g_2, h_2k_2] = [g_2, h_2][g_2, k_2]$ , for all  $g_2, h_2, k_2 \in H_2$ . Hence

$$H'_{2} = \langle [g_{2}, h_{2}] | g_{2}, h_{2} \in H_{2} \rangle = \langle [e_{1}u, f_{1}w] | e_{1}, f_{1} \in \{x, y, xy, a, ax, ay, axy\} \rangle$$
$$= \langle [x, y], [a, x], [a, y] \rangle = \langle z, t_{1}, t_{2} \rangle.$$

Therefore  $|H'_2| \leq 2^{\binom{3}{2}}$  and  $\frac{|H_2|}{|Z(H_2)|} = \frac{8|Z(G)|}{|Z(G)|} = 2^3$ . If  $G = H_2$ , then the proof is complete. Let  $G \neq H_2$ . Therefore there exists  $b \in G \setminus H_2$ . Let  $H_3 = H_2\langle b \rangle$ . Let  $[b, x] = l_1, [b, y] = l_2, [b, a] = l_3$ . By a Similar calculation we have,  $Z(H_3) = Z(G)$  and  $H'_3 = \langle z, t_1, t_2, l_1, l_2, l_3 \rangle$ . Hence  $|H'_3| \leq 2^6 = 2^{\binom{4}{2}}$  and  $\frac{|H_3|}{|Z(H_3)|} = \frac{16|Z(G)|}{|Z(G)|} = 2^4$ . By continuing this process, we have the following subgroups:  $Z(G) \leq H_1 \leq H_2 \leq \ldots \leq H_i \leq \ldots \leq G$ , such that  $Z(H_i) = Z(G), |H'_i| \leq 2^{\binom{i+1}{2}}, \frac{|H_i|}{|Z(H_i)|} = 2^{i+1}$ . Since G is finite, there exists  $2 \leq r$ , such that  $G = H_{r-1}, |G'| \leq 2^{\binom{r}{2}}$  and  $\frac{|G|}{|Z(G)|} = \frac{|H_{r-1}|}{|Z(H_{r-1})|} = 2^r$ . Since  $[w]_{\sim} = wZ(G)$ , for all  $w \in G \setminus Z(G)$ , so by Lemma 2.1,  $|w^G| = \frac{|G|}{|C_G(w)|} = \frac{|G|}{2|Z(G)|}$ , for all  $w \in G \setminus Z(G)$ . Consequently, as  $w^G \subseteq wG'$ , we have  $\frac{|G|}{2|Z(G)|} = 2^{r-1} \leq |G'|$ .  $\Box$ 

**Theorem 2.2.** Let G be a non-abelian CC-group and  $[x]_{\sim} = xZ(G)$ , for all  $x \in G$ . Then  $G \cong C_m \times Q_8$  where  $C_m$  is a cyclic group of odd order m.

*Proof.* Let G be a CC-group and  $[x]_{\sim} = xZ(G)$ , for all  $x \in G$ . Therefore G is a CA-group. By lemma 1.3,  $|\text{Cent}(G)| = \frac{|G|}{|Z(G)|}$  and by lemma 1.5,  $G \cong A \times P$  where A is an abelian group and P is a 2-group. Hence G is a nilpotent group. By lemma

589

1.9,  $G \cong C_m \times Q_{2^n}$  where  $C_m$  is a cyclic group of order odd m. Since  $[x]_{\sim} = xZ(G)$  for all  $x \in G$ , we have by lemma 1.3, that  $|\text{Cent}(G)| = \frac{|G|}{|Z(G)|}$  and by Lemma 1.8,  $\frac{G}{Z(G)}$  is an elementary abelian 2-group which implies that  $G' \leq Z(G)$ . Hence  $(C_m \times Q_{2^n})' \subseteq Z(C_m \times Q_{2^n})$  and  $1 \times Q'_{2^n} \subseteq C_m \times Z(Q_{2^n}) \cong C_m \times C_2$ . Therefore  $Q'_{2^n} \cong C_2$  and  $|Q'_{2^n}| = 2$ . Since  $|Q'_{2^n}| = 2^{n-2}$ , we have n = 3 and  $G \cong C_m \times Q_8$ .

Conversely  $Q_8$  is a CC-group and  $[x]_{\sim} = xZ(G)$ , for all  $x \in G$ . Therefore  $C_m \times Q_8$  is also a CC-group and by Lemma 1.7,  $[x]_{\sim} = xZ(G)$  for all  $x \in G \cong C_m \times Q_8$ .  $\Box$ 

**Proposition 2.1.** Let G be a non-abelian group and  $G' \leq Z(G)$ . Then if  $[x]_{\sim} = x^G$ , for all  $x \in G \setminus Z(G)$  then  $[x]_{\sim} = x^G = xZ(G)$ , for all  $x \in G \setminus Z(G)$  and G' = Z(G).

Proof. Let  $[x]_{\sim} = x^G$ , for all  $x \in G \setminus Z(G)$ . Since  $G' \leq Z(G)$ , so  $xG' \leq xZ(G)$ . By Lemma 1.3,  $xZ(G) \subseteq [x]_{\sim}$ , for all  $x \in G$ . Hence  $xZ(G) \subseteq [x]_{\sim} = x^G \subseteq xG' \subseteq xZ(G)$ , for all  $x \in G \setminus Z(G)$ . This implies that  $[x]_{\sim} = x^G = xG' = xZ(G)$ , for all  $x \in G \setminus Z(G)$ . Since |xG'| = |xZ(G)| we have G' = Z(G) and the proof is complete.  $\Box$ 

**Example 2.2.** Let G be an extra especial group of order 32. Then  $[x]_{\sim} = x^G = xZ(G)$ , for all  $x \in G \setminus Z(G)$ .

**Theorem 2.3.** Let G be a CA-group and  $[x]_{\sim} = x^G$ , for all  $x \in G \setminus Z(G)$ . Then G is a 2-group,  $\frac{G}{Z(G)}$  is an elementary abelian 2-group,  $[x]_{\sim} = x^G = xZ(G)$ , for all  $x \in G \setminus Z(G)$  and G' = Z(G).

*Proof.* Since *G* is a CA-group, by Lemma 2.1, *C*<sub>*G*</sub>(*x*) = [*x*]<sub>∼</sub> ∪ *Z*(*G*), for all  $x \in G \setminus Z(G)$ . Therefore  $|x^G| = \frac{|G|}{|C_G(x)|} = \frac{|G|}{|Z(G)|+|[x]_{∼}|} = \frac{|G|}{|Z(G)|+|x^G|}$  which implies that  $|x^G|^2 + |Z(G)| |x^G| - |G| = 0$ . So  $|x^G|$  is a constant and Γ(*G*) is a regular graph. By Lemma 1.2,  $G = A \times P$  where *A* is an abelian group and *P* is a *p*-group (*p* is a prime) and by Lemma 1.3,  $xZ(G) \subseteq [x]_{∼}$ , for all  $x \in G \setminus Z(G)$ . Therefore  $xZ(G) \subseteq [x]_{∼} = x^G \subseteq xG'$  which implies that  $xZ(G) \subseteq xG'$ . Thus  $Z(G) \leq G'$  and  $Z(G) = A \times Z(P) \leq G' = 1 \times P'$ . Hence  $A \cong 1$  and  $Z(P) \leq P'$ . So *G* is a *p*-group and  $G \cong P$  and there exist positive integers *m*, *n*, *t* so that  $|P| = p^n, |Z(P)| = p^t, |x^P| = p^m$  and  $p^m = \frac{p^n}{(p^t + p^m)}$ . This implies that  $p^{2m} + p^{t+m} = p^n$  and  $p^{m-t} + 1 = p^{n-m-t}$ . Since *p* is a prime, by discussing the different states of the prime numbers, we obtain p = 2 and m = t. Since  $xZ(P) \subseteq [x]_{∼} = x^P$  and  $|x^P| = |Z(P)|$ , so  $[x]_{∼} = x^P = xZ(P)$ , for all  $x \in P \setminus Z(P)$ . By Lemma 1.3, |Cent(P)| = \frac{|P|}{|Z(P)|}. This implies by Lemma 1.8, that  $\frac{P}{Z(P)}$  is an elementary abelian 2-group and  $P' \leq Z(P)$ . Hence Z(P) = P'. □

**Corollary 2.1.** Let G be a CC-group and  $[x]_{\sim} = x^G$ , for all  $x \in G \setminus Z(G)$ . Then  $G \cong Q_8$ .

590

*Proof.* By Theorem 2.3,  $[x]_{\sim} = x^G = xZ(G)$ , for all  $x \in G \setminus Z(G)$  and G' = Z(G). and by Theorem 2.2,  $G \cong C_m \times Q_8$  where *m* is an odd positive integer. Since G' = Z(G), so  $1 \times Q'_8 \cong C_m \times Z(Q_8)$ . Therefore  $C_m \cong 1$ . Hence  $G \cong Q_8$ .  $\Box$ 

**Lemma 2.3.** A group G is a CA-group and  $[x]_{\sim} = x^G$ , for all  $x \in G \setminus Z(G)$  if and only if  $|G| = 2|Z(G)|^2$  and k(G) = 3|Z(G)| - 1.

*Proof.* Let G be a CA-group and  $[x]_{\sim} = x^G$ , for all  $x \in G \setminus Z(G)$ . By Theorem 2.3,  $[x]_{\sim} = xZ(G)$  for all  $x \in G \setminus Z(G)$  and by Lemma 2.1,  $C_G(x) = [x]_{\sim} \cup Z(G)$ , for all  $x \in G \setminus Z(G)$ . Hence  $|x^G| = \frac{|G|}{|C_G(x)|} = \frac{|G|}{|Z(G)| + |[x]_{\sim}|} = \frac{|G|}{2|Z(G)|}$ , for all  $x \in G \setminus Z(G)$ . Since  $|x^G| = |xZ(G)|$ , for all  $x \in G \setminus Z(G)$  we have  $|Z(G)| = \frac{|G|}{2|Z(G)|}$  which implies that

(2.1) 
$$|G| = 2|Z(G)|^2$$
.

Since  $[x]_{\sim} = xZ(G)$ , for all  $x \in G \setminus Z(G)$ , by Lemma 2.2,

(2.2) 
$$|G| = \frac{2|Z(G)|^2}{(3|Z(G)| - k(G))}$$

From Equations 2.1 and 2.2 we have k(G) = 3|Z(G)| - 1.

Conversely suppose  $|G| = 2|Z(G)|^2$  and k(G) = 3|Z(G)| - 1. This implies that  $|G| = \frac{2|Z(G)|^2}{(3|Z(G)| - k(G))}$  and by Lemma 2.2, G is a CA-group and  $[x]_{\sim} = xZ(G)$  for all  $x \in G \setminus Z(G)$ . Also by Lemma 2.1,  $|C_G(x)| = 2|Z(G)|$ . This implies that  $|x^G| = \frac{|G|}{|C_G(x)|} = \frac{2|Z(G)|^2}{2|Z(G)|} = |Z(G)|$ . Since  $[x]_{\sim} = xZ(G)$ , for all  $x \in G$ , by Lemma 1.3,  $|\operatorname{Cent}(G)| = \frac{|G|}{|Z(G)|}$ . Hence by Lemma 1.8,  $\frac{G}{Z(G)}$  is an elementary abelian 2-group. Therefore  $G' \leq Z(G)$  and  $x^G \subseteq xG' \subseteq xZ(G)$ , for all  $x \in G \setminus Z(G)$ . Since  $|x^G| = |Z(G)|$ , for all  $x \in G \setminus Z(G)$ . Since  $|x^G| = |Z(G)|$ , for all  $x \in G \setminus Z(G)$ . Conversely, we have  $x^G = xZ(G)$ , for all  $x \in G \setminus Z(G)$ .

**Lemma 2.4.** Let G be a CA-group and  $[x]_{\sim} = xZ(G)$ , for all  $x \in G$ . Then  $[x]_{\sim} = x^G$ , for all  $x \in G \setminus Z(G)$  if and only if  $|G| = 2|Z(G)|^2$ .

*Proof.* Let *G* be a CA-group and  $[x]_{\sim} = x^G$ , for all  $x \in G \setminus Z(G)$ . By Lemma 2.3,  $|G| = 2|Z(G)|^2$ . Conversely let  $|G| = 2|Z(G)|^2$ . Since *G* is a CA-group and  $[x]_{\sim} = xZ(G)$ , for all  $x \in G$ , by Lemma 2.1,  $C_G(x) = Z(G) \cup [x]_{\sim} = Z(G) \cup xZ(G)$ , for all  $x \in G \setminus Z(G)$ . Therefore  $|C_G(x)| = 2|Z(G)|$ , for all  $x \in G \setminus Z(G)$ . This implies that  $|x^G| = \frac{|G|}{|C_G(x)|} = \frac{|G|}{2|Z(G)|} = \frac{2|Z(G)|^2}{2|Z(G)|} = |Z(G)|$ , for all  $x \in G \setminus Z(G)$ . Since  $[x]_{\sim} = xZ(G)$ , for all  $x \in G \setminus Z(G)$ , for all  $x \in G \setminus Z(G)$ . Therefore  $G' \leq Z(G)$ , by Lemma 1.3 and Lemma 1.8,  $\frac{G}{Z(G)}$  is an elementary abelian 2-group. Therefore  $G' \leq Z(G)$ . Hence  $x^G \subseteq xG' \subseteq xZ(G)$ , for all  $x \in G \setminus Z(G)$ . Since  $|x^G| = |Z(G)| = |xZ(G)$ , we have  $x^G = xZ(G)$ , for all  $x \in G \setminus Z(G)$  and finally  $[x]_{\sim} = x^G = xZ(G)$  for all  $x \in G \setminus Z(G)$ . □

**Example 2.3.** Let G be a non-abelian CA-group and assume that  $[x]_{\sim} = x^G$  for all  $x \in G \setminus Z(G)$  and  $|G| \leq 100$ . Then  $G \cong Q_8$  or  $D_8$ .

**Lemma 2.5.** Let G be a non-abelian group. Then  $x^G = xZ(G)$ , for all  $x \in G \setminus Z(G)$  if and only if G' = Z(G) and  $k(G) = \frac{|G|}{|Z(G)|} + |Z(G)| - 1$ .

Proof. Let  $x^G = xZ(G)$ , for all  $x \in G \setminus Z(G)$ . Since  $x^G \subseteq xG'$ , so  $Z(G) \leq G'$ . Now we show that  $G' \leq Z(G)$ . Let  $1 \neq t \in G'$ . Then there exist  $x, y \in G$  so that [x, y] = t. Hence  $t = y^{-1}x^{-1}yx = y^{-1}y^x$ . Since  $y^G = yZ(G)$ , there exists  $z \in Z(G)$  such that  $y^x = yz$ . Therefore  $t = y^{-1}y^x = y^{-1}yz = z$ . This implies that  $t \in Z(G)$ . Thus  $G' \leq Z(G)$  and we have G' = Z(G). Moreover  $|G| = |Z(G)| + (k(G) - |Z(G)|)|x^G|$  because  $|x^G| = |xZ(G)|$  for all  $x \in G \setminus Z(G)$ . Hence  $\frac{|G|}{|Z(G)|} = k(G) - |Z(G)| + 1$  and  $k(G) = \frac{|G|}{|Z(G)|} + |Z(G)| - 1$ .

Conversely, suppose G' = Z(G) and  $k(G) = \frac{|G|}{|Z(G)|} + |Z(G)| - 1$ . Then  $x^G \subseteq xG' = xZ(G)$ , for all  $x \in G \setminus Z(G)$ . Hence  $|x^G| \leq |xZ(G)|$ , for all  $x \in G \setminus Z(G)$ . Since  $k(G) - |Z(G)| = \frac{|G|}{|Z(G)|} - 1$  we have  $|x^G| = |xZ(G)|$ , for all  $x \in G \setminus Z(G)$ . Therefore  $x^G = xZ(G)$ , for all  $x \in G \setminus Z(G)$ .  $\Box$ 

**Lemma 2.6.** Let G be a non-abelian group and  $x^G = xZ(G)$ , for all  $x \in G \setminus Z(G)$ . Then G is a p-group where p is a prime.

*Proof.* Since  $|x^G| = |Z(G)|$ , for all  $x \in G \setminus Z(G)$ , so  $\Gamma(G)$  is a regular graph. By Lemma 1.2,  $G \cong A \times P$  where A is an abelian group and P is a p-group (p is a prime). By Lemma 2.5, G' = Z(G) which implies that  $A \cong 1$  and G is a p-group.  $\Box$ 

**Theorem 2.4.** Let G be a CC-group and  $x^G = xZ(G)$ , for all  $x \in G \setminus Z(G)$ . Then  $G \cong Q_8$ .

*Proof.* By Lemma 2.6, G is a p-group. So G is a nilpotent group. By Lemma 1.9,  $G \cong C_m \times Q_{2^n}$  where n is positive integer and m is an odd positive integer. By Lemma 2.5, G' = Z(G), so  $1 \times Q'_{2^n} \cong C_m \times C_2$ . Hence  $Q'_{2^n} \cong C_2$  and  $|Q'_{2^n}| = 2$ . Since  $|Q'_{2^n}| = 2^{n-2}$  we have n = 3. Hence  $G \cong Q_8$  and the proof is complete.  $\square$ 

### Acknowledgements

The authors were partially supported by Yazd University.

#### REFERENCES

- A. ABDOLLAHI, S. AKBARI and H. R. MAIMANI: Non commuting graph of group J. Algebra. 28 (2006), 468–492.
- 2. A. ABDOLLAHI, S. M. JAFARIAN AMIRI and A. M. HASSANABADI: Groups with specific number of centralizers Houston J. Math., **33(1)** (2007), 43–57.
- A. ASHRAFI: On finite groups with a given number of centralizers Algebra Colloq. 7(2) (2000), 139–146.

- 4. S. M. BELCASTRO and G. J. SHERMAN: Counting centralizers in finite groups Math. Mag. 5 (1994), 111–114.
- 5. M. A. IRANMANESH and M. H. ZAREIAN: On n-centralizer CA-groups submitted.
- S. M. JAFARIAN AMIRI, H. MADADI and H. ROSTAMI: Finite groups with certain number of centralizers Third Biennial International Group Theory Conference., (2015).
- 7. S. M. JAFARIAN AMIRI and H. ROSTAMI: Finite groups all of whose proper centralizers are cyclic B. Iran. Math. Soc. 43(3) (2017), 755-762.
- 8. K. PARATTU and A. WINGERTER: Tribimaximal mixing from small groups, additonal material Phys. Rev. D, 84(1) 013011.