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Abstract. In this paper, unlike to the commonly considered clustering, wherein data 

attributes are accurately presented, it is researched how successful clustering can be 

performed when data attributes are represented with smaller accuracy, i.e. by using the 

small number of bits. In particular, the effect of data attributes quantization on the two-

dimensional two-component Gaussian mixture model (GMM)-based clustering by using 

expectation–maximization (EM) algorithm is analyzed. An independent quantization of 

data attributes by using uniform quantizers with the support limits adjusted to the 

minimal and maximal attribute values is assumed. The analysis makes it possible to 

determine the number of bits for data presentation that provides the accurate 

clustering. These findings can be useful in clustering wherein before being grouped the 

data have to be represented with a finite small number of bits due to their transmission 

through the bandwidth-limited channel.  

Key words: Unsupervised learning, clustering, Gaussian mixture model, expectation-
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1. INTRODUCTION 

The probabilistic theory represents a powerful tool for understanding phenomena and 

description of problems in statistical analysis, signal processing, detection, clustering, 

classification and in many areas of artificial intelligence. A very important probabilistic 

model widely used in data mining, pattern recognition, machine learning and statistical 

analysis is a Gaussian mixture model (GMM) that models the presence of normally 

distributed populations/clusters within larger population/cluster by defining marginal 

distribution as a weighted sum of Gaussian densities 1-3. Thus, the marginal GMM 
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distribution is characterized with following parameters: the mixture weights (prior 

probabilities of clusters), the means and variances/covariances of clusters. Then, the GMM-

based clustering is unsupervised learning that finds the unknown parameters of marginal 

GMM distribution and responsibilities for each data. One elegant and powerful method for 

GMM-based clustering is the expectation–maximization (EM) algorithm that from unlabeled 

data iteratively estimates the model parameters starting from some initial values. Each of 

iterations consists of an expectation (E) step, which determines responsibilities for each data, 

i.e assigns data to clusters with some probabilities given the current estimated GMM 

parameters, and a maximization (M) step, which re-estimates the parameters by maximizing 

likelihood function, under the assumption that clustering in the E step is correct. The iterative 

process continues through the E and M steps successively until convergence 1-7. To 

summarize, the EM algorithm actually groups data with respect to their similarities 

whereby neither the knowledge about the statistical characteristics of data set nor the 

appropriate number of clusters are known. With the EM algorithm, the system is learning 

from unlabeled data. Thereby, data are assigned to clusters with some probabilities called 

responsibilities. Because of that, the EM algorithm represents an unsupervised learning 

technique that enables soft clustering. 

In this paper we extend analysis from 8, where the effect of uniform data quantization on 

one-dimensional two-component GMM-based clustering by means of the EM algorithm was 

considered. Actually, in this paper we focus on the EM algorithm for clustering data modeled 

with two-dimensional two-component GMM in the presence of quantization noise. This 

analysis and analysis from 8 are significant for clustering problems wherein before being 

grouped by using the EM algorithm the data attributes are quantized by using a small number 

of bits due to their transmission through the bandwidth-limited channel. The importance of 

study on quantization noise influence on clustering and classification was also recognized in 

9 and 10. 

This paper is organized as follows. In Section 2, the quantizers for data attributes are 

designed and the GMM-based clustering by using the EM algorithm is described. In 

Section 3, the results of MATLAB simulation of data clustering in the presence of 

quantization noise are presented and discussed. The conclusions are given in Section 4. 

2. EM ALGORITHM IN THE PRESENCE OF QUANTIZATION NOISE 

To model complex densities, Gaussian mixture distribution is used defined as linear 

combination of K Gaussian probability density functions (pdfs) 1, 4, [6]: 
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so that x is the vector consisting of d variables, k is a d-dimensional vector denoting the 

mean values of corresponding variables, while dd covariance matrix k -represents a 
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measure of how changes in one variable are related with changes in another. Parameter k 

represents a mixture weight, so it holds: 

 1
1

=
=

K

k

k . (3) 

Equation (1) can also be viewed as a marginal distribution p(x) obtained by summing 

the joint distribution of observation x and the discrete latent variable z, P(z)p(xz), over 

all possible states of z 1. Z is a K-dimensional binary random variable z= z1, …, zK 

having 1-of-K representation in which a particular element zk is equal to 1 with 

probability P(zk = 1) = k and all other elements are equal to 0. This discrete latent 

variable can be interpreted as defining assignment of data point to specific component of 

the mixture. Therefore, the latent variable z has K states, zk, k = 1,2,…,K, whereby zk = 1 

defines state zk with marginal distribution 1: 
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while the conditional pdf of x given a particular value of z is the Gaussian pdf 1 
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The equality (6) points out that complex marginal distribution over the observed variable 

x, p(x) can be expressed in terms of more tractable joint distribution over observed and 

latent variables.  

One quantity of the Gaussian mixture distribution important for GMM-based clustering 

is the conditional probability of z given x, P(zkx) = P(zk = 1x), k = 1,..,K, here denoted with 

rk(x). This conditional probability can be determined by using the Bayes’ theorem 1 
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Since the discrete latent variable defines assignment of data point to a certain component 

of the mixture, one can conclude that the mixture weight k can be viewed as the prior 

probability of zk, while rk(x) is the corresponding posterior probability after receiving x. 

This posterior probability is commonly referred as the responsibility, i.e. the probability 

that data x belongs to the kth cluster. By determining these responsibilities for each data, 

the clustering is done. 
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The clustering of data modeled with GMM is based on determining GMM parameters 

k, k, kk =1
K and responsibilities rk(xn), n = 1,2,…,N, k = 1,2,…, K, where N is the size 

of data set subjected to the clustering. In this paper we assume that before being grouped 

the data are transmitted through the bandwidth-limited channel, because of which the 

data attributes are represented with smaller accuracy, i.e. by using the finite small number 

of bits. More precisely, we assume that the data attributes are quantized with the simplest 

quantization technique by utilizing uniform quantizers characterized with the cells of the 

same length and with the output levels in the midpoints of the cells, except for possibly the 

first and the last cells 11-16. We opt for this kind of quantization because the GMM 

parameters are not known and the optimization of quantization cannot be performed as it was 

possible in 17. Besides, since the correlation between data attributes is also not known, we 

decide to process independently attributes of two-dimensional data, whereby quantizers can 

be somewhat adjusted by setting different support limits and the number of levels. The 

support limit is a very important parameter in uniform quantization where amplitude being 

quantized is unbounded 12-22, as it is the case with the GMM distribution. Namely, with 

support limit decreasing the quantization error and thus the quantization noise for amplitudes 

within support limits decrease. But, on the other hand, the quantization error for amplitudes 

outside the support limits increases which can cause the significant increase of overall 

quantization noise. Therefore, it is preferable to optimize the support limit subject to average 

quantization error 12-22. In our case it is not possible since the expression for mean square 

error is the function of the pdf having parameters which are unknown and which actually 

should be determined by the EM algorithm. From this reason we determine support limits by 

finding minimal and maximal values for each attribute of unlabeled data. This leads us to 

asymmetric uniform scalar quantizers USQI and USQII with supports xI
min, xI

max and xII
min, 

xII
max, respectively. If we assume LI and LII for the number of levels of USQI and USQII, 

respectively, then the decision and output levels for these quantizers are defined by equations: 

 

j j

j j max min

min

j j

j j max min

min

( 1) , 1,2, , 1, I, II

1
, 1,2, , , I, II

2

j

i j

j

i j

x x
x x i i L j

L

x x
y x i i L j

L

−
= + − = + =

− 
= + − = = 

 

, (8) 

where II,I,
j

min

j

max =
−

== j
L

xx

L

B
jj

j
j

 is the cell length or the uniform step size for 

USQj, j = I, II. Then, quantization of data attributes x1 and x2 should be performed in the 

following manner 
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where  denotes rounding to the nearest lower value. The number of bits used to 

transmit attributes is: 

 I II I II

2 2 2log log log ( )L L L L+ = , (10) 
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which results in quantizer rate, i.e the number of bits per dimension: 
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As we have already stated, an elegant and powerful method for the GMM-based 

clustering is the EM algorithm. The EM algorithm formulation for the case wherein data 

attributes are firstly quantized is given below: 

1) Initialize the means k, covariances k and mixture weights k, k = 1,…, K. 

2) E (expectation) step: evaluate the responsibilities for quantized data set 
1 2

ˆ ˆ ˆ[ ]n n nx x=x , 

n = 1,2,…, N assuming the current parameters of GMM 
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3) M (maximization) step: re-estimate the GMM parameters using the current responsibilities 
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4) Check for convergence of the parameters. If the convergence criterion is not satisfied, 

return to step 2. 

Finally, after the EM algorithm finishing, the cluster value for each point from quantized 

data set can be determined by selecting k that gives the maximal responsibility for this point: 

 ˆ ˆ( ) arg max ( ), 1,2, ,n k n
k

c r n N= =x x . (14) 

To estimate the influence of attribute quantization on the results of clustering, we also 

perform clustering of unquantized data  

 ( ) arg max ( ), 1,2, ,n k n
k

c r n N= =x x  (15) 

with the aim to compare the obtained results. As in 8, we define the similarity index as a 

ratio between the number of matched cluster values and the total number of data points 
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where  denotes modulo 2 summation. As  has a value closer to 1, the similarity with 

the regular clustering is greater, that is quantization noise less degrades the GMM-based 

clustering by utilizing the EM algorithm. 

3. SIMULATION RESULTS 

Within this research, by using MATLAB we generate a data set having two-dimensional 

Gaussian mixture distribution composed from two components (d = 2, K = 2) and consisting 

of 105 data points (N = 105). For a given R, we quantize the attributes of generated data points 

in accordance with eq. (9), and after that we cluster quantized data set by utilizing the EM 

algorithm. We present the obtained results for two different data sets. Actually, we 

generate data sets with parameters specified in Table 1. The main difference between 

these data sets is that the components within the first set are more distinctly separate than 

they are in the second set. The generated data sets we use as unlabeled and we further 

quantize and process them by using the EM algorithm. The obtained results we present in 

Figs. 1, 2 and 3 for the first set, and in Figs. 4, 5 and 6 for the second set. In all figures, 

we also present the pdf and clusters obtained by performing clustering of unquantized 

data set. The figures show that with the increase of R, i.e. with the increase of LI = LII = L, 

the results of the EM clustering are better matched with the ones of EM clustering in 

unquantized attribute case. The increase of matching with L is also verified with the 

similarity index increasing. It is expected since higher L causes smaller quantization error 

and provides more accurate presentation of data attributes enabling better estimation of 

the GMM parameters and more accurate clustering. However, we can notice that the 

degree of matching measured through the similarity index does not depend only on the 

quantizer rate R, but also on the distinction between clusters. Thus, in the first case, 

where the clusters are on larger distance, the rate of 2bits/dimension is satisfactory for 

successful data clustering since it is only important to determine the data category, not 

the adequate approximation for the values of the data attributes (see Fig. 1b and Fig. 2b). 

On the other hand, in the second case, where the clusters are on smaller distance, the rate 

of 2bits/dimension does not provide the successful clustering (compare Fig. 4b with 

Fig. 4a, and also Fig. 5b with Fig. 5a). In this case, the rate of 3 bits/dimension and higher 

enables the successful clustering. To avoid rate increasing when clusters overlap, we are 

going to decrease the support limit values in our future research. We expect that the 

narrowing of the support region will enable better quantization of data near the cluster 

boundary, and thus better differentiation and grouping of these data.  
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Table 1 Data set parameters. 
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The first data set [1 2] 








5.00

02
 0.5 [-3 -5] 









10

01
 0.5 

The second data set [1 2] 








22.0

2.03
 0.7 [-1 -2] 
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02
 0.3 

 

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 1 Probability density function estimated for the first data set and for: a) unquantized 

attributes, b) R = 2 bits/dimension, c) R = 3 bits/dimension and d) R = 4 bits/dimension 
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a)  b)  

c)  d)  

Fig. 2 The estimated probability density contours for the first data set and different R 

  

  

Fig. 3 Partition of the first data set into clusters for different R 
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In Figs. 3 and 6 the data points are assigned to one of two components of the estimated 

mixture distribution forming in such way two clusters. Data points are assigned to clusters 

based on the estimated posterior probabilities that a point is from a certain component. The 

highest posterior probability of data point determines the data cluster. In Figs. 3 and 6, for 

each data point a posteriori probability of data point belonging to cluster 1 is provided. 

Figures show that with the quantizer rate increasing the quantized data sets and cluster 

boundaries approach to original data sets and their cluster boundaries. In Fig. 3 there is 

no overlap between clusters, while in Fig. 6 the clusters overlap, whereby their peaks in 

Fig. 5c and Fig. 5d are distinct opposite to situation in Fig. 5b. This points out that the second 

data set can reasonably be divided into two clusters for rates 3 and 4 bits/dimension, while it 

is not possible for rate 2 bits/dimension.  

 

 

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 4 Probability density functions estimated for the second data set: a) unquantized attributes, 

b) R = 2 bits/dimension, c) R = 3 bits/dimension and d) R = 4 bits/dimension 
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Fig. 5 The estimated probability density contours for the second data set and different R 

  

  

Fig. 6 Partition of the second data set into clusters for different R 
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From Figs. 3 and 6 we can notice that the number of possible data values is far smaller 

than in the case without quantization, indicating the significant compression in the number of 

bits used for data presentation and transmission. Actually, due to independent quantization of 

data attributes the possible data values are constrained to L2 = 22R  uniformly distributed 

values. However, Figs. 3 and 6 show that the number of possible data values is even smaller 

than L2. This is because the data whose probabilities of attributes are very small have a 

negligible probability of occurrence and therefore do not actually appear. This observation 

points out that there is a space for further compression in the required number of bits for data 

presentation. In order to achieve this it is necessary to perform joint quantization of data 

attributes. The design of joint attribute quantization of data modeled with two-dimensional 

GMM whose parameters are unknown is a complex issue left for future research. 

4. CONCLUSION 

In this paper we studied the influence of data attribute quantization on two-

dimensional GMM-based clustering by using the EM algorithm. We considered independent 

quantization of attributes by using uniform quantizers with the support limits adjusted to the 

minimal and maximal values of corresponding attribute. With the aim to provide the accurate 

clustering we determined the necessary number of bits for data presentation. These findings 

are especially important for overlapping clusters. The presented analysis is useful in situation 

wherein before being grouped the data have to be represented with a lower accuracy due to 

their transmission through the bandwidth-limited channels. In our future research, we are 

going to optimize values for support limits, as well as the bit allocation between USQs used to 

quantize attributes of data modeled with two-dimensional GMM. 
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