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Abstract

Accurate understanding of peoples’ livelihoods activities is needed to inform ef-
fective policy. Existing evidence relies heavily on studies that use designated respon-
dents to provide information about their household members, imposing significant
costs on these respondents along with possible distortions in the data. In rural Ghana,
we randomize the order that household members are asked about and estimate that
response fatigue leads to undercounting of labor activities by 8% on average. Women
are twice as impacted as men while youth are four times as impacted as older adults,
distorting both within-household and population wide comparisons. These biases re-
sult from women and youth being listed systematically later in rosters and stronger
effects of fatigue for them, conditional on roster position. The implications of our
results extend to other topics of enquiry as well, wherever similar repetitive survey
structures are deployed, such as birth records, plot-level inputs, and household con-
sumption and expenditures.
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1 Introduction

Well-designed poverty alleviation programs and policies must be informed by an accu-

rate understanding of peoples’ livelihoods strategies and labor activities. In developing

country settings, this understanding often relies on lengthy, multi-topic household sur-

veys that document labor supply by collecting information on the productive activities of

adult household members (Grosh et al., 2000). The recent policy focus on work opportuni-

ties for women and youth has driven a stream of studies characterizing the labor activities

of these groups.1 A related body of research has also explored the diversification of rural

livelihood strategies, finding that off-farm activities are increasingly influential in the re-

duction of rural poverty.2 The usefulness of this important work relies fundamentally on

the quality of the available data.

In this paper, we examine an important and understudied factor affecting the quality

of existing micro data on labor supply: response fatigue. Using random variation in the

order of household members, we show that fewer unique labor activities are reported for

household members listed later in the labor module, leading to underestimates of their la-

bor contributions. We show that this underestimation differentially impacts women and

youth, leading to economically meaningful and systematic biases in our understanding

of peoples’ livelihoods. We further show that non-randomized household rosters system-

atically list youth and women later, exacerbating losses in their reported labor activities.

This paper uses data from a survey in rural Ghana. Following a standard survey

design, primary household respondents were asked to report details about their work

activities as well as those of each household member age fourteen and above.3 If the re-

spondent indicated that a household member had worked over the past year, they were

then asked a set of follow-up questions to identify the primary work activity and pro-

vide further details, including the type of work, amount of time spent on it, and earnings.

They were then asked if that household member had a secondary activity and, if so, the

1For recent examples see Krumbiegel et al. (2020), Betcherman and Khan (2018), Van den Broeck and
Kilic (2019), Bridges et al. (2011), and Klasen and Lamanna (2009).

2Recent examples include Dzanku (2020), Asfaw et al. (2019), Yeboah and Jayne (2018), Imai et al. (2015),
Himanshu et al. (2013), Djurfeldt (2013), Haggblade et al. (2010) Ellis (1998), and Ellis and Freeman (2004).

3This is similar to the approach used in Living Standards Measurement Study surveys (Schaffner, 2000)
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same set of follow-up questions describing that activity. It is almost immediately evident

to respondents that by reporting fewer work activities they can reduce their response bur-

den, shortening the number of questions they are asked and the time needed to complete

the module. If respondents became "fatigued" from the repetitive questions, we would

expect them to report fewer labor activities as they progressed through the list of eligi-

ble household members, thus underestimating the labor contributions of members listed

later in the roster.

Instead of following the household order reported during the initial household listing,

we randomize the order in which household members are asked about in the survey’s

labor module. This randomization enables us to measure the impact of response fatigue

on reported labor supply activities resulting from being listed later in the sequence of

household members. The median household in the sample has six eligible household

members and we find a 2.2% reduction in the number of tasks reported for each spot a

household member is listed later in the response order, controlling for household fixed

effects and individual-level characteristics.

We also show that the losses from response fatigue differ for different groups. This bias

comes from two distinct sources. First, the labor contributions of certain types of people

may be systematically more vulnerable to fatigue-induced bias. This could be the case

if their labor contributions are viewed as less important by the respondent and fatigue

reduces their willingness to answer the follow-up questions required by each affirmative

response. We test this directly in our data and find that the impacts of fatigue are stronger

for both women and youth. A second possible source of bias is the endogenous ordering

of household rosters. We show that women are positioned slightly later than men in

the household roster, 0.2 positions on average, whereas youth age 14-24 are located 1.4

positions later on average than adults age 35-59. These systematic differences in roster

position further contribute to the underestimation of labor activities for these groups.

We combine these two insights and use the reduced form models to generate estimates

of the effects of response fatigue on reported labor activities for different sub-populations.

We do this by generating "no fatigue" estimates of labor activities for everyone in the

full sample. We then predict the number of work activities conducted for each person

3



after re-introducing losses from fatigue based on each household member’s individual

characteristics and the initial (non-random) household roster ordering. We do this first

with a simple model that holds the impact of fatigue equal for all types of household

members (but is still influenced by household roster position) and then for three versions

of the model that allow for heterogeneity by age group, by gender, and in our preferred

specification, by both. On average, we estimate that overall losses in terms of unreported

labor activities are just under 8%. In our preferred model we find that these effects are

nearly twice as large for women (10%) as for men (5%), and five times larger for youth

age 14-24 (10-12%) than for adults age 35-59 (2.1%).

While our reported estimates are based on a rural sample in Ghana, our findings raise

concerns that extend both outside this setting and beyond labor modules. Respondents,

no matter their location, are just as likely to become tired or bored by similarly struc-

tured labor modules. This form of fatigue may also just as plausibly impact responses

provided in survey modules on entirely different topics, such as household consump-

tion, expenditures, agricultural production and input use, or birth histories, all of which

typically follow iterative structures where affirmative responses for a given type of food,

purchased item, farm input, or additional child trigger a set of follow-up questions. All of

these modules are impacted by non-random ordering in the sequence of items or people

and are therefore vulnerable to systematic biases. Certain types of modules may be even

more vulnerable. For example, while the mean number of repetitions in this labor module

was just below six, consumption modules frequently inquire about more than one hun-

dred different food items, each with multiple follow-up questions, typically listing cereals

first and sweets towards the end.4

Research on survey methodology has grown rapidly in recent years, propelled by the

growth of household surveys in developing countries.5 Topics addressed in this work

have included the level of detail in questions, selection of the household’s primary re-

4Beegle et al. (2012b) address the length of consumption modules by randomizing respondents into a
long module, a short module with collapsed categories, or a short module focused on representative cate-
gories. They find that a short module with representative categories performs similarly to a long module,
but they do not address the issue of data quality decay with the module.

5See for example the special issue on measurement in the Journal of Development Economics (McKenzie
and Rosenzweig, 2012).
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spondent, the use of proxy respondents, the use of screening questions, different recall

windows, household definitions, and the use of high frequency checks.6 Some papers

have shown that design choices and features can induce biases in resulting data, consis-

tent with the findings in this paper. For example, Galdo et al. (2020), Desiere and Costa

(2019), and Comblon et al. (2015) show how question phrasing and recall windows can

induce biases by age and gender in survey responses.

Despite this growing research on survey design, the issue of response fatigue has not

received much attention in the labor and development literature. For example, in a re-

view of lessons from 15 years of experience with the World Bank’s Living Standards Mea-

surement Study (LSMS) (Grosh et al., 2000), discussions on household roster construction

(Glewwe, 2000) and labor modules (Schaffner, 2000) acknowledge concern that fatigue

could lower data quality over the course of interviews, but do not study it directly nor

acknowledge that it could be introducing systematic biases in the resulting data.

Response fatigue has, however, garnered some attention outside of labor and devel-

opment economics. This includes research in contexts such as health and criminology

that shows that data quality can deteriorate over the course of an interview (Bradley and

Daly, 1994; Hess et al., 2012; Galesic and Bosnjak, 2009; Roberts et al., 2010; Egleston et al.,

2011) and that attrition from future survey rounds is more likely when baseline surveys

are longer (Rolstad et al., 2011; Hart et al., 2005). Additionally some articles have shown

that the effects of response fatigue extend past adding noise to biasing the resulting data

(Sharp and Frankel, 1983; Holbrook et al., 2007).

Our paper contributes to this literature by linking response fatigue to the understand-

ing of rural livelihoods, showing statistically significant and economically meaningful

losses in recorded labor activities. We also add to the literature by quantifying the losses

for different sub-groups, and we demonstrate evidence of two distinct mechanisms lead-

6For examples of research on proxy respondents see Beegle et al. (2012b), Serneels et al. (2016), and
Bardasi et al. (2011). Examples of question types and detail include Bardasi et al. (2011), Deininger et al.
(2199), Langsten and Salen (2008), Comblon et al. (2015), and Benes and Walsh (2018). For examples of
research on screening questions see Martin and Polivka (1995), Serneels et al. (2016), Dillon et al. (2012),
and Fox and Pimhidzai (2013). For examples related to recall windows see Beegle et al. (2012a), Heath et al.
(2020), Das et al. (2012), Deininger et al. (2199), Gaddis et al. (2020), and Arthi et al. (2016). See Beaman
and Dillon (2012) for work on household definitions. For work on high frequency checks see Caeyers et al.
(2012) and Fafchamps et al. (2012).
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ing to these biases: the non-random ordering of household members in the roster and

heterogeneity by age and gender in the estimated effect of response order. Our results

speak directly, not just to the methodological literature on survey design, but also to re-

search that bases its findings on characterizations of labor contributions estimated using

conventional survey methodology.7

This paper proceeds by first providing background on the setting, data, and empirical

strategy in Section 2. In Section 3 we provide our reduced form results. In Section 4 we

model aggregate losses from fatigue. And in Section 5 we provide a brief discussion of

results and recommendations, followed by concluding in Section 6.

2 Data and Empirical Strategy

We use data from a household survey conducted in Northern Ghana between April and

June of 2019. The sample covered 12 districts in four regions. Respondents were members

of farmer business organizations organized by the Ghana Agricultural Sector Investment

Programme for the purpose of involvement in their agricultural programs. Sixty-six of

these organizations, one per village, were included in this survey, serving as the base-

line for a field experiment studying the adoption of conservation agriculture techniques.

The survey included a detailed labor module in addition to others on agricultural activi-

ties, production practices, and knowledge.8 Given the purpose of the original study, the

survey targeted program participants as each household’s primary respondent. In total,

1,106 households were interviewed as part of the study.

The survey’s labor module was modeled after the Ghana LSMS survey Survey and

the Uganda National Panel Survey. It followed a structure common to LSMS and other

general surveys implemented by national statistics offices in developing countries. In

the labor module, the respondent is asked about the labor activities of each household

member age 14 and above. It begins by asking if the household member participated in

any productive activities over the last 12 months. If so, they are asked a series of questions

7Notable examples include Dolislager et al. (2020), Yeboah and Jayne (2018), and Davis et al. (2010).
8See Ambler et al. (2020) for further details and results of the study.
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to identify and describe their primary work activity over that period, how much time they

devoted it, and their earnings. They are then asked if they had any secondary activities

for that period and, if so, the follow-up questions are repeated. They are additionally

asked to identify their primary productive activity over the last seven days, whether this

was one of the activities already described, and if not, again asked to provide details

about this third activity. Each respondent therefore has between 0 and 3 reported work

activities.

This design is intended to capture details of the most important work activities for

each individual over the past year, while also capturing primary activities over a seven

day period to mitigate recall bias. However, respondents quickly learn from this structure

that each answer they provide acknowledging a new work activity leads to a full set of

follow-up questions. The median completion time for the labor module was 18.5 minutes,

compared to a median completion time of 104 minutes for the full interview.9 The median

time spent per eligible household member was five minutes.10

Similar to many others, our survey uses proxy response for most observations so that

the primary respondent reported about the activities of the members in their household.

However, instructions in the survey allowed own response (or for the respondent to con-

fer) if that member was readily available. In general, household surveys vary in the extent

to which they allow for or prioritize proxy versus self reports, but our survey is common

in employing an approach that allows for both own-reports and proxy reports. 17% of

individuals in our analytical sample are recorded as having reported for themselves (or

been conferred with), an incidence that is low, but within the range of other similar sur-

veys.11 Implications of this allowance for our results are discussed further in section 3.2.

We hypothesize that response fatigue increases as respondents progress through the

survey and with each repetition of the labor module. As a result, respondents may re-

port fewer distinct work activities for family members listed later in household rosters
9The labor module was the third section of the survey, and the median time elapsed prior to beginning

the labor questions was 20.3 minutes.
10Conditional on the number of eligible household members, an additional member for which positive

productive activities are reported increases total module length by approximately four minutes. The survey
did not record the time spent on each individual, only the time spent on the entire module.

11The review by Desiere and Costa (2019) of the labor module data of LSMS surveys across six countries
in Africa indicates that the rate of self-report responses ranged from 15% in Mali to 76% in Nigeria.
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in order to avoid additional associated follow-up questions. Labor modules typically ask

about household members in the order in which they were initially listed while creating

the household roster. Similar to the guidance provided in most household surveys, the

respondent in this survey was asked to list themselves first, followed by their spouse (if

they had one), other adults in the house, and then children.12 While these instructions are

offered to ensure that household members are not unintentionally omitted, they also cre-

ate systematic patterns across households in which roster order is mechanically related to

gender and age. However, strict adherence to this ordering is not enforced (or observed in

the data) and even with this guidance, respondents retain considerable discretion while

filling out the roster. As such household roster orders may also capture biases or heuris-

tics of the respondent such as listing higher earners or people with greater stature before

others. Given the range of factors that likely influence the order of household listings

in this surveys and many others, we cannot typically distinguish if correlations between

work activities and listing order reflect real differences in household labor contributions

or if they are driven or distorted by response fatigue.

In order to estimate the impact of fatigue and survey order on reported labor activities,

we randomized the order of the household roster (excluding the respondent) in the labor

module. Respondents reported information on their own labor activities first and then the

module was repeated for each eligible member. Because the respondent’s own position

was not randomized, they are excluded from the analysis. Although they were included

in the module, we additionally exclude those sixty years old and above (9% of the sample)

from our analysis in order to focus on those who are below the retirement age and who are

still capable of working.13 Finally, our preferred specification uses household fixed effects

and therefore requires at least two non-respondent household members. Households

with fewer than two members aged 14 to 59 (excluding the respondent) are therefore

12Respondents were also told that a member of the household is someone who had slept in the respon-
dent’s house for 30 days consecutively or 60 days non-consecutively within the last 12 months, and shares
food and other resources from a common source.

13Ghana’s official retirement age is 60 years old and labor force participation drops sharply at this age.
Additionally 44% of seniors are reported to be physically incapable of working whereas just 1.6% of house-
hold members below 60 are similarly incapacitated. We show robustness of our main results to including
seniors in the analysis in Appendix Table A.2.
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dropped from the analysis.14

2.1 Summary Statistics and “Balance”

Table 1 presents characteristics of the households and individuals included in the analysis

sample. These households vary greatly in size but are large on average, with over eleven

total members and six who were eligible for the labor module (14 or older). Approxi-

mately 30% were polygamous. 51% of respondents are female, 33% have ever attended

school, and their average age is 42-years-old. The non-respondent household members

in the analysis sample are 53% female, 26-years-old on average, and 56% are literate with

36% currently in school. The majority of household members are children (45%), spouses

(29%), siblings (12%), or parents (4%) of the respondent.15

Household members are reported to have an average of 0.74 distinct work activities.

44% have no reported activities, 39% one activity, 18% two activities and just 0.3% had

three distinct job activities listed. Among those who are working, 84% participate in

household farm work as one of their activities listed. 15% participate in a household

business and 25% engage in some form of hired, wage work. Excluding the primary

respondent, the mean position in the labor module for household members is 3.8.

Column 1 of Table 2 shows that roster positions in household listings are strongly

correlated with personal characteristics. The order variable is the household member’s

position among other members of the analysis sample, ranging from 1-14, where 1 rep-

resents the first member listed.16 We present the partial correlations of each individual’s

gender, age group, student status, and relationship to the primary respondent with their

order in the household roster, controlling for household fixed effects. Women are listed

later by an average of 0.2 positions (p<.05). Younger individuals are also listed later in the

roster. Individuals in the top age group, age 35-59, are listed an average of 1.4 positions

14Appendix Table A.1 compares samples resulting from these two selection criteria.
15Summary statistics of the full raw sample are shown in Appendix Table A.1. Characteristics are broadly

similar but the analysis sample has larger households and is younger on average because the eligibility
criteria drops people 60 and over and households with fewer than two people aged 14 to 59 other than the
respondent.

16The top 1% of both the listed and randomized household orders are winsorized at position 14 to reduce
the influence of a long right tail in the distribution of household sizes.

9



earlier than those aged 14-24 (p<.01), and those aged 25-34 are listed 0.4 positions earlier

than the youngest group (p<.01). We also observe strong patterns with relationship to the

respondent (spouse of the respondent is the omitted category). Finally, we note that those

who report their own labor are listed 0.9 positions earlier than those who are not, and that

student status is not significantly related to roster position.

In Column 2 of Table 2 we repeat the same exercise, but use the randomized order

assignment as the dependent variable in place of the original listing order. Because of the

randomization, we do not expect significant patterns and this analysis therefore serves as

a balance check. The randomization appears to have been successful. All coefficients are

small and only one (out of nine) is statistically significant at the 10% level.

2.2 Empirical Approach

We expect response fatigue to manifest in respondents reporting fewer work activities as

the module is repeated for each household member. Our primary outcome of interest

is “total jobs” defined as the number of distinct jobs listed during the module for that

household member. Using the randomized ordering of household members in the la-

bor module, we estimate the causal impact of response order on reported labor activities

using the following regression specification:

jobsi,h = β0 + β1orderi + β2 f emi + β3inschooli + β4sel fi + β5 Age14_24i + β6 Age25_34i +γh +ψr + εi,h

(1)

jobsi,h is the number of unique work activities listed for individual, i, from household,

h, ranging from 0-3. orderi is the individual’s randomly assigned order number (1-14)

for this individual.17 f emi indicates the gender of the individual, inschooli controls for

whether the individual is currently in school. sel fi indicates if this household member

was conferred with or reported for themselves during the labor module. Age14_24 in-

dicates that the individual was aged 14 to 24. Age25_34 indicates the 25-34 age group,

with age 35-59 as the omitted category. γh and ψr are a set of household and relation to

respondent fixed effects. εi,h is the error term, clustered at the household level.

17The respondents themselves can be thought of as occupying position zero, before any effects of fatigue
have accrued from repetition of the labor module.
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3 Reduced Form Results

3.1 Main Effects and Heterogeneity

Table 3 presents estimates of the impact of response fatigue as induced by roster position

on total jobs reported, building up to our preferred specification in equation (1). Column

(1) shows regressions of the total number of jobs on response order, controlling only for

fixed effects for the number of eligible household members in the labor module. Column

(2) adds controls for gender, self-reporting, and student status. Column (3) adds controls

for age cohort. Column (4) replaces the number of adults fixed effects with household

fixed effects. Finally, Column (5) shows our preferred specification and includes a set of

fixed effects for the household member’s relationship to the respondent.

As expected given random assignment, the estimated impact of response order is

nearly identical across columns. The preferred specification in column (5) indicates that

individuals are reported to be involved in 0.016 (2.2%) fewer job activities for each posi-

tion further back they are in the randomized ordering. This is an economically significant

effect. An individual listed last in a household with five non-respondent adults in the

labor module (the sample mean), would have their labor contributions under-reported

by nearly 9% on average relative to the person listed immediately after the respondent.

For an individual occupying the median listing position (3), labor activities are estimated

to be under-reported by over 6.5%.

Table 4 presents a wide range of robustness checks, using the preferred specification

in column (5) of Table 3. Column (1) reproduces the main result for reference. Columns

(2) and (3) change the coding of the outcome to binary indicators for reporting at least

one and at least two work activities, respectively. Point estimates of effects for these

two outcomes are both highly significant (p<.01) and similar to one another at -0.007

and -0.008. However, this represents a 1.3% reduction in the likelihood of recording at

least one activity whereas the likelihood of listing at least two declines by 4.6% per order

position. This suggests that secondary work activities may be more vulnerable to fatigue

than peoples’ primary activities.

Next, we check robustness of our results to different transformations of the order vari-
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able, to rule out that our results are driven only by the largest families.18 Column (4)

uses the logarithm of order position as the primary independent variable while column

(5) uses the within household percentile location of each individual (scaled so that values

range from zero to one). Both suggest consistently large, negative, and statistically sig-

nificant impacts of later response position. Finally, we assess the sensitivity of the results

to the choice of ordinary least squares for estimation using Tobit and Poisson models in

columns (6) and (7) respectively. Results remain negative and highly significant. Addi-

tional robustness to the sample selection criteria is shown in Appendix Table A.2.

The results shown thus far assume that the relationship between order and reported

outcomes is linear. This is an empirical question that we explore in Figure 1. In Figure 1

we show estimates of effects by response position, jointly estimated with the first listed

member omitted as the reference group. Even for the second listed individual we see a

negative effect relative to the first person listed of -0.05 (p = 0.065). The final coefficient,

those who were tenth or later in their household listings, are reported to have 0.2 fewer

distinct income earning activities.19

On average, the magnitudes of estimated negative effects increase with order. The

p-value of the difference between the first and final positions is 0.06. While coefficients

for individual order positions are noisily estimated and do not monotonically increase

in magnitude, we consider the linear fit to be a reasonable first approximation, sufficient

for the purposes of capturing the primary pattern of relevance: that response fatigue

increases in order.

Next we explore whether the effects of response fatigue differ by the age and gender

of household members in Table 5. Column (1) repeats the preferred result from column

(5) of Table 3. Estimates in columns (2)-(4) show the effects separately by gender, age

group, and gender-age group using fully saturated interactions on the order variable.

The coefficients displayed therefore reflect estimation of the effect of fatigue for each sub-

group and test whether this effect is significantly different from zero.

18The number of individuals in the labor module has a very long right tail. Our main results winsorize
the top 1% of values, and these transformations employ two alternate approaches.

19We bundle those in positions ten or higher as the sample is small for these higher orderings. This final
bin has approximately 5% of the sample.
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Column (2) shows that the effect of response order on the reported labor activities of

men is negative, but not significantly different from zero. By contrast, the effects of fatigue

on reported labor activities of women are more than twice as large, over 3% of the mean

(p<.01). A test for the difference between men and women (not shown) is statistically sig-

nificant with p<.01. In column (3) we explore the effects of fatigue by different age groups.

Effects for the oldest group are indistinguishable from zero, whereas they are highly sig-

nificant for both of the younger age groups. While the point estimates are substantially

larger for 25-34 year olds than for 14-24 year olds, given their different baseline levels of

labor force participation, both represent losses of approximately 3% in reported labor ac-

tivities per order position for the two groups. Finally, column (4) splits the sample by age

and gender with the strongest impacts exhibited in the two younger groups of women.

Young women appear to be doubly impacted by fatigue due to both their gender and

age. The patterns shown are consistent with respondents valuing the labor contributions

of youth and women less than those of older males, and indicate that the underestimation

of labor activities caused by response fatigue is biased against these groups. In the next

section we will build on the estimates in these four models to generate calculations of

aggregate losses resulting from fatigue.

3.2 Further Analysis and Robustness

In this section we expand on several questions with potential to impact how we interpret

and learn from our results. First, we examine the types of jobs that are being under-

counted due to fatigue. Given that the results in Table 4 suggest that many jobs that

are missed are secondary activities, it is reasonable to ask whether the jobs being missed

are economically important. Appendix Table A.3 explores impacts of fatigue by type of

work, reported pay, and the extensive and intensive margins of labor supply. The results

suggest that wage work is disproportionately impacted relative to household farming

and household-owned businesses. Though the coefficients on household farm work and

wage work are similar in size, the lower overall levels of wage employment mean that the

proportional effect is larger. The under-counting of these jobs could be especially detri-
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mental to our ability to document off-farm work opportunities in rural areas that result

from hired or seasonal work. We additionally note significant losses on the extensive mar-

gin of reporting receipt of any pay in the last week. Our results regarding the intensive

margin of amount paid are noisily estimated and therefore less clear. Regarding hours

worked, there is a strong negative impact on the extensive margin of working at all in

the last week, but no statistically significant impact on number of hours worked. These

results suggest that response fatigue may distort our understanding of the nature of rural

employment, though we do not have sufficient power to make strong claims about the

economic significance of the jobs that are impacted.

Second, average household size in our study sample is large, with an average of eleven

household members and six members eligible for the labor module. As such, the external

validity of our findings would be reduced if response fatigue was relevant only for large

households. However, our analysis shows that losses from fatigue are still significant and

of meaningful magnitude for people close to the beginning of the household ordering,

as noted in the earlier discussion of Figure 1. Additionally, this does not account for

any losses from fatigue that occur between the respondent answering about themselves

and the first family member they are asked about.20 Panel A of Appendix Figure A.1

repeats this exercise restricting the sample to only households with between five and

seven members in the labor module. Again, significant negative effects are identified

within a few roster positions of the respondent.

Appendix Table A.4 explores household size in a different way, splitting the sample

into terciles by household size. Order effects are negative and highly significant even for

households with just 2 to 4 members in the labor module with point estimates that are,

in fact, bigger in magnitude than for larger households. This does not, however, mean

that the aggregate impact of fatigue is just as big (or bigger) for small households. The

point estimates reflect average marginal losses from being one position further back in a

household roster. With more individuals in large households, and more repetitions of the

labor module, aggregate losses from fatigue are still larger for these bigger households.

20Because respondents were always asked about first, we can not disentangle the effect of moving from
the first to the second position in the order from the difference between self and other reporting.
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The second three columns of Appendix Table A.4 show this by replacing the randomized

order position variable with a variable that expresses that order as a percentile within

the household. Reported coefficients therefore reflect the estimated difference between

being randomly listed first versus last within households of different sizes. Column (4)

shows that, though lacking in precision, the magnitude of estimated results for small

households are economically meaningful, estimated to be 7% between the first and last

position. However, these losses are much larger in large households with eight or more

members in the labor module, showing losses of 17.9% between the first and last position

(p<.01). Fatigue therefore results in larger losses in larger households, but the impacts of

response order on our understanding of labor participation are important for households

of all sizes.

Third, a potentially confounding factor is the use of self-reporting versus proxy re-

sponse when completing the labor module. Other research has suggested that prioritizing

self-reporting can reduce losses due to the difference between proxy versus self reporting

(Benes and Walsh, 2018; Glewwe, 2000). It could be that this approach reduces losses from

response fatigue as well. Our main specification includes an indicator for these instances

of own-response as a control in our estimation.21 Results are also robust to dropping

these observations, shown in Appendix Table A.2. In Appendix Table A.6 we check for

heterogeneity of our main effects by whether an individual responded for themselves.

The estimated difference in response fatigue between proxy and self-reports is close to

zero, though the standard error is large, limiting our ability to draw any strong conclu-

sions. While more heavy reliance on self-reporting could, in theory, help to mitigate the

effects of response fatigue, the process of locating all household members for response to

the labor module is time consuming and costly and may not be feasible for many studies.

Furthermore, encouragement or permission to seek self-reports has the potential of intro-

ducing different biases related to who is and who is not available for direct interrogation

or conference.22 Appendix Table A.6 looks at predictors of fatigue in our own sample as

21Own-response is not significantly less likely as the respondent progresses through the iterations of the
labor module, shown in Table 2.

22The use of proxy respondents has been studied experimentally by (Bardasi et al., 2011) who find that
proxy response does not affect the reporting of women’s labor in Tanzania, but does lead to lower estimates
of male employment.
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well as those of three other household surveys and find that age and gender are strong

predictors of whether an individual is available for self-reporting in their labor modules.

Given that self-reporting is associated with higher reported numbers of activities, partial

adherence to self-reporting could be unintentionally introducing greater biases by gender

in age than the fatigue-induced biases it is intended to solve. The extent to which heavier

reliance on self-reporting does or does not improve data quality remains a topic worthy

of further research.

Finally, we consider the extent to which these results are attributable to respondent

fatigue as opposed to fatigue experienced by the enumerator. Research has shown that

enumerators can have substantial impacts on responses and data quality and therefore

both channels are plausible (Di Maio and Fiala, 2199). Attribution of effects to respondent

or enumerator could point to different solutions. Thus far, we have focused on the role

of the respondent. This is because respondents control their answers to the enumerator’s

questions and how many activities they choose to report for each household member. By

contrast, enumerators are trained to follow a strict script while conducting interviews.

For enumerator fatigue to be driving our results, the enumerators would either need to

be skipping questions and deviating from their scripts or, in some other way, be signalling

that they want the respondent to under-report work activities. Additionally, to be consis-

tent with the observed patterns of heterogeneity discussed in the analysis, enumerators

would need to be differentially signalling their impatience across gender and age groups.

Because the number of follow-up questions triggered by each additional work activity is

the same regardless of an individual’s characteristics, we would not expect enumerator

fatigue to display the strong patterns of heterogeneity that were documented in Table 5.

We additionally test whether sensible patterns of enumerator fatigue can be detected

in the data in Appendix Table A.7. First, we test if the estimated response fatigue varies

by whether or not it was the enumerator’s first survey of the day, hypothesizing that enu-

merators would be more patient at the beginning of the day.23 We find that interviews

conducted later in the day have, on average, slightly fewer reported work activities (not

statistically significant) but do not find evidence of any differences in the relationship be-

23The modal number of surveys performed per day is two.
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tween roster position and activities. We also categorize each survey by whether it was

in the first or second half of the enumerator’s total number of interviews. Surveys con-

ducted in the second half have significantly fewer reported work activities, on average.

However, again, we do not see any significant differential in the relationship between

household roster position and reported activities by whether a survey was early or late

in an enumerator’s tenure. In results not shown we also rule out that enumerators who

were better rated for performance react differently to response order. Ultimately, while

we cannot rule out enumerator fatigue and recognize that it may still be affecting our

estimates, our analysis suggests that this influence is likely to be secondary, and that our

main results are driven predominantly by respondents.

4 Aggregate Losses from Fatigue

The estimates in the previous section show the impact of response fatigue on reported

labor activities for marginal changes in roster position. However, fatigue-induced losses

from one-position shifts do not capture aggregate losses and distortions that accrue through

full administration of the labor module. In this section we use the reduced-form estimates

from the previous section to estimate the aggregate effects of fatigue on recorded labor ac-

tivities for the full population as well as to document biases induced by different impacts

across sub-groups.

We begin by using the estimates from the previous section to predict what reported

labor activities would be in the absence of response fatigue. After estimating a model, we

set response order to zero for everyone in the sample, and use the resulting estimates to

predict total jobs for each individual, preserving their baseline characteristics. This results

in a set of predicted “no fatigue” labor activity levels for everyone in the sample. Setting

response order to zero removes the effects of response fatigue from these predictions. We

then generate a second set of predictions to model what labor activity levels would have

been including the effects of response fatigue if the labor module had followed the non-

randomized listing order generated during the creation of the household roster. To do

this we replace the randomized listing order with the order from the initial household
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listing and again predict individual activity levels. Comparing these two totals, we then

calculate the predicted aggregate losses from fatigue for the full sample as well as for

different subgroups.

Panel A of Table 6 presents results using the model based on equation (1) with a uni-

form fatigue parameter applied to all individuals as estimated in column (1) of Table 5.

Panel B follows the same structure but shows results that allow for heterogeneity by age

group and gender as estimated in Column (4) of Table 5. Appendix Table A.8 shows re-

sults for the intermediary models that allow separately for heterogeneity by age group

and gender, as estimated in columns (2) and (3) in Table 5. In each panel we show the

estimated means for the full sample, males, females, and people aged 14-24, 25-34, and

35-59. Column (1) of Table 6 shows the mean number of jobs for each sample from the

raw data. Column (2) shows the predicted means without fatigue. Column (3) incorpo-

rates response fatigue with the endogenous initial household listing order. And Column

(4) displays the percent losses for each group (between columns (2) and (3)).

In the first row of Panel A of Table 6 estimated losses are just under 8% for the full

sample, similar to those estimated using the interacted model and shown in the first row

of Panel B. The remaining rows present similar estimates and calculations for different

sub-groups indicated in the first column of each row. The resulting percent losses by age

group and gender for each of the four models are summarized in Figure 2.

We first examine the total losses to fatigue by age group in Panel A of Figure 2. Even

though the simple model does not incorporate differential effects of fatigue by age, we

still see sharp differences in the estimated losses by age group. This is driven by the

strong ordering patterns shown in Table 2 whereby young people are systematically listed

later in household rosters. Incorporating gender heterogeneity leads to similar results by

age because gender is well balanced across age groups. The larger impacts of response

order for individuals age 25-34, noted in Table 5, are reflected in results using the third

and fourth models with age and age by gender heterogeneity, respectively. In the fully

interacted model we see that both younger age brackets experience percent losses more

than five times larger than those calculated for adults aged 35-59 with losses of 2%, 12%,

and 10% for people aged 35-59, 25-34, and 14-24 respectively. This suggests that patterns
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in the listing order that place youth systematically later in their household rosters as well

as heterogeneity in the impact of response fatigue, conditional on their roster position,

lead to younger individuals being disproportionately impacted and having their labor

contributions under-counted.

Panel B of Figure 2 repeats the same sequence of models, but displays differences by

gender instead of age group. Here, the simple model shows little differentiation between

men and women resulting exclusively from listing order, consistent with women being

listed just 0.2 positions later than men. However, allowing for heterogeneity in the effect

of fatigue from response order by gender in the second model results in sharply different

effects for men and women. In the fully interacted model, estimated losses in recorded

job activities are 10% for women, nearly twice as large as those estimated for men, 5.3%.

5 Discussion

Our results show substantial losses from respondent fatigue in capturing labor force ac-

tivities. These estimates are based solely on fatigue induced by random variation in re-

sponse order within a survey module. If fatigue builds over the course of an entire survey,

these results may present a lower bound on overall losses.

Our findings have implications for research that compares labor contributions across

groups by either age or gender. While we cannot be sure that the same patterns of hetero-

geneity are present in other settings, roster listings from other commonly used household

data sets follow similar demographic patterns. Table 7 shows that the 1993 Indonesian

Family Life Survey, the 2012 Ghana GLS, the 2010 Nigerian LSMS, the 2012 Tanzanian

LSMS, and the 2016 Malawi IHS all display strong patterns in the order in which house-

hold members are listed in the roster, also positioning women and youth systematically

later in household rosters. In the presence of response fatigue in labor modules, these

listing patterns alone will induce systematic biases, undercounting the contributions of

women and youth in the labor market.

Employment opportunities for women and youth are a major current focus of re-

searchers and policy makers. Providing productive employment opportunities for women
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and young people is thought to be key for the continued development of rural areas.

However, our results suggest that we may be systematically undercounting their con-

tributions. Our analysis also indicates that secondary off-farm wage work activities are

more vulnerable to undercounting due to response order; if true elsewhere, this could

contribute to an understatement of the diversification of rural livelihoods. For example,

Dolislager et al. (2020) provide a comprehensive accounting of youth employment across

the world, and document strong sectoral and regional patterns. Given the focus on youth,

the number and range of labor activities in that study may be underestimated and this un-

derestimation may vary by sector. Where household size varies across regions, regional

comparisons may also be biased by the role of response fatigue.

Having documented the potential harm of response fatigue, we now consider possi-

bilities for ways to mitigate these distortions. First, researchers and data collection teams

may want to consider avoiding the use of proxy and instead insisting on separate in-

terviews and self-reporting. However, this may be a prohibitive approach for less well

resourced studies, will not necessarily be effective (as discussed in section 3.2), and may

unintentionally induce other dimensions of bias related to individuals’ availability and

willingness to participate.

A second possibility within the existing module structure and without cost implica-

tions is for researchers to consider their research objectives. If the primary interest is

to make broad comparisons across groups or to better understand intra-household dy-

namics, randomization of the labor module ordering will mitigate the biases introduced

by respondent fatigue (though not the average losses). If instead, capturing aggregate

household labor activities and earnings is the priority, organizing the listing in order of

greatest to least economic contribution would ensure that fatigue has the lowest impact

on those whose contributions are most important to the household, minimizing losses.

A final possibility is to explore alternative survey designs. One approach could be to

document the jobs that each individual does first, before iterating over each task. Initial

activity listing could even be done for all household members first, before asking any

follow-up questions. This could avoid some of the losses from fatigue, although it may

come at the cost of a more disjointed interview experience and interfere with the ability to
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encourage self-response from available household members. Ultimately, more method-

ological research is needed to understand the extent to which response fatigue impacts

data quality across different contexts and topics. Fortunately, these experiments can be

incorporated into existing studies at low cost.

6 Conclusion

Individual-level employment data and earnings statistics are key to the understanding

of the structure of economic growth, the causes of poverty, and household welfare. In

turn, this evidence base informs a wide range of policies and programs aiming to pro-

mote full and productive employment and decent work for all, a key concern of govern-

ments worldwide as evidenced by its inclusion in the Sustainable Development Goals. In

this paper we explored response fatigue in the administration of household surveys as a

source of measurement error and bias in estimates of reported labor activities.

The results suggest that response fatigue may be contributing to meaningful and widespread

undercounting of rural labor activities. Average losses per individual are approximately

8% with especially large estimated losses for youth (10-12%) relative to older age groups

(2%) and for women (10%) relative to men (5%). These differences are due both to hetero-

geneity in the effect of fatigue on respondents’ reporting of activities for different groups

of household members as well as the systematic manner in which women and young

people are listed later in household rosters.

This type of response fatigue may extend past labor modules to other survey mod-

ules that follow repetitive structures. Topics include consumption and expenditure and

agricultural production, suggesting that other important outcomes such as nutrition and

household income could also be affected. Ultimately, improvement in survey design

methods is key to our understanding of peoples’ livelihoods strategies and well being.

Without a reliable evidence base, policy and programs aiming to improve the lives of the

world’s poor will be unable to set reliable targets.
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7 Main Tables and Figures

Figure 1: Effect of Randomized Order Position on Reported Total Job Activities
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Notes: Figure shows the coefficients from jointly estimated random roster position assignments on total
number of jobs listed (0-3). Estimation controls for household and relation to respondent fixed effects,
gender, age group, schooling status and self-reporting.
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Figure 2: Predicted Losses from Fatigue for Age and Gender Sub-Groups with Different Models
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(b) Predicted Losses by Gender

Notes: These figures show predicted aggregate losses from fatigue in reported number of labor activities
for individuals by sub groups. Panel (a) shows differences by age group while Panel (b) shows differences
by gender. The x-axes indicate the type of model used to predict fatigue. “Simple” uses a uniform fatigue
factor regardless of the household member’s characteristics. Gender indicates that estimates for fatigue are
allowed to differ by gender. Age group, similarly, indicates different fatigue factors by age group. And the
finale allows for differences in fatigue impacts by gender x age (six sub groups).
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Table 1: Summary Statistics

Panel A: Household Level Characteristics N=864
Mean SD

Total Household Members 11.069 5.269
Members Included in Labor Module 5.918 2.904
Polygamous .297 .457
Respondent: Female .513 .5
Respondent: Age 42.294 11.715
Respondent: Ever School .325 .469

Panel B: Household Member Characteristics N=4252
Mean SD

Female .534 .499
Age 26.477 10.837
Literate .564 .496
Currently in School .356 .479
Self-Report on Labor .171 .377
Relation to Respondent: Spouse .189 .392
Relation to Respondent: Child .447 .497
Relation to Respondent: Parent .037 .189
Relation to Respondent: Sibling .123 .328
Total Reported Job Activities .744 .746

No Activities .436 .496
One Activity .386 .487
Two Activities .175 .38
Three Activities .003 .051

Household Farm Work among Working .841 .366
Household Business among Working .147 .354
Wage Work among Working .253 .435
Labor Module Order Position 3.811 2.909

Notes: Panel A shows summary statistics at the household level including household and respondent char-
acteristics. Panel B shows characteristics of the household members who participated in the labor module
(above 14 and below 60 years old), excluding the respondent. Original household roster position is among
those who are at least 14 years old and who were included in the labor module. Self-Report indicates those
who reported their own labor activities or were otherwise conferred with during the survey.
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Table 2: Order and Balance in Analysis Sample

(1) (2)
Listed Order Randomized Order

Female 0.212∗∗ -0.078
(0.101) (0.077)

Age 25-34 -0.413∗∗∗ 0.015
(0.115) (0.118)

Age 35-59 -1.359∗∗∗ 0.103
(0.150) (0.136)

Currently in School 0.121 -0.004
(0.107) (0.107)

Self-Report -0.889∗∗∗ -0.164
(0.114) (0.151)

Rel to Resp: Child 0.654∗∗∗ -0.020
(0.159) (0.138)

Rel to Resp: Parent 0.534∗∗ -0.106
(0.261) (0.275)

Rel to Resp: Sibling 0.913∗∗∗ -0.312∗

(0.184) (0.165)
Rel to Resp: Other 1.368∗∗∗ 0.153

(0.184) (0.149)
N 4252 4252
Mean Y 3.923 3.780
Resp Gender All All
Households 950 950
R2 0.576 0.436

Notes: Omitted age group is 14-24. Regressions include household fixed effects. Listed order recorded
during initial household listing at beginning of survey. Randomized order implemented in sequence of
household members in the labor module. Self-report indicates that household member reported for self or
was conferred with during labor module.
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Table 3: Fatigue and Randomized Order Position

Dependent Variable: Total Jobs Recorded
(1) (2) (3) (4) (5)

Response Order (1-14) -0.016∗∗∗ -0.016∗∗∗ -0.016∗∗∗ -0.016∗∗∗ -0.016∗∗∗

(0.005) (0.004) (0.004) (0.004) (0.004)
Female -0.066∗∗∗ -0.057∗∗∗ -0.067∗∗∗ -0.077∗∗∗

(0.021) (0.020) (0.021) (0.021)
Self-Report 0.095∗∗∗ 0.052∗ 0.095∗∗∗ 0.073∗∗

(0.029) (0.027) (0.031) (0.031)
Student -0.741∗∗∗ -0.532∗∗∗ -0.521∗∗∗ -0.485∗∗∗

(0.023) (0.028) (0.028) (0.028)
Age 25-34 0.258∗∗∗ 0.272∗∗∗ 0.224∗∗∗

(0.031) (0.031) (0.031)
Age 35-59 0.449∗∗∗ 0.454∗∗∗ 0.337∗∗∗

(0.032) (0.034) (0.041)
N 4252 4252 4252 4252 4252
Mean Y 0.744 0.744 0.744 0.744 0.744
Percent Effect -2.085 -2.145 -2.202 -2.210 -2.183
Family Size FEs Yes Yes Yes No No
Household FEs No No No Yes Yes
Relation to Resp FEs No No No No Yes
Households 950 950 950 950 950
R2 0.021 0.244 0.287 0.568 0.578

Notes: This table shows robustness of the estimated effects of randomized order position on reported num-
ber of jobs. Estimates in column (5) are the preferred specification from equation (1). Self-Report indicates
that household member was conferred with during labor module.
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Table 4: Robustness to Outcomes, Treatment Coding, and Estimation Method

(1) (2) (3) (4) (5) (6) (7)
Total One or Two or Total Total Total Total
Jobs More Jobs More Jobs Jobs Jobs Jobs Jobs

Response Order (1-14) -0.016∗∗∗ -0.007∗∗∗ -0.008∗∗∗ -0.067∗∗∗ -0.089∗∗∗ -0.029∗∗∗ -0.025∗∗∗

(0.004) (0.003) (0.003) (0.015) (0.024) (0.007) (0.006)
Female -0.077∗∗∗ -0.081∗∗∗ 0.001 -0.077∗∗∗ -0.077∗∗∗ -0.166∗∗∗ -0.130∗∗∗

(0.021) (0.014) (0.012) (0.020) (0.021) (0.036) (0.033)
Self-Report 0.073∗∗ 0.042∗∗ 0.034∗ 0.074∗∗ 0.073∗∗ 0.116∗∗ 0.097∗∗

(0.031) (0.019) (0.019) (0.031) (0.031) (0.052) (0.049)
Student -0.485∗∗∗ -0.372∗∗∗ -0.112∗∗∗ -0.485∗∗∗ -0.485∗∗∗ -1.005∗∗∗ -1.024∗∗∗

(0.028) (0.021) (0.015) (0.028) (0.028) (0.056) (0.069)
Age 25-34 0.224∗∗∗ 0.136∗∗∗ 0.087∗∗∗ 0.223∗∗∗ 0.222∗∗∗ 0.357∗∗∗ 0.303∗∗∗

(0.031) (0.022) (0.017) (0.031) (0.031) (0.051) (0.045)
Age 35-59 0.337∗∗∗ 0.211∗∗∗ 0.125∗∗∗ 0.337∗∗∗ 0.335∗∗∗ 0.495∗∗∗ 0.388∗∗∗

(0.041) (0.026) (0.024) (0.041) (0.041) (0.064) (0.055)
N 4252 4252 4252 4252 4252 4252 4252
Model OLS OLS OLS OLS OLS Tobit Poisson
Order Variable Level Level Level Log Percent Level Level
Mean Y 0.744 0.564 0.178 0.744 0.744 0.744 0.744
Percent Effect -2.183 -1.293 -4.609 . -11.927 -3.858 -3.305
Households 950 950 950 950 950 950 950
R2 0.578 0.584 0.434 0.578 0.577 0.353 0.216

Notes: “Level” indicates that the response order is a number from 1-14. “Log” takes the log of this variable.
“Percent" is the within household position calculated so that the first person in the each household is set at
zero and the final person per household set at 1. “Tot Jobs” is the total number of unique jobs listed for this
individual. “One Plus” indicates a binary outcome for having at least one job listed in the labor module.
“Two Plus” indicates at least two jobs listed. Regressions include household and relation to respondent
fixed effects. Self-Report indicates that household member reported for self or was conferred with during
labor module. The omitted age group is 14-24
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Table 5: Fatigue and Respondent Order

Dependent Variable: Total Jobs Recorded
(1) (2) (3) (4)

Group 1: Order -0.016∗∗∗

(0.004)
Group 1: Order x Male -0.009

(0.005)
Group 2: Order x Female -0.023∗∗∗

(0.005)
Group 1: Order x Age 14-24 -0.012∗∗∗

(0.004)
Group 2: Order x Age 25-34 -0.031∗∗∗

(0.008)
Group 3: Order x Age 35-59 -0.009

(0.010)
Group 1: Order x Male x Age 14-24 -0.007

(0.005)
Group 2: Order x Male x Age 25-34 -0.014

(0.009)
Group 3: Order x Male x Age 35-59 -0.009

(0.012)
Group 4: Order x Female x Age 14-24 -0.017∗∗∗

(0.006)
Group 5: Order x Female x Age 25-34 -0.044∗∗∗

(0.009)
Group 6: Order x Female x Age 35-59 -0.009

(0.011)
N 4252 4252 4252 4252
Group 1: Mean 0.744 0.738 0.450 0.482
Group 2: Mean 0.749 0.960 0.927
Group 3: Mean 1.204 1.192
Group 4: Mean 0.420
Group 5: Mean 0.984
Group 6: Mean 1.214
Group 1: Scaled Effect -2.183 -1.173 -2.647 -1.408
Group 2: Scaled Effect -3.084 -3.198 -1.531
Group 3: Scaled Effect -0.715 -0.725
Group 4: Scaled Effect -3.977
Group 5: Scaled Effect -4.503
Group 6: Scaled Effect -0.762
R2 0.578 0.578 0.578 0.580

Notes: The first column reproduces the main result from column (5) of Table 3. This table shows hetero-
geneity of the main effects of order position on total jobs listed. The estimates in each specification use a
fully saturated treatment so that the main effect on each sub-group can be readily read from the table and
tested against the null of no effect. In the statistics at the bottom of the table, group numbers indicate the
relevant mean or scaled effect for the corresponding coefficients in the column above. For example, in col-
umn 3, “Group 1: Scaled Effect” suggests that youth age 14-24 have estimated losses per order position of
2.6%. “Group 5: Mean” in column 4 suggests that women between the age 25-34 have an average of 0.984
listed labor activities.
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Table 6: Average Losses from Fatigue for Different Subgroups

Panel A: “Simple” Uniform Treatment Effect Model

(1) (2) (3) (4)
Raw No Fatigue Fatigue % Diff

All 0.744 0.806 0.742 -7.912
(0.746) (0.565) (0.574)

Male 0.738 0.799 0.737 -7.791
(0.726) (0.561) (0.570)

Female 0.749 0.811 0.746 -8.015
(0.763) (0.568) (0.577)

Age 14-24 0.450 0.511 0.440 -13.824
(0.649) (0.474) (0.477)

Age 25-34 0.960 1.024 0.957 -6.482
(0.737) (0.472) (0.479)

Age 35-59 1.204 1.265 1.220 -3.524
(0.652) (0.423) (0.430)

Panel B: Interacted Heterogeneous Treatment Effect Model

(1) (2) (3) (4)
Raw No Fatigue Fatigue % Diff

All 0.744 0.805 0.741 -7.896
(0.746) (0.576) (0.574)

Male 0.738 0.772 0.731 -5.283
(0.726) (0.534) (0.554)

Female 0.749 0.833 0.750 -10.01
(0.763) (0.609) (0.591)

Age 14-24 0.450 0.493 0.444 -10.02
(0.649) (0.477) (0.478)

Age 25-34 0.960 1.083 0.955 -11.883
(0.737) (0.480) (0.490)

Age 35-59 1.204 1.238 1.212 -2.067
(0.652) (0.432) (0.431)

Notes: Panel A uses a “simple” model to predict fatigue following equation (1): totjobsi,h =
β0 + β1orderi + β2 f emalei + β3inschooli + γh + ψr + δa + εi,h. Panel B uses a model allowing for het-
erogeneity of the impacts of fatigue by and age following the specification in Column (4) of Table 5.

The values in column (1) are means of the number of reported labor actvities in the raw data for individ-
uals belonging to the group indicated at the start of each row. Column (2) removes predicted fatigue by
setting orderi = 0 for all individuals then calculating the mean of these predicted “No Fatigue” values. Col-
umn (3) reimposes predicted fatigue if individuals had been asked about in the original, non-randomized,
household listing order. Column (4) calculates the predicted proportion losses from fatigue.
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Table 7: Predictors of Roster Order in Other Data Sources

(1) (2) (3) (4) (5)
Ghana GLS 6 Nigeria LSMS 1 Tanzania LSMS3 Malawi IHS4 Indonesia IFLS 1

Female 0.560∗∗∗ 0.813∗∗∗ 0.463∗∗∗ 0.388∗∗∗ 0.355∗∗∗

(0.017) (0.033) (0.027) (0.016) (0.022)
Age 25-34 -1.042∗∗∗ -1.034∗∗∗ -0.899∗∗∗ -0.921∗∗∗ -0.977∗∗∗

(0.029) (0.054) (0.042) (0.032) (0.036)
Age 35-59 -1.959∗∗∗ -2.243∗∗∗ -2.279∗∗∗ -1.795∗∗∗ -2.022∗∗∗

(0.023) (0.049) (0.033) (0.024) (0.027)
N 21354 11760 8757 11900 12178
Mean Y 2.707 3.107 2.863 2.498 2.718
R2 0.647 0.602 0.636 0.730 0.626

Notes: Dependent variable is household roster position among individuals age 14 and up. Omitted age
group is youth age 14-24. Column headers indicate survey data sources. Regressions include household
and relation to household head fixed effects.
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8 Appendix

Figure A.1: Ordering Effects on Subsets of Household Size

(a) Households with 5-7 People in Labor Module
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(b) Households with 8+ People in Labor Module
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Notes: Individual effects by labor module order position for household size subgroups.
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Table A.1: Summary Statistics for Raw and Analysis Samples

Sample: Full/Raw Sample 3+ Eligible 3+ Eligible
No Seniors

Panel A: Household Level Characteristics N=1106 N=988 N=864
Mean SD Mean SD Mean SD

Total Household Members 10.476 5.234 11.012 5.261 11.069 5.269
Members Included in Labor Module 5.462 2.987 5.876 2.895 5.918 2.904
Polygamous .276 .447 .301 .459 .297 .457
Respondent: Female .517 .5 .515 .5 .513 .5
Respondent: Age 41.188 11.701 41.893 11.74 42.294 11.715
Respondent: Ever School .349 .477 .332 .471 .325 .469

Sample: Full/Raw Sample 3+ Eligible 3+ Eligible
No Seniors

Panel B: Household Member Characteristics N=4935 N=4817 N=4252
Mean SD Mean SD Mean SD

Female .541 .498 .542 .498 .534 .499
Age 30.998 16.227 30.94 16.315 26.477 10.837
Literate .502 .5 .506 .5 .564 .496
Currently in School .311 .463 .317 .465 .356 .479
Self-Report on Labor .182 .386 .176 .381 .171 .377
Relation to Respondent: Spouse .206 .404 .191 .393 .189 .392
Relation to Respondent: Child .392 .488 .4 .49 .447 .497
Relation to Respondent: Parent .097 .296 .098 .298 .037 .189
Relation to Respondent: Sibling .111 .315 .114 .318 .123 .328
Total Reported Job Activities .745 .749 .734 .746 .744 .746

No Activities .437 .496 .444 .497 .436 .496
One Activity .384 .486 .381 .486 .386 .487
Two Activities .176 .381 .173 .378 .175 .38
Three Activities .003 .055 .002 .05 .003 .051

Household Farm Work among Working .85 .357 .846 .361 .841 .366
Household Business among Working .145 .352 .146 .353 .147 .354
Wage Work among Working .247 .431 .249 .432 .253 .435
Labor Module Order Position 3.73 2.897 3.797 2.901 3.811 2.909

Notes: Column headers indicate sample. The analysis sample used in the analysis is reproduced for com-
parison in the final two columns. The first pair of columns characterize the full set of households and
individuals in the raw data. The second two remove households with less than three individuals who
participated in the labor module. This is because respondents are removed from the analysis of responses
order and fatigue and the inclusion of household fixed effects requires a minimum of two additional people
in a household who participated in the labor module in order to estimate. Finally, we remove seniors in the
final two columns which both drops individuals above 60+ as well as households who, without seniors do
not have sufficient members to estimate in the analysis.
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Table A.2: Robustness to Sample Definition

Dependent Variable: Labor Activities Recorded
(1) (2) (3) (4) (5) (6)

Order (1-14) -0.017∗∗∗ -0.017∗∗∗ -0.019∗∗∗ -0.016∗∗∗ -0.016∗∗∗ -0.018∗∗∗

(0.004) (0.004) (0.005) (0.004) (0.004) (0.006)
N 4817 3879 3122 4252 4582 1938
Excluded Groups Full Self-Report Students Seniors: 60+ Incapacitated All Restrictions
Mean Y 0.734 0.711 0.935 0.744 0.767 0.977
Percent Effect -2.222 -2.216 -2.488 -2.179 -2.171 -2.400
Households 988 874 793 950 968 554
R2 0.523 0.534 0.433 0.578 0.561 0.507

Notes: All regressions include household, age group, and relation to respondent fixed effects as well as
controls for gender, student, and being conferred with in the labor module. “Full” is the full set of individ-
uals from the raw data. “Excluded groups” indicates sample exclusion criteria. Incapacitated are people
revealed to be too old or unfit to work.
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Table A.3: Work Types, Labor Supply, and Pay

Type of Work Pay Last Week Hours Last Week

(1) (2) (3) (4) (5) (6) (7) (8) (9)
HH Farm HH Bus Wage Work Any Pay IH(Pay) Log(Pay) Any Hours Hours Log(Hours)

Order (1-14) -0.006∗∗ -0.001 -0.005∗∗ -0.006∗∗∗ -0.035∗∗∗ -0.020 -0.007∗∗ -0.130 0.008
(0.003) (0.002) (0.002) (0.002) (0.010) (0.027) (0.003) (0.106) (0.008)

N 4252 4252 4252 4252 4219 446 4252 4219 1112
Mean Y 0.474 0.083 0.143 0.162 0.698 3.771 0.341 10.600 3.159
Percent Effect -1.222 -1.557 -3.775 -3.957 - - -1.920 -1.228 -
All All All All All All All All All All
R2 0.571 0.389 0.388 0.438 0.442 0.734 0.489 0.478 0.753

Notes: This table looks at impacs of fatigue on additional labor related outcomes. Percent effects are not
reported for outcomes converted with the inverse hyperbolic sine transformation (IH) or logs, as indicated
in the column headers, as these percents can be read directly from the regression results.
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Table A.4: Fatigue and Respondent Order by Household Size

Order (1-14) Percentile (0-1)

(1) (2) (3) (4) (5) (6)
Order Position -0.038∗∗ -0.018∗∗ -0.014∗∗∗ -0.052 -0.101∗∗ -0.133∗∗∗

(0.016) (0.009) (0.005) (0.036) (0.043) (0.046)
N 1339 1383 1530 1339 1383 1530
Mean Y 0.786 0.747 0.705 0.786 0.747 0.705
Percent Effect -5.100 -2.459 -1.910 -7.002 -13.628 -17.901
Family Size 2-4 5-7 8+ 2-4 5-7 8+
Households 477 263 210 477 263 210
R2 0.649 0.561 0.537 0.648 0.561 0.537

Notes: Dependent Variable: Total Jobs Recorded. Columns (1)-(3) use the order number the household
member was asked about in the labor module from 1-14. Columns (4)-(6) use the within household per-
centile position in place of the order number ranging from zero (first position) to one (last position).
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Table A.5: Self Report Heterogeneity and Fatigue

Dependent Variable: Labor Activities Recorded
(1) (2)

Order -0.016∗∗∗ -0.016∗∗∗

(0.004) (0.005)
Order x Self Report -0.001

(0.013)
Self Report 0.073∗∗ 0.078

(0.031) (0.053)
N 4252 4252
Mean Y 0.744 0.744
Percent Effect -2.183 -2.158
Household FEs No No
Family Size FEs Yes Yes
Enumerator FEs No No
Relation to Resp FEs Yes Yes
R2 0.578 0.578

Notes: Self Report indicates that this household member either reported their labor activities for themselves
or were conferred with during the labor module.
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Table A.6: Predictors of Self Reporting in Labor Module

(1) (2) (3) (4)
Ghana - Analysis Ghana GLS 6 Tanzania LSMS3 Malawi IHS4

Female 0.031∗∗∗ -0.123∗∗∗ 0.137∗∗∗ 0.151∗∗∗

(0.011) (0.006) (0.010) (0.009)
Age 25-34 -0.096∗∗∗ 0.131∗∗∗ 0.045∗∗∗ 0.265∗∗∗

(0.018) (0.010) (0.015) (0.017)
Age 35-59 -0.181∗∗∗ 0.373∗∗∗ 0.205∗∗∗ 0.376∗∗∗

(0.014) (0.008) (0.012) (0.013)
N 5568 21321 8639 11900
Mean Y 0.213 0.432 0.702 0.400
R2 0.475 0.557 0.369 0.465

Notes: Dependent variable is an indicator for self-reporting during the labor module. Regressions include
household fixed effects and in-school status. Data source indicated at the top of each column. The first
column uses the data from our analysis.
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Table A.7: Within Enumerator Heterogeneity

Dependent Variable: Labor Activities Recorded
(1) (2) (3) (4) (5)

Order -0.016∗∗∗ -0.016∗∗∗ -0.018∗∗∗ -0.016∗∗∗ -0.018∗∗∗

(0.004) (0.004) (0.005) (0.004) (0.005)
Order x Survey Not Enum’s First of Day 0.003

(0.008)
Survey Not Enum’s First of Day -0.017 -0.029

(0.023) (0.035)
Order x Second Half of Enum’s Surveys 0.005

(0.008)
Second Half of Enum’s Surveys -0.057∗∗∗ -0.073∗∗

(0.022) (0.034)
N 4252 4252 4252 4252 4252
Mean Y 0.744 0.744 0.744 0.744 0.744
Household FEs No No No No No
Family Size FEs Yes Yes Yes Yes Yes
Enumerator FEs No Yes Yes Yes Yes
Relation to Resp FEs Yes Yes Yes Yes Yes
R2 0.298 0.396 0.396 0.397 0.397

Notes: 55% of households were enumerator’s first interview of the day. Columns (2) and (3) look at het-
erogeneity by whether the interview was after the enumerator’s first of the day. Columns (4) and (5) look
at heterogeneity by whether the surveys were after the midway point of the enumerator’s total number
of surveys through the full duration of the study. Without enumerator variation within households, these
specifications replace household fixed effects used in other analyses with family size fixed effects.
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Table A.8: Average Losses from Fatigue for Different Subgroups with Heterogeneity Models

Panel A: Gender Heterogeneity

(1) (2) (3) (4)
Raw No Fatigue Fatigue % Diff

All 0.744 0.806 0.741 -8.043
(0.746) (0.566) (0.574)

Male 0.738 0.771 0.737 -4.305
(0.726) (0.561) (0.566)

Female 0.749 0.837 0.745 -11.047
(0.763) (0.568) (0.581)

Age 14-24 0.450 0.510 0.439 -13.843
(0.649) (0.473) (0.477)

Age 25-34 0.960 1.027 0.957 -6.771
(0.737) (0.476) (0.479)

Age 35-59 1.204 1.267 1.221 -3.641
(0.652) (0.421) (0.429)

Panel B: Age Group Heterogeneity

(1) (2) (3) (4)
Raw No Fatigue Fatigue % Diff

All 0.744 0.805 0.741 -7.900
(0.746) (0.571) (0.572)

Male 0.738 0.797 0.736 -7.632
(0.726) (0.564) (0.569)

Female 0.749 0.811 0.745 -8.130
(0.763) (0.576) (0.576)

Age 14-24 0.450 0.495 0.443 -10.474
(0.649) (0.474) (0.476)

Age 25-34 0.960 1.081 0.955 -11.603
(0.737) (0.473) (0.488)

Age 35-59 1.204 1.236 1.213 -1.909
(0.652) (0.424) (0.427)

Notes: Panel A uses a model allowing for heterogeneity of the impacts of fatigue by gender following the
specification in Column (2) of Table 5. Panel B uses a model allowing for heterogeneity of the impacts of
fatigue by age group following the specification in Column (3) of Table 5.

The values in column (1) are means of the number of reported labor actvities in the raw data for individ-
uals belonging to the group indicated at the start of each row. Column (2) removes predicted fatigue by
setting orderi = 0 for all individuals then calculating the mean of these predicted “No Fatigue” values. Col-
umn (3) reimposes predicted fatigue if individuals had been asked about in the original, non-randomized,
household listing order. Column (4) calculates the predicted proportion losses from fatigue.
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