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Abstract. The aim of this paper is the study of a type of nonlocal parabolic equation. The formulation includes a convolution
kernel k in the diffusion term and a design function h that plays the role of the diffusion coefficient. The main goal is
twofold: On the one hand, the existence and uniqueness of nonlocal solution are deduced. Also, a comprehensive and
rigorous procedure, which is based on the classical Galerkin–Fourier Method, is performed. As in the classical setting, the
appropriate choice of the Gelfand triplet will guarantee the differentiation and therefore the operational technique for the
study of the parabolic equation. On the other hand, the convergence of the nonlocal solution as the kernel k converges to a
Dirac Delta is studied. The series expansion of the nonlocal solution allows us, in an easy way, to show its convergence to
the solution of the corresponding local parabolic equation.
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1. Introduction

There is no doubt about the interest generated by nonlocal models. The modeling of diffusion through
integral–differential equations has been studied in multiple works over the last two decades (see [20,
58], and references therein). These integral–differential formulations have appeared in the contexts of
Probability (see [12,15] or [57]), and also in Analysis, where it has given rise to seminal results for the
study and understanding of nonlocal problems (see for instance [6,18,19,45,46]). Consequently, nonlocal
models have been used in many applied fields where the corresponding formulation includes the presence
of long-term interactions. These models have turned out to be a fundamental tool in the field of Anomalous
Diffusion, where different versions of the fractional Laplacian have been used ([10,14,43,44]). This kind of
nonlocality appears also in Finance ([38]), Fluid Dynamics ([23]), Elasticity ([1,54,55]), Biology ([35,36]),
Image Processing ([32,41]) or Nonconvex Variational Analysis ([13,48]).

From all these references about the nonlocal formulation, we must highlight the problems of evolution
of nonlinear type. A prominent example is the fractional p-Laplacian. The goal of this paper is constrained
to the linear case, p = 2. This manuscript analyzes the fractional Laplacian from the most basic elements
and reproduces the framework of classical parabolic equations in a rigorous way ([37,39,56,59]). Although
there are multiple perspectives and many technical procedures in connection with this topic, this work will
focus on providing a thorough analysis of the Galerkin–Fourier method for nonlocal parabolic diffusion
equations. The general procedure used to obtain nonlocal solutions is nothing else than a faithful version of
the classical method for partial differential equations ([30,39]). From a practical point of view, the analysis
performed gives rise to a meaningful operative methodology. The obtained results explicitly provide a
powerful method to solve the problem because apart from giving a representation for the solutions, it
facilitates the comparison between local and nonlocal solutions. Therefore, the practical sense of the
approach provided by the article is clear. Besides, the proposed framework is advantageous because the
nonlocal nature of the formulation is a feature that favors practical applications. This formulation is
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given by means of an integral equation without gradients, and hence, it will be assumed that the involved
spaces are not necessarily regular, or at least not so regular as in the classical setting. Consequently,
under these circumstances, it is very likely that the set of numerical simulations could be large enough
in order to faithfully reproduce the phenomenon we are analyzing.

Despite the fact that there is a lot of work on this type of nonlocal analysis, we have not found any
reference dealing in detail with the fundamentals of the Galerkin–Fourier method. The nonlocal func-
tional framework, the right setting for the formulation of the problem and the appropriate compactness
results will be the main issues to be addressed in this work. This analysis will serve to attain an explicit
representation of the solution and also, to deduce its connection with the classical local model of diffu-
sion. More specifically, the nonlocal procedures will give rise, as a Γ-limit, the classical Galerkin–Fourier
method and consequently, to the classical solution of the parabolic evolution equation.

As we have already stated, the literature on the subject is abundant. Without wishing to be exhaustive,
we shall review some of the most important works. Concerning the nonlocal evolution equation we shall
deal with, it is worth indicating that we analyze the nonlocal linear case with a kernel broadly used in
diffusion models. The formulation of the state equation depends on the number δ called horizon. This
parameter appears in the definition of the kernel, and it plays the role of an internal length scale in the
modeling of long range interactions. The kernels we consider are radial functions converging to a Dirac
measure, as the horizon tends to zero. These kernels contain a class of Riesz operators, they are singular,
but no additional bounds or regularity conditions are assumed. Our hypotheses are not the same as those
considered by other authors. For example, the kernel γ (x, y) = exp(−|x−y|)

|x−y| is a case that could be treated
in our framework, and yet, it does not satisfy the conditions imposed in other works (see [24,52]).

We consider a smooth bounded domain so that the nonlocal operator is a restricted fractional Lapla-
cian. See [17,42,53] and references therein. Also, a diffusion coefficient depending only on the spacial
variable is included. This ingredient endows the problem with great generality since its Γ-limit gives rise
to a fairly broad class of diffusion equations. In this sense, we refer [7,24,49,60] or [26]. The boundary
value is of homogeneous Dirichlet type; it is a volume constraint because it acts on a neighborhood of
the boundary.

A key issue in our analysis is the Spectral Theory. The previous spectral results obtained in the nonlocal
context contribute decisively to the representation of the solution as a series. Besides, the asymptotic
behavior of the spectra is essential to derive the local limit problem. In relation with this matter, we follow
[2,3]. Some of the most interesting works whose context is similar to ours are [52] or [9]. References [11,21]
are two interesting papers where the study of the fractional reaction–diffusion equation is approached
from the perspective of Fourier’s spectral methods. See also [22].

The existence and the asymptotic behavior of solutions for the restricted nonlocal fractional Laplacian
have been already analyzed in several contexts. For the linear case, we must highlight the works [6,24,
60,61]. These articles consider nonlocal wave or diffusion equations in which a less singular kernel than
ours is used, or some specific behavior of the admissible functions at the nonlocal boundary are assumed.
In [31], the existence of solution for parabolic problems is analyzed. The proof is carried out by applying
the Lax–Milgram Lemma instead a Galerkin–Fourier approach. In that paper, the authors use non-
radial kernels and build the underlying Gelfand triplet. Nevertheless, compared to the present work,
they assume other slightly different conditions on the kernel and on the diffusion coefficients, and the
asymptotic analysis is not analyzed. [49] or [7] are cases whose models include a kernel similar to the
one analyzed here in the sense that they incorporate a diffusion coefficient in the formulation. They also
deal with reaction–diffusion equations, even if the reactive term is a nonlinear function depending on a
measure.

Complementing the above-mentioned works and within the framework of the numerical analysis, we
refer to [27–29,33,34,47,50,51].

As far as we know, there are not too many specific works concerning the study of optimal design
governed by nonlocal diffusion equations . Some works, but for the nonlocal elliptic equation, are [3,4,8,
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25,26]. See also [16] for the H-convergence study of the nonlocal elliptic operator. [5] is a work that deals
with the existence and asymptotic analysis of optimal designs in the context of parabolic equations.

2. Formulation of the problem, tools and results

2.1. The problem

We shall analyze the nonlocal parabolic equation

(Pδ)
.=

⎧
⎨

⎩

ut (x, t) + Lδ (u (x, t)) = f (x, t) , in Ω,
u (x, t) = 0 in Ωδ \ Ω, t ∈ (0, T ) ,
u (x, 0) = g (x) in Ω,

(1)

where δ is a fixed, positive and small parameter, Lδ is an integral operator defined by

Lδ (u (x, t)) = −2
∫

B(x,δ)

kδ (|x′ − x|)
|x′ − x|2

H (x′, x) (u (x′, t) − u (x, t)) dx′, (2)

where

H (x′, x) =
h (x) + h (x′)

2
,

Ωδ = Ω ∪ {∪y∈∂ΩB (y, δ)} (B (x, r) is the notation for an open ball centered at x ∈ RN and radius r > 0)
and δ ≤ δ0, where δ0 is a given small number. In addition, the following conditions are assumed:
1. Ω is a smooth bounded domain in RN .
2. g ∈ L2 (Ωδ) and f ∈ L2

(
[0, T ];L2 (Ω)

)
.

3. The design function h satisfies h ∈ H, with

H .= {h : Ωδ → [hmin, hmax] a.e. x ∈ Ω, h = 0 in Ωδ \ Ω } (3)

for given constants 0 < hmin < hmax.
4. The kernel kδ satisfies:

(a) supp kδ ⊂ B (0, δ).
(b) kδ ≥ 0.
(c) (kδ)δ, with δ > 0, is a sequence of radial functions such that:

1
N

∫

B(0,δ)

kδ (|s|) ds = 1. (4)

(d) The function Kr : B (0, δ) \ {0} → ]0,+∞[ defined by Kr (z) = kδ(|z|)
|z| , is integrable,

Kr ∈ L1 (B (0, δ)) . (5)

(e) The function Ks : B (0, δ) \ {0} → ]0,+∞[ defined by Ks (z) = kδ(|z|)
|z|2 is singular near the

origin in the sense that

lim
θ→0+

∫

B(0,δ)−B(0,θ)

Ks (z) dz = +∞. (6)

In order to understand the statement of the problem, we consider the spaces involved. First of all, we
define L2

0 (Ωδ) and X as

L2
0 (Ωδ)

.=
{
v : Ωδ → R : v ∈ L2 (Ω;R) and v = 0 in Ωδ \ Ω

}
,

and
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X :=
{
v ∈ L2

0 (Ωδ) : Bh (v, v) < ∞
}
,

where

Bh (u, v)
.=
∫

Ωδ

∫

Ωδ

H (x′, x)
kδ (|x′ − x|)
|x′ − x|2

(u (x′, t) − u (x, t)) (v (x′, t) − v (x, t)) dx′dx. (7)

We also define the following subspace of X,

X0 = C∞
co (Ωδ),

where

C∞
co (Ωδ)

.= {v : Ωδ → R : v ∈ C∞
c (Ω) and v = 0 in Ωδ \ Ω} ⊂ X.

The closure is defined with respect to the norm ∥·∥ given in X through the quadratic form Bh (·, ·), that
is:

X0 =
{
v ∈ X : there is (vj) ⊂ C∞

co (Ωδ) such that lim
j

Bh (vj − v, vj − v) = 0
}
.

We notice that, for each h and δ fixed, both X and X0 are Hilbert spaces with the inner product Bh (·, ·).
They depend on δ but not on h because the underlying norms are equivalent (see [2]).

Another important issue, for each δ, is the chain of embeddings

X0 ⊂ L2
0 (Ωδ) ⊂ X ′

0, (8)

where X ′
0 denotes the dual of X0. We shall be able to identify:

1. X0 with a dense subspace of L2
0 (Ωδ) (as in the classical setting H1

0 (Ω) ⊂ L2 (Ω) is dense with
respect to the L2 (Ω)-norm).

2. L2
0 (Ωδ) with itself, by means of its own inner product (as usual for a Hilbert space).

3. L2
0 (Ωδ) with a dense subspace of X ′

0, so that any function of L2
0 (Ωδ) acts on X0 via the inner

product of L2
0 (Ωδ).

In order to perform a rigorous formulation of the parabolic equation and to reproduce the classical
procedures, the embeddings (8) must be dense and continuous (see Sect. 3). Recall that in such a case,
the above three separable Hilbert spaces constitute what is called a Gelfand triplet (see [59] or [56]).

We finally define

Y0
.= L2 ([0, T ];X0) =

⎧
⎨

⎩u(·, t) ∈ X0 :
T∫

0

∥u∥2X0
dt < ∞

⎫
⎬

⎭ , (9)

which is also a Hilbert space with the inner product

(u, v)Y0
=

T∫

0

(u (t) , v (t))X0
dt.

Again, we notice that this space depends upon the parameter δ, Y0 = Y0 (δ).
The solution of the problem (Pδ) defined in (1) must be understood in a weak sense:

Definition 1. ([30]) It is said that u ∈ Y0 is a weak solution of the problem (1), if
1. ut ∈ L2 ([0, T ];X ′

0),
2. u satisfies the evolution equation of (Pδ), namely, for any v ∈ X0 and a.e. t ∈ [0, T ],

⟨ut, v⟩ +Bh (u, v) = (f (x, t) , v) (10)

3. u (x, 0) = g (x) , x ∈ Ω.
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In the above definition ut must be understood as the weak derivative of u with respect to t. Also, in
(10), ⟨·, ·⟩ stands for the pairing of X ′

0 and X0 since ut belongs to X ′
0.

Once the embeddings (8) are a Gelfand Triplet, we will be able to apply a classical result (see for
instance [37,40]) ensuring that any solution of (1) can be redefined in an appropriate null set, in order to
belong to the space C

(
[0, T ] ;L2

0 (Ωδ)
)
. This fact gives sense to the initial condition used in Definition 1

(3).

2.2. Organization and results

The manuscript is organized as follows: Sect. 3 contains the proof of the Gelfand Triplet and its conse-
quences in terms of differentiation (Theorems 6 and 7 ). Section 4 is devoted to obtaining the solution
of the problem for a class of parabolic equations parametrized through the horizon parameter δ. For
each parameter δ, we achieve existence and uniqueness of solution for the problem (1) (Theorem 8).
The obtained solution is expressed as a series, which simplifies the asymptotic analysis when δ tends to
zero. The underlying limit problem we derive is the classical local parabolic equation. This is analyzed in
Sect. 5 (Theorem 9).

Since in Sect. 5 the asymptotic behavior of the sequence of solutions (uδ)δ when δ → 0 is analyzed,
some notes related to the limit problem are in order. The limit problem is the classical one, which is
formulated as follows: Find u ∈ W (0, T ) such that

(P ) =

⎧
⎨

⎩

wt (x, t) − div (h (x)∇w (x, t)) = f (x, t) , in Ω
w (x, t) = 0 in ∂Ω
w (x, 0) = g (x)

(11)

where W (0, T ) is the Hilbert space described as

W (0, T ) =
{
v ∈ L2

(
[0, T ];H1

0 (Ω)
)
: vt ∈ L2

(
[0, T ];H−1 (Ω)

)}

and whose inner product is given by the formula

(u, v) =
T∫

0

(∇xu (t) ,∇xv (t))L2(Ω) dt+
T∫

0

⟨ut (t) , vt (t)⟩H−1(Ω) dt.

As in the nonlocal case, ut must be understood in a weak sense. Since we are looking for a solution
u such that ut ∈ L2

(
0, T ;H−1 (Ω)

)
, the action of ut, as an element of H−1 (Ω), upon a function v ∈

L2
(
0, T ;H1

0 (Ω)
)
, will be denoted by ⟨ut, v⟩.

We recall that u ∈ W (0, T ) is a weak solution of (11) if

⟨ut, v⟩ +
∫

Ω

h (x)∇u∇vdx =
∫

Ω

fvdx

for each v ∈ H1
0 (Ω) a.e. t ∈ [0, T ] and u (x, 0) = g (x) (the reader can look at [30,39,56] for the de-

tails). Here, the product ⟨·, ·⟩ must be understood as follows: ⟨U, V ⟩H−1(Ω) = ⟨RU,RV ⟩H1
0 (Ω) where

R : H−1 (Ω) → H1
0 (Ω) is a duality map derived from the Riesz Representation Theorem.

2.3. Preliminaries: the nonlocal steady case

We show the basic tool we shall employ to solve (1): the existence of a basis of eigenfunctions
{
w(k)

δ

}

k
⊂

X0, with eigenvalues γnl
k (δ) for the nonlocal operator Bhδ , which can be expressed by writing

Bhδ

(
w(k)

δ , v
)
= γnl

k (δ)
(
w(k)

δ , v
)

L2(Ω)×L2(Ω)
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for any v ∈ X0. The sequence of eigenvalues γnl
k (δ) is non-decreasing and γnl

k (δ) → +∞ if k → +∞.
Concerning the eigenfunctions, we know

{
w(k)

δ

}

k
is an orthonormal basis in L2

0 (Ωδ) and orthogonal inX0.
In practice, it is essential to determine the eigenfunctions. The basis they constitute and the associated
eigenvalues are calculated by means of the following iterative process:

γnl
k (δ) = Bh

(
w(k)

δ , w(k)
δ

)
= min

u∈X(k)
Bh (v, v)

where

X(k) .=
{
w ∈ X0 : Bh

(
v, w(k)

δ

)
= 0, j = 1, 2, . . . , k − 1

}

for k ≥ 2 and X(1) = X0 (see [2,57,60,61]).
These facts provide the appropriate framework to solve the following nonlocal elliptic problem: fixed

δ > 0 and G ∈ L2 (Ω), there is a unique solution in X0 of the stationary elliptic problem

Lδ (v (x)) = G (x) , v = 0 in Ωδ − Ω. (12)

That is, there exists uδ ∈ X0 such that

Bh (uδ, w) = (G,w)L2(Ω)×L2(Ω) for any w ∈ X0.

More specifically, it has been proved that the only solution of this problem, uδ, can be written as a series:

uδ (x) =
∑

k

Gδk

γnl
k

w(k)
δ (x) (13)

where (Gδk)k is the sequence of Fourier coefficients of the given function G ∈ L2 (Ω) with respect to the
basis

{
w(k)

δ

}

k
. The proof of this existence theorem is, basically, a consequence of the Nonlocal Poincaré

inequality (see (14) below) and the compact embedding X0 ⊂ L2
0 (Ωδ) (see [2] or [4]).

Remark 2. Even though these results are proved under the hypotheses (4)–(6), these assumptions on the
kernels could be replaced by other classical inequalities without any consequence and therefore, without
any change in the remain of the paper (see [2, p. 501 and Remark 3.2]).

Next result requires a little bit of precise notation: We know that for each δ > 0, the operator Bh has
a unitary basis of eigenfunctions. If γnl

k (δ) denotes the k-th eigenvalue, then the set
{
w(k)

iδ

}nk

i=1
is made

of the corresponding eigenfunctions.

Theorem 3. ([2]) There is subsequence of δ′s for which the following limits hold:

lim
δ→0+

γnl
k (δ) = γk

and

lim
δ→0+

w(k)
iδ = w(k)

i strongly in L2, for i = 1, . . . , nk,

where w(k)
i , i = 1, . . . , nk, are eigenfunctions of the −div (h∇·) operator in H1

0 (Ω) and γk, are the corre-
sponding eigenvalues. Moreover, limδ→0+ w(k)

iδ = w(k)
i strongly in X0, in the sense that

lim
δ→0

Bh

(
w(k)

iδ − w(k)
i , w(k)

iδ − w(k)
i

)
= 0.

The proof of this theorem is based on the results by Brezis, Ponce et al., and in particular, it makes
use of this essential compactness statement:

Theorem 4. ([2,18,19,45]) If (ψδ)δ is a bounded sequence in L2
0 (Ωδ) and there is a positive constant C

such that Bh (ψδ,ψδ) ≤ C, for any δ ≤ δ0, then (ψδ)δ is relatively compact in L2
0 (Ωδ). Moreover, there if(

ψδj

)
j
is a subsequence such that ψδj → ψ strong in L2 (Ω), if j → +∞, then ψ ∈ H1 (Ω).
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Thanks to the above results, a convergence result toward the local problem can be easily obtained:

Theorem 5. ([2]) If (uδ)δ is the sequence of solutions of the nonlocal elliptic problem (12), then:
1. There is a subsequence of it (still denoted by (uδ)δ) such that uδ → u strongly in L2 if δ → 0 and

u ∈ H1 (Ω).
2. The above convergence is also strongly in X0, in the sense that limδ→0 Bh (uδ − u, uδ − u) = 0.
3. The function u is the solution of the local elliptic problem −div (h∇u) = G and it is written like

u (x) =
∑

k

Gk

γk
w(k) (x)

where (Gk)k is the sequence of Fourier coefficients of the given function G ∈ L2 (Ω) with respect to
the basis

{
w(k)

}
.

Although the procedures may change slightly, the steps to follow in the parabolic case are very similar
to the elliptic one.

3. The Gelfand triplet

The result we give is fundamental since it provides the rules of differentiation we need to look into the
parabolic equations.

Theorem 6. The chain of embeddings X0 ⊂ L2
0 (Ωδ) ⊂ X ′

0 is a Gelfand triplet.

Proof. We must prove the above embeddings are dense and continuous. On the basis of the definition of
X0, the denseness for the first embedding is obvious. The continuity is straightforwardly derived by using
the nonlocal version of Poincaré inequality (see [2,6,45]): For any v ∈ X0, there is a positive constant C
such that

C ∥v∥2L2
0

≤ Bh (v, v) . (14)

Concerning the second embedding, it is clear that any function f ∈ L2
0 can be injected onto X ′

0. This is
due to the fact that any function f defines the linear functional Tf whose action on any v ∈ X0 is

Tf (v) = (f, v)L2(Ωδ)×L2(Ωδ)
.

To verify that Tf is continuous, we note

∥Tf∥X′
0
= sup

∥w∥X0
=1

∣∣∣(f, w)L2(Ωδ)×L2(Ωδ)

∣∣∣

≤ sup
∥w∥X0

=1
∥f∥L2(Ωδ)

∥w∥L2(Ωδ)
.

If we use (14), we conclude that there is a positive constant c > 0 such that

∥Tf∥X′
0

≤ ∥f∥L2(Ωδ)
sup

∥w∥X0
=1

c ∥w∥X0
.

and hence

∥Tf∥X′
0

≤ c ∥f∥L2
0
,

which amounts to state the continuity of the embedding L2
0 ⊂ X ′

0.
We prove now the denseness. By using the Riesz Theorem, we can identify each F ∈ X ′

0 with one
element f ∈ X0, in such a way that the action of F on any v ∈ X0 can be expressed by the formula

F (v) = Tf (v) = Bh (f, v) .
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Besides, we know that there exists a sequence (fn)n ⊂ C∞
co (Ωδ) such that fn → f strongly in X0. This

means

lim
n→∞

(Bh (fn, v) − Bh (f, v)) = 0

and this convergence is uniformly on the set
{
v ∈ X0 : ∥v∥X0

= 1
}
.

We analyze the way of writing Bh (fn, v) : since Bh (fn, v) < C and fn is assumed to be smooth then

Bh (fn, v) =
∫

Ωδ

∫

Ωδ

kδ (|x′ − x|)H (fn (x′) − fn (x)) (v (x′) − v (x))
|x′ − x|2

dx′dx

= −2
∫

Ωδ

⎛

⎜⎝
∫

B(x,δ)

kδ (|x′ − x|)H (fn (x′) − fn (x))
|x′ − x|2

dx′

⎞

⎟⎠ v (x) dx

= (Lδ (fn) , v)L2(Ωδ)×L2(Ωδ)
,

where Lδ (fn) is given by

Lδ (fn) = −2
∫

B(x,δ)

kδ (|x′ − x|)H (fn (x′) − fn (x))
|x′ − x|2

dx′.

The function Lδ (fn) defined in this way belongs to L2 (Ωδ) for any n, and gives rise to the linear operator
Sn on X0 defined by:

Sn (v) = (Lδ (fn) , v)L2(Ωδ)×L2(Ωδ)
, v ∈ X0.

To conclude, it is enough to check that

lim
n→∞

∥Sn − Tf∥X′
0
= 0.

But this is straightforward because

lim
n→∞

∥Sn − Tf∥X′
0
= lim

n→∞
sup

v∈X0:∥v∥X0
=1

|Sn (v) − Tf (v)|

= lim
n→∞

sup
v∈X0:∥v∥X0

=1
|Bh (fn, v) − Bh (f, v)|

= 0,

where the last identity is true thanks to the uniform convergence of Bh (fn, ·) toward Bh (f, ·). !

By using the above Gelfand triplet, we are in the position to reformulate a classical result on differ-
entiation:

Theorem 7. ([37,56,59]) Let X0 ⊂ L2
0 (Ωδ) ⊂ X ′

0 be a Gelfand triplet. If u ∈ L2 (0, T,X0) and ut ∈
L2 (0, T,X ′

0) then u ∈ C
(
[0, T ] ;L2

0 (Ωδ)
)
. Moreover:

1. For any v ∈ X0, the real-valued function t → (u, v)L2
0(Ωδ)

is weakly differentiable in (0, T ) and

d
dt

(u, v)L2
0(Ωδ)

= ⟨ut, v⟩

2. The real-valued function t → ∥u (t)∥2L2(Ωδ)
is absolutely continuous with

1
2
d
dt

(
∥u (t)∥2L2

0(Ωδ)

)
= ⟨ut (t) , u (t)⟩

for a.e. t ∈ [0, T ].
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3. There is a constant C = C (T ) such that

∥u (t)∥L∞([0,T ];L2
0(Ωδ))

≤ C
(
∥u (t)∥L2([0,T ];X0)

+ ∥ut∥L2([0,T ];X′
0)

)

4. Existence and uniqueness of solutions

As we have commented in the introduction, the construction of solutions completely hinges on the classical
methods of partial differential equations. In order to accomplish the existence in (1), we adapt and combine
the separation variables and the Galerkin–Fourier methods. As in the local cases, we shall obtain an
expression under the format of a series for the solution of the nonlocal problem.

Theorem 8. (Existence)For each h ∈ H and each δ > 0 fixed, there exists a unique solution uδ ∈ Y0

of Eq. (1) in the sense of Definition 1. Moreover, if f (x, t) =
∑∞

k=1
fδk (t)w

(k)
δ (x), where (fδk)k is the

sequence of Fourier coefficients given by fδk (t) =
∫

Ω

f (x, t)w(k)
δ (x) dx, and (gδk)k is the sequence of

Fourier coefficients of g, then

uδ (x, t) =
∞∑

k=1

d(k)δ (t)w(k)
δ (x) , (15)

where d(k)δ is the solution to the initial value problem
⎧
⎨

⎩

(
d(k)δ (t)

)′
+ γnl

k (δ) d(k)δ (t) − fδk (t) = 0,

d(k)δ (0) = gδk.
(16)

We split the proof into several steps:

4.1. Step 0: uniqueness

We first address the proof of the uniqueness. The procedure is standard and is entirely based on the
Principle of Conservation of the Energy: If both f and g are identically zero, and z is a solution of (10),
then the energy vanishes, that is

⟨zt, z⟩ +Bh (z, z) = 0.

Since
T∫

0

⟨zt, z⟩dt =
1
2

∥z∥2L2(Ω) (T ) ,

then
T∫

0

Bh (z, z) dt+
1
2

∥z∥2L2(Ω) (T ) = 0

and thereby z = 0.
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4.2. Step 1: Galerkin approximation

For each δ ∈ R+, we shall seek uδ, a solutions of Eq. (10). Firstly, we shall deal with a finite-dimensional
version of (10). We set u(k)

δ (x, t) = d(k)δ (t)w(k)
δ (x), where w(k)

δ (x) are the eigenfunctions with eigenvalues
γnl
k (δ) (see Sect. 2.3) and d(k)δ (t) are functions that will be defined later. Clearly

Bh

(
u(k)

δ (x, t) , v (x)
)
= γnl

k (δ)
(
u(k)

δ (x, t) , v (x)
)
. (17)

Also, if gδk are the Fourier coefficients of g, gMδ (x) =
∑M

k=1 gδkw
(k)
δ (x), and the functions d(k)δ are assumed

to satisfy the initial value problem (16), then the function

uM
δ (x, t) .=

M∑

k=1

d(k)δ (t)w(k)
δ (x) (18)

is a weak solution in Y0 of the nonlocal equation
⎧
⎨

⎩

ut (x, t) + Lδ (u (x, t)) = f (x, t)
u (x, t) = 0 in Ωδ − Ω

u (x, 0) = gMδ (x)
(19)

onto the finite-dimensional subspace L
{

∪M
k=1w

(k)
δ

}
.

4.3. Step 2: convergence

By using (19), we have
((
uM

δ

)
t
, uM

δ

)
L2(Ω)×L2(Ω)

+Bh

(
uM

δ , uM
δ

)
=
(
f, uM

δ

)
L2(Ω)×L2(Ω)

(20)

and therefore, thanks to Theorem 7 and the orthogonality of the functions w(k)
δ , we have

1
2
d
dt

(∥∥uM
δ

∥∥2
L2(Ωδ)

)
+

M∑

k=1

(
d(k)δ

)2
γnl
k ≤ 1

2
∥f∥2L2(Ω) +

1
2
∥∥uM

δ

∥∥2
L2(Ωδ)

. (21)

Thus, Gronwall’s inequality (see [30, Appendix B, p. 624] or [37, Th. 6.41, p. 208-209]) ensures the
existence of a positive constant C such that

∥∥uM
δ

∥∥2
L2(Ωδ)

(t) ≤ eCt

⎛

⎝∥∥uM
δ

∥∥2
L2(Ωδ)

(0) +
t∫

0

∥f∥2L2(Ω) dt

⎞

⎠ , (22)

and hence

max
t∈[0,T ]

∥∥uM
δ

∥∥2
L2(Ωδ)

≤ C
(
∥g∥2L2(Ω) + ∥f∥2L2([0,T ];L2(Ω))

)
. (23)

By performing integration in t in (21) and using (23), we derive
T∫

0

∥∥uM
δ

∥∥2
X0

dt ≤ C
(
∥g∥2L2(Ω) + ∥f∥2L2([0,T ];L2(Ω))

)
, (24)

where a C is a positive constant independent of M . In particular
T∫

0

∥∥uM
δ

∥∥2
L2(Ωδ)

dt ≤ C for every M . The

bounds we have just found allow us to state uM
δ ⇀ z both weakly in L2 (Ωδ) and weakly in Y0 for any t

if M → +∞.
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In addition, we are going to prove convergence for the sequence
((
uM

δ

)
t

)
M

: We fix v ∈ X0 such that

∥v∥X0
= 1 and we write v = v1 + v2, where v1 ∈ L

{
∪M
j=1w

(j)
δ

}
and

(
v2, w

(k)
δ

)
= 0, for k = 1, . . . ,M . By

using (20), we get
((
uM

δ

)
t
, v1

)
L2(Ω)×L2(Ω)

= (f, v)L2(Ω)×L2(Ω) − Bh

(
uM

δ , v1
)

so that ∣∣∣
((
uM

δ

)
t
, v1

)
L2(Ω)×L2(Ω)

∣∣∣ ≤ C
(
∥f∥L2(Ω) +

∥∥uM
δ

∥∥
X0

)
.

This estimation serves to define
(
uM

δ

)
t
as a bounded operator in X ′

0, namely
∥∥(uM

δ

)
t

∥∥
X′

0
≤ C

(
∥f∥L2(Ω) +

∥∥uM
δ

∥∥
X0

)
.

Thus, by (24) we have
T∫

0

∥∥(uM
δ

)
t

∥∥2
X′

0
dt ≤ C

⎛

⎝
T∫

0

∥f∥2L2(Ω) dt+
T∫

0

∥∥uM
δ

∥∥2
X0

dt

⎞

⎠

≤ C
(
∥f∥2L2([0,T ];L2(Ω)) + ∥g∥2L2(Ω)

)
.

Then,
(
uM

δ

)
t
is bounded in L2 ([0, T ];X ′

0), and for a subsequence,
(
uM

δ

)
t
⇀ z′ weakly in L2 ([0, T ];X ′

0).
In particular we derive z ∈ C ([0, T ];X0).

4.4. Step 3: existence

Let us check that the function z is the solution to our problem. We fix t ∈ (0, T ) and k ∈ N, and we take
M > k. By multiplying in the equation

((
uM

δ

)
t
, w(k)

δ (x)
)
+Bh

(
uM

δ , w(k)
δ (x)

)
=
(
f, w(k)

δ (x)
)

L2(Ω)×L2(Ω)

by any function ϕ (t) ∈ C∞ ([0, T ]), with ϕ (T ) = 0, and denoting ϕk (x, t) = ϕ (t)w(k)
δ (x), we perform

integration by parts to get
T∫

0

(
−uM

δ , (ϕk)t
)
dt+

T∫

0

Bh

(
uM

δ ,ϕk

)
dt

=
T∫

0

(f,ϕk)L2(Ω)×L2(Ω) dt+
(
uM

δ (x, 0) , w(k)
δ (x)

)
ϕ (0) .

If we pass to the limit when M → +∞, then
T∫

0

(
−z, w(k)

δ

)
ϕ′ (t) dt+

T∫

0

Bh

(
z, w(k)

δ (x)
)

ϕ (t) dt

=
T∫

0

(
f, w(k)

δ

)

L2(Ω)×L2(Ω)
ϕ (t) dt+

(
g, w(k)

δ (x)
)

ϕ (0) .

(25)

Since we can use any ϕ ∈ C∞
c ([0, T ]) then, in particular, the above identity implies

〈
z′, w(k)

δ

〉
+Bh

(
z, w(k)

δ (x)
)
=
(
f, w(k)

δ

)

L2(Ω)×L2(Ω)
,
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where the derivative must be understood in the sense of the distributions.
Since the set of functions w(k)

δ is dense in X0, then the formula from the above can be generalized,
namely:

⟨z′, v⟩ +Bh (z, v) = (f, v)L2(Ω)×L2(Ω) (26)

for any v ∈ X0 and for a.e. t ∈ (0, T ).
In order to check z (0) = g, we integrate by parts in (25 ) to obtain

(
z (0) , w(k)

δ

)
ϕ (0) =

(
g, w(k)

δ (x)
)

ϕ (0)

for any w(k)
δ and any ϕ. Therefore, z (x, 0) = g (x).

4.5. Step 4: strong convergence

Throughout the remain of the paper, we shall denote by uδ the solution of the problem (1). To verify
that uδ can be written as a series, we shall prove the sequence

(
uM

δ

)
M

converges strongly in Y0 to the
function

z = uδ (x, t) =
∞∑

k=1

d(k)δ (t)w(k)
δ (x),

where d(k)δ is the solution of (16), that is

d(k)δ (t) =
t∫

0

fδk (s) exp
(
γnl
k (s − t)

)
ds+ g(k)δ exp

(
−γnl

k t
)
, d(k)δ (0) = gδk.

In other words, we shall see

lim
M→∞

T∫

0

Bh

(
uM

δ − z, uM
δ − z

)
dt = 0. (27)

We note this convergence serves to state that, for each t, the sequence
(
uM

δ

)
M

strongly converges to z in
the norm X0 (and consequently strongly in L2), that is

lim
M→∞

Bh

(
uM

δ − z, uM
δ − z

)
= 0. (28)

Indeed, if we assume limM→∞ Bh

(
uM

δ − z, uM
δ − z

)
> 0 in a set of t′s of positive measure, for instance,

for all t ∈ S ⊂ [0, T ], then, thanks to the Fatou’s Lemma

0 <

∫

S

lim
M→∞

Bh

(
uM

δ − z, uM
δ − z

)
dt ≤ lim

M→∞

T∫

0

Bh

(
uM

δ − z, uM
δ − z

)
dt = 0.

Whence we get a contradiction and thereby we prove (28).
Now, it is enough to follow the lines given in [39] to prove (27): by using the variational equality

((
uM

δ

)
t
, uM

δ

)
+Bh

(
uM

δ , uM
δ

)
=
(
f, uM

δ

)
,

we derive the following identity:
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I
.=

T∫

0

Bh

(
uM

δ − z, uM
δ − z

)
dt+

1
2
∥∥uM

δ (T ) − z (T )
∥∥2
L2

0(Ωδ)

=
T∫

0

(
f, uM

δ

)
dt − 1

2
∥∥uM

δ (T )
∥∥2
L2

0(Ωδ)
+

1
2
∥∥uM

δ (0)
∥∥2
L2

0(Ωδ)

+
1
2
∥∥uM

δ (T )
∥∥2
L2

0(Ωδ)
+

1
2

∥z (T )∥2L2
0(Ωδ)

−
(
uM

δ (T ) , z (T )
)

−
T∫

0

Bh

(
uM

δ , z
)
dt −

T∫

0

Bh

(
z, uM

δ − z
)
dt.

If we take into account the limits
T∫

0

(
f, uM

δ

)
dt →

T∫

0

(f, z) dt,
T∫

0

Bh

(
uM

δ , z
)
dt →

T∫

0

Bh (z, z) dt,

(
uM

δ (T ) , z (T )
)

→ ∥z (T )∥2L2
0(Ωδ)

,
∥∥uM

δ (0)
∥∥2
L2

0(Ωδ)
→ ∥z (0)∥2L2

0(Ωδ)
, if M → +∞,

(where the last limit is true since uM
δ is the solution of (19) and gMδ converges to g strongly in L2), then

we deduce

lim
M→∞

I =
T∫

0

(f, z) dt+
1
2

∥z (T )∥2L2
0(Ωδ)

+
1
2

∥z (0)∥2L2
0(Ωδ)

− ∥z (T )∥2L2
0(Ωδ)

−
T∫

0

Bh (z, z) dt

= 0,

where the last equality is due to the fact that z is the solution of the nonlocal problem.

5. Convergence to the local problem

The aim of this section is to prove

Theorem 9. (Convergence to the local problem) If (uδ)δ is the sequence of solutions of the nonlocal
parabolic problem (1), then:
1. There is a subsequence of it (still denoted by (uδ)δ) such that uδ → u strongly in L2 if δ → 0 and

u ∈ H1
0 (Ω), for any t ∈ [0, T ].

2. u ∈ W (0, T ) and it is the weak solution of the local problem (11).
3. The above convergence is also strongly in Y0, in the sense that

lim
δ→0

T∫

0

Bh(uδ − u, uδ − u) = 0. (29)

In particular, uδ strongly converges to u in X0, in the sense that

lim
δ→0

Bh(uδ − u, uδ − u) = 0, a.e. t ∈ [0, T ]. (30)

The proof consists of three steps.
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5.1. Step 1: classical estimates and strong convergence in L2 (Ω)

Under the present framework, we have V = X0,H = L2
0 (Ωδ) and the underlying X ′

0. The classical
procedure of calculus in abstract spaces (see Theorem 7) enables us to state that the function t →
∥uδ (t)∥2L2(Ωδ)

is absolutely continuous and

1
2
d
dt

(
∥uδ (t)∥2L2(Ωδ)

)
= ⟨(uδ)t (t) , uδ (t)⟩ and a.e. t ∈ [0, T ].

Therefore, by repeating the arguments from Sect. 4.3, we can write
1
2
d
dt

(
∥uδ∥2L2(Ωδ)

)
+Bh(uδ, uδ) ≤ 1

2
∥f∥2L2(Ωδ)

+
1
2

∥uδ∥2L2(Ω) , (31)

which, by using Gronwall’s inequality, yields

∥uδ∥2L2(Ωδ)
≤ eCt

⎡

⎣∥uδ∥2L2(Ωδ)
(0) +

t∫

0

∥f∥2L2(Ω) dt

⎤

⎦ .

Since ∥uδ∥2L2(Ωδ)
(0) = ∥g∥2L2(Ω), we can write

max
t∈[0,T ]

∥uδ∥2L2(Ωδ)
≤ C

(
∥g∥2L2(Ω) + ∥f∥2L2([0,T ];L2(Ω))

)
(32)

uniformly in δ. Combining Theorem 8 with (31) and (32), we ensure there is a positive constant C such
that

∥uδ∥2Y0
=

T∫

0

Bh(uδ, uδ)dt =
T∫

0

∞∑

k=1

(
d(k)δ

)2
γnl
k dt ≤ C (33)

for every δ. From the above estimations, we deduce the existence of a function u ∈ L2 (Ω) such that
for a subsequence of δ′s, uδ ⇀ u weakly in L2 (Ω). Moreover, by Theorem 8 we know uδ (x, t) =∑∞

k=1 d
(k)
δ (t)w(k)

δ (x) where

d(k)δ (t) =
t∫

0

f (k)
δ (s) exp

(
γnl
k (s − t)

)
ds+ g(k)δ exp

(
−γnl

k t
)
.

By using Hölder and other basic inequalities, we deduce this chain of inequalities:

Bh(uδ, uδ)

≤
∞∑

k=1

⎧
⎨

⎩2
t∫

0

(
f (k)

δ (s)
)2

ds
t∫

0

γnl
k exp

(
2γnl

k (s − t)
)
ds+ 2

(
g(k)δ

)2
γnl
k exp

(
−2γnl

k t
)
⎫
⎬

⎭

≤
∞∑

k=1

t∫

0

(
f (k)

δ (s)
)2

ds+ 2
∞∑

k=1

(
g(k)δ

)2
γnl
k exp

(
−2γnl

k t
)

≤
∞∑

k=1

T∫

0

(
f (k)

δ (s)
)2

ds+
1
t

∞∑

k=1

(
g(k)δ

)2

Consequently, for each t ∈ (0, T ], there is a constant C = C (t) (not depending on δ) such that for any δ

Bh(uδ, uδ) =
∞∑

k=1

(
d(k)δ

)2
γnl
k ≤ C.
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Then, thanks to Theorem 4 we ensure that the sequence (uδ)δ or a subsequence of it strongly converges in
L2 (Ω) to a function u ∈ H1 (Ω) if δ → 0. It remains to prove that u ∈ H1

0 (Ω): By extending the functions
uδ by zero to an arbitrary domain O containing Ω, we deduce likewise the sequence of extensions (uδ)δ
converges in L2 (O), to the extension by zero of u, u, and u ∈ H1 (O). The arbitrariness of the set O
implies that u ∈ H1

(
RN

)
, and since u ∈ H1 (Ω), then u ∈ H1

0 (Ω).

5.2. Step 2: the convergence of nonlocal Galerkin–Fourier expansion toward the solution

What we prove in this step is the convergence of nonlocal Galerkin–Fourier expansion toward the local
one.

We recall again that the sequence of solutions of (1) admits the specific writing:

uδ (x, t) =
∞∑

k=1

d(k)δ (t)w(k)
δ (x)

=
∞∑

k=1

⎛

⎝
t∫

0

f (k)
δ (s) exp

(
γnl
k (s − t)

)
ds+ g(k)δ exp

(
−γnl

k t
)
⎞

⎠w(k)
δ (x).

We know from Theorem 3 that

lim
δ→0

γnl
k (δ) = γk,

lim
δ→0

w(k)
δ (x) = w(k)(x) strongly in L2 (Ω) ,

where γk is the corresponding eigenvalue of the eigenfunction w(k)(x) for the local operator bh. We recall
that bh is defined by means of the formula

bh (ψ,ϕ) =
∫

Ω

h (x) (∇ψ (x) .∇ϕ (x)) dx, for any (ψ,ϕ) ∈ H1 (Ω) × H1 (Ω) .

Then, as result, we deduce

lim
δ→0

f (k)
δ (t) = lim

δ→0
(f, w(k)

δ ) = (f, w(k)) = fk,

lim
δ→0

g(k)δ = lim
δ→0

(
g, w(k)

δ

)
= (g, w(k)) = gk.

Due to the weak convergence uδ ⇀ u in L2 and the strong convergence w(k)
δ → w(k) (see Theorem 4), we

also deduce

lim
δ→0

(uδ)k = lim
δ→0

(
uδ, w

(k)
δ (x)

)
=
(
u,w(k)

)
= uk,

which is the same to write

lim
δ→0

(uδ)k = lim
δ→0

d(k)δ (t) = lim
δ→0

t∫

0

f (k)
δ (s) exp

(
γnl
k (s − t)

)
ds+ g(k)δ exp

(
−γnl

k t
)

=
t∫

0

fk (s) exp (γk (s − t)) ds+ gk exp (−γkt) .
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Since the function u is the weak limit in L2 of uδ, u can expressed as a series in the Fourier basis{
w(k)(x)

}
k
and therefore, necessarily,

u(x, t) =
∞∑

k=1

dk(t)w(k)(x) (34)

where

dk(t) =
t∫

0

fk (s) exp (γk (s − t)) ds+ gk exp (−γkt) (35)

Now, it is automatic to be convinced that this limit u, defined by (34)–(35), is the only solution of the
local problem (11). It would remain to check that this function u belongs to the space W (0, T ), but this
is precisely what we know from the classical theory ([39]).

5.3. Step 3: proof of the strong convergence

We prove strong convergence in Y0, in the sense given at (29). The strategy to follow is as in the proof of
Theorem 8. From the equality

⟨(uδ)t , uδ⟩ +Bh (uδ, uδ) = (f, uδ)

we perform integration to get

T∫

0

Bh (uδ, uδ) dt =
T∫

0

(f, uδ) dt −
T∫

0

⟨(uδ)t , uδ⟩dt

=
T∫

0

(f, uδ) dt − 1
2

T∫

0

d
dt

(
∥uδ∥2L2(Ωδ)

)
dt

=
T∫

0

(f, uδ) dt − 1
2

∥uδ (T )∥2L2
0(Ωδ)

+
1
2

∥uδ (0)∥2L2
0(Ωδ)

.

If we let δ → 0, the strong convergence of (uδ)δ to u in L2
0 (Ωδ) ensures the limits

lim
δ→0

T∫

0

(f, uδ) dt =
T∫

0

(f, u) dt.

and

lim
δ→0

∥uδ (T )∥2L2
0(Ωδ)

= ∥u (T )∥2L2
0(Ωδ)

.

Besides, it is obvious that

lim
δ→0

∥uδ (0)∥2L2
0(Ωδ)

= ∥u (0)∥2L2
0(Ωδ)

= ∥g∥2L2
0(Ωδ)

.

Thus, all the previous convergences, together with the fact that u is the solution of the local problem,
lead us to
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lim
δ→0

T∫

0

Bh (uδ, uδ) dt = lim
δ→0

T∫

0

(f, uδ) dt − lim
δ→0

T∫

0

⟨(uδ)t , uδ⟩dt

=
T∫

0

(f, u) dt − lim
δ→0

(
1
2

∥uδ (T )∥2L2
0(Ωδ)

− 1
2

∥uδ (0)∥2L2
0(Ωδ)

)

=
T∫

0

(f, u) dt −
(
1
2

∥u (T )∥2L2
0(Ωδ)

− 1
2

∥u (0)∥2L2
0(Ωδ)

)

=
T∫

0

(f, u) dt −
T∫

0

⟨u, ut⟩dt

=
T∫

0

bh(u, u)dt.

Now, if we consider the identity ⟨(uδ)t , u⟩ + Bh (uδ, u) = (f, u) and we carry out the same procedure,
then we arrive at

lim
δ→0

T∫

0

Bh (uδ, u) dt =
T∫

0

(f, u) dt − 1
2

(
∥u (T )∥2L2

0(Ωδ)
− ∥g∥2L2

0(Ωδ)

)

=
T∫

0

(f, u) dt −
T∫

0

⟨u, ut⟩dt =
T∫

0

bh(u, u)dt.

By using the above results, we obtain

lim
δ→0

T∫

0

Bh (uδ − u, uδ − u) dt = lim
δ→0

T∫

0

Bh (uδ, uδ) dt − 2 lim
δ→0

T∫

0

Bh (uδ, u) dt

+ lim
δ→0

T∫

0

Bh (u, u) dt

= −
T∫

0

bh(u, u)dt+ lim
δ→0

T∫

0

Bh (u, u) dt.

From Corollary 1 of [18], we derive the existence of a positive constant C such that

Bh (u, u) ≤ C ∥∇u∥2L2

for any δ, and

lim
δ→0

Bh (u, u) = bh(u, u)

(see also [3]). These asserts joined with the Dominated Convergence Theorem guarantee the limit

lim
δ→0

T∫

0

Bh (u, u) dt =
T∫

0

bh(u, u)dt,
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and therefore, the limit (29) holds. As we have seen in Sect. 4, the limit (30) is a straightforward conse-
quence of (29).
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Inst. Henri Poincaré -Porbabilités et Statistiques 46, 59–71 (2010)
[13] Bazant, Z.P., Jirasek, M.: Nonlocal integral formulation of plasticity and damage: survey of progress. J. Eng. Mech.

128, 1119–1149 (2002)
[14] Benson, D.A., Wheatcraft, S., Meerchaert, M.M.: Application of a fractional advection-dispersion equation. Water

Resour. Res. 36, 1403–1412 (2000)
[15] Bogdan, K., Burdzy, K., Cehn, Z.Q.: Censored stable processes. Probab. Theory Relat. Fields 127, 89–152 (2003)
[16] Bonder, J.F., Ritorto, A., Mart́ın, A.: H-convergence result for nonlocal Elliptic-type problems via Tartar’s method.

SIAM J. Math. Anal. 49(4), 2387–2408 (2017)
[17] Bonforte, M., Sire, Y., Vázquez, J.L.: Existence, Uniqueness and Asymptotic behavior for fractional porous medium

equations on bounded domains. Am. Inst. Math. Sci. 35(12), 5725–5767 (2015)
[18] Bourgain, J., Brezis, H., Mironescu, P.: Another look at Sobolev spaces. In: Menaldi, J.L., et al. (eds.) Optimal Control

and Partial Differential Equations, pp. 439–455. IOS Press, Amsterdam (2001). (A volume in honour of A. Benssoussan’s
60th birthday)

[19] Brezis, H.: How to recognize constant functions. Connections with Sobolev spaces. Uspekhi Mat. Nauk. 57(4(346)),
59–74 (2002)

[20] Bucur, C., Valdinoci, E.: Nonlocal Diffusion and Applications. Lecture Notes of the Unione Matematica Italiana, vol.
20. Springer, Berlin (2016). (Unione Matematica Italiana, Bologna)

[21] Bueno-Orobio, A., Kay, D., Burrage, K.: Fourier spectral methods for fractional-in-space reaction-diffusion equations.
BIT Numer. Math. 54, 937–954 (2014). https://doi.org/10.1007/s10543-014-0484-2

[22] Chen, Z.Q., Song, R.: Two-sided estimates for subordinate processes in domains. J. Funct. Anal. 226(1), 90–113 (2005)

https://doi.org/10.1007/s10957-016-1021-z
https://doi.org/10.1007/s10915-018-0703-0
https://doi.org/10.1007/s10543-014-0484-2


ZAMP The Galerkin–Fourier method for the study of nonlocal Page 19 of 20    92 

[23] Constantin, P.: Euler Equations, Navier–Stokes Equations and Turbulence, In Mathematical foundation of Turbulent
Viscous Flows. Lecture Notes in Mathematics, pp. 1–43. Springer, Berlin (2006)

[24] Du, Q., Gunzburger, M.D., Lehoucq, R.B., Zhou, K.: Analysis and approximation of nonlocal diffusion problems with
volume constraints. SIAM Rev. 54(4), 667–696 (2012)

[25] D’Elia, M., Gunzburger, M.: Optimal distributed control of nonlocal steady diffusion problems. SIAM. J. Control
Optim. 52(1), 243–273 (2014)

[26] D’Elia, M., Gunzburger, M.: Identification of the diffusion parameter in nonlocal steady diffusion problems. Appl. Math.
Optim. 73(2), 227–249 (2016)

[27] D’Elia, M., Du, Q., Gunzburger, M.: Recent progress in mathematical and computational aspects of peridynamics. In:
Voyiadjis, G. (ed.) Handbook of Nonlocal Continuum Mechanics for Materials and Structures. Springer, Cham (2018)

[28] D’Elia, M., Perego, M., Bochev, P., Littlewood, D.: A Coupling Strategy for Nonlocal and Local di Usion Models with
Mixed Volume Constraints and Boundary Conditions. Center for Computing Research Sandia National Laboratories.
Report (2015)

[29] D’Elia, M., Gunzburger, M.: The fractional Laplacian operator on bounded domains as a special case of the nonlocal
diffusion operator. Comput. Math. Appl. 66, 1245–1260 (2013)

[30] Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence (1999)
[31] Felsinger, M., Kassmann, M., Vooigt, P.: The Dirichlet problem for nonlocal operators. Math. Z 279, 779–809 (2015).

https://doi.org/10.1007/s00209-014-1394-3
[32] Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7, 1005–1028

(2008)
[33] Guan, Q., Gunzburger, M.: Stability and convergence of time-stepping methods for a nonlocal model for diffusion.

Discrete Cont. Dyn. Syst. B. 20(5), 1315–1335 (2015)
[34] Guan, Q., Gunzburger, M.: Stability and accuracy of time-stepping schemes and dispersion relations for a nonlocal

wave equation. Numer. Methods Partial Differ. Equ. 31, 500–516 (2015)
[35] Hutson, V., Mart́ınez, S., Michaidow, K., Vickers, G.T.: The evolution of dispersal. J. Math. Biol. 47(6), 483–517 (2003)
[36] Humphries, N.E., et al.: Environmental context explains Levy and Brownian movement patterns of marine predators.

Nature 465, 1066–1069 (2010)
[37] Hunter, J.K.: Notes on Partial Differential Equations. Manuscript. https://www.math.ucdavis.edu/∼hunter/pdes/pde

notes.pdf
[38] Levendorski, S.Z.: Pricing of the American put under Levy processes. Int. J. Theor. Appl. Finance 7, 303–335 (2014)
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