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Abstract
With product life-cycles getting shorter and limited availability of natural resources, the paradigm shift towards the circular
economy is being impulsed. In this domain, the successful adoption of remanufacturing is key. However, its associated
process efficiency is to date limited given high flexibility requirements for product disassembly. With the emergence of
Industry 4.0, natural human-robot interaction is expected to provide numerous benefits in terms of (re)manufacturing
efficiency and cost. In this regard, vision-based and wearable-based approaches are the most extended when it comes to
establishing a gesture-based interaction interface. In this work, an experimental comparison of two different movement-
estimation systems—(i) position data collected from Microsoft Kinect RGB-D cameras and (ii) acceleration data collected
from inertial measurement units (IMUs)—is addressed. The results point to our IMU-based proposal, OperaBLE, having
recognition accuracy rates up to 8.5 times higher than these of Microsoft Kinect, which proved to be dependent on the
movement’s execution plane, subject’s posture, and focal distance.
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1 Introduction

During the last decades, environmental degradation and a
significant increase in worldwide consumption levels have
led to the ever-more scarce availability of natural resources.
This is aggravated by the high pollution levels associated
to both the manufacturing of new products and the lack
of legislation for their disposal once their end-of-life is
reached [1, 2]. Having become a growing concern for
academia, industry and policymakers, a production model
shift towards the circular economy (CE) is being strongly
impulsed [3].

In this regard, secondary-market processes, most of
which are built up onto the disassembly concept [4], are
gaining momentum as a means to extending products’
useful life. Their implementation is, therefore, raising
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high expectations towards limiting worldwide landfill,
with remanufacturing being clearly differentiated from
repair, reconditioning or recycling initiatives due to higher
associated quality and value-recovery rates [5].

Disassembly is key for the success of remanufacturing [6,
7]. Although it has been traditionally performed manually
due to challenging flexibility requirements, autonomous
disassembly operations performed by robots are highly
desirable to reduce associated costs and increase efficiency.
In this regard, many difficulties arise when determining
the optimal disassembly sequence and obstacle-avoiding
path for robots’ end-effectors [8]. Human intervention
in remanufacturing is, therefore, a significant value-
adding factor which reinforces the social dimension of
sustainability [9].

The proliferation of Industry 4.0—built upon key-
enabling technologies such as Internet of Things (IoT),
augmented reality, and cloud computing [10]—has shed
light on innovative human-robot interaction (HRI) com-
munication interfaces like speech and gesture recognition.
In order to achieve the most natural interface through an
improved user experience, mainly two gesture-recognition
approaches have been extensively studied: vision systems
(commonly based on mounted camera sensors and image
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processing techniques to estimate body pose), and wearable
approaches (body-embedded sensors monitoring acceler-
ations). While each of them has different strengths and
weaknesses in terms of accuracy, processing time, power
consumption, and cost, an experimental comparison has
not been yet validated in the literature to the best of our
knowledge.

To fill this gap, this work addresses the experimental per-
formance evaluation of both gesture-recognition approaches
in a remanufacturing use case. Based on our wearable-
based movement recognition algorithm that was recently
presented [11]—the so-called Low-Frequency Movement
Characterization Algorithm (LoMoCA)—a set of improve-
ments have been carried out in order to process data
from two systems in real-time: (i) the Microsoft Kinect
v2 RGB-D device (hereinafter Kinect)—one of the most
extended computer-vision commercial devices [12]—and
(ii) our developed OperaBLE wristband, which embeds
low-frequency inertial measurement units (IMUs) with a
low-power microcontroller unit (MCU), and a Bluetooth
low energy (BLE) communication interface [13]. By defin-
ing a set of gestures oriented to change the end-effector’s
position (left, right, backward, forward shifts) as well as
action-oriented gestures (clean, tool-specific, flip, right tool,
left tool, and screw), different accuracy tests are performed
and discussed. The contribution of this paper is, therefore,
twofold: (i) Kinect communication and processing capa-
bilities’ integration with LoMoCA algorithm for real-time
robot’s remote control, and (ii) experimental comparison
under different scenarios and user setups.

The remainder of this paper is structured as follows.
Section 2 provides a background on remanufacturing
in Industry 4.0 and state-of-the-art of HRI interfaces.
Section 3 addresses the development methodology used,
the software/hardware tools and the experimental setups.
Section 4 includes our results and offers a brief discussion,
and Section 5 highlights the main conclusions and future
research directions.

2 State-of-the-art

2.1 Remanufacturing in industry 4.0

During the last decades great efforts have been made to
impulse a paradigm shift towards the CE – regenerative
by design [3]. In this sense, remanufacturing is finding its
way through with a view to restoring products to “like-new”
condition while minimizing worldwide demand of natural
resources, carbon emissions and landfill, that is, closing
material and information loops [14].

Remanufacturing is regarded as a key strategy towards
the Triple Bottom Line dimensions of sustainability, namely
(i) environmental, (ii) economic, and (iii) societal [9, 15]:

(i) Remanufacturing is aimed at reducing carbon foot-
print and consumption of raw materials and energy—
up to 85% less energy is required for the remanufac-
turing of a product compared to that of its manufac-
turing [16].

(ii) Its economic benefits lie in the lower price of
remanufactured products—as low as 60% compared
with those that are manufactured [17].

(iii) The fast growth of the remanufacturing industry has
a positive impact on social welfare by leading to
the creation of new job opportunities not necessarily
tailored for experienced labor [18].

The barriers to remanufacturing are mostly of techni-
cal and economic nature. Unknown customer willingness
to return used products causes great uncertainties regarding
return rates and timings. Therefore, forecasting the required
availability of raw materials or parts turns into a challenging
task [19]. On top of that small batch sizes and the quality
condition of returned cores call for a high level of flexibility
so as to react appropriately to various product recondi-
tioning requirements [20]. In addition, the willingness of
original equipment manufacturers to remanufacture used
products is typically hampered by their lower profitability
in sales [5]. In this respect, governmental directives and
legislation are regarded as necessary incentives supporting
remanufacturing activities [2].

The success of remanufacturing is substantially deter-
mined by the disassembly process, which is referred to as
an essential step in literature [6]. Despite this being tra-
ditionally performed manually, there is growing interest in
robot-assisted approaches achieving a higher degree of effi-
ciency at a lower cost [4, 21]. Disassembly sequence plan-
ning, aimed at reaching the optimal disassembly sequence,
is gaining weight towards robotic disassembly [8]

With the advent of advanced digitization technologies
within the fourth industrial revolution—the so-called
Industry 4.0 [10]—the concept of autonomous robotics is
becoming ever more feasible thanks to essential pillars
like IoT, augmented reality, big data or cloud computing,
among others [22, 23]. This is seen as a new fundamental
paradigm shift of industrial production, which offers
innumerable possibilities for the sustainable development
of the remanufacturing industry [24]. While assuming the
fulfillment of economic and environmental dimensions, the
spotlight is increasingly being put on social sustainability
and its implications [25, 26]. As a result, human-centered



Int J Adv Manuf Technol

approaches are highly desirable in order to exploit the
full potential of remote robot-assisted remanufacturing—
especially when disassembly needs to be performed in
hazardous environments [27].

2.2 Gesture recognition for HRI

The challenging requirements of (re)manufacturing in terms
of flexibility can be clearly benefited from the adoption of
cyber-physical systems (CPS), that is, the interconnection of
physical-world operations with computing and communica-
tion infrastructures [28].

When it comes to establishing the interplay between
humans and robots, far from relying on a direct manip-
ulation, CPS bring a wide range of mediating user
interfaces that pursue a more natural interaction accord-
ing to various user-interface requirements [29]. To date,
gesture recognition, speech recognition and multimodal
approaches are of particular interest [30]. Gesture recogni-
tion is regarded as particularly intuitive and effective, which
is typically addressed using mounted cameras—vision-
based approaches—or embedded body sensors—wearable
approaches.

Vision-based approaches rely on image processing and
object recognition. According to the nature of camera
sensors being utilized, these can be classified into three
categories: (i) color-based (RGB), (ii) depth-based (D), and
(iii) based on both color and depth (RGB-D).

In the literature, multidisciplinary vision-based approaches
as well as HRI-oriented ones are found. Metha et al. [31]
used a multi-camera motion capture system based on RGB
sensors to achieve 3D pose data based on 2D data inputs.
Furthermore, Kiruba et al. [32] achieved accuracy rates
higher than 84% in body-pose computation by using a
single RGB camera sensor. In this case, however, real-time
capabilities were not guaranteed. Dong et al. [33] reduced
required processing times achieving real-time operation in
a HRI domain using a single RGB camera, in this case, at
the expense of increasing hardware complexity and energy
consumption.

Mueller et al. [34] achieved nearly real-time pose
estimation and shape reconstruction of two interacting
hands using infrared (IR) sensors. Based on depth sensors
embedded in the commercial solution Leap Motion, Devine
et al. [35] targeted the one-hand control of robotic arms to
lift standard objects while Erdougan et al. [36] addressed the
estimation of human intention in industrial environments.

Despite the individual use of RGB and depth (D) sensors
achieving satisfactory results, several studies focus on their
combined use (RGB-D systems) for improved gesture
recognition. In this regard, Microsoft Kinect [12] is one of
the most extended solutions as a trade-off between accuracy
and affordability. Being able to detect body skeleton, this

commercial device includes IR and RGB sensors to achieve
an accurate pose estimation and movement capture. In the
HRI domain, Mazhar et al. [37] and Arivazhagan et al.
[38] achieved robust hand gesture detection using the 3D
skeleton extraction feature of a Kinect device.

In general terms, vision-based approaches have received
special attention in the literature due to highly accurate
results, some of them even achieving a real-time operation.
As a common drawback shared by all the studied solutions,
computational efforts and, hence, hardware requirements
tend to be particularly high. In addition, despite RGB-D
approaches having overcome some of the typical computer-
vision issues, some technical limitations still arise when
high contrast or absence of shiny surfaces cannot be
guaranteed [39, 40].

With the advent of lightweight IoT technologies
and wireless body area networks [41], wearable-based
approaches are increasingly being adopted as a cost-
effective alternative to computer-vision systems. Motion
capture devices are typically based on IMUs which have a
low demand of hardware resources and energy consump-
tion. Compared to camera sensors, IMUs provide freedom
of user location and do not require a specific user orien-
tation. As a result, different studies in the literature have
explored their applicability and performance towards ges-
ture recognition in the HRI domain.

Some studies fully rely on IMUs considering either
accelerometer data (three degrees of freedom) or accelerom-
eter and gyroscope data (six degrees of freedom). Mendes
et al. [42] used three-axis accelerometers for gesture recog-
nition and subsequent behavior classification. Similarly,
but in a manufacturing context, Neto et al. [43] fed an
artificial neural network with accelerometer data. Despite
achieving accurate gesture classification (up to 98%) in
HRI assembly-oriented scenarios, real-time requirements
were not fulfilled. Chen et al. [44], conversely, provided a
multimodal approach, where both depth camera data and
inertial sensor data were used to study fusion characteriza-
tion approaches for human action recognition. In this regard,
our algorithm LoMoCA was presented [13], but a compar-
ison with other approaches was not carried out. Therefore,
as stated above, one aim of the present work is to compare
the results obtained through our accelerometer-based sys-
tem, providing real 3D movement data, with data provided
by the Microsoft Kinect device, widely used in computer
vision studies.

3Materials andmethods

This section comprehensively describes the system devel-
oped for the comparison of Kinect motion recognition and
our accelerometer-based approach. In order to ensure a fair
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comparison, some necessary adjustments, detailed below,
were performed to guarantee that the system does not
influence the results and provides an unbiased movement
recognition method for both approaches.

Our recognition system, presented in [11] where further
detail can be found, is composed of three main parts:

– Two wristbands, OperaBLE for sending movement
data and ControlaBLE to manage the operation speed
of the robot, based on LightBlue Bean hardware,
which embeds an ATmega 328p MCU and CC254x
Bluetooth System on Chip (SoC), connected to
LSM303 accelerometer/gyroscope.

– One processing device, called Edge Node.
– One remote control device, called Remote Controller.

Both the Edge Node and the Remote Controller consist
of a Raspberry Pi 2 model B single-board computer
(quad-core ARM Cortex-A7 CPU).

Figure 1 shows OperaBLE and Kinect devices with their
axis system. Although in this orientation both devices share
the same axis system, when OperaBLE is placed in its
natural position on the wrist, a rotation of the axes around
the X-axis is produced. Thus, processing is necessary, as
explained in Section 3.3, in order to match the axes.

3.1 Gesture recognition algorithm

The component around which the experiments were built
is our LoMoCA algorithm. It was developed to recognize
movements using a small number of samples [11]. The
algorithm will not be addressed in depth in this paper.
Nonetheless, a brief description is essential to understand
the experiments and the subsequent results. The main
aim of LoMoCA is to provide a mechanism to recognize
movements with a low sampling rate. This is particularly
desirable when wearables are used to save energy for
extending the battery life.

The flow of data begins with the BLE link between the
wristbands and the Edge Node. The data collection stage
uses two bands, one is responsible for sending commands
to vary the speed of execution of the movement in the
robot, and the other is used to perform the movement and
to send acceleration and angular velocity data to the Edge

Node. This node, thanks to its asynchronous execution, is
able to manage several devices at the same time without
entering into a deadlocked state, which provides a protection
mechanism against failure.

Our algorithm analyzes the movement performed by the
operator and the processing board sends the corresponding
command to the remote-control board attached to the robot,
which triggers a specific operation on the robot. The
controller board links each command to a given task on
the robot. As a result, the performance of the robot is not
dependent on the skills of the operator, which means that the
task will always be performed to comply with the required
quality standards. The communication between these boards
is done via Message Queuing Telemetry Transport (MQTT).
It is a lightweight communication protocol for IoT devices,
usually over TCP/IP, based on a publish-subscribe network
protocol. An MQTT broker manages topics where messages
are published to resend this information to the subscribed
clients. In this particular case, the broker is on the local side
and it is the Edge Node which performs this task.

With regard to LoMoCA, it comprises seven main states
that can be observed in Fig. 2. Some points are key to
understand the results and the discussion generated. The
seven states are the following:

(i) Listener: waits until a new movement arrives from
OperaBLE or a new pattern is being selected for
comparison with the movement carried out.

(ii) Movement normalization: detects the relevant accel-
eration axes and compares them with the normalized
axes of patterns stored. This phase discards move-
ments with different normalized axes.

(iii) Discard pattern: discards the previously selected
pattern as it does not correspond to the movement
executed.

(iv) Dynamic limit determination and DTW: the compar-
ison processing is based on dynamic time warping
(DTW) to measure the similarity of two temporal
sequences (in this case movements) which can be
performed at different speeds. The dynamic limit
depends on the number of samples of movement and
patterns being compared and it is used to set a specific
limit for each case.

Fig. 1 Kinect (left) and
OperaBLE (right) axis system
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Fig. 2 Edge Node: LoMoCA state machine

(v) Discard movement: the movement does not match any
pattern and it is not recognized.

(vi) Similarity analysis: in case there are several candidate
patterns matching the movement, it selects the most
similar one.

The movements included in the experiments are split into
two groups, displacement and operations.

– The displacement movements provide robot positioning
along the workspace: forward, backward, left, right.
Although LoMoCA is able to recognize any type
of movement, these ones were selected in order to
simplify the comparison task. Moreover, our gesture

recognition system and LoMoCA were tested in
advance using the same movements, achieving real-
time gesture recognition with a latency lower than
65 ms, a recognition accuracy above 95% in all of
them, and a great user acceptance. Complex movements
would imply an added processing by Kinect (e.g., track
several joints to detect rotation) and the comparison
could be affected by any error adapting the data.
By using these simple movements, the wrist position
data collected from Kinect are converted directly into
accelerations and sent to the Edge Node for analysis.

– In addition, some common operations in disassembly
processes have been added to test the performance
of OperaBLE. The operations comprise clean, screw,
flip, right tool, left tool, tool-specific. These are further
detailed in Section 3.4 where their functionality and the
involved axes are specified.

3.2 System configuration and data adaptation

Kinect and OperaBLE data were collected simultaneously
to process the same movement in both cases. A represen-
tation of the system developed to test both approaches is
shown in Fig. 3. The left side of the figure shows the
local operation of the system, where Kinect and OperaBLE
data are acquired and sent to the Edge Node, via BLE and
MQTT, respectively. The node processes both movements
using LoMoCA and sends the corresponding command to
the remote control nodes attached to the robots (on the right
side). The control devices are subscribed to the MQTT top-
ics and they are notified when a new command is ready for
them.

For reliable comparison of movement collection and
recognition using LoMoCA, it is essential to process the
Kinect data so that they are perfectly adapted to the format

Fig. 3 Experimental setup (left)
and remotely-controlled robot
(right)

Remote
Controllers
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Node
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used by OperaBLE without interfering with the real values
read. The vision-based approach retrieves position data
using an RGB camera and IR sensors to calculate the depth,
whereas accelerometers provide real acceleration data in all
three dimensions. Therefore, wrist position data provided by
Kinect has to be adapted to obtain acceleration data in order
to compare both approaches.

– Position to distance: as the Kinect provides positional
data measuring its distance to the body detected, the first
step is to obtain the distance between position samples
by subtracting the current position from the previous
one.

– Velocity calculation: knowing the distance and the time
difference between both samples, we can obtain the
velocity of the wrist joint during the execution of the
movement between current and previous position.

– Acceleration determination: finally, the difference of
two consecutive velocities is determined and divided by
the time elapsed, obtaining the acceleration. Since only
one velocity is obtained for every two positions, and
only one acceleration for every two velocities, it was
necessary to start collecting data one sample earlier and
stop one sample later in order to match the movement of
the Kinect with the OperaBLE one.

3.3 System data flow for simultaneous recognition

In addition, a proper management of communications
between the elements involved in the system is crucial
to provide reliable data. It was necessary to conceive
a mechanism to inform the Kinect when the movement
captured by OperaBLE started and finished. A sequence
diagram has been depicted in Fig. 4 to show the flow
of information in the system. The Kinect is continuously
acquiring data to maintain a buffer of one sample. When the
movement begins, OperaBLE sends the initial batch of data
through BLE and the Edge Node publishes a start message
as control command in the Kinect topic. The Kinect stores
the position data until an end of movement is received.
Then, position data is processed and adapted to obtain
acceleration data, as commented previously. Meanwhile, the
movement sent from OperaBLE is processed in the Edge
Node. After the processing, Kinect sends the collected data
using the same encoding as OperaBLE. Once the movement
has been recognized, it is sent to the Remote Controller in
both cases.

Some additional aspects were considered to adapt the
Kinect data properly:

– Sampling frequency: given the low sampling frequency
algorithm developed, a high sampling frequency could
adversely affect the performance of the Kinect. Thus,

OperaBLE Edge Node Remote ControllerKinect

Movement start

(BLE)

Retrieving

data

Movement start

(MQTT)

Storing

mov. data

Movement end

(BLE)

Processing

OperaBLE

data

Mov. recognition

Movement end
(MQTT)

Compute 

acceleration

Move

robotUpdate status

Send mov. data

Update status

Mov. recognition
Move

robot

Processing

Kinect data

Set axes

correspond.

Time-window

setting

Fig. 4 Information flows in the system: OperaBLE and Kinect
movement data processing

the data acquired per second was adjusted to be close to
the one used in OperaBLE.

– Time-window setting: to ensure that Kinect data
correspond to the complete movement of OperaBLE,
the wristband sends a control message at the beginning
and at the end of the movement, so that both devices
are synchronized in time. Latency measurements were
conducted to adjust the data interval and ensure that the
same movement in both devices was analyzed.

– Axes correspondence: the reference system and positive
axes direction were adapted according to the OperaBLE
ones. The procedure to obtain the acceleration sign is
slightly different in Z-axis (Kinect) due to the lack of
negative positions in this axis. In this case, the direction
of movement determines the sign of the axis. The other
axes do have negative values depending on whether
they are located on one side of the Kinect or the other.
In Fig. 1 can be seen that the axis system in both
cases is the same. However, OperaBLE is in a different
orientation in operation and the correspondence is
defined as follows: −X ≡ X, Z ≡ Y, −Y ≡ Z.

– Data encoding: data in Kinect are encoded as in
OperaBLE. From the Edge Node’s point of view, Kinect
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behaves like a wristband, sending movement data to be
processed by LoMoCA.

3.4 Experimental setup

The experiments were split into two parts. First, a
comparison between Kinect and OperaBLE performance
was carried out under different conditions that could affect
the devices. Second, the performance of OperaBLE was
tested by conducting operations related to disassembly
processes.

With regard to the comparison, Table 1 shows the four
scenarios that were tested during the experiments using both
Kinect and OperaBLE devices. Since the experiments were
designed to measure the Kinect’s accuracy with respect to
the OperaBLE’s, the parameters defined were only expected
to vary Kinect’s characterization performance.

The setups defined are based on the focal length (straight-
line distance to Kinect’s lens to the testing subject), the
height of the lenses (with respect to the ground plane),
the subject’s body pose (either sitting or standing), and the
room’s light level, measured with the ambient light sensor
LTR-329ALS-01 (range from 0.01 to 64k lux). Regarding
the workspace, it is a clear room so as not to hinder the
Kinect’s recognition task. Setup I, as can be noticed, was
defined to optimize Kinect’s performance: optimal focal
length and height (determined through experimentation),
standing position, and suitable light conditions. Setup II
to Setup IV varied independently each of the previous
conditions (higher focal length, sitting position, and poor
light conditions). A total of 160 movements, 40 times each
movement, were in each setup. In all cases, the height of the
lenses was set to 60 cm, since it proved to be optimal.

At first sight, it was expected that Setup II to Setup IV
would perform worse than Setup I. Nevertheless, a different
impact of the scenario conditions on each of the defined
movements might serve to extract valuable information
about Kinect’s performance.

Table 2 shows the path followed by the displacement
movements: forward, backward, right, left. Only one
pattern per movement was considered, since they are short
movements and the number of samples and relevant axes
used are few.

Table 1 Scenario setups used for the experiments

Scenario Focal Subject Light

length (cm) position level (lux)

Setup I 150 Standing 450

Setup II 150 Sitting 450

Setup III 200 Standing 450

Setup IV 150 Standing 100

Table 2 Paths followed by the displacement movements

Forward Backward

Z
Y

X Z
Y

X

Right Left

Z
Y

X Z
Y

X

The remaining movements were tested using OperaBLE
exclusively due to the reduced recognition rates of the
Kinect with these complex movements. Table 3 shows the
movements that correspond to the operations performed
by the robot. Two experiments were conducted involving
these movements. First, OperaBLE performance executing
isolated actions, where at least 80 movements were
performed both sitting and standing. Then, a sequence
of movements conforming a disassembly process of an
electronic device, for which 40 process repetitions were
completed.

The operations selected are commonly carried out in
remanufacturing processes of electronic devices, where
cleaning the surface, flipping the device and screw-
ing/unscrewing were selected to be separate movements
(not included in tool-specific) due to the frequency of its use
in this type of processes. Moreover, tool-specific (TS) was

Table 3 Paths followed by the operation movements

Flip Screw / Unscrew

Z
Y

X Z
Y

X

x2

Right tool (RT) Left tool (LT)

Z
Y

X

x2

Z
Y

X

x2

Tool-specific (TS) Clean

Z
Y

X Z
Y

X

x2
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introduced in order to be able to perform different actions
depending on the specific tool incorporated in the robot.
Since a method is required to exchange the tool during the
process, right tool and left tool actions were included.

4 Results and discussion

The proposed scenarios were aimed at testing common
situations that may occur in a remanufacturing use case.
The worker sitting down to do his/her work, not keeping the
same distance from the vision system or inadequate lighting
are daily situations that could affect the performance of
the system. In case of accelerometer-based systems, there
are also drawbacks as the impossibility of moving during
the execution of the action or the excessive sensitivity that
may lead to errors when colliding with elements during
movement. In addition, the proposed system was to be
tested as a means to evaluating its performance during
the execution of movements related to remanufacturing,
assembly and disassembly operations.

4.1 OperaBLE and Kinect comparison

The first scenario corresponds to the ideal conditions with
the aim of obtaining optimal data. The lighting level was
correct, the distance was 1.5 m, which proved to achieve the
optimal recognition, and the subject’s posture was standing.
A comparison of raw acceleration data captured by Kinect
and OperaBLE can be observed in Fig. 5. The upper charts
correspond to the data of the five movements captured
by Kinect, while the lower part shows data obtained by
OperaBLE in the same cases. The difference in the number
of samples is caused by the adaptive data capture of Kinect,

but in this case it is not relevant for the recognition because
the difference is just a few samples and LoMoCA will
assign a higher dynamic limit as compensation.

At a first glance, there is a large difference between
Z-axis values in Kinect and OperaBLE. It is due to the
measurement of the gravity by the accelerometers. However,
this fact does not affect the recognition because relevant
axes are normalized and this difference is compensated. It
is noticeable as well that OperaBLE data have a smoother
shape in general. However, the shapes of X- and Z-axes
in Kinect are pretty similar to the ones in OperaBLE. The
problem lies in the Y-axis, which corresponds to the depth
on the Kinect, and shows an erratic and changing behavior.
This makes sense because the depth is the most difficult axis
to be appreciated with an external device. The X-Z plane is
covered correctly by the camera and IR sensor but the Y-axis
has to be computed from the data captured by the IR sensor.

The operation movements are affected by the gravity in
several axes during its execution. For this reason, it was not
included in the following tests, since the Kinect does not
sense the gravity and, therefore, the data provided for this
movement will not be comparable. Despite the variability of
the data in some cases, LoMoCA was able to recognize all
movements.

A comparison of movement recognition accuracy data,
computed as the number of successful characterizations
divided by the total number of movements performed, was
collected for each scenario as it is shown in Fig. 6. Under
these ideal conditions, the recognition rate was between
48.65 and 55.88% except for left movement, which was
29.27%. This is caused by the inability to correctly track the
wrist at some point during the execution of the movement,
resulting in unexpected data that cause the movement not to
be recognized.

Fig. 5 Comparison of raw acceleration data of successfully recognized movements in Setup I
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Fig. 6 Comparison of Kinect accuracy with respect to OperaBLE

The conditions in real environments are changing
constantly. For this reason, the same experiment was carried
out in a variety of scenarios. In Setup II the subject was
sitting at the optimal distance. The results showed that left
and right are equally detected, almost 40% of the times, but
forward and backward recognition falls sharply with less
than 20%. The problem here is originated by the alignment
of the wrist with the Kinect, which prevents a clean view,
leading to erroneous acceleration values that do not allow a
correct recognition.

The Setup III is relevant to see the behavior of the
system when augmenting the distance between the subject
and the Kinect from 150 to 200 cm. Surprisingly, this
scenario revealed the lowest accuracy results of the vision
system. The accuracies of almost all movements were below

20%. The reason is that depth measurements under these
conditions worsen, causing too many errors of excessive
magnitude to recognize most of the movements.

Finally, Setup IV aimed to test the level of accuracy
achieved by Kinect in poor lighting conditions. Due to the
use of IR sensors, the results obtained were significantly
better than for Setups II and III. Therefore, the Kinect is not
affected to a large extent by the level of light. However, the
recognition of forward movement had a low performance.
This might be due to the limits imposed by Kinect to begin
the recognition of new elements, contrarily to backward,
which is being recognized while it moves away.

Some interesting movements are shown in Fig. 7 for
the sake of appreciating errors that prevent Kinect from
recognizing some movements correctly. These are two false-
negative movements, where left is a clear example of how
a wrong sample can cause a failure in the movement
recognition. When working with a low sampling rate, it is
essential that each sample is correct. High precision is not
absolutely necessary, although the shape of the obtained
curves should not be affected to a great extent. In this case,
the X-axis is the one that is normalized, i.e., the relevant
axis in this movement. As can be observed, the shape is very
similar to the one obtained in OperaBLE. However, in the
seventh sample, there was a one-off error that completely
changed the shape of the curve, making the movement
impossible to recognize. This may be due to the difficulty of
detecting the wrist at every sample and a misinterpretation
of the hidden points by the Kinect.

A different reason caused the false negative in the
forward movement. Here, we can see an error related to the

Fig. 7 Kinect false negatives
when recognizing left and
forward movements in Setup I
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axes that are not supposed to be relevant (X-axis and Z-axis),
which were normalized due to a sample flaw in the third
point in both cases. As the normalized axes do not match
the pattern, the movement is not recognized as forward.

4.2 OperaBLE’s performance in disassembly
operations: a remanufacturing case study

This section presents the results obtained by our solution in
the performance test for each movement that corresponds
to a disassembly operation. Figure 8 depicts the recognition
accuracy ratio, the misrecognition of other movements, and
the recognition failure. The first column of each operation
shows the results obtained in standing position, while the
second shows those for the seated position.

As can be seen, there are no major differences between
the two positions. All movements have a recognition rate
above 90%, except right tool. This point will be examined
in detail by means of Fig. 9, where the number of patterns
saved for each movement is an important aspect: four for
tool-specific, three for clean, screw and left tool, two in the
case of flip, and only one for right tool. The possibility to
add as many patterns as required is a great advantage of the
system as it allows a better recognition of the movement,
even more accentuated if the movement performed involves
different relevant axes.

However, including numerous patterns for the same
movement also entails risks. This is the case of left tool.
It is a relatively short movement and right tool is highly
similar to it. As mentioned before, right tool has only one
pattern for comparison, while for left tool 3 patterns were
included. This fact provides almost perfect recognition of
left tool, but it is also the cause of almost one out of two

Fig. 8 Recognition ratio of operations

wrong recognitions (right tool being misrecognized as left
tool), which only occurs in this movement.

Figure 9 shows the differential factors (DFs) of
acceleration and angular velocity obtained for right tool. In
this case, the dynamic limit is set at 600 for all cases, which
means that a DF below the limit is a valid axis to match the
pattern. Around 170 right tool operations were carried out
and nine were considered to be left tool as shown by the
red star markers. Furthermore, five out of nine movements
should not have been recognized, as can be seen in NR
markers in the graph for the y-axis of the gyroscope.

This issue is caused by the excessive number of patterns
saved for left tool, which practically achieves perfection
in this case, but at the expense of worsening another
movement with similar characteristics. Therefore, it is
necessary to include only the necessary patterns, so as not to
interfere in the rest of the movements, causing an incorrect
classification.

The electronic disassembly as case study was considered
appropriate, since it is a common process where remanu-
facturing plays a significant role. In this case, the sequence
of operations carried out to open, desoldering and clean
an electronic device was the following: flip, unscrew, right
tool, desoldering, left tool, and clean. This particular case
study has been defined, but the operations included can be
used in any other process related to the remanufacturing of
electronic components.

A summary of the main results obtained can be found
in Table 4. The range of the number of samples was from
8 in the shorter to 17 in the longer movements, implying
a difference in the movement duration greater than one
second.

The last column shows that 30 complete sequences
were recognized, although if we remove the misrecognized
ones a sequence recognition of 38/40 is obtained (there
were only 3 failures—Flip, TS, and LT—and two of them
were in the same sequence). As mentioned previously, the
excess of patterns saved for left tool and the similarity of
the movement with right tool caused that, although right
tool was recognized, the system opted for left tool in the
final classification. This reduced the recognition ratio from
95% to 75%, which shows that the proper determination
of patterns is a decisive factor to achieve a high rate of
successful recognitions.

5 Conclusions and future work

As the remanufacturing industry continues to grow,
high expectations exist for robot-assisted disassembly to
increase efficiency and reduce operational costs. Given
the demanding requirements of disassembly operations in
terms of flexibility, the human factor is key for the success
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Fig. 9 Acceleration and angular
velocity differential factors in
right tool operation (NR stands
for not recognized)

of remanufacturing industries. In this domain, different
human-robot interfaces exist at practice, of which gesture
recognition has received special attention due to its intuitive
ease of use.

Table 4 Disassembly sequence results

Samples Accel1 Gyro2 DL3 Recog.4

Flip 9–14 X,-/Y,Z X,Y,- 372–562 39/40

Unscrew 9–12 X,-,Z -,Y,- 372–486 40/40

RT 13–17 X,Y,Z X,Y,Z 524–600 31/40

TS 8–11 -,Y,Z X/-,-,- 334–448 39/40

LT 12–16 X,Y,Z X,-/Y,Z 486–600 48/40

Clean 14–17 X,Y,- -,-,- 562–600 40/40

Sequence 8–17 X,Y,Z X,Y,Z 334–600 30/40

1Relevant acceleration axes
2Relevant gyroscope axes
3Dynamic limit
4Recognition ratio

This work has addressed an experimental comparison
of two HRI systems: (i) a wearable-based approach
(OperaBLE wristband based on three-axis acceleration data
provided by IMUs) and (ii) a computer-vision approach
(Kinect commercial device using an RGB camera and IR
sensors). Data gathered by both systems (3D acceleration
data in the case of OperaBLE, and 3D processed position
data in the case of Kinect) are used as input to
our low-frequency movement characterization algorithm
(LoMoCA), which runs in an edge IoT node located nearby.
This node, in turn, sends commands to the corresponding
robot through MQTT-enabled Remote Controllers.

Having adapted both input data flows so as to be pro-
cessed in real-time by LoMoCA, a performance evaluation
has been conducted using OperaBLE wristbands and Kinect
RGB-D cameras simultaneously. A set of conclusions are
provided in the following lines:

(i) The use of IMUs for movement characterization
is, in general terms, compatible with lightweight
MCUs using low-frequency sampling rates. Vision-
based approaches, typically, require more powerful
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hardware resources to obtain 3D information from
two-dimensional data.

(ii) Wearable devices need to be powered by an external
battery module, which requires a more optimized data
gathering algorithm and low-power communication
protocol. Vision systems, conversely, can be easily
plugged in. Nevertheless, in terms of absolute
consumption, OperaBLE is up to 950 times less power
consuming.

(iii) Despite context settings influencing the characteri-
zation accuracy for both systems—OperaBLE and
Kinect—industrial scenarios are likely to have a
greater impact on Kinect’s performance due to vary-
ing lighting conditions and body pose. Regarding
OperaBLE, a mobile subject will impact more signifi-
cantly on acceleration being used for characterization.

(iv) Based on the experimental results obtained, Kinect
presents a higher dependency on the plane where
movements are performed. Thus, accuracies differ
significantly depending on context conditions (e.g.,
ambient luminosity or focal length) for movements
being performed in the antero-posterior axis (changes
in depth).

As future work, we plan to increase the complexity
and number of movements included in the system in
order to detect and improve possible failures in the
classification of look-alike movements, thus approaching
real remanufacturing use cases. Furthermore, data fusion
from different devices could be an interesting point of
improvement to address a wider variety of scenarios.
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