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Abstract: The microalgal genus Nannochloropsis has broad applicability to produce biofuels, animal
feed supplements and other value-added products including proteins, carotenoids and lipids. This
study investigated a potential role of N. oceanica in the reversal of metabolic syndrome. Male Wistar
rats (n = 48) were divided into four groups in a 16-week protocol. Two groups were fed either corn
starch or high-carbohydrate, high-fat diets (C and H, respectively) for the full 16 weeks. The other
two groups received C and H diets for eight weeks and then received 5% freeze-dried N. oceanica
in these diets for the final eight weeks (CN and HN, respectively) of the protocol. The H diet was
high in fructose and sucrose, together with increased saturated and trans fats. H rats developed
obesity, hypertension, dyslipidaemia, fatty liver disease and left ventricular fibrosis. N. oceanica
increased lean mass in CN and HN rats, possibly due to the increased protein intake, and decreased
fat mass in HN rats. Intervention with N. oceanica did not change cardiovascular, liver and metabolic
parameters or gut structure. The relative abundance of Oxyphotobacteria in the gut microbiota
was increased. N. oceanica may be an effective functional food against metabolic syndrome as a
sustainable protein source.

Keywords: Nannochloropsis oceanica; microalgae; metabolic syndrome; gut microbiota; eicosapen-
taenoic acid

1. Introduction

Microalgae are unicellular organisms that, in the presence of sunlight, convert carbon
dioxide into biomass [1]. The members of the microalgal genus Nannochloropsis can be
defined as biorefineries to produce biofuels, animal feed supplements and pigments [2,3].
Nannochloropsis species have a wide range of applications in biotechnology, using tech-
niques to modify biomass composition [4]. Nannochloropsis species contain 28.7–40.4%
carbohydrates, 22.2–37.4% crude protein and 15.1–21.7% total lipids on dry weight basis [5]
as well as minerals, vitamins and antioxidants such as carotenoids [5,6]. Nannochloropsis
species contain polyunsaturated fatty acids (PUFA), mainly eicosapentaenoic acid (EPA),
polyphenols, carotenoids and vitamins with toxicological tests on animals confirming
the safety of this microalga for consumption in food [7]. There are six known species of
Nannochloropsis, including N. oceanica, N. gaditana and N. oculata. Baseline information on
the biology of N. oceanica has been published for use in the risk analysis of genetically
modified N. oceanica in Australia [8]. As one example of its potential, N. oceanica strains
isolated in Southeast Queensland, Australia, showed improved lipid characteristics [9].
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Edible microalgae may have therapeutic potential such as the reduction of signs of
metabolic syndrome including hypertension, obesity, fatty liver and systemic inflamma-
tion [10]. Nannochloropsis has been proposed as an appropriate nutritional supplement to
increase PUFA and EPA intake as its EPA content can be rapidly increased, for example by
low-level UV-C radiation [3,7]. Its introduction in the human diet is eco-sustainable and
can replace products currently sourced from fish capture [7,11,12]. Few studies have tested
Nannochloropsis species on metabolic syndrome. Species such as N. gaditana and N. oculata
alleviated oxidative stress and inflammation in streptozotocin-induced diabetic rats [13],
and a protein hydrolysate of N. oculata showed antihypertensive effects [14]. Omega-3 fatty
acids including EPA decreased the signs of metabolic syndrome in the same rat model of
diet-induced metabolic syndrome used in the current study [15]. However, there are no
similar studies on N. oceanica, a source of EPA, on the combination of pathological changes
that define metabolic syndrome.

This project has tested an Australian strain of N. oceanica farmed locally in a covered
pond under controlled conditions [9]. The aim of this study was to determine whether
freeze-dried N. oceanica could reverse the signs of diet-induced metabolic syndrome. We
tested the microalga using a validated diet-induced model of metabolic syndrome in rats
that closely mimics the symptoms of human metabolic syndrome [16]. Cardiovascular,
liver and metabolic health parameters were defined after 8 weeks’ dietary intervention,
with N. oceanica starting 8 weeks after initiation of the obesogenic diet. As the microalgal
cells are difficult to lyse in vivo to release EPA, we used the whole biomass to test the effect
of components other than EPA, which has already been tested in metabolic syndrome [15].

We measured cardiovascular parameters including systolic blood pressure, left ven-
tricular diastolic stiffness, cardiac inflammatory cells and collagen deposition in the heart;
liver parameters including plasma liver enzyme activities, inflammatory cells and fat vac-
uoles in the liver; and metabolic parameters including body weight, total cholesterol and
triglyceride concentrations and glucose and insulin tolerance tests. Further, as functional
foods may reverse obesity-induced changes in the gut microbiota [17,18], we characterised
the changes in its composition after microalgal treatment. We hypothesised that 5% N.
oceanica supplementation for the last eight weeks of the protocol will reverse the changes
induced by the high-carbohydrate, high-fat diet. The mechanisms of these hypothesised
effects could include the provision of essential amino acids to provide an increased lean
mass as well as the actions of carotenoids, chlorophyll a and the omega-3 fatty acid EPA to
decrease infiltration of inflammatory cells into organs such as the heart and liver.

2. Materials and Methods
2.1. Nannochloropsis oceanica Source

N. oceanica (strain CS-179) was cultivated and harvested by Teraform microalgae
farm, Miles, QLD, Australia during June and July 2018. The harvested paste (40 L) was
transported frozen to the University of Southern Queensland, Toowoomba, QLD, Australia
in sealed plastic containers. The paste was kept frozen until it was freeze-dried (Martin
Christ Alpha 2–4 LD plus, John Morris Scientific, Murarrie, QLD, Australia). Batches of 5 L
were freeze-dried for 36–48 h at 0.011 mbar and −60 ◦C. The powder was stored at 4◦C
in sealed plastic containers until feeding or analysis. The composition of N. oceanica was
obtained as described previously [19].

2.2. Rats and Diets

Male Wistar rats (8–9 weeks old; 336 ± 2 g, n = 48) were sourced from Animal Resource
Centre, Murdoch, WA, Australia and housed at the University of Southern Queensland
Animal Facility before being randomly divided into four groups (12 rats per group). Two
groups received either corn starch (C) or high-carbohydrate, high-fat diets (H) for the full
16 weeks [16]. The other two groups (CN and HN) received C or H diets for the first eight
weeks and then received C or H diets with 5% freeze-dried N. oceanica for the final eight
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weeks. The composition of C and H diets is described in our previous study [16]. H and
HN rats were given fructose in drinking water (25% w/v) along with H diet.

2.3. Rat Measurements

Rats were anaesthetised using isoflurane for measurements of body composition
using dual-energy X-ray absorptiometry (DXA), systolic blood pressure and abdominal
circumference measurement [20]. DXA measurements were performed on rats during
week 16 of the protocol using a Norland XR46 DXA instrument (Norland Corp., Fort
Atkinson, WI, USA) [16]. Systolic blood pressure was measured at 8 and 16 weeks under
anaesthesia using an MLT1010 Piezo-Electric Pulse Transducer (ADInstruments, Bella
Vista, NSW, Australia) and an inflatable tail-cuff connected to an MLT844 Physiological
Pressure Transducer (ADInstruments) connected to a PowerLab data acquisition unit
(ADInstruments) [16].

For oral glucose tolerance tests, all rats were food-deprived overnight (~12 h). H and
HN rats were given normal tap water without fructose during the food deprivation period.
After overnight food deprivation, basal blood glucose concentrations were measured in
blood collected from the tail vein and analysed using glucometer (Freestyle lite, Abbott
Diabetes Care, VIC, Australia). The rats were then gavaged with 2 g/kg aqueous glucose
solution, and blood glucose measurements were performed at 30, 60, 90 and 120 min
after glucose loading using tail vein prick method [16]. For insulin tolerance tests, all rats
were deprived of food and fructose water for 4–5 h. Blood glucose concentrations were
then measured at the end of this food deprivation period. Following this, the rats were
intraperitoneally injected with 0.75 IU/kg body weight insulin-R (Eli Lilly, West Ryde,
NSW, Australia). Tail vein blood samples were analysed for blood glucose concentrations at
30, 60, 90 and 120 min following insulin administration. If the blood glucose concentration
dropped below 1.1 mmol/L, rats were removed from the test and immediately given
4 g/kg body weight glucose solution by oral gavage to reverse hypoglycaemia [15].

Following euthanasia with intraperitoneal Lethabarb (pentobarbitone sodium,
100 mg/kg; Virbac, Peakhurst, NSW, Australia), heparin (~200 IU) was injected into right
femoral vein before blood collection, centrifugation and plasma isolation. Following blood
collection, hearts were removed to measure diastolic stillness using isolated Langendorff
heart preparation [16]. Organ weights were collected for right and left ventricles, liver and
retroperitoneal, epididymal and omental fat shortly after euthanasia. These weights were
normalised relative to the tibial length at the time of their removal (in mg/mm) [16]. Organs
were also collected for histological analyses and processed as previously described [16].
The liver sample was taken from the largest lobe close to the hepatic portal vein.

After euthanasia, two or three faecal pellets were collected from the colon of each rat
and processed as described previously to obtain the gut microbiota composition [20,21].
Gut microbiota diversity profiling was performed based on 16S rRNA gene sequencing.
Bacterial communities from faecal samples were investigated by sequencing 16S rRNA
gene amplicons. 341F and 785R primers were used to amplify the V3-V4 regions of the 16S
rRNA gene. Data were presented and analysed for statistical significance as detailed in
previous studies [20,21].

3. Results
3.1. Nannochloropsis oceanica

The cell wall of N. oceanica was intact (Figure 1). The N. oceanica biomass showed
high protein content including essential amino acids together with high PUFA content,
predominantly EPA, as well as vitamins and carotenoids (Table 1). The energy content was
1571 kJ/100 g algal powder.
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Figure 1. Intact cell wall of Nannochloropsis oceanica under brightfield microscopy. Scale bar is 10 µm 
(10×). 

Table 1. Nutrient composition of Nannochloropsis oceanica algae powder. 
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Fat 16.3 
Saturated 3.1 
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Polyunsaturated 7.7 

EPA 6 
Omega-6 1.7 

Trans <0.01 
Moisture 4 

Total sugar <0.01 
Total fibre 10 

Vitamins (mg/100 g) 
Vitamin A 0.025 

Vitamin B1 (thiamine) 7 

Figure 1. Intact cell wall of Nannochloropsis oceanica under brightfield microscopy. Scale bar is 10 µm
(10×).

3.2. Physiological Variables

As expected, the body weight of H rats was higher than C rats (Table 2). The body
weight of HN rats was not different from H rats, while the CN rats were heavier than C rats.
Lean mass was not different between C and H rats. For CN and HN rats, the lean mass
was higher than their respective controls. Bone mineral content was higher in H and HN
rats compared to C and CN rats. Bone mineral density of H rats was higher than that of C
rats. The bone mineral density of CN and HN rats was not different from the respective
controls. Food intake was higher in C rats compared to H rats. CN rats had lower food
intake than C rats. HN rats had similar food intake to H rats. Water intake was higher in H
rats compared to C rats and further increased in CN and HN rats, but this increase with
N. oceanica intervention was not associated with an increased energy intake; these changes
may be caused by the increased salt or protein intake. Energy intake was highest in H rats
compared to C rats. HN rats had similar energy intake as H rats. CN rats had the lowest
energy intake (Table 2).

Whole body fat mass by DXA was higher in H rats compared to C rats. CN rats had
similar whole-body fat mass as C rats, but HN rats had lower fat mass than H rats. Total
abdominal fat was higher in H rats compared to C rats, and HN rats had less abdominal
fat than H rats. Epididymal and omental fat pads were not different from their respective
controls. Retroperitoneal fat was higher in H rats compared to C rats, while HN rats had
less retroperitoneal fat compared to H rats. Values in CN rats were not different from C
rats (Table 2).

Plasma triglyceride concentrations were higher in H rats compared to C rats, whereas
HN rats were similar to H rats, while CN rats were higher than C rats. Plasma non-esterified
fatty acids were the same for C and H rats, but CN and HN rats were higher than their
respective controls. Plasma total cholesterol concentrations were unchanged among all
groups (Table 2). H rats had higher 120-min blood glucose concentrations and area under
the curve compared to C rats. CN and HN rats were not different from their respective
controls. H rats had higher 120-min blood glucose concentrations and area under the curve
after insulin administration compared to C rats; CN rats were higher than C rats; and HN
rats were higher than H rats (Table 2).

After eight weeks, systolic blood pressures of H and HN rats were higher than of C
and CN rats. Systolic blood pressures in H rats were higher at 16 weeks than in C rats. CN
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and HN rats were not different from their respective controls. Left ventricular diastolic
stiffness was higher in H rats compared to C rats. CN and HN rats were different from
their respective controls. Left ventricular weights with septum and right ventricular wet
weights were unchanged in all groups.

Left ventricles from H rats showed increased infiltration of inflammatory cells and
collagen deposition whereas these changes were not seen in left ventricles from C rats. CN
and HN rats were not different from their respective controls (Figure 2). Livers from H
rats showed increased fat vacuole size and infiltration of inflammatory cells compared to
livers from C rats, while HN rats had decreased fat vacuole size and fewer inflammatory
cells compared to H rats (Figure 2). Plasma activities of alanine transaminase and aspartate
transaminase were not different between all groups (Table 2).

Table 1. Nutrient composition of Nannochloropsis oceanica algae powder.

Component Amount

Macronutrients (g/100 g)
Protein 51.3

Essential amino acids (g/100 g)
Lysine 3.5

Methionine 1.1
Isoleucine 2.1
Leucine 4.7

Threonine 2.6
Tryptophan 0.67

Valine 2.9
Arginine 2.9
Histidine 0.96

Phenylalanine 2.6
Lipids, moisture, carbohydrates (g/100 g)

Fat 16.3
Saturated 3.1

Monounsaturated 4.9
Polyunsaturated 7.7

EPA 6
Omega-6 1.7

Trans <0.01
Moisture 4

Total sugar <0.01
Total fibre 10

Vitamins (mg/100 g)
Vitamin A 0.025

Vitamin B1 (thiamine) 7
Vitamin B2 (riboflavin) 6.2

Vitamin B12 (cyanocobalamin) 0.17
Vitamin C (ascorbic acid) 320

Vitamin D 0.045
Vitamin E 35
Vitamin K 0.017

Carotenoids (mg/100 g)
β-carotene 23.6

Lutein 248
Violaxanthin 146
Zeaxanthin 110
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Table 2. Responses to Nannochloropsis oceanica.

Variables C CN H HN
p Value

Diet Treatment Interaction

Physiological variables

0-week body weight, g 337 ± 1 336 ± 1 339 ± 1 337 ± 1 0.19 0.19 0.66
8-week body weight, g 366 ± 7 b 386 ± 2 b 445 ± 10 a 430 ± 5 a <0.0001 0.66 0.004
16-week body weight, g 388 ± 10 c 453 ± 6 b 547 ± 14 a 528 ± 10 a <0.0001 0.032 0.0003

16-week lean mass, g 292 ± 15 b 328 ± 7 a 299 ± 13 b 323 ± 6 a 0.92 0.003 0.53
16-week fat mass, g 75 ± 15 c 91 ± 12 c 230 ± 35 a 172 ± 13 b <0.0001 0.26 0.05

8-week lean/fat mass
proportion 6.2 ± 1.6 a 5.8 ± 0.4 a 2.1 ± 0.4 b 2.8 ± 0.3 b <0.0001 0.82 0.42

16-week lean/fat mass
proportion 3.8 ± 1.0 a 4.3 ± 0.5 a 1.5 ± 0.3 b 2.0 ± 0.2 b 0.0001 0.35 1.00

16-week bone mineral
content, g 11.6 ± 0.3 b 12.3 ± 0.4 b 16.6 ± 1.1 a 15.0 ± 0.5 a <0.0001 0.46 0.07

16-week bone mineral
density, g/cm2 0.170 ± 0.003 0.166 ± 0.002 0.181 ± 0.004 0.176 ± 0.004 0.005 0.19 0.94

Food intake 0–8 weeks,
g/day 43.2 ± 2.2 a 40.4 ± 0.8 a 26.6 ± 1.1 b 26.0 ± 1.2 b <0.0001 0.21 0.42

Food intake 9–16 weeks,
g/day 44.0 ± 1.2 a 34.9 ± 0.6 b 23.9 ± 0.9 c 22.0 ± 1.0 c <0.0001 <0.0001 0.0009

Water intake 0–8 weeks,
g/day 31.8 ± 1.6 36.8 ± 2.5 32.4 ± 1.4 33.0 ± 1.5 0.48 0.22 0.33

Water intake 9–16 weeks,
g/day 21.7 ± 1.4 c 36.8 ± 2.4 a 28.8 ± 1.3 b 37.0 ± 1.6 a 0.10 <0.0001 0.12

Energy intake 0–8
weeks, kJ/day 485 ± 25 b 454 ± 9 b 607 ± 19 a 590 ± 22 a <0.0001 0.24 0.73

Energy intake 9–16
weeks, kJ/day 470 ± 13 b 392 ± 7 c 536 ± 15 a 533 ± 22 a <0.0001 0.0307 0.044

16-week abdominal
circumference, cm 18.7 ± 0.5 c 21.5 ± 0.2 b 23.8 ± 0.4 a 23.4 ± 0.3 a <0.0001 0.0013 <0.0001

Body mass index, g/cm2 0.61 ± 0.03 c 0.72 ± 0.01 b 0.81 ± 0.02 a 0.77 ± 0.02 a <0.0001 0.09 0.0008
Retroperitoneal fat,

mg/mm 210 ± 20 c 256 ± 17 c 619 ± 69 a 488 ± 31 b <0.0001 0.24 0.018

Epididymal fat, mg/mm 89 ± 11 b 90 ± 9 b 199 ± 39 a 182 ± 14 a <0.0001 0.67 0.63
Omental fat, mg/mm 139 ± 14 b 169 ± 16 b 288 ± 56 a 278 ± 19 a <0.0001 0.71 0.46
Total abdominal fat,

mg/mm 437 ± 42 c 514 ± 37 c 1107 ± 57 a 948 ± 59 b <0.0001 0.47 0.042

Visceral adiposity, % 5.2 ± 0.5 b 5.2 ± 0.3 b 9.3 ± 1.1 a 8.4 ± 0.4 a <0.0001 0.42 0.42
Liver wet weight,

mg/mm 261 ± 11 b 260 ± 6 b 380 ± 12 a 370 ± 12 a <0.0001 0.62 0.69

Cardiovascular variables

8-week systolic blood
pressure, mmHg 125 ± 4 b 126 ± 2 b 137 ± 3 a 132 ± 2 a 0.0019 0.46 0.27

16-week systolic blood
pressure, mmHg 123 ± 2 b 121 ± 2 b 139 ± 2 a 135 ± 3 a <0.0001 0.21 0.67

Left ventricle + septum,
mg/mm 22.9 ± 1.1 23.8 ± 0.7 25.2 ± 1.1 24.3 ± 0.8 0.14 1.00 0.34

Right ventricle, mg/mm 4.5 ± 0.7 4.3 ± 0.3 5.3 ± 0.2 5.5 ± 0.4 0.03 1.00 0.65
Left ventricular diastolic

stiffness, κ 22.1 ± 0.8 b 22.4 ± 0.9 b 30.1 ± 0.7 a 30.2 ± 0.8 a <0.0001 0.81 0.90

Left ventricular collagen
area, % 6.5 ± 0.6 b 7.2 ± 0.9 b 27.4 ± 2.6 a 26.2 ± 2.1 a <0.0001 0.89 0.59
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Table 2. Cont.

Variables C CN H HN
p Value

Diet Treatment Interaction

Metabolic variables

Plasma triglycerides,
mmol/L 0.43 ± 0.02 c 0.71 ± 0.06 b 1.88 ± 0.31 a 1.58 ± 0.22 a <0.0001 0.96 0.15

Plasma non-esterified
fatty acids, mmol/L 0.38 ± 0.06 b 0.61 ± 0.06 a 0.40 ± 0.03 b 0.71 ± 0.07 a 0.40 0.0005 0.58

Plasma total cholesterol,
mmol/L 1.56 ± 0.08 1.73 ± 0.06 1.57 ± 0.10 1.71 ± 0.06 0.95 0.05 0.84

Alanine transaminase,
U/L 34 ± 4 31 ± 3 38 ± 2 35 ± 3 0.25 0.39 1.00

Aspartate transaminase,
U/L 116 ± 2 101 ± 6 120 ± 12 119 ± 12 0.30 0.45 0.51

Liver inflammatory cells,
cells/200 µm2 12 ± 2 b 14 ± 2 b 26 ± 3 a 29 ± 4 a <0.0001 0.39 0.86

Liver fat vacuoles area,
fat vacuoles/200 µm2 21.2 ± 1.8 c 22.4 ± 2.3 c 135.1 ± 12.9 a 75.0 ± 4.6 b <0.0001 0.0004 0.0003

Oral glucose tolerance test

0-week basal blood
glucose, mmol/L 2.6 ± 0.1 2.9 ± 0.3 2.6 ± 0.2 2.6 ± 0.2 0.58 0.58 0.58

0-week area under the
curve, mmol/L·minutes 632 ± 30 598 ± 19 606 ± 19 606 ± 19 0.70 0.46 0.46

8-week basal blood
glucose, mmol/L 2.9 ± 0.2 2.8 ± 0.1 3.3 ± 0.1 3.3 ± 0.1 0.001 0.7 0.68

8-week 120-min blood
glucose, mmol/L 3.5 ± 0.2 b 3.8 ± 0.2 b 5.0 ± 0.1 a 4.5 ± 0.2 a <0.0001 0.65 0.075

8-week area under the
curve, mmol/L·minutes 530 ± 15 b 558 ± 17 b 657 ± 22 a 640 ± 15 a <0.0001 0.77 0.24

16-week basal blood
glucose, mmol/L 2.8 ± 0.2 2.7 ± 0.1 3.3 ± 0.2 3.0 ± 1.1 0.008 0.16 0.48

16-week 120-min blood
glucose, mmol/L 3.9 ± 0.2 b 4.1± 0.2 b 4.8 ± 0.3 a 4.8 ± 0.2 a 0.002 0.68 0.68

16-week area under the
curve, mmol/L·minutes 501 ± 21 b 571 ± 15 a 617 ± 25 a 593 ± 16 a 0.001 0.24 0.021

Insulin tolerance test

8-week 120-min blood
glucose, mmol/L 2.9 ± 0.4 b 3.4 ± 0.4 b 4.5 ± 0.3 a 4.3 ± 0.2 a 0.002 0.68 0.34

8-week area under the
curve, mmol/L·minutes 247 ± 58 c 156 ± 25 c 408 ± 21 a 369 ± 22 a <0.0001 0.05 0.04

16-week 120-min blood
glucose, mmol/L 2.7 ± 0.3 b 3.2 ± 0.3 b 4.5 ± 0.4 a 4.1 ± 0.2 a 0.0001 0.87 0.16

16-week area under the
curve, mmol/L·minutes 208 ± 37 c 307 ± 36 b 404 ± 54 a 365 ± 16 a 0.001 0.41 0.07

Values are presented as mean ± SEM, n = 10–12. Means in a row with unlike superscripts (a, b or c) differ, p < 0.05. C, rats fed with corn
starch diet; CN, rats fed with corn starch diet + Nannochloropsis oceanica; H, rats fed with high-carbohydrate, high-fat diet; HN, rats fed with
high-carbohydrate, high-fat diet + Nannochloropsis oceanica.

3.3. Gut Structure and Microbiota

Histology of ileum and colon did not show any structural abnormalities in the ex-
perimental groups demonstrated by normal crypt depth, villi length, goblet cells and lack
of inflammatory cell infiltration (Figure 2).

For gut microbiota characterisation, a total of 788,078 quality-filtered sequences were
clustered into 1282 zOTUs; Good’s coverage score of 99.69 ± 0.08% suggested an almost
full recovery of bacterial communities. Shannon’s diversity and richness indices were un-
changed among the groups (Figure 3). Diet and N. oceanica affected the overall bacterial com-
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munity structure individually as well through their interaction (Figure 4, Supplementary
Tables S1–S6).
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Figure 2. Histological analysis of liver, heart, ileum and colon. (A–D) showing haematoxylin and eosin staining; (E–H)
showing oil red O staining to identify liver fat deposition; (I–L) showing haematoxylin and eosin staining to identify
heart inflammation; (M–P) showing picrosirius red staining to identify myocardial collagen deposition; (Q–T) showing
haematoxylin and eosin staining of ileum; and (U–X) showing haematoxylin and eosin staining of colon in rats fed with
corn starch diet (A,E,I,M,Q,U), rats fed with corn starch diet + Nannochloropsis oceanica (B,F,J,N,R,V), rats fed with high-
carbohydrate, high-fat diet (C,G,K,O,S,W) and rats fed with high-carbohydrate, high-fat diet + Nannochloropsis oceanica
(D,H,L,P,T,X). Fat cells = fc; inflammatory cells = ic; collagen = fb. Scale bar is 200 µm for (A–P) (20×) and 100 µm for (Q–X)
(10×).
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Bacteroidia, Oxyphotobacteria, Bacilli, Clostridia, Erysipelotrichia and Verrucomicro-
biae were the most abundant bacterial classes in the faecal samples (Figure 5). Actinobacte-
ria, Coriobacteriia, Melainabacteria, Deferribacteres, Saccharimonadia, Planctomycetacia,
Alphaproteobacteria, Deltaproteobacteria, Gammaproteobacteria and Mollicutes were
observed at lower abundance levels (<1%) in some faecal samples.
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starch diet; CN, rats fed with corn starch diet + Nannochloropsis oceanica; H, rats fed with high-carbohydrate, high-fat diet;
HN, rats fed with high-carbohydrate, high-fat diet + Nannochloropsis oceanica.

The relative abundance of bacteria from the class Bacteroidia and Erysipelotrichia was
increased in C and CN rats (Bacteroidia: C, 29.00%; CN, 29.63%; p > 0.05; Erysipelotrichia:
C, 9.31%; CN, 8.21%; p < 0.01) compared to H and HN rats (Bacteroidia: H, 17.17%; HN,
12.12%; p > 0.05; Erysipelotrichia: H, 4.35%; HN, 3.93%; p < 0.01). An increase in the relative
abundance of bacteria from the class Clostridia was observed in H and HN rats (H, 66.32%;
p < 0.01; HN, 69.36%; p < 0.0001) compared to C and CN rats (C, 43.45%; CN, 45.46%).
An increase in the relative abundance of bacteria from the class Oxyphotobacteria was
observed in CN and HN rats (CN, 3.61%; HN, 1.02%; p > 0.05) compared to C and H rats
(C, 0%; H, 0%) (Figure 5). A decrease in the relative abundance of bacteria from the class
Bacilli was observed in HN rats (2.77%; p > 0.05) compared to CN rats (3.26%), while an
increase was observed in H rats (2.27%; p > 0.05) compared to C rats (0.05%) (Figure 5).
Similarly, the relative abundance of bacteria from the class Verrucomicrobiae was higher in
C rats (13.93%; p > 0.05) compared to H rats (8.89%) and lower in CN rats (7.58%; p > 0.05)
compared to HN rats (9.18%) (Figure 5).

The effects of diet and N. oceanica on the ratio of Firmicutes and Bacteroidetes
(Supplementary Figure S1) bacterial communities at the family level (Supplementary
Figure S2) and bacterial communities at the genus level (Supplementary Figure S3) are
provided in the supplementary file. Detailed correlation analysis of gut microbiota with
physiological parameters showed relationships between 12 physiological variables and
gut microbiota in Supplementary Tables S6 and S7. The physiological variables most often
related to changes in the gut microbiota were systolic blood pressure, liver wet weight and
abdominal (retroperitoneal, epididymal and omental) fat pads (Table S6).
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4. Discussion

The diet-induced changes in metabolic, cardiovascular and liver parameters in the
rat model used in this project mimic the changes in human metabolic syndrome [16].
Interventions with seaweeds have been previously shown to reverse these changes [19–21].
This study shows that high-carbohydrate, high-fat diet-fed rats supplemented with the
microalgae N. oceanica had higher lean mass and lower abdominal and liver fat than rats
fed only the obesogenic diet. Further, the abundance of Oxyphotobacteria in the colon was
changed. However, intervention with N. oceanica did not change cardiovascular parameters,
lipid profile or glucose responses.

Microalgae are considered part of a healthy diet as they contain fatty acids, proteins,
amino acids, pigments, vitamins and minerals [22]. Microalgae are a sustainable source
of these compounds because they grow in a wide range of environments such as fresh,
brackish and saline waters [23] and they do not compete with arable land or biodiverse
landscapes [24]. Microalgal constituents are versatile and have potential applications in
energy, pharmaceutical, cosmetics and food industries [25]. Nannochloropsis components
such as whole biomass, pigments, long-chain PUFA, triglycerides, alkanes and alkenes
have many biotechnological applications including production of biofuels [26], aquaculture,
fish food, livestock feeds and wastewater treatment [27]. Because of these applications,
Nannochloropsis grown for other uses could be diverted for the development of functional
food products at minimal additional cost.

Nannochloropsis is nutritionally safe and can be used as a human health supple-
ment [28]. Microalgae-supplemented food such as bread would address the general
deficiency of omega-3 fatty acids and minerals, such as zinc, in the human population [2],
although the change in colour may decrease consumer acceptance. Nannochloropsis can
be added to food, such as bread [29] and pasta [30], to create highly nutritious functional
foods. The addition of N. gaditana to bread changed the colour to green-yellow crust and
crumb, suggesting an increased browning. The textural parameters of the bread such as
hardness, chewiness and resilience were unchanged [29] whereas the appearance of pasta
was minimally impacted with 10% replacement of wheat flour [30].

No studies have reported the effects of N. oceanica on changes in all components of
metabolic syndrome using a single model, as in the current study. In rats, streptozotocin
was used to produce acute pancreatic β-cell damage and induce hyperglycaemia [14].
Diabetic rats received N. oculata (10 and 20 mg/kg) for three weeks. N. oculata reduced
serum concentrations of glucose, cholesterol, triglycerides and LDL and increased the
serum concentrations of insulin and HDL-cholesterol. In another streptozotocin study,
rats were fed with N. gaditana (10%) for two months [13]. N. gaditana supplementation
decreased concentrations of glucose and HbA1c and improved renal and hepatic functions
while attenuating the oxidative stress and inflammation in diabetic rats. The marine-water
microalga N. oculata and its extract minimised the pancreatic tissue damage and maintained
the integrity of the genomic DNA [31]. N. oculata is a good source of omega-3 fatty acids,
specifically EPA. Intervention with N. oculata suspension (108 viable cells/animal) for
14 days had no effect on body weight, which is similar to the current study [32]. Using the
same model of metabolic syndrome as the current study, ALA, EPA and DHA [15] improved
cardiovascular and hepatic parameters. However, the EPA dose in this previous study was
~1300 mg/kg/day for 8 weeks, about five times higher than the EPA dose in the current
study of around 260 mg/kg/day, also for 8 weeks. Further, the major four xanthophyll
carotenoids in N. oceanica were present at 1940 mg/kg of the microalgal biomass which
then gives a dose of approximately 4 mg/kg/day when mixed in the food. For comparison,
a much higher dose of astaxanthin (200 mg/kg/day) given to Spontaneously Hypertensive
Rats for 11 weeks reduced blood pressure [33]. These comparisons suggest that neither EPA
nor the xanthophyll carotenoids are the major bioactive components of N. oceanica algal
biomass. Further, this study tested N. oceanica without disrupting the cell structure, which
is likely to further reduce the bioavailability of these components as ball-mill disruption
enabled the protein and fatty acids to become bioavailable to mice [34]. It can be expected
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that the N. oceanica biomass, when used after processes such as ball milling [34], may
improve the bioavailability of carotenoids and omega-3 fatty acids from the cell walls.

The gut microbiota plays an important role in health and disease [35]. Dietary in-
terventions such as macro- and micro-algae can directly interact with the gut microbiota,
leading to changes in physiological variables [35]. The search for microbial signatures of
disease has led to the use of changes in the Firmicutes/Bacteroidetes ratio as a marker of
obesity; however, use of this ratio may not be valid to determine health status because
of lifestyle-associated variations in patients from a single population [36]. Our previous
studies have shown interaction of polysaccharides from macroalgal interventions with the
gut microbiota in improving metabolic and cardiovascular health [19–21]. As an example,
our study on the macroalgae Caulerpa lentillifera showed correlations between gut microbiota
and 15 physiological variables, especially oral glucose tolerance, liver weight and abdominal
fat pads [21]. The current study extends this correlation to intervention with microalgae,
suggesting that changes in gut microbiota are widely relevant in metabolic syndrome. Further,
we have identified changes in Oxyphotobacteria with N. oceanica intervention.

Marine fatty fish such as salmon, mullet and mackerel are the main sources of EPA
and DHA for human consumption [37]. However, due to the excessive and sometimes
poorly regulated fishing industry, the depletion of worldwide fish stocks is straining the
sustainability of production of omega-3 long-chain PUFA [38]. In contrast, microalga can
be used for sustainable production of omega-3 PUFA [39] and so can be an important
PUFA source for farmed fish [11,12]. Microalgae grow well in South-East Queensland,
Australia [23]; hence, this may be a key location to provide good quality microalgae for
Australian and international use. The biomass from Nannochloropsis species also contains
high-value products such as other fatty acids, sterols and carotenoids with applications in
food, cosmetic and pharmaceutical industries [40]. Defatted Nannochloropsis biomass is a
good source of protein and carbohydrates which may have health benefits in addition to
the increased EPA and carotenoids if the cell wall is broken [8]. Further, the dietary fibre
from microalgal biomass could act as prebiotics to alter the gut microbiota leading to health
benefits including reduced blood pressure, blood glucose, cholesterol, plasma triglycerides
and LDL-cholesterol [41].

An advantage of this study was that the cell wall was not disrupted, and therefore, the
effectiveness of microalgal components other than cell wall-bound EPA and carotenoids
could be determined. A key feature of microalgae is the rigidity of the cell wall, which can
limit the bioavailability of nutrients; hence, other studies have used several cell disruption
methods such as mechanical, physical, chemical and enzymatic approaches [42] or solvent
extraction [43]. Cell wall thickness in Nannochloropsis species varies from 63 to 119 nm due
to the distinct genetic traits in each strain, with N. oceanica having one of the thickest cell
walls [44]. Cell membrane disruption of N. oceanica may be necessary for optimal biological
activity [45]. Health products including omega-3 fatty acids and vitamin D supplements
can be obtained from Nannochloropsis using microwave, super-critical, ultrasound and
enzyme-assisted extractions at industrial scales [46]. Our study shows that the biological
activity of the biomass does not rely solely on EPA and carotenoids.

There may be a role for microalgal protein in providing a sustainable source of protein
to augment diets that maintain weight loss. Typically, people regain weight after weight
loss, with only diets with increased protein content having a beneficial effect in maintain-
ing the reduced weight [47]. Animal protein consumption has been linked to abdominal
adiposity and was generally detrimental to overall health in an adolescent population [48],
whereas plant protein consumption was linked to better health. Therefore, microalgal pro-
tein may be a suitable alternative to animal proteins in maintaining a reduced body weight
and health. Microalgal interventions may be useful as additives with other functional foods
to increase the therapeutic effectiveness in metabolic syndrome.

The dose of 5% of diet in rats corresponds to approximately 30 g per day intake in
adult humans [49]. This is a realistic and commercially viable dose in humans. Any higher
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doses may make it unrealistic and non-commercial, apart from decreasing the compliance
and affordability.

5. Conclusions

N. oceanica intervention increased lean mass in rats, possibly due to the increased
protein intake and decreased fat mass in obese rats, but this intervention did not change
cardiovascular, liver and metabolic parameters or gut structure. As N. oceanica biomass can
be produced sustainably in large quantities, it could be a source of essential amino acids
and prebiotics that may improve health in chronic diseases such as metabolic syndrome.
These are additional effects to the production of EPA and carotenoids by Nannochloropsis as
a biorefinery. Further, the industrial usefulness of Nannochloropsis biomass for biofuels and
animal feed supplements means that production of these amino acids and prebiotics can
be undertaken using existing processes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nu13113991/s1, Table S1: PERMANOVAs based on Bray−Curtis similarity measure for
square-root-transformed abundances of all rat faecal samples; Table S2: PERMANOVAs based on
Euclidean distance matrix for physiological data of all rat faecal samples; Table S3: Summary of
statistical tests on differential zOTU abundance; Table S4: Relative abundance of zOTUs affected by
diet (ANOVA with p adjusted < 0.05) between C, CN, H and HN rats; Table S5: Relative abundance
of zOTUs affected by treatment (ANOVA with p adjusted < 0.05) between C, CN, H and HN rats;
Table S6: Correlation between bacterial community structure and physiological parameters (p < 0.05);
Table S7: Taxonomic assignments of the zOTUs strongly correlated with physiological parameters;
Figure S1: Effect of supplementation of diet (C or H) with Nannochloropsis oceanica on the ratio of
Firmicutes and Bacteroidetes (F/B) abundances in rat faecal samples; Figure S2: Taxonomic profiles
of bacterial communities of all faecal samples shown at the family level; Figure S3: Taxonomic profiles
of bacterial communities shown at the genus level of all faecal samples.
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