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1 INTRODUCTION 

Based on information about user behavior, activity recognition enables computer systems to help users with their 
tasks [1]. The automatic recognition of physical activity has historically been of notable interest in computer vision 
research, while efforts to recognize activities beyond instrumented rooms led to a shift towards body-worn inertial 
measurements units (IMU) [12]. IMUs are now one of the dominant technical aids to assist in home-based exercise 
therapy [28], while being low-cost, small-sized, and easy-of-use devices [10]. Due to their characteristic of retrieving 
motion-related data such as acceleration and angular velocity, IMUs play an important role in determining human 
motion [43]. Fundamentally, IMU data allows to assess the execution quality of a training exercise in terms of 
technique and accuracy [18]. With the term quality, we lean towards a definition from the International 
Organization for Standardization, which understands quality “as the degree to which a set of inherent characteristic 
fulfills requirements” [29]. Feedback in terms of quality is an interesting field of research in sports and healthcare 
[44]. However, research indicates limitations of IMU sensors in terms of, for instance, detecting deviations from the 
ideal movement (e.g., improper timing of muscular activation) hence studies additionally incorporate biofeedback 
systems such as electromyographic (EMG) sensors to overcome such limitations [43]. 

The ability to simultaneously detect physical activity and stress levels can assist users in keeping track of their 
health, while IMU data in addition to physiological data builds a crucial foundation for this task [54]. Stress is 
considered to have a bidirectional relationship with injuries in activities such as training exercises. However, 
research is still controversial [50, 55]; as originally hypothesized by [52], stress increases muscle tension that can 
lead to a motor coordination disturbance as well as a reduction in flexibility and an increase in fatigue. A monitoring 
system that determines stress and fatigue during exercises could aid future research in examining this relationship. 
Since fitness-oriented exercises at home are often poorly or ineffectively performed [49], a monitoring system could 
also serve as an early warning system [23]. So far, there is a lack of studies investigating stress in challenging 
contexts such as training exercises [26, 39]. More research on methodological and measurement standards is 
needed [4]. Since there is no single stress marker that globally assesses an individual's stress response [4], we apply 
a multivariable approach that incorporates workload, lactate, and other unobtrusive biosignals such as heart rate 
to determine stress levels. 

To the best of our knowledge, no existing study attempted to unobtrusively measure stress in the challenging 
context of training exercises. In our ongoing research, we examine methodological approaches and potential 
biosignal candidates. The present paper contributes an experimental outline that utilizes a supervised machine 
learning process to build a model that can determine stress levels without the need of invasive stress markers such 
as lactate and cortisol. Our research is part of a larger European funded research project. This project includes 
industry as well as university partners and targets the development of a product for the fitness market aiding people 
in their home-based training. 

This paper is organized as follows: In Section 2, the relevant related literature is presented. Then, the research 
context is introduced in Section 3. Subsequently, Section 4 elaborates on the experimental setting, which is the 
foundation for our research. Section 5 then discusses our chosen approach, highlights research implications, and 
indicates research limitations. Finally, Section 6 concludes the present paper and provides recommendations for 
future research. 
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2 RELATED WORK 

Our literature review builds on the circumstance that physiological signals alone are not sufficient to determine 
stress levels and the use of IMU data to detect physical activities is encouraged to enrich investigations [54]. 
Therefore, the related work is elaborated on from two perspectives: firstly, it is concentrated on how studies 
approach the challenge of detecting human motion during training exercises; and, secondly, it is focused on the 
challenge of determining stress levels during training exercises, including fatigue as a stimulus for stress. 

2.1 Detecting Human Activities Throughout Training Exercises 

Traditionally, computer vision approaches have been at the forefront of recognizing human activities, while there 
is a shift towards body-worn inertial sensors observable (e.g., due to their capability to detect activities beyond 
instrumented rooms [12]). A commonly used general-purpose framework to design and evaluate activity 
recognition systems is the so-called Activity Recognition Chain (ARC) [44]. The ARC was introduced in [12] and 
prescribes different steps that transcend raw sensor data to classified pieces of information. In principle, any type 
of multimodal sensor data could be used with the ARC; which sensors are suitable depends on the application 
context [4, 37]. 

The initial step in the ARC is the task of preprocessing the incoming data to smooth and prepare the signal for 
subsequent processing and analysis. To this end, related studies leveraged different filters such as the Butterworth 
filter [8] and a moving average filter [43]. Such filters make it easier to divide the incoming signal into individual 
segments (e.g., where an activity begins and ends), since noise is largely filtered out. In the chain’s next step, the 
filtered data is segmented into parts, each representing an individual repetition. However, the literature emphasizes 
that segmentation of time series data is difficult [10, 38]. After successfully segmenting the filtered stream of data, 
features are subsequently extracted on this basis. Features reduce the data to information that is discriminative for 
the corresponding activity that is performed [12]. Finally, there is the classification step in the chain. Here, feature 
vectors result in labeled decisions – e.g., an activity is labeled as correct or incorrect. 

The different steps of the ARC are more thoroughly discussed in Section 4, while we focus on providing a brief 
introduction to ARC in this context. It is worth highlighting that there are a variety of different solutions for each 
step in this chain. For example, the task of data segmentation can be solved by supervised or unsupervised machine 
learning approaches. Furthermore, algorithms exist that allow for light-weight online segmentation and algorithms 
for more heavy-weight offline segmentation. Lin et al. discuss these various approaches of data segmentation in 
more detail [38]. Similarly, the definition of appropriate features and their calculation vary notably in related 
studies. Whereas some studies rely on statistical features (e.g., mean, median, and variance) [43], other leverage 
dynamics features (e.g., energy and energy ratio) as well [8]. Finally, there is a notable number of classifiers to be 
utilized for the classification process. To name a few, support-vector machines (SVM), decision trees, and k-nearest 
neighbor (KNN) algorithms are three of the potential candidates that a researcher can choose from [12]. 

2.2 Detecting Stress in Training Exercises 

Attention is now drawn to the field of stress in the context of sports, its relation to fatigue, and how studies have 
attempted to measure it during training exercises. 

There is a long debate across multidisciplinary fields about the concept of stress [57]. Since each discipline has 
its own concepts on stress, a common definition is unlikely [4, 58]. Stress can be classified as acute or chronic 
[24, 57]. While chronic stress is pathological and psychological in nature, acute stress is the immediate 
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response of the body to a stimulus (stressor) [24, 60]. The acute response triggers alertness, energy release, 
physiological regulation, and immunological activation to compensate for the effects of the stressor [24]. 
During training exercises, the body experiences an acute stress response in which more oxygen and energy are 
required. The heart rate increases so that more blood is pumped through the body and thus oxygen is 
transported to improve cardiorespiratory function [6]. Stress could be understood as a response to a disturbance 
of homeostatic balance by events or conditions (stressors) [60]. For example, untrained people suffer from more 
stress due to higher demand for oxygen and energy, while trained people become accustomed to use less oxygen; 
their body will eventually feel the stress over a longer period [6, 61]. The physiological reactions are summarized 
as follows: 

• Sympathoadrenal system (SAM axis): Sympathetic activation and parasympathetic withdrawal cause 
increased heart rate and respiratory rate, bronchial and pupil dilation, sweaty skin, and other symptoms. 
The body is rapidly prepared for a physical “fight or flight” stress response [6]. 

• Hypothalamic-pituitary-adrenal axis (HPA axis): Slowly activated by the secretion of cortisol leading to 
increased catabolism, anabolism inhibition, and depression of the immune system. Typically activated by 
mental tasks [59]. 

In addition, stress is highly subjective and individual in all aspects [17, 19]. There is a lack of research on 
methodological and measurement standards to determine stress during challenging contexts such as training 
exercises [2, 4, 17, 37, 45], for which stress is a natural physiological response [6, 62, 63, 64]. In principle, there are 
countless stimuli that are associated with stress [19, 42]. One of them is the performed quality of a training exercise 
[3, 26]. Fatigue is another stimulus for stress [34, 36]. Physical activity could be viewed as providing stimuli that 
promote specific and varied adaptations of the body depending on the type, intensity, and duration of exercise 
performed [61, 64, 65]. Chronic exercise training does not eliminate the acute exercise response, but it can attenuate 
the overall effect of the response as the body adapts to the training stimulus in a positive way. An excessive intensity 
and/or volume of training may lead to maladaptation [64, 65]. Hence, a stress response is dependent on the athlete 
and the exercise. An unfamiliar exercise is likely to elicit a higher metabolic stress response than a familiar, routine 
exercise, e.g., a long-distance runner will probably have a different stress response profile for a given exercise than 
a weightlifter. Exercises represent an effective methodological tool to study the body's response to metabolic stress, 
and from a clinical perspective, offers an alternative treatment choice to drug intervention strategies [6]. 

Thus far, only a few studies have attempted to investigate physiological stress during training exercises. For 
example, Magiera et al. focused on the effect of physical and mental stress on the heart rate as well as cortisol and 
lactate concentrations [39]. They found that the heart rate is most sensitive to physical and mental stress. Hong et 
al. investigated the influence of physical activity on stress recognition with physiological responses [26]. The 
authors used different stressors to induce stress and found that, among others, stress models for each physical 
activity should be built due to variations in physiological changes caused by physical activity. Alamudun et al. 
introduced two multivariate signal processing algorithms to cope with the differences in physiology between 
participants and changes in physical activity [3]. They found that these two algorithms can bring noticeable 
improvements for the process of stress prediction. Wong et al. used IMU data to distinguish stress and high intensity 
activity in daily life [54]. 

Based on our literature work, we created a tabular overview of existing stress markers (see Table 1). Stress (and 
fatigue) markers can be classified as subjective or objective depending on the measurement technique [21]. 
Subjective stress markers, on the one hand, are traditionally used by psychologists in the form of questionnaires, 
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interviews, or self-reports, which are usually conducted retrospectively. Subjective markers are not suitable to 
continuously monitor stress during training exercises but can be used to determine stress levels before and after 
an exercise. Objective stress markers, on the other hand, are quantifiable and cover physiological, physical, 
behavioral responses, and other contextual data. They can reduce the possibility of self-deception, falsification, 
fabrication, attention, or recall bias, which is usually present in subjective markers [46]. Objective markers are 
measured either obtrusively or unobtrusively [4]. Biomedical researchers rely on obtrusive biochemical markers, 
typically hormones, to measure stress [4, 62]. One of these hormones is cortisol, which is commonly used in studies 
on stress [17]. Another less expensive marker is lactate [13, 25] which was once incorrectly attributed to muscle 
fatigue [13]. Such obtrusive biochemical markers provide accurate quantitative data [4]. However, they are not 
suitable for real-time monitoring systems due to their inherent nature and that they, at times, necessitate analyzing 
data in a laboratory. Unobtrusive stress markers, such as heart rate or muscle activity, are measured by sensors 
that are attached to the body. They provide continuous data in real-time and do not require analysis in a laboratory 
[17]. Yet, unobtrusive markers are susceptible to noise or artifacts due to individual’s body parts movements or 
activities [17]; however, studies show that they can provide relevant indicators to determine stress [2, 4, 17, 19, 21, 
27, 45, 54, 56]. 

Table 1: An overview of commonly used stress markers. 

Subjective Stress Markers Objective Stress Markers 
E.g., interviews,  
self-reports, and 
questionnaires. 

Obtrusive Unobtrusive (real-time) 
Salvia, hair, and blood samples  
(e.g., cortisol or lactate). 

Wearables (e.g., heart rate), 
contextual (e.g., air quality),  
video-based (e.g., thermal imaging), 
behavioral (e.g., physical activity). 

Regardless of the stress marker, Arza et al. state that a single stress marker cannot globally assess an individual's 
stress response, because stress causes different physiological reactions, and a multivariable approach is therefore 
suggested [4]. Due to the multifaceted characteristics of stress, determining a ground truth is a difficult process 
[17]. Some studies use subjective measures of perceived stress. Other studies rely on biosignals or biomarkers that 
they consider reliable for determining stress. In many studies, ground truth is established by placing a subject in a 
neutral and in a stressful situation to label the collected data accordingly. Others use the amount of workload and 
cognitive demand that is being applied as the stressor [4, 17, 23]. 

In summary, stress cannot be objectively and unobtrusively monitored in real-time [19]. Determining stress is 
challenging because of the subjectivity and individual nature of stress [19]. Moreover, the start, the duration, and 
the intensity of a stress event is often not clearly identifiable [19]. There is also no commonly agreed methodological 
or measurement standard for unobtrusive markers [4, 17]. The relationship between the body’s activation of 
biochemical stress markers and the intensity of the stress perceived is both complex and understudied [4]. 
However, it has been shown that unobtrusive stress markers can be used to approximate stress (and implicitly 
fatigue) in real-time [4, 17]. 

3 RESEARCH CONTEXT 

This study is part of a European funded, interdisciplinary research project. The project aims at developing a smart 
training shirt for the home-based fitness market to assess a person’s movements during repetitive training 
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exercises in real-time and to provide additional health information (e.g., repetition counter). For this project, we 
decided to initially focus on repetitive exercises, as such exercises can be more easily assessed (e.g., in terms of the 
labeling process and data segmentation), but we plan to expand to non-repetitive exercises in the future. The 
collaborating university and industrial project partners have expertise in computer science, medical engineering, 
sports science, and embedded systems. The prototype in development consists of four body-worn sensors 
integrated into the textile of the shirt. By utilizing their mobile devices, users will be provided with immediate visual 
and acoustic feedback about the quality of the exercise performed as well as will be able to track their training 
progress over time. The current prototype integrates four IMUs, one on each shoulder, the chest, and the abdomen. 
A custom embedded system is used for data collection and data processing. Additional physiological sensors for 
biosignals (electrocardiogram, electromyography, electrodermal activity, respiration, and pulse) will be added in 
the future. Based on this data, supervised machine learning algorithms are trained to assess the quality of 
movement and detect, for example, muscle fatigue. First tests (see Figure 1) were conducted in our laboratory called 
Creative Space for Technical Innovations1 to create sets of labeled training data and to implement first parts of the 
outlined ARC variant in software (see Section 4). Building on this context, the present study’s goal is to allow for 
unobtrusively detecting stress levels during training exercises in the future. 

 

Figure 1: Preliminary tests in our laboratory – Left: IMU data was leveraged to detect muscle fatigue; Right: Sets of push-up exercises 
were utilized to train first machine learning models based on IMU data. 

4 EXPERIMENTAL OUTLINE 

The experimental outline consists of a supervised machine learning training process that is built on a custom 
software implementation of the ARC. While we implemented the latter, we are currently working on the realization 
of the former. 

4.1 Training Process 

Figure 2 shows the experimental procedure to train a model that can classify the quality of performed repetitions 
and the corresponding stress levels. We chose supervised machine learning to guide the training process in this 
study. The training process begins with one participant who is initially wired with sensors and then performs a 
repetitive exercise. The unobtrusive senor data is collected during the exercise. Further data is collected separately: 
firstly, the quality of the performed repetitions is assessed (labeled) by sports experts; secondly, the subject fills in 
a questionnaire for perceived exertion; thirdly, a blood sample is taken for the lactate values at the index finger. 

 
1 https://csti.haw-hamburg.de/ 

https://csti.haw-hamburg.de/
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Figure 2: An overview of the training process and its individual elements. 

This procedure is repeated with the same subject for different exercises. After all exercises have been completed by 
the subject, the training is repeated with a new participant until sufficient data has been collected. By using the 
word sufficient we gear towards a machine learning model that shows good results in evaluating its accuracy, 
precision, recall, and f-measures. We also aim at collecting a balanced set of training data to avoid too stark class 
imbalances that would deteriorate the classification performance [48]. Related studies recruited a varying number 
of (healthy) participants to reach satisfactory results. For instance, while Seiffert et al. recruited as few as two 
participants [44], Morris et al. gathered data from as much as 114 people (i.e., in both the training and evaluation 
phase) [41]. A notable number of studies recruited no more than 20 participants (e.g., [7, 22, 38, 43]) hence we 
initially target a similar cohort in our research. However, Morris et al. [41] note that the variation in the form 
inevitably affects the recognition accuracy and, consequently, see the necessity to conduct large-scale trainings. 
While we intent to recruit first subjects from within our research group, we therefore also plan to prospectively 
gather data from more people. Yet, we are unaware of any general rule of thumb as regard to a minimal required 
number of subjects to reach satisfactory classification performance at scale. We expect that the recognition accuracy 
will incrementally improve on a subject-to-subject basis. 

Features are calculated for each repetition to train a model. For this purpose, all sensor data passes through each 
stage of the ARC (see Section 4.2). The IMU sensor data is used as the basis for finding individual repetitions and for 
segmenting all other sensor data. The labels are added to each corresponding feature set (for each repetition). The 
trained model is eventually able to classify individual repetitions by using only unobtrusive sensor data without 
any labels. Since our first prototype has only IMU sensors, we could only create features for the performed quality. 

Figure 3 presents the training process in detail. It is divided into two phases: a baseline and a stress phase. This 
structure is based on [4] and was modified to reduce the time required per participant who originally had to be 
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available on two days. In addition, the stress phase now has a variable duration. All subjects should be evaluated in 
the morning to avoid differing physiological responses due to circadian changes [4, 15, 47, 62]. 

In the baseline phase, individual stress levels are determined by placing each participant in a rested, neutral 
state for protocol calibration and the determination of normal conditions [17]. The participant first receives a short 
briefing regarding the procedure. After all sensors are firmly attached and in the correct position on the body, it is 
assured that each sensor transmits data. The subject fills in the Acute Recovery and Stress Scale (ARSS) [33]. A blood 
sample is taken from an index finger and analyzed for lactate levels with a handheld meter. The subject then 
performs a relaxation exercise (e.g., mediation or autogenic training) for ten minutes. During the relaxation 
exercise, data is recorded by the sensors. Upon completion of the relaxation exercise, the subject fills in the ARSS 
again and a second blood sample is taken to end the baseline phase. 

In the subsequent stress phase, one or more training exercises are performed. Each training exercise consists of 
three sets. A set consists of repetitions (see Section 4.2.3). Each subject is instructed to perform as many repetitions 
as possible. In our preliminary experiments, this usually took less than two minutes, though this depends highly on 
the exercise and individual’s fitness level. During each set, data is recorded by the sensors. After each set, there is a 
break of ten minutes. Meanwhile, the subject fills in the Borg Scales [9] on perceived exertion and another blood 
sample is taken after the seventh minute, as peak values can be observed three to eight minutes after exercise [20]. 
Once all exercises are completed, the subject fills in the ARSS one more time. This ends the stress phase and another 
baseline phase can begin with the next participant. 

 

Figure 3: The rationale of the stress determining procedure throughout the training process. 

The described training process builds on the premise that sufficient training data can be collected for each stress 
level. Furthermore, it is presumed that workload [23], heart rate [39], and lactate values [25] correlate with stress. 
Magiera et al. state that the lactate level depends on recovery periods, while no effect of fatigue, when recovery 
periods were greater than 20 minutes, were experienced [39]. According to Kop and Kupper, there is a bidirectional 



   
 

9 

relationship between fatigue and stress, so recovery periods should be considered [36]. Moreover, lactate 
accumulates only when the training intensity is above the anaerobic threshold (through short, intense exercises). 
Heart rate is affected by an increase in fatigue after a short recovery time [39]. Since our stress phase tends to be 
short and intense, we opted for 10-minute recovery periods, which also keeps the total time per participant low. 

4.2 Implementation of the Activity Recognition Chain 

As part of the aforesaid research project, we already implemented a custom variant of the ARC in MATLAB (see 
Figure 4). This implementation constitutes the software foundation for the experimental outline summarized in 
Figure 2. In the following, we introduce this custom chain and the different choices we made throughout the 
implementation. The central element of this implementation is the Online Classification Thread, which continually 
executes the different stages of the chain in real-time. Below, we present the individual stages that are visualized in 
Figure 4 and indicate how data passes through the chain to transform raw signals to classified stress levels. It is 
noted that we have implemented the chain based on IMU data and are planning to do the same with data stemming 
from physiological sensors in the future. Similar to Guo et al., our implementation lays a focus on processing the 
acceleration (IMU) data to create segments [22]. 

 

Figure 4: The different components of our custom implementation of the ARC. 

4.2.1 Raw Data Stage 

Sensor data is constantly received and processed by the Receiver Thread. This thread handles all data connections 
to the sensors and parses the raw data to value objects which are used internally for representation. Based on 
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related studies (e.g., [22]), we decided for working with the Euclidean norm to combine the x, y, and z axes for each 
IMU sensor into one signal. In doing so, it is no longer necessary to determine which of the three axes has the highest 
signal strength. Additionally, an exact orientation of the attached IMU sensors is no longer necessary. This is due to 
the reason that the gravity that accelerometers measure spreads across the three axes and the Euclidean norm 
summarizes the magnitudes in one signal. 

Because we went with calculating the Euclidean norm, we were required to work with a sliding window 
approach [30]. This approach is embodied in the Sliding Window component, which limits the amount of data to be 
processed, primarily because the chain is intended to run on an embedded system with limited computation and 
storage capacity. The Sliding Window stores a total of 1000 milliseconds worth of sensor data. Currently, the 
prototype works with a frequency of 200 Hz but we intend to lower this frequency to 50–100 Hz as suggested by 
Trimpop et al. [51]. A reasonably chosen window size is crucial – a very large window would delay the real-time 
feedback and a small window would potentially result in detecting too many irrelevant data points in a time series. 
The Sliding Window component is essentially a data structure that follows the first in, first out (FIFO) principle. The 
window continually moves across the incoming signals. With each movement step, a new data point is added to the 
window and, at the same time, the oldest data point is removed. The Sliding Window is transferred through each of 
the next three stages. 

4.2.2 Preprocessing Stage 

The Preprocessor component uses the data from the Sliding Window for interpolation (i.e., if data is missing due to 
network losses) and for filtering the incoming sensor data. Related studies leveraged different filter techniques to 
smooth incoming sensor signals; reducing additive noise is the key concern at this stage due to sensor variability 
and limited digitization processes [17, 53]. Utilized candidates were, among others, the Butterworth filter [8] and 
the moving average filter [43]. In our preliminary experiments, we tested different configurations of the two 
mentioned filters (e.g., different window sizes for the moving average filter). Finally, we decided to use the 
Butterworth filter because it is efficient for real-time filtering and produces smooth signals (see Figure 5), which 
are beneficial for our segmentation approach (see Section 4.2.3). The following parameters were determined 
manually by experimental test runs: an order of 3, a cutoff frequency of 0.8, and a sample rate of 200 Hz – analogous 
to the sample rate of the IMU sensor. The goal was to produce a smooth signal with as little oscillation as possible 
and without attenuating the signal beyond recognition. We also noticed a significant shift of the signal to the right 
on the time axis (about 450 ms) when low cutoff frequencies (like 0.8) were used (the shift has been corrected in 
Figure 5). In summary, we observed that the filter settings have a notable impact on the resulting signal (i.e., 
especially the total number of maxima and minima). 
 

4.2.3 Segmentation Stage 

The preprocessed data is forwarded to the Peaks Finder component, which detects individual repetitions of an 
exercise. The literature indicates different means to accomplish repetition detection such as minima and maxima 
searches [38], also known as Zero-Velocity Crossing [10]. We decided for a search of maxima. Every time a new data 
point is added to the Sliding Window, the window is checked if a new maximum can be found. For this purpose, the 
value in the center of the window is used as reference. An algorithm checks if all values to the left and to the right 
of the central reference point are smaller. If this is the case, a maximum is found and the maximum is stored in a 
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separate storage. The window then continues to move forward until another maximum is found. All sensor data 
from the first to the second maximum is considered as one segment (i.e., one repetition of the current exercise). 
However, some exercises may consist of multiple maxima per repetition (e.g., squats), in which case a segment is 
created only after every x maximum. It is assumed that the exercise to be performed is known in advance. 
 

 

Figure 5: Comparison of filtered IMU signals (push-ups): raw data (green), moving average filter (red), and Butterworth filter (blue). 

After a segment is found, further analysis is applied to discard unwanted segments. Since Zero-Velocity Crossing 
algorithms tend to over-segmentation [10], some segments do not represent a valid repetition. For example, if the 
duration of a segment exceeds or falls below a certain threshold or if the variance (amplitude) of the segment is 
very low. A more advanced analysis could be the calculation of prominence [40]. However, finding the right 
thresholds to filter segments manually is a challenging task [10]. Another approach would be to not discard any 
segments and let the trained model decide whether the segment is a valid repetition. 

Finally, each found segment is based on the data of the IMU sensors and will be used in the future as reference 
for segmenting all the other sensor data such as heart rate, which is then used to determine the stress level per 
repetition. 

4.2.4 Feature Extraction Stage 

The next stage receives and processes the latest segment found and is referred to as the Feature Extractor 
component in Figure 4. The foundation for this stage was a literature review to find suitable features that can 
characterize individual repetitions most accurately. We found a diversity of types of features for this task such as 
dynamic [8], statistical [22], or frequency-based features [61]. We finally went with a set of statistical features used 
by Guo et al. [22], who exclusively built their study on such features. However, we also limited our selection to 
statistical features in this early stage of our research, because we were able to readily calculate them with built-in 
MATLAB functions. In the end, our preliminary set of features consisted of the measures skewness, kurtosis, std, var, 
mode, median, range, trimmean, and mean. The selection of appropriate features is critical in influencing the 
accuracy of the trained model to successfully detect repetitions [28]. During this stage, the input vector of the size 
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of n dimensions (i.e., the number of data points in a segment) is transformed to a vector, the feature vector, which 
has the size of one dimension. The feature vector consists of a summary of calculated values (e.g., mean and 
variation) that are finally passed to the next stage. In our study, the aforesaid features were calculated for the IMU 
used (i.e., its accelerometer and gyroscope sensors) as well as each axis of these sensors. As a result, the feature 
vector had a total of 54 unique measures per IMU sensor. In the future, we will enrich this IMU feature vector with 
data stemming from biosensors. 

4.2.5 Classification Stage 

The Classifier component incorporates a trained model that can determine either the quality of the performed 
repetition of an exercise or, in the future, the stress level (i.e., in the form of the feature vector). Like the previous 
stage, we initially conducted a literature review to find suitable classifier candidates. Examples are SVMs [43], 
decision trees [28], random forests [8], and Naive Bayes classifiers [7], whereas most of the mentioned studies 
leveraged and compared a set of different classifiers. However, for exploration purposes, we leveraged MATLAB’s 
own Classification Learner App2 to test and find suitable classifiers. In our test runs, we utilized a 5-fold cross 
validation and found that especially SVM classifier variants, a tree algorithm, as well as KNN algorithms showed a 
comparably high accuracy with our dataset. The dataset consisted of 304 push-up exercises from six different 
subjects. Each subject performed three sets of push-ups to the point of exhaustion. Subsequently, these push-ups 
were labelled by our collaborating sports science partners as correct or incorrect. Overall, 202 push-ups were 
labelled as correct, while 102 push-ups were identified as incorrectly executed. Table 2 shows an overview of the 
most accurate classifiers that were trained in MATLAB. Interestingly, while visually exploring the dataset in a 
scatter plot, we found that both the standard deviation and the variance of the gyroscope’s x and y axis were 
particularly suitable to separate both classes of data (i.e., correctly and incorrectly executed push-ups). The results 
presented in Table 2 are based on these two measures from the feature vector. 

The outcome of the classification stage are labels such as correct and incorrect that reflect the internally 
determined decision of the trained model. It is noted that in our preliminary experiments, we concentrated on a 
binary classification problem, while we are planning to incorporate more classes to distinguish correctly from 
incorrectly performed repetitions (i.e., multi-class classification). We would also like to emphasize that, although 
related work shows similar good results [43], the findings presented Table 2 illustrate notable high accuracies and 
we therefore plan to conduct further investigations in the future (e.g., as regard to overfitting). We will also 
incorporate more data from other subjects. 

Table 2: An overview of the most accurate classifiers. 

Classifiers Accuracy 
Cubic SVM 98.0 % 

Medium KNN 98.0 % 

Coarse Tree, Quadratic SVM, Fine Gaussian SVM, 
Coarse Gaussian SVM, and Cubic KNN 

All 97.7 % 

 
2 https://www.mathworks.com/help/stats/classificationlearner-app.html 

https://www.mathworks.com/help/stats/classificationlearner-app.html
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5 DISCUSSION 

The main contribution of this paper is a preliminary experimental outline, how we plan to unobtrusively detect 
stress levels during training exercises. Our work’s novelty primarily arises from the circumstance that there exist 
methodological and measurement challenges when it comes to determining stress in this demanding context [2, 4, 
37, 45]. To the best of our knowledge, the present study is one of only a few studies that attempts to investigate 
stress during trainings exercises [26, 39]. However, we experienced several challenges throughout our ongoing 
research. For example, as indicated in the literature [10, 38], we similarly experienced the segmentation process as 
difficult. While different filters were examined in preparation for the segmentation stage, various settings for the 
peak-finding algorithms were tested to reduce over-segmentation. Our preliminary results concur with the related 
literature as regard to the classification process. Like Bevilacqua et al. [8] and Guo et al. [22], we also found that 
SVM classifiers (i.e., variants of this classifier) are particularly accurate in correctly determining the quality of an 
exercise. In that regard, our study stands in some contrast to [7] as we did not find as strong the support for the 
Naive Bayes classifier in our test runs. This classifier, according to Baumbach and Dengel, shows similar accuracy 
performance to more complex classifiers [7]. It is worth highlighting that other studies also took entirely different 
avenues to the segmentation problem and used, for instance, machine learning algorithms such as clustering to 
unveil similarity in the data [7]. Again, Lin et al. provide a thorough overview in that regard [38]. Our contribution 
is, however, also underlined by the non-academic part of the research project – i.e., a product for the fitness market 
is to be developed. Segmentation approaches are rarely applied beyond academic contexts [16] and more of such 
approaches are warranted that operate in real-time, produce accurate segments, and are computationally 
inexpensive [10]. 

We see the following implications for research and practice. Researchers, on the one hand, profit the most from 
our elaborations in terms of the literature work and the design decisions we made. Future studies can leverage this 
knowledge to design their own studies and to make profound contributions to the field. Practitioners (e.g., fitness 
studio personnel and health tool developers), on the other hand, benefit most notably from the fact that we envision 
ways to unobtrusively detect stress levels. Prospectively, studies such as ours may lead to less expensive equipment 
and labor-intensive work (e.g., analyzing blood samples in laboratories) to determine stress levels during training 
exercises. Likewise, the feedback for the trainee is enriched and potential injuries may be avoided. In sports and 
healthcare, feedback regarding an execution’s quality is an interesting aspect to consider [44]. 

Our work is not without limitations. Firstly, most of the hardware is provided to us by the cooperating company 
developing the embedded system. Hence, whether there are more accurate sensors on the market to more 
accurately detect repetitions, is an issue beyond the scope of this study and may affect the overall results (e.g., the 
segmentation procedure). 

Secondly, lactate has limited use in measuring stress due to the anaerobic threshold and recovery periods [39]. 
Lactate has only been used in recent studies on stress [13, 25]; most studies on stress use cortisol as obtrusive 
marker, because cortisol secretion is directly associated with activation of the hypothalamic-pituitary-adrenal axis 
[4, 17]. However, cortisol is more expensive to analyze per sample. 

Thirdly, further research is needed to identify which set of stress markers is best suited to determine stress 
levels [4, 17]. We will initially focus on heart rate variability, lactate, and perceived stress scales, but other markers 
such as electrodermal activity or body temperature show promising results as well [54]. Furthermore, the use of 
subjective stress scales can be prone to self-deception, fabrication, and attention bias [46]. 
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Fourthly, according to Giannakakis et al. [17] and Morris et al. [41], it is important to take the natural variability 
into account when measuring stress in experiments. A laboratory environment that does not aesthetically resemble 
a gym may result in different data as if the experiments had been carried out in a real environment. Giannakakis et 
al. suggest keeping the experimental environmental conditions constant [17], which is challenging due to the variety 
of contextual stressors such as the duration of the experiment, rest periods, noise factor, temperature, lightning, or 
air quality [17, 31, 35, 62]. 

Finally, the segmentation approach we have chosen is known to be efficient, to require little computational effort, 
and to allocate a comparably small amount of system memory. However, the approach also has some drawbacks. 
First, it can lead to over-segmentation of the data [10], and second, it does not generalize well across primitives and 
subjects [38]. Moreover, the approach is very sensitive to the chosen size of the sliding window (see Section 4.2.1) 
and how the data is preprocessed and filtered (see Section 4.2.2). 

6 CONCLUSION AND FUTURE WORK 

This study responses to recent developments regarding the lack of methodological and measurement standards to 
detect stress during challenging contexts such as training exercises [2, 4, 37, 45]. It introduces a preliminary 
experimental outline that illustrates, how we plan to unobtrusively detect stress in our experiments. To this end, 
we elaborated on both the rationale behind the training process to be developed and the specific variant of the ARC 
that we already implemented. We intend to conduct test runs with participants in the near future and we are 
currently preparing for these studies by, among others, evaluating different technical means to measure blood 
lactate levels and assessing suitable exercise candidates. 

In summary, there exists no commonly accepted definition of stress [4], whereas stress is caused by various 
stimuli such as fatigue [34, 36]. Due to the limited number of studies scrutinizing stress levels during trainings 
exercises, we conclude that this field encompasses promising avenues for future research. In outlining our 
preliminary implementation and design decisions, we hope that other researchers will find helpful assistance in 
preparing their own studies as they embark on similar endeavors including injury prevention and rehabilitation 
training. 
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