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ABSTRACT 

Rain prediction is challenging due to the complex nonlinear combination of atmospheric factors. This paper 

presents the application of logistic regression modelling to predict rain the next day using weather 

parameters from the previous days. One year of weather data (temperature, pressure, humidity, sunshine, 

evaporation, cloud cover, wind direction, and wind speed) from Canberra, Australia has been used to 

develop the logistic regression-based model. Akaike Information Criterion (AIC) Backward, Baysian 

Information Criterion (BIC) Stepwise, and Least Absolute Shrinkage and Selection Operator (LASSO) 

logistic regression models have been developed based on input variable selection and prediction. These 

models are evaluated using Area Under the ROC Curve(AUC) and Hosmer- Lemeshow test to determine 

the models’ adequacies and accuracies to predict rainfall occurrence the next day.  The likelihood of rainfall 

the next day has been interpreted based on the calculated odds ratios with 95% confidence intervals of the 

selected independent weather parameters. The result showed that the rainfall the next day can be predicted 

using logistic regression (AIC Backward) with 87% accuracy, provided that the appropriate weather 

parameters are chosen.  
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1. INTRODUCTION 
Climate, weather, and rainfall are non-linear and complex phenomena, which require detailed modelling to 

obtain accurate predictions. The evolution of climate due to the complex interaction of different factors 

have resulted in high incidences of severe weather events such as extended droughts, severe floodings, and 

storms. Rainfall exhibits wide-scale variations in both space and time. It is a stochastic process, whose 

occurrence depends on the antecedent of other parameters such as temperature, atmospheric pressure, wind, 

humidity and other atmospheric parameters that require consistent and relevant meteorological and 

environmental data to predict. Notwithstanding the usefulness of rainfall, it can also be cataclysmic; causing 

natural disasters like floods and landslides. Therefore the forecasting of extreme weather events is necessary 

due to the emerging climate change and possible adverse effects on humans[1]. Globally, many studies 

have been carried out on rainfall. In [2], the trend analysis of rainfall over Jordan using three neighboring 

locations covering 81 years (1922-2003) has been studied. Researchers in [3] have studied the synoptic 
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regimes associated with rain and no‐rain days in south‐eastern Queensland (Australia) and other studies 

have identified the influence of the El Niño on climates and especially on its rainfall  [4] - [7].  

2. RAIN PREDICTION ANALYSIS 
Weather forecasting is challenging regardless of the amount of available data. There are several rainfall-

forecast methods used in weather prediction. Recent studies have developed rainfall prediction using 

different weather and climate forecasting techniques  [8][9]. These methods can be grouped into empirical 

and dynamical techniques. In the empirical techniques, the historical rainfall data and its relationship to a 

variety of atmospheric and oceanic variables is analysed. The most common empirical approaches used for 

climate prediction are Artificial Neural Network (ANN), Fuzzy Logic (FL), and Machine Learning (ML). 

The dynamical techniques make predictions based on physical models built on systems of equations that 

calculate the evolution of the global climate system in response to initial atmospheric conditions [10]. 

2.1 LOGISTIC REGRESSION 

Machine Learning is broadly grouped into supervised and unsupervised machine learning. In supervised 

machine learning, the prediction is made by training the model based on known output values, while 

unsupervised machine learning does not have a known set of output values. The supervised learning is 

further divided into regression, where the model is trained to predict results based on the relationships with 

the input variables, and classification, where the model is trained to recognise and predict categories. 

Logistic Regression is a probabilistic binary classifier from the binomial family of generalised linear models 

(GLMs), that provides probabilities and categorises new data using different types of datasets It calculates 

the output of a categorical dependent variable with a mixture of continuous and categorical variables as the 

independent variables. The logistic regression is used when the probabilities between two classes are 

required, such as whether it will rain tomorrow or not, is either 1 or 0, true or false, etc. as is the case in this 

study. Using logistic regression to predict rain occurrence and GLM to predict rainfall volume, [11] 

demonstrated how to project future rainfall based on future climate scenarios. 

The logistic regression aims to ascertain the relationship between the probability that it will rain the next 

day, p, which is binomially distributed with the covariates. For n independent observations y
1
, y

2
, … … , y

n
, 

y
i
(which is the 𝑖𝑡ℎ observation) is a realisation of the random variable Yi. If Yi is binomially distributed i.e., 
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where xi is a vector of input variables (weather paremeters), β is a vector of regression coefficients and g(.) 

is the link function.   Since p
i
 lie between 0 and 1, the logit link function is defined as 

logit(p
i
)=log(

p
i

1-p
i

)  = β
0
+β

1
x1,i+β

2
x2,i+…+β

j
xj,i 

( 3 ) 

which is the logarithm of odds, the ratio of the probability that rain will fall the next day (p
i
) over the 

probability that rain will not fall the next day (1 − p
i
).  The odds that it will rain the next day is written as 

(
p

i
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This shows the relationship between the covariates and the probability of the response. Therefore,  

p
i
=

exp(β
0
+β

1
xi1+β

2
xi2+…+β

j
xij)

1+exp(β
0
+β

1
xi1+β

2
xi2+…+β

j
xij)

 
( 5 ) 

2.2 MODELLING AND VARIABLE SELECTION 

The data is made up of 12 variables (weather parameters); MinTemp, Evaporation, Sunshine, 

WindGustSpeed, WindGustDirection, WindSpeed3pm, Humidity9am, WindSpeed9am, Humidity3pm, 

Pressure3pm, Cloud9am, Cloud3pm, and a binary output variable RainTomorrorw. The dataset is divided 

into 70% training and 30% test data sets and used to find the best model that can predict rain the next day 

with the least number of input variables (weather parameters).  

A Full model is built with all the 12 weather variables as input. k-fold cross-validation (CV) which, is a 

resampling procedure that splits the training data into subsets, in this case k= 10, is used one set at a time 

to train the model on the remaining 9 subsets and tests it. This helps to tune the full model. WindGustSpeed 

and Pressure3pm were found to be the significant variables in the full logistic regression model.   

Least Absolute Shrinkage and Selection Operator (LASSO) regression [12] is a model that performs L1 

regularisation by reducing the model complexity and dimensionality by removing less important variables. 

The best value of the tuning parameter, using the k-fold cross-validation process on the training set after 

standardizing the input variables that minimises the deviance is determined. The optimal tuning parameter 

value is 0.039 giving a final model with 5 input variables; Sunshine, WindGustSpeed, Humidity3pm, 

Pressure3pm, and Cloud3pm.  

Akaike Information Criterion (AIC) backward elimination model is built using an automated backward 

model selection procedure based on the Akaike Information Criterion [13]. AIC measures how well a model 

fits the data by calculating the information lost. Backward elimination method builds the model by 

removing input variables in a stepwise process based on a chosen information criterion. This starts with all 

16 weather parameters, and using the step process, removes the insignificant variables based on the AIC 

https://en.wikipedia.org/wiki/Lasso_(statistics)
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value obtained in each step. The model with the lowest AIC consists of 6 input variables; Sunshine, 

WindGustSpeed, WindSpeed3pm, Humidity9am, Pressure3pm, and Cloud3pm. 

The Bayesian Information Criterion (BIC) [14] is a measure of the fit that is closely related to the AIC. 

Using the automated stepwise (default) model process, the less significant variables are eliminated based 

on the BIC value obtained in each step. The model with the lowest BIC is chosen as the final model. This 

final model has 2 input variables, Sunshine and Pressure3pm, resulting in a model with the least number of 

input variables. 

2.3 MODEL VALIDATION 

Hosmer- Lemeshow [15] test which, measures the goodness of fit of a model is used. 

Model 
Chi-Square    
Statistics 

Degree of 
Freedom 

P-value 

FULL 21.981 8 0.005 

LASSO 11.046 8 0.199 

AIC 9.816 8 0.278 

BIC 3.113 8 0.927 

 
Table 1: Hosmer- Lemeshow Goodness-of-Fit Test statistics of the 4 Prediction Models 

 

Table 1 shows the goodness of fit test for the 4 models. The p-values for the LASSO, AIC Backward and 

BIC are all greater than 0.05, so the null hypothesis is not rejected and confirms that these models are a 

good fit for the data. The Full model is not a good fit for the data as its p-value is 0.005. 

Confusion matrix is used to measure the performance of a classification model. It summarises the 

performance of the models to accurately predict whether it will rain the next day or not. In Table 2, the BIC 

and AIC models have the highest accuracy of 87.6%. The Full model has the highest score for classifier 

exactness. For F1 score, the Full model and AIC model both have the highest F1scores. Since the dataset is 

imbalanced with approximately 18% of the data showing rain and the remaining 82% when it was not 

raining, the balance accuracy metric is applied, with the AIC model having the highest balanced accuracy 

of next day rain prediction of 78.97%.  

 Table 2: Error metrics 

Model 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

Specificity 

(%) 

F1 
score 
(%) 

Balanced_ 
Accuracy 

(%) 

AUC 

(%) 

FULL 86.67 73.70 60.90 93.90 67.00 77.39 92.78 

LASSO 85.71 42.10 66.70 88.17 52.00 77.42 93.39 

AIC 87.62 68.40 65.00 92.94 67.00 78.97 93.64 

BIC 84.30 40.00 57.10 88.08 47.00 72.61 91.62 
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Area Under the Receiver Operating Characteristics (ROC) Curve (AUC) [16] is a measure of the total area 

below the ROC  curve. This is used to evaluate model fit and compare the performance of classification 

models. The ROC Curve [17] is a graphical representation of the performance of a classification model at 

all classification thresholds. 

 

Figure 1: Receiver Operating Curves of the prediction models with the highest and lowest areas 
 

Figure 1 is a plot of the ROC curves of the forecast models with the highest (AIC) and lowest (BIC)  AUCs. 

The AIC model’s AUC has the greatest area under the curve of approximately 93.6%, and the BIC model 

has the lowest with 91.6%. This implies that the AIC model offers the best prediction of rainfall the next-

day. 

2.4 MODEL ASSUMPTIONS 

Logistic regression has some assumptions in common with linear regression. The logistic regression 

assumptions are tested on the AIC Backward model to ascertain that there is no violation of assumptions 

and that the reported results are correct and the model is accurately interpreted. 

 Logistic regression requires the output variable to be nominal or ordinal. For the AIC Backward model, 

the response variable RainTomorrow is a binary variable of rainfall the next day or not. 

For a model with a binary outcome, there is a general requirement of a minimum of 10 EPP (events per 

variable) means cases with the least frequent outcome for each independent variable in the model [18]. The 

dataset has 353 samples and exceeds the minimum required sample size. 

The condition that the errors associated with one variable are not correlated with the errors of any other 

data variables or samples and each variable needs to be independent of one another. Durbin Watson (DW) 

test [19], which is based on autocorrelation is applied to check if the assumption holds. From the test carried 

out on the data, the Durbin Watson (DW) Statistic d =1. 85 indicates a positive autocorrelation. Using the 

significance level of 0.05 for DW test, p-value of 0.218 is statistically significant, therefore the null 

hypothesis is not rejected and it is concluded that the residuals in the AIC Backward model are not 

autocorrelated.  
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No outlier should significantly influence the results.  Outliers can be identified using Cook’s distance [20]. 

The higher the value of the Cook’s distance, the more influential the observation. 

In Figure 2, the circle size is proportional to the Cook’s distance. The data sample 306 (top left-hand corner) 

appears to have a combination of characteristics with the largest studentised residual and Cook’s distance. 

The change in coefficient by removing the outliers is minimal on the coefficients of the AIC Backward 

model. Therefore, the assumption holds. 

 

Figure 2: Influential Outliers Plot for AIC model 

Logistic regression requires the independent variables to be linearly related to the respective logit response 

but does not need the output and input variables to be linearly related. The Box-Tidwell transformation test 

[21] requires that all terms should not be statistically significant for the assumption of linearity to hold. The 

p-values of all the covariates (weather variables) in the AIC Backward model range from 0.10 to 0.97, 

which are greater than 0.05. It can be concluded that the variables are linear to their log-odds. 

There should be an absence or only moderate multicollinearity between independent variables [22]. The 

assumption holds if the input variables are not correlated. Pearson correlation coefficient is used to calculate 

the correlation matrix between the variables. Multicollinearity exists between two variables if their 

correlation coefficient is ≥| 0.8 |. Figure 3 shows that there are no strongly correlated variables in the AIC 

model and hence the assumption of no multicollinearity applies. Figure 3 shows that there are no strongly 

correlated variables in the AIC model and hence the assumption of no multicollinearity applies. 

3. INTERPRETING THE INDIVIDUAL VARIABLES 

From Equation (3), the formula for the AIC Backward model is given as 

logit(p
i
) = 174.46 - 0.201*Sunshinei + 0.069*WindGustSpeed

i
- 0.058*WindSpeed3pm

i
 

 + 0.035*Humidity9am
i
 - 0.177*Pressure3pm

i
+ 0.182*Cloud3pm

i
 

 

( 6 ) 

In Equation(6), each coefficient is the expected change in the log odds of rain falling the next day, given a 

unit increase in the respective covariates. 
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Figure 3: Correlation Plot of the variables in the AIC model 

The odds ratio (OR) is used to demonstrate the direction and strength of the relationship between the 

weather parameters (input variables) and the outcome prediction of rain or no rain the next day. For the OR 

>1 the odds are increased and for OR<1 the odds are decreased. The confidence interval (CI) is the measure 

of the level of uncertainty in the odds, as it determines the statistical significance of the input variable. 

From Table 3, for one-unit increase in WindSpeed3pm measurement, the likelihood of rain falling the next 

day decreases by approximately 5.6% (1-0.944 = 0.056), provided that all other variables in the model are 

held constant. A one-unit increase in Humidity9am gives 3.5% (1.035-1=0.035) increase and for Cloud3pm 

a 20% (1.2-1=0.2) increase in the odds of rain falling the next day. The variables WindSpeed3pm, 

Humidity9am, and Cloud3pm are not significant as their 95% confidence interval spans across 1. This is 

reaffirmed as their p-values are greater than 0.05. Also, the odds of rain falling the next day decreases by 

18.2% and 16.2% and increases by 7.1%, and the level of confidence that the true odds lies between 0.69 - 

0.96, 0.77- 0.91, and 1.02 – 1.13 for Sunshine, Pressure3pm and WindGustSpeed, respectively, as these 

variables are statistically significant. 

Table 2: Coefficient, Odds Ratio, 95% CI and p-value for AIC Backward model 

        95% CI for Exp(β) 

Covariates 
(Input_Variable) 

Coefficient 
(β) 

Significance  
(p-value) 

Odds 
(Exp(β))  

Lower Upper 

Sunshine -0.201 0.014 0.818 0.697 0.961 

WindGustSpeed 0.069 0.008 1.071 1.018 1.127 

WindSpeed3pm -0.058 0.085 0.944 0.884 1.008 

Humidity9am 0.035 0.074 1.035 0.997 1.076 

Pressure3pm -0.177 < 0.001 0.838 0.770 0.911 

Cloud3pm 0.182 0.108 1.200 0.961 1.498 
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In general, the AIC Backward model predicted 95% of the days when there was no rainfall the next day 

correctly and correctly predicted 65% of days when there was next day rainfall, hence having a prediction 

accuracy of  87.6%, this is also known as the overall correct prediction rate percentage. 

4. CONCLUSIONS 
Weather prediction is important for many sectors which include agriculture, telecommunications, and 

environmental agencies. This paper presents logistic regression-based models prediction of next-day 

rainfall occurrence using weather parameters that can be measured low-cost instruments. The use of low-

cost instruments, couple with accurate prediction techniques, is key to the provision of localised high time-

space resolution weather forecasting system compared to rain radar and satellite systems. Logistic 

regression model analysis has been applied to predict rainfall the next day by selecting the appropriate input 

variables (weather parameters), choosing suitable model building techniques, and validating the best fit 

model.  whilst confirming that relevant assumptions were met and, finally interpreting the results.  

Results show that a logistic regression model can be used in predicting next day rainfall occurrence. The 

AIC Backward model outperforms the BIC Stepwise, LASSO, and the Full models in the discrimination 

analysis with an accuracy of 87.6%. It has been shown that the weather parameters that are important to 

predict rainfall the next day are sunshine, wind speed at 3 pm, and atmospheric pressure at 3 pm, which 

when any of these increases, it decreases the likelihood of rainfall the next day. The important weather 

parameters also include wind gust speed, humidity at 9 am cloud cover at 3 pm, which when any increases 

of these increases, it increases the likelihood of rainfall the next day. Although AIC offers the highest 

prediction accuracy, it is worth noting that AIC Backwards model may select different combinations of 

weather parameters when run on the same data set. This shows that AIC Backwards model is unstable and 

a further investigation is required.  

The main limitation of the results present in this paper is the short timeline of the data used (one year). This 

does not allow comparison with other years. The data used in this study was also measured in a year when 

the Australian weather was experiencing El-Nino.  
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