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Record data from Kies distribution and related
statistical inferences

Nesreen M. Al-Olaimat1, Husam A. Bayoud2, Mohammad Z. Raqab3

ABSTRACT

The Kies probability model was proposed as an alternative to the extended Weibull models as
it provides a more efficient fit to some real-life data sets in comparison to the aforementioned
models. The paper proposes classical and Bayesian inferences for the Kies distribution based
on records. Maximum likelihood estimates are studied jointly with asymptotic and bootstrap
confidence intervals. Moreover, Bayes estimates, along with credible intervals are discussed
assuming squared and LINEX loss functions. The proposed estimation methods have been
investigated and compared via simulation studies. A real data set has been analysed for
illustrative purposes.
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1. Introduction

For its importance in many practical fields, the Weibull distribution has received
the attention of several authors in the literature. Moreover, many modified versions of the
Weibull distribution were developed in the literature. One of the modified versions of the
Weibull distribution is known as Kies Distribution and was firstly proposed by Kies (1958).
Recently, Kies distribution has received the attention of different authors, including Kumar
and Dharmaja (2014), who studied some of its important statistical aspects and showed that
it possess increasing, decreasing and bathtub hazard rate functions that would make it a
good alternative for some versions of the extended Weibull distributions, namely the gener-
alized Weibull (GW) distribution, modified Weibull (MW) distribution, beta Weibull (BW)
distribution and beta generalized Weibull (BGW) distribution. In 2013, Kumar and Dhar-
maja studied the one-parameter Kies distribution as a special case, called the reduced Kies
(RK) distribution, which is shown to possess certain special properties that are analogous
to those of the Weibull distribution. In 2017, they proposed a generalized version of the
extended reduced Kies distribution, called a modified Kies (MK) distribution, see Kumar
and Dharmaja (2017a). In addition, Kumar and Dharmaja (2017b) introduced and studied
an exponentiated reduced Kies distribution with two parameters.
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The cumulative distribution function (CDF), probability density function (PDF), haz-
ard rate and cumulative hazard rate functions of the two-parameter Kies distribution K(λ ,
β ) are given by:

F(x;λ ,β ) = 1− e−λ( x
1−x )

β

, (1)

f (x;λ ,β ) =
βλxβ−1

(1− x)β+1 e−λ( x
1−x )

β

, (2)

h(x;λ ,β ) =
βλxβ−1

(1− x)β+1 , (3)

and

H(x;λ ,β ) = λ

(
x

1− x

)β

, (4)

respectively, where 0 < x < 1, λ > 0 and β > 0.
The Kies distribution has a bounded range, which makes it appropriate model for

fitting real data sets with a bounded range. However, there are many situations in which
the observations can take values only in a limited range, like proportions, percentages or
fractions. Papke and Wooldridge (1996) pointed out that variables in many economic ap-
plications such as the fraction of total weekly hours spent on working, the proportion of
income spent on non-durable consumption, industry market shares, and a fraction of land
area allocated to agriculture are all bounded between zero and one. Moreover, Genc (2013)
indicated that when the reliability is measured as a percentage or ratio, it is important to
have models defined on the unit interval in order to have reasonable results.

This paper studies classical and Bayesian inferences for the parameters of the Kies
distribution based on records. Records play an important role in several fields of statistics
which date back to Chandler (1952), who firstly defined and provided groundwork for math-
ematical theory of records. However, record statistics arise in many practical fields includ-
ing hydrology, meteorology, sporting and athletic events wherein only records are usually
considered, for more details and applications on records, readers may refer to Arnold et al.
(1998), Ahsanullah (2004), Ahsanullah and Raqab (2006) and Ahsanullah and Nevzorov
(2015).

Let {X j, j ≥ 1} be a sequence of independent and identically distributed (iid) contin-
uous random variables (r.v.’s) with CDF F(x) and PDF f (x). An observation X j is defined
to be an upper record if X j > Xi for every j > i, and an analogous definition can be given
for lower records (with the inequality being reversed). By convention, the first record X1 is
called the trivial record because it is an upper and a lower record value simultaneously.

The set of the upper record values is given by the r.v.’s XU(k) for k ≥ 1 where
U(1) = 1, U(k) = min{ j : j >U(k−1),X j > XU(k−1)}.

Suppose we have a random sample (not ordered) of size n, say {X1,X2, ...,Xn}, the
set {

XU(1) = X1,XU(2), ...,XU(m)

}
,

presents a set of upper record values with size 1 ≤ m ≤ n that is obtained from the ran-
dom sample. The sequence U(k), k ≥ 1 is called the sequence of upper record times. For
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simplicity, we denote the sequence of upper record values {XU( j)}m
j=1 by {Yj}m

j=1.
In this paper, we will need the following lower and upper incomplete gamma func-

tions ∫ z

0
tα−1e−µtdt = µ

−α
γ(α,µz), (5)∫

∞

z
tα−1e−µtdt = µ

−α
Γ(α,µz), (6)

respectively. Additionally,∫
∞

z
t−α e−tdt = z

−α
2 e(

−α
2 )W− α

2 ,(
1−α

2 )(z), (7)

where Wc1,c2(g) is the Whittaker function, which is defined, for |arg(−g)|< 3π

2 , as

Wc1,c2(g) =
Γ(−2c2)

Γ( 1
2 − c2 − c1)

Mc1,c2(g)+
Γ(2c2)

Γ( 1
2 + c2 − c1)

Mc1,−c2(g), (8)

in which

Mc1,c2(g) = e−
g
2 gc2+

1
2

∞

∑
k=0

{
( 1

2 − c1 + c2)k

(1+2c2)k

gk

k!

}
, (9)

the series given in Eq. (9) converges for all finite values of g. Also, the pochhammer symbol
is defined as follows:

(a)k = a(a+1)(a+2)...(a+ k−1) =
Γ(a+ k)

Γ(a)
=

k

∏
i=1

(a+ i−1), (10)

where (a)0 = 1 and (1)k = k!.

The rest of this paper is organized as follows: forms of the single moment and some
properties for records from K(λ , β ) are derived in Section 2. In Section ??, classical es-
timation methods are proposed for the parameters of the Kies distribution based on upper
records. In Section 4, the Bayes estimators based on the squared error and linear expo-
nential loss functions are computed using gamma priors for the two unknown parameters.
Further in Section 5, we consider a real data set for illustrative purposes. In Section 6, sim-
ulation studies are carried out in order to study the performance of the proposed estimation
methods. Finally, the paper is concluded in Section 7.

2. Distributional properties of records from Kies distribution

The aim of this section is to present some properties and derive the form of the kth
moment of the mth record from K(λ , β ). The PDF of the mth record value and the joint PDF
of the mth and sth records are given, respectively, Arnold et al. (1998) by

fm(y) =
[H(y)]m−1

Γ(m)
f (y), (11)

and

fm,s(y,z) =
[H(y)]m−1

Γ(m)
h(y)

[H(z)−H(y)]s−m−1

Γ(s−m)
f (z), (12)

where −∞ < y < z < ∞, H(.) and h(.) are the cumulative hazard and the hazard rate func-
tions, respectively.
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Result 2.1. By using Eqs. (2), (3) and (4), the PDF of the mth record and the joint PDF of
the mth and sth records from K(λ , β ) given in Eqs. (11) and (12),respectively, become

fm(y) =
βλ m

Γ(m)
(

y
1− y

)mβ 1
y(1− y)

e−λ ( y
1−y )

β

, (13)

fm,s(y,z) =
λ sβ 2

Γ(m)
(

y
1− y

)mβ 1
y(1− y)

[( z
1−z )

β − ( y
1−y )

β ]s−m−1

Γ(s−m)

zβ−1

(1− z)β+1 e−λ ( z
1−z )

β

, (14)

where 0 < y < z < 1 and λ , β > 0.

Using Eqs. (13) and (5), the CDF Fm of the mth record value from the Kies distribu-
tion is given by

Fm(y) =
γ(m,λ ( y

1−y )
β )

Γ(m)
,m ≥ 1, (15)

where 0 < y < 1 and λ , β ≥ 0.

Result 2.2. Suppose that the random variable X follows a Kies distribution. Then, one can
prove that

X D
=

( 1
λ

X∗)
1
β

1+( 1
λ

X∗)
1
β

,

where D means converges in distribution and X∗ =− log(1−U) where U is Uniform(0, 1).
It is obvious that X∗ follows a standard exponential distribution. Consequently, using the
result, A.4.10, Page(174) of Houchens (1984), the corresponding sequence of records can
be described by

Ym
D
=

( 1
λ

∑
m
i=1 X∗

i )
1
β

1+( 1
λ

∑
m
i=1 X∗

i )
1
β

, (16)

where {X∗
i }m

i=1 is a sequence of i.i.d. Exp(1) random variables

Result 2.3. If the random variable X has a Kies distribution, then kth moment µ
(k)
m = E(Y k

m)

for the mth record from the Kies distribution is given by

µ
(k)
m = Ψ(m,λ ,β ,k) =

1
Γ(m)

∞

∑
j=0

(−1) j (k) j

j!
λ
−( k+ j

β
)
γ(m+

k+ j
β

,λ )

+
1

Γ(m)

β (m−1)

∑
j=0

(−1) j (k) j

j!
λ

j
β Γ(m− j

β
,λ )

+
1

Γ(m)
[

∞

∑
j=β (m−1)+1

(−1) j (k) j

j!
λ

m
2 +

j
2β

− 1
2 e

m
2 −

j
2β

− 1
2

×Wm
2 −

j
2β

− 1
2 ,(

m
2 −

j
2β

)
(λ )].

(17)
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Proof. By using Eq. (13), the kth moment for the mth record from the Kies distribution is

E(Y k
m) =

∫ 1

0

βλ m

Γ(m)
(

ym

1− ym
)mβ yk

m

ym(1− ym)
e−λ ( ym

1−ym )β

dym. (18)

On substituting ( ym
1−ym

)β = t in Eq(18), we get

E(Y k
m) =

λ m

Γ(m)

∫
∞

0
(

t
1
β

1+ t
1
β

)ktm−1e−λ tdt.

On splitting the integral and expanding (1+ t
1
β )−k using Newton’s Generalization of

the binomial theorem, we get the following

E(Y k
m) =

λ m

Γ(m)

∫ 1

0

tm+ k
β
−1

(1+ t
1
β )k

e−λ tdt +
λ m

Γ(m)

∫
∞

1

tm+ k
β
−1

t
k
β (t

−1
β +1)k

e−λ tdt, (19)

E(Y k
m) =

λ m

Γ(m)

∞

∑
j=0

(−1) j(k) j

j!

∫ 1

0
(t

k+ j+mβ

β
−1
)e−λ tdt

+
λ m

Γ(m)

∞

∑
j=0

(−1) j(k) j

j!

∫
∞

1
(t

mβ− j
β

−1
)e−λ tdt,

(20)

where (.) j is the Pochhammer symbol given by (10), if we put u = λ t we get

E(Y k
m) =

1
Γ(m)

∞

∑
j=0

(−1) j(k) j

j!
λ
− k+ j

β

∫
λ

0
(u

k+ j+mβ

β
−1
)e−udu

+
1

Γ(m)

∞

∑
j=0

(−1) j(k) j

j!
λ

j
β

∫
∞

λ

(u
mβ− j

β
−1
)e−udu,

(21)

since the exponent m− j
β

in the second integral carries positive and negative values, there-
fore, on splitting the second summation we get the following:

E(Y k
m) =

1
Γ(m)

∞

∑
j=0

(−1) j(k) j

j!
λ
− k+ j

β

∫
λ

0
(u

k+ j+mβ

β
−1
)e−udu

+
1

Γ(m)

β (m−1)

∑
j=0

(−1) j(k) j

j!
λ

j
β

∫
∞

λ

um− j
β
−1e−udu

+
1

Γ(m)

∞

∑
j=β (m−1)+1

(−1) j(k) j

j!
λ

j
β

∫
∞

λ

u−(1+ j
β
−m)e−udu,

(22)

which leads to (17) in the light of (5), (6) and (7).

The expected value of the mth record value [E(Ym)] is the first moment, which is
given by:

µ
(1)
m = Ψ(m,λ ,β ,1).
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In addition, the variance of the mth record value is

var(Ym) = Ψ(m,λ ,β ,2)− [Ψ(m,λ ,β ,1)]2.

For illustrative purposes, E(Ym) and variance of some records of the Kies distribu-
tion, namely 3rd , 5th, 7th and 10th, are computed and summarized in Tables (1) and (2) as-
suming different values of λ and β . It can be observed from these tables that E(Ym)(Variance)
increases(decreases) with m, which is expected.

Table 1: Expected values and variances of records from K(λ , β ) with λ= 0.75 and 1

λ = 0.75 λ = 1

m β = 0.75 β = 2 β = 0.75 β = 2

E(Ym) Variance E(Ym) Variance E(Ym) Variance E(Ym) Variance

3 0.80600 0.01810 0.64400 0.00519 0.74800 0.02350 0.61100 0.00549
5 0.90300 0.00387 0.70800 0.00242 0.86600 0.00625 0.67800 0.00267
7 0.94000 0.00111 0.74500 0.00142 0.95500 0.00201 0.71700 0.00161
10 0.96400 0.00027 0.77900 0.00080 0.97800 0.00021 0.75400 0.00092

Table 2: Expected values and variances of records from K(λ , β ) with λ= 2 and 3

λ = 2 λ = 3

m β = 0.75 β = 2 β = 0.75 β = 2

E(Ym) Variance E(Ym) Variance E(Ym) Variance E(Ym) Variance
3 0.57000 0.03240 0.52800 0.00585 0.45300 0.03110 0.47900 0.00577
5 0.73200 0.01470 0.59900 0.00317 0.62400 0.01920 0.55000 0.00332
7 0.81600 0.00659 0.64200 0.00203 0.72600 0.01060 0.59500 0.00222
10 0.88200 0.00228 0.68500 0.00124 0.81500 0.00450 0.63900 0.00140

3. Classical estimation

3.1. Maximum likelihood estimation

Let data = {y1,y2, . . . ,ym} be the first m upper record values arising from a sequence
of iid K(λ , β ) with CDF, PDF and hazard rate being defined in Eqs. (1), (2) and (3), respec-
tively. The likelihood function of the data is given by (see Arnold et al. (1998).

L(data;λ ,β ) = f (ym;λ ,β )
m−1

∏
i=1

h(yi;λ ,β )

= β
m

λ
me−λ ( ym

1−ym )β
m

∏
i=1

yβ−1
i

(1− yi)β+1 .

(23)

Thus, the log-likelihood function l(data|λ ,β ) = logL(data;λ ,β ) can be written as

l(data|λ ,β ) =m logλ +m logβ −λ (
ym

1− ym
)β +(β −1)

m

∑
i=1

(logyi)−(β +1)
m

∑
i=1

log(1− yi),

(24)
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where 0 < y1 < y2 < ... < ym < 1, β > 0 and λ > 0. The following proposition shows the
existence and uniqueness of the MLEs of λ and β .

Proposition 3.1. The log-likelihood function l(data|λ ,β ) is unimodal function of λ and β .

Proof. Note that l(data|λ ,β ) is a continuous function in λ and β , and is strictly concave
as the Hessian matrix is negative definite. Thus, l(data|λ ,β ) is unimodal of λ and β .
This shows the existence and uniqueness of the MLEs of the unknown parameters λ and
β .

Substituting Ri =
yi

1−yi
, i = 1,2, ...,m and solving the following system of equations (equa-

tions 25 and 26)

0 =
∂ l(data|λ ,β )

∂λ
=

m
λ
−Rβ

m, (25)

0 =
∂ l(data|λ ,β )

∂β
=

m
β
−λRβ

m logRm +
m

∑
i=1

log(Ri), (26)

we immediately obtain the MLEs of β and λ as
β̂ =

m

∑
m−1
i=1 log(Rm

Ri
)
, (27)

and
λ̂ =

m

Rβ̂
m

. (28)

3.2. Asymptotic confidence interval

Since it is not easy to derive the exact distribution of the MLEs, we cannot obtain the
exact confidence intervals (CIs) for the parameters λ and β . Consequently, the asymptotic
CIs (ACIs) of the parameters are derived using the asymptotic distribution of the MLEs.
To this end, we need to find the variance-covariance matrix of the MLEs. The observed
information matrix of λ and β is given by

I(λ ,β ) =−

 ∂ 2l(data|λ ,β )
∂ 2λ

∂ 2l(data|λ ,β )
∂λ∂β

∂ 2l(data|λ ,β )
∂β∂λ

∂ 2l(data|λ ,β )
∂ 2β

 ,

where
∂ 2l(data|λ ,β )

∂ 2λ
= − m

λ 2 ,

∂ 2l(data|λ ,β )
∂λ∂β

=
∂ 2l(data|λ ,β )

∂β∂λ
=−Rβ

m logRm,

∂ 2l(data|λ ,β )
∂ 2β

= −(
m+λβ 2Rβ

m log2 Rm

β 2 ).
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Therefore, the approximate variance−covariance matrix for the MLE of θ = (λ ,β )

is given by

V =−

 ∂ 2l(data|λ ,β )
∂ 2λ

∂ 2l(data|λ ,β )
∂λ∂β

∂ 2l(data|λ ,β )
∂β∂λ

∂ 2l(data|λ ,β )
∂ 2β

−1

(λ ,β )=(λ̂ ,β̂ )

=

(
V11 V12

V21 V22

)
, (29)

where

V11 =
m+λβ 2Rβ

m log2(Rm)
m
λ 2 (m+λβ 2Rβ

m log2(Rm))−β 2(Rβ
m log(Rm))2

V12 = V21 =
−Rβ

m log(Rm)
m

λ 2β 2 (m+λβ 2Rβ
m log2(Rm))− (Rβ

m log(Rm))2

V22 =
1

m
β 2 +λRβ

m log2(Rm)− (λRβ
m log(Rm))2

m

.

The asymptotic joint distribution of the MLEs λ̂ and β̂ is approximated by bivariate
normal, and is given by: (

λ̂

β̂

)
N∼
[(

λ

β

)
,

(
V11 V12

V21 V22

)]
. (30)

Hence, by replacing λ and β by their MLEs, we get an estimate of V as follows:

V̂ =

 m

(Rβ̂
m)2

(1+ β̂ 2 log2 Rm)
−β̂ 2 logRm

Rβ̂
m

−β̂ 2 logRm

Rβ̂
m

β̂ 2

m .


Consequently, asymptotic 100(1−α)% CIs for the parameters λ and β are, respec-

tively, given by:

(Lλ ,Uλ ) = (λ̂ − z1− α
2

√
V̂11), λ̂ + z1− α

2

√
V̂11), (31)

and
(Lβ ,Uβ ) = (β̂ − z1− τ

2

√
V̂22, β̂ + z1− τ

2

√
V̂22), (32)

where zα is 100α th percentile of the standard normal distribution. However, some cases
provide negative lower bounds of the asymptotic CI while the parameters λ and β are
positive. In order to avoid such a case, we propose using a log−transformation for pa-
rameters in order to construct a modified asymptotic confidence intervals for λ and β

following the lines of Ren and Gui (2020). Since, for a parameter, η , g(η) = log(η) is
differentiable with g′(η) ̸= 0, hence Var[g(η̂)] = Var(η̂)

η̂2 . Therefore, modified asymptotic
(1−α)100%(0 < α < 1) CIs for λ and β can be easily obtained, respectively, as follows: λ̂

e
z1− τ

2
λ̂

√
V11

, λ̂e
z1− τ

2
λ̂

√
V 11

 and

 β̂

e

z1− τ
2

β̂

√
V22

, β̂e

z1− τ
2

β̂

√
V22

 . (33)
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3.3. Bootstrap method

Since the asymptotic CIs results do not perform quite well for a small sample size,
the percentile Bootstrap method, which is denoted by Boot-p, is presented in this section
to construct approximate CIs for λ and β using the following algorithm, see for example,
Ahmed (2014):

Step 1) From the records y1,y2, ...,ym, compute the MLEs λ̂ML and β̂ML.

Step 2) Using λ̂ML and β̂ML that are obtained in Step 1, generate a random sample of records
from K(λ , β ), called a bootstrap sample.

Step 3) Based on the Bootstrap sample that is obtained in Step 2, compute the correspond-
ing MLEs λ̂ ∗ and β̂ ∗ of λ and β , respectively.

Step 4) Repeat Steps (2) and (3) B-times to obtain {λ̂ ∗
1 , λ̂

∗
2 , . . . , λ̂

∗
B} and {β̂ ∗

1 , β̂
∗
2 , . . . , β̂

∗
B}.

Step 5) Arrange {λ̂ ∗
1 , λ̂

∗
2 , ..., λ̂

∗
B} and {β̂ ∗

1 , β̂
∗
2 , . . . , β̂

∗
B} in ascending order and obtain

{λ̂ ∗
(1), λ̂

∗
(2), . . . , λ̂

∗
(B)} and {β̂ ∗

(1), β̂
∗
(2), ..., β̂

∗
(B)}.

Step 6) The approximate 100(1−α)% Boot-p CIs for λ and β are given by(
λ̂ ∗
(B α

2 )
, λ̂ ∗

(B(1− α
2 ))

)
and

(
β̂ ∗
(B α

2 )
, β̂ ∗

(B(1− α
2 ))

)
, respectively.

4. Bayesian estimation

In this section, we derive the posterior densities of the parameters β and λ based on
the upper record values, then obtain the corresponding Bayes estimates of these parameters
under different loss functions. Symmetric and asymmetric loss functions are considered in
our study, which are squared error (SE) and linear exponential (LINEX) loss functions. The
SE loss function of the parameter η and an estimate η̂ is given by:

LSE(η̂ ,η) = (η̂ −η)2 . (34)
As the SE loss function leads to identical penalization for underestimation and over-

estimation, an asymmetric loss function, known as LINEX loss function, was proposed by
Zellner (1986). The LINEX loss function of the parameter η and an estimate η̂ is given by:

LLINEX (η̂ ,η) = b[eν(η̂−η)−ν(η̂ −η)−1], (35)
where b > 0 is the scale of the loss function. In our study, we assume b = 1. The param-
eter ν ̸= 0 indicates the shape parameter of the loss function. The LINEX loss function is
affected by ν , the sign of ν indicates the direction of the asymmetry, and the magnitude
of ν indicates the degree of the asymmetry. It is known that assuming ν > 0 means that
overestimation is considered to be more costly than underestimation, while assuming ν < 0
means the reverse situation, and when ν is close to zero, the LINEX loss function is almost
symmetric and is approximately equal to the SE loss function. Thus, for small values of
ν , estimation results obtained by both LINEX and SE are close, for more details about the
LINEX loss function readers may refer to Zellner (1986).
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A natural choice of the priors of λ and β would be to assume that the two quantities
are independent with gamma distributions; namely Gamma(a1,b1) and Gamma(a2,b2), re-
spectively, where the hyper-parameters a1,a2,b1 and b2 are nonnegative numbers chosen to
reflect prior knowledge about the parameters λ and β .

The joint prior distribution of λ and β is obtained as follows:
g(λ ,β ) ∝ λ

a1−1e−b1λ
β

a2−1e−b2β . (36)

In light of the upper record data = {y1,y2, ...,ym}, the joint posterior distribution of
λ and β is obtained as follows:

π(λ ,β |data) ∝ L(data|λ ,β )g(λ ,β ), (37)
where L(data|λ ,β ) is the likelihood function given in Eq. (23) and g(λ ,β ) is the joint prior
density that is given in Eq. (36). By substituting Eqs. (36) and (23) in Eq. (37), the joint
posterior density of λ and β is immediately given by:

π(λ ,β |data) ∝ λ
m+a1−1

β
m+a2−1e−βb2e−λ (b1+(Rm)

β )
m

∏
i=1

Rβ

i . (38)

It can be seen that the joint posterior distribution in Eq. (38) can be represented as
follows:

π(λ ,β |data) ∝ π1(β |data)π2(λ |β ,data), (39)

where

π1(β |data) ∝
β m+a2−1e−βb2 ∏

m
i=1 Rβ

i(
b1 +Rβ

m

)m+a1
, (40)

and π2(λ |β ,data) is a gamma density with shape and scale parameters equal to m+a1 and[
b1 +Rβ

m

]−1
, respectively.

Subsequently, the Bayes estimate of any function of λ and β , say η (λ ,β ), under SE
and LINEX loss functions separately are respectively given by:

θ̂BS =

∫
∞

0
∫

∞

0 η(λ ,β )π1(β |data)π2(λ |β ,data)dβdλ∫
∞

0
∫

∞

0 π1(β |data)π2(λ |β ,data)dβdλ
, (41)

and

θ̂BL =− 1
ν

log

(∫
∞

0
∫

∞

0 e−νη(λ ,β )π1(β |data)π2(λ |β ,data)dβdλ∫
∞

0
∫

∞

0 π1(β |data)π2(λ |β ,data)dβdλ

)
. (42)

Unfortunately, the Bayes estimates in Eqs. (41) and (42) cannot be derived in explicit
forms. Therefore, we propose to approximate the Bayes estimates and the corresponding
credible intervals by using an importance sampling technique as suggested by Chen and
Shao (1999). Similar procedure was used, for example, by Chen et al. (2000), Kundu
and Pradhan (2009), Pradhan and Kundu (2009), Pradhan and Kundu (2011) and Bayoud
(2016).

It can be easily seen that the marginal posterior of β in Eq. (40) can be rewritten as
follows:

π1(β |data) ∝ g1(β |data)g2(β ), (43)

where g1(β |data) is a gamma density with shape and scale parameters equal to (m+ a2)
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and 1
b2

, respectively, and

g2(β ) =
∏

m
i=1 Rβ

i(
b1 +Rβ

m

)m+a1
. (44)

Now, we propose the following algorithm, along the line of Kundu and Pradhan
(2009), to compute the approximate Bayes estimates and to construct the associated credible
intervals for the parameters β and λ .

Let data = {y1,y2, . . . ,ym} be a set of m upper records and let ai and bi,(i = 1,2)
be pre-assumed hyper-parameters chosen based on prior information about the underlying
parameters β and λ .

Step 1) Generate a random sample of size M from the gamma density function g1(β |data),
say {β1,β2, ...,βM};

Step 2) For each β j, generate λ j from the gamma density function π2(λ |β j,data), say
{λ1,λ2, ...,λM};

Step 3) Compute g2(βi), for j = 1,2, ...,M;

Step 4) Under the SEL function, a simulation consistent estimate of η (λ ,β ) can be ob-
tained using the importance sampling technique as:

η̂BS (λ ,β ) =
∑

M
j=1 η (λ j,β j)g2(β j)

∑
M
j=1 g2(β j)

.

Hence, β̂BS =
∑

M
j=1 β j g2(β j)

∑
M
j=1 g2(β j)

and λ̂BS =
∑

M
j=1 λ j g2(β j)

∑
M
j=1 g2(β j)

.

Step 5) Under the LINEX function, a simulation consistent estimate of η (λ ,β ) can be
obtained using the importance sampling technique as:

θ̂BL = η̂BL (λ ,β ) =− 1
ν

log
∑

M
j=1 e−νη(λ j ,β j)g2(β j)

∑
M
j=1 g2(β j)

.

Hence, β̂BL =− 1
ν

log
∑

M
j=1 e−νβ j g2(β j)

∑
M
j=1 g2(β j)

and λ̂BL =− 1
ν

log
∑

M
j=1 e−νλ j g2(β j)

∑
M
j=1 g2(β j)

.

Step 6) Compute

w j =
g2(β j)

∑
M
j=1 g2(β j)

f or j = 1,2, . . . ,M;

Step 7) Arrange the set {(β1,w1),(β2,w2), ...,(βM,wM)} as{
(β(1),w[1]),(β(2),w[2]), . . . ,(β(M),w[M])

}
, where β(1) ≤ β(2), . . . ,≤ β(M) are order

statistics of β j from the sample of size M obtained in Step (1) with w[k] being the
value of wi’s associated with kth order statistic of βi’s, say β(k).
Similarly, we obtain

{
(λ(1),w[1]),(λ(2),w[2]), . . . ,(λ(M),w[M])

}
, which are order

statistics of λ j from the sample of size M obtained in Step (2) and w[k] as defined
above.
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Step 8) The 100(1−α)% credible interval (CrI) for η is given by (η̂(100 α
2 )
, η̂(100(1− α

2 ))
),

where η̂(100p) is a simulation consistent Bayes estimate for η , which is given by
η(Mp) such that Mp is the integer satisfying:

Mp

∑
j=1

w[ j] ≤ p <
Mp+1

∑
j=1

w[ j].

Remark 4.1. Since β̂BS and λ̂BS are unique Bayes estimates for β and λ , respectively, then
they are admissible based on Theorem 2.4 of Lehmann and Casella (1998).

Remark 4.2. Since β̂BL and λ̂BL are unique Bayes estimates for β and λ , respectively, then
they are admissible based on Theorem 2.4 of Lehmann and Casella (1998).

5. Data analysis

In this section, record statistics from a real data set obtained from K(λ , β ) are an-
alyzed in order to illustrate the proposed estimation methods. All the computations are
performed using Mathematica codes.

5.1. Real data: total annual rainfall

In this example, we analyze the total annual rainfall (in inches) during 25 years from
1984-2008 recorded at Los Angeles Civic Center. This data is given below, see
http : // www.laalmanac.com/weather/we08aa.php:

12.82 17.86 7.66 2.48 8.08 7.35 11.99 21.00 7.36
8.11 24.35 12.44 12.40 31.01 9.09 11.57 17.94 4.42

16.42 9.25 37.96 13.19 3.21 13.53 9.08

This data set was studied by Tarvirdizade and Ahmadpour (2016). Firstly, all observations
have been divided over 100 in order to transform them to be in (0,1), the support of K(λ ,
β ). Then, the well-known Kolmogorov-Smirnov (K-S) goodness of fit test is used to test
whether the Kies distribution adequately fits this data set or not. The MLEs of λ and β have
been computed based on the complete sample numerically using Newton Raphson method
to be 11.1410 and 1.4171, respectively. The corresponding K-S test statistic and the asso-
ciated P-value are equal to 0.1674 and 0.4851, respectively. Accordingly, one cannot reject
the hypothesis that the data set comes from K(λ , β ).
It can be easily seen that the upper records obtained from this data set are: 0.1282, 0.1786,
0.2100, 0.2435, 0.3101, 0.3796.
Based on these records, the MLEs, 95% ACIs, Bayes estimates and the corresponding 95%
credible intervals are computed for the underlying parameters λ and β . To study how sen-
sitive are the Bayes estimates for the choice of the hyper-parameters, the following priors
are considered: Prior 0 : a1 = b1 = a2 = b2 = 0, Prior 1 : a1 = 24,b1 = 2,a2 = 7,b2 = 5,
and Prior 2 : a1 = 12,b1 = 1,a2 = 12,b2 = 9.
Tables (3) and (4) summarize the results of point and interval estimates, respectively, based
on both the classical and the Bayesian approaches.
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Table 3: Estimates for λ and β based on the real data set

Parameter MLE. Bayes Estimates
Prior 0 Prior 1 Prior 2

LINEX SE. LINEX SE. LINEX
ν =−0.01 ν = 0.5 ν = 2 ν =−0.01 ν = 0.5 ν = 2 ν =−0.01 ν = 0.5 ν = 2

λ 12.0148 12.1468 8.3301 4.8332 12.0110 12.0330 11.0390 9.2047 12.0510 12.0940 10.2930 7.8200

β 1.4135 1.4152 1.3363 1.1582 1.4370 1.4376 1.4076 1.3304 1.3695 1.3700 1.3462 1.2823

Table 4: 95% ACIs and CrIs of λ and β based on the real data set

Parameter ACI CrI
Prior 0 Prior 1 Prior 2

λ (4.5358, 31.8260) (4.4128, 23.3846) (8.5085, 16.3880) (6.7847, 18.7840)

β (0.6350, 3.1463) (0.5187, 2.7489) (0.9224, 2.2084) (0.9052, 2.0203)

6. Simulation study

In this section, a simulation study is conducted to evaluate the performance of the
proposed estimation methods based on Kies record data. Simulations are performed using
three sets of parameter values (λ = 1,β = 2), (λ = 2,β = 1) and (λ = β = 2), mainly to
compare the MLEs with the Bayes estimators and also to explore their effects on different
parameter values. A given number m of upper records are generated from K(λ , β ) using
Eq. (16). The MLEs and the approximate Bayes estimates are computed using the impor-
tance sampling procedure. Bayes estimates are computed under the SE and LINEX loss
functions assuming the following priors, which are assumed based on the considered cases:
Prior 0: a1 = 0, b1 = 0, a2 = 0, b2 = 0.
For λ = 1, β = 2:
Prior 1: a1 = 2, b1 = 2, a2 = 16, b2 = 8 and Prior 2: a1 = 4, b1 = 4, a2 = 8, b2 = 4.
For λ = 2, β = 1:
Prior 3: a1 = 4, b1 = 2, a2 = 8, b2 = 8 and Prior 4: a1 = 8, b1 = 4, a2 = 16, b2 = 16.
For λ = 2, β = 2:
Prior 5: a1 = 8, b1 = 4, a2 = 8, b2 = 4 and Prior 6: a1 = 10, b1 = 5, a2 = 10, b2 = 5.

These priors are proposed so as λ has the same mean but different variances, sim-
ilarly for β . The main purpose of this is to reflect the sensitivity of our inferences to the
choice of the hyper-parameters. The shape parameter of LINEX loss function ν is assumed
to equal -0.01, 0.5 and 2, separately.

Simulation studies are performed with M = 1000 iterations using Mathematica codes.
The mean squared error (MSE) of the proposed MLEs and Bayes estimates is computed.
The point estimation results are reported in Tables (5), (6) and (7) assuming the true param-
eters are (λ = 1,β = 2), (λ = 2,β = 1) and (λ = β = 2), respectively, assuming m = 5, 6,
7 and 8. Further, the performance of the proposed classical CIs and Bayes CrIs are studied
in terms of the average length (AL) and the coverage probability (CP). Tables (8), (9) and
(10) present the ALs and CPs of the 95% ACIs, Boot-p CIs and CrIs for λ and β assuming
m = 5, 6, 7 and 8.
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Tables (5), (6) and (7) show that the performance of the Bayes estimates is better
than that of the MLEs for both parameters in terms of MSEs. It can be also seen that the
informative Bayes estimates under LINEX loss function with positive ν outperform the
other estimates in most considered cases. However, non-informative Bayes estimates and
the MLEs perform almost the same in most considered cases, but for positive ν the non-
informative Bayes estimates under LINEX loss function outperform, in terms of the MSE,
the MLEs. As expected, the Bayes estimates under some prior assumptions compete the
corresponding Bayes estimates under other priors. For example, the MSEs of the Bayes es-
timates under Prior 4 are getting smaller than their counterparts under Prior 3. It is evident
that all Bayes estimates under the informative priors behave better than the MLEs and the
non-informative Bayes estimates. Clearly, the MSE of the proposed estimates decreases as
m increases for both λ and β .

In view of interval estimation, Tables (8), (9) and (10) summarize the ALs and CPs
of ACIs, Boot-p CIs and CrIs of λ and β when (λ ,β ) = (1,2),(2,1) and (2,2), respectively.
The informative Bayes credible intervals are superior to the ACIs and the Boot-p CIs in the
sense of coverage probability optimality criterion. It is noteworthy that the coverage prob-
abilities of the Bayes credible intervals are generally well matched to their nominal levels.
However, non informative Bayes credible intervals and ACIs are superior to the Boot-p CIs
as they produce higher coverage probability with less average lengths. In general, there is a
clear evidence that the informative credible intervals is the most valid method as it gives the
highest simulated coverage probabilities comparing the intervals established by the classical
approach.

Table 5: Average and MSE Values of the MLEs and Bayes estimates when λ = 1 and β = 2

m Parameter Criterion MLE. Bayes Estimates
Prior 0 Prior 1 Prior 2

LINEX SE. LINEX SE. LINEX
ν =−0.01 ν = 0.5 ν = 2 ν =−0.01 ν = 0.5 ν = 2 ν =−0.01 ν = 0.5 ν = 2

m=5
β

Average 4.285 3.730 3.005 2.813 2.143 2.144 2.097 1.971 2.199 2.201 2.129 1.952
MSE 12.258 9.9641 3.0226 0.6083 0.0504 0.0507 0.0370 0.0236 0.1420 0.1431 0.1062 0.0650

λ
Average 0.550 0.491 0.672 0.808 0.941 0.961 0.913 0.804 1.015 1.038 0.987 0.866

MSE 0.670 0.834 0.598 0.412 0.1192 0.1099 0.1005 0.1019 0.0905 0.0911 0.0785 0.0746

m=6
β

Average 2.776 2.995 2.671 2.324 2.092 2.093 2.052 1.941 2.160 2.162 2.101 1.951
MSE 4.9816 5.1280 2.0570 0.5392 0.0350 0.0352 0.0271 0.0221 0.1177 0.1183 0.0938 0.0642

λ
Average 0.939 0.936 0.950 0.982 1.048 1.053 1.004 0.893 1.015 1.038 0.987 0.866

MSE 0.6109 0.6132 0.5151 0.3858 0.1100 0.1049 0.0887 0.0749 0.0905 0.0911 0.0785 0.0746

m=7
β

Average 2.492 2.501 2.237 2.101 1.984 1.984 1.949 1.857 2.155 2.157 2.1050 1.979
MSE 2.4238 2.4667 1.2455 0.4004 0.0304 0.0305 0.0228 0.0210 0.093 0.094 0.0737 0.0503

λ
Average 1.158 1.205 1.121 1.108 1.048 1.073 1.023 0.899 0.955 0.998 0.949 0.833

MSE 0.5639 0.5658 0.4832 0.3647 0.0802 0.0841 0.0694 0.0549 0.0828 0.0831 0.0751 0.0727

m=8
β

Average 2.376 2.421 2.181 2.115 2.0922 2.0828 2.051 1.968 2.114 2.115 2.074 1.977
MSE 0.7529 0.8120 0.6131 0.3737 0.0153 0.0154 0.0103 0.0072 0.0501 0.0504 0.0383 0.0218

λ
Average 1.100 1.112 1.081 1.072 1.051 1.086 1.037 0.921 0.993 1.050 1.000 0.880

MSE 0.5416 0.5430 0.4717 0.3597 0.0787 0.0745 0.0624 0.0541 0.0791 0.0606 0.0688 0.0683
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Table 6: Average and MSE Values of the MLEs and Bayes estimates when λ = 2 and β = 1

m Parameter Criterion MLE. Bayes Estimates
Prior 0 Prior 3 Prior 4

LINEX SE. LINEX SE. LINEX
ν =−0.01 ν = 0.5 ν = 2 ν =−0.01 ν = 0.5 ν = 2 ν =−0.01 ν = 0.5 ν = 2

m=5
β

Average 1.626 1.703 1.405 1.357 1.068 1.069 1.049 0.998 1.046 1.046 1.034 1.002
MSE 1.5740 1.5929 0.9497 0.3181 0.0285 0.0286 0.0246 0.0181 0.0123 0.0123 0.0109 0.0087

λ
Average 1.784 1.762 1.708 1.798 2.003 2.014 1.888 1.617 2.039 2.044 1.960 1.760

MSE 1.7627 1.7681 1.5471 1.4310 0.2154 0.2184 0.1907 0.2612 0.1028 0.1164 0.1006 0.1278

m=6
β

Average 1.444 1.398 1.208 1.198 1.0785 1.079 1.062 1.017 1.026 1.026 1.016 0.988
MSE 0.5791 0.5814 0.3471 0.2047 0.0250 0.0251 0.0241 0.0148 0.0105 0.0105 0.0097 0.0085

λ
Average 1.944 1.925 1.901 1.899 2.083 2.106 1.980 1.702 2.019 2.021 1.941 1.747

MSE 1.7591 1.752 1.4231 1.390 0.2113 0.2168 0.1888 0.2477 0.0892 0.0971 0.0893 0.1277

m=7
β

Average 1.315 1.297 1.2577 1.189 1.038 1.038 1.024 0.986 1.040 1.041 1.031 1.006
MSE 0.2623 0.2541 0.1914 0.1310 0.0172 0.0173 0.0154 0.0124 0.0094 0.0094 0.0085 0.0068

λ
Average 1.536 1.621 1.781 1.812 1.914 1.977 1.866 1.618 1.988 1.985 1.910 1.729

MSE 1.5867 1.5973 1.2577 1.0010 0.1879 0.1387 0.1543 0.2381 0.0881 0.0969 0.0853 0.1197

m=8
β

Average 1.174 1.179 1.128 1.118 1.044 1.044 1.033 1.003 1.032 1.0321 1.024 1.001
MSE 0.1703 0.1715 0.1128 0.0891 0.0131 0.0132 0.0116 0.0087 0.0093 0.0093 0.0082 0.0066

λ
Average 1.771 1.684 1.702 1.779 1.898 1.899 1.818 1.604 2.027 2.046 1.969 1.780

MSE 1.0664 1.0981 0.9087 0.8727 0.16697 0.1272 0.1394 0.2344 0.0879 0.0884 0.0810 0.1136

Table 7: Average and MSE Values of the MLEs and Bayes estimates when λ = 2 and β = 2

m Parameter Criterion MLE. Bayes Estimates
Prior 0 Prior 5 Prior 6

LINEX SE. LINEX SE. LINEX
ν =−0.01 ν = 0.5 ν = 2 ν =−0.01 ν = 0.5 ν = 2 ν =−0.01 ν = 0.5 ν = 2

m=5
β

Average 3.517 3.621 2.971 2.607 2.181 2.182 2.111 1.932 1.997 1.998 1.942 1.801
MSE 6.8171 7.0197 2.5659 0.5555 0.1649 0.1658 0.1264 0.1123 0.1077 0.1080 0.0990 0.1084

λ
Average 3.145 3.208 2.748 2.510 1.966 1.953 1.869 1.672 2.050 2.057 1.989 1.815

MSE 4.3416 4.5390 1.9262 1.1788 0.1269 0.1373 0.1335 0.1872 0.0992 0.1061 0.0931 0.1076

m=6
β

Average 3.054 2.841 2.641 2.4871 2.090 2.091 2.027 1.862 2.039 2.040 1.989 1.863
MSE 3.5818 3.6457 1.7527 0.4956 0.1401 0.1407 0.1170 0.1073 0.1070 0.1076 0.0978 0.0988

λ
Average 1.695 1.642 1.773 1.893 1.983 1.991 1.909 1.710 2.066 2.055 1.988 1.820

MSE 2.2436 2.2749 1.4881 1.0301 0.0876 0.0837 0.0814 0.1401 0.0806 0.0772 0.0674 0.0856

m=7
β

Average 2.509 2.612 2.331 2.210 2.110 2.111 2.062 1.942 2.166 2.167 2.118 1.996
MSE 2.1891 2.2171 1.2571 0.3701 0.1061 0.1066 0.0869 0.0730 0.0920 0.0929 0.0895 0.0515

λ
Average 1.704 1.698 1.710 1.724 2.062 2.071 1.996 1.804 2.081 2.062 1.989 1.807

MSE 0.8909 0.8931 0.6138 0.4003 0.0700 0.0830 0.0662 0.0832 0.0621 0.0667 0.0649 0.0761

m=8
β

Average 2.962 2.979 2.651 2.341 2.139 2.140 2.089 1.957 2.112 2.112 2.078 1.990
MSE 2.1486 2.2129 1.1741 0.3540 0.09485 0.0952 0.0799 0.0680 0.0562 0.0565 0.0451 0288

λ
Average 1.7852 1.704 1.803 1.814 1.944 1.890 1.825 0.0636 0.0798 0.0801 0.0677 0.0408

MSE 0.8812 0.8921 0.6013 0.3124 0.0697 0.0821 0.0651 0.0831 0.0608 0.0652 0.0611 0.0753

Table 8: ALs and CPs of 95% CIs of λ = 1 and β = 2

Cases ACI Boot-p CrIs

Prior 0 Prior 1 Prior 2

m β λ β λ β λ β λ β λ

m=5 CP 0.80 0.93 0.70 0.81 0.93 0.83 0.97 0.96 0.99 0.95
AL 3.8612 6.0170 7.5359 12.7930 4.8621 2.3738 4.8741 2.1439 6.9520 1.8891

m=6 CP 0.88 0.94 0.76 0.85 0.94 0.78 0.98 0.96 0.99 0.95
AL 2.6151 5.8688 4.3292 7.0043 4.2388 2.1614 5.0343 2.0812 7.3202 1.8049

m=7 CP 0.88 0.95 0.82 0.87 0.95 0.77 0.99 0.97 0.99 0.96
AL 2.2432 5.6800 2.9700 4.9216 3.8525 2.0112 5.2122 1.9840 7.7010 1.7304

m=8 CP 0.88 0.95 0.83 0.94 0.96 0.72 0.99 0.99 0.99 0.96
AL 2.0205 5.4132 2.5839 4.9142 3.6011 1.8501 5.3762 1.9293 8.0700 1.5527
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Table 9: ALs and CPs of 95% CIs of λ = 2 and β = 1

Cases ACI Boot-p CrIs

Prior 0 Prior 3 Prior 4

m β λ β λ β λ β λ β λ

m=5 CP 0.84 0.93 0.71 0.77 0.89 0.81 0.96 0.97 0.99 0.93
AL 3.3471 6.4309 6.2641 28.2670 2.4086 4.1827 3.4144 3.8074 2.4416 3.3268

m=6 CP 0.86 0.93 0.73 0.83 0.91 0.79 0.97 0.98 0.99 0.94
AL 2.6966 5.8499 4.7969 7.5577 2.4037 3.5744 3.6622 3.6126 2.4941 3.2894

m=7 CP 0.86 0.95 0.75 0.83 0.92 0.79 0.98 0.98 0.99 0.95
AL 2.3408 5.6125 4.0902 6.7176 2.0447 3.2721 3.8511 3.3761 2.6494 3.2165

m=8 CP 0.90 0.97 0.79 0.86 0.93 0.78 0.99 0.98 0.99 0.99
AL 1.9024 5.5002 2.7860 4.6248 1.8546 2.9352 3.9861 3.0051 2.6921 3.0488

Table 10: ALs and CPs of 95% CIs of λ = 2 and β = 2

Cases ACI Boot-p CrIs

Prior 0 Prior 5 Prior 6

m β λ β λ β λ β λ β λ

m=5 CP 0.85 0.91 0.72 0.82 0.91 0.91 0.96 0.97 0.99 0.95
AL 6.7013 6.4842 13.3060 12.9420 5.6959 4.4634 7.0471 3.2719 6.1916 3.1703

m=6 CP 0.89 0.91 0.79 0.83 0.91 0.90 0.97 0.98 0.99 0.95
AL 5.2326 5.8095 9.5716 6.3452 4.6384 4.0721 7.4476 3.1824 6.4401 3.0779

m=7 CP 0.89 0.96 0.80 0.83 0.94 0.88 0.99 0.97 0.99 0.96
AL 4.5255 5.6413 7.4424 5.5048 4.1055 3.6944 7.7343 3.0254 6.7930 3.0302

m=8 CP 0.93 0.98 0.82 0.88 0.94 0.86 0.99 0.98 0.99 0.98
AL 3.9058 5.6261 5.9419 4.9526 3.5840 3.3658 8.1000 2.9724 7.0417 2.8790

7. Conclusion

In this paper, classical and Bayesian inferences were proposed for the two-parameter
Kies distribution based on upper records. Some distributional properties of the Kies distribu-
tion based on records were studied. Uniqueness and existence of the MLEs were discussed.
Asymptotic and bootstrap confidence intervals were constructed. In the context of Bayesian
estimation, the Bayes estimates of the parameters cannot be obtained in explicit forms. So,
approximate Bayes estimates along with their associated credible intervals were obtained
by employing importance sampling technique under SE and LINEX loss functions assum-
ing non-informative and informative priors for both parameters. The performance of the
different estimation methods was assessed via Monte Carlo simulations. Generally, from
the simulation study, it was concluded that the proposed informative Bayes estimates out-
perform the classical estimates in all considered cases. However, non-informative Bayesian
and the classical estimation methods perform almost the same under SE and LINEX under
small ν , while better results of the Bayesian methods are obtained under LINEX assum-
ing other positive values of ν . Classical confidence intervals (asymptotic and Boot-P) and
Bayes credible intervals were also constructed for the unknown parameters. It is clearly ev-
ident that the Bayes credible intervals compete the classical confidence intervals in terms of
the coverage probability in all cases. It was also noticed that the Asymptotic CI outperforms
the Boot-p CI in all cases. Finally, a real data set was analyzed for illustrative purposes.
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