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Original Article

Reproducibility of findings in modern
PET neuroimaging: insight from the
NRM2018 grand challenge

Mattia Veronese1,* , Gaia Rizzo2,*, Martin Belzunce3 ,
Julia Schubert1, Graham Searle2, Alex Whittington2,
Ayla Mansur2,4 , Joel Dunn3,5, Andrew Reader3 and
Roger N Gunn2,4; and the Grand Challenge Participants#

Abstract

The reproducibility of findings is a compelling methodological problem that the neuroimaging community is facing these

days. The lack of standardized pipelines for image processing, quantification and statistics plays a major role in the

variability and interpretation of results, even when the same data are analysed. This problem is well-known in MRI

studies, where the indisputable value of the method has been complicated by a number of studies that produce

discrepant results. However, any research domain with complex data and flexible analytical procedures can experience

a similar lack of reproducibility. In this paper we investigate this issue for brain PET imaging. During the 2018

NeuroReceptor Mapping conference, the brain PET community was challenged with a computational contest involving

a simulated neurotransmitter release experiment. Fourteen international teams analysed the same imaging dataset, for

which the ground-truth was known. Despite a plurality of methods, the solutions were consistent across participants,

although not identical. These results should create awareness that the increased sharing of PET data alone will only be

one component of enhancing confidence in neuroimaging results and that it will be important to complement this with

full details of the analysis pipelines and procedures that have been used to quantify data.
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Introduction

A growing amount of evidence shows a concerning lack

of reproducibility of scientific results across social sci-

ence and medical disciplines.1–4 Neuroimaging is no

exception. The inability to replicate experimental

results poses a serious threat to the advancement of

knowledge, questioning the scientific method at its

very core. Among the principal reasons behind this

methodological crisis are the lack of standardized pipe-

lines for processing complex data and the lack of a

complete description of the adopted methodologies in

scientific papers.
Despite many attempts by the neuroimaging com-

munity to contain the problem by giving free and open

access to data, software and methods, the problem

remains more compelling than ever. In a recent fMRI
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study,5 70 research groups across the world were asked

to analyse the same neuroimaging data. Each of them

produced different results. However, obtaining such a

disappointing outcome is not new to fMRI. In 2008,

Emily Murphy in her proactive blog “What a dead
salmon reminds us about fMRI analysis”, showed

how statistical artefacts could be obtained from this

type of data without appropriate correction for multi-

ple comparisons.6 This provocative work was system-

atically investigated, proving how methodology is

important in the interpretation of fMRI studies.7,8

However, the problem cannot be isolated to fMRI, as

it is not a problem of data type. On the contrary, it is

likely that any research domain with complex and flex-

ible data analysis procedures will have similar

irreproducibility.9

In this paper, we wanted to investigate the reproduc-
ibility of the results for brain PET imaging studies,

highlighting the impact that different data processing

techniques and statistical approaches have on the

reproducibility of findings. Quantification of PET

data consists of linking the radioactivity measured in

the scanner to the functional processes of the chosen
biological system under investigation. It is well known

that accurate and precise quantification using a series

of individually designed processing steps (e.g. image

reconstruction, motion correction, definition of regions

of interest, kinetic modelling, partial volume correc-

tion, image statistics) is a critical part of PET analysis.

This set of steps is not unique and each one of them can
be implemented in different ways depending on the

tracer, experimental design and research context (see

for example 10 about [11C]DASB brain PET imaging).

Most PET centres around the world have developed

and optimised their own analysis pipelines, including

a mixture of in-house or independent software and

have implemented different modelling choices for
PET image processing and data quantification.11 As a

result, several different methods and tools are available

for PET image analysis.
Understanding the possible impact of this lack of

standardization in PET data analysis has become one
of the top priorities of the PET scientific community,

which has identified data sharing as the main solution

for reproducible neuroimaging,12 leveraging optimal

science and maximally powered research.13

Theoretically, applying the same analytical methods

to the same PET data should lead to the same results.

In practice, this might not always be the case as there
are no standard procedures for data pre-processing and

modelling, and different analytical choices can lead to

discrepancies when data are re-analysed by different

users, in line with what was observed in the Nature

survey in 2016.14

A degree of work on reproducibility of PET data
analysis has historically always been performed with
scientists from different PET imaging labs commonly
sharing data and software to evaluate differences in
quantification from the same data. Researchers also
spend time in each other labs, trying to identify the
best practice for data acquisition and analysis.15 The
goal here was to explore this further in an open com-
petition setting and publish the results for visibility
within the community.

To this aim, we proposed the PET Grand
Challenge at the 2018 NeuroReceptor Mapping con-
ference (London, 9–12 July 2018). We offered the
molecular imaging community an opportunity to
apply different approaches to the same set of simulat-
ed data in order to assess the performance and
consistency of PET pre-processing and modelling
approaches on a common data set where the ground
truth was known. The challenge was to identify
the areas and magnitude of receptor binding
changes in a simulated PET neurotransmitter release
study, using the image processing, kinetic analysis and
statistical methods of choice. The participants were
given minimal information on the tracer and target
under study, and only the existence of a reference
region devoid of the target of interest (explicitly indi-
cated) was made known. Fourteen groups took
part in the challenge, each providing their solution.
As the purpose of the challenge was *not* to assess
and evaluate individual performances, but rather to
investigate the consistency of the PET modelling com-
munity, all the results in this paper are discussed
anonymously.

Methods

The challenge

The challenge focused on the problem of PET paramet-
ric mapping using a reference-tissue quantification
strategy. The data were simulated to mimic a neuro-
transmitter release experiment in which 5 participants
underwent two dynamic PET scans, before and after
the administration of a pharmacological challenge
capable of stimulating neurotransmitter release in cer-
tain areas of the brain. The goal of the challenge was to
identify areas and magnitude of changes in the receptor
availability, knowing nothing about the pharmacology
of the ligand, the target of interest or the administered
blocking compound.

The participants were provided with a somewhat
simplified scenario as compared to real brain PET
imaging studies, to narrow the degrees of freedom in
the data quantification. For example, data were shared
already in MNI space and free from motion artefacts.

Veronese et al. 2779



This was to minimise the effect of spatial processing,
which is well known to have a significant impact on the
variability of results.16 Similarly, no arterial blood
input function data were simulated as there is a big
variety across PET centres for blood data pre-
processing and fitting methods.17,18 Tissue time-
activity curves were generated to fit the mathematical
assumptions of the full reference tissue model,19,20

including an ideal reference region devoid of any
tracer specific binding. This last decision was made to
place the quantification methods in the best performing
conditions, avoiding the systemic bias that affects anal-
ysis with suboptimal reference regions.21 The partici-
pants were asked to quantify the dynamic data to
derive non-displaceable binding potential (BPND)
maps for each scan and to identify at the voxel level
the areas of specific binding change after the pharma-
cological challenge. Each participant provided BPND

maps for the 10 scans (all the 5 subjects, pre- and
post-pharmacological challenge) and a summary
displacement map containing the areas associated
with a significant reduction of tracer binding. All
these details were fully disclosed with the grand
challenge participants on the website where they down-
loaded the data.

PET grand challenge dataset: generation of the
ground truth kinetic parameters

Five healthy subjects from an in-house existing dataset
(NeurOimaging DatabasE (NODE), https://www.
maudsleybrc.nihr.ac.uk/research/precision-psychiatry/
neuroimaging/neuroimaging-database-node/) of [11C]
Ro15-4513 PET scans were randomly chosen to gener-
ate the baseline data for the challenge. All the studies
included in the NODE received ethical approval,
required informed written consent from all partici-
pants, and were conducted according to the
Declaration of Helsinki. Real data were used as start-
ing point for the simulations rather than arbitrarily
generated parametric maps to account for the spatial
biological covariance of the brain tissues in a healthy
brain volume.

An unconstrained reversible two tissue compart-
mental model (2TCM) was used for the quantification
of the data voxel-wise. Blood data were measured
accordingly to [11C]Ro15-4513 acquisition protocol22

and analysed using the Multiblood process23

(MATLAB code available at https://github.com/
MatteoTonietto/MultiBlood). The 2TCM model was
solved using the Variational Bayesian method24 to
derive a parametric map for each individual rate con-
stant and reach a satisfying level of homogeneity and a
limited outliers percentage on the final parametric
maps (first level analysis). Individual rate constants

(K1; k2; k3 and k4) and fractional blood volume
(VB) were freely estimated.

A constrained 2TCM was hence used to re-quantify
the data, using the following constraints to fulfil the
Full Reference Tissue Model requirements19 (second
level analysis):

• Cerebellum was artificially constrained to be the ref-
erence region (by setting 2TCM micro-parameter
k3 ¼ 0 in all cerebellum voxels, as identified by the
CIC atlas25)

• The 2TCM microparameter k4 (¼ koff ) and VB were
fixed to the whole-brain average values obtained in
the first level analysis (after elimination of outliers,
i.e. negative and unreliable estimates with a coeffi-
cient of variation higher than 100%).

• The tracer non-displaceable distribution volume
VND (¼ K1=k2) was fixed to the average tracer
total distribution volume VT estimates obtained in
the cerebellum in the first level analysis (after outlier
removal, defined as above).

In this second level analysis, PET data quantification
for cerebellum, white matter and brainstem was per-
formed with a simpler reversible one-tissue compart-
mental model, with both VB and VND constrained
across all the voxels of these regions to the same
values obtained in the first level analysis as described
above.

The resulting parametric maps were spatially filtered
with local smoothing to eliminate possible outliers,
using a median filter with a 4mm kernel. Then the
parametric maps were deconvolved in individual
space to derive high resolution (i.e. 1� 1� 1 mm size)
microparameter maps. Finally, the high-resolution
manipulated parametric maps were normalised to the
MNI space, to be then used as ground truth for data
simulation.

PET grand challenge dataset: Generation of the
areas of displacement

Six regions of interest (ROIs) were chosen to test sen-
sitivity and specificity of detection of tracer displace-
ment for each methodology in a graded manner along
two axes, with ROI size ranging from over 2,500 mm3

to under 400 mm3 and simulated displacement level
ranging from 27% to 18% (Figure 1). ROIs were
hand-drawn by the same user on the MNI152 template
using ITK-SNAP26 (www.itksnap.org) with the
following guidelines: 1) each ROI was one connected
element, 2) ROIs were delineated so as not to exactly
follow obvious anatomical structures or be geometric
shapes (as these could bias the results towards
certain methodologies) and 3) ROIs had to be spread
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across the whole cerebrum, rather than be localised
in one particular brain hemisphere or lobe.
A summary of the region characteristics are reported
in Table 1.

PET grand challenge dataset: data simulation

For each of the 5 subjects, two scans were simulated using

the parametric maps previously described. First, we gen-

erated time-activity curves (TACs) using the 2TCM equa-

tions 27 for each 1� 1� 1 mm3 voxel of the parametric

maps. The TACs were created with a temporal resolution

of 1 second and included decay of the radiotracer using

20.34min 11C half-life (Figure 2(a) and (b)).
Second, we created a 4D simulated digital phantom

for each scan using the following time framing: 4� 15 s,

4� 60 s, 2� 150 s, 10� 300 s and 3� 600 s, making a

total of 23 frames per phantom. The phantoms had

the same resolution as the parametric maps (1� 1� 1

mm3). A 4D phantom example with the radiotracer

distribution for each frame is shown in Figure 2(c),

where the TAC for a given voxel is also available.
Third, the PET data were forward projected into

sinogram space (Figure 2(d)) by first smoothing the

image with a 2.5mm full width at half maximum

(FWHM) kernel and then applying a Siddon projector.

A full 4D PET noisy acquisition with a total of 3� 108

counts was simulated from each 4D phantom as fol-

lows: Poisson noise was simulated as described in28

where the normalization factors and the geometry of

the Siemens mMR PET-MRI scanner were modelled.

The spatial resolution of the scanner was not modelled

as this was already included in the 4D phantoms

(Figure 2(c)). Attenuation, random and scatter effects

were also included. To compute the attenuation fac-

tors, we created an attenuation map for each phantom

using the CT scan of the respective subject. Randoms

and scatter accounted for 20% and 25% of the total

counts, respectively.
Finally, each frame was individually reconstructed

using the MLEM algorithm with 100 iterations, a

2.5mm point-spread function and the standard mMR

voxel size (2.09� 2.09� 2.03 mm3). The reconstructed

images were corrected for tracer radioactivity decay

and resampled into the original MNI space (Figure 2

(e)). For the simulation and reconstruction, an in-house

reconstruction framework was used.29

Evaluation of the solutions

The solutions provided by the participants were

assessed considering two different performance criteria:

1) the capacity of returning the correct BPND values

both in terms of single maps and in terms of magnitude

of change in the displacement regions, and 2) the spa-

tial identification of the simulated displaced regions.
For the first criterion, percentage root-mean-squared

error (RMSE) was used as the performance metric.

RMSE for the BPND estimates across all the voxels of

the 10 parametric maps (RMSE BPND) and for DBPND

Figure 1. Simulated regions of tracer displacement. ROI 1
(green) DBPND¼ 27%, size¼ 2,555 mm3, Baseline BPND¼ 1.39.
ROI 2 (blue) DBPND¼ 27%, size¼ 2,275 mm3, Baseline
BPND¼ 1.65. ROI 3 (purple) DBPND¼ 21%, size¼ 1,152 mm3,
Baseline BPND¼ 0.78. ROI 4 (pink) DBPND¼ 18%, size¼ 493
mm3, Baseline BPND¼ 1.16. ROI 5 (orange) DBPND¼ 18%,
size¼ 343 mm3, Baseline BPND¼ 2.02. ROI 6 (white)
DBPND¼ 18%, size¼ 418 mm3, Baseline BPND¼ 0.67.
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in the displacement regions (RMSE displacement) were
calculated as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1
yi�ŷið Þ2

N

q

�y
� 100 (1)

where yi represents the i-th estimate, ŷi the correspond-
ing i-th ground truth value, N the number of voxels in
the map/displacement region, and �y the mean of the
ground truth values in the map/displacement region.

For the second criterion, i.e. the identification of the
displacement regions, the Jaccard similarity index (J)

Table 1. Regions of displacement.

ROI # Region size (mm3) Baseline BPND mean� sd [min, max] Displacement (%)

ROI 1 2555 1.39� 0.24 [1.09, 1.71] 27%

ROI 2 2275 1.65� 0.29 [1.20, 1.94] 27%

ROI 3 1152 0.78� 0.32 [0.46, 1.17] 21%

ROI 4 493 1.16� 0.66 [0.31, 2.06] 18%

ROI 5 343 2.02� 0.39 [1.49, 2.56] 18%

ROI 6 418 0.67� 0.23 [0.34, 0.93] 18%

Sinogram simulation

Sinogram data (yi) is simulated for each frame "

A
ct

iv
ity

 (
kB

q/
m

l)

Time

Simulation voxel TACs with 2TCM

Simulated kinetic parameters(a)

(b)

4D Phantom(c) Simulated dataset(e)

PET acquisition simulation(d)

Siemens mMR
scanner model 

X X

Attenuation Normalization 
(mMR scanner)

Phantom scanner 
projections

Example of a 
sinogram yi 

With addition of scatter and randoms

IMAGE 
RECONSTRUCTION

FRAMING

Example of time 
activity curve (TAC)

yi = NAXHfi + si + ri

Figure 2. Data simulation pipeline. (a) Simulated kinetic parameters. (b) Simulation voxel TACs with 2TCM. (c) Generation of 4D
Phantom. (d) PET acquisition simulation. (e) Simulated dataset. For a detailed description of each panel, please refer to main
manuscript.
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was used to compare the areas of displacement provid-
ed by the participants (A) with the true simulated dis-
placement areas (Â):

J ¼ A \ Âj j
AUÂj j ¼

TP

TPþ FPþ FN
(2)

where TP corresponds to the true positive (i.e. number
of voxels in the area of displacement correctly identi-
fied as such), FP corresponds to the false positive (i.e.
number of voxels outside the simulated area of dis-
placement that were erroneously identified as displaced
voxels) and FN corresponds to false negative (i.e.
number of voxels inside the simulated area of displace-
ment that were erroneously identified as non-displaced
voxels).

Given the variability of analysis settings used by the
participants, both in terms of data quantification and
statistical parametric mapping, exploratory analyses to
understand possible associations between analysis
choices and performance levels would have been very
interesting. However, the small number of solutions
(N¼ 14) and the particularities of the testing data
impede a meaningful statistical analysis or the possibil-
ity to give a general interpretation beyond the tested
scenario. We therefore decided to qualitatively investi-
gate similarity among the top solutions both in term of
quantification bias and statistical mapping.

The aim of this analysis was to understand which
analysis components and methods were most critical to
superior performance. Data smoothing (yes/no), type
of quantification methods (Logan/SRTM/MRTM2,
see results for more details), data weighting (yes/no)
and partial volume correction (yes/no) were considered
as descriptive variables for RMSE BPND and RMSE
displacement. Statistical smoothing (yes/no), type of
statistical testing (parametric/non-parametric) and
multiple comparison corrections (yes/no) were also
considered.

Results

Solutions

An overview of the quantification and statistical meth-
ods used by the fourteen groups who took part in the
Grand Challenge is reported in Table 2, while the full
list of analysis methods, correspondent abbreviations
and software follows in Supplemental Tables 1 and 2.

In terms of quantification methods, Logan (6/14),30

SRTM (4/14) solved with a basis function implementa-
tion 31 and MRTM2 (4/14)32 were the kinetic analysis

methods chosen to quantify BPND at the voxel level.

Nevertheless, different implementation choices were

made. These included different t* for the graphical

methods, a different anatomical segmentation of the
cerebellum time-activity curve to be used as the refer-

ence region (with and without grey matter masking)

and different data weighting schemes for the fitting.

Even the selection of a smoothing filter for denoising

the data was not consistent across groups. In terms of
software, the majority of the groups used in-house code

(10/14 – mostly in MATLAB, 8/14) while the rest used

PMODVR (2/14) or MIAKATTM (2/14). Only one group

applied partial volume correction after the generation

of parametric maps.
A representative overview of the BPND parametric

maps obtained from the participants is reported in

Figure 3. Qualitatively, all the methods preserved the

tracer spatial distribution present in the simulated ref-

erence maps, although with different noise distribu-
tions: the majority of the maps (7/14) had similar

noise distribution to the simulated dynamic PET data

(Figure 2(e)), while the others presented a smoothed

appearance probably due to the use of denoising filters.
Similarly to the quantification, statistical analysis

methods varied across submitted solutions in all possi-

ble settings: data smoothing kernel, parametric vs non-

parametric analysis, cluster size and uncorrected

significant threshold, multiple comparison correction

and statistical software (Table 2). Nevertheless, the
identification of the displaced ROIs was quite consis-

tent. Thirteen out of 14 groups were able to identify

significant clusters in ROI 1 and 2, the biggest areas

with the greatest displacement (Figure 4(a) and (b)).

Only 8 out of 14 groups were able to identify a signifi-

cant cluster in ROI 3, which was a medium size region
simulated with intermediate displacement (Figure 4(c)).

The remaining regions (small size, low displacement)

were consistently undetected by 13 out of 14 groups.

The groups also performed very similarly in terms of

false positive voxels (i.e. voxels in which the simulated
PET did not change, but classified as displacement

voxels by the participants), which represented a relative-

ly small fraction of the true positive voxels (mean� SD:

17%� 23%).

Performance

An overview of the group performances is reported in

Figure 5. RMSE BPND across all the PET simulated

maps ranged from 30%�6% (best performing solu-

tion) to 163%�31% (worst performing solution).

These numbers reflect quantification error in the

Veronese et al. 2783
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estimation of parametric BPND maps on average across

the 10 scans. The average performance across groups

led to a RMSE equal to 56%�37% (Figure 5(a)). The

RMSE displacement ranged from 17%�5% (best per-

forming solution) to 67%�21% (worst performing

solution). These numbers represent quantification

error in the estimation of DBPND in the simulated dis-

placement regions (normalising by the simulated dis-

placement). The average performance across groups

led to a RMSE equal to 33%�17% (Figure 5(b)).

Despite the different levels of bias between BPND and

DBPND, the two variables were unsurprisingly found to

be associated (Pearson’s r¼ 0.62), with lower RMSE

BPND leading to lower RMSE displacement across all

the 6 ROIs simulated in the challenge (Figure 5(c)).

Group 1 results were outliers (bias >150%) and

hence not included in the regression (reported as

orange circle in the figure). Similarly, a higher variabil-

ity for RMSE BPND estimates across the 10 scans was

associated with higher RMSE displacement (Pearson’s

r¼ 0.66, Figure 5(d). Group 1 results reported as

orange circle and not included in the regression). This

test reflects the idea that when bias cannot be avoided

(ideal scenario) a constant bias across scans is more

desirable when looking at longitudinal changes than a

non-constant bias.
The Jaccard similarity index (J) summarises the

performance in the identification of the regions of

displacement, with the best performing solutions

reaching 40% and the worst performing solutions

around 1% (Figure 5(e)). As expected, a better

RMSE displacement is associated with a better J

coefficient (Pearson’s r¼ 0.62, p¼ 0.03, Figure 5(f))

but also a lower RMSE variability is associated

with higher J coefficient (Pearson’s r¼ 0.66,

p¼ 0.02). The three J values smaller than 1% are

reported as orange circles and were not included in

the regression.

Analysis of best performance

We identified four solutions returning a RMSE dis-

placement <20%. Interestingly there was no agreement

on the quantification method (2 solutions applied

MRTM2 and 2 solutions used Logan), settings (e.g.

t* or k2’) or reference region segmentation. The only

element that all the solutions had in common was the

use of spatial filter to smooth the data prior to quan-

tification (FWHM >5mm).
There were only two solutions with J similarity

index> 40%, which implemented quite different strat-

egies, one implementing parametric testing and

Gaussian random fields for multiple comparison cor-

rections, and another one implementing nonparametric

testing based on permutation and FWE multiple com-

parison correction.
The winner of the competition was Dr. Daniel

Albrecht (Table 2, #5) whose solution returned

RMSE displacement equal to 17%�5% (mean�sd)

and J similarity index equal to 41%, ranking on

among the top solutions for both quantification and

statistical performance.

Analysis settings vs performance

Analysis of variance showed that RMSE BPND was sig-

nificantly associated with the quantification settings

(R2¼0.76, p¼ 0.01), in particular with the implementa-

tion of smoothing (F¼ 21.5, p< 0.01) and the type of

quantification method (F¼ 6.9, p¼ 0.02). Data weight-

ing in the modelling was not significant. Similarly,

RMSE displacement was linked to the same parameters

Figure 3. Parametric maps. Representative BPND maps for a
baseline scan including the simulated reference map (top left
corner) followed by the corresponding fourteen submitted sol-
utions in matching order with Table 2.
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although themodel did not reach significance (R2¼0.64,

p¼ 0.06). Note that partial volume correction was not

included as a variable, given than only one group imple-

mented it. On the contrary no statistical variables were

associated to the Jaccard similarity index (R2 ¼0.21,

p¼ 0.53) including the choice of statistical tests (para-

metric vs non-parametric, F¼ 0.69, p¼ 0.43), smooth-

ing (F¼ 0.76, p¼ 0.41) or multiple correction

comparison (F¼ 1.10, p¼ 0.32).
Consistent with our expectations,33,34 Logan-based

BPND parametric maps were more biased than the rest

of the solutions (Logan-based BPND bias (N¼ 5):

–23%� 22%; Non Logan BPND bias: –4%� 23%).

However, when the methods were compared in term

ROI displacement identification, Jaccard similarity

indexes were comparable (Logan-based J (N¼ 5):

26%� 14%; Non Logan J: 22%� 16%), providing evi-

dence that similar bias was present in both baseline and

challenge scans which was then attenuated in the assess-

ment of change.

Discussion

Reproducibility

This paper investigates the reproducibility of findings

in a PET neuroimaging study by looking at the

consistency of results provided by 14 imaging groups

who took part in the PET Grand Challenge during the

NeuroReceptor Mapping (NRM) conference in

London 2018. The purpose of the challenge was to

identify and quantify the tracer binding displacement

in a simulated PET neurotransmitter release study.

Participants were blinded to both tracer and pharma-

cological challenge.
The solutions proposed by the participants were all

very different in terms of data quantification and sta-

tistical analysis choices. Nevertheless, the parametric

maps were visually very similar and could be clustered

in groups with comparable spatial quality and noise

content (Figure 3). Moreover, the areas of displace-

ment identified by the participants were also very con-

sistent across groups, with 3 out of 6 simulated

displacement regions (i.e. the ROIs with biggest sizes

and highest displacements) identified by the majority of

the groups (>50%) and 3 out 6 regions (i.e. the ROIs

with smallest sizes and lowest displacements) identified

by none of the groups. These last regions were partic-

ularly challenging as the study was probably under-

powered for their identification: a post-hoc analysis

using the variability of provided estimates on these

regions confirmed the statistical power to be 32%�
13% (Paired t-test, N¼ 5, alpha¼ 0.05). The main

take home message regarding the reproducibility of

Figure 4. Identification of the areas of tracer displacement. Left images: Simulated regions of tracer displacement overlaid on
structural MRI. Right images: common areas of displacement identified by participants. Colour intensity refers to the number of
groups who identified a given voxel as part of an area of tracer displacement.
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results in this context is that if these groups were to

write a paper around their results, they would describe

the same pharmacological effect on the PET tracer,

despite adopting different methodological choices.
It is somehow surprising that beyond this good

agreement between displacement maps, the quantifica-

tion bias on tracer binding and on tracer displacement

estimates were not as consistent. First, not only do dif-

ferent methods lead to different biases, but there are

clear associations between quantification choices and

analysis performance. It is not the purpose of this

work to comment on each individual method applied

in this challenge, because the particular conditions set

in the simulation would not necessarily be generalizable

beyond this dataset. But it is clear that controlling for

data noise (in this case by spatially smoothing the

dynamic data) and choosing a specific parametric map-

ping method led to different parameter bias for both

baseline BPND and DBPND estimates. Secondly, the

bias becomes irrelevant in the identification of the

areas of tracer binding displacement if it remains con-

stant across different scans in the same subject. This is

a fundamental point for neuroimaging studies looking

at changes across different groups and conditions.

(a)

(b)

(c)

(d)

(e) (f)

Figure 5. Method performances. (a–d) Percentage RMSE for baseline BPND estimates (RMSE BPND) and for DBPND (RMSE dis-
placement) as a function of the group participants and cross-correlation. (e–f) J similarity coefficients as a function of the group
participants and cross-correlation with RMSE displacement. Blue circles refer to individual data value. Orange circles refer to outliers.
For each bar graph, the order of solutions is presented in matching order with Table 2.
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It highlights that controlling for a balance of both bias
and variability is important in the context of the par-
ticular study design and experimental question under
investigation. However, it is important to highlight that
the simulation process did introduce a systematic quan-
tification bias due to the presence of partial volume and
other source of errors of the simulated PET scanner
(Supplementary Figure 1). Reanalysis of noise-free sim-
ulated data with the same model that was used to gen-
erate the data returned BPND estimates that were on
average 12% lower than the true values.

Quite surprisingly, there was no correlation between
the parameters set for the statistical testing and the
performance of the statistical mapping. This seems to
be counter intuitive, given evidence from multiple stud-
ies indicating how critical this step of analysis can be.35

Different reasons could explain this result, including
the small number of scans to investigate these effects,
the type of metric (i.e. J similarity index) used for the
statistical performance assessment, and the impossibil-
ity of testing the t-statistical maps. It is worth noting
that statistical parametric mapping in PET is less
common than in other imaging modalities like MRI.
When possible, region-based analyses are preferable as
they have the advantage of using less noisy data than
the voxel-based analysis and more robust quantifica-
tion methods.36

Moreover, a good neuroimaging statistical method
needs to control for false positive results while being
sensitive to true positive cases.37 By definition of con-
ventional thresholds, false positive results for a statis-
tical method should represent only 5% of the total
positive cases. However only 4 out of 14 solutions
were able to contain them below such a threshold,
while the rest obtained an average false positive rate
of approximately 34%. This could be explained by the
fact that not all the groups (only 6/14) implemented a
multiple comparison correction strategy. Note that the
location of these false positive voxels was mainly sur-
rounding the true displacement voxels (Figure 4), indi-
cating a less conservative identification of displacement
regions, although not exclusively.

How to boost result reproducibility in PET data
analysis

In recent years, data sharing has increasingly been rec-
ognized by the neuroimaging community as one of the
best resources for leveraging optimal research, tackling
the concerningly low reproducibility of many neuroim-
aging findings.12,13 Data sharing supports imaging
research reproducibility in many ways: it enables data
quality control across sites, it boosts statistical power
by providing larger samples, and supports thriving
multilateral collaborations. As a result, research

councils and scientific journals are increasing the
requirement for data sharing, so that it will be neces-
sary to share the data along with the publications of the
results. Platforms for neuroimaging data sharing are
already available, but dedicated resources for brain
PET imaging are in course of development (e.g.
https://openneuro.org/pet is now working on a PET-
dedicated section).

But sharing imaging data does not necessarily imply
sharing data modelling and analysis methods. PET
neuroimaging represents a special case, as PET
images are very rarely used in their raw form (as
counts measured in the scanner), and, in contrast to
most other imaging modalities, need to undergo a
series of pre-processing steps before being suitable for
quantitative analysis. Theoretically, applying the same
methodology to the same PET data should lead to the
same results. In practice this might not always be the
case. There are no standard procedures for data model-
ling and different choices for analytical settings can
lead to discrepancies when data are re-analysed by dif-
ferent users. Therefore, sharing PET data implicitly
creates the need for more efficient communication of
the methodological details of the quantification process
than what is typically available in published studies. In
the absence of such information, it may not be possible
to reproduce published results, even if the raw data
were available. Unfortunately, a concise and exhaustive
description of methodological details is lacking in
many papers, especially those published in clinical jour-
nals. For this reason, the international guidelines on
PET data sharing encourage the use of a standardized
checklist to be filed with a manuscript not only to facil-
itate archiving and data sharing but also to understand,
interpret, and reproduce published work.12 The results
of this work strongly support the use of such a stan-
dardized checklist, as the number of possible method-
ological choices can lead to discrepant results that
would be difficult to interpret otherwise.

Standardisation of methods could be seen as an
additional solution to boost reproducibility of results,
especially when sharing data. The concept is simple:
same data input, same method of analysis, same out-
puts. Reality is always more complex than theory.
First, standardisation of methods is complex in PET.
Methods tend to be tailored to the experimental design,
data acquisition protocol and scanner(s) characteris-
tics, and therefore it becomes difficult to find a single
best solution for all possible scenarios, even when con-
sidering the same tracer. Secondly, sharing methods
requires standardisation of both the data input and
the analysis software. Some efforts have been made
to share PET data using a standardised PET-BIDS
format (https://bids.neuroimaging.io/bep009),38 but
for the latter much work is still needed. As a matter
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of fact, 12 out of the 14 solutions provided in this paper
used different computer programs for the kinetic
modelling, many of which were developed in house.
Thirdly, when a new PET tracer is translated into
human for the first time, its deployment is generally
coupled with formal methodological validation
work.39 This includes investigating the robustness of
the analysis pipeline and the quantification model in
terms of reproducibility of the kinetic parameter esti-
mates with a test-retest study, their biological sensitiv-
ity and specificity to the target with pharmacological
blocking studies, as well as assessing experimental time
stability and statistical power. This validation allows
space for multiple solutions without imposing any
standardisation, and it is generally done before and
separately from application studies, defining the space
for the interpretation of results, their statistical validity
and biological plausibility. This process has been the
methodological pillar for PET imaging for many years,
which has supported its use in clinical and experimental
medicine.

It is important to emphasise that data analysis is not
the only aspect that determines the reproducibility of
scientific findings in PET experimental medicine stud-
ies. In the broader framework of reproducibility, other
issues, such as small sample sizes and low power, the
unknown aetiology of many neuropsychiatric condi-
tions and the resultant possible underlying heterogene-
ity with respect to the systems and targets studied, as
well as a publication bias against negative results with
resulting pressure to give manuscripts a positive spin,
may contribute as much or more to poor
reproducibility.40

Limitations

This work has several limitations. Differently from
other imaging reproducibility studies,5,16 the
NRM2018 PET Grand Challenge used simulated
data rather than real measured data. This is important,
because even though ground truth was available, the
dataset did not necessarily reflect the exact spatio-
temporal signal/noise patterns of real data and present
a particularly favourable scenario in which several pre-
processing steps (e.g. motion correction and image nor-
malisation to MNI) were pre-accounted for. Similarly,
a valid reference region was made available and no
blood data were used: it is expected that differences
between participants would have been much higher if
blood data were involved, as there are even more differ-
ences among PET centres on how to deal with the
parent fraction, metabolite-corrected input function
and vascular correction. Future PET data analysis
challenges could also consider blood-based quantifica-
tion methods. Although many studies have compared

these types of analysis methods with different radio-

tracers and applications (see for example 41–44) a sys-

tematic evaluation on their reproducibility between

research centres is still missing.
Moreover, the participants did not have full domain

knowledge (e.g. considered tracer, target of interest

etc.), which may have been used to inform their anal-

ysis. In reality, when a new tracer is tested for the first

time, blood input function methods are tested before

exploring non-invasive solutions (i.e. reference tissue

models, SUV or tissue ratio methods). Moreover, pre-

clinical imaging studies are generally performed prior

to clinical studies to give an idea about the specificity of

the tracer to its biological targets, as well as to its bio-

distribution. Although, in contrast, the participants did

have certain advantages not available in the real world

– explicit confirmation that 1) there was no motion in

the data set, 2) all simulations were performed in a

standard brain space obviating the need for non-

linear registration of brains into a common space and

3) a true reference exists and its anatomical location.
In terms of performance, it is very difficult to gen-

eralise the results beyond the context of the competi-

tion. First of all, this grand challenge represents a

particular case of a PET neurotransmitter release

experiment, and further testing should be done before

generalising these results to other tracers and other

types of PET experiments. Second, the study might

have been underpowered to detect the small regions

of displacement, making their identification extremely

difficult. Last, a limited subset of quantification meth-

ods was implemented, and only a fraction of the brain

PET community took part in the challenge.

Conclusion

This paper shows that the choice of analytical and sta-

tistical procedures can have a substantial effect on the

variability of findings in PET imaging studies, similarly

to other neuroimaging techniques. Even in a simulated

PET dataset, in which the analysis choices are con-

trolled and limited as compared to a real-life study,

this flexibility can lead to different results.
In such respect the brain PET community should

continue its effort to improve reproducibility of its sci-

ence by working together towards common and agreed

methodologies and sharing clear descriptions of these

processes in publications. When the standardisation of

analysis pipelines is not possible, open-free shared

datasets like the one provided by the NRM2018 PET

Grand Challenge could serve as a tool for individual

research groups to benchmark the performance of their

analysis methods.

2792 Journal of Cerebral Blood Flow & Metabolism 41(10)



List of Grand Challenge Participants

Author Affiliation

Daniel S. Albrecht Athinoula A. Martinos Center for Biomedical

Imaging, Department of Radiology,

Massachusetts General Hospital, Harvard

Medical School, Charlestown, Massachusetts

(USA)

Joseph B Mandeville Athinoula A. Martinos Center for Biomedical

Imaging, Department of Radiology,

Massachusetts General Hospital, Harvard

Medical School, Charlestown, Massachusetts

(USA)

Christin Y Sander Athinoula A. Martinos Center for Biomedical

Imaging, Department of Radiology,

Massachusetts General Hospital, Harvard

Medical School, Charlestown, Massachusetts

(USA)

Julie Price Athinoula A. Martinos Center for Biomedical

Imaging, Department of Radiology,

Massachusetts General Hospital, Harvard

Medical School, Charlestown, Massachusetts

(USA)

Michael A. Levine Athinoula A. Martinos Center for Biomedical

Imaging, Department of Radiology,

Massachusetts General Hospital, Harvard

Medical School, Charlestown, Massachusetts

(USA)

Michael Rullmann Department of Nuclear Medicine, University of

Leipzig, Leipzig (Germany)

Georg Alexander Becker Department of Nuclear Medicine, University of

Leipzig, Leipzig (Germany)

Henryk Barthel Department of Nuclear Medicine, University of

Leipzig, Leipzig (Germany)

Swen Hesse Department of Nuclear Medicine, University of

Leipzig, Leipzig (Germany)

Bernhard Sattler Department of Nuclear Medicine, University of

Leipzig, Leipzig (Germany)

Osama Sabri Department of Nuclear Medicine, University of

Leipzig, Leipzig (Germany)

Francesca Zanderigo Department of Psychiatry, Columbia University,

and the Molecular Imaging and

Neuropathology Division, New York

Psychiatric Institute, New York, NY (USA)

Harry Rubin-Falcone Department of Psychiatry, Columbia University,

and the Molecular Imaging and

Neuropathology Division, New York

Psychiatric Institute, New York, NY (USA)

Todd Ogden Department of Psychiatry, Columbia University,

and the Molecular Imaging and

Neuropathology Division, New York

Psychiatric Institute, New York, NY (USA)

Jarkko Johansson Department of Radiation Sciences, Umeå
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