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Abstract. Solitary waves or solitons is a nonlinear phenomenon which has been studied 

intensively due to its application in solid-state matter such as Bose-Einstein condensates state, 

plasma physics, optical fibers and nematic liquid crystal. In particular, the study of nonlinear 

phenomena occurs in the structure of waves gained interest of scholars since their discovery by 

John Russell in 1844. The Nonlinear Schrödinger Equation (NLSE) is the theoretical 

framework for the investigation of nonlinear pulse propagation in optical fibers. Nonlocality 

can be found in an underlying transport mechanisms or long-range forces like electrostatic 

interactions in liquid crystals and many-body interactions with matter waves in Bose-Einstein 

condensate or plasma waves. The length of optical beam width and length of response function 

are used to classify nonlocality in optical materials. The nonlocality can be categorized as weak 

nonlocal if the width of the optical beam broader than the length of response function and if the 

width of the optical beam is narrower than the length of response function, it is considered as 

highly nonlocal. This work investigates the interactions of solitons in a weakly nonlocal Cubic 

NLSE with Gaussian external potential. The variational approximation (VA) method was 

employed to solve non integrable NLSE to ordinary differential equation (ODE). The soliton 

parameters and the computational program are used to simulate the propagation of the soliton 

width and its center-of-mass position. In the presence of Gaussian external potential, the 

soliton may be transmitted, reflected or trapped based on the critical velocity and potential 

strength. Direct numerical simulation of Cubic NLSE is programmed to verify the results of 

approximation method. Good agreement is achieved between the direct numerical solution and 

VA method results.  

Keywords: Soliton; nonlinear Schrödinger equation; gaussian potential; nonlinear equation; 

scattering; variational method; numerical method. 

1. Introduction

Recently, soliton waves are a nonlinear phenomenon that has been extensively studied due to their

universal definition. Specifically, in nonlinear optic, nonlocality has been discovered in

photorefractives, atomic vapors, liquid crystals, and thermal nonlinear media in nonlinear optics [1].

Mishra and Hong [2] investigates the propagation properties of a Super-Gaussian beam in extremely

nonlocal nonlinear media. While the scattering of solitons of generalized NLSE on a localized external

Delta potential in weak nonlocal media using secant trial function is also studied in [3]. The following
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is a general representation of the refractive index change n  induced by a beam of intensity ( )',I x z  

in nonlocal nonlinear Kerr-type media: 

 

( ) ( ) ( )' ', '.n I R x x I x z dx


−
 =  −                                                (1) 

 

The focusing and defocusing nonlinearities are denoted by the positive and negative signs, 

respectively, while the transverse and propagation coordinates are denoted by x and z [4]. Conversely, 

optical materials’ nonlocality nomenclature is based on the relative length of the optical beam width 

and the length of the response function. If the length of the response function is shorter than the width 

of the optical beam, it is called weak nonlocality, but otherwise if the length of the response function is 

longer than the width of the optical beam, it is designated as highly nonlocality [5]. 

The study of nonlocality reveals that it is important for very narrow beams, and the effects of 

nonlocality can vary depending on the degree of nonlocality, which ranges from weak to high. 

Furthermore, depending on the amplitude of the potential, the external potential or barrier may affect 

soliton propagation, causing it to be reflected, transmitted or trapped [6]. On the other hand, the study 

of nonlocality nonlinear with the presence of an external potential is relatively uncommon. 

Therefore, the interaction of the soliton in nonlocal nonlinear media, specifically the cubic 

nonlinear Schrodinger equation in weakly nonlocal nonlinear media with external potential will be 

investigated in this paper. The scattering process of soliton will be studied by two methods, 

analytically using the variational approximation method, and the results will be verified numerically 

by direct numerical simulation of NLSE of the main equation.  

The following is a breakdown of the paper’s structure. The model and governing equations are 

introduced in Sec. 2. In Sec. 3, we present the variational approximation method and results obtained. 

The numerical simulation of variational approximation is compared to the exact solution in Sec. 4. 

Finally, in Sec. 5 we summarize our discoveries. 

 

2.  The Model of Main Equation 

With external potential based generalized NLSE, the main equation for soliton in weakly nonlocal 

nonlinear media is as follows [4]: 

1 ( ) ( ) 0,
2t xxi n I V x   + + + =                                               (2) 

( )V x  is the external potential, and ( ),x t  is a slowly varying envelop and also a complex function 

by definition. Moreover, we consider the following potential to be a Gaussian potential that can be 

represented by a function below [7] 
2 2

0( ) exp( / )V x U x c= −                                                    (3) 

 

with a potential strength coefficient of 0U  and a width of c. On interesting note, the sign of  0U  

determine the potential shape either potential wall or potential well, as shown in Figure 1. 
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Figure 1. The profile of Gaussian potential at 0 0U   (potential wall)  

and 0 0U   (potential well). 

We defined ( )
2

( , )n x t  as the local Kerr nonlinearity in the previous section, where 

( )2( ) ,xn I I I =  +                                                        (4) 

 

as well as the nonlocality parameter 0  , which is given by 

21 ( ) ,
2

R x x dx


−

=                                                           (5) 

will results to revised nonlinear Schrodinger equation [4] as in equation (6) where 1   is a positive 

coefficient. 

( )2 221 ( ) ( ) 0.
2t xx xi V x      + + +  + =                                 (6) 

 

3.  Variational Approximation Analysis 

Pursuant to Anderson [8], the VA method can provide an explicit approximation of the analytical 

expression for the pulse compression/decompression factor, as well as the maximum pulse amplitude 

and induced frequency chirp. Since these parameters are the most critical for characterising pulse 

propagation, this will enable successful investigation of soliton scattering. This method not only 

provides a useful approximate expression for the evolution of the characteristics pulse parameter by 

converting partial differential equations (PDE) to ordinary differential equations (ODE), but also a 

suggestive explanation of the relationship between disperse and nonlinear effects. In this work, this 

method is employed to find the approximated results of coupled ordinary differential equation of 

soliton’s width and center-of-mass position. 

     Considering Lagrangian density derived by Bezuhanov, 2008 in [9], we acquired: 

 

22422** )(
22

)(
2
1)(

2



 xxtt

g
xV

i
−−−+−=                           (7) 

 

where g and  are positive nonlinearity coefficients that lead to attractive interactions between atoms 

in a condensate of focusing nonlinearity in optics applications, enabling the device to accommodate 

bright matter-wave solitons [10]. Using the Lagrangian density (7) and the Euler-Lagrange equation 

[11], the equation (6) can be easily confirmed. Then, as our trial function, we choose a Gaussian 

function with time-dependent parameters as follows; 
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The amplitude, distance, centre of mass location, chirp parameter, velocity, and initial step of the 

soliton are represented by A, a, ξ, b, v, and φ respectively. 

The following effective or averaged Lagrangian density (9) is obtained by spatial integration of the 

Lagrangian density L dx


−
=   using the trial function. The number of atoms in the condensate region 

is the wave function norm, 
2 2N dr A a 



−
= = , which is a conserved quantity.  

2

2 22 2
2 2 0

2 32 2

1
2 4 2 2 2 2 2

a c
t t

t

a b U ce N N
L N a b

a a aa c



 


 

−

+
 
 

= + + + − − − + 
+ 

 

                     (9) 

The reduced variational principal is represented by equation (9) which leads to a system of Euler-

Lagrange equations (10) that specify the time-dependent Gaussian parameters a, ξ, and b, also known 

as the modulation equation [12]. 

. 0

. 0

. 0

t

t

t

d L L

dt a a

d L L

dt b b

d L L

dt  

 
− =

 

 
− =

 

 
− =

 

                                                        (10) 

 

From equation (9) calculated through equation (10), we have 
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( )

2
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Below are the two corresponding coupled equations for width and center-of-mass location retrieved 
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When there is no external potential, i.e. 0 0U = , equations (14) and (15) become decouple. The 

estimated width of a stationary sa  soliton solution can be calculated using equation (14) when 

( )0tta =  

2

2 3sa
A

= +                                                         (16) 

 

Perturbation can cause the width to oscillate around this fixed point. The constant free parameter in 

this case is velocity. In the presence of Gaussian potential, the evolution of soliton width and its centre 

of position were coupled. Since the soliton is located far from inhomogeneity, we conclude that its 

parameters are unchanged. We can apparently obtain some qualitative results regarding soliton’s 

evolution if we assume that the width of soliton will not be influenced by the potential. On the 

localized barrier, equation (15) describes the scattering of effective classical particles. 

 

( )
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2

2 1
0

3
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2 a
p

tt

dVU ce

d
a c


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



−

+−
= =

+

                                        (17) 

( )2t pV =                                                        (18) 

 

Integration is used to minimise equation (17) to equation (18) in which 

 

( )

( )

2

2 1
0

1
2 2 2

a

p

U ce
V

a c





−

+

=

+

.                                                 (19)  

 

pV  stands for the effective potential, which represents the initial localised Gaussian potential’s impact 

on the solitons velocity. Equation (18) indicates that depending on whether the velocity is above or 

below the critical value ( )0 = , the effective particle can be transmitted or reflected from the 

potential. 

( )

0
1

2 2 2

2
c

U
v

a c

=

+

                                                    (20) 

 

The scattering of soliton in weakly nonlocal nonlinear media, in accordance to the results obtained 

in equations (14) and (15) are then interpreted by numerical simulations in Section 4.1. Direct 

numerical simulations of PDE of equation (6) support these findings in Section 4.2. 

 

4.  Numerical Simulations of Soliton Scattering 

4.1.  A Numerical Simulation of Variational Approximation Results of ODE. 

Firstly, NDsolve in MATHEMATICA is used to solve the coupled second ODE of equations (14) and 

(15), which describe the evolution of width and centre of mass position respectively. This command 

solves a variety of ODEs and PDEs and it returns results in the form of 
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InterpolatingFunction. The approximated results were then compared to the exact solution of 

the governing equation (6) using direct numerical simulation. 

For 01.0, 0.2, 0.4, 6A v = = = = − , the usual parameters are set with constant coefficients and 

initial conditions of ( ) 00 , '(0) 0, (0) , '(0) .sa a a v  = = = =  As the soliton approaches the potential, it 

experiences a perturbation effect in its width and velocity. The examples of numerical solution results 

of the variational coupled equations (14) and (15) for different potential strengths, 0U  are shown in 

the Figures (2) – (5).  

 

   
 

Figure 2. The scattering of soliton’s width (left) and the center-of-mass position (right)  

in the presence of a Gaussian potential, according to the ODE (14) and (15) with parameters 

0 00.1, 0.2, 1.0, 0.4, 6.U A v = = = = = −  

 

   
 

Figure 3. The scattering of soliton’s width (left) and the center-of-mass position (right)  

in the presence of a Gaussian potential, according to the ODE (14) and (15) with parameters 

0 00.1, 0.2, 1.0, 0.4, 6.U A v = − = = = = −  

 

    When reaching the potential wall, the soliton behaves like a particle, as shown in Figure 2, and is 

transmitted through the potential wall. The energy of the soliton is preserved and managed to transmit 

through the potential strength of 0 0.1U =  with a very small perturbation of the soliton width. While 

having a different form and strength of potential, the soliton in Figure 3 is also transmitted through the 

potential well of 0 0.1U = − . The soliton with initial velocity of 0.4v =  has enough energy to 

propagate passing the potential well.  

  



Simposium Kebangsaan Sains Matematik ke-28 (SKSM28)
Journal of Physics: Conference Series 1988 (2021) 012016

IOP Publishing
doi:10.1088/1742-6596/1988/1/012016

7

 

 

 

 

 

 

   
 

Figure 4. The scattering of soliton’s width (left) and the center-of-mass position (right)  

in the presence of a Gaussian potential, according to the ODE (14) and (15) with parameters 

0 00.3, 0.2, 1.0, 0.4, 6.U A v = − = = = = −  

 

   
 

Figure 5. The scattering of soliton’s width (left) and the center-of-mass position (right)  

in the presence of a Gaussian potential, according to the ODE (14) and (15) with parameters 

0 00.5, 0.2, 1.0, 0.4, 6.U A v = − = = = = −  

 

 

Figure 4 depicts the soliton being trapped for a short time before being transmitted via the potential 

well at 0 0.3U = − . From 20s to 70s, some solitons are stuck in the well due to small less energy to 

perform, while the majority is transmitted through the potential. On the other hand, Figure 5 indicates 

that the soliton is also trapped for a short time during the interaction with the external potential well of 

strength 0 0.5U = − , but substantially reflected after the meeting as the solitons do not have energy to 

pass through the external potential. Several cases are reported [13] – [15] for soliton trapping which 

lead to interesting results in soliton scattering investigation history. 

These findings are confirmed by the same results occurred in Figures (6)-(9) with direct numerical 

simulation of PDE in equation (6). 

4.2.  A Direct Numerical Simulation of NLSE. 

While the objectives are predominantly analytical, verification with direct numerical simulation is 

necessary to confirm the physical behavior of the soliton of the approximation result. To find the exact 

solution of a nonlinear equation (6), the numerical method of Split-Step Fourier Transform (SSFT) 

method is applied in order to model the pulse propagation of the Cubic NLSE in weakly nonlocal with 

external potential since its analytic solutions are generally not available. This approach uses split-step 

schemes to perform spatial sub-steps by discrete Fourier transformation that only consider the 
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linearities of the focusing effect term in Cubic NLSE, and sub-steps by discrete Fourier transformation 

that only estimate the influence of the nonlinear terms in an alternating manner [16].  

The numerical simulation is based on the propagation of a single soliton ( )x  moving at a certain 

distance. The time evolution of Cubic NLSE in weakly nonlocal with external potential at 0x =  is 

depicted in Figures (6) – (9). The results show that the soliton behaves like classical particles, and that 

the soliton is either reflected, transmitted or both, when interacting with Gaussian external potential. 

 

 
Figure 6. Scattering of soliton on potential wall, 0 0.1U =  according to  

Cubic NLSE (6) with parameters 00.2, 1.0, 0.4, 6.A v = = = = −  

 

 
 

Figure 7. Scattering of soliton on potential wall, 0 0.1U = −  according to  

Cubic NLSE (6) with parameters 00.2, 1.0, 0.4, 6.A v = = = = −  

 

 

As seen in Figure 6, the soliton tends to be transmitted through the potential wall of strength

0 0.1U = , which is the same as in Figure 1. Figure 7 illustrates the same outcome as compared to 

Figure 2, with the soliton appearing to be transmitted via the potential well of 0 0.1U = − . 
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Figure 8. Scattering of soliton on potential wall, 0 0.3U = −  according to  

Cubic NLSE (6) with parameters 00.2, 1.0, 0.4, 6.A v = = = = −  

 

 
 

Figure 9. Scattering of soliton on potential wall, 0 0.5U = −  according to  

Cubic NLSE (6) with parameters 00.2, 1.0, 0.4, 6.A v = = = = −  

 

The direct numerical simulations results exhibit the same behaviour as the results of the variational 

approach in section 3. Figures (8) and (9) may depict a trapped soliton with a very small difference in 

time scale compared to Figures (4) and (5). 

The interaction of soliton in nonlinear media with weakly nonlocality has been investigated. From 

the results, it is showed that the soliton behaves like a particle when impacted by the Gaussian external 

potential (3), where the soliton is transmitted when interacting with weak potentials such as potential 

strength of 0 0.1U =  and 0 0.1U = − . Instead, the soliton is reflected for strong potentials such as when

0 0.5U = − . In general, the results of direct numerical simulation of SSFT show good agreement with 

the analytical results of VA method. 
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5.  Conclusion 

The aim of the research is to figure out how soliton interacts with external potential in weakly 

nonlocal systems. The results show that the soliton behaves like classical particles, and that the soliton 

is reflected and transmitted during the interaction with Gaussian external potential. Analytical and 

computational methods are used throughout the work to achieve the study’s goals. Finally, more 

information about the transmission and trapping of critical energies will help us understand the 

soliton’s interaction with external potential.  

     The result from VA method is compared with direct numerical simulation to verify the findings and 

the identification of both solutions has consistent results. The VA method has proven to be faster in 

terms of time for solving the Cubic NLSE compared to direct numerical simulation because the time 

consumed by the VA method to reduce the PDE into system of ODE is faster than SSFT schemes that 

require considering several time steps to reduce PDE until the result does not depend on time step. 

     As a result, future research into soliton in weakly nonlocal nonlinear media with various trial 

functions and potential functions, especially with higher structure potentials or other shape of 

potentials (square shape or periodic), would be very interesting.  
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