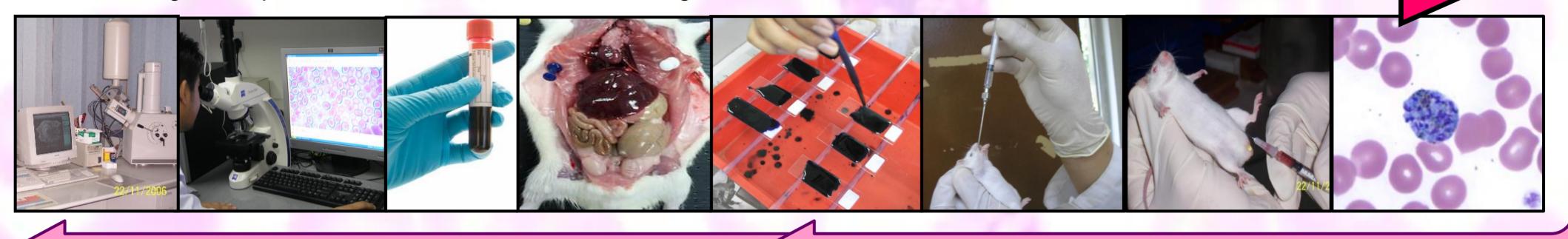


Trichosanthes cucumerina AS A PROMISING NON-TOXIC ANTIMALARIAL AGENT AGAINST Plasmodium berghei NK65 IN ANIMAL MODEL

Muhamad Aiman Abd Jalil and Mohd Shukri Baba

Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia.


INTRODUCTION

Malarial etiological agents were reported to be resistant against nearly all current antimalarial drugs. This study demonstrated how natural planted vegetable, *Trichosanthes cucumerina* (snake gourd) promisingly can solve manifestation of malaria in animal model. Four days suppression test (4DST) in *Plasmodium berghei* NK65-infected male ICR strain mice showed that the inhibition rate of the mice group treated at 14 days pre-infection treatment with 100 mg/kg bw *T. cucumerina*-sdH₂0 extract was >80 % and they survived more than 7 months post-infection. Biochemical tests were significantly situated in the normal ranged and histologically, no abnormalities found on the selected vital organs. This study evidenced that *T. cucumerina* could be manipulated as a potential antimalarial alternative drug for the preservation and welfare of human being.

METHODOLOGY

Trichosanthes cucumerina

RESULTS

The Giemsa thin blood smear of the mice treated with 0.2 mL 100 mg/kg bw *T. cucumerina*-sdH₂O extract in the mice from group PRE14 (A), CUR3 (B) and LTN (C) where the slide were taken on Day 4 post-infection. The red arrows indicated the mice RBC being infected with *P. berghei* NK65 at all parasite's life cycle stages: immatured trophozoite (ring stage), matured trophozoite, schizont and gametocyte.

Inhibition Rate (%) on D4 post-infection and Survival Time (Day) of the mice treated with 100 mg/kg bw *T. cucumerina-s*dH₂O extract

	Regime	egime Group	Group	Inhibition	Survival
A DE DE COMPTE DE CONTRACTOR DE L'ANDRE L'ANDR			Rate (%)	Time (Day)	
Tago Company of the C	Preventive	PRE14	83.60 ± 1.03	226.15 ± 2.14	
TORY TO TAKE TO PET A DECEMBER OF THE POPULATION OF THE PET A DECEMBER OF THE PET A DECE		PRE7	58.61 ± 1.71	162.77 ± 0.99	
1 -0040 0 -6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		PRE3	47.77 ± 2.09	128.09 ± 1.15	
ONCELERO PULTE E PROPERTO DE LA COMPANION DE L	Curative Control	CUR3	36.65 ± 0.87	90.26 ± 1.07	
		CUR4	24.08 ± 0.59	57.60 ± 0.65	
A PROPERTY OF A COURT AND ALTERNATION OF THE PROPERTY.		CUR5	19.74 ± 1.23	35.44 ± 2.08	
The second of th		POS	100	>360	
DA TOPO PA D AR D BY WARREN		NEG	6.02 ± 2.11	19.48 ± 0.06	
$(A) \longleftarrow (B)$		LTN	5.84 ± 1.06	17.79 ± 1.20	

Blood enzyme & biochemical values for toxicity assessment

	Test	TA	TB	TC	TD	CN	CL	NR	Unit
	ALT	41.81	45.20	67.57	90.03	41.03	44.83	40 – 93	IU/L
		± 2.14	± 1.13	± 2.91	± 2.02	± 3.91	± 1.11	40 – 93	
	AST	133.13	125.93	167.11	187.01	111.62	134.43	92 – 206	IU/L
		± 2.04	± 2.12	± 2.27	± 2.09	± 1.19	± 4.01	92 – 200	
	ALP	62.76	59.4	69.2	68.03	61.46	58.32	54 – 115	IU/L
	ALF	± 2.33	± 2.97	± 2.90	± 2.10	± 2.46	± 2.97	34 – 113	
	STP	6.12	7.21	7.93	8.83	6.40	6.80	5.8 – 9.5	a/dl
		± 2.32	± 3.81	± 2.01	± 3.90	± 1.01	± 3.06	3.0 – 9.3	g/dL

DISCUSSIONS

- The action of Pheniprazine molecule in *T. cucumerina* against –thiol group of parasite enzymes which is crucial for parasite proliferation (Devi, 2017)
- Bivittoside in *T. cucumerina* inhibited enzymes for stability of the redox reaction in protozoan cells (alcohol dehydrogenase & cysteine proteinase) (Sandhya, 2010)
- At 10 and 50 mg/kg bw, it could be the best concentration for *T. cucumerina* to kill and inhibit the growth of *Plasmodium* spp in infected host

Liver & kidney histopathology stains for toxicity assessment

LIVER

Treatment (Acute)

Treatment (Sub-acute)

Control

CONCLUSION

T. cucumerina has a promising antimalarial activity and could be manipulated for the welfare of both animal and human, as well as for environmental sustainability. Future works is required to determine the effectiveness of antimalarial properties of the plant.

REFERENCES

- Devi, N. (2017). Medicinal Values of *Trichosanthes cucumerina L*. (Snake Gourd) A Review. *British Journal of Pharmaceutical Research*, 16(5), 1-10
- Sandhya S.V. (2010). An Updated Review On *Tricosanthes cucumerina*. 2:56-58
- Wykes N. (2009) What Have We Learnt From Mouse Models For The Study Of Malaria. European Journal of Immunology 39(8):3-7