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ABSTRACT 

Bovine tuberculosis (bTB), caused by Mycobacterium bovis imposes a significant financial 

burden on the global cattle industry. Although considerable effort is being spent developing 

vaccines for bTB disease prevention and control, a licensed vaccine for use in cattle has yet 

to emerge. Mycobacterial cell envelope antigens are known to interact with the host immune 

system and contribute to TB pathogenesis.  Thus, a better understanding of the effects of M. 

bovis cell envelope antigens on the bovine immune system will aid the rational development 

of effective bTB vaccines. In this thesis, I first report a comparative analysis of the immune-

stimulatory effects of various fractions of the M. bovis cell envelope on bovine dendritic 

cells (bDCs), which are key immune cells required for TB control by the host. I found that 

the cell surface sugar extract (CSSE) fraction is the least immune-stimulatory suggesting 

that this fraction might contain an immunosuppressive molecule. Given that CSSE fractions 

of the M. tuberculosis complex are enriched in phenolic glycans, including para-hydroxy 

benzoic acid derivatives (p-HBADs), which are known to have immunosuppressive 

properties, I then examined the immunomodulatory effects of p-HBAD-1, the major p-

HBAD made by M. bovis on bDCs. I found that p-HBAD-1 has opposing effects in non-

primed and IFN-γ primed bDCs in vitro. In non-primed bDCs, p-HBAD-I induces a 

tolerogenic response, while a pro-inflammatory response is observed with IFN- primed 

bDCs. These findings suggest that M. bovis p-HBAD-I is an immune-regulatory molecule 

that might have a dual function in bTB pathogenesis. Finally, I successfully prepared 

plasmid constructs required to disrupt the gene encoding a key enzyme involved in p-HBAD 

synthesis in M. bovis. These will be used in future efforts to generate an M. bovis mutant 

deficient in p-HBAD 1 for detailed studies in animal models of TB.  
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CHAPTER 1. Introduction and literature review 

1.1 Mycobacteria tuberculosis complex 

The Mycobacterium tuberculosis complex (MTBC) consists of  M. tuberculosis (causative 

agent of human tuberculosis), Mycobacterium bovis (M. bovis), M. bovis Bacillus 

Calmette-Guérin (live attenuated TB vaccine strain), Mycobacterium microti, 

Mycobacterium africanum, Mycobacterium canetti and Mycobacterium caprae [1]. 

Although some species have 99.9% similarity in nucleotide sequences, they have different 

abilities to induce macrophage cell death [2]. M. tuberculosis is 99.95 % genetically 

identical to M. bovis [2, 3]. Genetic analysis showed that M. bovis lacks certain trehalose-

containing glycolipids on its cell wall, which could affect the virulence and adaptability 

within the host cells. The loss of some of these trehalose-containing glycolipids was related 

to distortion of the surface-exposed acyltrehaloses signaling system [4, 5]. The reduction 

of this signaling system in M. bovis has been linked to less virulence in humans [5].  

1.2 Mycobacterium bovis  

Mycobacterium bovis is a slow-growing, facultative intracellular, aerobic, and Gram-

positive bacterium. It is the causative agent of bovine tuberculosis (bTB). Despite cattle 

being the preferred host for M. bovis,  it can also infect and cause disease in humans and 

other animals such as swine, bison, and cervids (deer and elk) [6]. Indeed as a zoonotic 

disease, bTB is recognized as a major hindrance to global efforts to eradicate TB by the 

year 2030 [7]. Thus, the human TB burden cannot be decreased without controlling bTB 

in animal reservoirs. High-risk individuals are those in direct contact with infected animals, 
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such as farmers and veterinarians [8]. The most frequent route of transmitting the disease 

is through inhalation of aerosols containing bacilli, and risk exposure is highest in the 

enclosed areas [9]. Other methods of contracting the disease are drinking unpasteurized 

milk products from an infected cow, direct contact with the excreta of infected animals, 

and sharing common water or feed sources [9].  Clinically the disease is characterized by 

debilitating conditions, cough, decreased milk production, and labored breathing.  

1.2.1 Prevalence and financial implication in the cattle industry 

Based on the report from the Worldwide Animal Health Information Database of OIE [10], 

an estimate of 91 out of 182 countries publicized the existence of bTB infection in cattle 

between 2015–2017.  Widespread bTB has been reported in Central and South America, 

Middle East countries and some parts of Asia [10]. An estimated 30 countries in Africa 

have also reported the presence of bTB. 

 In most developed countries, bTB has been successfully controlled by applying test-and-

slaughter schemes, milk pasteurization and meat inspection in abattoirs [10]. However, in 

some developed countries (Ireland, UK, New Zealand), eradication of bTB is challenging 

despite the implementation of extensive control [11, 12]. In these countries, elimination of 

bTB is challenging in wildlife (source of infection) when compared to domestic animals 

resulting in inadequate eradication of the disease [13]. Despite the low prevalence in 

developed countries, the costs of bTB are primarily associated with trade barriers for live 

animals. Also, the financial costs of executing compulsory bTB control programs are high 

[14]. Other costs can negatively impact consumer trust, adverse market reactions, the 

farming industry, and the country’s reputation.  
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In most developing countries, eliminating bTB remains a problem where the 

implementation of preventive measures is non-existent [15]. In countries with endemic 

disease, bTB threatens their national economies by reducing productivity and affecting 

animal product international trade [16]. Also, the costs of bTB are primarily associated 

with losses in livestock production, including lower meat/milk production and a high 

mortality rate [17].  

1.2.2 Diagnosis  

The diagnosis of bTB is based on clinical ante-mortem and post-mortem tests [18]. The 

principal ante-mortem tests for bTB diagnosis are immune-based assays to detect cell-

mediated immune (CMI) response. This includes tuberculin skin tests (TST) and 

interferon-gamma release assays (IGRAs) [19]. Commercially available IGRAs for cattle 

use include the Bovigam assay and the BIO-RAD bovine interferon-gamma ELISA Kit 

[20, 21]. In addition to IFN-γ, other biomarkers of CMI responses have emerged as 

potential TB tests for humans and cattle. These include interleukin-1β (IL-1β), interleukin-

2 (IL-2), chemokine C-X-C motif ligand 9 (CXCL9), chemokine C-X-C motif ligand 10 

(CXCL10), also known as IFN-γ-induced protein-10 (IP-10), tumor necrosis factor-alpha 

(TNF-α), nitric oxide (NO), interleukin-17 (IL-17), and interleukin-22 (IL-22)[22]. 

Recently, a whole blood culture system was used for evaluation of antigen-specific 

cytokine/chemokine gene and protein expression, and data obtained further confirm that 

CXCL9, CXCL10, IL-21, IL-13, and several acute-phase cytokines may serve as 

diagnostic host biomarkers of M. bovis infection in cattle [22].  



4 

 

The synchronous presence of infection in the herd of Mycobacterium avium subsp.  

paratuberculosis or non-pathogenic environmental mycobacteria [23], or co-infection with 

Fasciola hepatica [24], may compromise specificity and sensitivity values, thus affecting 

the reliability of diagnostic tools. Additionally, M. bovis infection is not detectable in 

animals with a depressed cell-mediated immune response [25]. Therefore, gross analysis 

of the carcass at slaughterhouses during post-motem inspection allows the confirmation of 

bTB in herd test reactors and provides additional data concerning infected animals that 

have not reacted in field tests.  

During post-mortem diagnosis, all cattle intended for human consumption are exposed to 

routine meat inspection. Carcasses are assessed for typical gross and histopathological 

lesions resulting from bTB in naturally infected animals [26-28]. Gross pathology of bTB 

manifests as a chronic inflammatory disease with the formation of a granulomatous lesion 

affecting lungs, lymph node, intestines, liver and spleen [27]. These granulomatous lesions 

are characterized by different sizes, superficially or deeply located, caseous or calcified 

nodules bulging from the mucous or serous surface. The tissue analysis procedure via 

histopathology is as follows: paraffin-embedded, formalized tissues are finely sectioned 

and stained with Haematoxylin/Eosin and Ziehl Neelsen stains. 

1.2.3 Control 

Considering the zoonotic potential of bTB and its economic impact on animal production, 

many industrialized countries established specific eradication programs, which aimed to 

control the infection in susceptible animal hosts, thus reducing the risk for human infection 

[29, 30]. Several countries adopt bTB control programs, which constitute ‘tuberculin test 
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and slaughter’ to control the bovine disease [29].  However, the incidence of bTB continues 

to increase (due to the presence of M. bovis wildlife reservoir) despite the use of test and 

slaughter control policy, highlighting the urgent need for a better control strategy [31]. An 

effective strategy for bTB control could involve cattle vaccination combined with a highly 

specific and sensitive diagnostic test that discriminates M. bovis-infected from vaccinated 

cattle. The ideal bTB vaccine would induce protective immunity without tuberculin skin 

test reactivity [32, 33].  

So far, the only vaccine available for humans and bTB is the live attenuated Bacille 

Calmette Guerin (BCG) [34]. BCG derived from the serial passage of M. bovis confer 

protection against mycobacteria via the induction of Th1 responses [35-37].  Though BCG 

remains the standard against which the efficacy of any novel vaccine is judged, it is unlikely 

to fulfill the criteria defined for an ideal cattle vaccine. A reason for this is because  BCG 

vaccination to control bTB can also sensitize cattle to the tuberculin skin test. That way, 

vaccinated cattle respond positively to the skin test [38]. The tuberculin test primary 

antigenic target is bPPD antigen, and it is present in both M. bovis and BCG vaccines [38]. 

This challenge can be overcome by applying a diagnostic antigen whose genes are lacking 

from the BCG genome.  Thus, antigens whose genes are expressed by M. bovis but are 

lacking in environmental mycobacteria or BCG constitute candidates for diagnostic 

antigens that are more specific and better defined than PPD. This candidate antigenic target 

can help differentiate the BCG vaccine from M. bovis infection [38]. Primary antigenic 

targets (ESAT-6 and CFP-10) encoded by genes located on the RD1 region of the M. bovis 

genome but deleted from the BCG genome have been shown to discriminate between 

vaccinated and infected cattle successfully [39].  
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Other challenges incurred using BCG as a vaccine in cattle are due to a high degree of 

variability in the ability of BCG to protect against infection with M. bovis as demonstrated 

in field trials and challenge cattle experiments [40]. The variability in protection is 

associated with different BCG strains (with variable genetic content) exhibiting different 

protective efficacies [41]. Therefore, developing a new vaccine or boosting the 

immunogenicity of BCG as well as identifying candidate diagnostic antigens that can 

differentiate M. bovis infected and BCG vaccinated cattle is vital for bTB control. Many 

vaccine development approaches, such as MTBVAC (live attenuated vaccine), subunit, 

and modified BCG vaccines, are currently being explored for safer and more efficacious 

TB vaccines than BCG. These approaches have been successful in developing a large 

number of vaccine candidates included in the TB vaccine pipeline and are at different 

stages of clinical trials in humans[42] 

1.3 Mycobacterium bovis cell wall antigens 

The unique cell envelope of all members of M. bovis consists of three major layers: the 

plasma membrane (PM), the cell wall (CW), and the outermost capsular layer (OL) [43]. 

This thick multilayer cell envelope is highly hydrophobic with a very low cellular 

permeability. Therefore, it acts as a barrier against many classes of hydrophilic 

antibacterial drugs and chemotherapeutic agents. This has been implicated in the 

mycobacteria's ability to develop resistance to several anti-tubercular drugs [44]. The 

plasma membrane appears similar in structure to that of other bacteria, and it is composed 

of an asymmetrical bilayer of phospholipids decorated with glycoproteins and 

transmembrane proteins. Surrounding the plasma membrane is the cell wall consisting of 
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two segments: a lower segment of peptidoglycan (PG), which is covalently linked to the 

arabinogalactan (AG) layer [43]. The AG layer consists of galactofuranose, 

oligosaccharides and arabinofuranose, esterified to mycolic acids [43]. Lastly, the upper 

segment of the cell wall is made up of intercalating glycolipids and waxes [43]. 

Collectively, the cell wall surface is studded with various proteins, glycoproteins and 

glycolipids [45]. These cell envelope antigens exert a robust immunomodulatory effect 

because they are the first to interact with host immune cells.  

 

Figure 1.1: Diagrammatic representation of the cell envelope of all members of M. tb complex. The 

plasma membrane, cell wall, and outer capsule are depicted along with their comprising biomolecules [46] 
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1.3.1 Bovine purified protein derivatives (bPPD) 

The first purified protein derivatives were developed by Florence B. Seibert in the US in 

1934 [47].  Bovine purified protein derivatives contain a complex mixture of proteins, 

including the antigens ESAT-6 and CFP10, which are the antigens used in the M. tb specific 

IFN- release assays [48]. The primary eradication program for bTB involves the ability to 

diagnose and identify affected animals correctly. Thus, the eradication of M. bovis is 

dependent on the “test and slaughter” program, where cattle are consistently tested using 

the tuberculin skin test, which utilizes purified protein derivatives derived from M. bovis, 

and reacting animals are slaughtered [49]. Bovine purified protein derivatives in the skin 

test lack specificity as some of its antigenic components are present in non-pathogenic 

environmental mycobacteria and BCG. 

The injection of bPPD induces inflammation resulting in a delayed-type of hypersensitivity 

response in TB-infected animals.  The “delayed” response occurs within 3 days following 

exposure to antigen. Previous studies have reported that CD4+, CD8+, and γδ T cells are 

the primary T-cell subsets responding to bPPD stimulation in cattle experimentally infected 

with M. bovis [50]. Consistent with data obtained from cattle experimentally infected with 

M. bovis, another study reported a Th1 cytokine profile in response to bPPD stimulation in 

cattle naturally infected with M. bovis [51].  

1.3.2 Cell wall lipids (CWL) 

Many CWL has been implicated in the virulence of mycobacteria. These CWL consist of 

a complex mixture of polar, apolar lipids and glycolipids. The identified polar lipids 
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include diphosphatidyl glycerol (DPG), glucose monomycolate (GMM), 

phenylethanolamine (PE), and mono/di-acylated phosphatidyl inositol mannosides (PIMs) 

[52]. In contrast, the apolar Lipids consist of phthiocerol dimycocersates (PDIMs), 

trehalose dimycolate (TDM) and trehalose monomycolate (TMM), pentacyl trehalose 

(PAT), triacyl glycerol (TAG), phenolic glycolipid (PGL), and mono-mycolyl glycerol 

(MMG) [52]. These mycobacterial CWL are well known to regulate the function of a 

variety of innate immune cells [52-54]. Recent studies demonstrated that polar lipid 

fractions can alter the cytokine profile of bovine macrophages and DCs [52]. Furthermore, 

exposure of bovine APCs to polar lipids hinders antigen presentation by down-regulating 

MHC-II and other co-stimulatory molecules [52]. Thus, these data demonstrate that 

pathogenic mycobacterial polar lipids can block the ability of antigen-presenting cells to 

induce an appropriate immune response to an invading pathogen. 

Similar to polar lipids, apolar lipids such as TDM  have been reported to promote a 

tolerogenic phenotype in bone marrow-derived murine DCs activated with mycobacterial 

antigens and Toll-like receptor agonists, resulting in low expression of DCs activation 

makers and altered cytokine production [55].  Moreover, PGL expression is associated with 

increased mycobacterial virulence by downregulating host phagocyte inflammatory 

responses [56, 57]. In addition, PGL-1 and PGL-tuberculosis produced by the clinical 

isolates of M. tb block TLR2 agonist-driven activation NF-B and cytokine production 

[58], as well as decreased TRIF dependent TLR4 signaling in macrophages resulting in 

limited pro-inflammatory and bactericidal responses [59]. Collectively, these studies 
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suggest that CWL contributes to the pathogenicity of mycobacteria by blocking the 

generation of robust innate immune responses. 

1.3.3 Cell surface sugar extract (CSSE) 

Mycobacterial-derived CSSE fractions, enriched in glycolipids and glycans, play 

prominent roles in the evasion of host immune responses [46, 60]. For example, 

Phosphatidylinositol mannosides derived from M. tuberculosis have been shown to inhibit 

LPS activation of human DCs by reducing the up-regulation of MHC II molecules and pro-

inflammatory cytokine production [61]. Moreover, M. tuberculosis-derived LM reportedly 

blocks the biosynthesis of TNF-α in human macrophages by destabilizing TNF mRNA 

transcripts, thereby allowing M. tuberculosis to evade host immune response and 

potentially increase its virulence [62]. Furthermore, ManLAM has been shown to block 

IL-12 production by human DCs previously stimulated with LPS [63] and inhibit LPS-

induced DCs maturation [64]. Recently, it was reported that Di-O-Acyl-trehalose promotes 

a tolerogenic phenotype in bone marrow-derived murine DCs activated with mycobacterial 

antigens, resulting in low expression of DCs activation markers and altered cytokine 

production [55]. These studies suggest that CSSE fraction contributes to host evasion by 

mycobacteria.  

1.3.4 Phenolic glycoconjugates 

Phenolic glycoconjugates belong to CSSE antigenic class, and it consists of phenolic 

glycolipid (PGL) and structurally related parahydroxybenzoic acid derivatives (p-

HBADs). Both share the same glycosylated aromatic nucleus. The aromatic core is derived 
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from the methyl ester of p-hydroxybenzoic acid (p-HBA) and synthesis of both p-HBADs 

and PGL is thought to proceed from p-hydroxybenzoic acid [65]. The glycosyl moieties in 

p-HBADs are identical to mycoside B in PGL-tb, and display potent immunomodulatory 

activities [65]. While few mycobacterial clinical isolates synthesize PGL, p-HBADs are 

secreted by all mycobacteria strains [65, 66]. It has been shown that M. bovis and BCG 

produce only p-HBAD-I (monosaccharide), while M.tb generates both p-HBAD-I and II 

(trisaccharide) (Stadthagen et al., 2005). Moreover, Scanlan et al. reported the chemical 

synthesis of p-HBADs, accompanied by biological studies on the immunological effects of 

the molecules on immune cells [65]. They showed that the synthesis of p-HBADs involves 

chorismate pyruvate lyase enzyme during host infection and is released in culture filtrates 

[67]. The immune-modulatory role of p-HBADs has been studied in mycobacteria [68]. 

Previous studies have shown that M.tb mutant defective in the synthesis of p-HBAD-I and 

II promote a more robust inflammatory response than wild-type strains [68]. Furthermore, 

in vitro studies with mouse splenocytes and bone marrow-derived macrophages showed 

that p-HBAD-I and II derived from M. tuberculosis strain can suppress host immune 

response and enhance TB pathogenesis [69].  A recent report demonstrates that M. 

tuberculosis derived p-HBAD-I and related structures affect acute macrophage activation 

by inhibition of pro-inflammatory response and reduction of bactericidal nitric oxide 

production following BCG vaccination [70]. Thus, this indicates that the presence of p-

HBAD-I and related molecules could be undermining the innate protective response.   
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Figure 1.2: Structures of phenolic glycolipid of M. tb (PGL-tb) and structurally related glycans, para-

hydroxybenzoic acid derivatives I and II (p-HBAD I and p-HBAD II) [46]. 

 

1.4 Pathogenesis of Mycobacterium bovis  

 Infection is initiated following inhalation of a droplet containing bacilli of size ranging 

between 1-5μm in diameter [71]. Inhaled bacilli avoid the bronchi's defense mechanism 

and penetrate the terminal alveoli, where they are recognized and phagocytized by resident 

alveolar macrophages [71]. Bacterial components are detected by host receptors expressed 

on alveolar macrophages and other immune cells via Toll-like receptors (TLRs), 

nucleotide-binding oligomerization domain-like receptors (NLRs), and C-type lectins [72, 

73].  
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 During the first ten days of infection with M. bovis, alveolar macrophages switch towards 

an M2 phenotype with an anti-inflammatory response, which enables bacilli to manipulate 

host immune responses to favor their survival [74]. Towards the end of ten days post-

infection, infected alveolar macrophages transmigrate from the alveolar space to the lung 

interstitium via the help of cytokine released by alveolar epithelial cells. In the interstitium, 

infected alveolar macrophages release chemokines and cytokines, which attract monocytes 

and other inflammatory cells. During the acute phase of infection, signals from M. bovis 

infection polarize interstitial macrophages to the M1 phenotype. Switch over of M2 

macrophages to M1 phenotype is accompanied by aerobic glycolysis resulting in enhanced 

pro-inflammatory response, subsequent elimination of non-virulent mycobacteria, and 

formation of primary TB lesion [74].  

However, virulent M. bovis evade interstitial macrophage microbicidal mechanisms via its 

virulence factor known as ESAT- 6, resulting in the induction of adaptive immune 

response. DCs mediate induction of adaptive immune response against mycobacterial 

infection.  Infected DCs migrate to the regional lymph node and prime T-cells by up-

regulation of chemokine receptor 7 (CCR7) (Worbs, Hammerschmidt [75]. Depending on 

the host immune response, primed T-cells and other immune cells accumulate at the 

infection site resulting in total clearance of infection or granuloma formation.  Though 

immunocompetent hosts clear off the bacteria. However, in the case of 

immunocompromised hosts, virulent bacilli capable of surviving escape killing and persist 

in the chronic phase [76].  Thus, the host protects itself by switching from host resistance 

to host tolerance by the formation of granuloma. The granuloma wall off tubercle bacilli 

from the rest of the lung tissue, thereby limiting the spread of bacteria and provides a 
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microenvironment for interactions among macrophages and other immune cells as well as 

cytokines produced by these cells.   

 Two distinct types of granulomatous lesions exist (chronic and necrotic granulomas) 

depending on the host immune response [77]. Histopathological studies have demonstrated 

that the classic chronic granuloma comprises epithelial macrophages, neutrophils, and 

other immune cells surrounded by fibroblasts [78]. The chronic granuloma with neutral pH 

consists of dead macrophages and other immune cells with non-replicating M. bovis 

residing inside macrophages in the hypoxic center [78]. The necrotic granuloma with acidic 

pH possesses actively replicating bacilli surrounded by immune cells [79]. Infected cattle 

with chronic or necrotic granuloma manifest signs of latent or active infection, 

respectively. While latently infected cattle show no sign and rarely transmit diseases, 

actively infected animals show signs and transmit the disease to both immunocompetent 

and immunocompromised cattle. Thus, the establishment of both latent or active TB 

infection depends on host immune system. 
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Figure 1.3: Pathogenesis of bovine TB- modified from Neil et al. 1994 [80] 

1.5 The Immune System 

The immune system protects the host via a highly regulated network of cells and molecules, 

which work synergistically. Upon encountering a threat, the immune system responds with 

diverse mechanisms to control the threat. The immune system is split up into two separate 

arms, the innate and the adaptive immune system [81]. While innate immune cells respond 

quickly to invading pathogens, adaptive immune cells exhibit a delayed response and form 

immunological memory [82]. It is established that both innate and acquired immune 

defenses are involved in defending the host against M. bovis infections and vary depending 

on the host species, the virulence of an M. bovis strain, and host genetics [83]. 
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1.5.1 Innate immune response to M. bovis 

Alveolar macrophage (AM) is a subset of tissue-resident macrophages that reside within 

the lung airspace and play crucial roles in lung homeostasis, surfactant metabolism, and 

tissue repair [84]. Alveolar macrophages are the first cell type to encounter M. bovis. In 

mice, a productive M. tuberculosis infection starts with an infection of AM that resides in 

the lung alveoli [85]. Depleting AM prior to infection reduces the bacterial burden in the 

lungs and increases survival, suggesting that AM forms a replicative niche early after 

infection [86]. The reverse is seen in the growth-restrictive environment within M1 

interstitial macrophages. In addition to eliciting inflammatory cytokine in interstitial 

macrophages, pathogen recognition by innate immune cells triggers a cascade of cellular 

events such as phagocytosis, autophagy, apoptosis, and induction of adaptive immunity. 

All these cellular events contribute to the elimination of invading pathogens [87]. 

During phagocytosis, various host cell receptors are involved in the uptake of M. bovis by 

macrophages [88]. Ultimately, the fusion of mycobacteria-containing phagosomes with 

lysosomes results in bacterial killing. The importance of IFN-γ during M. tuberculosis 

infection has been attributed to its ability to activate microbicidal mechanisms of 

macrophages, most notably via the production of reactive oxygen species (ROS) or reactive 

nitrogen species (RNS) and expression of the enzyme inducible nitric oxide synthase 

(iNOS) [89]. iNOS catalyzes the production of the bactericidal/static radical NO, which is 

critical for controlling M. tuberculosis infection, as Nos2–/– mice are highly susceptible to 

infection [90]. 
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1.5.2 Cell-mediated immune response against M. bovis infection 

Cell-mediated immunity activates phagocytes, antigen-specific cytotoxic T-lymphocytes, 

and the release of various cytokines in response to an antigen. Although innate immune 

responses eliminate invading pathogens by the induction of adaptive immunity, dendritic 

cells recruited to the site of mycobacterial infection mediate this effector function. These 

dendritic cells bridge innate and adaptive immunity, traveling from sites of infection and 

inflammation to secondary lymphoid tissues for activation of T-cells. Antibody-based 

depletion of CD11c+ cells, which transiently eliminates both classical and monocyte-

derived DCs, results in defective CD4 T-cell priming and increased susceptibility to M. tb 

infection, demonstrating the importance of  CD4 T-cells and  DCs for host defense [91].  

The accumulation of IFN- producing Th1 cells at the inflammatory site mediate protective 

immunity by activating mycobacteria-infected macrophages. Although it is assumed that 

IFN- producing CD4 T-cells are required for induction of protective immunity, however, 

it has been reported that IFN- is not a reliable correlate of TB protection because IFN-γ 

levels poorly correlate with TB protection  [92]. Recently, the induction of polyfunctional 

lung tissue-resident memory CD4 T-cells (CD4+TRM) responses has been established to 

protect against mycobacterial infection [93, 94]. The protective response of CD4+TRM 

cells against mycobacterial infection is partly based on reports demonstrating their 

localization at the site of pathogen infection [93].  
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1.6 Innate immune cells  

The innate immune cells develop from the bone marrow-derived multipotent hematopoietic 

stem cells [95]. The establishment of mycobacterial infection depends on its early 

interaction with host innate immune cells, such as natural killer (NK) cells, neutrophils, 

and phagocytes  (monocytes, macrophages, and dendritic cells) [96]. These innate immune 

cells express various pattern recognition receptors (PRRs) such as Toll-like receptors 

(TLRs), Nod-like receptors (NLRs), and C-type lectin receptors (CLRs). All these 

receptors play a role in pathogen recognition, uptake of mycobacteria, and initiation of 

intracellular signaling events that result in antimicrobial function [97]. Thus, the innate 

immune cells, signaling pathways, and cellular functions that are involved in the early 

phases of M. bovis infection are crucial in limiting disease and serve as potent regulators 

of antigen-specific adaptive immunity 

1.6.1 Macrophages  

1.6.1.1  Lung macrophages origin and development  

The lung consists of two main types of macrophages that reside in different anatomical 

compartments: interstitial and alveolar macrophages [98]. Macrophages are classified 

based on their origin as either derived from fetal/embryonic precursors that primarily self‐

renew or from adult blood monocytes that evolve from hematopoietic stem and progenitor 

cells (HSPCs) in the bone marrow [99]. Earlier studies on mice have demonstrated that 

alveolar macrophages are predominantly of embryonic origin in a steady-state, as they are 

nurtured and sustained independently of circulating monocyte [100]. Specifically, mouse 



19 

 

alveolar macrophages evolve from fetal monocytes that seed into the lung and differentiate 

after birth into mature alveolar macrophages under the influence of GM‐CSF, TGF‐β, and 

PPAR [101, 102]. 

In contrast, interstitial macrophages have a mixed origin, originating from blood and lung 

monocytes in mice with a minor early contribution from yolk sac macrophages [103]. The 

mixed origin may relate to distinct populations of interstitial macrophages that occupy 

specific niches in the lung. The monocytic origin of interstitial lung macrophages may 

explain why their energy metabolism relies on glycolysis, whereas alveolar macrophages 

mainly use fatty acid oxidation [74]  

1.6.1.2 Macrophage phenotypes and role in mycobacterial infection 

Through the process of polarization, macrophages can change their phenotypic and 

functional profiles [104]. Macrophage polarization is the process by which macrophages 

respond to stimuli from the local microenvironment and acquire a specific functional 

phenotype. Based on the secretion of certain specific cytokines and switch in cell 

metabolism, naïve macrophages (M0) can polarize to either classical/pro-inflammatory 

(M1) or alternative/anti-inflammatory (M2) phenotype [105, 106].  

The  M1 phenotype is obtained following exposure to a pathogenic molecule or cytokines 

(tumor necrosis factor-/Interferon-gamma) [107].  Thus, M1 phenotypes are associated 

with an increase in aerobic glycolysis, which is essential for the optimal production of pro-

inflammatory cytokines and suppresses the anti-inflammatory cytokine, resulting in 

reduced bacterial load. The mediators of host metabolism  such as hypoxia-inducible 
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factor-1 (HIF-1), glucose transporters (Glut-1), and mammalian target of rapamycin 

(mTOR)) enhance induction of the glycolytic enzymes and metabolic shift to aerobic 

glycolysis [108]. The M1 macrophages are critical in host defense, and the mediators they 

produce can lead to host-tissue damage. Hence, their activation must be tightly controlled.  

However, M2 macrophages are induced upon exposure to IL-10/IL-14/IL-13 or TGF-b.  In 

vitro treatment of macrophages with IL-4 and IL13 (alternative activation) results in the 

failure of antigen presentation to T-cells, and therefore minimal cytokines are produced 

from these macrophages. Alternatively, activated macrophages are also less efficient in 

producing toxic oxygen/ nitrogen radicals and killing of intracellular pathogens than 

classically activated macrophages [109]. The M2 macrophages depend on oxidative 

phosphorylation (OXPHOS) and fatty acid oxidation (FAO) for energy generation. This 

phenotype is associated with enhanced fatty acid metabolism [110]. The accumulated lipid 

serves as a nutrient for bacterial growth and survival by down-modulation of immune 

responses via anti-inflammatory cytokine release [110]. Other signaling proteins associated 

with M2 polarization include a signal transducer and activator of transcription 6 (STAT 6), 

GATA binding protein (GATA 3), suppressor of cytokine signaling (SOCs 1& 3) and 

arginase 1[111]. All these molecules regulate the anti-inflammatory profile of M2 

macrophages, allowing the resolution of excess inflammation and tissue repair.  

 

 

 



21 

 

1.6.2 Dendritic cells 

1.6.2.1 Dendritic cells development and activation 

Dendritic cells, so named because of their distinctive dendritic processes, are professional 

antigen-presenting cells localize in tissues that are in communication with the skin and 

mucosal surfaces [112]. Dendritic cells are infrequent and are not abundantly distributed 

within the tissues as macrophages [113]. Like other phagocytes, DCs develop from 

macrophage/DCs progenitors (MDPs) in the bone marrow [114]. Four primary stages of 

DC development have been identified, including bone marrow progenitors, circulating 

precursor DCs, and tissue-resident immature or mature DCs. Precursor DCs patrol and 

circulate in the blood before populating peripheral tissues (e.g., the lungs) and lymphoid 

tissues. Granulocyte monocyte colony-stimulating factor (GM-CSF) and interleukin 4 (IL-

4) can induce DCs differentiation from precursors cells [115].  

Dendritic cells are described as either immature or mature based on their phenotypic 

characteristics and function. In steady-state, DCs are immature and are characterized by 

the high capacity to capture antigens, low expression of activation markers, and decreased 

secretion of cytokines [116]. Following exposure to an antigen, immature DCs undergo 

transformational changes and become mature DCs, which is associated with changes in 

their phenotypic and functional characteristics [117]. Inflammatory stimuli, such as 

lipopolysaccharide (LPS) and TNF-α can also facilitate DCs maturation [118].  Mature 

DCs lack the capability of antigen uptake. However, they are known for antigen 

presentation and have a higher capacity for activating naïve T-cells to initiate adaptive 

immune responses [119]. Thus maturation of DCs results in upregulation of major 
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histocompatibility complex (MHC) molecules [120], co-stimulatory molecules (CD40, 

CD80, and CD86),  lymph node-homing chemokines (CCR7), and increased production of 

pro-inflammatory cytokines required for T-cell activation [119].  

The pro-inflammatory cytokines produced by the mature DCs polarize T-cell response into 

different types of cell-mediated immunity [121]. Thus, according to the allergen sources, 

with pro-inflammatory cytokines and participation of costimulatory signals, DCs induce 

the polarization and differentiation of distinct types of T-cell responses that align well with 

different classes of pathogens (e.g., Th1, Th2, Th17, or regulatory T cells).  Interleukin 12 

(IL-12) production by DCs is crucial for the differentiation of naïve T-cells into Th1 cells 

that produce IFN-, an important cytokine needed to control mycobacterial infection [122]. 

In contrast, lack of IL-12 production by DCs results in Th2 response and susceptibility to 

mycobacterial infection [123]. 

1.6.2.2 Role of DCs in mycobacteria infection 

Pathogen-associated molecular patterns (PAMPs) induce an inflammatory response 

initiated via pattern recognition receptors (PRRs) expressed on dendritic cells [121]. The 

early wave of proinflammatory cytokines and chemokines released by DCs inhibits 

pathogen spread and prime T-cells to eradicate the invading pathogen [121]. For the early 

pro‐inflammatory response, activation of DCs is triggered by PRR signals. These signals 

transform resting DCs into strong antigen‐presenting cells capable of boosting the 

expansion and differentiation of naive pathogen‐specific T-cells to effector T-cells [121, 

124]. Following infection, DCs are required for induction of the cell-mediated immune 

response by promoting the dissemination of mycobacteria and its antigen from the infection 



23 

 

site to the local draining lymph node [125]. Chemokine homing receptors (CCR7 and 

CCR8) expressed on monocyte-derived DCs promote migration from lung tissue into the 

local draining lymph nodes [126, 127]. Following transportation of mycobacteria to 

draining lymph node by myeloid DCs, only tissue-resident DCs presents antigen and prime 

CD4 T-cells in the lymph node [128, 129].  Within the granuloma, the role of DCs varies 

depending on the stage of infection. DCs within acute granulomas upregulate the 

expression of costimulatory molecules, promote priming of naïve T-cells, and reactivation 

of newly arrived IFN- producing Th1 cells  [129].  However, DCs in chronic lesions 

promote latent TB infection by inducing a high level of PD-L1 expression and do not 

support the reactivation of newly recruited T-cells, thereby decreasing protective T-cell 

responses, thus acting as a shield that facilitates mycobacterium survival [128]. Although 

mycobacteria infect both macrophages and DCs, infected DCs lack the ability to control 

mycobacteria efficiently as macrophages [130, 131]. This suggests that infected DCs, may 

serve as a long-term reservoir for mycobacteria, thereby promoting their survival within 

the granuloma during chronic infection. The DCs shield may explain why mycobacteria 

adapt for long-term survival in granulomatous lesions. 

1.6.2.3 DC activation markers 

The full activation of T-cells requires two signals. The primary signal is mediated by 

antigen-presenting molecules, while the secondary signal is provided through 

costimulatory molecules. The up-regulation of antigen-presenting and costimulatory 

molecules occurs nearly simultaneously. 
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1.6.2.3.1 Antigen-presenting molecules (MHCI and II) and mycobacterial infection 

Mature DCs express high levels of MHC I and II molecules. The class II transactivator 

(CIITA) is a master regulator of MHC gene expression. It induces de novo transcription of 

MHC class II genes and enhances constitutive MHC class I gene expression [132]. The 

role of MHC molecules is to bind pathogen-derived peptide fragments and display them 

on the cell surface for detection by the appropriate T-cells via T-cell receptors [133].  

Dendritic cells are highly efficient at antigen presentation and adaptive immune cell 

activation due to their ability to determine if the antigen is endogenous or exogenous [134]. 

To communicate with CD8 T-cells,  MHC-I presents endogenous peptides to CD8 T-cells 

by the classical pathway via the endoplasmic reticulum (ER) and the transporter associated 

with antigen processing (TAP) complex [135]. The classical TAP-dependent MHC-I 

pathway is critical in host defense against M. tuberculosis [136]. In addition, mice lacking 

β2-microglobulin (β2m), a component of the MHC-I chain, cannot stably present antigens 

on the surfaces of their cells. Recent studies using β2m knockout (KO) mice have shown 

that MHC-I plays a vital role in host defense against several intracellular bacterial 

pathogens, including M. tuberculosis and Listeria monocytogenes [135, 136]. Furthermore, 

the evidence that M. tuberculosis infection induces severe disease and a significant 

reduction of CD8 T-cells in MHC-I-deficient β2 m−/− mice indicates that MHC-I-restricted 

antigen-specific CD8 T-cells are crucial for host defense against M. tb infection. 

Also, DCs are the only antigen-presenting cells with the unique ability to undergo cross-

presentation and display exogenous antigens on MHC-I molecules to activate CD8 T-cells 

[137]. The intracellular pathway for DCs cross-presentation is still under debate. However, 
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two pathways proposed for the cross-presentation of exogenous antigens are the cytosolic 

and vacuolar pathways [138].  In the cytosolic pathway, an exogenous antigen undergoes 

phagocytosis and is transported to the phagosome, followed by exportation to the cytosol, 

where it is degraded to a peptide by the proteasome [139].  From there, the antigenic peptide 

can be re-imported into the phagosome (phagosomal loading) or transported to the ER (ER 

loading) for MHC-I loading and cell-surface antigen presentation [140].  In the vacuolar 

pathway, exogenous antigens undergo phagocytosis followed by transportation to the 

phagosome for degradation.  The antigenic peptides are loaded on the MHC class I 

molecule in the phagosome then transported to the cell surface for antigen presentation 

[141].  

In contrast to MHC-I molecules, MHC-II molecules are present only on the surfaces of 

antigen-presenting cells, such as dendritic cells, B-cells, and macrophages. MHC-II 

molecules are transmembrane αβ heterodimers, and they present exogenous antigens from 

phagocytosed compounds to CD4 T-cells, which is critical for the expansion and function 

of CD4 T-cells during host immune responses [137, 142]. In vitro exposure to M. 

tuberculosis or its lipoproteins drives DCs maturation and the increased expression of co-

stimulatory and MHC class II molecules [143, 144]. Despite the proposal that TLR 

stimulation increases DCs antigen presentation, a mycobacterial infection might interfere 

with MHC-II antigen processing and the presentation of M. tuberculosis antigens by DCs. 

For instance,  ManLAM derived from M. tuberculosis is a DC-SIGN ligand, which inhibits 

DCs maturation [145]. In addition, Some in vitro studies indicate that infection of DCs 

with M. bovis BCG ultimately leads to loss of MHC-II molecules, making DCs another 

possible niche for immune evasion by mycobacteria [124]. Furthermore, in vivo infection 
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of lung DCs after aerosol administration of GFP-expressing M. bovis BCG led to poor 

expression of MHC-II molecules relative to expression in uninfected DCs from the same 

lung [146]. 

1.6.2.3.2 Costimulatory molecules (CD40, CD80 and CD86) and mycobacterial 

infection 

The ligands CD80 and CD86 are predominantly expressed on APCs, such as B cells, 

dendritic cells, macrophages, and monocytes. The expression of these molecules is 

upregulated in response to inflammatory stimuli. However, the timing and pattern of 

expression of these molecules differ. While CD86 is expressed at moderate levels at steady-

state and upregulated rapidly in response to inflammatory stimuli, CD80 is found at low 

levels in the absence of inflammation and is upregulated more slowly than CD86 after 

activation [147]. Also, CD86 is expressed as a monomer, while CD80 is a dimer with 

stronger binding affinities than CD86 to CD28. CD28 was one of the first costimulatory 

molecules to be identified and is a surface protein expressed on T-cells. Engagement of  

CD28 with CD80  and CD86 provides a second signal required for optimal T-cell activation 

and differentiation [148]. Antigen presentation to T-cells in the absence of costimulation 

can lead to clonal T-cell anergy[149]. 

Several studies demonstrated the role of mycobacteria in downregulating the expression of 

co-stimulatory molecules on APCs [128, 150]. A recent study, albeit for BCG, shows that 

MHC-II, CD80, CD86, and CD40 are down-regulated during the chronic phase of infection 

[128]. The down-modulation of CD80/CD86 in the chronic phase of infection suggests that 

mycobacteria may exploit this pathway to anergize the T-cells.  Another study reported 
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that the expression of costimulatory and MHC II molecules are downregulated in 

macrophages infected with fluorescent reporter bacteria [128, 146]. In addition, it has been 

shown that cell wall lipid trehalose 6, 6′-dimycolate (TDM) of M. tuberculosis inhibits the 

expression of costimulatory molecules on the surface of the macrophages [151]. The 

importance of CD80/CD86 in controlling mycobacterial infection was further 

demonstrated in CD80/CD86 double knockout mice [152]. In contrast, others suggested 

the augmentation of costimulatory molecules upon infection [153]. This discrepancy may 

be primarily dependent on the strain, system, or time-point of the study. 

1.6.2.4 Regulatory DCs and effect on the immune response to mycobacterial infection 

The immune system exists in equilibrium between tolerance and effective inflammatory 

responses. Recent findings suggest that innate immune cells (in particular DCs) are 

essential players in the induction of effective immunity and tolerance [154]. Immunogenic 

DCs mediate effective innate and adaptive immunity primarily due to their remarkable 

capacity to process and present antigens through major histocompatibility complexes to T-

cells [155]. Unlike immunogenic DCs, regulatory DCs can induce tolerance resulting in T-

cell anergy and deletion [156].  Several factors including DCs phenotype, antigen detection 

receptors, DCs maturation state, and exposure to microbial and soluble inflammatory 

factors, play a crucial role in the induction of regulatory DCs [157-160]. Soluble 

inflammatory factors such as TGFβ, IL-10, or PGE2 are the key players in the induction of 

regulatory DCs by inhibiting the upregulation of DCs activation markers [161, 162]. 

 Regulatory DCs can be characterized by the combination of surface marker expression 

(PD-L1, PD-L2, B7-H3, B7-H4, CD103, ILT3/4) and cytokine (IL-10, IL-1, TGF-) 
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production [163]. Other immunoregulatory factors produced by regulatory DCs include 

indoleamine 2,3 dioxygenase (IDO), arginase I and inducible nitric oxide synthase (iNOS) 

[163]. In addition, regulatory DCs express a normal level of MHC-II, while expression of 

the costimulatory molecules is low or deficient [164-166]. By the lack of costimulatory 

molecules, regulatory DCs are not fitted to provide T-cells with the necessary signal two 

required for full T-cell activation.  

Considering the prolonged coevolution of the tubercle bacilli with humans, the bacillus has 

evolved the capacity to persist in the host tissue in a dormant state. This ability primarily 

depends on cell wall glycolipids, which target antigen-presenting cells, thereby dampening 

effective T-cell immunity [61, 167]. A recent study demonstrated that mycobacterial 

glycolipid Di-O-acyl trehalose induces a tolerogenic phenotype in DCs by altering DCs 

maturation, leading to the expansion of regulatory T-cells [55]. In a murine model, 

regulatory DCs in chronic mycobacterial granulomas block protective T-cell response via 

the PD-1:PD-L signaling pathway, thereby promoting prolonged survival of bacteria [128]. 

This suggests that the regulatory DCs contributes to the induction of immune tolerance and 

survival of mycobacteria. 
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  Figure 1.4: Immunogenic and tolerogenic DC profile. Modified from Marin et al. 2018 [168] 

1.6.2.4.1 Inhibitory markers expressed by regulatory DCs 

1.6.2.4.1.1 P     mme   e th     n  1 (P   1)  n     e  n my     te      n e t  n 

Two major PD-1 ligands exist namely PD-L1 and PD-L2, and they differ in their affinities 

for PD-1.  PD-L2 exhibits a stronger affinity for PD-1 as compared to PD-L1 [169]. While 

expression PD-L2 is inducible in fewer cell types (mainly antigen-presenting cells), PD-

L1 is broadly or constitutively expressed on hematopoietic and non-hematopoietic cells 

[170]. The inflammatory cytokines control the expression of PD-L1 and PD-L2.  In 

particular, PD-L1 expression on APCs is up-regulated following stimulation with IFN-γ 

and toll-like receptor ligands [171, 172]. Studies have shown that DCs can suppress T-cell 

responses by providing inhibitory signal via binding of PDL-1 on DCs with the PD-1 

molecules expressed on T- cells  [173]. Thus, the PD1/PDL-1 pathway is a key signaling 

pathway that terminates immune responses resulting in immune tolerance [174]. The PD-

1/PD-L pathway produces inhibitory signals that control both central and peripheral T-cell 

tolerance. Also, it has been demonstrated that the PD-1/PD-L pathway controls peripheral 
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T-cell tolerance by limiting the activation, expansion, and function of self-reactive T-cells 

[175]. The elimination of PD-L1/PD-I signaling pathway results in the breakdown of 

tolerance and promotes autoimmunity. 

 

In mycobacterial infection, CD4+ T cells exert strong cytokine production at the initial 

stage of infection, but these robust cytokine responses are diminished during the later stage 

of infection  [176, 177]. This suggests that an antigen-specific T-cell response is suppressed 

by some inhibitory mechanism, thereby allowing mycobacteria persistence in the host.  The 

PD-1/PD-L1 signaling pathway has been reported to impair the protective Th1 immune 

response in the later stage of infection with M.bovis bacillus Calmette–Guérin resulting in 

bacteria persistence in host tissue [178]. A recent study further confirms that M. 

tuberculosis antigens suppress Th1 immune response and facilitate lung cancer metastasis 

via the PD-1/PDL-1 signaling pathway [179]. This indicates that the PD-1/PD-L1 signaling 

pathway blockade may benefit patients with M .tb or other chronic infections. 

 

1.6.2.4.1.2  In   e m ne 2,3    xy en se  n     e  n my     te      n e t  n 

Indolamine-2,3-dioxygenase (IDO2) is a cytosolic immune-regulatory enzyme that plays 

a role in immunological tolerance [180]. The IDO2 oxidizes/converts the essential amino 

acid (tryptophan) to kynurenine (Kyn) by cleaving the 2,3-double bond of the indole ring 

[181]. The absence of tryptophan due to catabolism by IDO2 prevents T-cell proliferation 

due to starvation. Thus, T-cells are highly sensitive to a low concentration of tryptophan 

resulting in cell cycle arrest [182]. The IDO2 enzyme expressed in various tissues and 

antigen-presenting cells (DCs and macrophages) become up-regulated in response to 



31 

 

inflammation (specifically bacterial lipopolysaccharides and cytokines such as IFN-γ) 

[183].  It has been demonstrated that human dendritic cells expressing IDO2 are capable 

of blocking T-cell proliferation, suppress effector T-cells, and promote differentiation of 

naïve T-cells to regulatory T-cells  [184-186].  The expression and activation of IDO2 

create a local immunosuppressive micro-environment that promotes pathogen survival 

[187].  The role of IDO2 in immune regulation is observed in various disease states such 

as autoimmune disorders, tolerance in transplantation, and response to infection.  

Expression and activation of IDO2 have been demonstrated in both mice and non-human 

primates with mycobacterial infection [188]. In mice, enhanced activation of  IDO2  has 

been linked to poor TB outcomes [189]. In non-human primates, IDO2 induction in the 

granuloma is associated with active TB disease [190]. In humans exposed to M. 

tuberculosis, significant IDO expression levels have been reported [191, 192]. This 

evidence from both human and animal studies indicates that high expression of IDO2 in 

the granuloma compromises T-cell function, thereby supporting mycobacterial 

proliferation and survival [188, 190]. Blocking the expression and activity of IDO2 via 

gene silencing plays a role in reducing pathogen burden, minimize TB pathology and 

enhance host survival [188]. In addition, the inhibition of IDO2 is associated with the 

restoration of T-cell proliferation and functions [188]. These findings indicate that IDO2 

activation plays a vital role in M. tuberculosis pathogenesis  

1.7 Innate immune receptors 

Sensing and recognition of pathogens by the innate immune system is mediated by a 

number of germline-encoded receptors, which detect pathogen-associated molecular 
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patterns (PAMPs) released by the invading pathogens. The receptors involved in detecting 

these structures are called pattern recognition receptors (PRRs), expressed on the cell 

surfaces of innate immune cells [193]. PRRs are broadly divided into two: Transmembrane 

proteins (Toll-like receptors and C-type receptors) and cytoplasmic proteins (Retinoic acid-

inducible gene I-like receptors and NOD-like receptors) [193, 194]. The detection of 

PAMPs by PRRs induces an inflammatory response, resulting in a rapid innate immune 

response. In addition, the signal from the activated receptors plays a crucial role in the 

expression of costimulatory and MHC molecules on professional antigen-presenting cells, 

resulting in the generation of an effective immune response against pathogens. 

1.7.1 Dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin 

(DC-SIGN) receptors 

DC-SIGN is mainly expressed on immature DCs, macrophages and karyocytes, and is one 

of a few lectin-like receptors involved in initiating signaling cascades after binding ligands 

[195]. The expression of DC-SIGN is mainly induced by IL-4 [196].  As with other lectin-

like receptors, DC-SIGN can successfully direct foreign antigens to late 

endosomal/lysosomal compartments for efficient processing and presentation to T-cells, 

specifically CD4 T-cells [197], and in some cases naïve and memory CD8 T-cells [198].  

Active participation of DCs to peripheral tolerance depends on how DCs sense or detect 

foreign antigens. For instance, DCs activation via Toll-like receptors (mainly TLR-4 and 

TLR-2) induces an immunogenic response. In contrast, DC-SIGN (lectin-like receptors) 

favor tolerogenic DCs that produce anti-inflammatory factors and activate regulatory T-

cells [159]. Many pathogens exploit DC-SIGN binding to evade host immune response.  
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The DC-SIGN has been identified and characterized as a key receptor for M. tuberculosis 

in human DCs and alveolar macrophages [160, 199]. This lectin-like receptor is capable of 

sensing mycobacterial-derived mannose-containing molecules such as mannose-capped 

LAM (Man-LAM), lipomannan (LM), arabinomannan, glycoproteins, PIMs, and α-glucan. 

Thus, M. tuberculosis utilizes its ability to interact with DC-SIGN to evade immune 

detection [200]. For instance, the activation of dendritic cells by ManLAM via DC-SIGN 

impairs maturation and induces the anti-inflammatory cytokine IL-10 [160]. In this 

manner, the bacillus prevents the proper activation of DCs, given that IL-10 inhibits the 

expression of co-stimulatory molecules and the production of IL-12, which are essential 

for the activation of Th1 cells.  A recent study showed that macrophages found in 

tuberculous pulmonary lesions of non-human primates express DC-SIGN, which enable 

M. tb to parasitize macrophages, and also turn off the pro-inflammatory response in these 

cells to prevent potential immunopathology [200]. Therefore, mycobacteria target DC-

SIGN to infect DCs and shift the Th1- versus Th2 cell balance towards Th2 in favor of the 

pathogen's persistence.  

1.7.2 Toll-like receptors (TLRs)  

TLRs are members of the type-1 transmembrane receptor family that are evolutionarily 

conserved proteins among vertebrates and invertebrates [201]. It belongs to one of the most 

essential and functionally characterized pattern recognition receptors playing a crucial role 

in innate immunity [202]. TLRs, named after the Drosophila melanogaster toll protein, are 

membrane-bound sensors present on cell plasma membranes and endosomes [203]. 

Prototypical TLR proteins are structurally characterized by two major domains, namely- 
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an extracellular domain that contains hydrophobic tandem leucine-rich repeat (mediates 

the recognition of pathogen molecular patterns) and the cytoplasmic tail that contains a 

highly conserved region called the Toll/IL-1 receptor (TIR) signaling domain, required for 

signal transduction [204]. 

The TLR family is highly expressed in immune-responsive tissue such as macrophages, 

dendritic cells, spleen cells, and cells of the tissues exposed to the external environment 

such as lungs and the gastrointestinal tract [205]. They recognize PAMPs, which are highly 

expressed by microbial pathogens or danger-associated molecular patterns (DAMP) [206]. 

Upon binding PAMPs, TLRs activate the NF-κB signaling pathway and induce the 

transcription of pro-inflammatory genes [204]. During mycobacterial infection, there is 

evidence that mycobacterial components are detected by TLR2, TLR4 and TLR9 [207] 

1.7.2.1 Toll-like receptor 2 (TLR2) 

TLR2 signaling is induced by forming a heterodimer with its coreceptors (TLR1 or TLR6) 

which increases the diverseness of molecules detected by the receptor [208]. Following 

ligand stimulation, TLR2 heterodimers initiate a MyD88-dependent intracellular signaling 

cascade [209]. This signaling pathway induces nuclear translocation of nuclear factor-

kappa B (NF-B) to activate gene transcription and subsequent cytokine production [210]. 

The signaling cascade also induces mitogen-activated protein kinases (MAPKs) that can 

promote transcription of inflammatory genes via activation protein 1 (AP-1) [210, 211].  

A growing number of studies have shown that TLR2 is involved in macrophages/DCs 

recognition and responses to a variety of mycobacterial cell wall glycolipids such as 
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lipoarabinomannan (LAM), phosphatidylinositol mannoside (PIM), Lipomannan (LM), 

Trehalose 6,6'-dimycolate (TDM) [88, 207, 212]. Aside lipoglycan binding, TLR2 also 

recognizes glycoprotein present or secreted from the mycobacterial cell wall. One of these 

glycoproteins is the 19 kDa mycobacterial lipoprotein [213, 214]. In addition to 

mycobacterial cell wall glycolipids and lipoproteins, secreted proteins such as ESAT-6 and 

TB10.4 induce pro-inflammatory cytokine production in a cell line via TLR2 signaling 

[215, 216]. Furthermore, recent findings indicate that M. bovis-derived protein activates 

the NF-κB pathway via TLR2 in macrophage cell lines [217]. Thus, the broad ligand 

specificity of TLR2 indicates a crucial role for TLR2 activation in eradicating 

mycobacterial infection. 

1.7.2.2 Toll-like receptor 4 (TLR4) 

As a complex glycoprotein, TLR4 structurally has both extracellular domains containing 

leucine-rich repeats (LRRs) and the intracellular TIR domain. The LRRs play a role in 

ligand detection resulting in activation of TRIF- or MYD88-dependent intracellular 

signaling cascades [218]. TLR4 is known for recognizing gram-negative bacteria-derived 

lipopolysaccharide (LPS) [219]. In the serum, LPS first binds to LPS binding protein (LBP) 

[220, 221]. LBP catalysis the transfer of LPS to CD14 receptor. CD14 receptor is a co-

receptor for TLR4, and it is a membrane-bound pattern recognition receptor that primarily 

recognizes LPS [222]. However, CD14 lacks an intracellular domain and thus is incapable 

of transducing cytoplasmic signals [223]. To compensate for the limitation of intracellular 

signal transduction, CD14 interacts with TLR4 to recognize LPS. The complex (LPS-

CD14-MD-2 proteins) formed associate with the extracellular domain of TLR4 to initiate 
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intracellular signaling events that lead to inflammatory cytokine production [224]. MD-2, 

also known as Lymphocyte antigen 96, is a molecule that confers LPS responsiveness on 

TLR4. The binding of LPS/MD-2/CD14 complex to TLR4 leads to TLR4 dimerization and 

conformational changes in the TIR domain interface. This enhances the recruitment of 

adaptor proteins that binds to the intracellular TIR-domain [225]. TLR4 activation triggers 

two intracellular signaling pathways: myeloid differentiation factor 88 (MyD88)-

dependent and independent pathways.  

 In M. tuberculosis, TLR4 recognizes cell wall lipids, glycoproteins, and secreted proteins 

as TLR2. Similar to TLR2, Lipomanan induces the production of pro-inflammatory 

cytokines in macrophages in a TRL4-dependent manner [226]. Thus, whereas some M. 

tuberculosis strains activate mainly TLR2, others also activate TLR4, resulting in different 

cytokine profiles [227] 

1.7.2.3 Toll-like receptor 9 (TLR9)  

Synthetic CpG-DNA derived from bacterial DNA activates innate immune cells such as 

macrophages and DCs via its specific receptor TLR9 localized on the phagosomal 

membrane [228]. Mice lacking TLR9 are highly susceptible to a low-dose aerosol M. tb 

infection than wild-type controls [229]. Furthermore, IL-12p40 production is abolished in 

TLR2/TLR9−/− cells infected with M. tuberculosis, indicating a synergistic effect of TLR2 

and TLR9 activation in cytokine production [229]. Aside from TLR2 and 4 recognizing 

BCG, TLR9 also contributes to the recognition of M. bovis BCG by Flt3-ligand generated 

DCs [230]. 
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1.8 TLR signaling  

The binding of TLRs to its ligands activates specific downstream  intracellular signaling 

cascades that initiate host defense response [231]. The interaction of  PAMPs with TLR 

results in the production of pro-inflammatory cytokines and type 1 interferon [232]. 

Signaling via TLR depends on the type of stimulus, the TLR stimulated, and the 

downstream adaptor molecule recruited to the TIR domain [233]. Thus, TLR signaling 

involves two distinct pathways: the MyD88-dependent pathway (employed by all TLRs 

apart from TLR3 resulting in the generation of inflammatory cytokine) and TRIF-

dependent pathway (utilized by TLR3 and 4 leading to interferon regulatory factor-3 

(IRF3) transcription factor activation and subsequent increase of genes encoding type 1 

interferons (IFNs) and costimulatory molecules) [234]. Following activation of MyD88,  

IL-1 receptor-associated kinase-4 (IRAK-4) are recruited through the death domains to 

TLR4. The recruited IRAK4 binds to its receptor complex leading to activation of IRAK1, 

thereby inducing the kinase activity of IRAK1[235].  The phosphorylated IRAK1  

dissociates and binds to tumor necrosis factor receptor-associated factor-6 (TRAF6) 

through 3 major conserved binding domains [236, 237]. The downstream signaling of the 

TNF receptor superfamily is mediated by TRAF6 [237].  The complex formed by IRAK1 

and TRAF6 dissociates from the TLR4 receptor cytoplasmic domain and later form a 

complex with three adapter molecules, which are TAK1-binding protein 1, 2 and 3 (TAB1, 

TAB2 and TAB3) and transforming growth factor-β activated kinase 1 (TAK1). Also, 

TRAF6 phosphorylation leads to activation of MKK and IKK complex resulting in the 

subsequent phosphorylation of NF-B and MAP kinases.  



38 

 

1.9 Categories of Toll-like receptor agonists 

PAMPs are agonists of PRRs expressed by innate immune cells. Immune system 

stimulation via TLRs activates innate immune cells and promotes inflammatory responses, 

which are critical for host protective mechanisms [238]. As such TLRs recognize 

lipopolysaccharide (LPS), Single stranded-RNA (ssRNA40), flagellin and CpG 

oligodeoxynucleotides to initiate intracellular signaling events that result in the activation 

of a variety of proinflammatory immune responses [239]. Due to the ability of TLR 

agonists to activate the immune system, promising approaches to control infectious disease 

involve regulation of the host’s innate immune cells using agonists that bind to its receptor 

and execute an agonist function. Because of TLR agonist immunostimulatory activity, TLR 

agonists are being utilized as cancer immunotherapeutics and vaccine adjuvants. 

1.9.1 Lipopolysaccharide (LPS) - (a TLR4 agonist)  

Multiplication of the gram-negative bacteria within the host results in the release of LPS 

into the circulation.  Lipopolysaccharide, a proinflammatory endotoxin is a component of 

the outer membrane of Gram-negative bacteria that robustly activates different circulating 

cell types [240]. Dendritic cells and macrophages, which are LPS-responsive cells, get 

activated following the interaction of LPS with circulating LPS-binding protein and CD14 

[241]. It has been demonstrated that LPS triggers the induction of NF-κB-dependent 

proinflammatory mediators such as interleukin-12 (IL-12), tumor necrosis factor-α (TNF-

α), interleukin (IL)-1[242, 243]. 
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1.9.2 Flagellin - (a TLR5 agonist) 

Flagellin, a major component of bacterial flagella, is a virulence factor detected by the 

innate immune system [244]. It has been reported that mammalian TLR5 senses bacterial 

flagellin from both gram-negative and gram-positive bacteria resulting in the activation of 

the receptor and subsequent phosphorylation of the NF-κB signaling events [245]. There 

is growing evidence suggesting that Salmonella flagellin is a potent inducer of pro-

inflammatory cytokines in monocytes following interaction between flagellin and the 

surface receptor localize on innate immune cells [244, 246]. Also, flagellin is known as a 

potent adjuvant. The adjuvant activity depends on the ability of flagellin to induce the 

production of proinflammatory responses in both innate and non-immune cells, which is 

essential for the activation of adaptive immune responses [247, 248]. Dendritic cells are 

among the innate immune cells activated by flagellin and depending on the type of DCs 

involved, the flagellin-DCs interaction is either direct or indirect. Thus, myeloid-derived 

DCs directly respond to flagellin via TLR5, unlike the indirect response of splenic DCs to 

flagellin [249].  

1.9.3 Polyinosinic-polycytidylic acid-Poly (I:C) - (a TLR3 agonist) 

Viral proteins and nucleic acids activate TLRs to induce the production of chemokines, 

cytokines, and IFNs. Poly (I:C) is a synthetic analog of double-stranded RNA, which serves 

as a molecular pattern associated with cells infected with RNA virus [250]. Both viral 

double-stranded RNA and its analog poly (I:C) are potent inducers of type I IFNs (IFN-α 

and -β), which are the key cytokines in antiviral host defense. Induction of type I IFNs by 

poly (I:C) occurs via activation of  TLR-3, resulting in the protection of mice and rhesus 
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monkeys from viral infection [251, 252]. Furthermore, TLR3 recognizes dsRNA and 

resultant signal transduction activates the nuclear factor-kappaB (NF-κB), resulting in pro-

inflammatory cytokine production [253]. Unlike other TLRs, TLR3 mRNA expression is 

restricted to DCs subsets and intestinal epithelial cells fibroblasts [254].  Only CD11c+ DC  

subset was shown to respond to poly (I:C), while plasmacytoid DC are stimulated by 

immunostimulatory bacterial DNA (CpG DNA) through TLR9 [255]. 

1.9.4 Imiquimod and Single stranded-RNA (ssRNA40) - (a TLR7 agonist) 

Imiquimod (an immune response modifier) activates innate and adaptive immune 

responses by binding to TLR7, with subsequent activation NF-B resulting in cytokine 

release [256]. Imiquimod exposure causes activation of immune cells to produce antiviral 

cytokines, particularly IFN-α,  TNF-α, and interleukin (IL)-12, IL-10, IL-1, IL-6, and IL-

8 [257].  Imiquimod also triggers IFN- production via T-cell stimulation, thereby 

promoting cell-mediated immunity [258]. IFN-γ released stimulates cytotoxic T 

lymphocytes, which is essential in the clearance of virally infected cells [259]. Thus, 

besides its anti-viral activity, imiquimod causes apoptosis of skin cancer cells, implicating 

its anti-tumoral activity [260]. The ability of Imiquimod to induce Interferon-alpha and 

other cytokines explains its acute antiviral and antitumor effects. Single-stranded RNA 

(ssRNA) is also known as the natural ligand of endosomal localized TLR7 [261, 262]. 

Influenza virus-derived ssRNA has been demonstrated to induce the production of 

proinflammatory cytokines in plasmacytoid DC following detection by TLR7 [263].  
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1.9.5 Pam3CSK4 – (a TLR2 agonist) 

Pam3CSK4 (Pam3CysSerLys4), is a synthetic triacylated lipopeptide (LP) that mimics 

bacterial lipopeptides [264]. Detection of Pam3CSK4 is mediated by TLR2, which 

synergizes with TLR1 via the cytoplasmic domain, triggers the signaling events resulting 

in activation of NF-κB [265]. Pam3CSK4 promotes Th1 responses, thereby serving as a 

beneficial antiallergic effect on allergic rhinitis [266]. Thus, the binding of TLR2 by its 

agonist Pam3CSK4 decreased allergic inflammation and skewed Th2 response toward Th1 

response. This suggests that activation of TLR2 by Pam3CSK4 activates the antigen-

presenting cells to produce cytokines such as IL-12, which induces IFN- producing Th1 

response, resulting in impaired Th2 cell differentiation and weakened eosinophilic airways 

inflammation. Other studies demonstrated that PAM3CSK4 instruct or bias the commitment 

of haematopoietic stem cells to favour myeloid cell, which correlate to the selective 

upregulation of transcription factors known to facilitate myeloid commitment [267]. This 

suggest that TLR2 agonists can shift the developing lineage committed progenitors to 

enhance the generation of effector cells associated with innate immune system. 

1.9.6 CpG oligodeoxynucleotides (ODN) - (a TLR9 agonist) 

Synthetic CpG ODN is the ligand for TLR9, and activation occurs via endosomal uptake 

of CpG ODN by TLR9 [268]. Following TLR9 activation, two different TLR9 signaling 

cascades occur namely- IFNα and NF-κB signaling pathway. Interaction of  TLR9 and 

CpG ODNs stimulate the innate immune system through direct and indirect induction of 

IFNs, chemokines, and pro-inflammatory cytokines [269]. Innate immune cells such as 

plasmacytoid DCs and natural killer cells are efficiently activated by CpG ODNs. 
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Furthermore, CpG ODNs stimulate the B-cell arm of the adaptive immune system, 

resulting in antibody production and the activation of antibody-dependent cell-mediated 

cytotoxicity (ADCC) [269]. This suggests that the overall immune responses induced by 

CpG ODNs should be beneficial for controlling numerous diseases where robust innate 

and adaptive immune responses serve as a requirement.  

CpG ODNs activation of the immune system has been shown to have a broad range of 

benefits.  For instance, CpG ODNs serve as a vaccine adjuvant and also treat viral, 

bacterial, and parasitic diseases [269]. Furthermore, the antitumor activity of CpG ODNs 

has also been demonstrated in a mouse model [269]. Therefore, CpG ODNs represent 

targeted immune-modulatory drugs with a broad range of potential applications.  

1.10 Immune signaling pathways for cytokine production 

The primary signaling pathways known to induce cytokine production in immune cells 

include the mitogen-activated protein kinase pathway (MAPKs), JAK-STAT and NF-κB 

pathway. MAPKs and STATs are cytoplasmic proteins that play a critical role in immune 

regulation, cytokine production and inflammatory response [270, 271]. Hence, the 

activation of MAPKs, STAT and NF-κB pathways initiate a cascade of intracellular 

signaling events resulting in the expression of various pro-inflammatory genes. 

1.10.1 Extracellular signal-regulated kinases (ERK) pathway 

Mitogen-activated protein kinases are highly conserved group of serine/threonine protein 

kinases that mediate intracellular signaling events required to accomplish various 

fundamental cellular processes like differentiation,  proliferation, apoptosis, motility, stress 
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response and survival [272, 273]. Conventional MAPKs consist of extracellular signal-

regulated kinase 1/2 (ERK1/2), p38 MAPKs, c-Jun amino-terminal kinase (JNK), and Big 

MAPKs (BMK) [273, 274].  

ERK is the first mammalian MAPKs to be characterized and exhibit different isoforms 

from ERK1-ERK8, but ERK 1and ERK2 are the most important among them. The two 

phosphorylation sites (tyrosine and threonine) are phosphorylated in order to activate the 

ERK1/2 signaling cascade, which occurs exclusively through MEK1 and MEK2 [275]. 

ERK1/2 shares 83% amino acid sequence identity, and they are highly conserved 

throughout eukaryotic cells. The ERK1/2 is primarily activated by the cell surface receptor 

enzyme (receptor tyrosine kinases), and they respond to various extracellular stimuli, 

including mitogens, cytokines, growth factors, bacterial products and environmental 

stressors [276]. Following stimulation,  ERK1/2 phosphorylates different substrates in 

many cellular locations, resulting in the induction of ERK1/2 dependent cellular processes 

[277]. 

1.10.2 Signal transducer and activator of transcription (STAT) signaling pathway  

The biological effects of IFN- are manifested via its interaction with the IFN- receptor 

complex localizes on the cells. The heterodimeric receptor complex consists of a ligand-

binding alpha subunit (IFNGR1) and a signal-transducing beta subunit (IFNGR2). There 

is higher affinity binding of IFN-γ to IFNGR1 when compared with IFNGR2. The 

interaction between the receptor and ligand initiates a signaling event that subsequently 

induces host protective immune responses [278]. IFN-γ binding crosslinks IFNGR1 and 
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IFNGR2 and phosphorylates Janus Kinases (JAK1 and JAK2). The inactive cytosolic 

transcription factor STAT1 becomes phosphorylated by the activated JAKs [279].  

All STATs have seven well-defined domains, including an N-terminal conserved domain 

and a C-terminal transactivation domain. The amino-terminal region prevents the 

dimerization of STATs in their inactive state [280]. SH2 domain is critical for recruiting 

STATs to activate receptor complexes and interaction with Janus (JAK) and Src kinases. 

It is the most conserved domain among STATs, and it plays a vital role in STAT signaling 

by facilitating homodimerization and heterodimerization, which are crucial for nuclear 

localization and DNA binding activities [281]. In an inactive or unstimulated cell, STATs 

are inactive and exists in an unphosphorylated state in the cytoplasm. Receptor tyrosine 

phosphorylation occurs upon cytokine stimulation and serves as a docking site for STATs 

through the SH2 domains leading to the reorientation of STAT proteins resulting in 

homodimerization or heterodimerization. Once phosphorylated, the dimerized STATs 

translocate to the nucleus and bind to specific regulatory sequences to activate or repress 

transcription of target genes. Although the classical JAK-STAT pathway is usually 

initiated by tyrosine phosphorylation, most vertebrate STATs also contain a second 

phosphorylation site, which is a serine, and serine phosphorylation also regulates STAT 

transcriptional activities [282]. STAT1 phosphorylation occurs at Tyr701, resulting in 

STAT1 dimerization, nuclear translocation and DNA binding. STAT1 can also be 

phosphorylated at serine (ser727) and serine phosphorylation is required for the maximal 

induction of STAT1 mediated gene activation. Phosphorylated STAT1 translocate to the 

nucleus and binds to GAS (gamma activated sequences) elements in the promoter region 

and mediates protective immunity by transcription of IFN-γ associated genes. Activated 
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STAT1 phosphorylation subsequently activates T-bet transcription factor, representing the 

onset of T-cell polarization to Th1 subset [283]. Recruitment of additional transcription 

factor Runx3, which utilizes IFN-γ promoter as its binding site, induces IFN-γ expression 

and simultaneous silencing of the IL-4 gene [284]. Hence, IFN-γ plays a crucial role in 

maintaining T-bet expression and suppresses the capability of Th1 cells to produce  IL-4 

[273]. 

1.10.3 Nuclear factor-kappa B (NF-B) signaling pathway 

The NF-κB protein represents Rel family, and it is associated with five structurally related 

members, which include RelA (p65), C-Rel, RelB, p105 (NF-B1) and p100 (NF-B2) 

[285]. Members of NF-B are characterized by the presence of Rel homology domain 

(RHD), which is essential for binding to cognate DNA elements.  The phosphorylation of 

NF-κB consists of two major signaling pathways, namely- the canonical and noncanonical 

pathways [286]. In contrast to the canonical NF-κB signaling pathway, which responds to 

various ligands of pattern-recognition receptors (PRRs), cytokine receptors, T-cell receptor 

as well as  TNF receptor superfamily members [287],  the non-canonical NF-κB pathway 

only responds to a specific group of stimuli such as ligands of a subset of TNF receptor 

superfamily members [286]. 

Under homeostatic conditions, the inactive NF-B is localized in the cytoplasm due to its 

interaction with IKB proteins. The binding of IKB proteins to inactive NF-B inhibits its 

nuclear translocation, resulting in cytoplasmic confinement. However, following TLR 

stimulation with a pathogenic molecule or cytokine, the ensuing signal transduction results 
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in NF-B activation [288]. This is achieved via the inducible degradation of IKB by 

activated IKK, resulting in nuclear translocation of canonical NF-B [289]. The primary 

role of NF-κB is the mediation of pro-inflammatory gene induction in innate immune cells 

and the regulation of T-cells effector function [290]. In addition, it has been reported that 

NF-κB regulates the activation of inflammasomes [291]. 

1.11 Role of signaling pathways in mycobacterial infection 

M. tuberculosis-complex PAMPs bind various PRRs expressed on innate immune cells 

resulting in the activation of different signaling pathways [292, 293]. Although 

mycobacteria infection leads to profound production of proinflammatory cytokines, the 

intracellular signaling pathways leading to the production of these cytokines are well 

studied. An increasing number of studies have revealed the role of MAPKs, STAT and NF-

kB family proteins in mycobacteria-induced proinflammatory cytokine production [294-

297]. However, there are inconsistent reports on the role of these proteins in mycobacteria-

induced cytokine production. One study shows that TLR2-ERK signaling in M. tuberculosis-

infected macrophages drives anti-inflammatory responses and inhibits Th1 polarization of 

responding T-cells [298]. In addition,  M. tuberculosis uses the TLR2-ERK signaling 

pathway in macrophages to facilitate its intracellular survival and prevent efficient 

elimination by antigen-specific IFN-γ-producing T-cells [299]. 

 In contrast, protective immune responses in seen in studies where activation of p38 and 

ERK mediates IFN-γ production from T-cell in response to M. tuberculosis infection, a 

defective pathway in patients with TB [300]. Also, Jung et al. revealed that ESAT6 directly 

induces IL-6 production in macrophages by activating STAT3 [301]. Furthermore, M. 
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tuberculosis induces the expression of proinflammatory and regulatory cytokines in human 

monocytes infected with M. tuberculosis via NF-κB and MAPK dependent mechanisms 

[302].  A recent study reported that M. tuberculosis activation of MAPKs and  NF-B via 

the TLR4 dependent pathway is critical in producing pro-inflammatory cytokines in DCs 

[303]. To date, no study has addressed the role of ERK and NF-B proteins in pro-

inflammatory cytokine production following stimulation of bDCs with M. bovis cell 

surface antigen.  In studies II and III, I addressed this gap in knowledge and provided strong 

evidence to show that ERK and NF-B proteins play a critical role in M. bovis-induced 

proinflammatory cytokine production in DCs 

1.12 Cytokines 

Cytokines are water-soluble proteins and glycoproteins produced by hematopoietic and 

non-hematopoietic cells to influence the activity of other cells [304]. They are critical in 

regulating immune cells by mediating cell to cell communication through autocrine and 

paracrine pathways. In a homeostatic condition, cytokine production is limited. However, 

with infectious conditions, cytokine induction is in response to the causative agent [305].  

Interaction of M. tuberculosis ligands with the receptors on innate immune cells causes cell 

activation and cytokine production, modulating innate and adaptive immune response to 

M. tuberculosis [306]. It has been reported that cytokines produced in response to a 

pathogen could be beneficial or harmful to the host [307]. Thus, the production of cytokines 

in response to M. tuberculosis infection is not always helpful to the host protection, instead 

some of these immune modulators promote pathogen survival [308]. Therefore following 

M. tuberculosis infection, two major groups of cytokines are released, namely 
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proinflammatory cytokines (beneficial to the host) and anti-inflammatory cytokines 

(harmful to the host). 

1.12.1 Proinflammatory Cytokines 

Proinflammatory cytokines are usually released by innate immune and non-immune cells 

following exposure to a pathogenic molecule. These cytokines promote both local and 

systemic inflammatory responses, and severe inflammatory response due to excessive 

generation of these cytokines results in tissue damage [307]. After encountering M. 

tuberculosis antigen by immune cells, several pro-inflammatory cytokines (IL-12, IL-1, 

TNF, IL-6,  IL-23, and IL-18) are produced, which control mycobacterial infection by 

induction of  Th1 immunity [309]. 

1.12.1.1 Interleukin 12 (IL-12) and control of mycobacterial infection 

Interleukin 12 is a pro-inflammatory cytokine composed of two subunits (p35 and p40 

subunits). While p35 is constitutively expressed at a low level, however the expression of 

p40 is induced with microbial stimulation [310]. The co-expression of these two subunits 

within a cell is required to produce a bioactive IL12p70 cytokine.  Production of IL-12 

following infection is critical for the induction of IFN- producing Th1 responses against 

intracellular pathogens. Hence, the binding of IL-12 to its receptor expressed on naïve CD4 

T-cells induces intracellular signaling cascades leading to activation and differentiation of 

naïve CD4 T-cells to IFN- producing Th1 subset [310]. Furthermore, IL-12 inhibits the 

polarization of Th2 and associated cytokines (IL-4 and IL-10). 

It has been reported that microbial stimuli are not potent enough to induce the production 
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of bioactive IL-12 cytokine. Thus, secondary signals in the form of CD40-CD40 ligand 

interaction are required to promote the production of bioactive IL-12 [310-312]. During 

IL-12 signaling, communication between cells occurs via CD40-CD40L interaction and 

this interaction is bi-directional, which allows signaling to both APCs and T-cells [313]. 

Thus, aside from CD40-CD40L interaction resulting in increased production of bioactive 

IL-12 from APCs, the interaction of CD40-CD40L also induce T-cell proliferation and 

IFN-γ production [313].  

Following M. tuberculosis infection, IL-12 produced by DCs synergizes with IL-18 to 

induce IFN- production from Th1 subset, which is essential for host protection against M. 

tuberculosis infection [314]. It has been revealed that IL-12-deficient mice are highly 

susceptible to M. tuberculosis infection [315]. Mutations in IL-12 and its receptor have 

also been demonstrated in individuals suffering from mycobacterial disease due to the 

attenuated production of IFN- [316]. This suggests that IL-12 protects the host against 

mycobacterial infection via induction of IFN-, thereby serving as a link between adaptive 

and innate host immune responses [317]. 

1.12.1.2 Tumor necrosis factor-alpha (TNF-) and mycobacterial infection 

Tumor necrosis factor-alpha glycoprotein is another proinflammatory cytokine produced 

by phagocytic cells. There are two isoforms of TNFs, namely TNF- and TNF-. Both 

TNF- and TNF- induce an immune response by binding to surface receptors TNFR1 and 

TNFR2, respectively. In homeostatic conditions, TNF- detection is rare. However, 

increased TNF levels are detected following infection or during malignant conditions 
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[318]. 

In mycobacterial infections, TNF- plays a significant role in protecting the host [319]. 

TNF- is the primary cytokine that maintains granuloma containing the infectious foci, 

thereby preventing dissemination [320]. In a mouse model, TNF- is essential in protecting 

the host from developing active TB by containment of latent infection within granuloma 

[320]. Mice lacking either TNF- production or its receptor are highly susceptible to M. 

tuberculosis infection [321]. In addition, mice lacking TNF- receptors or treated with an 

anti-TNF antibody are at high risk of infection with mycobacteria [322]. It has been shown 

that the neutralization of TNF- activity during latent TB infection triggers TB reactivation 

in  C57BL/6 mice resulting in host tissue damage and death [320].  Other studies also 

reported that TNF- signaling blockage increases mortality in zebrafish infected with M. 

marinum due to increased intracellular bacterial growth [323]. These findings indicate that 

TNF- is required for maintaining the integrity of granuloma structure, thereby inhibiting 

bacterial dissemination.  

1.12.1.3 Role of interleukin 6 (IL-6) in mycobacterial infection 

IL-6 is a multifunctional cytokine. IL-6, together with TNF-αand IL-1β, initiates early pro-

inflammatory responses [324]. Mice studies demonstrated that IL-6 might play multiple 

roles and contribute positively and negatively to host defense against M. tuberculosis 

infection. It has been shown that IL-6 plays a vital role in protection against murine M. 

tuberculosis infection [325] due to the influence of the CD4+ T cells response [326]. M. 

tuberculosis-infected IL-6-deficient animals show an impaired Th1 response and increased 
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bacterial loads, indicating a requirement for IL-6 in host resistance to M. tuberculosis 

infection [325, 327].  

In contrast, IL-6 is also associated with the pathogenesis of many chronic inflammatory 

diseases, including tuberculosis [328, 329]. For instance,  IL-6 secreted by M. tuberculosis-

infected macrophages suppresses the responses of uninfected macrophages to IFN-γ, 

resulting in increased proliferation of bacteria [330]. To understand which cellular process 

induced by IFN-γ is actually counteracted by IL-6, Dutta et al. studied the role of IL-6 on 

IFN-γ induced autophagy formation in virulent M. tuberculosis infection. They observed 

that  IL-6 inhibits both IFN-γ and starvation-induced autophagy in M. tuberculosis-infected 

macrophages [331]. Further studies revealed that increased levels of IL-6 in the lungs, 

along with increased levels of IL-1β, is significantly correlated with tuberculosis 

progression in genetically susceptible mice [328]. The downregulation of IL-6R expression 

on CD4 T-cells in patients with active pulmonary TB is associated with decreased Th17 

phenotype response, suggesting a role for IL-6 in the progression of TB in humans [332].  

1.12.1.4 Role of interleukin 1 beta (IL-1) in mycobacterial infection 

The pro-inflammatory cytokine IL-1β is a key mediator of inflammation and plays a vital 

role in the host's resistance to M. tuberculosis infections [333]. IL-1β directly kills M. 

tuberculosis in murine and human macrophages and promotes the recruitment of anti-

microbial effector molecules. The role played by IL-1β in host resistance has been 

demonstrated by the significantly reduced survival of IL-1β-/- or IL1R-/- mice following 

mycobacterial infection [334-336]. The increased susceptibility of mice lacking critical 

mediators of IL-1 signaling suggests that the initial production of IL-1 upon M. 
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tuberculosis infection is essential for establishing protective immune responses necessary 

for disease control [337].  

In contrast, IL-1 has been implicated in TB disease severity. Production of IL-1 is 

regulated after the onset of adaptive immunity via multiple mechanisms, including IFNγ 

production, which acts via the induction of nitric oxide synthase 2 (NOS2) [338, 339]. In 

susceptible mice, persistent IL-1 signaling can contribute to the accumulation of disease-

promoting neutrophils, and genetic variants that result in higher IL-1β production are 

associated with increased disease severity and neutrophil accumulation in humans [339, 

340].   This suggests that IL-1 blocking may ameliorate inflammation-induced tissue 

damage and improve the treatment outcome in TB infected hosts. 

1.12.1.5 Interferon-gamma (IFN-) and biological significance in mycobacterial 

infection 

Interferon-gamma is the primary subtype of type 2 IFNs, and it is established as a 

macrophage activating factor due to its role in activating macrophage physiologic 

activities. IFN- production is mainly by Th1 subset of CD4 T-cells, cytotoxic CD8 T-

cells,  NK cells and NKT cells [341, 342]. Also, it can be produced by DCs, macrophages, 

and B-cells [343]. IFN- has been demonstrated to have numerous immunomodulatory 

functions such as inflammatory activity and regulation of macrophage intracellular 

microbicidal effect [343]. Some of the immunomodulatory effects of IFN- on 

macrophages include induction of cytokine and nitric oxide production, which facilitates 

the killing of intracellular bacteria [344]. In addition, IFN-γ reverts the blockage of 
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phagosome-lysosome fusion caused by M. tuberculosis as part of its survival mechanism, 

as well as induction of autophagy to promote clearance of M. tuberculosis [345]. 

Furthermore, IFN-γ boosts human macrophage apoptosis in a NO-dependent manner [346].  

Several studies showed that IFN-γ orchestrates the induction of cellular immunity, which 

is the hallmark of TB infection.  Thus, IFN- induces the expression of antigen-presenting 

molecules on DCs, thereby increasing antigen presentation and induction of protective host 

immune response.  It has been demonstrated that a non-functional IFN-γ or IFN-γR 

signaling pathway enhances host susceptibility to less virulent strains. Also, dysfunctional 

IFN-γR promotes disseminated infection in children vaccinated with BCG [347]. Knock-

out mice lacking IFN-γ exhibit increased mycobacterial growth and developed necrotic 

granulomas [348]. The increased mycobacterial burden and host susceptibility are related 

to dampened cell-mediated immunity and poor expression of nitric oxide synthase 2 

(NOS2) [349].  

1.12.2 Anti-inflammatory cytokines 

Anti-inflammatory cytokines are the immune modulators that control pro-inflammatory 

cytokine induction, thereby inhibiting the inflammatory process [350]. These cytokines 

exhibit their immunomodulatory role by blocking the proinflammatory cytokine 

production or by interfering with their biological effects [350]. Thus, over-production of 

anti-inflammatory cytokines may compromise host protection induced by the 

proinflammatory cytokines. The three major anti-inflammatory cytokines secreted by 

immune cells include interleukin 4 (IL-4), interleukin 10 (IL-10), and transforming growth 

beta (TGF-) [350]. 
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1.12.2.1 Interleukin 10 and regulation of mycobacterial infection  

Interleukin 10  is a well-established anti-inflammatory cytokine produced by different 

immune cells [351].  It blocks immunopathology emanating from excessive activity of DCs 

and Th1 cells by down-regulating the production of IL-12 and TNF- [351]. Excessive IL-

10 production blocks the pro-inflammatory response to mycobacterial infection [352], 

which aids in pathogen escape. Production of IL-10 also supports mycobacterial survival 

by inhibiting CD4 T-cell responses and antigen presentation by mycobacteria-infected DCs 

[353]. Thus, DCs transportation of mycobacterial antigens to the draining lymph nodes was 

shown to be blocked by IL-10 [354]. Moreover,  IL-10 inhibits DCs mediated T-cell 

differentiation and recruitment of Th1 cells to the lungs of mice infected with M. 

tuberculosis [355]. Within the granuloma, IL-10 blocks phagosome maturation and IFN- 

mediated macrophage activation, resulting in impaired secretion of both ROIs and RNIs, 

required for mycobacterial killing [356]. In peripheral blood mononuclear cells isolated 

from TB patients, increased T-cell proliferation and IFN- production was observed 

following antibody neutralization of endogenous IL-10 [357]. These observations suggest 

that IL-10 favors mycobacterial infection by downregulating host Th1 immune responses. 

1.13 Negative regulators of cell signaling 

Several molecules negatively regulate cytokine signaling via various mechanisms to inhibit 

generation of excessive immune responses that result in host tissue pathology and 

autoimmunity. The key molecules involved in these signaling pathways are the primary 
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targets of negative regulators. Activation of the cytokine signaling pathways is blocked by 

the suppressor of cytokine signaling (SOCs) protein [358]. 

1.13.1 Suppressor of cytokine signaling (SOCs) and control of mycobacterial 

infection 

Suppressor of cytokine signaling (SOCs) proteins are the negative regulator of cytokine 

signaling [358, 359]. Eight members of SOCs proteins (CIS and SOCs1-7) have been 

reported in mammals [358]. Overexpression studies have demonstrated that SOCs1 and 3 

possess the same inhibitory role on various cytokine signaling [358]. Thus, SOCs1 and 3 

have been reported as inhibitors of tyrosine phosphorylation and nuclear translocation of 

STAT1 following IFN- stimulation. In contrast to SOCs1, which show robust inhibitory 

activity to IFN- signaling due to its higher affinity to Jak2, SOCs 3 exhibit less inhibitory 

activity because of its higher affinity for Tyk2. Hence, this indicates that SOCs1 and 3 are 

the primary inhibitors of IFN- mediated Jak /STAT signaling pathways.  

In addition to IFN- signaling, the initial step involved in TLR signaling is blocked by 

SOCs1 in macrophages [360]. SOCs protein has utilized several mechanisms to block TLR 

signaling pathways. For instance, SOCs inhibit TLR signaling by targeting IL-1 receptor-

associated kinase 1 (IRAK1) via its SH2 domain [361].  Also, SOCs1 causes proteasomal 

degradation of Mal, leading to inhibition of TLR/Mal-dependent NF-κB activation [362]. 

Furthermore, SOCs protein has been shown to regulate TLR-induced NF-κB activation by 

causing the degradation of NF-B p65 subunit, resulting in downregulation of p65 protein 

levels.  
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Bacterial pathogens exploit SOCs 1 and 3 proteins to manipulate cytokine receptor 

signaling and thereby influence infection outcomes as a strategy of evading host immune 

defenses [363]. This suggests that pathogens can induce SOCS1 and SOCS3 to evade 

deleterious host immune responses. Recent studies have reported that SOCs1 and 3 were 

elevated in active TB patients and contributed to the down-modulation of Th1-mediated 

IFN-γ responses [364]. Also, SOCs1 were reported to support mycobacterial growth in 

macrophages by inhibiting the secretion of IFN-γ production by T-cells in response to IL-

12 [365]. Additionally, SOCS3 induced by PPE18 inhibited NF-κB activation by 

diminishing the phosphorylation of IκBα [366].  In general,  the induction of SOCs1 and 3 

by mycobacteria results in the blockage of the pro-inflammatory response required for 

effective TB control [367]. 

1.14 Rationale and major objective 

Although numerous efforts have gone into studying the TB pathogenesis in the context of 

M. tuberculosis, it is still unclear the role and mechanism of M. bovis derive cell envelope 

antigens in bTB pathogenesis. From the above literature review, it is evident that the 

interaction between the M. tuberculosis-derived cell envelope antigens with the host innate 

immune cells is essential in determining the outcome of infection. However, there are gaps 

in knowledge, including how M. bovis-derived cell envelope antigens inhibit DCs 

maturation and how these antigens block the induction of protective Th1 immune response. 

Therefore, we sought to assess bovine dendritic (bDCs) activation upon treatment with M. 

bovis-derived cell surface protein, lipid and glycan antigens. We focused on bDCs because 
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they are key professional antigen-presenting cells that upon activation, can prime and direct 

the immune activity of naïve and memory T-cells essential for TB control [368, 369]. 
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CHAPTER 2. Stimulation of bovine dendritic cells by Mycobacterium bovis cell 

surface sugar extract is associated with decreased pro-inflammatory cytokine 

response 

(Innate Immunity 2020, Vol. 26(6) 537–546 DOI: 10.1177/1753425920929759) 

HYPOTHESIS   

Distinct antigenic components of M. bovis cell envelope induces differential pro-

inflammatory responses in bovine innate immune cells  

OBJECTIVES  

The primary objective is to use a functional biological assay to compare the stimulatory 

effects of bPPD, CWL and CSSE on bDCs in vitro.  

1. Determine the production of pro-inflammatory cytokines (IL-12 & TNF-a) following 

treatment of bDCs with bPPD, CWL and CSSE using ELISA.  

2. Assess for the phosphorylation of MAPKs (ERK) and NF-B in bDCs following 

treatment of bDCs with bPPD, CWL and CSSE using Western blot. 

3. Investigate the expression of SOCs protein following treatment with bPPD, CWL and 

CSSE on bDCs using Western blot 
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2.1 Introduction 

While considerable effort is being spent in the research and development of vaccines for 

bTB disease prevention and control, a licensed vaccine for use in cattle has yet to emerge. 

The live attenuated M. bovis bacillus Calmette-Guerin (BCG) vaccine that is used to 

immunize people has been shown to confer protection in cattle [370, 371]. However, BCG 

is not used in cattle because the tuberculin skin test routinely used to diagnose bTB in the 

field does not distinguish BCG-vaccinated animals from M. bovis-infected animals [372]. 

Therefore, a better understanding of the effects of M. bovis cell surface antigens on the 

bovine immune system will help in the development of bTB vaccine. 

 

Members of the M.tb-complex, which include M. tuberculosis - the human-adapted agent 

of TB and M. bovis, have on their cell surfaces a complex mixture of proteins, polar and 

apolar lipids, glycolipids and glycans with diverse biological properties [373-375]. These 

biomolecules play crucial roles in host-pathogen interactions and TB immunopathogenesis 

[61, 374-377]. Earlier studies reported that M. bovis-derived cell wall polar lipids compared 

to apolar lipids differentially stimulate proinflammatory responses in bovine monocyte-

derived dendritic cells [52]. Thus, M. bovis antigens separated into fractions may be a 

useful approach to identify immunostimulatory antigens from non-stimulatory antigens. 

There is no information on the effects of distinct M. bovis-derived protein, lipid and glycan-

enriched fractions on bovine immune cells to the best of our knowledge. In this study, the 

effects of three different types of M. bovis cell envelope fractions - purified protein 

derivative (bPPD) [378], total cell wall lipid (CWL) [379, 380], and cell surface sugar 

extract (CSSE) [65, 381] on bDCs activation was determined. We found that M. bovis 
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CSSE-treated bDCs exhibited little to no activation. The CWL fraction meanwhile induced 

more activation of bDCs than CSSE but less than bPPD and the lipopolysaccharide (LPS) 

control. Furthermore, the muted response of CSSE was found to be associated with 

decreased extracellular signal-regulated kinase (ERK) and nuclear factor kappa-B (NF-

κB) activation, and increased expression of suppressors of cytokine signaling 1 and 3 

(SOCS1 and 3). These observations taken together suggests that the M. bovis CSSE fraction 

contains immunomodulatory molecules that may aid in M. bovis pathogenesis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



61 

 

2.2 Materials and Methods 

2.2.1 Preparation or source of M. bovis cell envelope antigen fractions 

2.2.1.1 Bovine purified protein derivative (bPPD) was purchased from Prionics AG 

(ThermoFisher Scientific Inc.). The production of bPPD, which is a purified mixture of 

proteins prepared from the culture filtrate of heat-killed M. bovis grown in a synthetic 

medium is described elsewhere [378]. bPPD was diluted in PBS before use and the same 

batch of bPPD was used for cell stimulation throughout the entire study. 

 

2.2.1.2 Total cell wall lipid (CWL) from M. bovis was obtained commercially from BEI 

resources (https://www.beiresources.org/). The production of total CWL, which is a 

complex mixture of polar and apolar lipids and glycolipids has been described elsewhere 

[379, 380]. Briefly, M. bovis AF2122/97 was grown in glycerol-alanine-salts medium to 

late-log phase, pelleted and washed with phosphate-buffered saline (PBS), gamma-

irradiated and lyophilized. Total lipids were then extracted from the dried cells with 

chloroform/methanol (2:1). Water-soluble molecules were then removed from the organic 

extract by biphasic partitioning in water. The organic phase enriched with total CWL was 

collected, dried and weighed. Before use, the CWL was resuspended in ethanol and diluted 

further in PBS before use. The same batch of CWL was used for cell stimulation throughout 

the entire study. 

 

2.2.1.3 Cell surface sugar extract (CSSE), which has been shown to contain a complex 

mix of extracellular glycans and glycolipids, was enriched from the culture filtrates of M. 

bovis AF2122/97 grown in Sautons liquid media [65, 381, 382]. CSSE was extracted and 
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purified from M. bovis grown in our lab. Briefly, to 0.8 volumes of cell-free M. bovis 

culture filtrate, 2 volumes of methanol and 1 volume of chloroform were added to yield a 

homogenous single-phase mixture and incubated overnight at room temperature. To this 

mixture, water/chloroform (1:1) was added and after 30 minutes, the organic phase was 

allowed to partition from the aqueous phase and recovered. After washing with 0.9% NaCl, 

the organic phase containing CSSE was recovered, dried and weighed. Before use, the 

CSSE was resuspended in ethanol and diluted further in PBS before use. The same batch 

of CSSE was used for cell stimulation throughout the entire study. 

 

2.2.2 Isolation of bovine CD14+ monocytes and culture of monocyte-derived mature 

dendritic cells (bDCs) 

Blood was collected from healthy cattle in 60-mL syringes containing 7.5% 

ethylenediaminetetraacetic acid (EDTA). Peripheral blood mononuclear cells (PBMCs) 

were obtained from these blood samples using the Ficoll (GE Healthcare Bioscience) 

method of isolation[383]. CD14+ monocytes were isolated from PBMCs by positive 

selection using MACs columns (Miltenyi Biotec Inc.). Mature bovine dendritic cells 

(bDCs) were subsequently derived from CD14+ monocytes after culturing in a complete 

RPMI-1640 medium supplemented with 10% heat-inactivated fetal bovine serum and 

HEPES (Hyclone Laboratories Inc.), 2-mercaptoethanol (Sigma-Aldrich), recombinant 

bovine GM-CSF at 100 ng/mL (Biorad) and recombinant bovine IL-4 at 50 ng/mL (Biorad) 

for 6 days as previously described[384]. bDCs were assessed by flow cytometry and the 

expression of DC-specific marker CD206 was found to be greater than 97%.  

 



63 

 

2.2.3 In vitro cell culture and treatment 

Bovine dendritic cells were incubated in serum-free RPMI 1640 culture medium for 24 h.  

The serum-free medium was then replaced with 1 mL of complete medium containing 

either E.coli derived  LPS (1 µg/mL; Sigma-Aldrich), bPPD (1 µg/mL), CWL (1 µg/mL), 

and CSSE (1 or 10 µg/mL as indicated). In all experiments, the treated cells were incubated 

overnight at 37oC, 5% CO2, before supernatant collection. Untreated cells (culture medium 

only) served as negative control. Culture supernatants were collected for analysis of 

cytokine using ELISA. In a different experiment, treated bDCs were lysed with RIPA lysis 

buffer containing protease inhibitors at 5, 15, 30, 60, 120 and 240 minutes following media 

removal. The resulting cell lysate was used for Western blot analysis. 

 

2.2.4 Enzyme-linked immunosorbent assay (ELISA) 

Enzyme-linked immunosorbent assays were performed to determine the concentrations of 

IL-12 and TNF-α in bDC supernatants. Briefly, high-binding Immulon-2 (Thermofisher 

Scientific Inc.) ELISA plates and Maxisorp (Thermofisher Scientific Inc.) ELISA plates 

were respectively coated with bovine-specific TNF-α monoclonal antibodies produced in-

house and bovine-specific IL-12 monoclonal antibodies (AbD Serotec)[385] in coating 

buffer (Sodium carbonate, sodium bicarbonate and distilled water at pH 9.6), and incubated 

overnight at 4oC. Following incubation, the plates were washed 5 times with wash buffer 

(Tris buffered Saline containing 0.05% Tween-20 (TBST), pH 7.4) and blocked for 1 hr at 

room temperature. 200 µl/well of 0.1% gelatin (Sigma-Aldrich) and 0.1% casein (Sigma-

Aldrich) was used for both TNF-α and IL-12 blocking respectively. The micro-well plates 

were rinsed 5 times with wash buffer, and appropriately diluted recombinant IL-12 and 
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TNF-α standards were titrated in a 2-fold dilution to generate the standard curve. Samples 

were added undiluted (100 µL/well) and incubated at room temperature for 2 hrs. 

Thereafter, the plates were washed 5 times with washing buffer and 100 µL of biotinylated 

detection antibody at 4 µg/mL was added to all wells. After 1 hr incubation at room 

temperature, the plates were washed 5 times and 100 µL of streptavidin at (1/5000 dilution) 

was added to the wells and also incubated for 1hr. Then, 100 µL of p-Nitrophenyl 

Phosphate (PNPP) (1 mg/mL) was added to all the wells and incubated for 1 hr at room 

temperature.  Plates were read at 405 nm using Spectra Max plus microplate reader 

(Molecular Devices).  

 

2.2.5 Western blot analysis.  

Protein concentrations of lysates from bDCs treated with LPS, bPPD, CWL and CSSE 

were determined using Bicinchoninic acid assay (Thermofisher Scientific Inc.). 15 µg of 

total protein were loaded in each lane and resolved by SDS-polyacrylamide gel 

electrophoresis. Following electrophoresis, the protein bands were transferred to a 

nitrocellulose membrane using the iBlot 2 dry blotting system (Thermofisher Scientific 

Inc.). The membranes were blocked with 5 % powdered skimmed milk in Tris Buffered 

Saline (TBS) and incubated for 1 hour at room temperature. Thereafter, the membranes 

were incubated overnight with primary antibodies diluted in TBS supplemented with 5% 

bovine serum albumin and 0.05% Tween 20 (TBST). Immunoblotting of total and 

phosphorylated ERK, total and phosphorylated NF-κB (p65 subunit), SOCS1 and 3, and 

β-actin was performed as described previously[386]. The antibodies used were: anti-

p44/42 MAPK (ERK1/2) rabbit monoclonal antibody (clone 137F5) and anti-phospho-



65 

 

p44/42 (ERK1/2) (Thr202/Tyr204) rabbit monoclonal antibody XP® (clone D13.14.4E) 

(Cell Signaling Technology), anti-NF-κB p65 rabbit mAb (clone C22B4) and anti-

phospho-NF-κB p65 (Ser536) rabbit mAb (clone D13.14.4E) (Cell Signaling Technology), 

anti-SOCS1 (middle region) rabbit polyclonal antibody (Antibodies-online.com), anti-

SOCS3 (Internal) rabbit polyclonal antibody (LSBio), and anti-β-actin mouse monoclonal 

antibody (clone mAbcam 8226) (Abcam). After washing with TBST, the membranes were 

incubated for 1 hr at room temperature with Alexa Fluor® conjugated secondary antibody, 

at a dilution of 1:10000 in antibody dilution buffer. Signals were acquired using LI-COR 

imaging system (LI-COR Biosciences). Densitometry was performed using the band 

analysis tools of the Image Lab software version (LI-COR Biosciences). 

 

2.2.6 Statistical analysis. 

Cytokine data are presented as means ± standard error of means while densitometry data 

are presented as means ± standard error of the mean. A one-way ANOVA was used to 

compare differences in cytokine production using GraphPad Prism software. Significance 

was considered if p< 0.05.  
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2.3 Resu ts 

2.3.1 Bovine dendritic cells treated with CSSE produce little IL-12 and TNF-α.  

Antigen-presenting cells (APCs) like macrophages and dendritic cells produce the pro-

inflammatory cytokines tumor necrosis factor-alpha (TNF-α) and interleukin 12 (IL-12) in 

response to infection with members of the M. tb-complex[387, 388]. In turn, both TNF-α 

and IL-12 help trigger naïve T-cells to mediate a Th1 response critical for controlling 

intracellular pathogens like mycobacteria [369, 389]. Here we assessed the production of 

TNF-α and IL-12 by bovine dendritic cells (bDCs) upon treatment with 1 µg/mL each of 

M. bovis-derived bPPD, CWL and CSSE, with LPS serving as a positive control. Relative 

to no treatment, LPS at 1 µg/mL was found to induce the strongest response, followed by 

bPPD and CWL which were also at 1 µg/mL (Figure 2.1A and B). CSSE at 1 µg/mL 

induced very little to no production of TNF-α and IL-12 (data not shown). Strikingly, even 

when the concentration of CSSE was increased to 10 µg/mL, it failed to induce appreciably 

higher TNF-α and IL-12 compared to no treatment (Figure 2.1A and B). These results show 

that M. bovis-derived bPPD is best at stimulating bDCs followed by CWL, while CSSE is 

the poorest inducer of the pro-inflammatory response in these cells. 
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Figure 2.1: Low production of IL-12 and TNF- in CSSE simulated bDCs.  

Bovine dendritic cells were stimulated in vitro with bPPD (1 µg/mL), CWL (1 µg/mL) and CSSE (10 µg/mL) 

for 24 hr and the production of TNF-α (A) and IL-12 (B) were determined by ELISA. In all experiments, 

LPS (1 µg/mL) and unstimulated cells served as positive and negative control, respectively. Results are 

presented as mean +/- SEM of replicate wells and are representative of 3 independent experiments (**, p 

<0.01; ***p <0.001; ****, p <0.0001).  
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2.3.2 CSSE treated bDCs exhibit low phosphorylation ERK  

The pro-inflammatory response in APCs is mediated by signal-transduction events 

involving multiple cytoplasmic proteins known as mitogen-activated protein kinases 

(MAPKs)[390]. Activation of a MAPK protein called extracellular signal-regulated kinase 

(ERK) via phosphorylation plays a key role in pro-inflammatory cytokine production in 

response to products of bacterial origin such as LPS[386, 390]. Therefore, we sought to 

examine the phosphorylation of ERK in bDCs treated with bPPD (at 1 µg/mL), CWL (at 1 

µg/mL) and CSSE (at 10 µg/mL), with LPS (at 1 µg/mL) serving as positive control. LPS 

consistently induced phosphorylation of total ERK within 5 minutes post-addition, which 

decreased thereafter (Figure 2.2A to F). bPPD, on the other hand, induced phosphorylation 

of total ERK later at 15 minutes post-addition, and subsided shortly thereafter (Figure 2.2A 

and B). CWL treatment induced phosphorylation in ERK to the same level as LPS by 5 

minutes post-addition but maintained the same rate of phosphorylation longer than LPS 

treatment which had waned after 5 minutes, before also decreasing (Figure 2.2C and D). 

In contrast, CSSE induced less phosphorylation of total ERK throughout the duration of 

the experiment (Figure 2.2E and F). These results show ERK in CSSE-treated bDCs is 

poorly phosphorylated and activated and is consistent with the poor induction of pro-

inflammatory response in these cells. 
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Figure 2.2: Decreased phosphorylation of ERK protein in CSSE stimulated bDCs. Bovine dendritic 

cells were stimulated in vitro with bPPD (1 µg/mL), CWL (1 µg/mL) and CSSE (10 µg/mL) and lysate were 

collected at different indicated times. Total cell lysate were assessed for phosphorylation ERK protein (A, C 

& E) by Western blot using appropriate primary and secondary antibodies. The same blots were stripped and 

re-probed with antibodies against -actin, then used as loading controls. LPS (1 µg/mL) served as positive 

control. The ratios of phosphorylated ERK to their respective total proteins were calculated by densitometry 

and plotted as bar graphs (B, D & F).  Results are presented as mean +/- SEM of replicate wells and are 

representative of 3 independent experiments.  
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2.3.3 CSSE t e te    Cs exhibit low phosphorylation  n  t  ns  t   t  n    NF κB 

p65 subunit 

The multi-subunit NF-κB protein is a master transcriptional regulator that plays a vital role 

in immune activation[391, 392]. Moreover, transactivation of the p65 subunit of NF-κB by 

phosphorylation has been shown to upregulate pro-inflammatory gene expression in 

APCs[386, 391]. Therefore we also sought to assess the phosphorylation status of the NF-

κB p65 subunit over time in bDCs upon treatment with bPPD (at 1 µg/mL), CWL (at 1 

µg/mL) and CSSE (at 10 µg/mL), with LPS (at 1 µg/mL) treatment serving as positive 

control. LPS induced phosphorylation of total NF-κB p65 by 5 minutes post-addition and 

stayed at those levels for the entire duration of the experiment (Figure 2.3A to F). bPPD 

also induced phosphorylation of total NF-κB p65 within 5 minutes post-addition and with 

these levels remaining constant for the duration of the experiment (Figure 2.3A and B). 

Phosphorylation of NF-κB p65 upon treatment with CWL appeared to be more variable 

with total NF-κB p65 being phosphorylated within 15 minutes post-addition followed by a 

drop for the next 45 minutes before an increase of total NF-κB p65 by 120 minutes post-

addition (Figure 2.3C and D). In striking contrast, CSSE treatment does not induce 

phosphorylation of total NF-κB p65 for the entire experimental duration (Figure 2.3E and 

F). These results clearly show that NF-κB p65 in CSSE-treated bDCs are poorly 

phosphorylated and activated. The results of these experiments are also consistent with the 

poor phosphorylation of ERK and the low production of pro-inflammatory cytokines by 

bDCs after CSSE treatment.   
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Figure 2.3:  Reduced phosphorylation of NF-B in CSSE stimulated bDCs.  

Bovine dendritic cells were stimulated in vitro with bPPD (1 µg/mL), CWL (1 µg/mL) or CSSE (10 µg/mL) 

and the lysate was collected at different indicated times. The total cell lysate was assessed for phosphorylation 

NF-κB protein (A, C & E) by Western blot using appropriate primary and secondary antibodies. The same 

blots were stripped and re-probed with antibodies against -actin, then used as loading controls. LPS (1 

µg/mL) served as positive control. The ratios of phosphorylated NF-κB to their respective total proteins were 

calculated by densitometry and plotted as bar graphs (B, D & F).  Results are presented as mean +/- SEM of 

replicate wells and are representative of 3 independent experiments.  
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2.3.4 Treatment of bDCs with CSSE up-regulates SOCS 1 and 3 expression. 

 Our results suggest CSSE is a poor inducer of inflammation in bDCs. However, to 

determine whether this fraction simply lacks sufficient amounts of the bacterial products 

needed to activate pro-inflammatory responses or if it contains immunomodulatory 

biomolecules that actually suppress activation of pro-inflammatory responses in bDCs, we 

decided to look at the status of negative regulators of inflammation like the suppressor of 

cytokine signaling (SOCS) proteins. SOCS proteins prevent hyper-inflammation following 

interaction with microbial products and thus play a key role in ensuring an appropriate and 

balanced immune response[393]. Moreover, SOCS proteins exert their regulatory effects 

by blocking pro-inflammatory signal transduction through a negative feedback loop to 

control the activation of immune cells as well as cytokine production[394]. Specifically, 

the initial steps of TLR signaling in macrophages are inhibited by SOCS 1, while other 

studies have implicated SOCS 1 and 3 in the blockage of NF-κB p65 activation [395, 396]. 

In light of the poor activation of NF-κB observed in CSSE-treated bDCs, we assessed the 

expression of SOCS 1 and 3 in bDCs treated with either LPS or CSSE. We found that by 

5 minutes post-addition, CSSE caused an increase in the expression of SOCS 1 (Figure 

2.4A and B). In contrast, the expression of SOCS 1 was not increased substantially in LPS-

treated bDCs (Figure 2.4A and B). SOCS 3 expression was increased in CSSE-treated 

bDCs by 5 minutes post-addition (Figure 2.4C and D). However, LPS appeared to induce 

less SOCS 3 expression for the duration of the experiment (Figure 2.4C and D). These 

results clearly show that CSSE treatment increases SOCS 1 and 3 expression and may 

underlie the poor activation of NF-κB and pro-inflammatory cytokine production in bDCs.  
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Figure 2.4: Increased expression of SOCS 1 & 3 protein in CSSE stimulated bDCs. Bovine dendritic 

cells were stimulated in vitro with bPPD (1 µg/mL), CWL (1 µg/mL) and CSSE (10 µg/mL) and lysate were 

collected at different indicated times. Total cell lysate was assessed for phosphorylation SOCS 1 and 3 

proteins (A & B) by Western blot using appropriate primary and secondary antibodies. The same blots were 

stripped with stripping buffer and re-probed with antibodies against -actin, then used as loading controls. 

LPS (1 µg/mL) served as a positive control. The ratios of expressed SOCS 1and 3 to their respective total 

proteins were calculated by densitometry and plotted as bar graphs (C & D).  Results are presented as mean 

+/- SEM of replicate wells and are representative of 3 independent experiments.  
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2.4 Discussion & Conclusion  

During mycobacterial infection, pro-inflammatory cytokines like TNF-α and IL-12 

produced by DCs help drive the induction of Th1 immunity [368, 369]. However, 

numerous studies show that pathogenic mycobacteria can modulate pro-inflammatory 

signaling in macrophages and dendritic cells, thus enabling the bacterium to survive and 

persist within its host [61, 374-377]. Given that distinct lipidic components of the M. bovis 

cell surface appear to induce differential pro-inflammatory responses in bovine innate 

immune cells [52], the purpose of this study was to perform a direct head-to-head 

comparison of the effect of three different types of M. bovis cell envelope fractions on 

bDCs in order to help determine which of these might be suitable bTB vaccine components.   

We found that unlike bPPD, M. bovis-derived CWL and CSSE are relatively poor inducers 

of TNF-α and IL-12 production by bDCs, with the latter being the poorest of them all. 

Further analysis revealed that the activation of ERK and NF-κB in CSSE-treated bDCs 

were significantly reduced, suggesting that the meagre production and secretion of TNF-α 

and IL-12 may be due to reduced activation of the ERK/NF-κB signaling pathway. 

Alternatively, it is conceivable that decreased phosphorylation of ERK protein directly or 

indirectly affects phosphorylation of NF-κB. It is also possible that CSSE inhibits 

phosphorylation of NF-κB by directly blocking the ability of the inhibitor of Kappa B 

kinase (IKK) complex to degrade the inhibitor of Kappa B (IkB) proteins, thus preventing 

the activation and translocation of NF-κB to the nucleus. Further studies to delineate the 

mechanisms by which CSSE affects NF-κB phosphorylation in dendritic cells are 

warranted. 

Previous studies have shown that SOCS 1 suppresses dendritic cell maturation and 
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functions to prevent the development of systemic autoimmunity [397, 398]. Most 

importantly, pathogenic mycobacteria have been reported to induce the expression of 

SOCS 1 and 3 proteins as part of their virulence strategy [399, 400].  As such, we 

hypothesized that SOCS 1 and 3 might be involved in blocking IL-12 and TNF-α 

production in CSSE-treated bDCs. Indeed, we found CSSE treatment increased the 

expression of SOCS 1 and SOCS 3 proteins in bDCS. As such, the CSSE-mediated hypo-

activation of ERK and NF-κB and concomitant lack of TNF-α and IL-12 production may 

also be due to increased expression of SOCs 1 and 3 proteins.  

Components of  CWL and CSSE fractions, especially lipids, glycolipids, and glycans, play 

prominent roles in the evasion of host immune responses by pathogenic mycobacteria [60, 

61, 373-377]. While there is overwhelming evidence that many individual mycobacterial 

glycolipids and glycans exhibit immunomodulatory properties, their overall effect on the 

host immune system when immunostimulatory mycobacterial antigens are also present, 

remain to be ascertained and warrant further study. Nonetheless, based on our data, we 

speculate that the M. bovis-derived CSSE fraction and perhaps even the CWL fraction, 

albeit to a lesser extent, are enriched with immunosuppressive glycolipids and/or glycans 

that contribute to the overall survival and proliferation of the bacteria within its host. We 

further speculate that the mycobacterial products in these fractions would probably be 

detrimental to include or have present in any next-generation TB vaccine preparations.  

In conclusion, our study shows that the M. bovis-derived CSSE fraction is a very poor 

immune stimulator. Furthermore, our data suggest that this fraction contains molecules that 

contribute to the virulence of M. bovis by inhibiting the generation of effective host 

immune responses. 
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Transition statement 

 In chapter 2, I showed the M. bovis culture supernatant and surface extract (CSSE) is poor 

at stimulating bDCs. Given that the CSSE is enriched in polysaccharides, phenolic 

glycolipids and glycans, I hypothesized that one or more of these molecules might actually 

be anti-inflammatory and contribute to the virulence of the TB bacillus. Indeed, previous 

studies have demonstrated that the M. tuberculosis-complex CSSE is particularly enriched 

in a family of phenolic glycans called para-hydroxybenzoic acid derivatives (p-HBADs), 

and these have been shown to regulate cytokine production by suppressing host 

inflammatory response [68, 69]. In addition, a recent report demonstrated that pure 

synthetic-HBADs affect acute macrophage activation by inhibition of pro-inflammatory 

response and reduction of bactericidal nitric oxide production following BCG vaccination 

[70]. This indicates that p-HBAD-1 and related molecules could be undermining the innate 

immune responses and explain why CSSE is a poor inducer of inflammation in bDCs.  In 

this chapter, I sought to address this possibility and examine in detail the 

immunomodulatory effects of p-HBAD-1 on bDCs. 
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CHAPTER 3. Mycobacterium bovis parahydroxybenzoic acid derivatives (p-HBADs) 

exhibit a dual role in bTB pathogenesis by modulating pro-inflammatory responses 

in bDCs. 

 

3.1 Introduction 

It is known that M. tuberculosis -complex CSSE is enriched in p-HBADs, with M. bovis 

and BCG producing only p-HBAD-I, while M. tuberculosis generates both p-HBAD-I and 

II [46, 65]. In chapter 2, we observed that the M. bovis-derived cell surface sugar extract 

(CSSE) fraction exhibit a less immune-stimulatory effect on bDCs. Based on these results 

and given that the CSSE fraction of M. tuberculosis is enriched in p-HBADs which exhibit 

immunosuppressive properties in innate and adaptive immune cells [46]. In this chapter, I 

assessed the effect of M. bovis derived p-HBAD-I on bDCs stimulated with either 

lipopolysaccharide or bovine purified protein derivative.  Result shows that the effect of p-

HBAD-I in non-primed and IFN-γ primed bDCs varies. In non-primed bDCs, p-HBAD-I 

exhibits a tolerogenic response by blocking the production of pro-inflammatory cytokines. 

In contrast, the reversal effect was observed with IFN- primed bDCs, in which p-HBAD-

I induces an immunogenic response resulting in increased pro-inflammatory cytokine 

production. These data suggest that M. bovis-derived p-HBAD-I is an immune-regulatory 

molecule that might have a dual function in bTB pathogenesis.  
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3.2 Materials and Methods 

3.2.1 Preparation or source of M. bovis cell envelope antigen fractions 

3.2.1.1 Bovine purified protein derivatives (bPPD) and total cell wall lipid (CWL)- As 

previously mentioned in the materials and methods section in chapter 2,  bPPD was 

obtained from Prionics AG (Thermofisher Scientific Inc.). Similarly, CWL was acquired 

from BEI resources (https://www.beiresources.org/). The same batch of bPPD and CWL 

was used throughout the entire experiment 

3.2.1.2  Parahydroxylbenzoic acid derivatives (p-HBAD-1)- were extracted from the 

culture filtrate of M. bovis cultured in Sautons liquid media using as previously described 

[382]. Specifically, 2 volumes of CH3OH and 1 volume of CHCl3 were used to extract pure 

p-HBAD-1. The chemical synthesis of p-HBAD-1 is described elsewhere [69]. The 

synthesized p-HBAD-1 was analyzed after resolving by thin-layer-chromatography (TLC) 

using CHCl3/CH3OH/H2O (90:10:1), and the structure of synthetic p-HBAD-I was 

confirmed using NMRI and mass spectrometer. For confirmation of p-HBAD-1 structure 

using mass spectrometry, it was performed using a Voyager DE-STR MALDI-TOF 

instrument equipped with a pulse nitrogen laser emitting at 337 nm. Briefly, samples were 

directly applied onto the sample plate and then allowed to crystallize at room temperature. 

Samples were analyzed in the Reflector mode using an extraction delay time set at 100 ns 

and an accelerating voltage operating in positive ion mode of 20 kV.  
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3.2.2 Assessment of p-HBAD-1 in M. bovis CSSE using Thin-layer chromatography 

(TLC) 

M. bovis and M. bovis BCG-derived CSSE were extracted from the culture filtrate using a 

previously established protocol [382]. Determination of the presence of p-HBAD-1 was 

done by comparing extracted M. bovis CSSE with pure synthetic p-HBAD-I using Thin-

layer chromatography [67]. The presence of p-HBAD-1 in M. bovis CSSE was identified 

by visual detection using a short wavelength U  lamp and alpha-naphthol spray [69]. 

3.2.3 Generation of monocyte-derived bDCs. 

The generation of monocyte-derived bDCs has been previously described in the material 

and methods section of chapter 2. Briefly,  isolation of CD14+ monocytes from PBMCs 

was done via positive selection using MACs columns (Miltenyi Biotec Inc.) [401]. 

Immature bDCs were differentiated from CD14+ monocytes using recombinant bovine 

GM-CSF (100 ng/mL; Biorad) and IL-4 as previously described (50 ng/mL; Biorad) [402].  

 

3.2.4 In vitro cell culture and treatment 

Monocyte-derived bDCs were cultured and treated as previously described in the material 

and methods section of chapter 2. Briefly, stimulation of differentiated bDCs suspended in 

complete RPMI medium was done either with LPS (1 µg/mL; Sigma Aldrich), bPPD (1 

µg/mL), CWL (1 µg/mL) or one of several TLR agonists (Pam3CSK4 -10 µg/mL; HKLM-

109 cells/mL; LPS-100 µg/mL; Flagellin -10 µg/mL; synthetic lipopeptide (FSL-1)-10 

µg/mL; ODN-100 µg/mL; Poly I. C-500 µg/mL; Poly I. C [LMW]-500 µg/mL; 

Imiquimod-25 µg/mL; SSRNA-25 µg/mL (each from Invitrogen) in the presence or 
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absence of p-HBAD-I (200 μM; generously provided by Professor Eoin Scanlan, Trinity 

College Dublin, Dublin, Ireland). For IFN- primed bDCs, cells were first primed with 

recombinant bovine IFN- (rIFN-) (100 ng/mL; Sigma Aldrich Co.) for 2 h before 

stimulation in the presence and absence of p-HBAD-I.  In all experiments, LPS-treated and 

untreated cells served as the positive and negative controls, respectively. The controls, as 

well as stimulated cells, were incubated overnight at 37oC before supernatant collection.  

The concentrations of IL-12 and TNF-α (Sigma Aldrich) in the culture supernatants were 

determined by sandwich enzyme-linked immunosorbent assay (ELISA) as briefly 

described below. Following removal of culture media, treated bDCs were lysed at 5, 15, 

30, 60, 120 and 240 minutes with a combination of RIPA lysis buffer and protease 

inhibitors (Sigma- Aldrich). Cell lysate obtained was used for Western blot analysis. 

 

3.2.5 Enzyme-linked immunosorbent assay (ELISA) 

Assessment of the cytokine (IL-12 and TNF-α) concentration in bDCs supernatant was 

done using in-house antibodies by ELISA as was previously stated in the materials and 

methods section of chapter 2.  

 

3.2.6 Western blotting  

Activation of NF-B p65, expression of TLR2/4 and SOCS1/3 was determined by Western 

blot as previously described in materials and method section of chapter 2, albeit with slight 

modification. Briefly, overnight incubation of membranes with primary antibodies diluted 

in antibody dilution buffer (TBS supplemented with 5% bovine serum albumin and 0.05% 

Tween 20 (TBST) were done. The antibodies used were: anti-NF-κB p65 rabbit mAb 
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(clone C22B4) and anti-phospho-NF-κB p65 (Ser536) rabbit mAb (clone D13.14.4E) 

(from Cell Signaling Technology), human anti-bovine TLR 2 and 4 (Clone 12542) (from 

Cedarlane), anti- SOCS1 (middle region) rabbit polyclonal antibody (from Antibodies-

online.com), anti-SOCS3 (Internal) rabbit polyclonal antibody (from LSBio and anti-β-

actin mouse monoclonal antibody (clone mAbcam 8226). After washing with TBST, the 

membranes were incubated for 1 h at room temperature with Alexa Fluor® conjugated 

secondary antibody, at a dilution of 1:10000 in antibody dilution buffer. Signals were 

acquired using LI-COR imaging system (LI-COR Biosciences). Densitometry was 

performed using the band analysis tools of the Image Lab software version (LI-COR 

Biosciences). 

3.2.7 Statistical analysis. 

Cytokine and densitometry data are presented as Mean ±SEM. Both one-way and two-way 

ANOVA was used to compare differences in cytokine production. Significance was 

considered if p< 0.05. All analyses were carried out via GraphPad Prism software. 
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3.3 Results 

3.3.1 CSSE fraction of M. bovis and BCG contains p-HBAD-1 

In chapter 2, we showed that M. bovis-derived cell CSSE fraction exhibit less immune-

stimulatory effect on bovine dendritic cells (bDCs). We therefore speculated that the CSSE 

fraction might be enriched with molecules like p-HBAD-1 that possess 

immunosuppressive properties, and contribute to the survival and proliferation of the 

bacteria within its host. Indeed, analysis of M. bovis CSSE by thin-layer chromatography 

(TLC) confirmed the presence of p-HBAD-1 (Fig. 3.1). 

 

 

 

 

 

 

 

 

Figure 3.1: TLC showing the presence of p-HBAD-I in M. bovis derived CSSE. The arrow indicates the 

presence of p-HBAD-1 in M. bovis derived CSSE, which corresponds to the pure synthetic p-HBAD-1. 
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3.3.2 Pure p-HBAD-1 inhibits the production of TNF-α  n  I -12 by LPS-, bPPD- 

and CWL-stimulated bovine bDCs   in a dose-dependent manner 

Various cytokines elicited by DCs during the innate phase of activation play a crucial role 

in deciding the outcome of mycobacterial infection. As reported by Hickman et al., IL-12 

and TNF-α are pivotal for the induction of optimal Th1 responses against invading 

pathogens, including mycobacteria [403]. Earlier studies showed that pure synthetic p-

HBADs suppressed the production of IL-12 and TNF- in mouse macrophages stimulated 

with irradiated M. tuberculosis [69, 404]. However, the effect of M. bovis CSSE on bDCs 

had not been determined. To address this, the effect of different concentrations of synthetic 

p-HBAD-1 on IL-12 and TNF- production was determined following overnight 

incubation with LPS, bPPD or CWL. The result obtained was compared to LPS positive 

control. Relative to no treatment, the induction of IL-12 and TNF- was most potent in 

cells treated with 1 µg/mL of LPS (positive control). Likewise, treatment of bDCs with 

bPPD and CWL also led to the induction of these cytokines, albeit to a lesser extent than 

LPS (Figs. 3.2A to F). Interestingly, co-treatment of increasing concentrations of p-HBAD-

1 with each of these three different antigen preparations significantly abrogated production 

of IL-12 (Figs. 3.2A to C) and TNF-  (Figs. 3.2D to F) in a dose-dependent manner. These 

results suggest that M. bovis-derived p-HBAD-I inhibits cytokine production by bDCs.  
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Figure 3.2: Production of IL-12 and TNF- by non-primed bDCs stimulated with LPS and bPPD in 

the presence of various concentrations of p-HBAD-1. Bovine dendritic cells were stimulated with LPS (1 

µg/mL), bPPD (1 µg/mL), CWL (1 µg/mL) in the presence of various concentrations of p-HBAD-1 (200, 

400 & 800 μM/mL) overnight and the production of IL-12 (A, B & C) and TNF-α (D, E & F) were 

determined by ELISA. In all experiments, LPS (1 µg/mL) and untreated cells served as a positive and 

negative control, respectively. Results are presented as mean (+/- standard error of mean) of signals from 

replicate wells and represent 3 independent experiments (*p <0.0001).  
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3.3.3 Pure p-HBAD-1 inhibits cell surface TLR 1, 2, 4, 5 and 6-dependent signaling in 

naïve bovine bDCs stimulated with corresponding TLR agonists 

Following the recognition of microbial components by TLRs, intracellular TLR signaling 

pathways get activated, resulting in cytokine production [405]. In addition, TLR agonists 

(a synthetic analog of microbial components) have been reported to initiate an intracellular 

signaling event that results in the activation of a variety of proinflammatory immune 

responses [239]. Therefore, to determine the precise TLRs signaling pathways that p-

HBAD-1 targets to mediate its inhibitory effect, TLR-specific agonists were used to 

activate bDCs in the absence and presence of p-HBAD-I and cytokine production was 

assessed by ELISA. 

 Results showed that TLR agonists (Pam3CSK4, HKLM, LPS, Flagellin, synthetic 

lipopeptide-FSL-1) specific to surface membrane TLR (1, 2, 4, 5 and 6) exhibit their 

agonistic effects by inducing IL-12 and TNF- production in bDCs. However, in the 

presence of p-HBAD-1, the production of these cytokines via surface membrane TLRs-

dependent pathway was significantly suppressed (Figs. 3.3A and B).  Given that binding 

of ligands to surface membrane TLR stimulates specific intracellular downstream signaling 

cascades that initiate host defense responses,   this data suggests that p-HBAD-1 targets 

multiple surface membrane TLR signaling pathways to inhibit cytokine production. 

Alternatively, there might be a common and shared downstream point in surface TLR 

signaling pathway that is being targeted by p-HBAD-1. 
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Figure 3.3: Production of IL-12 and TNF- via surface membrane TLR signaling pathway in non-

primed bDCs stimulated with TLR agonist in the presence of p-HBAD-1. Bovine dendritic cells were 

stimulated with surface membrane TLR agonist in the presence and absence of p-HBAD-1 (200 μM/mL), 

following overnight incubation, the production of IL-12 (A) and TNF- (B) were determined by ELISA. In 

all experiments, untreated cells served as a negative control. Results are presented as mean (+/- SEM) of 

signal from replicate wells and represent three independent experiments (*, p <0.05; **, p <0.01; ***p 

<0.001). 
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3.3.4 Pure p-HBAD-1 enhances endosomal TLR 3, 7, 8, and 9-dependent signaling in 

IFN- primed bDCs stimulated with corresponding TLR agonists 

To determine if other TLRs signaling pathways are inhibited by p-HBAD-1, endosomal 

TLR agonists (ODN, Poly I. C, Imiquimod, ssRNA) were used to activate bDCs in the 

absence and presence of p-HBAD-1, and cytokine production was determined.  However, 

IFN-γ priming is a requirement for endosomal TLR signaling [406]. Moreover, IFN- 

produced by T-cells has a combined effect with TLR ligation to enhance DCs activation 

and function [406]. Accordingly, bDCs were primed with rIFN- for 2 h before incubation 

with endosomal TLRs agonists in the absence and presence of p-HBAD-1, and cytokine 

production following overnight incubation was assessed and compared ELISA. In the 

absence of p-HBAD-I, endosomal TLR agonists stimulate IFN- primed bDCs to produce 

IL-12 and TNF-. Interestingly, when p-HBAD-1 was added, it induced a robust increase 

of cytokine outputs over that triggered by endosomal TLR agonist alone (Figs. 3.4A and 

B).  
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Figure 3.4: Production of IL-12 and TNF- via endosomal TLR signaling pathway in IFN--primed 

bDCs stimulated with TLR agonist in the presence and absence of p-HBAD-I. Bovine dendritic cells 

were primed with rIFN- (100 ng/mL) for 2 h before stimulation with endosomal TLR agonist in the presence 

and absence of p-HBAD-I (200 μM/mL), following overnight incubation, the production of IL-12 and TNF-

 (A & B) were determined by ELISA. In all experiments, untreated cells served as a negative control. 

Results are presented as mean (+/- SEM) of signal from replicate wells and represent three independent 

experiments (*, p <0.05; **, p <0.01; ***p <0.001).  
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3.3.5 Pure p-HBAD-1 promotes cell surface TLR 4, 5 and 6-dependent signaling in 

IFN- primed bDCs stimulated with corresponding TLR agonists 

Based on the results with IFN- primed bDCs with respect to endosomal TLR signaling, in 

the effect of IFN- priming on surface membrane TLR signaling was also investigated. As 

was done with endosomal TLRs agonists, bDCs were primed with rIFN-γ for 2 h before 

incubating with surface membrane TLR agonists in the presence and absence of p-HBAD-

1, and the production of IL-12 and TNF- was assessed. Consistent with cytokine 

induction with endosomal dependent signaling pathway, result showed increased 

production of IL-12 and TNF- in IFN- primed bDCs treated with surface membrane TLR 

agonist in the absence of p-HBAD-I. However, a slight increase in these cytokines was 

observed in the presence of p-HBAD-1 (Fig. 3.5A and B). Considering that IFN- priming 

promotes DCs response to TLR ligands, these data collectively suggest that with IFN- 

primed bDCs, the inhibitory effect of p-HBAD-1 on TLRs signaling pathway and 

associated cytokines is either reversed or at least somewhat mitigated. 
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Figure 3.5: Production of IL-12 and TNF- via surface membrane TLR signaling pathway in IFN--

primed bDCs stimulated with TLR agonist in the presence of p-HBAD-1. Bovine dendritic cells were 

primed with rIFN- (100 ng/mL) for 2 h before stimulation with surface membrane TLR agonist in the 

presence and absence of p-HBAD-I (200 μM/mL). Following overnight incubation, the production of IL-12 

and TNF- (A & B) were determined by ELISA. In all experiments, untreated cells served as a negative 

control. Results are presented as mean (+/- SEM) of signal from replicate wells and are representative of 3 

independent experiments (*, p <0.05). 

A 

B 
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3.3.6 Pure p-HBAD-1 decreases TLR-2 and 4 expression in LPS-stimulated bDCs but 

not IFN- primed and LPS-stimulated bDCs 

Studies by others have shown that mycobacterial antigens can activate DCs maturation via 

ligation with TLRs, in particular TLR2 and TLR4 [407]. Given that priming of bDCs with 

IFN- appears to block the inhibitory effect of p-HBAD-1 on pro-inflammatory cytokine 

production via TLR signaling pathways, I decided to examine the expression of TLR2 and 

4 in non-primed and IFN- primed bDCs stimulated with LPS or bPPD.  

Indeed, exposure of both IFN- primed and non-primed bDCs to LPS or bPPD in the 

presence of p-HBAD-1 resulted in comparable induction of TLR2 expression at earlier 

time points (5-30 mins) (Figs. 3.6A to D). However, at later time points (30-240 mins), the 

up-regulation of TLR2 expression was suppressed by p-HBAD-1 in non-primed bDCs after 

30 and 60 mins post-stimulation with LPS or bPPD, respectively (Figs. 3.6E to H). 

Interestingly, p-HBAD-1 potentiated LPS or bPPD-induced up-regulation of TLR2 

expression in IFN- primed bDCs (Figs. 3.6 E to H).  

Assessment of TLR4 revealed a similar pattern of receptor expression in IFN- primed and 

non-primed bDCs. LPS or bPPD-induced TLR4 expression level remains strongly up-

regulated in IFN- primed bDCs during the later time point.  However, in non-primed 

bDCs,  p-HBAD-1 suppressed TLR4 expression post-stimulation with LPS or bPPD 

(Fig.3.6 I to L). Given that M. tuberculosis activated TLR2 and 4 promotes immunogenic 

response[408]. Therefore, the decreased production of pro-inflammatory cytokines in non-

primed bDCs following LPS or bPPD stimulation is related to the reduced expression of 

these key receptors. 
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Figure 3.6: Expression of TLR2 & 4 protein by rIFN- primed and non-primed bDCs stimulated with 

LPS and bPPD in the presence of p-HBAD-1. Bovine dendritic cells were primed with rIFN-g for 2 h 

before stimulation with LPS (1 µg/mL) or bPPD (1 µg/mL) in the presence of p-HBAD-I (200 μM/mL). The 

cell lysate was collected at different time points and assessed for expression of TLR2 & 4 protein by Western 

blot, and the result obtained were compared with non-primed bDCs (A, B, E, F, I & J). The same blots were 

stripped with stripping buffer and re-probed with antibodies against -actin, then used as loading controls. 

The percentage of expressed TLR2 relative to -actin was calculated by densitometry and plotted as bar 

graphs (C D, G, H, K & L).  Results are presented as mean (± SEMs) of 3 different blots. 

 

 

3.3.7 Pu e p HB   1 decreases  PS/ PP   n u e    t   t  n    NF B    te n in 

n n    me    Cs un  ke  n IFN     me    Cs. 

 

NF-κB (p65 subunit) is a key transcription factor involved in the expression of pro-

inflammatory genes, such as those encoding IL-12, TNF-α, IL-1β [409]. Previous studies 

demonstrated that  M. tuberculosis induces proinflammatory cytokines in human DCs by 

activation of NF-κB  [302]. To examine the effects of p-HBAD-1 on the activation of NF-

B in unprimed and primed bDCs stimulated with either LPS or bPPD, its phosphorylation 

was assessed by Western blot. Consistent with cytokine analysis data, p-HBAD-I was 

found to dampen LPS or bPPD-induced NF-B activation in non-primed bDCs. In contrast, 
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p-HBAD-I was found to augment LPS or bPPD mediated phosphorylation of NF-B in 

IFN- primed cells (Fig. 3.7A and B). Given that NF-B signaling plays a role in pro-

inflammatory cytokine production, these results suggest that suppression of IL-12 and 

TNF- by p-HBAD-1 in non-primed bDCs may be driven by its inhibition of NF-B 

phosphorylation and consequently of its activation. 

 

Figure 3.7:  Phosphorylation of NFB protein by rIFN- primed and non-primed bDCs stimulated 

with LPS or bPPD in the presence of p-HBAD-1. Bovine dendritic cells were primed with rIFN- (100 

ng/mL) for 2 h before stimulation with LPS (1 µg/mL) or bPPD (1 µg/mL) in the presence of p-HBAD-1 

(200 μM/mL). Cell lysate were collected after 1h and assessed for both phosphorylated and total NF-B (A) 

by Western blot, and the result generated was compared with non-primed bDCs. The same blots were stripped 

with stripping buffer and re-probed with antibodies against -actin, then used as loading controls. The 

percentage of phosphorylated NF-B relative to -actin was calculated by densitometry and plotted as bar 

graphs (B).  Data are presented as mean ± SEMs of 3 different blot. 
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3.3.8 Pure p-HBAD-1 up-regulates SOCs1 and 3 expressions in non-primed bDCs 

stimulated with LPS or bPPD unlike in IFN- primed  

To maintain a balanced inflammatory response following interaction with PAMPs, the 

TLR and IFN- signaling pathway is controlled by inhibitors of cytokine signaling known 

as  SOCs proteins, which provides a negative-feedback loop to inhibit cytokine signal 

transduction [410, 411]. The first step involved in TLR signaling has been reported to be 

blocked by SOCs1 in macrophages [107].  Mycobacteria are known to survive in the host 

by up-regulating SOCs1and 3 protein expression, resulting in the manipulation of cytokine 

responses, especially IFN-γ that is required in the resolution of mycobacterial infections  

[399, 400]. Therefore, we investigated whether p-HBAD-1 affects the expression of SOCs1 

and 3 in non-primed bDCs.  

Results showed that in non-primed bDCs treated either with LPS or bPPD, p-HBAD-1 up-

regulates SOCs1 expression during the early treatment period. However, the reverse was 

seen in IFN- primed bDCs (Fig. 3.8A to D). Increased SOCs3 expression by p-HBAD-1 

in non-primed bDCs was maintained during the entire treatment period with LPS, but an 

increased expression of SOCs3 was only seen after 5 mins of stimulation of non-primed 

bDCs with bPPD. Interestingly, down-regulation of SOCs 1 and 3 in IFN- primed bDCs 

treated with LPS or bPPD during the entire treatment period were observed (Fig. 3.8A to 

H). Since SOCs 1 and 3 play a major role in cytokine inhibition, these results suggest that 

the suppressive effect of p-HBAD-1 in pro-inflammatory cytokine production may also be 

related to the induction of SOCS1 and 3, which block NF-B activation. 
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Figure 3.8:  Expression of SOCS1 and 3 in non-primed and rIFN- primed bDCs stimulated with LPS 

or bPPD in the presence of p-HBAD-1.  Bovine dendritic cells were primed with rIFN-(100 ng/mL) for 2 

h before stimulation with LPS (1 µg/mL) and bPPD (1 µg/mL) in the presence of p-HBAD-1 (200 μM/mL). 

Cell lysate was collected at different time points and assessed for expression of SOCS1 (A & B) and SOCS3 

(E & F) by Western blot, and result generated was compared with non-primed bDCs. The same blots were 

stripped with stripping buffer and re-probed with antibodies against -actin, then used as loading controls. 

The percentage of expressed SOCs 1 and 3 relative to -actin was calculated by densitometry and plotted as 

bar graphs (C, D, G & H).  Results are presented as mean (± SEMs) of 3 different blots. 
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3.4 Conclusion 

Since we have shown that M. bovis-derived CSSE is a poor immune stimulator of bDCs. 

In this chapter, we confirm the presence of p-HBAD-1 in CSSE and analyze the effect of 

M. bovis derived p-HBAD-1 on bDCs pro-inflammatory response. Using controlled 

conditions, we showed that the effect of p-HBAD-1 in non-primed and IFN- primed bDCs 

varies. In non-primed bDCs, we observed that p-HBAD-1 is capable of blocking the 

functional phenotype of bDCs by reducing the production of pro-inflammatory cytokines 

(IL-12 and TNF-α) induced by either LPS or bPPD. Furthermore, we propose that the 

molecular mechanism by which p-HBAD-1 mediates its immunosuppressive effect in non-

primed bDCs depends on the regulatory effect of SOCs1/3 protein expression.  

Interestingly, these effects were reversed in IFN- primed bDCs, resulting in an increased 

pro-inflammatory response. These observations are consistent with previous studies, which 

showed that M. tuberculosis-derived p-HBADs suppress pro-inflammatory response in 

macrophages stimulated with LPS or irradiated M. tuberculosis [68, 70]. However, the only 

difference is that the effect of p-HBAD-1 in  IFN- primed cells was not assessed in 

previous studies. In summary, our study suggests that p-HBAD-I plays a dual role in 

inducing immunosuppressive and immunostimulatory responses in non-primed and IFN- 

primed DCs, respectively.  
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Transition statement 

We have shown in chapter 3 that the effect of p-HBAD-1 in non-primed and IFN-γ primed 

bDCs varies. In non-primed bDCs, p-HBAD-1 blocked the inflammatory response by 

decreasing pro-inflammatory cytokine production (IL-12 and TNF- ). Previous studies 

have shown that p-HBADs from M. tuberculosis can suppress host immune response in a 

mouse model and promote M.tb virulence [68, 69]. Furthermore, a recent report showed 

that M. tuberculosis derived p-HBAD-1 and related structures affect early macrophage 

activation by blocking pro-inflammatory response following BCG vaccination [70]. This 

suggests that the presence of p-HBAD-1 and related molecules could be undermining the 

host's protective innate immune response, perhaps by promoting a tolerogenic profile in 

DCs. In this chapter, we sought to investigate the tolerogenic effect of M. bovis derived p-

HBAD-1 in non-primed and IFN- primed DCs. 
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CH PTER 4.  Pu e p HB   1    m tes   t  e   en         e  n n n    me    Cs 

t e te  w th  PS     PP  

4.1. Introduction 

The immune system exists in equilibrium between tolerance and effective inflammatory 

responses. Recent findings suggest that innate immune cells (in particular DCs) are 

essential players in the induction of effective immunity and tolerance [412]. Immunogenic 

DCs mediate effective innate and adaptive immunity primarily due to their remarkable 

capacity to process and present antigens through major histocompatibility complexes 

(MHC) to naïve T-cells [316]. Unlike immunogenic DCs, regulatory DCs can induce 

tolerance resulting in T-cell anergy and deletion. Regulatory/tolerogenic DCs are 

characterized by the production of immunoregulatory factors (IL-10, IL-1, TGF-, IDO, 

arginase I and iNOS) and a decrease in the production of pro-inflammatory cytokines 

[163]. Considering the prolonged coevolution of tubercle bacilli with humans, the tubercle 

bacillus has evolved the capacity to persist in the host tissue in a dormant state. This ability 

primarily depends on cell wall glycolipids, which target antigen-presenting cells, thereby 

dampening effective T cell immunity [413]. A recent study demonstrated that 

mycobacterial glycolipid Di-O-acyl trehalose induces a tolerogenic phenotype in DCs by 

altering DCs maturation, leading to the expansion of regulatory T- cells [55]. In non-primed 

bDCs treated with cell wall antigens, we have shown that M. bovis derived p-HBAD-1 

suppresses pro-inflammatory response, and the reverse was seen in IFN- primed bDCs.  

This inhibitory effect in non-primed bDCs could be related to IL- 10 production, which 

exerts negative feedback inhibition. Given that IL-10 is a major characteristic of 
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tolerogenic DCs, we hypothesize that p-HBAD-1 might be inducing a tolerogenic profile 

in non-primed bDCs by upregulating the production of IL-10. Thus, the tolerogenic effect 

of p-HBAD-1 on LPS or bPPD treated IFN- primed and non-primed bDCs was assessed 

by checking for production of IL-10, expression of DCs activation markers and DC-SIGN 

receptor.  Results show that the effect of p-HBAD-1 in non-primed and IFN-γ primed bDCs 

varies. p-HBAD-1 induces a tolerogenic phenotype in non-primed bDCs activated with 

either LPS or bPPD by undermining DCs co-stimulatory molecules' expression and 

increasing the expression of DC-SIGN. In addition, the production of IL-10 was 

upregulated. However, in interferon-gamma primed bDCs, the tolerogenic phenotype was 

suppressed. These findings taken together suggest that M. bovis-derived p-HBAD-1 might 

promote a tolerogenic profile in non-primed bDCs. 
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4.2 Materials and methods 

4.2.1 Generation of monocyte-derived bDCs 

As previously described in materials and methods in chapter 2, generation of bDCs from 

CD14+ monocytes was done using recombinant bovine GM-CSF at 100 ng/mL (Biorad) 

and IL-4 at 50 ng/mL (Biorad) [384]. bDCs were assessed by flow cytometry and the 

expression of DC-specific marker CD206 was found to be greater than 97%.  

4.2.2 In vitro cell culture and treatments 

Monocyte-derived bDCs were cultured as previously stated in the material and methods 

section of chapter 2, although with a slight alteration. Briefly, the stimulation of 

differentiated bDCs suspended in complete RPMI medium was done with LPS (1 µg/mL) 

in the absence or presence of p-HBAD-I (200 μM; Eoin Scanlan Lab, Trinity College 

Dublin). For IFN- primed bDCs, cells were first primed with recombinant IFN- (rIFN-) 

(100 ng/mL; Sigma Aldrich Co.) for 2 h before stimulation in the presence and absence of 

p-HBAD-1. The stimulated cells were incubated overnight at 37oC before harvesting cells 

for flow cytometry staining.  Following removal of culture media, treated bDCs were lysed 

at 5, 30 and 60 minutes with a combination of RIPA lysis buffer and protease inhibitors 

(Sigma- Aldrich). Cell lysate obtained was used for Western blot analysis. 

 

4.2.3 Enzyme-linked immunosorbent assay (ELISA) 

The concentration of IL-10 in bDCs supernatant was determined by Enzyme-linked 

immunosorbent assays as previously described in the materials and methods section in 

chapter 2, but with slight modification. Briefly, high-binding Immulon-2 (Thermofisher 
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Scientific Inc.) ELISA plates and Maxisorp (Thermofisher Scientific Inc.) ELISA plates 

were respectively coated with bovine-specific IL-10 monoclonal antibodies produced in-

house in coating buffer (Sodium carbonate, sodium bicarbonate and distilled water at pH 

9.6), and incubated overnight at 4oC. Following incubation, the plates were washed 5 times 

with wash buffer (Tris buffered Saline containing 0.05% Tween-20 (TBST), pH 7.4) and 

blocked for 1 hr at room temperature. 200 µl/well of 0.1% gelatin (Sigma-Aldrich) was 

used for IL-10 blocking. The micro-well plates were rinsed 5 times with wash buffer, and 

appropriately diluted recombinant IL-10 standards were titrated in a 2-fold dilution to 

generate the standard curve. Samples were added undiluted (100 µL/well) and incubated 

at room temperature for 2 hrs. Thereafter, the plates were washed 5 times with washing 

buffer and 100 µL of biotinylated detection antibody at 4 µg/mL was added to all wells. 

After 1 hr incubation at room temperature, the plates were washed 5 times and 100 µL of 

streptavidin at (1/5000 dilution) was added to the wells and also incubated for 1hr. Then, 

100 µL of p-Nitrophenyl Phosphate (PNPP) (1 mg/mL) was added to all the wells and 

incubated for 1 hr at room temperature.  Plates were read at 405 nm using Spectra Max 

plus microplate reader (Molecular Devices).  

 

4.2.4 Western blotting  

The expression of DC-SIGN was determined by Western blot as previously described in 

the materials and methods section in chapter 2, albeit with slight modification. Briefly, 

overnight incubation of membranes with primary antibodies diluted in antibody dilution 

buffer (TBS supplemented with 5% bovine serum albumin and 0.05% Tween 20 (TBST) 

were done.   Also, immunoblotting of β-actin was performed. After washing with TBST, 
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the membranes were incubated for 1 h at room temperature with Alexa Fluor® conjugated 

secondary antibody, at a dilution of 1:10000 in antibody dilution buffer. Signals were 

acquired using LI-COR imaging system (LI-COR Biosciences). Densitometry was 

performed using the band analysis tools of the Image Lab software version (LI-COR 

Biosciences). 

4.2.5 Flow cytometry 

Bovine DCs were harvested using cold PBS (Thermofisher Scientific, USA) and 

centrifuged at 1200 rpm for 5 min. The supernatant was removed, pellet suspended at 5 

x105 cells in100 µl of FACOLA and bovine serum for 15 mins at 4 degrees. Cells were 

washed with PBS at 400g for 3 mins and stained with fluorochrome-labeled antibodies 

against the following molecules: CD80, CD86, CD40, MHCI and MHCII (Biorad, 

Canada). After 30 mins incubation on ice, the cells were re-suspended and washed in 300 

µl PBS and fixed in 2% paraformaldehyde. PE-labeled CD14 (marker of monocyte) 

monoclonal antibody (Biorad, Canada) was used to assess monocyte purity, while APC-

labelled CD206 (marker of DCs) monoclonal antibody (Biolegend, USA) was used to 

assess the DCs markers.   Flow cytometry analyses were carried out according to standard 

procedures. Briefly, stained cells were acquired using CyAn ADP (at least 100,000 events).  

To avoid false positive result, debris was first gated out, and a Near IR stain (Thermofisher 

Scientific) was used to remove dead cells. Thereafter, another gate was drawn to remove 

doublet cells. Subsequent gate was placed only on CD206 positive cells, and the geometric 

mean fluorescent intensity of the markers (CD80, CD86, CD40, MHCI and MHCII) were 

compared among the different treatment conditions in the overlay. The analyses were 
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performed using Kaluza analysis software. 

4.2.6 Statistical analysis. 

The difference in cell surface marker expression was compared using one-way analysis of 

variance (ANOVA). Significance was considered if p< 0.05. The data were further 

analyzed by GraphPad Prism software. 
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4.3 Results 

4.3.1 Pure p-HBAD-1 increases IL-10 production in non-primed bDCs stimulated 

with LPS or bPPD compared to IFN- primed bDCs  

In addition to pro-inflammatory cytokine production, DCs infected with mycobacteria also 

produce the anti-inflammatory cytokine interleukin 10 (IL-10) [153]. To determine 

whether p-HBAD-1 affects anti-inflammatory cytokine production, the production of IL-

10 in unprimed and IFN- primed bDCs was assessed. The quantification of IL-10 revealed 

that LPS or bPPD induced IL-10 production in non-primed bDCs compared to non-treated 

cells. Interestingly, when p-HBAD-1 was added in non-primed bDCs treated with either 

LPS or bPPD, it stimulated a significant increase in IL-10 outputs over that induced by 

IFN- primed bDCs at 24 h of culture (Fig. 4.1). Considering that IL-10 production inhibits 

pro-inflammatory cytokine production. This suggests that the decreased pro-inflammatory 

response in non-primed bDCs could also be related to increased IL-10 production. 
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Figure 4.1: Production of IL-10 by IFN- primed and non-primed bDCs stimulated with LPS and 

bPPD in the presence of p-HBAD-1. Bovine dendritic cells were primed with rIFN-  (100 ng/mL) for 2 h 

before stimulation with LPS (1 µg/mL), bPPD (1 µg/mL) in the presence of p-HBAD-1 (200 μM/mL) for 24 

h. The production of IL-10 was determined by ELISA, and the result obtained was compared with non-

primed bDCs. In all experiments, untreated cells served as a negative control. Results are presented as mean 

+/- SEM of signal from replicate wells and are representative of 3 independent experiments (*, p <0.05; **, 

p <0.01; ***, p <0.001).  

 

4.3.2 Pure p-HBAD-1 decreases the expression of co-stimulatory molecules in non-

primed bDCs induced by LPS unlike in IFN- primed and similarly treated bDCs 

Antigen-presenting cells respond to stimulation by expressing co-stimulatory molecules, 

which provide signal two required for optimal T-cells activation [414]. The expression of 

these molecules is increased in response to inflammatory stimuli or by engagement of 

pattern recognition receptors [415]. During the chronic phase of M. tuberculosis infection, 

it is known that co-stimulatory molecules (CD40, CD80 and CD86) are downregulated in 

the lung, limiting the capacity of responding T-cells to escape anergy [128]. One 
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mechanism reported to drive the downregulation of these molecules is the presence of the 

surface lipid trehalose 6,6′-dimycolate (TDM) [151]. Similar studies showed that distinct 

macrophage populations that were infected with wild-type M. tuberculosis did not express 

high levels of co-stimulatory molecules, while strains that were devoid of TDM strongly 

induced the expression of these molecules [416].  

Given that these co-stimulatory molecules play a significant role in the initiation 

and optimal sustenance of Th1 immune response, I hypothesized that p-HBAD-1 also 

dampens immune responses or induces immune tolerance in non-primed bDCs by altering 

the expression of these molecules. To confirm this hypothesis, non-primed and IFN- 

primed bDCs were stimulated with LPS in the presence of p-HBAD-1, and the cell 

responses were quantified and compared by the changes in expression of co-stimulatory 

molecules (CD40, CD80 and CD86) on CD206 positive cells using flow cytometry. 

Relative to no treatment, non-primed bDCs exposed to LPS resulted in the maturation of 

bDCs as manifested by significant up-regulation of CD40, CD80 and CD86 markers during 

24h culture.  In non-primed bDCs exposed to a combination of LPS and p-HBAD-I, LPS-

driven up-regulation of these co-stimulatory molecules was down-regulated by p-HBAD-

I. However, in IFN-γ primed bDCs exposed to LPS, p-HBAD-1 augments LPS-induced 

significant expression of CD40 and CD80; however, CD86 expression was not statistically 

significant.  The histogram plots (Figs 4.2A, C and E) and the corresponding bar chart (Figs 

4.2 B, D and F) indicate the expression of co-stimulatory molecules by CD206+ cells. Since 

the downregulation of co-stimulatory molecules is a characteristic marker of tolerogenic 

DCs, this suggests that p-HBAD-1 induces immune tolerance in non-prime bDCs. 
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Figure 4.2: p-HBAD-1 antagonizes the effects of LPS on bDCs maturation by decreasing the expression 

of co-stimulatory molecules compared to IFN- primed bDCs. Monocyte-derived bDCs were stained 

with specific antibodies (materials and methods) and assessed for the expression of co-stimulatory molecules 

by flow cytometry. Shown are histogram plots (A, C & E) and the corresponding bar chart (B, D & F) 

indicating the expression of co-stimulatory molecule markers by CD206+ cells. Results were expressed as 

means ± SEMs. Results are representative of 3 independent experiments (*, p <0.05; **, p <0.01). 
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4.3.3 Pure p-HBAD-1 down-regulates the expression of antigen-presenting molecules 

in non-primed bDCs induced by LPS unlike IFN- primed and similarly treated bDCs  

To further understand the mechanism by which p-HBAD-I induces tolerogenic DCs, its 

effect on antigen-presenting molecules was investigated. Regulatory DCs are characterized 

by normal levels of expression of antigen-presenting molecules. Thus, no difference in the 

expression of MHC molecules in both immunogenic and tolerogenic DCs [164]. To 

evaluate whether p-HBAD-I induces immune tolerance by affecting MHC molecule 

expression, I performed Flow cytometry to detect MHC I and II expression following 

stimulation of non-primed and IFN- primed DCs with LPS. Results showed that LPS 

promotes bDCs maturation by up-regulating MHC-I and II molecules in non-primed bDCs 

compared to the levels observed in untreated cells. Surprisingly, no difference was seen in 

the expression of these molecules in both non-primed and IFN- primed bDCs treated with 

LPS in the presence of p-HBAD-I.  Shown are histogram plots (Figs. 4.3A and C) and the 

corresponding bar chart (Fig. 4.3B and D) indicating the expression of these MHC 

molecules by CD206+ cells.  Given that the expression of these molecules in both non-

primed and IFN- primed bDCs remain the same, this suggests that MHC molecules do not 

contribute to tolerogenic phenotype induced by p-HBAD-I in non-primed bDCs. 
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Figure 4.3: p-HBAD-1 antagonizes the effects of LPS on bDCs maturation by decreasing the expression 

of antigen-presenting molecules. Monocyte-derived bDCs were stained with specific antibodies (materials 

and methods) and assessed for the expression of antigen-presenting molecules by flow cytometry. Shown are 

histogram plots (A & C) and the corresponding bar chart (B & D) indicating the expression of MHC 

molecules by CD206+ cells. Results were expressed as means ± SEMs. Results are representative of 3 

independent experiments (*, p <0.05; **, p <0.01). 
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4.3.4 Pu e p HB   1 u  e u  tes the ex  ess  n     C SI N  n n n    me    Cs 

un  ke IFN     me  

The interaction between mycobacteria and macrophages has been extensively investigated, 

and the mannose receptor has been demonstrated to act as receptors on macrophages for 

mycobacteria detection [417]. However, Dendritic Cell-Specific Intercellular adhesion 

molecule-3-Grabbing Non-integrin (DC-SIGN) has been implicated in the interaction of 

mycobacteria with DCs, and this receptor has a high affinity for mannose-containing 

carbohydrates [418]. It has been reported that DCs activation by ManLAM via DC-SIGN 

impairs maturation and induces the production of interleukin 10, resulting in immune 

tolerance [160]. Based on its carbohydrate recognition profile and its ability to induce 

immune tolerance, I hypothesized that p-HBAD-1 targets DC-SIGN to induce immune 

tolerance in non-primed bDCs. Following stimulation of non-primed and IFN- primed 

bDCs with LPS in the presence of p-HBAD-1, the results showed that p-HBAD-1 up-

regulates DC-SIGN expression in non-primed bDCs. However, the opposite effect was 

seen in IFN- primed bDCs, with p-HBAD-1 down-regulating DC-SIGN expression (Fig. 

4.4). This result suggests that p-HBAD-1 targets DC-SIGN to induce immune tolerance. 
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Figure 4.4:  Expression of DC-SIGN in non-primed and rIFN- primed bDCS stimulated with LPS 

in the presence of p-HBAD-1.  Bovine dendritic cells were primed with rIFN- (100 ng/mL) for 2 h before 

stimulation with LPS (1 µg/mL) in the presence of p-HBAD-I (200 μM/mL). Cell lysate was collected at 

different time points and assessed for expression of DC-SIGN (A) by Western blot, and the result generated 

was compared with non-primed bDCs. The same blots were stripped with stripping buffer and re-probed 

with antibodies against -actin (B), then used as loading controls. Results were expressed as means ± SEMs. 
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4.4 Conclusion 

Several factors, including DCs phenotype, antigen detection receptors, DCs maturation 

state, and exposure to microbial and soluble inflammatory factors, play a crucial role in the 

induction of regulatory DCs.  Regulation of DCs activation makers by mycobacteria helps 

them evade host immune response and establish infection [419]. Several studies have 

shown that different mycobacterial components block antigen-presenting capacity by 

inhibiting the expression of antigen presentation molecules [420-422]. In addition, a recent 

study showed that Di-O-Acyl-trehalose promotes a tolerogenic profile in murine DCs 

activated with mycobacterial antigens, resulting in low expression of DCs activation 

markers [55].   

We previously showed that p-HBAD-1 blocks the production of pro-inflammatory 

cytokines in non-prime bDCs, suggesting induction of immune tolerance.  This chapter 

confirms immune tolerance by showing increased IL-10 production in non-primed bDCs, 

with the opposite effect seen in IFN- primed bDCs. Previous studies established that IL-

10 blocks the protective pro-inflammatory response in M. tuberculosis-infected antigen-

presenting cells [356, 423]. Hence, increased IL-10 production might be associated with 

the decreased production of pro-inflammatory cytokines in non-primed bDCs. 

Furthermore, we showed that p-HBAD-1 only suppresses the expression of co-stimulatory 

molecules in non-primed bDCs, resulting in impaired dendritic cell function. The inhibitory 

effect on co-stimulatory molecules was reversed in IFN- primed bDCs, leading to 

enhanced antigen presentation to naïve T-cells and increased immune response. However, 

MHC I and MHC II expression were similar in both non-primed and IFN- primed bDCs. 



120 

 

This observation is consistent with the earlier report demonstrating that tolerogenic DCs 

poorly express costimulatory molecules compared to immunogenic DCs, but the 

expression of MHC molecule is comparable in both immunogenic and tolerogenic DCs 

[424]. Thus, these results demonstrate that p-HBAD-1 might induce tolerance in non-

primed bDCs by inhibiting secondary signals initiated by co-stimulatory molecules, 

thereby dampening DCs maturation and efficient antigen presentation required for optimal 

T-cells activation. Thus, by the lack of co-stimulatory molecules, non primed DCs are not 

to provide T cells with the necessary signal two required for optimal T cell activation. 

However, in IFN- primed bDCs, p-HBAD-1 does not induce a tolerogenic response. 

Further confirmation of tolerogenic DCs in non-primed bDCs was seen in increased 

expression of DC-SIGN known induction of immune tolerance following recognition of 

carbohydrate antigen. In conclusion, p-HBAD-1 released by M. bovis targets  DC-SIGN in 

non-primed bDCs to induce immune tolerance. 
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Transition statement 

In previously published studies of M. tuberculosis mutants deficient in the biosynthesis of 

p-HBADs, the mutants were found to grow similarly to the wild-type strain in both 

macrophages and C57BL/6 mice. However, the mutants induced a more severe and diffuse 

inflammation in the lungs compared to the wild-type strain [68]. Using in vitro studies, I 

have shown that pure p-HBAD-1 exhibits a dual role in non-primed and IFN- primed 

bDCs, with p-HBAD-1 inducing tolerogenic and immunogenic phenotypes, respectively. 

To further confirm the role of M. bovis derived p-HBAD-1 in bTB pathogenesis, it is 

important to assess the role of p-HBAD-1 by comparing M. bovis WT & mutant strains.  To 

achieve this, I developed the genetic tools needed to generate M. bovis mutants devoid of 

p-HBAD-1 using a homologous recombination approach [425].  
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CHAPTER 5.  Generation of M. bovis mutant 

5.1 Introduction 

Genetic manipulation of virulent mycobacteria is complicated due to its slow growth rate 

(>24 hour doubling time), high level of illegitimate recombination, pathogenicity (requires 

working in a biosafety level three laboratory), and low uptake of DNA [426]. Several 

techniques for generating mutants that were designed to prevent a high level of illegitimate 

recombination have been described [273].  Thus, the use of counter-selectable genetic 

markers and long linear dsDNA substrates inhibit illegitimate recombination [426, 427].  

Here, I attempted generating M. bovis mutant (lacking p-HBAD-1) via chorismate pyruvate 

ligase (CPL) gene disruption by homologous recombination. The CPL gene (600 base-pair 

length) encodes the enzyme that produces p-HBAD-1  [67]. The synthesis of p-HBADs is 

thought to proceed from p-hydroxybenzoic acid [67]. CPL produces p-hydroxybenzoic 

acid from chorismate and it is the sole enzymatic source of this product [67]. The purpose 

of generating M. bovis mutant is to enable future studies to understand the role of p-HBAD-

1 in bovine TB pathogenesis by comparing M. bovis WT & mutant strains.  

5.1.1 Generation of M. bovis mutant via gene disruption by homologous 

recombination. 

The ability to select genes to knock-out from the mycobacterial genome has greatly 

improved the understanding of mycobacteria.  Here, the  CPL gene is disrupted by the 

insertion of a hygromycin-resistance gene cassette in-frame [425].  A suicide delivery 

system (containing the mutated CPL gene and selection markers) was used to deliver the 

mutated CPL gene into M. bovis genomic DNA.  The disrupted version of the CPL gene 
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replaces the wild-type version through a two-step homologous recombination process.  

Selection involves selecting a single cross over event (SCOs) followed by a double cross 

over (DCOs). Single cross-over events occur during the first recombination and involve 

integrating suicide delivery plasmid DNA bearing the mutated CPL gene into M. bovis 

chromosome. The SCOs contain both WT and mutated CPL genes. In contrast, DCOs 

(originating from the second recombination) occur when the mutated CPL gene replaces 

the M. bovis WT CPL gene. Thus the DCOs either contain WT or mutated CPL gene [425]. 

The four major steps involved in the generation of mutated CPL gene include:- generation 

and cloning of mutated CPL gene into p2NIL vector, construction of suicide delivery 

plasmid DNA, transformation of suicide delivery plasmid DNA bearing the mutated CPL 

gene to M. bovis and selection of the mutant strain using a 2-step process. 

 

5.1.1.1 Generation and cloning of mutated CPL gene into p2NIL vector 

The amplified CPL gene was first mutated by insertion of hygromycin-resistant gene 

cassettes before cloning into a p2NIL vector as outlined in the scheme below (Fig. 5.1).

 

Figure 5.1 Steps in amplification of mutated CPL gene 

 

5.1.1.2 C nst u t  n    su    e  e   e y    sm    N  
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A marker gene cassette (required for selection) obtained from the pGOAL17 vector 

following digestion with PacI enzyme was cloned into the p2NIL with mutated CPL gene 

to create a suicide delivery plasmid DNA (Fig. 5.2). The resultant suicide delivery plasmid, 

which is a non-replicative vector [428], contains a kanamycin-resistant gene (from p2NIL 

vector), hygromycin-resistant gene (from mutated CPL gene), and gene cassette 

(containing LacZ and sacB selection makers).  

 

 

Figure 5.2 Steps in construction of suicide delivery plasmid DNA 

5.1.1.3. T  ns   m t  n    su    e  e   e y    sm    N   e   n  the mut te  CP  

 ene t  M. bovis 

The suicide delivery plasmid DNA containing the mutated CPL gene was transformed or 

introduced to M. bovis, where the mutated version of the CPL gene replaces the wild-type 

version by a two-step homologous recombination process. Since the suicide delivery 

plasmid bears kanamycin and hygromycin resistant genes, as well as cassette (lacZ/SacB) 

gene, transformation into M. bovis was done in a 7H10 agar plate containing kanamycin, 
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hygromycin and X-gal  

5.1.1.4 Selection of mutant strain using a 2-step process 

5.1.1.4.1 Single cross over events (SCOs) 

Since M. bovis cannot survive independently in hygromycin and kanamycin antibiotics, it 

has to integrate with suicide vector bearing these antibiotic-resistant cassette genes. Thus, 

suicide delivery plasmid DNA carrying the mutated CPL gene integrates into M. bovis 

chromosome following transformation. Hence, the first recombination event gave rise to 

SCOs containing two copies of the gene (both mutant and wild type) and the suicide vector 

integrated into the chromosome. The blue colonies, which are the SCOs containing mutant 

and WT gene, as well as the vector, were selected because they were hygromycin and 

kanamycin resistant (Fig. 5.3).  

 

Figure 5.3 Steps involved in selecting single cross over events (SCOs) 

5.1.1.4.2 Double cross over events (DCOs) 

Here, the mutated CPL gene bearing the hygromycin-resistance gene replaces the WT CPL 

gene. Thus, a second recombination event gives rise to DCOs that are either WT or mutant 

genes. Briefly, the bluish SCOs were streaked on 7H10 agar media without antibiotics to 

allow for second recombination events (eliminate suicide vector bearing kanamycin and 
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lacZ/SacB gene). Thereafter the DCOs were selected by re-suspending SCOs to 7H9 media 

before plating it out on an agar plate containing X-gal with or without sucrose. Potential 

DCOs, which are white colonies (loss of LacZ gene) and sucrose resistant (Loss of SacB 

gene), were selected because they lost the selection markers. To confirm if the potential 

DCOs have lost kanamycin-resistant gene associated with the SCOs, DCOs were tested for 

kanamycin sensitivity by plating on agar plates with or without kanamycin. DCOs colonies 

that are sensitive to kanamycin were selected, and the mutant was further confirmed by 

doing colony PCR using kanamycin sensitive colonies (Fig. 5.4).  

 

Figure 5.4 Steps involved in selecting double cross over events (SCOs) 
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5.2 Materials and Methods 

5.2.1 PCR amplification of CPL gene 

PCR amplification of the mutated CPL gene was performed in a total volume of 100 ul 

containing oligonucleotide primers, Phusion polymerase enzyme, dNTPs, DMSO, Phusion 

buffer, M. bovis AF2122 strain template, and sterile water. Following amplification, an 

aliquot was run in 0.8% agarose gel to confirm successful amplification. The amplified 

CPL gene was purified using an EZ-10 spin column PCR product purification kit, and the 

concentration of DNA was determined using NanoDrop® ND-1000 Spectrophotometer.  

Below is the PCR mixture setup and cycling program.  

Reaction Mixture Concentration 

Sterile dH20  

5 x phusion buffer 1 x phusion buffer 

10mM  dNTPs 200µM 

100% DMSO 6% 

100µM Forward primer 1µM 

100µM Reverse primer 1µM 

90ng/ml gDNA (M . bovis strain) 450ng 

2000 U/ml Phusion polymerase 2 units 

Total volume = 100 µl  

Table 5. 1: The reaction mixture for PCR setup 
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Step Time Temperature Cycles 

Initial denaturation 2 minutes 98 °C 1X 

Denaturation 30 seconds 98 °C 30X 

Annealing 1 minute 57 °C 30X 

Extension 1.5 minutes 72 °C 30X 

Final extension 7 minutes 72 °C 1X 

Storage Infinity 18 °C Infinity 

Table.5. 2: PCR cycling program used to amplify the CPL gene using Phusion polymerase 

 

5.2.2 Digestion of vector and insert 

In a 50 µl volume, confirmation of successful cloning of mutated CPL gene to p2NIL was 

done using single and double digestion with BamHI and HindIII. For the construction of 

suicide delivery plasmid DNA, P2NIL with mutated CPL gene and pGOAl17 was digested 

using PacI enzyme. Also, confirmation of suicide delivery plasmid DNA generation was 

done by digestion with Sal1 enzyme. Digestion reactions were gently mixed, spun down in 

microcentrifuge and incubated at 37°C overnight. 5μl volume of digested sample was run 

in agarose gel to confirm the success of digestion. 

Reaction Mixture p2NIL with Mutated CPL gene 

Sterile dH20  

10 X 2.1 NEBuffer 1X 

DNA 4 µg 

20,000 U/ml HindDIII 60 unit 

20,000 U/ml BamHI 100 unit 

Total volume =50 µl  

Table 5. 3: Set up for double digestion of p2NILvector with mutated CPL gene using BamHI  and HindIII 
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Reaction Mixture p2NIL with Mutated CPL gene 

Sterile dH20  

10X 2.1 NEBuffer 1X 

DNA 4 µg 

20,000 U/ml HindDIII 60 unit 

Total volume = 50 µl  

Table 5. 4: Set up for single digestion of P2NILvector with mutated CPL gene using HindIII 

Reaction Mixture p2NIL with mutated CPL gene pGOAL17 

Sterile dH20   

10 X CutSmart Buffer 1X 1X 

Vector  4 µg 

DNA Insert 4 µg  

10,000 U/ml PacI 100 unit 100 unit 

Total volume = 50 µl   

Table 5. 5: Construction of suicide delivery plasmid DNA. Set up for single digestion of  P2NILvector 

with mutated CPL gene and pGOAL17 using PacI 

 

Reaction Mixture Suicide delivery plasmid p2NIL with mutated 

CPL gene 

Sterile dH20   

10 X CutSmart Buffer 1X 1X 

   

Vector  4 µg 

DNA Insert 4 µg  

   

20,000 U/ml SalI 100 unit 100 unit 

Total volume = 50 µl   

Table 5. 6: Set up for single digestion of suicide delivery plasmid and P2NILvector with mutated CPL 

gene using Sal1enzyme 
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5.2.3 Ligation of the insert to vector using T4 DNA ligase enzyme 

The mutated CPL gene was ligated into p2NIL at a ratio of 1:10 using T4 DNA ligase. For 

suicide delivery plasmid generation, p2NIL with mutated CPL was ligated to gene cassette 

using T4 DNA ligase at a ratio of 1:30. Ligation reactions were incubated overnight at 16 

degrees and heat shock at 65 degrees for 10 minutes. 

Reaction Mixture Volume 

Sterile dH20  

10 x T4 buffer 1X 

p2NIL vector 15ng 

Mutated CPL gene 150ng 

400,000 U/ml T4 DNA ligase 1 µl 

Total Volume 20 µl 

Table 5. 7: Set up for ligation reaction of mutated CPL gene with p2NIL 

Reaction Mixture Volume 

Sterile dH20  

10 x T4 buffer 1X 

p2NIL with mutated CPL gene 15ng 

Cassette gene 410ng 

400,000 U/ml T4 DNA ligase 1 µl 

Total Volume 20 µl 

Table 5. 8: Set up for ligation reaction of p2NIL with mutated CPL gene with cassette gene 
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5.2.4 Transformation 

Following ligation of mutated CPL gene to p2NIL, the ligation mixture was transformed 

to E. coli Top 10 cells. Same E. coli Top 10 cells were also used in transformation using a 

ligation mixture containing cassette gene and p2NIL with mutated CPL. Briefly, frozen 

competent E. coli Top 10 cells were removed from the –80 °C freezer and thawed on ice 

at room temperature. 50 μl of the cells and 10 μl of the ligation mixture were dispensed 

into sterile microcentrifuge tubes chilled on ice. The tube was incubated on ice for 35 

minutes. The cells were heat-shocked at 42°C for 45 seconds in a water bath, then incubated 

in ice for 2 minutes. 500 µl of pre-warmed LB media were dispensed in the tube, and the 

mixture was incubated at 37°C in a shaking incubator (200 rpm) for 60 minutes. 250 μl 

was transferred to the center of an agar plate containing kanamycin (50 µg/ml), and a sterile 

spreader sealed in a flame was used to spread the solution over the entire surface of the 

plate. The plate was inverted and incubated overnight at 37 °C. After overnight incubation 

at 37 °C, the plate was examined for the presence of kanamycin-resistant colonies and 

stored at 4 °C.  

5.2.5 UV irradiation of suicide delivery plasmid DNA and electroporation into 

electrocompetent M. bovis 

Following plasmid purification of suicide delivery plasmid DNA, an aliquot of suicide 

delivery plasmid DNA was subjected to UV energy for a few minutes. UV treatment can 

cause the incorporation of point mutations on the treated DNA. Thereafter, 

electrocompetent M. bovis was prepared using an established protocol[429].  Briefly, M. 

bovis was grown in 30 mL of Middlebrook 7H9 liquid media to the mid-logarithmic phase 
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of growth (OD600nm ~ 0.5 to 0.7). Then, 5ug of UV treated and non-treated suicide delivery 

plasmid DNA was electroporated into electrocompetent M. bovis and incubated for 24h.  

The entire transformation mix was plated out onto 7H10 plates containing kanamycin, 

hygromycin, and X-gal selection markers. Plates were incubated at 37 ℃ for 3 to 5weeks. 
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5.3 Results 

5.3.1 Mutated CPL gene of fragment size 2.1kb amplified from pUC19 vector 

PCR was used to amplify the mutated CPL gene bearing the hygromycin-resistant gene 

cassette from the pUC19 vector.  PCR product was confirmed via gel electrophoresis. 

Result showed a correct fragment size of 2.1kb CPL gene (Fig. 5.5).  

 

Figure 5.5: Amplified mutated CPL gene of fragment size 2.1kb 

5.3.2 Mutated CPL gene of fragment size 2.1kb amplified from p2NIL vector 

following digestion with HindIII enzyme 

Amplified mutated CPL gene and P2NIL vector were first digested and purified with 

HindIII (Shown in Tables 3 & 4). Thereafter mutated CPL gene was cloned into HindIII 

sites of p2NIL vector to generate p2NIL with mutated CPL.  Following transformation into 

Top 10 E. coli competent cells, purified plasmid DNA from several clones were selected 

11
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for screening by PCR using CPL primers. PCR products were analyzed on a 0.8% agarose. 

Results showed 2 positive clones with a fragment size of 2.1kb, which correspond to the 

mutated CPL gene (Fig. 5.6).  

 

Figure 5.6: Amplified mutated CPL gene from 2 positive clones 

 

5.3.3 Confirmation of p2NIL with mutated CPL gene from 2 positive clones using 

HindIII and BamHI enzymes 

To further confirm the 2 positive clones obtained following transformation, single and 

double digestion using HindIII and BamHI was used to digest p2NIL with mutated CPL 

gene. For clone 1, uncut or single digestion of the p2NIL construct gave a correct size 

fragment of 6.8kb (correspond to p2NIL with mutated CPL gene). However, double 

digestion of the same construct gave a 2 sized fragment of 4.7kb and 2.1kb, which 

correspond to p2NIL and mutated CPL gene, respectively. A similar observation was seen 
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with clone 2 with double digestion resulting in 2 fragments compared to single digestion. 

This data showed successful cloning of the mutated CPL gene into p2NIL vector (Fig. 5.7). 

 

Figure 5.7: Confirmation of P2NIL with mutated CPL gene from 2 positive clones using HindIII and BamHI 

enzymes 

 

5.3.4 Confirmation of pGOAL17 gene cassette of fragment size 6.3kb following 

digestion with PacI enzyme 

To construct the suicide delivery plasmid DNA, PacI enzyme was used to digest pGOAL17 

(to release the cassette gene) and p2NIL construct. The digested product was confirmed 

using gel electrophoresis. Result showed pGOAL17 gene cassette of fragment size 6.3kb 

as well as p2NIL with mutated CPL gene (6.8kb) (Fig. 5.8). 
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Figure 5.8: Digestion of pGOAL17 and p2NIL construct with Pacl enzyme 

 

5.3.5 C n   m t  n    su    e  e   e y    sm    N   y    est  n w th S   1 enzyme  

The fragment containing the cassette gene (6.3kb size) from pGOAL-17 was gel purified 

and cloned into PacI site of the p2NIL construct. Following transformation in the Top 10 

cells, one positive clone was obtained. The positive clone was confirmed by digesting with 

Sal-1 enzyme, and it gave the correct one-size fragment of 13.8kb of suicide delivery 

plasmid DNA.  However, Sal-1 digestion of the p2NIL construct, which is a negative clone, 

gave a fragment size of 6.8kb. This suggests that the positive clone possesses suicide 

delivery plasmid DNA (Fig. 5.9).  
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Figure 5.9: Confirmation of suicide delivery plasmid DNA by digestion with Sal-1 enzyme 

 

5.3.6 Se e t  n     s n  e    ss   e  e ents (SCOs) 

The suicide delivery plasmid was transformed into M. bovis, plated in a 7H10 agar plate 

containing the ampicillin, hygromycin, and x-gal selective markers, followed by incubation 

at 37℃.M. bovis transformed with suicide delivery plasmid DNA was not successful. Thus 

far, no SCOs were observed in agar plates following extended periods of incubation.  
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5.4 Conclusion 

Homologous recombination occurs between two copies of identical or highly-homologous 

sequences and is mediated by RecA [430]. Although homologous recombination is 

relatively straightforward in Mycobacterium smegmatis, it proved far more challenging to 

perform in slow-growing mycobacteria, and the reasons for this remain largely unknown. 

However, several strategies have been used to overcome this challenge. These include the 

use of long flanking regions [431, 432], UV-treated DNA substrates [433], counter-

selectable markers [434], development of improved delivery strategies such as 

temperature-sensitive plasmids, and use of suicide (non-replicating) plasmids [434, 435]. 

In my attempt to generate M. bovis mutant using homologous recombination, some of the 

above strategies were used, and I successfully cloned and prepared plasmid constructs 

required to disrupt the gene encoding a key enzyme involved in p-HBAD synthesis in M. 

bovis. This will be used in future efforts to generate an M. bovis mutant deficient in p-

HBAD-1 for detailed studies. Thus,  naïve and BCG vaccinated mice will be challenged 

with M. bovis mutant lacking p-HBAD-1, and the pro-inflammatory response, bacterial 

burden, and host survival will be assessed. 
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CHAPTER 6: General discussion and conclusions 

The overarching goal of this research work was to understand the pathogenesis of bTB by 

assessing the immunoregulatory role of M. bovis derived p-HBAD-1 on bDCs. 

The cell envelope of all the members of M. tuberculosis complex is decorated with glycan 

and glycolipids that are involved in host-pathogen interaction and disease pathogenesis. 

Interaction of M. t tuberculosis cell envelope-derived glycolipids and glycan with DCs alter 

their cytokine production and antigen presentation efficiency [55]. However, there is 

limited information on the immunogenicity of M. bovis cell wall antigen. To fill in the 

knowledge gap, I hypothesize that M. bovis cell envelope distinct antigenic components 

induce differential pro-inflammatory responses in bDCs. This was tested by comparing the 

stimulatory effects of bPPD, CWL and CSSE on bDCs in vitro.  Results showed that  M. 

bovis-derived CSSE is a poor immune stimulator of bDCs [296]. Given that the CSSE 

fraction of M. tuberculosis has been found to be enriched in p-HBADs which suppress host 

immune response [46]. Therefore, to identify the particular molecules contributing to the 

low immune-stimulatory effect of CSSE, and we proposed that M. bovis CSSE fraction 

contains p-HBAD-1, which was confirmed via Thin-Layer Chromatography. Further 

assessment of the role of p-HBAD-1 on bDCs showed a varying effect in non-primed and 

IFN- primed bDCs.  

In non-primed bDCs, p-HBAD-1 blocks the production of pro-inflammatory cytokines 

induced by LPS, bPPD and CWL. The reduction in IL-12 and TNF- production in non-

primed bDCs is consistent with the previous observation from M. t tuberculosis derived p-

HBADs, which was reported to suppress cytokine production in bone marrow-derived 
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macrophages [404].   This suggests that activation machinery in non-primed bDCs has been 

altered by M. bovis derived p-HBAD-I.  Thus, the attenuated production of IL-12 and TNF-

 in non-primed bDCs would interfere with the activation of Th1 cell immunity (protective 

immune response), thereby tilting the immunological balance towards Th2 immune 

response [436].  

On the contrary, p-HBAD-1 strongly promotes LPS/bPPD‐stimulated IL-12 and TNF- 

production in IFN‐γ primed bDCs. This interesting observation could be related to the 

priming of DCs with rIFN-. A vital pathway for IL-12 maximal output is the requirement 

for priming of DCs and macrophages with IFN- [406]. During infection, NK cells, 

activated Th1 lymphocytes, and cytotoxic T lymphocytes (CTLs) are the principal source 

of  IFN-γ, which serve as a positive feedback mechanism for robust IL-12 production, and 

DCs are responsive to IFN- as they express IFN‐γR [437]. IFN- produced by these cells 

have a combined effect with TLR ligation to enhance DCs activation and function [406]. 

Another study reported that priming APCs with IFN-γ triggers subsequent TLRs 

inflammatory response to release high levels of pro-inflammatory cytokines [406].  

In mycobacterial infection, it has been demonstrated that in the absence of IFN-, DCs 

infected with M. tuberculosis ligand produce high levels of IL-10 and IL-23, but a small 

amount of IL-12. However, priming DCs with IFN- restores their ability to produce IL-

12 efficiently and block IL-10 production [438]. Given that IFN- priming of DCs 

promotes the maximal output of pro-inflammatory cytokines, this suggests that the 

increased pro-inflammatory response in IFN- primed bDCs is IFN‐γ dependent, which 
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supplies a positive feedback signal to bDCs. 

To reveal the molecular basis by which p-HBAD-1 mediated its effects on bDCs functions, 

we analyzed the expression of TLR 2 and 4, as well as its downstream signaling pathway. 

In non-primed bDCs, we observed that the decrease in pro-inflammatory cytokine 

production is associated with decreased expression of TLR2 and 4 and the downstream 

surface membrane signaling pathway. In contrast, increased cytokine production in IFN- 

primed bDCs is mediated via endosomal and surface membrane TLRs.  

To further understand the molecular mechanism regulating cytokine production in non-

primed and IFN- primed bDCs, the effect of p-HBAD-1 to NF-B on activation was 

determined. Following initiation of the TLR signaling pathway, many signaling proteins 

are recruited, leading to the activation of a key NF-кB transcription factor. Previous studies 

showed that the anti-inflammatory effect of various mycobacterial components is due to 

their effect on NF-B phosphorylation. For example, Liu et al. showed that M. tb 

recombinant leucine-responsive regulatory protein (rLrp) inhibits LPS-induced TNF-α, IL-

6, and IL-12 production by blocking the nuclear translocation of NF-κB [439]. 

Furthermore, mycobacterial glycolipid (PGL-1 and PGL-tb) produced by M. tb clinical 

isolates were reported to block TLR2 agonist-driven activation of NF-κB and cytokine 

production [58, 440], as well as decreased TRIF-dependent  TLR4 signaling in 

macrophages resulting in limited pro-inflammatory responses [441]. In line with this, we 

observed that p-HBAD-1 blocks the phosphorylation of NF-кB in non-primed bDCs unlike 

in IFN- primed. Given that NF-B activation regulates pro-inflammatory cytokine 
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production, this suggests that the cytokine inhibitory effect of p-HBAD-1 in non-primed 

bDCs could be related to decrease activation of NF-B. 

Induction of the proinflammatory phenotype in DCs by mycobacterial infection is 

accompanied by the regulatory response, including SOCs protein expression. The SOCs 

family of inhibitors has received a lot of attention in relation to DCs. For instance, the 

expression of SOCs protein has been shown to be up-regulated in DCs infected with M. tb 

[442]. Specifically, DCs overexpressing SOCs3 exhibited a tolerogenic phenotype that 

showed a low level of expression of IL-12 but a high level of IL-10 [443].  

It has been well established that SOCs proteins diminish the JAK/STAT signaling pathway 

and can inhibit various cytokines, resulting in the inhibition of DCs activation [444]. 

However, a more recent report shows that the function of SOCs1 and 3 goes beyond IFN-

 related JAK/STAT signaling. Thus, another report demonstrated that  SOCs1 protein 

negatively regulates TLR-related NF-B activation pathways by mediating the degradation 

of adaptor protein mal, which is involved in TLR 2 and 4 signaling [445]. Furthermore, 

various reports have demonstrated an interaction between SOCs1 with NF-B p65 protein 

[446, 447]. The inhibitory effect of SOCs protein in NF-B was reported to be due to 

specific translocation of SOCS1 protein into the nucleus, where it interacts with the NF-

κB p65 subunit within the nucleus, resulting in ubiquitination and degradation, thus 

limiting NF-κB function as a transcription factor [448]. Thus, it is possible that in non-

primed bDCs, p-HBAD-I inhibits activation of NF-κB by induction of SOCS1 and 3, which 

either block the initial steps in TLR signaling or translocate to the nucleus and cause its 

degradation. Further studies are vital to determine the mechanism through which p-HBAD-
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1 regulates NF-κB phosphorylation in both IFN- primed and non-primed bDCs. 

Another immunoregulatory feature of DCs is the secretion of IL-10 in the course of 

inflammatory responses [449]. Interleukin-10 is a potent anti-inflammatory cytokine that 

has been shown to directly or indirectly affect multiple cell types, including DCs, 

macrophages, and T-cells [450]. The dominant function of IL-10 is to deactivate DCs and 

macrophages, resulting in decreased Th1 cytokine production [451], which may have far-

reaching consequences on both innate and adaptive immunity in vivo. Increased IL-10 

production following infection with many intracellular pathogens is associated with 

decreased resistance to infection [449]. In mycobacterial infection, IL-10 inhibits the 

production of pro-inflammatory cytokines in M. tb infected macrophages, resulting in the 

prevention of reactive nitrogen/oxygen intermediates released by macrophages [452]. In 

this study, p-HBAD-1 induced higher levels of IL-10 production in non-primed bDCs 

stimulated with LPS and bPPD, compared to IFN- primed bDCs. Therefore, it could be 

that increased IL-10 released by non-primed bDCs is responsible for the downregulation 

of IL-12 and TNF- production, thereby tilting Th1 immune response towards non-

protective Th2 response.  

Characteristic immunoregulatory factors associated with tolerogenic DCs include 

increased anti-inflammatory and decreased pro-inflammatory cytokines production. Since 

p-HBAD-1 promotes proinflammatory response in IFN- primed DCs, and the opposite 

effect was seen in non-primed bDCs. This suggests that p-HBAD-1 might be inducing a 

tolerogenic and immunogenic response in non-primed and IFN- primed bDCs, 

respectively.  It has been established that immunogenic DCs are known for high expression 
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of costimulatory molecules, which promote optimal T-cell activation [453], while 

tolerogenic DCs weakly express costimulatory molecules that impair T-cell proliferation 

[453]. In addition,  both immunogenic and tolerogenic DCs are known to express common 

markers, such as MHC Class I and II molecules [453].  Consistent with these studies, our 

results confirmed the tolerogenic effect of p-HBAD-1 in non-primed bDCs, with results 

depicting decreased expression of co-stimulatory, which was reversed in IFN- primed 

bDCs.  

Recognition receptors expressed by DCs play a role in the induction of either tolerance or 

immunogenic response. While TLR 2/4 recognizes protein or lipid antigen and induces an 

immunogenic response, DC-SIGN only recognizes carbohydrate antigen and induces a 

tolerogenic response in DCs [454]. Therefore, further confirmation of tolerogenic 

phenotype in non-primed bDCs suggests that p-HBAD-1 might be targeting DC-SIGN to 

induce immune tolerance. This data is consistent with the earlier observation in DCs where 

ManLAM suppresses activation of DCs by targeting DC-SIGN [64].   

In summary, this study showed that p-HBAD-1 might have a dual function. Based on these 

findings, I proposed a model for the dual role of p-HBAD-1 in bDCs and the mechanism 

through which it mediates its immune suppressive effect. In non-primed bDCs, p-HBAD-

1 inhibits the pro-inflammatory response by blocking TLRs/NF-B signaling pathways.  

This inhibitory effect is associated with the increased feedback inhibition exerted by IL-10 

and SOCs proteins. This data suggest a tolerogenic response confirmed by reduced 

expression of co-stimulatory molecules and increased expression of DC-SIGN. Thus, in 

non-primed bDCs, M. bovis evade host immune response by releasing p-HBAD-1, which 



145 

 

suppresses host immune response, thereby increasing the chance of survival and 

pathogenesis. 

 On the contrary, p-HBAD-1 does the opposite in IFN- primed bDCs by promoting a 

robust pro-inflammatory response. The mechanism underlying IFN- mediated priming 

includes enhanced TLRs 2 and 4 expressions, which promote TLRs signaling and 

activation of NF-B resulting in enhanced production of pro-inflammatory cytokines. IFN-

 achieved these by inactivating feedback inhibition induced by regulatory proteins (IL-10 

and SOCS1/3) and increasing the expression of activation markers required for optimal T-

cell activation. Thus in IFN- primed bDCs, p-HBAD-1 induces an excessive pro-

inflammatory response, which can cause host tissue damage. 
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Conclusions 

Theoretically, DCs found in various locations in and around the granuloma may be serving 

very different purposes. These immune cells exist at different maturation phases in the 

infected lung, with both matured and immature DCs responding differently to IFN- 

resulting in IFN- and non-primed bDCs, respectively. The dual effect exerted by M. bovis 

derived p-HBAD-1 on IFN- primed and non-primed bDCs enable it to adapt within the 

host cell by balancing their ability to induce a protective immune response and immune 

tolerance mechanism. If the bacterium is not well adapted in the host, it can kill the host 

via its virulence factors, or the bacteria can be eliminated by the host response. Through p-

HBAD-1, M. bovis maintain balance in host protective response and tolerance, thereby 

allowing M. bovis to adapt and survive in the dormant phase of chronic infection.  

In the context of M. tb infection, during the early phase of infection, no IFN- is produced 

due to the lack of M. bovis specific T- cells resulting generation of non-primed bDCs that 

causes immune tolerance. Previous studies showed that delay in T- cell priming by bDCs 

leads to latent mycobacterial infection [455].  Thus, the non-primed DCs with reduced 

proinflammatory cytokine production (IL-12) caused a delay in T- cell priming, which 

promotes latency. Within the granuloma, following the onset of adaptive immunity, bDCs 

localized in T-cell and NK- cell zone transforms to IFN- primed bDCs while bDCs 

localized in non-T-cell zone converts to non-primed bDCs, which maintains granuloma by 

inducing an immunogenic and tolerogenic response, respectively. Collectively, this study 

points to a novel effect of p-HBAD-1 as an immunoregulatory molecule (Fig. 6.1). 
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Figure 6.1: Proposed dual function of p-HBAD-1 in bovine TB pathogenesis 
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CHAPTER 7. Limitations 

The utilization of an in vitro model is the major limitation of this study because some of 

the results generated in vitro might not always correlate with the in vivo results, leading to 

over-interpretation of the results and erroneous conclusions.  

The growing field of immunometabolism has demonstrated how metabolic cellular 

reactions and processes not only provide a means to generate ATP and biosynthetic 

precursors, but are also a way of controlling immunity and inflammation. Metabolic 

reprogramming of immune cells is crucial for both inflammatory as well as anti-

inflammatory responses. Activation of DCs or macrophages with a range of stimuli, 

including LPS [456] and TLR3 ligand poly (I:C) [457], induces a metabolic switch from 

OXPHOS to glycolytic pathway, in a phenomenon similar to the Warburg effect. 

Therefore, it would have been fascinating to determine in detail whether p-HBAD-1 affects 

the metabolic reprogramming of DCs following LPS/bPPD stimulation of non-primed and 

IFN- primed bDCs. Specifically, it would be necessary to determine whether p-HBAD-1 

promotes Warburg metabolism effect on cytokine production by altering glycolytic 

pathway.  

Furthermore, we showed that p-HBAD-1 treatment upregulates the expression of  SOCs1 

and 3 in bDCs treated with either LPS/bPPD. The data would have been strengthened if we 

knocked down SOCs1 and 3 by siRNA to definitively determine whether phosphorylation 

of MAPKs and NF-B proteins and subsequent cytokine production in LPS/bPPD-treated 

cells following p-HBAD-1 treatment are rescued. Also, it would have been interesting to 

look for the expression of other intracellular regulators of cytokine production in DCS like 
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Toll interacting protein (TOLLIP) and whether their activation is upregulated upon p-

HBAD-1 treatment.   

This study also demonstrated that p-HBAD-1 promotes a tolerogenic phenotype in non-

primed bDCs activated with either LPS/bPPD. Besides low expression of costimulatory 

molecules and upregulation of anti-inflammatory cytokines, Indoleamine 2, 3 

dioxygenases (IDO), which is the immune-regulatory enzyme that participates in 

immunological tolerance, was not determined. In addition, the ability to expand regulatory 

T lymphocytes (a distinctive feature of tolerogenic DCs) was not determined. Thus, this 

study would have been strengthened by assessing whether p-HBAD-I induced non-primed 

bDCs to trigger activation of IDO and proliferation of regulatory T lymphocytes. 

Granulomas limit bacterial growth in various ways, including oxygen and nutrient 

deprivation, acidic pH, and production of host factors such as nitric oxide. Dormancy 

survival regulator (DosR) is a transcription factor that plays a role in gene regulation and 

is strongly induced during hypoxia. Thus, DosR plays a key regulatory role in the 

adaptation of bacilli to survival under hypoxic conditions. It would have been interesting 

to determine the transcriptional behavior of genes involved in the p-HBAD-1 biosynthesis 

in a hypoxic condition. Specifically, it would be necessary to determine whether the M. 

bovis grown in hypoxic conditions induces the production of p-HBAD-1. This can be 

achieved by extracting p-HBAD-1 from the culture filtrate of  M. bovis grown in hypoxic 

and non-hypoxic conditions and analyze results using TLC assay. 
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Future directions 

Determine how p-HBAD-1 regulates SOCs1 and 3 protein expressions or enhance MAPKs/  

NFkB phosphorylation 

The expression of SOCs1 and 3 proteins were higher in non-primed compared to IFN- 

primed bDCs. This suggests that p-HBAD-1 might act as a negative regulator of SOCs 

proteins in IFN- primed bDCs.   Also, this indicates a direct or indirect association 

between SOCs proteins and p-HBAD-1. Thus, it could be that IFN- priming of bDCs 

enables binding of p-HBAD-I to SOCs protein, thereby preventing their expression by 

directly or indirectly affecting the stability of SOCs proteins or enhancing their 

degradation. To determine whether p-HBAD-1 directly interacts with SOCs protein in 

bDCs, immunoprecipitation followed by western blotting or CHIP assays could be used. 

 

Phosphorylation of intracellular signaling protein (MyD88) involved in TLR4 signaling in 

p-HBAD-1 treated non-primed and IFN- primed bDCs needs to be further investigated. 

 The response of bDC to LPS/bPPD in the presence of p-HBAD-1 is greatly influenced by 

the MyD88-dependent signaling pathway (Akira et al., 2004). The TIRAP–MyD88 

dependent pathway plays a key role in regulating early NF-B activation and pro-

inflammatory cytokine production such as IL-12. Activation of MyD88 adaptor molecule 

results in recruitment and activation of the downstream proteins involved in LPS-TLR4 

signaling. Thus, further investigation of MyD88 protein, which is the first protein recruited 
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during LPS/bPPD-TLR4 signaling, is necessary. This could be achieved using Western 

blotting technique. 

Determine whether bDCs treated with p-HBAD-1 promote the expansion of regulatory T 

lymphocytes. 

 Tolerogenic DCs play essential roles in immune-related diseases and induce immune 

tolerance by shaping T-cell responses. The ability to expand regulatory T-cells is a 

distinctive feature of tolerogenic DCs [157]. Since the above findings are suggestive of a 

tolerogenic profile for non-primed bDCs treated with p-HBAD-1, it will be imperative to 

further investigate whether p-HBAD-1 treated non-primed bDCs triggered the proliferation 

of CD4+C25+FoxP3+ T lymphocytes. Thus, examining whether non-primed bDCs treated 

with p-HBAD-1 induce T-reg cell proliferation via mixed lymphocyte reaction (MLR) 

could be done using BrdU ELISA  

Using CRISPR-CAS 9 to generate a mutant that lacks p-HBAD-1AD-1: Following 

mutation of the CPL gene, the absence of p-HBAD-1 will be determined using TLC. 

Thereafter mice (naïve and BCG immunized) will be challenged with M. bovis WT and 

mutant strains. Then the inflammatory response, bacterial burden, and host survival will be 

assessed and compared.



152 

 

REFERENCES 

1. Grange, J.M., et al., Guidelines for speciation within the Mycobacterium 
tuberculosis complex. 1996, World Health Organization. 

2. Cole, S., et al., Deciphering the biology of Mycobacterium tuberculosis from the 
complete genome sequence. Nature, 1998. 393(6685): p. 537-544. 

3. Garnier, T., et al., The complete genome sequence of Mycobacterium bovis. 
Proceedings of the National Academy of Sciences, 2003. 100(13): p. 7877-
7882. 

4. Nobre, A., et al., The molecular biology of mycobacterial trehalose in the quest 
for advanced tuberculosis therapies. Microbiology, 2014. 160(8): p. 1547-
1570. 

5. Asensio, J.G., et al., The virulence-associated two-component PhoP-PhoR system 
controls the biosynthesis of polyketide-derived lipids in Mycobacterium 
tuberculosis. Journal of Biological Chemistry, 2006. 281(3): p. 1313-1316. 

6. O'Reilly, L.M. and C. Daborn, The epidemiology of Mycobacterium bovis 
infections in animals and man: a review. Tubercle and Lung disease, 1995. 76: 
p. 1-46. 

7. Robinson, P.A., Farmers and bovine tuberculosis: Contextualising statutory 
disease control within everyday farming lives. Journal of Rural Studies, 2017. 
55: p. 168-180. 

8. Gumi, B., et al., Zoonotic transmission of tuberculosis between pastoralists and 
their livestock in South-East Ethiopia. EcoHealth, 2012. 9(2): p. 139-149. 

9. Menzies, F. and S. Neill, Cattle-to-cattle transmission of bovine tuberculosis. The 
Veterinary Journal, 2000. 160(2): p. 92-106. 

10. Mekonnen, G.A., et al., Prevalence of bovine tuberculosis and its associated risk 
factors in the emerging dairy belts of regional cities in Ethiopia. Preventive 
veterinary medicine, 2019. 168: p. 81-89. 

11. Humblet, M.-F., M.L. Boschiroli, and C. Saegerman, Classification of worldwide 
bovine tuberculosis risk factors in cattle: a stratified approach. Veterinary 
research, 2009. 40(5): p. 1-24. 

12. Allen, A., R.A. Skuce, and A. Byrne, Bovine tuberculosis in Britain and Ireland–A 
perfect storm? the confluence of potential ecological and epidemiological 
impediments to controlling a chronic infectious disease. Frontiers in Veterinary 
Science, 2018. 5: p. 109. 

13. Gormley, E. and L. Corner, Control Strategies for Wildlife Tuberculosis in I 
reland. Transboundary and emerging diseases, 2013. 60: p. 128-135. 

14. Caminiti, A., et al., Tuberculosis, brucellosis and leucosis in cattle: a cost 
description of eradication programmes in the region of Lazio, Italy. 
Transboundary and emerging diseases, 2017. 64(5): p. 1493-1504. 

15. Teppawar, R.N., et al., Zoonotic tuberculosis: a concern and strategies to combat, 
in Basic Biology and Applications of Actinobacteria. 2018, IntechOpen. 



153 

 

16. Michel, A.L., B. Müller, and P.D. Van Helden, Mycobacterium bovis at the 
animal–human interface: A problem, or not? Veterinary microbiology, 2010. 
140(3-4): p. 371-381. 

17. Azami, H.Y. and J. Zinsstag, Economics of Bovine tuberculosis: a one health issue. 
Bovine Tuberc, 2018. 1: p. 31-42. 

18. Ramos, D., P. Silva, and O. Dellagostin, Diagnosis of bovine tuberculosis: review 
of main techniques. Brazilian journal of biology, 2015(AHEAD): p. 0-0. 

19. Neill, S., et al., Detection of Mycobacterium bovis infection in skin test-negative 
cattle with an assay for bovine interferon-gamma. The Veterinary Record, 1994. 
135(6): p. 134. 

20. Wood, P. and S. Jones, BOVIGAMTM: an in vitro cellular diagnostic test for 
bovine tuberculosis. Tuberculosis, 2001. 81(1-2): p. 147-155. 

21. De la Rua-Domenech, R., et al., Ante mortem diagnosis of tuberculosis in cattle: 
a review of the tuberculin tests, γ-interferon assay and other ancillary diagnostic 
techniques. Research in veterinary science, 2006. 81(2): p. 190-210. 

22. Palmer, M.V., et al., Biomarkers of cell-mediated immunity to bovine 
tuberculosis. Veterinary immunology and immunopathology, 2020. 220: p. 
109988. 

23. Aagaard, C., et al., Detection of bovine tuberculosis in herds with different disease 
prevalence and influence of paratuberculosis infection on PPDB and ESAT-
6/CFP10 specificity. Preventive veterinary medicine, 2010. 96(3-4): p. 161-
169. 

24. Claridge, J., et al., Fasciola hepatica is associated with the failure to detect bovine 
tuberculosis in dairy cattle. Nature communications, 2012. 3(1): p. 1-8. 

25. Domingo, M., E. Vidal, and A. Marco, Pathology of bovine tuberculosis. Research 
in veterinary science, 2014. 97: p. S20-S29. 

26. Marais, B.J., et al., Use of light-emitting diode fluorescence microscopy to detect 
acid-fast bacilli in sputum. Clinical infectious diseases, 2008. 47(2): p. 203-207. 

27. Terefe, D., Gross pathological lesions of bovine tuberculosis and efficiency of 
meat inspection procedure to detect-infected cattle in Adama municipal 
abattoir. Journal of Veterinary Medicine and Animal Health, 2014. 6(2): p. 48-
53. 

28. Corner, L., Post mortem diagnosis of Mycobacterium bovis infection in cattle. 
Veterinary microbiology, 1994. 40(1-2): p. 53-63. 

29. Napp, S., et al., Evaluation of the effectiveness of the surveillance system for 
tuberculosis in cattle in Spain. Preventive veterinary medicine, 2019. 173: p. 
104805. 

30. Alvarez, J., et al., Eradication of bovine tuberculosis at a herd-level in Madrid, 
Spain: study of within-herd transmission dynamics over a 12 year period. BMC 
veterinary research, 2012. 8(1): p. 1-8. 

31. Palmer, M., Mycobacterium bovis: characteristics of wildlife reservoir hosts. 
Transboundary and emerging diseases, 2013. 60: p. 1-13. 

32. Chandran, A., et al., Development of a diagnostic compatible BCG vaccine against 
Bovine tuberculosis. Scientific reports, 2019. 9(1): p. 1-11. 



154 

 

33. Buddle, B.M., Tuberculosis vaccines for cattle: the way forward. Expert review 
of vaccines, 2010. 9(10): p. 1121-1124. 

34. Andersen, P. and T.M. Doherty, The success and failure of BCG—implications for 
a novel tuberculosis vaccine. Nature Reviews Microbiology, 2005. 3(8): p. 656-
662. 

35. Castillo-Rodal, A.I., et al., Mycobacterium bovis BCG substrains confer different 
levels of protection against Mycobacterium tuberculosis infection in a BALB/c 
model of progressive pulmonary tuberculosis. Infection and immunity, 2006. 
74(3): p. 1718-1724. 

36. Buddle, B., et al., Immunological responses and protection against 
Mycobacterium bovis in calves vaccinated with a low dose of BCG. Vaccine, 1995. 
13(12): p. 1123-1130. 

37. Buddle, B., et al., Protection of cattle from bovine tuberculosis by vaccination 
with BCG by the respiratory or subcutaneous route, but not by vaccination with 
killed Mycobacterium vaccae. Research in veterinary science, 1995. 59(1): p. 
10-16. 

38. Buddle, B.M., et al., Differentiation between Mycobacterium bovis BCG-
vaccinated and M. bovis-infected cattle by using recombinant mycobacterial 
antigens. Clinical and diagnostic laboratory immunology, 1999. 6(1): p. 1-5. 

39. Hasan, Z., et al., Differential live Mycobacterium tuberculosis-, M. bovis BCG-, 
recombinant ESAT6-, and culture filtrate protein 10-induced immunity in 
tuberculosis. Clinical and Vaccine Immunology, 2009. 16(7): p. 991-998. 

40. Buddle, B.M., et al., Efficacy and safety of BCG vaccine for control of tuberculosis 
in domestic livestock and wildlife. Frontiers in veterinary science, 2018. 5: p. 
259. 

41. Zhang, L., et al., Variable virulence and efficacy of BCG vaccine strains in mice 
and correlation with genome polymorphisms. Molecular Therapy, 2016. 24(2): 
p. 398-405. 

42. Whitlow, E., A. Mustafa, and S. Hanif, An overview of the development of new 
vaccines for tuberculosis. Vaccines, 2020. 8(4): p. 586. 

43. Vincent, A.T., et al., The mycobacterial cell envelope: a relict from the past or the 
result of recent evolution? Frontiers in microbiology, 2018. 9: p. 2341. 

44. Gygli, S.M., et al., Antimicrobial resistance in Mycobacterium tuberculosis: 
mechanistic and evolutionary perspectives. FEMS microbiology reviews, 2017. 
41(3): p. 354-373. 

45. Angala, S.K., et al., The cell envelope glycoconjugates of Mycobacterium 
tuberculosis. Critical reviews in biochemistry and molecular biology, 2014. 
49(5): p. 361-399. 

46. Barnes, D.D., et al., The emergence of phenolic glycans as virulence factors in 
Mycobacterium tuberculosis. ACS Chemical Biology, 2017. 12(8): p. 1969-1979. 

47. Seibert, F.B., The purification and properties of the purified protein derivative of 
tuberculin. American Review of Tuberculosis, 1934. 30(6): p. 713-720. 

48. Silva, C.S., et al., Stimulation with mycobacterial glycolipids and PPD reveals 
different innate immune response profiles in active and latent TB. bioRxiv, 2021. 



155 

 

49. Chen, S., et al., New skin test for detection of bovine tuberculosis on the basis of 
antigen-displaying polyester inclusions produced by recombinant Escherichia 
coli. Applied and environmental microbiology, 2014. 80(8): p. 2526-2535. 

50. Waters, W., et al., Lymphocyte subset proliferative responses of Mycobacterium 
bovis-infected cattle to purified protein derivative. Veterinary immunology and 
immunopathology, 2000. 77(3-4): p. 257-273. 

51. Blanco, F.C., et al., Study of the immunological profile towards Mycobacterium 
bovis antigens in naturally infected cattle. Microbiology and immunology, 
2009. 53(8): p. 460-467. 

52. Pirson, C., et al., Differential effects of Mycobacterium bovis-derived polar and 
apolar lipid fractions on bovine innate immune cells. Veterinary research, 2012. 
43(1): p. 54. 

53. Rastogi, N., Recent observations concerning structure and function relationships 
in the mycobacterial cell envelope: elaboration of a model in terms of 
mycobacterial pathogenicity, virulence and drug-resistance. Research in 
microbiology, 1991. 142(4): p. 464-476. 

54. Andersen, C.S., et al., A simple mycobacterial monomycolated glycerol lipid has 
potent immunostimulatory activity. The Journal of Immunology, 2009. 182(1): 
p. 424-432. 

55. Magallanes-Puebla, A., et al., Mycobacterial glycolipid Di-O-acyl trehalose 
promotes a tolerogenic profile in dendritic cells. PloS one, 2018. 13(12): p. 
e0207202. 

56. Arbués, A., et al., Trisaccharides of phenolic glycolipids confer advantages to 
pathogenic mycobacteria through manipulation of host-cell pattern-recognition 
receptors. ACS chemical biology, 2016. 11(10): p. 2865-2875. 

57. Reed, M.B., et al., A glycolipid of hypervirulent tuberculosis strains that inhibits 
the innate immune response. Nature, 2004. 431(7004): p. 84-87. 

58. Arbués, A., et al., Trisaccharides of phenolic glycolipids confer advantages to 
pathogenic mycobacteria through manipulation of host-cell pattern-recognition 
receptors. ACS chemical biology, 2016. 11(10): p. 2865-2875. 

59. Dunlap, M.D. and S.A. Khader, Dancing with the Stars: Phenolic Glycolipids 
Partners with Macrophages. Cell Host & Microbe, 2017. 22(3): p. 249-251. 

60. Kallenius, G., et al., Lipoarabinomannan, and its related glycolipids, induce 
divergent and opposing immune responses to Mycobacterium tuberculosis 
depending on structural diversity and experimental variations. Tuberculosis 
(Edinb), 2016. 96: p. 120-30. 

61. Mazurek, J., et al., Divergent effects of mycobacterial cell wall glycolipids on 
maturation and function of human monocyte-derived dendritic cells. PLoS One, 
2012. 7(8): p. e42515. 

62. Rajaram, M.V., et al., Mycobacterium tuberculosis lipomannan blocks TNF 
biosynthesis by regulating macrophage MAPK-activated protein kinase 2 (MK2) 
and microRNA miR-125b. Proceedings of the national academy of sciences, 
2011. 108(42): p. 17408-17413. 



156 

 

63. Nigou, J., et al., Mannosylated lipoarabinomannans inhibit IL-12 production by 
human dendritic cells: evidence for a negative signal delivered through the 
mannose receptor. The Journal of Immunology, 2001. 166(12): p. 7477-7485. 

64. Geijtenbeek, T.B., et al., Mycobacteria target DC-SIGN to suppress dendritic cell 
function. Journal of Experimental Medicine, 2003. 197(1): p. 7-17. 

65. Stadthagen, G., et al., p-Hydroxybenzoic acid synthesis in Mycobacterium 
tuberculosis. Journal of Biological Chemistry, 2005. 280(49): p. 40699-40706. 

66. Constant, P., et al., Role of the pks15/1 gene in the biosynthesis of 
phenolglycolipids in the mycobacterium tuberculosiscomplex evidence that all 
strains synthesize glycosylatedp-hydroxybenzoic methyl esters and that strains 
devoid of phenolglycolipids harbor a frameshift mutation in thepks15/1 gene. 
Journal of Biological Chemistry, 2002. 277(41): p. 38148-38158. 

67. Stadthagen, G., et al., p-Hydroxybenzoic acid synthesis in Mycobacterium 
tuberculosis. J Biol Chem, 2005. 280(49): p. 40699-706. 

68. Stadthagen, G., et al., Comparative investigation of the pathogenicity of three 
Mycobacterium tuberculosis mutants defective in the synthesis of p-
hydroxybenzoic acid derivatives. Microbes and infection, 2006. 8(8): p. 2245-
2253. 

69. Bourke, J., et al., The synthesis and biological evaluation of mycobacterial p-
hydroxybenzoic acid derivatives (p-HBADs). Organic & biomolecular chemistry, 
2014. 12(7): p. 1114-1123. 

70. Lundahl, M., et al., Mycobacterial para-Hydroxybenzoic Acid-Derivatives (p 
HBADs) and Related Structures Induce Macrophage Innate Memory. ACS 
Chemical Biology, 2020. 15(9): p. 2415-2421. 

71. Pollock, J. and S. Neill, Mycobacterium boviss infection and tuberculosis in cattle. 
The Veterinary Journal, 2002. 163(2): p. 115-127. 

72. Jo, E.-K., Mycobacterial interaction with innate receptors: TLRs, C-type lectins, 
and NLRs. Current opinion in infectious diseases, 2008. 21(3): p. 279-286. 

73. El-Etr, S.H. and J.D. Cirillo, Entry mechanisms of mycobacteria. Front Biosci, 
2001. 6: p. D737-D747. 

74. Huang, L., et al., Growth of Mycobacterium tuberculosis in vivo segregates with 
host macrophage metabolism and ontogeny. Journal of Experimental Medicine, 
2018. 215(4): p. 1135-1152. 

75. Worbs, T., S.I. Hammerschmidt, and R. Förster, Dendritic cell migration in 
health and disease. Nature Reviews Immunology, 2017. 17(1): p. 30. 

76. Zhang, Y., Persistent and dormant tubercle bacilli and latent tuberculosis. Front 
Biosci, 2004. 9(1): p. 1136-56. 

77. Pagán, A.J. and L. Ramakrishnan, Immunity and immunopathology in the 
tuberculous granuloma. Cold Spring Harbor perspectives in medicine, 2015. 
5(9): p. a018499. 

78. Shah, K.K., B.S. Pritt, and M.P. Alexander, Histopathologic review of 
granulomatous inflammation. Journal of clinical tuberculosis and other 
Mycobacterial Diseases, 2017. 7: p. 1-12. 

79. Iacobino, A., L. Fattorini, and F. Giannoni, Drug-Resistant Tuberculosis 2020: 
Where We Stand. Applied Sciences, 2020. 10(6): p. 2153. 



157 

 

80. Neill, S., et al., Pathogenesis of Mycobacterium bovis infection in cattle. 
Veterinary microbiology, 1994. 40(1-2): p. 41-52. 

81. Levy, O., S. Goriely, and T.R. Kollmann, Immune response to vaccine adjuvants 
during the first year of life. Vaccine, 2013. 31(21): p. 2500-2505. 

82. McComb, S., et al., Introduction to the Immune System, in Immunoproteomics. 
2019, Springer. p. 1-24. 

83. de Martino, M., et al., Immune response to Mycobacterium tuberculosis: a 
narrative review. Frontiers in pediatrics, 2019. 7: p. 350. 

84. Puttur, F., L.G. Gregory, and C.M. Lloyd, Airway macrophages as the guardians 
of tissue repair in the lung. Immunology and cell biology, 2019. 97(3): p. 246-
257. 

85. Cohen, S.B., et al., Alveolar macrophages provide an early Mycobacterium 
tuberculosis niche and initiate dissemination. Cell host & microbe, 2018. 24(3): 
p. 439-446. e4. 

86. Leemans, J.C., et al., Depletion of alveolar macrophages exerts protective effects 
in pulmonary tuberculosis in mice. The journal of immunology, 2001. 166(7): 
p. 4604-4611. 

87. Lerner, T.R., S. Borel, and M.G. Gutierrez, The innate immune response in human 
tuberculosis. Cellular microbiology, 2015. 17(9): p. 1277-1285. 

88. Kleinnijenhuis, J., et al., Innate immune recognition of Mycobacterium 
tuberculosis. Clinical and Developmental Immunology, 2011. 2011. 

89. MacMicking, J., Q.-w. Xie, and C. Nathan, Nitric oxide and macrophage function. 
Annual review of immunology, 1997. 15(1): p. 323-350. 

90. MacMicking, J.D., et al., Identification of nitric oxide synthase as a protective 
locus against tuberculosis. Proceedings of the National Academy of Sciences, 
1997. 94(10): p. 5243-5248. 

91. Tian, T., et al., In vivo depletion of CD11c+ cells delays the CD4+ T cell response 
to Mycobacterium tuberculosis and exacerbates the outcome of infection. The 
Journal of Immunology, 2005. 175(5): p. 3268-3272. 

92. Mittrücker, H.-W., et al., Poor correlation between BCG vaccination-induced T 
cell responses and protection against tuberculosis. Proceedings of the National 
Academy of Sciences, 2007. 104(30): p. 12434-12439. 

93. Sakai, S., et al., Cutting edge: Control of Mycobacterium tuberculosis infection by 
a subset of lung parenchyma–homing CD4 T cells. The Journal of Immunology, 
2014. 192(7): p. 2965-2969. 

94. Darrah, P.A., et al., Prevention of tuberculosis in macaques after intravenous BCG 
immunization. Nature, 2020. 577(7788): p. 95-102. 

95. Ignacio, A., C.N.S. Breda, and N.O.S. Camara, Innate lymphoid cells in tissue 
homeostasis and diseases. World Journal of Hepatology, 2017. 9(23): p. 979. 

96. Sia, J.K., M. Georgieva, and J. Rengarajan, Innate immune defenses in human 
tuberculosis: an overview of the interactions between Mycobacterium 
tuberculosis and innate immune cells. Journal of immunology research, 2015. 
2015. 



158 

 

97. Killick, K.E., et al., Receptor‐mediated recognition of mycobacterial pathogens. 

Cellular microbiology, 2013. 15(9): p. 1484-1495. 
98. Garbi, N. and B.N. Lambrecht, Location, function, and ontogeny of pulmonary 

macrophages during the steady state. Pflügers Archiv-European Journal of 
Physiology, 2017. 469(3-4): p. 561-572. 

99. Epelman, S., K.J. Lavine, and G.J. Randolph, Origin and functions of tissue 
macrophages. Immunity, 2014. 41(1): p. 21-35. 

100. Hashimoto, D., et al., Tissue-resident macrophages self-maintain locally 
throughout adult life with minimal contribution from circulating monocytes. 
Immunity, 2013. 38(4): p. 792-804. 

101. Schneider, C., et al., Induction of the nuclear receptor PPAR-γ by the cytokine 
GM-CSF is critical for the differentiation of fetal monocytes into alveolar 
macrophages. Nature immunology, 2014. 15(11): p. 1026-1037. 

102. Yu, X., et al., The cytokine TGF-β promotes the development and homeostasis of 
alveolar macrophages. Immunity, 2017. 47(5): p. 903-912. e4. 

103. Tan, S.Y. and M.A. Krasnow, Developmental origin of lung macrophage diversity. 
Development, 2016. 143(8): p. 1318-1327. 

104. Orecchioni, M., et al., Macrophage polarization: different gene signatures in M1 
(LPS+) vs. classically and M2 (LPS–) vs. alternatively activated macrophages. 
Frontiers in immunology, 2019. 10: p. 1084. 

105. Doyle, A.G., et al., Interleukin‐ 13 alters the activation state of murine 

macrophages in vitro: Comparison with interleukin‐4 and interferon‐γ . 

European journal of immunology, 1994. 24(6): p. 1441-1445. 
106. Nathan, C.F., et al., Identification of interferon-gamma as the lymphokine that 

activates human macrophage oxidative metabolism and antimicrobial activity. 
The Journal of experimental medicine, 1983. 158(3): p. 670-689. 

107. Benoit, M., B. Desnues, and J.-L. Mege, Macrophage polarization in bacterial 
infections. The Journal of Immunology, 2008. 181(6): p. 3733-3739. 

108. Freemerman, A.J., et al., Metabolic reprogramming of macrophages glucose 
transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory 
phenotype. Journal of Biological Chemistry, 2014. 289(11): p. 7884-7896. 

109. Edwards, J.P., et al., Biochemical and functional characterization of three 
activated macrophage populations. Journal of leukocyte biology, 2006. 80(6): 
p. 1298-1307. 

110. Almeida, P.E., et al., PPARγ expression and function in mycobacterial infection: 
roles in lipid metabolism, immunity, and bacterial killing. PPAR research, 2012. 
2012. 

111. de Groot, A.E. and K.J. Pienta, Epigenetic control of macrophage polarization: 
implications for targeting tumor-associated macrophages. Oncotarget, 2018. 
9(29): p. 20908. 

112. D’Agostino, P.M., et al., Brain dendritic cells: biology and pathology. Acta 
neuropathologica, 2012. 124(5): p. 599-614. 



159 

 

113. Geissmann, F., et al., Development of monocytes, macrophages, and dendritic 
cells. Science, 2010. 327(5966): p. 656-661. 

114. Sichien, D., et al., Development of conventional dendritic cells: from common 
bone marrow progenitors to multiple subsets in peripheral tissues. Mucosal 
immunology, 2017. 10(4): p. 831-844. 

115. Sallusto, F., et al., Dendritic cells use macropinocytosis and the mannose receptor 
to concentrate macromolecules in the major histocompatibility complex class II 
compartment: downregulation by cytokines and bacterial products. The Journal 
of experimental medicine, 1995. 182(2): p. 389-400. 

116. Mellman, I. and R.M. Steinman, Dendritic cells: specialized and regulated 
antigen processing machines. Cell, 2001. 106(3): p. 255-258. 

117. Mellman, I., Dendritic cells: master regulators of the immune response. Cancer 
immunology research, 2013. 1(3): p. 145-149. 

118. Cella, M., et al., Inflammatory stimuli induce accumulation of MHC class II 
complexes on dendritic cells. Nature, 1997. 388(6644): p. 782-787. 

119. Banchereau, J. and R.M. Steinman, Dendritic cells and the control of immunity. 
Nature, 1998. 392(6673): p. 245-252. 

120. Inaba, K., et al., The formation of immunogenic major histocompatibility 
complex class II–peptide ligands in lysosomal compartments of dendritic cells is 
regulated by inflammatory stimuli. The Journal of experimental medicine, 
2000. 191(6): p. 927-936. 

121. Joffre, O., et al., Inflammatory signals in dendritic cell activation and the 
induction of adaptive immunity. Immunological reviews, 2009. 227(1): p. 234-
247. 

122. Feng, C.G., et al., Maintenance of pulmonary Th1 effector function in chronic 
tuberculosis requires persistent IL-12 production. The Journal of Immunology, 
2005. 174(7): p. 4185-4192. 

123. Rook, W. and A. Graham, Th2 cytokines in susceptibility to tuberculosis. Current 
molecular medicine, 2007. 7(3): p. 327-337. 

124. Jiao, X., et al., Dendritic cells are host cells for mycobacteria in vivo that trigger 
innate and acquired immunity. The Journal of Immunology, 2002. 168(3): p. 
1294-1301. 

125. Humphreys, I.R., et al., A role for dendritic cells in the dissemination of 
mycobacterial infection. Microbes and Infection, 2006. 8(5): p. 1339-1346. 

126. Sánchez-Sánchez, N., L. Riol-Blanco, and J.L. Rodríguez-Fernández, The 
multiple personalities of the chemokine receptor CCR7 in dendritic cells. The 
Journal of Immunology, 2006. 176(9): p. 5153-5159. 

127. Qu, C., et al., Role of CCR8 and other chemokine pathways in the migration of 
monocyte-derived dendritic cells to lymph nodes. The Journal of experimental 
medicine, 2004. 200(10): p. 1231-1241. 

128. Schreiber, H.A., et al., Dendritic cells in chronic mycobacterial granulomas 
restrict local anti-bacterial T cell response in a murine model. PLoS One, 2010. 
5(7): p. e11453. 

129. Schreiber, H.A. and M. Sandor, The role of dendritic cells in mycobacterium-
induced granulomas. Immunology letters, 2010. 130(1-2): p. 26-31. 



160 

 

130. Bodnar, K.A., N.V. Serbina, and J.L. Flynn, Fate of Mycobacterium tuberculosis 
within murine dendritic cells. Infection and immunity, 2001. 69(2): p. 800-809. 

131. Buettner, M., et al., Inverse correlation of maturity and antibacterial activity in 
human dendritic cells. The Journal of Immunology, 2005. 174(7): p. 4203-
4209. 

132. Singer, D.S. and B.N. Devaiah, CIITA and its dual roles in MHC gene transcription. 
Frontiers in immunology, 2013. 4: p. 476. 

133. Wieczorek, M., et al., Major histocompatibility complex (MHC) class I and MHC 
class II proteins: conformational plasticity in antigen presentation. Frontiers in 
immunology, 2017. 8: p. 292. 

134. Dudek, A.M., et al., Immature, semi-mature, and fully mature dendritic cells: 
toward a DC-cancer cells interface that augments anticancer immunity. 
Frontiers in immunology, 2013. 4: p. 438. 

135. Blanchard, N. and N. Shastri, Cross‐presentation of peptides from intracellular 

pathogens by MHC class I molecules. Annals of the New York Academy of 
Sciences, 2010. 1183(1): p. 237-250. 

136. Behar, S.M., et al., Susceptibility of mice deficient in CD1D or TAP1 to infection 
with Mycobacterium tuberculosis. The Journal of experimental medicine, 1999. 
189(12): p. 1973-1980. 

137. Kindt, T.J., et al., Kuby immunology. 2007: Macmillan. 
138. Joffre, O.P., et al., Cross-presentation by dendritic cells. Nature Reviews 

Immunology, 2012. 12(8): p. 557. 
139. Kovacsovics-Bankowski, M. and K. Rock, A phagosome-to-cytosol pathway for 

exogenous antigens presented on MHC class I molecules. Science, 1995. 
267(5195): p. 243-246. 

140. Afonso, C., et al., Newcastle disease (infection with Newcastle disease virus). 
Manual of diagnostic tests and vaccines for terrestrial animals, 7th ed. OIE, 
2012: p. 555-574. 

141. Bertholet, S., et al., Leishmania antigens are presented to CD8+ T cells by a 
transporter associated with antigen processing-independent pathway in vitro 
and in vivo. The Journal of Immunology, 2006. 177(6): p. 3525-3533. 

142. Takeda, S., et al., MHC class II molecules are not required for survival of newly 
generated CD4+ T cells, but affect their long-term life span. Immunity, 1996. 
5(3): p. 217-228. 

143. Murray, R.A., et al., Mycobacterium leprae inhibits dendritic cell activation and 
maturation. The Journal of Immunology, 2007. 178(1): p. 338-344. 

144. Tsuji, S., et al., Maturation of human dendritic cells by cell wall skeleton of 
Mycobacterium bovis bacillus Calmette-Guerin: involvement of toll-like 
receptors. Infection and immunity, 2000. 68(12): p. 6883-6890. 

145. Tailleux, L., et al., DC-SIGN is the major Mycobacterium tuberculosis receptor on 
human dendritic cells. The Journal of experimental medicine, 2003. 197(1): p. 
121-127. 



161 

 

146. Pecora, N.D., et al., Mycobacterium bovis BCG decreases MHC-II expression in 
vivo on murine lung macrophages and dendritic cells during aerosol infection. 
Cellular immunology, 2009. 254(2): p. 94-104. 

147. Zheng, Y., et al., CD86 and CD80 differentially modulate the suppressive function 
of human regulatory T cells. The Journal of Immunology, 2004. 172(5): p. 
2778-2784. 

148. Collins, A.V., et al., The interaction properties of costimulatory molecules 
revisited. Immunity, 2002. 17(2): p. 201-210. 

149. Schwartz, R., et al. T-cell clonal anergy. in Cold Spring Harbor Symposia on 
Quantitative Biology. 1989. Cold Spring Harbor Laboratory Press. 

150. Bonato, V., et al., Downmodulation of CD18 and CD86 on Macrophages and 

VLA‐4 on Lymphocytes in Experimental Tuberculosis. Scandinavian journal of 

immunology, 2001. 54(6): p. 564-573. 

151. Kan-Sutton, C., C. Jagannath, and R.L. Hunter Jr, Trehalose 6, 6′-dimycolate on 

the surface of Mycobacterium tuberculosis modulates surface marker expression 
for antigen presentation and costimulation in murine macrophages. Microbes 
and Infection, 2009. 11(1): p. 40-48. 

152. Bhatt, K., et al., B7 costimulation is critical for host control of chronic 
Mycobacterium tuberculosis infection. The Journal of Immunology, 2009. 
182(6): p. 3793-3800. 

153. Henderson, R.A., S.C. Watkins, and J. Flynn, Activation of human dendritic cells 
following infection with Mycobacterium tuberculosis. The Journal of 
Immunology, 1997. 159(2): p. 635-643. 

154. Fucikova, J., et al., Induction of tolerance and immunity by dendritic cells: 
mechanisms and clinical applications. Frontiers in immunology, 2019. 10. 

155. Steinman, R.M. Linking innate to adaptive immunity through dendritic cells. in 
Novartis Foundation symposium. 2006. Wiley Online Library. 

156. Manicassamy, S. and B. Pulendran, Dendritic cell control of tolerogenic 
responses. Immunological reviews, 2011. 241(1): p. 206-227. 

157. Iberg, C.A., A. Jones, and D. Hawiger, Dendritic cells as inducers of peripheral 
tolerance. Trends in immunology, 2017. 38(11): p. 793-804. 

158. Nussenzweig, C., et al., CD8+ CD205+ Splenic Dendritic Cells Are. J Immunol, 
2008. 181: p. 6923-6933. 

159. Agrawal, S., et al., Cutting edge: different Toll-like receptor agonists instruct 
dendritic cells to induce distinct Th responses via differential modulation of 
extracellular signal-regulated kinase-mitogen-activated protein kinase and c-
Fos. The Journal of Immunology, 2003. 171(10): p. 4984-4989. 

160. Geijtenbeek, T.B., et al., Mycobacteria target DC-SIGN to suppress dendritic cell 
function. The Journal of experimental medicine, 2003. 197(1): p. 7-17. 

161. De Smedt, T., et al., Effect of interleukin‐10 on dendritic cell maturation and 

function. European journal of immunology, 1997. 27(5): p. 1229-1235. 



162 

 

162. Belladonna, M.L., et al., Cutting edge: autocrine TGF-β sustains default 
tolerogenesis by IDO-competent dendritic cells. The Journal of Immunology, 
2008. 181(8): p. 5194-5198. 

163. Shurin, G.V., Y. Ma, and M.R. Shurin, Immunosuppressive mechanisms of 
regulatory dendritic cells in cancer. Cancer Microenvironment, 2013. 6(2): p. 
159-167. 

164. Saei, A. and J. Hadjati, Tolerogenic dendritic cells: key regulators of peripheral 
tolerance in health and disease. International archives of allergy and 
immunology, 2013. 161(4): p. 293-303. 

165. van Kooten, C., et al., Dendritic cells as a tool to induce transplantation 
tolerance: obstacles and opportunities. Transplantation, 2011. 91(1): p. 2-7. 

166. Lutz, M.B. and G. Schuler, Immature, semi-mature and fully mature dendritic 
cells: which signals induce tolerance or immunity? Trends in immunology, 2002. 
23(9): p. 445-449. 

167. Dulphy, N., et al., Intermediate maturation of Mycobacterium tuberculosis 

LAM‐activated human dendritic cells. Cellular microbiology, 2007. 9(6): p. 

1412-1425. 
168. Marín, E., M.C. Cuturi, and A. Moreau, Tolerogenic dendritic cells in solid organ 

transplantation: Where do we stand? Frontiers in immunology, 2018. 9: p. 274. 
169. Butte, M.J., et al., Programmed death-1 ligand 1 interacts specifically with the 

B7-1 costimulatory molecule to inhibit T cell responses. Immunity, 2007. 27(1): 
p. 111-122. 

170. Villasboas, J.C. and S. Ansell, Checkpoint inhibition: programmed cell death 1 
and programmed cell death 1 ligand inhibitors in Hodgkin lymphoma. The 
Cancer Journal, 2016. 22(1): p. 17-22. 

171. Kinter, A.L., et al., The common γ-chain cytokines IL-2, IL-7, IL-15, and IL-21 
induce the expression of programmed death-1 and its ligands. The Journal of 
Immunology, 2008. 181(10): p. 6738-6746. 

172. Liu, J., et al., Plasma cells from multiple myeloma patients express B7-H1 (PD-
L1) and increase expression after stimulation with IFN-γ and TLR ligands via a 
MyD88-, TRAF6-, and MEK-dependent pathway. Blood, 2007. 110(1): p. 296-
304. 

173. Peng, Q., et al., PD-L1 on dendritic cells attenuates T cell activation and regulates 
response to immune checkpoint blockade. Nature communications, 2020. 
11(1): p. 1-8. 

174. Francisco, L.M., P.T. Sage, and A.H. Sharpe, The PD‐1 pathway in tolerance and 

autoimmunity. Immunological reviews, 2010. 236(1): p. 219-242. 
175. Keir, M.E., et al., Tissue expression of PD-L1 mediates peripheral T cell tolerance. 

Journal of Experimental Medicine, 2006. 203(4): p. 883-895. 
176. Lazarevic, V., D. Nolt, and J.L. Flynn, Long-term control of Mycobacterium 

tuberculosis infection is mediated by dynamic immune responses. The Journal of 
Immunology, 2005. 175(2): p. 1107-1117. 



163 

 

177. Winslow, G.M., et al., Persistence and turnover of antigen-specific CD4 T cells 
during chronic tuberculosis infection in the mouse. The Journal of Immunology, 
2003. 170(4): p. 2046-2052. 

178. Sakai, S., et al., PD-1–PD-L1 pathway impairs Th1 immune response in the late 
stage of infection with Mycobacterium bovis bacillus Calmette–Guérin. 
International immunology, 2010. 22(12): p. 915-925. 

179. Cao, S., et al., Mycobacterium tuberculosis antigens repress Th1 immune 
response suppression and promotes lung cancer metastasis through PD-1/PDl-1 
signaling pathway. Cell death & disease, 2019. 10(2): p. 1-12. 

180. Harden, J.L. and N.K. Egilmez, Indoleamine 2, 3-dioxygenase and dendritic cell 
tolerogenicity. Immunological investigations, 2012. 41(6-7): p. 738-764. 

181. Zhai, L., et al., Molecular pathways: targeting IDO1 and other tryptophan 
dioxygenases for cancer immunotherapy. Clinical cancer research, 2015. 
21(24): p. 5427-5433. 

182. Munn, D.H., et al., Inhibition of T cell proliferation by macrophage tryptophan 
catabolism. Journal of Experimental Medicine, 1999. 189(9): p. 1363-1372. 

183. Taylor, M.W. and G. Feng, Relationship between interferon‐γ, indoleamine 2, 

3‐dioxygenase, and tryptophan catabolism. The FASEB Journal, 1991. 5(11): 

p. 2516-2522. 
184. Munn, D.H., et al., Potential regulatory function of human dendritic cells 

expressing indoleamine 2, 3-dioxygenase. Science, 2002. 297(5588): p. 1867-
1870. 

185. Prendergast, G.C., et al., Discovery of IDO1 inhibitors: from bench to bedside. 
Cancer research, 2017. 77(24): p. 6795-6811. 

186. Mellor, A.L. and D.H. Munn, IDO expression by dendritic cells: tolerance and 
tryptophan catabolism. Nature Reviews Immunology, 2004. 4(10): p. 762-774. 

187. Nagamatsu, T. and D.J. Schust, The contribution of macrophages to normal and 
pathological pregnancies. American Journal of Reproductive Immunology, 
2010. 63(6): p. 460-471. 

188. Gautam, U.S., et al., In vivo inhibition of tryptophan catabolism reorganizes the 
tuberculoma and augments immune-mediated control of Mycobacterium 
tuberculosis. Proceedings of the National Academy of Sciences, 2018. 115(1): 
p. E62-E71. 

189. O'Connor, J.C., et al., Induction of IDO by bacille Calmette-Guerin is responsible 
for development of murine depressive-like behavior. The Journal of 
Immunology, 2009. 182(5): p. 3202-3212. 

190. Mehra, S., et al., Granuloma correlates of protection against tuberculosis and 
mechanisms of immune modulation by Mycobacterium tuberculosis. The Journal 
of infectious diseases, 2013. 207(7): p. 1115-1127. 

191. Blumenthal, A., et al., M. tuberculosis induces potent activation of IDO-1, but this 
is not essential for the immunological control of infection. PloS one, 2012. 7(5): 
p. e37314. 



164 

 

192. Adu-Gyamfi, C.G., et al., Plasma indoleamine 2, 3-dioxygenase, a biomarker for 
tuberculosis in human immunodeficiency virus-infected patients. Clinical 
Infectious Diseases, 2017. 65(8): p. 1356-1363. 

193. Takeuchi, O. and S. Akira, Pattern recognition receptors and inflammation. Cell, 
2010. 140(6): p. 805-820. 

194. Walsh, D., et al., Pattern recognition receptors—molecular orchestrators of 
inflammation in inflammatory bowel disease. Cytokine & growth factor 
reviews, 2013. 24(2): p. 91-104. 

195. Tacken, P.J., et al., Dendritic-cell immunotherapy: from ex vivo loading to in vivo 
targeting. Nature Reviews Immunology, 2007. 7(10): p. 790-802. 

196. Relloso, M., et al., DC-SIGN (CD209) expression is IL-4 dependent and is 
negatively regulated by IFN, TGF-β, and anti-inflammatory agents. The Journal 
of Immunology, 2002. 168(6): p. 2634-2643. 

197. Engering, A., et al., The dendritic cell-specific adhesion receptor DC-SIGN 
internalizes antigen for presentation to T cells. The Journal of Immunology, 
2002. 168(5): p. 2118-2126. 

198. Tacken, P.J., et al., Effective induction of naive and recall T-cell responses by 
targeting antigen to human dendritic cells via a humanized anti–DC-SIGN 
antibody. Blood, 2005. 106(4): p. 1278-1285. 

199. van Kooyk, Y. and T.B. Geijtenbeek, DC-SIGN: escape mechanism for pathogens. 
Nature Reviews Immunology, 2003. 3(9): p. 697-709. 

200. Lugo-Villarino, G., et al., The C-type lectin receptor DC-SIGN has an anti-
inflammatory role in human M (IL-4) macrophages in response to 
Mycobacterium tuberculosis. Frontiers in immunology, 2018. 9: p. 1123. 

201. Liu, G., et al., Evolutionary history of the Toll-like receptor gene family across 
vertebrates. Genome biology and evolution, 2020. 12(1): p. 3615-3634. 

202. Leulier, F. and B. Lemaitre, Toll-like receptors—taking an evolutionary 
approach. Nature Reviews Genetics, 2008. 9(3): p. 165. 

203. Anderson, K.V., G. Jürgens, and C. Nüsslein-Volhard, Establishment of dorsal-
ventral polarity in the Drosophila embryo: genetic studies on the role of the Toll 
gene product. Cell, 1985. 42(3): p. 779-789. 

204. Kawai, T. and S. Akira, The role of pattern-recognition receptors in innate 
immunity: update on Toll-like receptors. Nature immunology, 2010. 11(5): p. 
373. 

205. Nie, L., et al., Toll-like receptors, associated biological roles, and signaling 
networks in non-mammals. Frontiers in immunology, 2018. 9: p. 1523. 

206. Vidya, M.K., et al., Toll-like receptors: significance, ligands, signaling pathways, 
and functions in mammals. International Reviews of Immunology, 2018. 37(1): 
p. 20-36. 

207. Jo, E.K., et al., Intracellular signalling cascades regulating innate immune 

responses to Mycobacteria: branching out from Toll‐like receptors. Cellular 

microbiology, 2007. 9(5): p. 1087-1098. 



165 

 

208. Farhat, K., et al., Heterodimerization of TLR2 with TLR1 or TLR6 expands the 
ligand spectrum but does not lead to differential signaling. Journal of leukocyte 
biology, 2008. 83(3): p. 692-701. 

209. Kawasaki, T. and T. Kawai, Toll-like receptor signaling pathways. Frontiers in 
immunology, 2014. 5: p. 461. 

210. de Oliviera Nascimento, L., P. Massari, and L.M. Wetzler, The role of TLR2 in 
infection and immunity. Frontiers in immunology, 2012. 3: p. 79. 

211. Watters, T.M., E.F. Kenny, and L.A. O'neill, Structure, function and regulation of 

the Toll/IL‐1 receptor adaptor proteins. Immunology and cell biology, 2007. 

85(6): p. 411-419. 
212. Bowdish, D.M., et al., MARCO, TLR2, and CD14 are required for macrophage 

cytokine responses to mycobacterial trehalose dimycolate and Mycobacterium 
tuberculosis. PLoS Pathog, 2009. 5(6): p. e1000474. 

213. Shin, D.M., et al., Mycobacterium tuberculosis lipoprotein‐induced association 

of TLR2 with protein kinase C ζ in lipid rafts contributes to reactive oxygen 

species ‐ dependent inflammatory signalling in macrophages. Cellular 

microbiology, 2008. 10(9): p. 1893-1905. 
214. López, M., et al., The 19-kDa Mycobacterium tuberculosis protein induces 

macrophage apoptosis through Toll-like receptor-2. The Journal of 
Immunology, 2003. 170(5): p. 2409-2416. 

215. Chatterjee, S., et al., Early secreted antigen ESAT-6 of Mycobacterium 
tuberculosis promotes protective T helper 17 cell responses in a toll-like 
receptor-2-dependent manner. PLoS Pathog, 2011. 7(11): p. e1002378. 

216. Liu, S., et al., Recombinant TB10. 4 of Mycobacterium bovis induces cytokine 
production in RAW264. 7 macrophages through activation of the MAPK and NF-
κB pathways via TLR2. Molecular immunology, 2014. 62(1): p. 227-234. 

217. Liu, S., et al., Recombinant Mtb9. 8 of Mycobacterium bovis stimulates TNF-α and 
IL-1β secretion by RAW264. 7 macrophages through activation of NF-κB 
pathway via TLR2. Scientific reports, 2018. 8(1): p. 1-11. 

218. Yamamoto, M., et al., Role of adaptor TRIF in the MyD88-independent toll-like 
receptor signaling pathway. Science, 2003. 301(5633): p. 640-643. 

219. Raetz, C.R. and C. Whitfield, Lipopolysaccharide endotoxins. Annual review of 
biochemistry, 2002. 71(1): p. 635-700. 

220. Park, B.S. and J.-O. Lee, Recognition of lipopolysaccharide pattern by TLR4 
complexes. Experimental & molecular medicine, 2013. 45(12): p. e66-e66. 

221. Schumann, R.R., et al., Structure and function of lipopolysaccharide binding 
protein. Science, 1990. 249(4975): p. 1429-1431. 

222. Hailman, E., et al., Lipopolysaccharide (LPS)-binding protein accelerates the 
binding of LPS to CD14. Journal of Experimental Medicine, 1994. 179(1): p. 
269-277. 

223. Pugin, J., et al., CD14 is a pattern recognition receptor. Immunity, 1994. 1(6): p. 
509-516. 



166 

 

224. Park, B.S., et al., The structural basis of lipopolysaccharide recognition by the 
TLR4–MD-2 complex. Nature, 2009. 458(7242): p. 1191-1195. 

225. Miguel, R.N., et al., A dimer of the Toll-like receptor 4 cytoplasmic domain 
provides a specific scaffold for the recruitment of signalling adaptor proteins. 
PloS one, 2007. 2(8): p. e788. 

226. Doz, E., et al., Acylation determines the toll-like receptor (TLR)-dependent 
positive versus TLR2-, mannose receptor-, and SIGNR1-independent negative 
regulation of pro-inflammatory cytokines by mycobacterial lipomannan. Journal 
of Biological Chemistry, 2007. 282(36): p. 26014-26025. 

227. Carmona, J., et al., Mycobacterium tuberculosis strains are differentially 
recognized by TLRs with an impact on the immune response. PloS one, 2013. 
8(6): p. e67277. 

228. Hemmi, H., et al., A Toll-like receptor recognizes bacterial DNA. Nature, 2000. 
408(6813): p. 740-745. 

229. Bafica, A., et al., TLR9 regulates Th1 responses and cooperates with TLR2 in 
mediating optimal resistance to Mycobacterium tuberculosis. Journal of 
Experimental Medicine, 2005. 202(12): p. 1715-1724. 

230. Von Meyenn, F., et al., Toll-like receptor 9 contributes to recognition of 
Mycobacterium bovis Bacillus Calmette-Guerin by Flt3-ligand generated 
dendritic cells. Immunobiology, 2006. 211(6-8): p. 557-565. 

231. Wang, Y., et al., Toll-like receptors mediating vascular malfunction: Lessons from 
receptor subtypes. Pharmacology & therapeutics, 2016. 158: p. 91-100. 

232. Zhang, Y. and C. Liang, Innate recognition of microbial-derived signals in 
immunity and inflammation. Science China Life Sciences, 2016. 59(12): p. 
1210-1217. 

233. O'Neill, L.A. and A.G. Bowie, The family of five: TIR-domain-containing adaptors 
in Toll-like receptor signalling. Nature Reviews Immunology, 2007. 7(5): p. 
353-364. 

234. Kawai, T. and S. Akira, Toll like receptor signalling. Nat Rev immunol, 2009. 
21(317-337). 

235. Vollmer, S., et al., The mechanism of activation of IRAK1 and IRAK4 by 
interleukin-1 and Toll-like receptor agonists. Biochemical Journal, 2017. 
474(12): p. 2027-2038. 

236. Cao, Z., et al., TRAF6 is a signal transducer for interleukin-1. Nature, 1996. 
383(6599): p. 443-446. 

237. Chung, J.Y., et al., All TRAFs are not created equal: common and distinct 
molecular mechanisms of TRAF-mediated signal transduction. Journal of cell 
science, 2002. 115(4): p. 679-688. 

238. Takeda, K., T. Kaisho, and S. Akira, Toll-like receptors. Annual review of 
immunology, 2003. 21(1): p. 335-376. 

239. Akira, S. and H. Hemmi, Recognition of pathogen-associated molecular patterns 
by TLR family. Immunology letters, 2003. 85(2): p. 85-95. 

240. Triantafilou, M. and K. Triantafilou, Invited review: The dynamics of LPS 
recognition: Complex orchestration of multiple receptors. Journal of endotoxin 
research, 2005. 11(1): p. 5-11. 



167 

 

241. Tobias, P.S. and R.J. Ulevitch, Lipopolysaccharide binding protein and CD14 in 
LPS dependent macrophage activation. Immunobiology, 1993. 187(3-5): p. 
227-232. 

242. Ramana, K.V., et al., Aldose reductase mediates the lipopolysaccharide-induced 
release of inflammatory mediators in RAW264. 7 murine macrophages. Journal 
of Biological Chemistry, 2006. 281(44): p. 33019-33029. 

243. Karima, R., et al., The molecular pathogenesis of endotoxic shock and organ 
failure. Molecular medicine today, 1999. 5(3): p. 123-132. 

244. McDermott, P.F., et al., High-affinity interaction between gram-negative 
flagellin and a cell surface polypeptide results in human monocyte activation. 
Infection and immunity, 2000. 68(10): p. 5525-5529. 

245. Hayashi, F., et al., The innate immune response to bacterial flagellin is mediated 
by Toll-like receptor 5. Nature, 2001. 410(6832): p. 1099-1103. 

246. Wyant, T.L., M.K. Tanner, and M.B. Sztein, Salmonella typhi flagella are potent 
inducers of proinflammatory cytokine secretion by human monocytes. Infection 
and Immunity, 1999. 67(7): p. 3619-3624. 

247. Vicente-Suarez, I., et al., TLR5 ligation by flagellin converts tolerogenic dendritic 
cells into activating antigen-presenting cells that preferentially induce T-helper 
1 responses. Immunology letters, 2009. 125(2): p. 114-118. 

248. Tsujimoto, H., et al., Flagellin enhances NK cell proliferation and activation 

directly and through dendritic cell‐NK cell interactions. Journal of leukocyte 

biology, 2005. 78(4): p. 888-897. 
249. Salazar-Gonzalez, R.-M., et al., Salmonella flagellin induces bystander activation 

of splenic dendritic cells and hinders bacterial replication in vivo. The Journal of 
Immunology, 2007. 179(9): p. 6169-6175. 

250. Stowell, N.C., et al., Long-term activation of TLR3 by poly (I: C) induces 
inflammation and impairs lung function in mice. Respiratory research, 2009. 
10(1): p. 43. 

251. Kende, M., Prophylactic and therapeutic efficacy of poly (I, C)-LC against Rift 
Valley fever virus infection in mice. Journal of biological response modifiers, 
1985. 4(5): p. 503-511. 

252. Wang, Q., et al., MDA5 and TLR3 initiate pro-inflammatory signaling pathways 
leading to rhinovirus-induced airways inflammation and hyperresponsiveness. 
PLoS pathogens, 2011. 7(5): p. e1002070. 

253. Alexopoulou, L., et al., Recognition of double-stranded RNA and activation of NF-
κB by Toll-like receptor 3. Nature, 2001. 413(6857): p. 732-738. 

254. Muzio, M., et al., Differential expression and regulation of toll-like receptors 
(TLR) in human leukocytes: selective expression of TLR3 in dendritic cells. The 
Journal of Immunology, 2000. 164(11): p. 5998-6004. 

255. Kadowaki, N., S. Antonenko, and Y.-J. Liu, Distinct CpG DNA and polyinosinic-
polycytidylic acid double-stranded RNA, respectively, stimulate CD11c− type 2 
dendritic cell precursors and CD11c+ dendritic cells to produce type I IFN. The 
Journal of Immunology, 2001. 166(4): p. 2291-2295. 



168 

 

256. Hemmi, H., et al., Small anti-viral compounds activate immune cells via the TLR7 
MyD88–dependent signaling pathway. Nature immunology, 2002. 3(2): p. 196-
200. 

257. Dolin, R., Miscellaneous Antiviral Agents (Interferons, Imiquimod, Pleconaril). 
Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases, 
2015: p. 576. 

258. Nanda, J. and R. Bermudez, Imiquimod, in StatPearls [Internet]. 2020, 
StatPearls Publishing. 

259. Meyer, T., et al., Resiquimod, a topical drug for viral skin lesions and skin cancer. 
Expert opinion on investigational drugs, 2013. 22(1): p. 149-159. 

260. Schön, M., et al., Tumor-selective induction of apoptosis and the small-molecule 
immune response modifier imiquimod. Journal of the National Cancer Institute, 
2003. 95(15): p. 1138-1149. 

261. Diebold, S.S., et al., Innate antiviral responses by means of TLR7-mediated 
recognition of single-stranded RNA. Science, 2004. 303(5663): p. 1529-1531. 

262. Heil, F., et al., Species-specific recognition of single-stranded RNA via toll-like 
receptor 7 and 8. Science, 2004. 303(5663): p. 1526-1529. 

263. Hornung, V., et al., Sequence-specific potent induction of IFN-α by short 
interfering RNA in plasmacytoid dendritic cells through TLR7. Nature medicine, 
2005. 11(3): p. 263-270. 

264. Aliprantis, A.O., et al., Cell activation and apoptosis by bacterial lipoproteins 
through toll-like receptor-2. Science, 1999. 285(5428): p. 736-739. 

265. Ozinsky, A., et al., The repertoire for pattern recognition of pathogens by the 
innate immune system is defined by cooperation between toll-like receptors. 
Proceedings of the National Academy of Sciences, 2000. 97(25): p. 13766-
13771. 

266. Lombardi, V., et al., Toll‐ like receptor 2 agonist Pam3CSK4 enhances the 

induction of antigen‐specific tolerance via the sublingual route. Clinical & 

Experimental Allergy, 2008. 38(11): p. 1819-1829. 
267. De Luca, K., et al., The TLR1/2 agonist PAM 3 CSK 4 instructs commitment of 

human hematopoietic stem cells to a myeloid cell fate. Leukemia, 2009. 23(11): 
p. 2063-2074. 

268. Rutz, M., et al., Toll‐like receptor 9 binds single‐stranded CpG‐DNA in a 

sequence‐and pH‐dependent manner. European journal of immunology, 

2004. 34(9): p. 2541-2550. 
269. Jurk, M. and J. Vollmer, Therapeutic applications of synthetic CpG 

oligodeoxynucleotides as TLR9 agonists for immune modulation. BioDrugs, 
2007. 21(6): p. 387-401. 

270. Lawrence, T., The nuclear factor NF-κB pathway in inflammation. Cold Spring 
Harbor perspectives in biology, 2009. 1(6): p. a001651. 

271. Zhang, Y.L. and C. Dong, MAP kinases in immune responses. Cell Mol Immunol, 
2005. 2(1): p. 20-27. 



169 

 

272. Kyosseva, S.V., Mitogen-activated protein kinase signaling. Int Rev Neurobiol, 
2004. 59(3): p. 201-20. 

273. Afkarian, M., et al., T-bet is a STAT1-induced regulator of IL-12R expression in 
naive CD4+ T cells. Nature immunology, 2002. 3(6): p. 549-557. 

274. Cargnello, M. and P.P. Roux, Activation and function of the MAPKs and their 
substrates, the MAPK-activated protein kinases. Microbiology and molecular 
biology reviews, 2011. 75(1): p. 50-83. 

275. Zhang, Y. and C. Dong, Regulatory mechanisms of mitogen-activated kinase 
signaling. Cellular and molecular life sciences, 2007. 64(21): p. 2771-2789. 

276. McKay, M. and D. Morrison, Integrating signals from RTKs to ERK/MAPK. 
Oncogene, 2007. 26(22): p. 3113-3121. 

277. Yoon, S. and R. Seger, The extracellular signal-regulated kinase: multiple 
substrates regulate diverse cellular functions. Growth factors, 2006. 24(1): p. 
21-44. 

278. Bach, E.A., M. Aguet, and R.D. Schreiber, The IFNγ receptor: a paradigm for 
cytokine receptor signaling. Annual review of immunology, 1997. 15(1): p. 
563-591. 

279. Ramana, C.V., et al., Stat1-dependent and-independent pathways in IFN-γ-
dependent signaling. Trends in immunology, 2002. 23(2): p. 96-101. 

280. Mertens, C., et al., Dephosphorylation of phosphotyrosine on STAT1 dimers 
requires extensive spatial reorientation of the monomers facilitated by the N-
terminal domain. Genes & development, 2006. 20(24): p. 3372-3381. 

281. Rawlings, J.S., K.M. Rosler, and D.A. Harrison, The JAK/STAT signaling pathway. 
Journal of cell science, 2004. 117(8): p. 1281-1283. 

282. Wen, Z., Z. Zhong, and J.E. Darnell Jr, Maximal activation of transcription by Statl 
and Stat3 requires both tyrosine and serine phosphorylation. Cell, 1995. 82(2): 
p. 241-250. 

283. Lighvani, A.A., et al., T-bet is rapidly induced by interferon-γ in lymphoid and 
myeloid cells. Proceedings of the National Academy of Sciences, 2001. 98(26): 
p. 15137-15142. 

284. Djuretic, I.M., et al., Transcription factors T-bet and Runx3 cooperate to activate 
Ifng and silence Il4 in T helper type 1 cells. Nature immunology, 2007. 8(2): p. 
145-153. 

285. Chen, L.-F. and W.C. Greene, Shaping the nuclear action of NF-κB. Nature 
reviews Molecular cell biology, 2004. 5(5): p. 392-401. 

286. Sun, S.-C., Non-canonical NF-κB signaling pathway. Cell research, 2011. 21(1): 
p. 71-85. 

287. Zhang, H. and S.-C. Sun, NF-κB in inflammation and renal diseases. Cell & 
bioscience, 2015. 5(1): p. 1-12. 

288. Kanarek, N. and Y. Ben‐Neriah, Regulation of NF‐κB by ubiquitination and 

degradation of the IκBs. Immunological reviews, 2012. 246(1): p. 77-94. 

289. Karin, M. and M. Delhase. The IκB kinase (IKK) and NF-κB: key elements of 
proinflammatory signalling. in Seminars in immunology. 2000. Elsevier. 



170 

 

290. Tak, P.P. and G.S. Firestein, NF-κB: a key role in inflammatory diseases. The 
Journal of clinical investigation, 2001. 107(1): p. 7-11. 

291. Sutterwala, F.S., S. Haasken, and S.L. Cassel, Mechanism of NLRP3 
inflammasome activation. Annals of the New York Academy of Sciences, 2014. 
1319(1): p. 82. 

292. Harding, C.V. and W.H. Boom, Regulation of antigen presentation by 
Mycobacterium tuberculosis: a role for Toll-like receptors. Nature Reviews 
Microbiology, 2010. 8(4): p. 296-307. 

293. Cobb, M.H., MAP kinase pathways. Progress in biophysics and molecular 
biology, 1999. 71(3-4): p. 479-500. 

294. Bansal, K., et al., PE_PGRS antigens of Mycobacterium tuberculosis induce 
maturation and activation of human dendritic cells. The Journal of Immunology, 
2010. 184(7): p. 3495-3504. 

295. Deng, W., et al., Mycobacterium tuberculosis PPE family protein Rv1808 
manipulates cytokines profile via co-activation of MAPK and NF-κB signaling 
pathways. Cellular Physiology and Biochemistry, 2014. 33(2): p. 273-288. 

296. Ihedioha, O., A.A. Potter, and J.M. Chen, Poor stimulation of bovine dendritic cells 
by Mycobacterium bovis culture supernatant and surface extract is associated 
with decreased activation of ERK and NF-κ B and higher expression of SOCS1 and 
3. Innate Immunity, 2020: p. 1753425920929759. 

297. Soma, S., et al., Primary role of suppressor of cytokine signaling 1 in 
Mycobacterium bovis BCG infection. Infection and immunity, 2018. 86(11). 

298. Richardson, E.T., et al., Toll-like receptor 2-dependent extracellular signal-
regulated kinase signaling in Mycobacterium tuberculosis-infected 
macrophages drives anti-inflammatory responses and inhibits Th1 polarization 
of responding T cells. Infection and immunity, 2015. 83(6): p. 2242-2254. 

299. Richardson, E., et al., TLR2 and ERK signaling control macrophage responses to 
Mycobacterium tuberculosis and the balance of inflammatory mechanisms and 
Th1 activation (INC7P. 402). 2014, Am Assoc Immnol. 

300. Pasquinelli, V., et al., Phosphorylation of mitogen-activated protein kinases 
contributes to interferon γ production in response to mycobacterium 
tuberculosis. The Journal of infectious diseases, 2013. 207(2): p. 340-350. 

301. Jung, B.-G., et al., Early secreted antigenic target of 6-kDa of Mycobacterium 
tuberculosis stimulates IL-6 production by macrophages through activation of 
STAT3. Scientific reports, 2017. 7(1): p. 1-14. 

302. Giacomini, E., et al., Expression of proinflammatory and regulatory cytokines via 
NF-κB and MAPK-dependent and IFN regulatory factor-3-independent 
mechanisms in human primary monocytes infected by Mycobacterium 
tuberculosis. Clinical and Developmental Immunology, 2011. 2011. 

303. Jang, A.-R., et al., Mycobacterium tuberculosis ESAT6 drives the activation and 
maturation of bone marrow-derived dendritic cells via TLR4-mediated 
signaling. Immune network, 2019. 19(2). 

304. Holloway, A., S. Rao, and M. Shannon, Regulation of cytokine gene transcription 
in the immune system. Molecular immunology, 2002. 38(8): p. 567-580. 



171 

 

305. Abbas, A., A.H. Lichtman, and J. Pober, Cellular and Molecular Immunology 
(2003). Philadelphia, PA: Saunders Elsevier. 566. 

306. Hossain, M. and M.-N. Norazmi, Pattern recognition receptors and cytokines in 
Mycobacterium tuberculosis infection—the double-edged sword? BioMed 
research international, 2013. 2013. 

307. Ramani, T., et al., Cytokines: the good, the bad, and the deadly. International 
Journal of Toxicology, 2015. 34(4): p. 355-365. 

308. Domingo‐Gonzalez, R., et al., Cytokines and chemokines in Mycobacterium 

tuberculosis infection. Tuberculosis and the Tubercle Bacillus, 2017: p. 33-72. 
309. Zeng, G., G. Zhang, and X. Chen, Th1 cytokines, true functional signatures for 

protective immunity against TB? Cellular & Molecular Immunology, 2018. 
15(3): p. 206-215. 

310. Watford, W.T., et al., The biology of IL-12: coordinating innate and adaptive 
immune responses. Cytokine & growth factor reviews, 2003. 14(5): p. 361-368. 

311. Moser, M. and K.M. Murphy, Dendritic cell regulation of Th 1-Th 2 development. 
Nature immunology, 2000. 1(3): p. 199-205. 

312. Trinchieri, G., Interleukin-12 and the regulation of innate resistance and 
adaptive immunity. Nature Reviews Immunology, 2003. 3(2): p. 133-146. 

313. Peng, X., et al., Accessory signaling by CD40 for T cell activation: induction of Th1 

and Th2 cytokines and synergy with interleukin‐ 12 for interferon‐γ 

production. European journal of immunology, 1996. 26(7): p. 1621-1627. 
314. Ladel, C.H., et al., Interleukin-12 secretion by Mycobacterium tuberculosis-

infected macrophages. Infection and immunity, 1997. 65(5): p. 1936-1938. 
315. Flynn, J., et al., IL-12 increases resistance of BALB/c mice to Mycobacterium 

tuberculosis infection. The Journal of Immunology, 1995. 155(5): p. 2515-
2524. 

316. Altare, F., et al., Impairment of mycobacterial immunity in human interleukin-
12 receptor deficiency. Science, 1998. 280(5368): p. 1432-1435. 

317. Cooper, A.M., et al., Interleukin 12 (IL-12) is crucial to the development of 
protective immunity in mice intravenously infected with Mycobacterium 
tuberculosis. The Journal of experimental medicine, 1997. 186(1): p. 39-45. 

318. Wang, X. and Y. Lin, Tumor necrosis factor and cancer, buddies or foes? 1. Acta 
Pharmacologica Sinica, 2008. 29(11): p. 1275-1288. 

319. Stenger, S., Immunological control of tuberculosis: role of tumour necrosis factor 
and more. Annals of the rheumatic diseases, 2005. 64(suppl 4): p. iv24-iv28. 

320. Mohan, V.P., et al., Effects of tumor necrosis factor alpha on host immune 
response in chronic persistent tuberculosis: possible role for limiting pathology. 
Infection and immunity, 2001. 69(3): p. 1847-1855. 

321. Kaneko, H., et al., Role of tumor necrosis factor-alpha in Mycobacterium-induced 
granuloma formation in tumor necrosis factor-alpha-deficient mice. Laboratory 
investigation; a journal of technical methods and pathology, 1999. 79(4): p. 
379. 



172 

 

322. Flynn, J.L., et al., Tumor necrosis factor-α is required in the protective immune 
response against Mycobacterium tuberculosis in mice. Immunity, 1995. 2(6): p. 
561-572. 

323. Clay, H., H.E. Volkman, and L. Ramakrishnan, Tumor necrosis factor signaling 
mediates resistance to mycobacteria by inhibiting bacterial growth and 
macrophage death. Immunity, 2008. 29(2): p. 283-294. 

324. Van Snick, J., Interleukin-6: an overview. Annual review of immunology, 1990. 
8(1): p. 253-278. 

325. Ladel, C.H., et al., Lethal tuberculosis in interleukin-6-deficient mutant mice. 
Infection and immunity, 1997. 65(11): p. 4843-4849. 

326. Dienz, O. and M. Rincon, The effects of IL-6 on CD4 T cell responses. Clinical 
immunology, 2009. 130(1): p. 27-33. 

327. Saunders, B.M., et al., Interleukin-6 induces early gamma interferon production 
in the infected lung but is not required for generation of specific immunity to 
Mycobacterium tuberculosis infection. Infection and immunity, 2000. 68(6): p. 
3322-3326. 

328. Lyadova, I.V., et al., In mice, tuberculosis progression is associated with intensive 
inflammatory response and the accumulation of Gr-1 dim cells in the lungs. PloS 
one, 2010. 5(5): p. e10469. 

329. Barnes, T.C., M.E. Anderson, and R.J. Moots, The many faces of interleukin-6: the 
role of IL-6 in inflammation, vasculopathy, and fibrosis in systemic sclerosis. 
International journal of rheumatology, 2011. 2011. 

330. Nagabhushanam, V., et al., Innate inhibition of adaptive immunity: 
Mycobacterium tuberculosis-induced IL-6 inhibits macrophage responses to 
IFN-γ. The Journal of Immunology, 2003. 171(9): p. 4750-4757. 

331. Dutta, R.K., et al., IL-6 inhibits IFN-γ induced autophagy in Mycobacterium 
tuberculosis H37Rv infected macrophages. The international journal of 
biochemistry & cell biology, 2012. 44(6): p. 942-954. 

332. Zhang, G., et al., A functional single-nucleotide polymorphism in the promoter of 
the gene encoding interleukin 6 is associated with susceptibility to tuberculosis. 
The Journal of infectious diseases, 2012. 205(11): p. 1697-1704. 

333. Krishnan, N., B.D. Robertson, and G. Thwaites, Pathways of IL-1β secretion by 
macrophages infected with clinical Mycobacterium tuberculosis strains. 
Tuberculosis, 2013. 93(5): p. 538-547. 

334. Mayer-Barber, K.D., et al., Cutting edge: caspase-1 independent IL-1β production 
is critical for host resistance to Mycobacterium tuberculosis and does not require 
TLR signaling in vivo. The Journal of Immunology, 2010. 184(7): p. 3326-3330. 

335. Yamada, H., et al., Protective role of interleukin-1 in mycobacterial infection in 
IL-1 α/β double-knockout mice. Laboratory investigation, 2000. 80(5): p. 759-
767. 

336. Juffermans, N.P., et al., Interleukin-1 signaling is essential for host defense 
during murine pulmonary tuberculosis. The Journal of infectious diseases, 
2000. 182(3): p. 902-908. 



173 

 

337. Di Paolo, N.C., et al., Interdependence between interleukin-1 and tumor necrosis 
factor regulates TNF-dependent control of Mycobacterium tuberculosis 
infection. Immunity, 2015. 43(6): p. 1125-1136. 

338. Mayer-Barber, K.D., et al., Innate and adaptive interferons suppress IL-1α and 
IL-1β production by distinct pulmonary myeloid subsets during Mycobacterium 
tuberculosis infection. Immunity, 2011. 35(6): p. 1023-1034. 

339. Piccirillo, C.A., et al., Translational control of immune responses: from 
transcripts to translatomes. Nature immunology, 2014. 15(6): p. 503-511. 

340. Mishra, S. and A. Trivedi, Performance study of MIMO transmissions with joint 
channel allocation and relay assignment. Wireless Personal Communications, 
2017. 96(2): p. 2651-2665. 

341. Martín-Fontecha, A., et al., Induced recruitment of NK cells to lymph nodes 
provides IFN-γ for TH 1 priming. Nature immunology, 2004. 5(12): p. 1260-
1265. 

342. Penn-Nicholson, A., et al., Mycobacterium tuberculosis-specific CD4 T cells are 
the principal source of IFN-g in QuantiFERON assays in healthy persons. 
Tuberculosis (Edinb), 2015. 95(3): p. 350-351. 

343. Schroder, K., et al., Interferon‐γ: an overview of signals, mechanisms and 

functions. Journal of leukocyte biology, 2004. 75(2): p. 163-189. 
344. Janeway Jr, C.A., et al., Macrophage activation by armed CD4 TH1 cells, in 

Immunobiology: The Immune System in Health and Disease. 5th edition. 2001, 
Garland Science. 

345. MacMicking, J.D., Cell-autonomous effector mechanisms against Mycobacterium 
tuberculosis. Cold Spring Harbor perspectives in medicine, 2014. 4(10): p. 
a018507. 

346. Herbst, S., U.E. Schaible, and B.E. Schneider, Interferon gamma activated 
macrophages kill mycobacteria by nitric oxide induced apoptosis. PloS one, 
2011. 6(5): p. e19105. 

347. Altare, F., et al., Mendelian susceptibility to mycobacterial infection in man. 
Current opinion in immunology, 1998. 10(4): p. 413-417. 

348. Sugawara, I., et al., Induction of granulomas in interferon-γ gene-disrupted mice 
by avirulent but not by virulent strains of Mycobacterium tuberculosis. Journal 
of medical microbiology, 1998. 47(10): p. 871-877. 

349. Jamaati, H., et al., Nitric oxide in the pathogenesis and treatment of tuberculosis. 
Frontiers in microbiology, 2017. 8: p. 2008. 

350. Opal, S.M. and V.A. DePalo, Anti-inflammatory cytokines. Chest, 2000. 117(4): 
p. 1162-1172. 

351. Couper, K.N., D.G. Blount, and E.M. Riley, IL-10: the master regulator of 
immunity to infection. The Journal of Immunology, 2008. 180(9): p. 5771-
5777. 

352. Roque, S., et al., IL-10 underlies distinct susceptibility of BALB/c and C57BL/6 
mice to Mycobacterium avium infection and influences efficacy of antibiotic 
therapy. The Journal of Immunology, 2007. 178(12): p. 8028-8035. 



174 

 

353. Moreira-Teixeira, L., et al., T cell–derived IL-10 impairs host resistance to 
Mycobacterium tuberculosis infection. The Journal of Immunology, 2017. 
199(2): p. 613-623. 

354. Khader, S.A., et al., Interleukin 12p40 is required for dendritic cell migration and 
T cell priming after Mycobacterium tuberculosis infection. The Journal of 
experimental medicine, 2006. 203(7): p. 1805-1815. 

355. Redford, P.S., et al., Enhanced protection to Mycobacterium tuberculosis 

infection in IL‐10‐deficient mice is accompanied by early and enhanced Th1 

responses in the lung. European journal of immunology, 2010. 40(8): p. 2200-
2210. 

356. O'Leary, S.n., M.P. O'Sullivan, and J. Keane, IL-10 blocks phagosome maturation 
in Mycobacterium tuberculosis–infected human macrophages. American 
journal of respiratory cell and molecular biology, 2011. 45(1): p. 172-180. 

357. Zhang, M., et al., T cell cytokine responses in persons with tuberculosis and 
human immunodeficiency virus infection. The Journal of clinical investigation, 
1994. 94(6): p. 2435-2442. 

358. Fujimoto, M. and T. Naka, Regulation of cytokine signaling by SOCS family 
molecules. Trends in immunology, 2003. 24(12): p. 659-666. 

359. Krebs, D.L. and D.J. Hilton, SOCS proteins: negative regulators of cytokine 
signaling. Stem cells, 2001. 19(5): p. 378-387. 

360. Naka, T., et al., Negative regulation of cytokine and TLR signalings by SOCS and 
others. Advances in immunology, 2005. 87: p. 61-122. 

361. Nakagawa, R., et al., SOCS-1 participates in negative regulation of LPS responses. 
Immunity, 2002. 17(5): p. 677-687. 

362. Mansell, A., et al., Suppressor of cytokine signaling 1 negatively regulates Toll-
like receptor signaling by mediating Mal degradation. Nature immunology, 
2006. 7(2): p. 148. 

363. Baetz, A., S. Zimmermann, and A.H. Dalpke, Microbial immune evasion 
employing suppressor of cytokine signaling (SOCS) proteins. Inflammation & 
Allergy-Drug Targets (Formerly Current Drug Targets-Inflammation & 
Allergy)(Discontinued), 2007. 6(3): p. 160-167. 

364. Masood, K.I., et al., Expression of M. tuberculosis-induced suppressor of cytokine 
signaling (SOCS) 1, SOCS3, FoxP3 and secretion of IL-6 associates with differing 
clinical severity of tuberculosis. BMC infectious diseases, 2013. 13(1): p. 13. 

365. Srivastava, V., et al., Toll-like receptor 2 and DC-SIGNR1 differentially regulate 
suppressors of cytokine signaling 1 in dendritic cells during Mycobacterium 
tuberculosis infection. Journal of Biological Chemistry, 2009. 284(38): p. 
25532-25541. 

366. Carow, B. and M.E. Rottenberg, SOCS3, a Major Regulator of Infection and 
Inflammation. Front Immunol, 2014. 5: p. 58. 

367. Berlato, C., et al., Involvement of suppressor of cytokine signaling-3 as a 
mediator of the inhibitory effects of IL-10 on lipopolysaccharide-induced 
macrophage activation. The Journal of Immunology, 2002. 168(12): p. 6404-
6411. 



175 

 

368. Dorhoi, A. and S.H. Kaufmann, Versatile myeloid cell subsets contribute to 
tuberculosis-associated inflammation. Eur J Immunol, 2015. 45(8): p. 2191-
202. 

369. Mayer-Barber, K.D. and D.L. Barber, Innate and Adaptive Cellular Immune 
Responses to Mycobacterium tuberculosis Infection. Cold Spring Harb Perspect 
Med, 2015. 5(12). 

370. Buddle, B.M., et al., Immunological responses and protection against 
Mycobacterium bovis in calves vaccinated with a low dose of BCG. Vaccine, 1995. 
13(12): p. 1123-30. 

371. Buddle, B.M., et al., Protection of cattle from bovine tuberculosis by vaccination 
with BCG by the respiratory or subcutaneous route, but not by vaccination with 
killed Mycobacterium vaccae. Res Vet Sci, 1995. 59(1): p. 10-6. 

372. Buddle, B.M., et al., Differentiation between Mycobacterium bovis BCG-
vaccinated and M. bovis-infected cattle by using recombinant mycobacterial 
antigens. Clin Diagn Lab Immunol, 1999. 6(1): p. 1-5. 

373. Barnes, D.D., et al., The Emergence of Phenolic Glycans as Virulence Factors in 
Mycobacterium tuberculosis. ACS Chem Biol, 2017. 12(8): p. 1969-1979. 

374. Forrellad, M.A., et al., Virulence factors of the Mycobacterium tuberculosis 
complex. Virulence, 2013. 4(1): p. 3-66. 

375. Hotter, G.S. and D.M. Collins, Mycobacterium bovis lipids: virulence and vaccines. 
Vet Microbiol, 2011. 151(1-2): p. 91-8. 

376. Karakousis, P.C., W.R. Bishai, and S.E. Dorman, Mycobacterium tuberculosis cell 
envelope lipids and the host immune response. Cell Microbiol, 2004. 6(2): p. 
105-16. 

377. Stanley, S.A. and J.S. Cox, Host-pathogen interactions during Mycobacterium 
tuberculosis infections. Curr Top Microbiol Immunol, 2013. 374: p. 211-41. 

378. Angus, R.D., Production of reference PPD tuberculins for veterinary use in the 
United States. J Biol Stand, 1978. 6(3): p. 221-7. 

379. Besra, G.S., Preparation of cell-wall fractions from mycobacteria. Methods Mol 
Biol, 1998. 101: p. 91-107. 

380. Singh, P., et al., Revisiting a protocol for extraction of mycobacterial lipids. Int J 
Mycobacteriol, 2014. 3(3): p. 168-72. 

381. Daffe, M., The cell envelope of tubercle bacilli. Tuberculosis (Edinb), 2015. 95 
Suppl 1: p. S155-8. 

382. Allen, B., Mycobacteria: general culture methodology and safety considerations. 
Mycobact Protoc 101: 15–30. doi: 10.1385. 1998. 

383. Grievink, H.W., et al., Comparison of three isolation techniques for human 
peripheral blood mononuclear cells: cell recovery and viability, population 
composition, and cell functionality. Biopreservation and biobanking, 2016. 
14(5): p. 410-415. 

384. Hamilton, C.A., et al., Interactions between natural killer cells and dendritic cells 
favour T helper1-type responses to BCG in calves. Vet Res, 2016. 47(1): p. 85. 

385. Jimbo, S., et al., Effect of Mycoplasma bovis on bovine neutrophils. Vet Immunol 
Immunopathol, 2017. 188: p. 27-33. 



176 

 

386. Ihedioha, O., et al., The human breast cancer-associated protein, the prolactin-
inducible protein (PIP), regulates intracellular signaling events and cytokine 
production by macrophages. Immunol Res, 2018. 66(2): p. 245-254. 

387. Cassidy, J.P. and A.R. Martineau, Innate resistance to tuberculosis in man, cattle 
and laboratory animal models: nipping disease in the bud? J Comp Pathol, 2014. 
151(4): p. 291-308. 

388. Etna, M.P., et al., Pro- and anti-inflammatory cytokines in tuberculosis: a two-
edged sword in TB pathogenesis. Semin Immunol, 2014. 26(6): p. 543-51. 

389. Bhatt, K., et al., Quest for correlates of protection against tuberculosis. Clin 
Vaccine Immunol, 2015. 22(3): p. 258-66. 

390. Arthur, J.S. and S.C. Ley, Mitogen-activated protein kinases in innate immunity. 
Nat Rev Immunol, 2013. 13(9): p. 679-92. 

391. Christian, F., E.L. Smith, and R.J. Carmody, The Regulation of NF-kappaB 
Subunits by Phosphorylation. Cells, 2016. 5(1). 

392. Taniguchi, K. and M. Karin, NF-kappaB, inflammation, immunity and cancer: 
coming of age. Nat Rev Immunol, 2018. 18(5): p. 309-324. 

393. Yoshimura, A., Regulation of cytokine signaling by the SOCS and Spred family 
proteins. Keio J Med, 2009. 58(2): p. 73-83. 

394. Berlato, C., et al., Involvement of suppressor of cytokine signaling-3 as a 
mediator of the inhibitory effects of IL-10 on lipopolysaccharide-induced 
macrophage activation. J Immunol, 2002. 168(12): p. 6404-11. 

395. Ashenafi, S., et al., Progression of clinical tuberculosis is associated with a Th2 
immune response signature in combination with elevated levels of SOCS3. Clin 
Immunol, 2014. 151(2): p. 84-99. 

396. Strebovsky, J., et al., Suppressor of cytokine signaling 1 (SOCS1) limits NFkappaB 
signaling by decreasing p65 stability within the cell nucleus. FASEB J, 2011. 
25(3): p. 863-74. 

397. Hanada, T., et al., Suppressor of cytokine signaling-1 is essential for suppressing 
dendritic cell activation and systemic autoimmunity. Immunity, 2003. 19(3): p. 
437-450. 

398. Shen, L., et al., Silencing of SOCS1 enhances antigen presentation by dendritic 
cells and antigen-specific anti-tumor immunity. Nature biotechnology, 2004. 
22(12): p. 1546. 

399. Imai, K., T. Kurita-Ochiai, and K. Ochiai, Mycobacterium bovis bacillus Calmette-
Gueérin infection promotes SOCS induction and inhibits IFN-γ-stimulated 
JAK/STAT signaling in J774 macrophages. FEMS Immunology & Medical 
Microbiology, 2003. 39(2): p. 173-180. 

400. Vázquez, N., et al., Mycobacterium avium‐ induced SOCS contributes to 

resistance to IFN ‐ γ ‐ mediated mycobactericidal activity in human 

macrophages. Journal of leukocyte biology, 2006. 80(5): p. 1136-1144. 
401. Armstrong, J. and P.A. Hart, Phagosome-lysosome interactions in cultured 

macrophages infected with virulent tubercle bacilli. Reversal of the usual 
nonfusion pattern and observations on bacterial survival. Journal of 
Experimental Medicine, 1975. 142(1): p. 1-16. 



177 

 

402. Liu, D., et al., The p110delta isoform of phosphatidylinositol 3-kinase controls 
susceptibility to Leishmania major by regulating expansion and tissue homing of 
regulatory T cells. J Immunol, 2009. 183(3): p. 1921-33. 

403. Hickman, S.P., J. Chan, and P. Salgame, Mycobacterium tuberculosis induces 
differential cytokine production from dendritic cells and macrophages with 
divergent effects on naive T cell polarization. The Journal of Immunology, 2002. 
168(9): p. 4636-4642. 

404. Stadthagen, G., et al., Comparative investigation of the pathogenicity of three 
Mycobacterium tuberculosis mutants defective in the synthesis of p-
hydroxybenzoic acid derivatives. Microbes Infect, 2006. 8(8): p. 2245-53. 

405. Krishnan, J., et al., Toll-like receptor signal transduction. Experimental & 
molecular medicine, 2007. 39(4): p. 421. 

406. Sheng, K.-C., et al., Enhanced Dendritic Cell-Mediated Antigen-Specific CD4. 
Journal of drug delivery, 2013. 2013. 

407. Biyikli, O.O., et al., Role of Toll-like receptors in tuberculosis infection. 
Jundishapur journal of microbiology, 2016. 9(10). 

408. Faridgohar, M. and H. Nikoueinejad, New findings of Toll-like receptors involved 
in Mycobacterium tuberculosis infection. Pathogens and global health, 2017. 
111(5): p. 256-264. 

409. Karin, M. and Y. Ben-Neriah, Phosphorylation meets ubiquitination: the control 
of NF-κB activity. Annual review of immunology, 2000. 18(1): p. 621-663. 

410. Liew, F.Y., et al., Negative regulation of toll-like receptor-mediated immune 
responses. Nature Reviews Immunology, 2005. 5(6): p. 446. 

411. Frobøse, H., et al., Suppressor of cytokine signaling-3 inhibits interleukin-1 
signaling by targeting the TRAF-6/TAK1 complex. Molecular endocrinology, 
2006. 20(7): p. 1587-1596. 

412. Audiger, C., et al., The importance of dendritic cells in maintaining immune 
tolerance. The Journal of Immunology, 2017. 198(6): p. 2223-2231. 

413. Queiroz, A. and L.W. Riley, Bacterial immunostat: Mycobacterium tuberculosis 
lipids and their role in the host immune response. Revista da Sociedade 
Brasileira de Medicina Tropical, 2017. 50(1): p. 9-18. 

414. Hubo, M., et al., Costimulatory molecules on immunogenic versus tolerogenic 
human dendritic cells. Frontiers in immunology, 2013. 4: p. 82. 

415. Edner, N.M., et al., Targeting co-stimulatory molecules in autoimmune disease. 
Nature Reviews Drug Discovery, 2020: p. 1-24. 

416. Altan, M., et al., B7-H3 expression in NSCLC and its association with B7-H4, PD-
L1 and tumor-infiltrating lymphocytes. Clinical Cancer Research, 2017. 23(17): 
p. 5202-5209. 

417. Schlesinger, L., Macrophage phagocytosis of virulent but not attenuated strains 
of Mycobacterium tuberculosis is mediated by mannose receptors in addition to 
complement receptors. The Journal of Immunology, 1993. 150(7): p. 2920-
2930. 

418. Mitchell, D.A., A.J. Fadden, and K. Drickamer, A novel mechanism of 
carbohydrate recognition by the C-type lectins DC-SIGN and DC-SIGNR: subunit 



178 

 

organization and binding to multivalent ligands. Journal of Biological 
Chemistry, 2001. 276(31): p. 28939-28945. 

419. Natarajan, K., et al., Innate immune responses to M. tuberculosis infection. 
Tuberculosis, 2011. 91(5): p. 427-431. 

420. Noss, E.H., et al., Toll-like receptor 2-dependent inhibition of macrophage class 
II MHC expression and antigen processing by 19-kDa lipoprotein of 
Mycobacterium tuberculosis. The Journal of immunology, 2001. 167(2): p. 910-
918. 

421. Chu, R.S., et al., CpG oligodeoxynucleotides down-regulate macrophage class II 
MHC antigen processing. The Journal of Immunology, 1999. 163(3): p. 1188-
1194. 

422. Tobian, A.A., et al., Alternate class I MHC antigen processing is inhibited by Toll-
like receptor signaling pathogen-associated molecular patterns: Mycobacterium 
tuberculosis 19-kDa lipoprotein, CpG DNA, and lipopolysaccharide. The Journal 
of Immunology, 2003. 171(3): p. 1413-1422. 

423. Redford, P., P. Murray, and A. O'garra, The role of IL-10 in immune regulation 
during M. tuberculosis infection. Mucosal immunology, 2011. 4(3): p. 261-270. 

424. Tisch, R., Immunogenic versus tolerogenic dendritic cells: a matter of 
maturation. International reviews of immunology, 2010. 29(2): p. 111-118. 

425. Parish, T. and N.G. Stoker, Mycobacteria protocols. Vol. 101. 1998: Springer. 
426. Murphy, K.C., K. Papavinasasundaram, and C.M. Sassetti, Mycobacterial 

recombineering, in Mycobacteria Protocols. 2015, Springer. p. 177-199. 
427. Baulard, A., L. Kremer, and C. Locht, Efficient homologous recombination in fast-

growing and slow-growing mycobacteria. Journal of Bacteriology, 1996. 
178(11): p. 3091-3098. 

428. Parish, T. and N.G. Stoker, Use of a flexible cassette method to generate a double 
unmarked Mycobacterium tuberculosis tlyA plcABC mutant by gene 
replacement. Microbiology, 2000. 146(8): p. 1969-1975. 

429. Wards, B.J. and D.M. Collins, Electroporation at elevated temperatures 
substantially improves transformation efficiency of slow-growing mycobacteria. 
FEMS microbiology letters, 1996. 145(1): p. 101-105. 

430. Cox, M.M., Recombinational DNA repair in bacteria and the RecA protein. 
Progress in nucleic acid research and molecular biology, 1999. 63: p. 311-366. 

431. McAdam, R.A., et al., In vivo growth characteristics of leucine and methionine 
auxotrophic mutants of Mycobacterium bovis BCG generated by transposon 
mutagenesis. Infection and Immunity, 1995. 63(3): p. 1004-1012. 

432. Balasubramanian, V., et al., Allelic exchange in Mycobacterium tuberculosis with 
long linear recombination substrates. Journal of bacteriology, 1996. 178(1): p. 
273-279. 

433. Hinds, J., et al., Enhanced gene replacement in mycobacteria. Microbiology, 
1999. 145(3): p. 519-527. 

434. Pelicic, V., J.M. Reyrat, and B. Gicquel, Generation of unmarked directed 

mutations in mycobacteria, using sucrose counter‐selectable suicide vectors. 

Molecular microbiology, 1996. 20(5): p. 919-925. 



179 

 

435. Pashley, C.A., et al., Gene replacement in mycobacteria by using incompatible 
plasmids. Applied and environmental microbiology, 2003. 69(1): p. 517-523. 

436. Okeke, E.B. and J.E. Uzonna, The pivotal role of regulatory T cells in the 
regulation of innate immune cells. Frontiers in immunology, 2019. 10: p. 680. 

437. Castro, F., et al., Interferon-gamma at the crossroads of tumor immune 
surveillance or evasion. Frontiers in immunology, 2018. 9: p. 847. 

438. Schülke, S., Induction of interleukin-10 producing dendritic cells as a tool to 
suppress allergen-specific T helper 2 responses. Frontiers in immunology, 2018. 
9: p. 455. 

439. Liu, Y., et al., The rLrp of Mycobacterium tuberculosis inhibits proinflammatory 
cytokine production and downregulates APC function in mouse macrophages via 
a TLR2-mediated PI3K/Akt pathway activation-dependent mechanism. Cellular 
& molecular immunology, 2016. 13(6): p. 729. 

440. Elsaidi, H.R. and T.L. Lowary, Inhibition of cytokine release by Mycobacterium 
tuberculosis phenolic glycolipid analogues. ChemBioChem, 2014. 15(8): p. 
1176-1182. 

441. Fallows, D., et al., Mycobacterium leprae alters classical activation of human 
monocytes in vitro. Journal of Inflammation, 2016. 13(1): p. 8. 

442. Ihedioha, O., A.A. Potter, and J.M. Chen, Poor stimulation of bovine dendritic cells 
by Mycobacterium bovis culture supernatant and surface extract is associated 
with decreased activation of ERK and NF-kappaB and higher expression of 
SOCS1 and 3. Innate Immun, 2020: p. 1753425920929759. 

443. Li, Y., et al., Dendritic cells transduced with SOCS-3 exhibit a tolerogenic/DC2 
phenotype that directs type 2 Th cell differentiation in vitro and in vivo. The 
Journal of Immunology, 2006. 177(3): p. 1679-1688. 

444. Yoshimura, A., et al., Negative regulation of cytokine signaling in immunity. Cold 
Spring Harbor perspectives in biology, 2018. 10(7): p. a028571. 

445. Yong, Y.-H., et al., SOCS3 control the activity of NF-κB induced by HSP70 via 
degradation of MyD88-adapter-like protein (Mal) in IPEC-J2 cells. International 
Journal of Hyperthermia, 2019. 36(1): p. 150-158. 

446. Sood, V., et al., Suppressor of cytokine signaling 3 (SOCS3) degrades p65 and 
regulate HIV-1 replication. Frontiers in microbiology, 2019. 10: p. 114. 

447. Sharma, J. and J. Larkin III, Therapeutic implication of SOCS1 modulation in the 
treatment of autoimmunity and cancer. Frontiers in pharmacology, 2019. 10: 
p. 324. 

448. Zimmer, J., et al., Nuclear localization of suppressor of cytokine signaling-1 
regulates local immunity in the lung. Frontiers in immunology, 2016. 7: p. 514. 

449. Ring, S., et al., Blocking IL-10 receptor signaling ameliorates Mycobacterium 
tuberculosis infection during influenza-induced exacerbation. JCI insight, 2019. 
4(10). 

450. Kumar, R., S. Ng, and C. Engwerda, The role of IL-10 in malaria: a double edged 
sword. Frontiers in immunology, 2019. 10: p. 229. 

451. Saraiva, M., P. Vieira, and A. O’garra, Biology and therapeutic potential of 
interleukin-10. Journal of Experimental Medicine, 2020. 217(1). 



180 

 

452. Bhat, K.H. and I. Yaseen, Mycobacterium tuberculosis: macrophage takeover 
and modulation of innate effector responses. Mycobacterium-Research and 
Development, 2018. 

453. Tai, Y., et al., Molecular mechanisms of T cells activation by dendritic cells in 
autoimmune diseases. Frontiers in pharmacology, 2018. 9: p. 642. 

454. Castenmiller, C., et al., Tolerogenic Immunotherapy: Targeting DC Surface 
Receptors to Induce Antigen-Specific Tolerance. Frontiers in Immunology, 
2021. 12: p. 422. 

455. Shaler, C.R., et al., Understanding delayed T-cell priming, lung recruitment, and 
airway luminal T-cell responses in host defense against pulmonary tuberculosis. 
Clinical and Developmental Immunology, 2012. 2012. 

456. Krawczyk, C.M., et al., Toll-like receptor–induced changes in glycolytic 
metabolism regulate dendritic cell activation. Blood, 2010. 115(23): p. 4742-
4749. 

457. Pantel, A., et al., Direct type I IFN but not MDA5/TLR3 activation of dendritic 
cells is required for maturation and metabolic shift to glycolysis after poly IC 
stimulation. PLoS Biol, 2014. 12(1): p. e1001759. 

 

 

 

  

 

 

 

 

 

 

  


