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Abstract

The advent of very fast computing power has led to the positioning of theoretical investiga-

tions of condensed matter materials as a core part of research in this area. Often the results

of such numerical and computational investigations serve as reliable guide for future exper-

imental exploration of new materials and has led to the discovery of numerous materials.

In this thesis, state-of-the-art first principles calculations have been applied to investigate

the structural, electronic and dynamical properties of some novel condensed matter materi-

als. The novelty of these compounds stems from the fact that they challenge our previous

knowledge of the chemistry of chemical reactions that support the formation and stability

of chemical compounds and can therefore expand our frontier of knowledge in the quest for

scientific understanding of new atypical compounds in high pressure physics.

In the first project, the long sought post-Cmcm phase of the cadmium telluride is charac-

terized with the application of first principles metadynamics method. It has a monoclinic

unit cell and the P21/m space group. Enthalpy calculation confirms this phase transition

sequence and further predicts a P21/m to P4/nmm transition near 68 GPa. Interestingly,

the enthalpies of CdTe compounds are found to be higher than the enthalpy sum of its

constituents Cd and Te at pressures higher than 34 GPa which is an indication that the com-

pound should decompose above this pressure point. However, dynamical stability revealed in

the phonon dispersion relations prevents the decomposition of CdTe at high pressure. This

suggests that CdTe becomes a high-enthalpy compound at high pressure.

The second project is directed towards the prediction of stable helium-hydrogen compound.

In spite of extensive experimental and theoretical work, a general agreement on the crystal

structure and stability of the helium-hydrogen system is lacking. In this study, the possibility

of helium forming stable compound with hydrogen is investigated by using first principles

structure search method. A stable helium hydrogen compound formed at ambient conditions

is found. It belongs to the triclinic P-1 space group, having He(H2)3 stoichiometry. Topolog-

ical analysis of electron density at the bond critical points shows there exists a quantifiable
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level of bonding interaction between helium and hydrogen in the P-1 structure. At ambient

pressure, the compound is characterized and stabilized by interactions with strength typical

of van der Waals interaction that increases with pressure. This current results provide a case

of weak interaction in a mixed hydrogen-helium system, offering insights for the evolution of

interiors of giant planets such as Jupiter and Saturn.

In the final project, a machine learning potential is successfully created for sodium based

on the Gaussian process regression method and weighted atom-centered symmetry functions

representation of the potential energy surface. Here, sodium potential energy surface is de-

scribed using different relevant data sets that represent several regions of the potential energy

surface with each data set consisting of three element groups which are total energies, inter-

atomic forces, and stress tensors of the cell, which were constructed from density functional

theory calculations. It is demonstrated that by learning from the underlying density func-

tional theory results, the trained machine learning potential is able to reproduce important

properties of all available sodium phases with an exceptional accuracy in comparison to those

computed using density functional theory. In combination with the metadynamics methods,

this well trained machine learning potential is applied to large simulation boxes containing

1024 and 3456 sodium atoms in the cI16 phase. These large-scale simulations reveal a notable

phase transition at 150 K and 120 GPa with an impressive capturing of the rearrangements

of atomic configurations involved in the transition process that may not be evident in a

small-scale simulation. Without a doubt, this work shows that applying machine learning

methods to condensed matter systems will lead to significant increase in our understanding of

important processes such as atomic rearrangements, growth and nucleation process in crystal

formation and phase transition.
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Chapter 1

INTRODUCTION

Interesting properties of condensed matter materials that may not be accessible at ambient

conditions could be triggered at extreme conditions such as high pressure and temperature.

At high pressure in particular, they could undergo pressure induced structural transformation

that is often accompanied with a change in electronic, mechanical or optical properties. An

explicit understanding of the physical and chemical properties of these numerous materials

is the fundamental underpin to their potential applications. For this reason, condensed mat-

ter research area has received huge attention from both experimentalists and theorists for

several decades, leading to an overwhelmingly large number of novel discoveries [1]. These

discoveries were unraveled due to the advancement of experimental high-pressure techniques

including laser-heated diamond anvil cell (DAC), as well as improved computational efficiency

through the state-of-the-art first principles calculations. Despite the notable improvements

in high pressure experimental techniques in recent years, these extreme conditions may not

be easily attained. Meanwhile in theory, with the application of first principles methods and

numerical simulations, the behaviour and properties of materials at extreme conditions can

easily be investigated. In the last few decades, the amazing improvements in computational

power has further contributed to the significant role of theory to the field of high pressure

physics. Nowadays, results from theoretical investigations often serve as dependable guide

to experiments and vice versa.

Condensed matter materials contain large number of electrons and nuclei with characteristics

behaviour that can be understood with the principles of quantum mechanics. In principle,

one should explore the properties of these materials by solving the many body Schrödinger

equation. At best this can be solved completely for simplest systems such as mono-atomic or
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diatomic systems. In a solid system for instance, there are about an order of 1023 particles

and for this reason, it is not possible to solve such system quantum mechanically. Therefore,

to reduce the complexity of these many body problems, several approximations have been

developed over the years. For instance, in the Born-Oppenheimer approximation [2], the

motion of the light mass electron is separated from that of the heavier mass of nucleus with

the argument that the speed of the electron would be much higher than that of the nucleus so

that relative to the electron, it can be considered fixed thereby reducing the complexity of the

problem. Furthermore, in a crystalline solid, the periodic boundary conditions (PBC) and

Bloch theorem help to reduce the infinitely large system to the simplest repeatable unit cell

so that one can explain all the physics of the material with the properties observed from this

unit cell [3]. In the density functional theory (DFT), the physical observables of the many-

body system are expressed as a functional (function of a function) of a spatial dependent

electron density [4]. Meanwhile, in the pseudopotential method, an effective potential is

used to replace the complex motion of the core electrons and the nucleus in which case the

pseudowavefunctions that corresponds to the new potential do not display the fast oscillation

of the true wavefunctions and therefore reduces the number of basis sets required to represent

them [5, 6, 7]. With planewave basis sets, the complex electronic wavefunction is replaced

with a more tractable mathematical representation. In first principles techniques within the

density functional theory frame work, upon which the works in this thesis are based, all of

the aforementioned approximations have been implemented.

1.1 Schrödinger and Born-Oppenheimer Approxima-

tion

The understanding of electronic structure of matter is based on the theoretical methods of

quantum mechanics and statistical mechanics. The motion of atoms and subatomic particles

is govern by the Schrödinger equation [8]:

Ĥ(r,R)Ψ(r,R, t) = i~
∂Ψ(r,R, t)

∂t
(1.1)
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where Ĥ(r,R) is the Hamiltonian, Ψ(r,R) is the wavefunction of the system, r and R are the

positions of the electrons and the positions of the nuclei respectively, ~ = h
2π

is the reduced

Planck constant, and t is the time. If the Hamiltonian is time independent, then the equation

becomes:

Ĥ(r,R)Ψ(r,R) = EΨ(r,R) (1.2)

where E is the energy level of the system. | Ψ |2 gives the probability density for finding

electrons at positions r = r1, r2, r3 . . . , rN and nuclei at positions R = R1, R2, R3 . . . , RM .

The Hamiltonian, Ĥ contains the following (in atomic units):

electronic kinetic energy

Te = −1

2

N∑
j=1

∇2
j (1.3)

nuclear kinetic energy

TM = −1

2

M∑
j=1

∇2
j (1.4)

electron-nuclei Columbic potentials

VeM = −
M∑
j=1

Zj

N∑
i=1

1

| ri −Rj |
(1.5)

nuclei-nuclei Coulomb repulsion

VMM = +
M∑

j<i=1

ZjZi
1

| Ri −Rj |
(1.6)

and the electron-electron Coulomb repulsion

Vee =
N∑

j<i=1

1

| ri − rj |
(1.7)

Z is the atomic number, N is the total number of electrons and M is the total number of

nuclei.

This Schrödinger equation is a second order differential equation in 3M and 3N coordinates
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and for this reason difficult to solve exactly, hence certain approximations have to be made in

order to solve it for a system of N electrons and M nuclei. The first of these approximations is

the Born-Oppenheimer approximation [2]. In this approximation, we first ignore the kinetic

energy TM motion of the nuclei (i.e. we assume the nuclei are fixed at specified locations R

because their motion is much lesser than that of the electrons since the mass of the nucleus

is much greater than the mass of an electron) and solve the electronic Schrödinger equation

which can be written as:

Ĥ0Ψk(r,R) = EkΨk(r,R). (1.8)

The Hamiltonian Ĥ0 contains all of Ĥ except TM . Ĥ0 is Hermitian so its eigenfunctions form

a complete and orthonormal set of functions of r. Thus Ψ can be expanded in terms of the

linear combination of Ψk:

Ψ(r,R) =
∑
k

Ψk(r,R)χk(R) (1.9)

The wavefunctions Ψk(r,R) and expansion coefficient χk depend on R because H0 depends

on R through VeM and VMM . We can now use the expansion in the full wave equation so

that

Ĥ(r,R)Ψ(r,R) = EΨ(r,R) (1.10)

becomes (
Ĥ0 − 1

2

M∑
j=1

∇2
j − E

)∑
k

Ψk(r,R)χk(R) = 0. (1.11)

Now if one multiply on the left by Ψ∗l and integrate over the position of the electrons, noting

that 〈Ψl|Ψk〉 = δlk, we have:

(
El(R)− 1

2

M∑
j=1

∇2
j − E

)
χl(R) +

∑
k

〈Ψl(r,R)| − 1

2

M∑
j=1

∇2
jΨk(r,R)〉χk(R)

+
∑
k

〈Ψl(r,R)| −
M∑
j=1

∇jΨk(r,R)〉∇jχk(R) = 0 (1.12)

Equation (1.12) is the coupled-channel equations and the last two terms are called the non-

adiabatic terms [9]. Furthermore, these non-adiabatic terms make negligible contributions

and if they are ignored, we obtain a Schrödinger equation for the vibrational, rotational or
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translational motion on the lth energy surface El(R):

(
El(R)− 1

2

M∑
j=1

∇2
j − E

)
χl(R) = 0 (1.13)

This new equation gives the concept of potential energy surface. In other words, the equation

shows that nuclear moves with some kinetic energy (the middle term) on a potential energy

surface El(R) (the first term), i.e., it shows how the energy of the lth electronic state varies

with the position of the nuclei, where El(R) (l = 0, 1, 2 . . . ) are the solutions of the Born-

Oppenheimer electronic Schrödinger equations. This can be written properly as

(
El(R)− 1

2

M∑
j=1

∇2
j − EL,J,M,v

)
χL,J,M,v(R) = 0 (1.14)

This implies that nuclei move with kinetic energy given by the middle term, they have a

potential energy El(R) and they have energy levels given by the third term where v is the

vibrational quantum number, J and M are the rotational quantum numbers and χL,J,M,v are

the vibration and rotation wavefunction [9].

Now, to solve the electronic Schrödinger equation is also difficult because the term Vee pre-

vents us from using separation of variable since it is not one electron additive. We then

introduced the mean field approximation in which Vee is replaced by a one-electron additive

potential

VMF =
N∑
j=1

VMF (rj), (1.15)

called the mean field potential and the solutions of each Ψl can now be written as a product

(slater determinant) of functions of individual electron coordinates called spin orbitals Φj(r):

Ψj(r) =| Φ1Φ2Φ3 . . .〉 (1.16)

This concept of having orbitals and making slater determinants from them is a starting point

for most of the approximations used in solving electronic structure equations [9].
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1.2 Density Functional Theory (DFT)

In density functional theory, the properties of an atom or molecule are expressed in terms of

the electron density which is a much simpler object than wavefunction. The equations for

determining the orbitals are called the Kohn-Sham equations [4, 10]:

[
−1

2
∇2 −

∑
j

Zj
1

| r−Rj |
+

∫
ρ(r′)

1

| r− r′ |
dr′ + U(r)

]
φi = εiφi (1.17)

in which the Coulomb potential is written as
∫
ρ(r′) 1

|r−r′|dr
′, and the exchange potential as

well as the electron correlation are embedded in U(r). The theorem of Hohenberg-Kohn is a

fundamental underpin of the density functional theory [4].

1.2.1 Hohenberg-Kohn Theorem

The theorem states that the ground-state electron density ρ(r) describing any N-electron sys-

tem uniquely determines the potential V(r) (the nuclear attraction potential) in the Hamil-

tonian

Ĥ =
∑
j

(
−1

2
∇2
j + V (rj) +

1

2

∑
k

1

| rj − rk |

)
. (1.18)

Hence, since Ĥ determines the energies and wavefunctions of the system, the ground-state

density ρ(r) determines all the properties of the system. The theorem can be proved as

follows:

suppose one knows the electron density ρ(r) at all points r so that one can determine the

total number of electron N =
∫
ρ(r)d3r. Then, one can write the kinetic energy and the

electron-electron repulsion part of the Hamiltonian as:

Ĥ =
∑
j

(
−1

2
∇2
j +

1

2

∑
k

1

| rj − rk |

)
. (1.19)

Assume there are two distinct potential V(r) and V’(r) that form two distinct Hamiltonians

Ĥ and Ĥ ′ but having the same electron density, with ground-state energies and wavefunctions

E0, Ψ(r) and E ′0, Ψ′(r) respectively. If one applies Ψ′ as a wave function of the Hamiltonian
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Ĥ, then :

E0 < 〈Ψ′|Ĥ|Ψ′〉 = 〈Ψ′|Ĥ ′|Ψ′〉+

∫
ρ(r)[V (r)− V ′(r)]d3r = E ′0 +

∫
ρ(r)[V (r)− V ′(r)]d3r

(1.20)

similarly

E ′0 < 〈Ψ|Ĥ ′|Ψ〉 = 〈Ψ|Ĥ|Ψ〉+
∫
ρ(r)[V ′(r)−V (r)]d3r = E0 +

∫
ρ(r)[V ′(r)−V (r)]d3r (1.21)

Adding these two equations gives:

E0 + E ′0 < E0 + E ′0 (1.22)

which is a contradiction. Thus, two distinct potentials cannot give the same electron density

and the same number of electrons. This implies that ρ(r) determines N and a unique V and

hence determines the Hamiltonian and therefore all the wavefunctions and all the energies

[4, 9].

1.2.2 Kohn-Sham Formalism

The K-S process allows us to solve the equation :[
−1

2
∇2 −

∑
j

Zj
1

| r−Rj |
+

∫
ρ(r′)

1

| r− r′ |
dr′ + Uxc(r)

]
φi = εiφi (1.23)

to get φ′js whose density
∑N

j=occ | φj(r) |2 gives the correct density where N is the total

number of electrons in the system. Here, the total energy is expressed as a functional of the

density:

E[ρ] = Ts[ρ] +

∫
vextρ(r)dr + EH [ρ] + Exc[ρ] (1.24)

where Ts is the kinetic energy that can be written in terms of the Kohn-Sham orbitals as:

Ts[ρ] =
N∑
i=1

∫
drφ∗i (−

1

2
∇2)φi(r) (1.25)
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and vext is the external potential on the system and EH is the Coulumb (or Hartree) energy:

EH =
1

2

∫
dr

∫
dr′

ρ(r)ρ(r′)

| r− r′ |
(1.26)

Exc is the exchange-correlation energy. Kohn-Sham equations are obtained by the variation

of the total energy with respect to a set of orbitals, with some constraints on those orbitals

to give the Kohn-Sham potential [10], which can be written as

veff (r) = vext(r) +

∫
ρ(r′)

| r− r′ |
dr′ + vxc(r) (1.27)

where

vxc(r) =
δExc[ρ]

δρ(r)
(1.28)

is the exchange-correlation potential. Thus the equation satisfied by the system can be

written as: (
−1

2
∇2 + veff (r)

)
φi(r) = εiφi(r). (1.29)

In contrast to the first three terms on the right hand side of equation (1.24) for which the

exact analytic dependence on ρ could be determined, the analytic form of the ρ dependence

of Exc[ρ] is not known. In practice, certain approximations are used for the expression of

Exc[ρ].

1.2.3 Exchange-Correlation Approximations

As mentioned earlier, the major challenge in the application of DFT is that we do not know

the exact value of the exchange-correlation functional. In this section, a brief discussion of

the most widely used approximations is given.

Local Density Approximation (LDA)

It is the simplest approach used in density functional approximation for the exchange-

correlation energy. In this approximation, the homogeneous density ρ0 in the exchange-

correlation energy density of the homogeneous electron gas εhomxc (ρ0) is replaced by the inho-
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mogeneous density ρ(r) [4]:

εLDAxc (ρ(r)) = εhomxc (ρ0) |ρ0=ρ(r) (1.30)

Thus the exchange-correlation energy functional is

ELDA
xc [ρ(r)] =

∫
εLDAxc ρ(r)d3r (1.31)

Generalized Gradient Approximation (GGA)

Rather than having a uniform electron density, real materials have a slowly varying density.

For this reason, GGA functional is written as a combination of the local electron density and

the spatial variation in the electron density which is expressed as the density gradient [11].

The general form of the functional is:

EGGA
xc [ρ(r)] =

∫
εGGAxc [ρ(r),∇(ρ(r)]d3r (1.32)

1.2.4 Periodic Boundary Conditions

Crystalline solids are made from repeated groups of identical atoms called basis. The set of

mathematical points in which a basis could sit are referred to as the lattice. The periodicity

of the lattice is defined in 3 dimension using the 3 translation vectors that permit the crystal

to be the same when view from a point ~T and another point ~T ′ give by:

~T ′ = ~T + n1
~b1 + n2

~b2 + n3
~b3, (1.33)

where n1, n2 and n3 are integers and ~b1, ~b2 and ~b3 are noncoplanar vectors [12]. This allows

the application of periodic boundary conditions (PBC) through the Bloch theorem [3] in a

periodic potential of a general form

V (~r + ~T ) = V (~r). (1.34)
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Indeed the periodicity of the potential permits one to write the potential in terms of Fourier

series as:

V (~r) =
∑
G

VGe
i ~G·~r, (1.35)

where ~G are sets of vectors and VG are coefficients. Thus, equations (1.34) and (1.35) imply

that

ei
~G·~T = 1, (1.36)

so that

~G · ~T = 2lπ, (1.37)

where l is an integer. Following equation (1.33), one can write

~G = m1
~B1 +m2

~B2 +m3
~B3, (1.38)

where m1, m2 and m3 are integers and ~B1, ~B2 and ~B3 are vectors defined as

~bi · ~Bj = 2πδij (1.39)

Invariably, it implies that the existence of lattice vector in real space connote the existence

of lattice vector in k-space in which the vectors ~G define the reciprocal lattice with primitive

translation vectors ~Bj. This periodicity in the k-space is an indication that all information

about the crystal can be contained in the primitive unit cell of the reciprocal lattice referred

to as the first Brillouin zone. Now according to Bloch theorem [3], the eigenstates of a one-

electron Hamiltonian such as equation (1.29), for a periodic potential (i.e V(~r+~T )=V(~r)) for

all Bravais lattice translation vectors ~T can be a written as the product of the plane wave

and a function with the periodicity of the Bravais lattice i.e.

ψi(~k, ~r) = ei
~k·~rui(~k, ~r), (1.40)

where ui(~k, ~r) represents a periodic function with the periodicity of the lattice (ui(~k, ~r) =

ui(~k, ~r + ~T )), ~k is the wave vector of the electron in the first Brillouin zone. Therefore, one
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can write

ψi(~k, ~r + ~T ) = ei
~k·~rψi(~k, ~r) (1.41)

Now using equation (1.41) in the KS equation of (1.29), one will obtain a set of eigen-

equations for each ~k. By doing so, the problem had been transformed from that of solving

for infinite number of electrons in the system to that of a finite number of electronic bands

at an infinite number of k-points in the reciprocal unit cell [12]. However, the wavefunction

at the k-points that are around each other would be identical so that one can represent the

wavefunctions over a small region of reciprocal space around a particular k-point by the wave

function in this k-point. That way, only a discrete but densely packed k-point mesh is needed

to completely determine the ground state of the crystalline solid. Meanwhile the permitted

k-points is proportional to the volume of the solid [12].

1.2.5 The Plane Wave Basis Sets

There are several basis sets that can be used to represent the KS wave function. Examples

include atomic orbitals, Gaussians and plane waves(PW) basis set [13, 14]. The primary

advantages of the plane wave basis set are the simplicity of the function with no preconception

about the form of the solution, no basis set superposition error as well as good efficiency in

computing the forces on atoms. To express any wavefunction in terms of the PW basis,

one would need a continuous and infinite basis set. Be that as it may, the application of

periodic boundary conditions permit the use of Bloch theorem so that one can write the KS

wavefunction as:

ψi(~k, ~r) = ei
~k·~rui(~k, ~r) =

1√
V

∑
G

Ci,~k+ ~Ge
i(~k+ ~G)·~r (1.42)

where ~G is the reciprocal lattice vector, k is a symmetry label that lies in the first Brillouin

zone and Ci,~k+ ~G are the coefficients. The basis set for any give k will be discrete and infinite

as expected but in practice, only the plane waves with energy less than a predefined cutoff

energy (Ecut) are included, where Ecut is defined as:

1

2
| ~k + ~G |2 ≤ Ecut. (1.43)
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Therefore, the convergence of the calculation can be checked and ascertained by varying only

the cutoff energy.

1.2.6 Pseudopotential approximation

The core electrons are very closely bound to the nucleus so that the chemical properties of

an atom will be mostly affected by the valence electrons which are relatively loosely bound.

Therefore it is safe to assume that the contribution of the core electrons to the binding

energy will not change when isolated atoms are combined to form a molecule or crystal.

Thus, the important energy difference will be from the valence electrons which will result in

a relatively easy computation. Also, an accurate computational representation of the strong

nuclear Coulombic potential and the localized core electrons wavefunctions is not trivial.

It must be noted that the atomic wavefunctions are eigenstates of the Hamiltonian so they

must be mutually orthogonal. Also the core states are localized around the nucleus, therefore

the valance state must oscillate rapidly in the core region in order to fulfil the orthogonality

condition [15]. This fast oscillation give rise to a large kinetic energy for the valence electrons

in the core region that somewhat cancels the large potential energy of the strong Coulomb

potential so that the valence electrons becomes weakly bound than the core electrons. For

this reason, it is convenient to represent the strong Coulomb potential and core electrons

by a pseudopotential and replace the valence electron wavefunctions that oscillate rapidly in

the core region by a pseudo wave functions that vary smoothly in the core region [6, 7]. A

sketch of the concept is given in Figure 1.1. The pseudopotential and pseudo wavefunction

are expected to be the same beyond a cutoff radius rc from the nucleus. The value of the

cutoff radius is usually obtained by ensuring that the core regions of neighboring atoms do

not overlap.
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Figure 1.1: All-electron valence wavefunction and electronic potential (dashed blue
lines) plotted against distance, r, from the atomic nucleus. The corresponding pseudo-
wave function and potential is plotted (solid red lines). This figure was taken from
http://en.wikipedia.org/wiki/Pseudopotential.
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1.2.7 Projector Augmented Wave (PAW) Method

One significant advantage of the application of plane-wave basis sets and pseudopotential

approximation is that they have a simple form that is easy to track [16]. However, a huge

price must be paid for such simplicity in that transition metals and rare-earth metals are

difficult and computationally tedious to explore with a standard pseudopotential [17, 18].

Therefore, several other methods have been proposed including the ultrasoft pseudopoten-

tial method of Vanderbilt [19] and the projector augmented-wave (PAW) method of Blöchl

[20]. The PAW method is an approach that permits the construction of an all electron wave

function by summing the pseudo-wave function in the region outside the core around which

the pseudo-wave function takes the same form as the all electron wave function (as shown in

Figure 1.1), and the partial wavefunction inside the core minus the pseudo partial wavefunc-

tion in the core area. Ideally, the wavefunction of material systems has various underlying

properties at distinct locality. In the valence area where bonding takes place, it is some-

what smooth whereas around the nucleus, it has a rapid oscillation because of the nuclear

attraction [16]. For this reason, it is very problematic for electronic structure methods to

capture bonding area precisely when taking care of the huge fluctuation in the core. In an

attempt to tackle this problem, Blöchl proposed the PAW method in which an all electron

wavefunction is obtained from the pseudo wavefunction. Precisely, in the PAW approach,

the one electron wavefunctions ψnk are derived from the pseudo wavefunctions ψ̃nk by using

a linear transformation shown below:

|ψnk〉 = |ψ̃nk〉+
∑
i

(
|φi〉 − |φ̃i〉

)
〈p̃i | ψ̃nk〉 (1.44)

where nk is the band and k-point index, |φi〉 and |φ̃i〉 are the partial waves of the all electron

potential and the corresponding pseudo potential respectively. p̃i are the projector functions

which are orthonormal to the partial waves, i.e.

〈p̃i | φ̃〉 = δij. (1.45)
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In principle, the PAW method can be implemented as an all-electron method [20] but in

practice, all implementations so far are within the frozen core approximation of the core

electrons in which case the core of an atom is assumed frozen [21]. Primarily, PAW method

demonstrates notable benefits of pseudopotential methods as well as retaining most of the

physics of an all-electron calculation.

1.2.8 van der Waals Density Functional

Dispersion interactions such as van der Waals (vdW) forces which are not readily captured by

the LDA and GGA approximations are essential contributors to the binding of biomolecules

such as DNA, molecular crystals and molecules on surfaces. Describing dispersion (which in

many cases occur together with hydrogen bonds) accurately has been a major problem in

electronic structure theory. Meanwhile conventional DFT calculations within GGA and LDA

approximations are well known to be insufficient in accounting for dispersion interactions.

Therefore, many notable methods have been developed to account for dispersion within DFT

[22, 23, 24]. Among these methods, the non-local van der Waals density functional (vdW-

DF) of Dion et al. [22] has become very popular.

In vdW-DF, the non-local correlation is obtained in a way that permits the exchange-

correlation energy to be expressible as

Exc = EGGA
x + ELDA

c + Enl
c (1.46)

where EGGA
x is the GGA exchange energy, ELDA

c takes care of the local correlation energy and

Enl
c is the non-local correlation energy [25]. In addition to the original vdW-DF method [22],

other versions such as optPBE-vdW, optB88-vdW, and optB86-vdW have been proposed in

which cases the exchange functionals are optimised [25, 26].

1.2.9 Self Consistency and ground state total energy

Now that we have all the required technique, the KS equation can be solved in a self consistent

approach to obtain the ground state electron density and the ground state total energy. The
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flow chart in Figure 1.2 illustrate the procedure.

guess trial ρ(~r)

calculate effective potential

Solve KS equation

Compute the new electron density ρnew(~r)

Did the result
converged? i.e
ρnew(~r) = ρ(~r)

Output quantities such as force and energy.

set ρ(~r) = ρnew(~r)

yes

No

Figure 1.2: The flow chart of self consistent calculations

The procedure begins by guessing an initial electron density usually from the non-interacting

atoms of the system in consideration. This charge density is then applied to construct an

effective potential which then make KS equation solvable. The KS orbitals are represented

by the pseudo wavefunctions that will be expanded using a set of plane waves truncated by

the energy cut off. Often, the solutions of KS equations for each k-point give rise to several

orbitals that can be used to build a new electron density. A comparison between the initial

guess and the new density is used to ascertain they agree within a tolerance after which
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the calculation is said to have converged. If they do not agree within the tolerance, one

reconstruct a new set of potential with the new electron density and redo the calculation.

This process will be repeated until convergence is achieved after which, the electron density

will be applied to calculate the ground-state total energy and other quantities as needed [9].

1.3 Quantum Theory of Atoms in Molecules

In this model, atoms and bonds are expressed in terms of the electron density distribution

function which is a probability distribution that describes the average spread of the electron

charge throughout the real space in the attractive field created by the nuclei. Essential

information about the molecular structure are revealed by the turning points of the electron

density with the gradient of its path that originates and terminates at these critical point

[27]. In addition, chemical bonding and structure of a chemical system can be defined from

the topology of the electron density. Indeed the topology of the electron density is influenced

by the attractive force of the nucleus so that there exists a local maximum at the position of

the nucleus. This maximum point is called the nuclear critical point (NCP). Other critical

points are bond critical point (BCP), cage critical point (CCP) and ring critical point (RCP).

At critical points, the gradient of the electron density is zero. i.e.

∇ρ = î
∂ρ

∂x
+ ĵ

∂ρ

∂y
+ k̂

∂ρ

∂z
→

{= 0 (at C.P )

6= 0 (generally at other points)

(1.47)

Gradient vector field lines that belongs to an atomic basin converge to one nucleus which is

as an attractor to them and by so doing, these gradient vector lines sweep a portion of space

associated with one nucleus identified as the basin of an atom in a molecule. Thus an atom

in a molecule is the union of a nucleus and its associated basin and each basin is bounded

by one ”zero flux surface” [28].

The second derivative tensor arranged as Hessian Matrix reveals the kind of stationary point
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(minumum, maxima or inflexion)

H(rc) =


∂2ρ
∂x2

∂2ρ
∂x∂y

∂2ρ
∂x∂z

∂2ρ
∂y∂x

∂2ρ
∂y2

∂2ρ
∂y∂z

∂2ρ
∂z∂x

∂2ρ
∂z∂y

∂2ρ
∂z2


r=rc

(1.48)

H is real and symmetric matrix and can therefore be diagonalized. Hence,

U−1HU = Q (1.49)

reduces H to its diagonal form (where U is built from the eigenvector of H(rc))

Q =


∂2ρ
∂x2

0 0

0 ∂2ρ
∂y2

0

0 0 ∂2ρ
∂z2


r=rc

=


λ1 0 0

0 λ2 0

0 0 λ3

 (1.50)

where λ1, λ2 and λ3 are the curvature of density and the trace of H is referred to as the

Laplacian of density (∇2(ρ)). Critical points are classified with the rank and signature (i.e

(rank, signature)) where the rank is the total number of non zero curvature (which is 3 for

a stable system) and the signature is the algebraic sum of the signs of the curvatures [29].

There are 4 stable critical points:

• (3,-3) : ρ is local maximum → NCP

• (3,-1) : ρ is maximum on the plane formed by corresponding eigenvectors but minimum

on the third axis perpendicular to the plane → BCP

• (3,+1) : ρ is minimum on the plane and maximum at the perpendicular → RCP

• (3,+3) : ρ is local minimum → CCP

The number and type of critical points that can coexist in a molecule or crystal obeys a strict

topological relationship:

nNCP − nBCP + nRCP − nCCP =

{ 1 (isolated molecule)

0 (crystal structure)

(1.51)
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Topology of the electron density determines the form of atoms in a molecule, leading to a

natural partitioning of the molecular space into separate mononuclear regions identified as

atoms in molecules [29]. The surface bounding an atom in a molecule is one of zero flux in

the gradient vector field of the electron density, i.e. it is not crossed by any of the gradient

vectors [∇ρ] at any point:

∇ρ(r) · n̂(r) = 0. (1.52)

The magnitude of the charge density at the bond critical point indicates the relative strength

of the bond and its Laplacian determines the characteristics of atomic interaction. A negative

Laplacian is associated with covalent bonding whereas a positive Laplacian can be attributed

to closed shell interactions such as dihydrogen, hydrogen bonds and vdW interactions. This

method was developed by Richard Bader [28] and has been very successful in identifying and

classifying covalent and non covalent bonds.

1.4 Role of Pressure

The application of external pressure can trigger several interesting phenomena that may not

be evident at ambient pressure. Remarkably, high pressure can alter the chemistry of ma-

terials leading to the formation of unprecedented species as well as resulting into amazing

phenomena. The exploration of how matter changes under pressure can be investigated in the

laboratories and through implementation of theoretical principles in numerical simulations.

From the time Bridgeman proposed the use of pressure sealing in 1905 [30, 31], high pressure

in laboratories can nowadays reach several hundreds gigapascal particularly with the advent

of diamond anvil cell (DAC), laser heating as well as numerous methods such as neutron and

x-ray scattering, infrared and Raman spectroscopy, that can be applied to characterize the

new species [32, 33]. On the contrary to experiment, computational simulation is fast and

affordable with the ability to go far beyond the pressure limit of currently applied experimen-

tal techniques. For this reason, they often serve as an important guide and front runner for

material investigations at high pressure. In recent times, crystal structure prediction meth-

ods predicated on first principles approach have become very popular and successful due to

a remarkable advances in computer power and impressive development in algorithms which
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have provided scientists with fascinating tools to probe and classify unprecedented chemical

behaviours under pressure. In the best part of last two decades, several structures and ther-

modynamically stable compounds have been predicted with no input from experiment and

some of these predicted structures have been synthesized in the laboratories at high pres-

sure. Diverse unique phenomena have emerged at high pressure and consequently there have

been a huge progress in high pressure research in time. The early part of the investigations

was tailored to the study of structural transformation, changes in physical properties like

superconductivity [34, 35], magnetism [36, 37] and metal-insulator transitions [38], and good

metal alloys forming a semiconductor [39]. Despite the fact that such research works are

still being investigated, the enormous prospect of high pressure leading to novel discoveries

has ensured that other areas could be explored. For instance, sizable amount of interest has

nowadays been directed to understanding the formation mechanism, as well as synthesizing

several unconventional compounds such as LaH10 [40], LiN5 [41, 42], Na2He [43, 44] and so

on. Interestingly, a lot of these compounds display very astonishing physical and chemical

properties. For instance, a compound containing hydrogen and sulphur with stoichiometry

H3S has been reported to be superconducting with critical temperature of about 203 K [45].

Recently, it was reported that compressing a mixture of carbon, sulphur and hydrogen to

a pressure above 260 GPa produced a material that is able to transmit electricity without

resistance at about room temperature [46]. Discovering these sorts of unconventional com-

pounds and the exceptional variation in their structures clearly indicate that pressure can

make a significant change to as well as elevate material discovery.

At high pressure, the structures of solid materials are known to become relatively homo-

geneous as a result of the compression of the longer and weaker bonds, possessing higher

symmetry [47, 48], taking close-packed structures [49] and taking more delocalized electronic

states that can trigger insulator-metal transition [47, 48]. A lot of the observation from

experiment and theory follows the presumption of homogeneity and close packing. As ex-

pected, the proclivity of electron charge density to reach homogeneous state is inched on the

fact that the kinetic energy of the electrons grows faster then the Coulomb energy as the

electron density increase [50]. Thus, the kinetic energy can be minimized by assuming a ho-
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mogeneous density distribution making electron delocalization and metallization attainable

for matter at extreme pressures. Nevertheless, many unprecedented phenomena can occur

at high pressure. The reality is that not all matter becomes more homogeneous as a result

of pressure increase and a deviation from close-packing shape could be employed to reach

high density [48]. Recent progress in experiment and computer simulations have resulted in

more insight into our understanding of how the properties of matter change at high pressure.

Particularly, experiment and theory are now showing that pressure plays a significant role in

the formation, geometries and properties of unconventional compounds with unusual bonding

and structures. For example, in some compounds, electrons could become very localized and

even detach from the atoms to occupy the interstitial site [51, 52]. Also, the phases of crystals

seen at elevated pressure are mostly not homogeneous where the stable geometries are made

of many molecular or polymeric species [47, 53] with a notable reduction in the coordination

number [54, 55]. Moreover, repopulating the atomic orbitals as a result of increasing pressure

could influence how the atoms in the system behave chemically. Therefore at high pressure,

the behaviour of materials can become very complex, with an unlimited variation in compo-

sitions as well as structures attainable, often with unprecedented and novel properties such

as the appearance of compound from chemical reactions that do not result in the formation

of local chemical bonds [56].

1.5 Thesis Description

The objective of this work is to explore the properties of novel condensed matter materials

with the use of first principles methods and computer simulations. Structure properties,

electronic properties, dynamical properties and bonding parameters of selected materials

were investigated. The tools employed are based on density functional theory (DFT), density

functional perturbation theory (DFPT) and projector augmented wave (PAW) method. All

the DFT based calculations were performed using VASP [21] and Quantum-ESPRESSO

[57, 58] while the topological analysis was performed with CRITIC2 code [59]. A brief

description of the applied codes is included below:

1. VASP
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VASP is an acronym for Vienna Ab-initio Simulation Package. Based on first princi-

ples method, this code can be used to perform quantum-mechanical molecular dynamics

(MD) simulations with the use of pseudopotential or projector augmented wave (PAW)

which ensure a significant reduction in the size of the basis set. The procedure applied

in VASP is that of finite-temperature LDA with an exact calculation of the instan-

taneous electronic ground state at each MD step by implementing an efficient matrix

diagonalization schemes and an efficient Pulay mixing. The implementation of PAW

method of Blöchl [20] for electronic structure calculations provides significant access to

full wave potential. In principle, this permits the calculation of all-electron properties

from pseudopotential-based schemes through the reconstruction of all-electron wave-

functions from the pseudo wavefunctions and allows the core orbitals to adjust under

extreme pressure [21].

2. QUANTUM ESPRESSO

This is an integrated suite of Open-Source code for electronic structure calculations and

material modelling that is based on DFT, planewave and pseudopotential. Among other

applications, it can be used to perform ground state calculations as well as investigate

response properties, spectroscopy properties and quantum transport. Implemented

potentials include norm-conserving [60], and ultrasoft [19] pseudopotentials in addition

to PAW potential [20].

3. CRITIC2

This code is used to analyze results from a quantum mechanical calculations performed

on either molecules or crystalline solids. It has the capability to analyze and transform

data such as structure, electron density, one-electron wavefunction and other scalar

fields produced by many quantum chemistry related programs including VASP and

Quantum ESPRESSO. Among other significant applications such as structure format

manipulation and calculation of quantities like scanning tunnelling microscopy (STM)

images, Bader’s Quantum Theory of Atoms in Molecules (QTAIM) [28] has been im-

plemented [59].

4. PHONOPY
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This is a python-based open-source code that can be used to post-process phonon

calculation results from ab initio programs such as VASP and Quantum ESPRESSO

[61]. The calculations in this package require a supercell built from a well relaxed crystal

structure. Indeed, the accuracy of phonon dispersion result scales positively with the

size of the supercell. Typically, one begins by relaxing the unit cell of the crystal

structure to a desired equilibrium and then create supercells with displacements and

then apply an ab initio code such as VASP to calculate the forces on the atoms in each

supercell after which the results are collected and post-processed in phonopy to obtain

desired properties such as phonon band structure and phonon dispersion curve [61].

The forces can be obtained using two methods which are finite difference in which each

ion is displaced in each independent direction, and the density functional perturbation

theory [21].

Chapter 2 of this thesis gives an elaborate description of the important theoretical and com-

putational methods that are commonly applied in the field. Crystal structure prediction

methods are nowadays serving as a great guide to experimental investigations of materials.

Many of the theoretical techniques in use could successfully identify ground state structure

of a compound without any experimental input or any prior information other than a pos-

sible stoichiometry. In cases where the ground states are known, molecular dynamics or

metadynamics methods could be used to explore possible phase transition in the compound

at desired temperature-pressure conditions. Random crystal structure search, genetic algo-

rithm, Particle Swarm Optimization, metadynamics, basin hopping, data mining are some

of the important techniques that will be explained in this chapter. To conclude the chapter,

three published research papers from our group led by Yansun Yao in which I contributed

as coauthor are used to illustrate successful applications of some of the methods above. The

published papers are:

• Cheng, X., Guan, J., Jiang, L., Zhang, H., Wang, P.,Adeniyi, A. O., Yao, Y. ...

Song, Y. Pressure-induced structural transformations and new polymorphs in BiVO4.

Physical Chemistry Chemical Physics, 22(18), 10238-10246 (2020).
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• Adeleke, A. A., Adeniyi, A. O., Tang, H., Gou, H., Yao, Y. o-C240: a new sp3-

dominated allotrope of carbon. Journal of Physics: Condensed Matter, 32(39), 395401

(2020).

• Adeleke, A. A., Stavrou, E., Adeniyi, A. O., Wan, B., Gou, H., Yao, Y. Two good

metals make a semiconductor: A potassium-nickel compound under pressure. Physical

Review B, 102(13), 134120 (2020).

Chapter 3 presents the high enthalpy crystalline phases of cadmium telluride (CdTe). The

long-sought post-Cmcm phase of the compound is successfully characterised with the appli-

cation of first principles metadynamics simulations This chapter is a slight modification of

the original manuscript that had been published in Physical Review Research:

• Adeniyi, A. O., Kunz, M., Stavrou, E., Yao, Y. High-enthalpy crystalline phases of

cadmium telluride. Physical Review Research, 2(3), 033072. (2020)

Chapter 4 is about the prediction of a stable compound of helium and hydrogen. This

study reveals that helium although known to be inert at ambient pressure can form a stable

compound with hydrogen. Topological analysis of the compound reveal the presence of bond

critical points between helium and hydrogen at 0 GPa with strength of charge density and

it’s Laplacian comparable to those of van der Waals interaction. It was found that these

quantities increased significantly to the level associable to those of conventional hydrogen

interaction. This chapter is a slight modification to the paper published in Physical Review

B:

• Adeniyi, A. O., Adeleke, A. A., Li, X., Liu, H., Yao, Y. Prediction of a stable

helium-hydrogen compound:first-principles simulations. Physical Review B, 104(2),

024101 (2021).

Chapter 5 presents a machine learning potential for sodium based on the Gaussian process

regression method and weighted atom-centered symmetry functions representation of the po-

tential energy surface. The PES was described by several relevant data sets that represent
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different regions of the PES with each data set consisting of three distinct elements namely

total energies, interatomic forces, and stress tensors of the cell, which were obtained from

DFT-based calculations. It was demonstrated that by learning from these data, the MLP

was able to reproduce important properties of sodium crystals.

Chapter 6 is a summary of my research projects and important conclusions as well as possible

future work.

25



Chapter 2

CRYSTAL STRUCTURE PREDICTION

METHODS

2.1 Introduction

Theoretical structure prediction using state-of-the-art techniques has done a lot in guid-

ing the synthesis of numerous materials with novel scientific applications. The discovery

of new materials is often the fundamental underpin to crucial innovative development in

the industry. In particular, crystal structure search techniques have contributed immensely

to our understanding of condensed matter systems, from predicting reliable ground state

and metastable structures of new materials with little or no prior structure information, to

simulating extreme conditions that are unattainable by experiments. For instance, several

polymeric nitrogen compounds and nitrogen rich materials that are known to be applicable in

high energy density physics were only synthesised long after being predicted by theory [62].

Indeed nitrogen and nitrogen-rich compounds are on the brink of fulfilling their huge po-

tential as practically applicable high energy density materials because numerous theoretical

investigations have been producing results that serve as dependable guide for experimental

investigations. Another significant role of theory is that by identifying promising candidates

ahead of experimental investigations, lots of time will be saved.

For any chemical composition, there are infinite atomic arrangements that can fulfill the

symmetry requirements at the respective orbitals. These are all the possible local minima

of the energy landscape among which at certain thermodynamic conditions such as temper-

ature and pressure, there exists only finite number of lowest energy structures. Thus, by
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crystal structure prediction, we refer to finding the most thermodynamically stable structure

at any given pressure-temperature conditions from chemical formula or stoichiometry alone

[63]. The dimensionality of the energy landscape for any system with N number of atoms

in the unit cell is 3N+3, from which 3N -3 degrees of freedom are the atomic positions and

the remaining six represents the lattice parameters. In other words, a system with 80 atoms

in a unit cell has an energy landscape that is 243 dimensional. This is a clear indication

that the difficulty of crystal structure prediction increases exponentially with system size.

A number of approaches have been proposed including topological in which case one can

construct a simple topology based on what is known about the chemistry of the system [64]

and those that depends on empirical correlations through structure diagram [65, 66, 67] in

which a large database set of stable structures is required. For this reason, predominantly

unbiased, non-empirical and therefore most generally applicable approaches nowadays are

based on computational optimization with which one can explicitly calculate the free energy

and explore its landscape with the aim of finding the most stable arrangement of the atoms

[63].

In recent years, the most used methods in structural predictions are random structure search

[68, 69, 70], evolutionary algorithm implemented in USPEX [71], and particle swarm opti-

mization (PSO) method implemented in CALYPSO [72]. Random structure search technique

has found many uses in the field of crystal structure prediction. For instance, it has been

employed to a high degree of success in the prediction of the ground-state and metastable

structures of novel materials such as ice at high pressures [73], atomic metallic hydrogen

[74], and several other systems [75]. This method begins with the generation of a number of

random configurations which are then optimized in a DFT calculation at constant pressure

into a local minimum that corresponds to the minimum energy crystal structure even without

any prior knowledge of the structure information except for possible chemical stoichiometry.

After enough preliminaries, a decent testing of the setup space is obtained, and the ground-

state structure(s) can be distinguished. Meanwhile in the evolutionary algorithm, the first

generation is obtained from the optimization of randomly generated structures to produce

energetically favourable structures. Thereafter, one discards some of the structures in the
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first generation with relatively high energy and uses the good structures with relatively low

energy as parents to create the next generation through a successive cycle of heredity and

mutation operations followed by a DFT optimization at constant pressure [76]. The offspring

structures in the second generation can then be used as parents for the creation of the third

generation and so on, in a process similar to Darwinian evolution. Although a branch of the

evolutionary method, the PSO method is different from the genetic algorithm in that the

main evolutionary operator of crossover and mutation are not used. Proposed by Kennedy

and Eberhart [77, 78], this stochastic global optimization approach takes inspiration from

the movement of a bird flock which can be compared to a distributed behaviour algorithm

that execute several-dimensional search. In this method, the behaviour of everyone in the

flock is influenced by either the “best local or best global” individual to help it take a good

trajectory in the geographical hyperspace [72]. Furthermore, an individual can learn from its

past experiences to adjust its flying speed and direction. For this reason, all the individuals in

the flock can quickly converge to the global position and near-optimal geographical position

by the behaviour of the flock and their flying histories. This algorithm was implemented in

the crystal structure prediction analysis by particle swarm optimization (CALYPSO) code

[72] and has been successfully applied to predict several novel materials [72]. It is worthy to

note that crystal structure predictions at 0 K as well as high temperature have also been per-

formed using several quantum mechanical methods such as data mining [79], metadynamics

[80], basin hopping [81], and simulated annealing [82]. In particular, simulated annealing,

basin hopping and metadynamics are used in overcoming energy barriers and have been very

successful in many areas especially in cases where the start structure is close to the global

minimum. The data mining method depends primarily on the existence of large database of

good trial structures and is for this reason unable to generate new crystal structure types

without reasonable information on similar compounds. In the past few years, thermodynamic

stability and structures of several unprecedented compounds have been successfully predicted

without any input from experiment because of the significant advancement in computer power

and implementation of various algorithms that have enabled scientists to further explore the

emergent of various chemical behaviours especially at high pressure. This chapter gives an

elaborate description of all the methods that are often applied in high pressure materials
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investigations with case study from research works published from our group to exemplify

successful applications where possible.

2.2 Random Structure Search

At a thermodynamic equilibrium, materials are known to take the structures with the lowest

possible Gibbs free energy, G defined as:

G = U − TS + PV (2.1)

where U, T, S, P and V represent the internal energy, temperature, entropy, pressure and

volume respectively. In practice, the entropy contribution is ignored and we primarily con-

strain ourselves to zero temperature so that the Gibbs free energy reduces to the enthalpy,

H of the system so that one can write:

H = U + PV. (2.2)

Thus, a thermodynamic stable state of a material at certain pressure P is that in which

the atoms are arranged in such a way to produce the lowest enthalpy. For this reason, to

obtain physically realizable crystal structures for any material, it is important to search for

stable structures with the lowest possible enthalpy. In this way, the problem of finding stable

structures is equivalent to that of global optimization. In other words, suppose the energy of

the system could be expressed in terms of some parameters like atomic positions, the stable

structures will be those in which these parameters have values that minimize the energy

function. Simple as this process may seem, it is quite clear that the energy of a real system

cannot be written as a simple analytical function of some parameters. Be that as it may, the

solution of any optimization related problem could be evaluated by guessing several possible

solutions and then ranking their traits before choosing the best possible solution. This form

of guess and check is the fundamental underpin of the random structure search method.

The random search method was introduced for the first time in 1953 by Anderson [68] and
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later in 1963 by Rastrigin [69] and Karnopp [83]. If a general detail (such as stoichiometry

of the crystal solid) of the system in consideration is known, the random search procedure is

to generate several random configurations with different arrangements of atomic components

which will be subject to local minimization before calculating the energy. This process can

be repeated until a good solution has been obtained. A simple illustration of the procedure

is shown below:

generate random structures

Optimize
structures

energy

Repeat until convergence

Choose structure with the best output quantity

Figure 2.1: A simple random search procedure.

A search is said to have converged when there exist no further improvement to the best trial

solution after several iterations and the best solution remains the same for multiple attempts
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[84]. To avoid obtaining physically unrealistic solutions, some constraint may be imposed on

the parameters of the trail solutions. For example, one could set the minimum and maximum

parameters or minimum and maximum interatomic distances in the system to physically

reasonable values alone. In recent years, the most significantly used approach to reducing the

complexity of the search is performing local relaxation of all trial structures before calculating

the energy. Ideally, the energy determines the forces acting on individual atom and moves

it down the slope until the system gets to the minimum of the potential energy surface as

illustrated in Figure 2.2. In particular, all the commonly used optimization algorithms such

as conjugate gradient approach, quasi-Newton method and damped molecular dynamics can

easily relax a structure to a nearby local minimum.

Figure 2.2: Relaxation of structures into local minima in Random Search Method.

In the application of random search procedure to crystal structure prediction, the group of

Pickard and Needs have been quite exemplary [85]. Their approach begins as expected with

the generation of a number of random configurations which are then optimized in a DFT

calculation at constant pressure into a local minimum that corresponds to the minimum

energy crystal structure even without any prior knowledge of the structure information except
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for possible chemical stoichiometry. After enough preliminaries, a decent testing of the setup

space is gotten, and the ground-state structure(s) can be distinguished. By and large, random

search based methods have been employed to a high degree of success in the prediction of the

ground-state and metastable structures of novel materials such as ice at high pressures [86],

atomic metallic hydrogen [87], silane (SiH4) [88], metal alloys and alloy nanoclusters [89] and

several other systems [90, 91, 92, 93].

2.3 Evolutionary/Genetic Algorithm

The evolutionary algorithm takes inspiration from the biological evolution processes which

include natural selection, reproduction, mutation and heredity. Solutions to any optimization

problem with this method are structures that have gone through these mechanisms within

a fitness criteria used to determine the fittest survivors. To begin, one needs to determine

an accurate representation of the particular problem, e.g., a correct chemical formula or

stoichiometry. Afterwards, the first generation is obtained from optimization of randomly

generated structures to produce energetically favourable structures. Thereafter, one discard

some of the structures in the first generation with relatively high enthalpy and use the good

structures with relatively low enthalpy as parents to create the next generation through a

successive cycles of heredity and mutation operations followed by a DFT optimization at

constant pressure [94, 95]. The mutation operator often creates a single offspring solution

from a single parent whereas the heredity operator produces a single offspring from a few

parents solutions. The offspring structures in the second generation can then be used as

parents for the creation of the third generation and so on, in a process similar to Darwinian

evolution (see Figure 2.3). It is important to point out that at the moment, there is no

all in all method that is able to solve a general global minimum problem or locate global

optimum solution at all times, and successfully find all exact and accurate ground state at

all conditions in all systems. Many of the available methods are for sure able to find several

local minima with those solutions often times good enough in most cases. The reasons for

this are not far to fetch, for one the potential energy landscape is very complicated and

multidimensional and its exact shape or form is somewhat unknown and therefore can only

32



be approximated at best.

start

generate random structures

Relax structures and rank their enthalpy

The Starting Population

HeredityBest fit Mutation

New Population

Relax structure and Calculate enthalpy

Did the result
converged?

Done

Yes

No

Figure 2.3: The flow chart of a general Evolution Algorithm.

2.3.1 Particle-Swarm Optimization (PSO)

PSO is another kind of evolutionary methods which is quite different from GA. The approach

was introduced for the first time by Kennedy and Eberhart [77, 78], and it is motivated by
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social behaviour such as bird flocking and fish schooling. An individual in the group relies

predominantly on its own experience as well as the experiences of others in the group to

know regions in the hyperspace that had been visited and optimum area that may have

been explored. Similar to what was done in GA, the system in consideration can begin with

a population of randomly generated solutions. However in contrast to GA, each potential

solution is given a random velocity vti,j and then moved through the configuration space. The

velocities and the positions are updated with the following equations:

vt+1
i,j = ωvti,j + c1r1(pbestti,j − χti,j) + c2r2(gbestti, j − χti,j) (2.3)

χt+1
i,j = χti,j + vt+1

i,j (2.4)

It must be noted that a potential solution (e.g., a crystal structure) in the phase space of

the search is often referred to as a particle in PSO method so that a set of particles can

be referred to as a generation. In equation (2.3), the new velocity vt+1
i,j of each particle is

updated using its own previous velocity vti,j, previous location (χti,j) as well as the current

location where best fitness has been reached (pbestti,j) and the population global location

at which the best fitness has been achieved so far (gbestti,j). Meanwhile, equation (2.4) is

used to bring the position of each particle in the solution hyperspace up to date. The two

random numbers r1 and r2 are independently generated. The inertia weight ω which takes

value between 0.9 to 0.4 has been found very useful in various applications [96]. In predicting

stable crystal structures of materials, the implementation of this scheme in crystal structure

prediction analysis by particle swarm optimization (CALYPSO) code [72] has led to successful

prediction and characterization of numerous materials. The flow chart below illustrate the

procedure employed in the CALYPSO code usage.
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Generate random structures
with symmetry constraint

Perform Local Optimization

List geometric structure parameter

Generate new structures with PSO

Perform Local Optimization

Did the result
converged?

Done

Yes

No

Figure 2.4: A flow chart to illustrate the procedure of CALYPSO code [72].
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2.4 Metadynamics

In the transformation of structure from one form to another, crossing a large energy barrier

is often required. This has lead to the appearance of several metastable states. This in itself

presents a good advantage since structure that otherwise would not form at normal condi-

tions could be created at high pressure and quench recovered at normal conditions. This

remarkable procedure has been applied to prepare notable materials with unusual chemical

properties. The question of what structure can be formed at a given pressure-temperature

conditions can be seen as an optimization problem so that one only need to search for the

global minimum of the free energy landscape. It is the underlying approach implemented

in various optimization related algorithms such simulated annealing [97], random search [88]

and evolutionary search method [94, 95]. After obtaining all candidate structures, one can

construct the phase boundaries and thereafter establish a dependable thermodynamic phase

diagram. In principle, these optimization techniques attempt to identify the stable structures

for a given condition without attempting to elucidate how these structures are formed. Mean-

while metadynamics approach can be very useful in revealing series of microscopic atomistic

transformation in the preparation of new materials.

In simulating the structural phase transition in crystals, the metadynamics methods [98, 99,

100] has played a significant role. It is an approach used in escaping free energy minima

by exploring free energy surfaces of the Gibbs potential G(h) = F (h) + PV . Where h =

(h11, h22, h33, h12, h13, h23) is the six-dimensional order parameter that define the simulation

cell of the crystal structure, F (h) is the Helmholtz free energy, P is the pressure and V is the

volume of the system. The free energy is differentiated with respect to the order parameter:

− ∂G

∂hij
= V [h−1(p− P )]ij (2.5)

where p is the internal stress tensor that can be calculated at constant h from the microscopic

virial tensor [101]. The order parameter is then evolved via a steepest-descent-like discrete
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evolution with stepping parameter δh,

ht+1 = ht + δh
φt

| φ |t
. (2.6)

where φt = −∂Gt

∂h
is the driving force obtained from a history dependent Gibbs potential Gt:

Gt(h) = G(h) +
∑
t′<t

We−
|h−ht

′
|2

2δh2 (2.7)

in which a gaussian of width W has been added to G(h) at each visited point ht
′

to prevent

the system from going back to the configurations in the free energy surface that have already

been sampled. Thus, φt is the addition of the thermodynamical driving force F = −∂G
∂h

and

the potential resulting from the superposition of the gaussians. With time, the gaussian fills

the initial well of the free energy that represents the starting structure and the system is

push from it’s local minimum into a new one which represents a new structure [98, 99, 100].

Figure 2.5: (a) An illustration of metadynamics barrier crossing mechanism (b) Gaus-
sians filling the potential well help to overcome the energy barrier.

The metadynamics procedure begins with the calculation of the matrix h for the optimized

structure at a given temperature and pressure and the evaluation of the stress tensor p in
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a molecular dynamics run at constant h for a period that results in good average of p.

Equations (2.5) , (2.6) and (2.7) are then used to evolve the box h into a new one followed

by the equilibration of the particle positions to low energy states to fit the new box using

molecular dynamics. In the process of filling the initial free energy well, the box goes through

a series of deformations until transition to a new state occurs. The procedure can be repeated

to fill the new minimum and move to other available minima.

2.5 Basin Hopping

Structure, dynamics and the thermodynamic properties of materials within Born-Oppenheimer

approximation is often described by the potential energy landscape. Finding a stable crystal

structure of a particular system is a problem of locating the global minimum on the potential

energy landscape describing it. The basin hopping (BH) algorithm described by David Wales

and Jonathan Doye is a method tailored to finding the global minimum of a scalar function

[81, 102]. In BH, the energy landscape is modified to a group of interconnected staircases

with level ground (i.e basin of attraction) that is equivalent to the set of configurations (or

set of structures) which lead to a particular minimum after optimization [81]. One should

note that despite the transformation, the form of the energy landscape does not change but

rather it maps each point to its closest local minimum and therefore essentially depicts the

energy landscape in terms of local minima as shown in Figure 2.6. It goes without saying

that there exists a reduction in the details between two local minima, albeit, this level of

resolution has been observed to work very well particularly in characterizing the structural

properties of biological systems such as protein molecules.

The transformed energy is obtained by minimizing the original energy landscape:

Ẽ(X) = min{E(X)} (2.8)

where X is the vector of nuclear coordinates in 3N dimension with which the energy min-

imization begins. Previous work have shown that this transformation does not change the
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global minimum as well as the relative energies of any local minima [103]. The new form of

the energy, Ẽ(X) at a point X is now the energy of structure produced in minimization so

that each local minimum is surrounded by a basin of constant energy which is made from all

the nearby configurations from which that specific minimum is derived [104]. It is obvious

from Figure 2.6 that the energy barrier has been removed by the new form of the landscape

so that the system can now move between these basins in discrete steps. The transformation

is now combined with a search mechanisms such as Monte Carlo sampling in which the steps

are defined by the perturbation of latest set of coordinates and then performing minimization

from the resulting configuration. The condition for a set to be acceptable could be based on

either thresholding or implementing a Metropolis step.

Figure 2.6: An illustration of basin hopping barrier crossing mechanism.

In thresholding, if a new minimum Enew is lower than the starting Eold, then it will be

accepted. Meanwhile in the Metropolis step, the new minimum will be accepted if it is lower

that the previous one (Enew < Eold ) and if otherwise, then the step is acceptable if the

probability exp[(Eold - Enew)/kT ] is greater than a random number drawn from the interval

of 0 to 1 [103, 104]. It must be noted that the temperature T is an adjustable parameter
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which is not used for annealing. In a nutshell, the procedure in basin hopping is an iterative

cycle that begins with a random perturbation of coordinates followed by a local minimization

after which the new coordinates or configurations are either accepted or rejected based on a

minimized function value [102].

2.6 Simulated Annealing

Simulated annealing (SA) is an approach that is motivated by the physical annealing in which

a matter is heated above its recrystallization temperature and then allowed to maintain the

desired temperature for some time before cooling [82]. The cooling process has to be con-

trolled in order to maximize the size of crystals formed and also reduce any defect incurred.

For example, heating a metallic material such as Copper above its recrystallization temper-

ature and allowing it to melt make the atoms become disordered in nature [105]. However,

when cooled slowly from the molten state, the atoms may crystallize orderly and the energy

may reach its global minimum. If otherwise cooled rapidly, it could become an amorphous

solid or a crystal with notable defects such as vacancies and dislocations. Therefore, the SA

process begins by melting the system at a highly acceptable temperature and then slowly

reducing its temperature until the system gets to a steady state where no further changes can

be observed. During the run, at each temperature, the atoms undergo series of movements

and rearrangements either by molecular dynamics or Monte Carlo process during which the

simulation is permitted to proceed for a time long enough to allow it get to a steady state

[106]. Consider a current state of the system which is characterized by the positions of

its particles, suppose one then introduces a small random perturbation say by displacing a

random particle. If the energy (E) of this perturbed state is lower that the current state

(i.e ∆E < 0), then the process is continued with the new state. If not (i.e ∆E ≥ 0), the

probability of accepting the perturbed state will be exp(− ∆E
kBT

) according to the Metropolis

criterion [107]. Repeating this process slowly enough could lead to a final state likely to be

the global minimum of the system.

40



2.7 Application Examples

As have earlier discussed, there are several optimization related methods that can be applied

to locate local minimum as well as global optimum in theoretical crystal structure investi-

gations. In this work, we applied the random structure search [88], genetic algorithm (GA)

[94, 95] and metadynamics [98, 99, 100]. The following are cases where these methods have

been successfully applied to characterize interesting materials.

2.7.1 Pressure-induced structural transformations and new poly-

morphs in BiVO4

Bismuth vanadate (BiVO4) has been well discussed for its application in photo-catalysis. It is

known to have various structures including tetragonal zircon structure (tz-BiVO4 I41/amd),

monoclinic fergusonite structure (mf-BiVO4 I2/a ), and tetragonal scheelite structure (ts-

BiVO4 I41/a) with each of them showing different level of photo-catalytic activity. This

indicates that the properties of BiVO4 depends enormously on its crystal structure. To ex-

plore the structural stability and likely transition between structures in material science, high

pressure has long been known as an important tool. At ambient pressure, unlike most ortho-

vanadate compounds that crystallize in either I41/amd or I41/a phase, BiVO4 takes the I2/a

structure. Hence, it may undergo a different phase transition and properties when subjected

to high pressure. In 2018, Pellicer-Porres et al. [108] reported that both fergusonite and

zircon-type BiVO4 transform to the scheelite structure phase and then to an unidentified

phase at high pressure. The reversible transition from fergusonite to scheelite and scheelite

to the new phase was observed at 3.2 GPa and 15.0 GPa pressure respectively. Meanwhile,

an irreversible zircon to scheelite transition begins at about 1.3 GPa and completes at about

5 GPa with the second reversible transition from scheelite to the new phase starting around

15 GPa as well. Until now, this new high pressure phase has yet to be characterized and

explained, hence the motivation for this work.

In order to identify this new high pressure phase, first principles metadynamics simulations
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were applied. The simulations were done on a 2 ×2× 2 supercell of scheelite-BiVO4 at room

temperature (300 K) and at four different pressure conditions between 25-40 GPa at 5 GPa

interval. As often done in metadynamics simulations, it is important to over-pressurize the

system in order to speed up the transition. At 30 GPa, a transition to a completely new C2/c

phase occurred. A careful comparison with other known structures in literature indicates that

the C2/c phase is an isostructure to a β-fergusonite structure which had been seen in ZnVO4

previously at high pressure. A pictorial representation of the phase transition is show in

Figure 2.7.

Figure 2.7: Schematic model for the phase transition of BiVO4 upon compression
[109].

Interestingly, metadynamics simulation at 30 GPa also shows that this β-fergusonite struc-

ture further transforms to another Cmca phase that has so far not been reported in any

orthovanadate compound. Phonon dispersion analysis (see Figures 2.8 and 2.9) performed
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on both β-fergusonite and Cmca structures at 30 and 40 GPa respectively shows no negative

value, suggesting that they are dynamically stable. For this reason, it is safe to project that

β-fergusonite structure of BiVO4 may transit to Cmca phase at high pressure [109].

The pressure stimulated transitions in the compound were explored with metadynamics [80,

100] in addition to the projector augmented plane wave method which has been implemented

in VASP. The Bi, V, and O potentials employ 5d106s26p3, 3s2 3p63d34s2 , and 2s22p4 as

valence states with the Perdew–Burke–Ernzerhof (PBE) functional , respectively. The plane

wave basis set was expanded with a kinetic energy cutoff of 500 eV and a dense k-point

grid with spacing of 2π× 0.03 Å−1. At each metastep, first principles molecular dynamics

(MD) simulation with canonical ensemble was done for 0.4ps. To quicken barrier crossing,

the supercell was over-pressurized under both hydrostatic and nonhydrostatic conditions.

Phonon dispersion relations were calculated using the density functional perturbation theory

and post processed using the PHONOPY code [61].
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Figure 2.8: Calculated phonon dispersion relations for β-fergusonite structure at 30
GPa [109].
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Figure 2.9: Calculated phonon dispersion relations for the Cmca structure at 40 GPa
[109].
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2.7.2 o-C240: A New sp3-dominated allotrope of carbon

Carbon is one of the most basic elements in nature with several industrial applications. It

can exist in many forms including amorphous carbon, diamond, graphite and fullerene as well

as numerous metastable phases. A lot of theoretical and experimental investigations have

been directed towards finding carbon structures with special properties such as ultra high

density, super hardness and stability [110, 111, 112]. The application of external stimuli such

as pressure and temperature can be used to create these new allotropes of carbon. Very of-

ten, the process entails the modification of carbon bonding environment in an already known

allotrope. For instance, with heat treatment, C60 filled single-wall carbon nano-tube (CNT)

have been shown to transform to carbon nano-tube with double-wall [110]. Meanwhile solid

C60 has be reported to change to polymerized phases of crystalline carbon dominated by sp3

and sp2 hybridized carbon at high pressure and temperature [111]. Of a notable interest is the

conversion of carbon onions to diamond with the application of a controlled nano-twinning in

which the resulting diamond shows a high level of hardness compared with natural diamond

[112].

Allotropes of carbon that contain mixture of sp3 and sp2 hybridized C atoms have been re-

ported to show some fascinating properties including ultra hardness and strength that make

them very usable in device fabrication. For this reason, several attempts have been made

to synthesize mixed sp3/sp2 compounds of carbon including CNTs [113] and fullerene [114].

A combination of experimental and theoretical studies revealed that buckminsterfullerene

(C60) can polymerize under pressure with a large existence of both sp3 and sp2 bonds in

the resulting polymer [115]. Clathrates of carbon have also been reported to demonstrate

considerable strength despite having a low density [116].

In spite of the notable success, designing new allotropes of carbon from just experiment is

time consuming and costly since such processes will involve countless number of attempts and

trails. Consequently, theoretical structure search investigations become very useful since they

can identify potentially synthesizable new allotropes and therefore guide further experimen-

46



tal explorations. In this work, a new allotrope of carbon was predicted from metadynamics

and first principles calculations. It is formed from a conversion of 2D polymeric C60 at high

pressure and temperature. An orthorhombic (Immm) 2D polymeric C60 was compressed at

40 GPa and heated to 1500 K in a metadynamics simulation. After the conversion, C60 signif-

icantly lost its identity, fusing into a 3D structure with new bonds formed within the starting

C60 through sp3 hybridization. This new compound (shown in Figure 2.10) is named o-C240

because it has 240 atoms in a unit cell of a primitive orthorhombic (Pmmm) space group

[117]. Interestingly, the ratio of sp2/sp3 changed significantly from 52:8 in the starting C60

to 9:51 in the o-C240 compound. Dynamical stability of o-C240 explored at 0 GPa as shown

in Figure 2.11 indicates that it is dynamically stable and therefore quench recoverable after

its synthesis at high pressure-temperature conditions. With respect to electronic properties,

the computed electronic band structure at ambient conditions (see figure 2.12(a)) shows that

o-C240 is a semiconductor of an indirect energy gap of about 1.72 eV. Projected electron

density of states in Figure 2.12(b)) indicates that the carbon p-states is at the valence band

maximum (VBM) and the conduction band minimum (CBM) for the o-C240.

The new allotrope is calculated to have optimum fracture toughness and to be superhard

with a calculated Vickers hardness of about 45 GPa which is close to or even more than that

of some known superhard materials including B4C (38 GPa) [118], B6O (45 GPa) [119], and

WB5 (45 GPa) [120]. This high value of hardness is not surprising due to the appearance of

both sp2 and sp3 carbons in the o-C240, since there exists a dependable correlation between

the hardness of a carbon allotrope and the sp2 /sp3 ratio. The 9:51 sp2 /sp3 ratio makes o-

C240 a superhard material while maintaining a semiconducting state, which could potentially

find significant applications in industry [117].
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Figure 2.10: The unit cell of the o-C240 compound shown in (a) three-dimension and
(b) two-dimension as well as (c) unique carbon rings that characterize the structure at
0 GPa [117].
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Figure 2.11: Calculated phonon dispersion relation for o-C240 compound at 0 GPa
[117].
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Figure 2.12: (a) Calculated electronic band structure of o-C240. (b) Total and pro-
jected electronic density of states of o-C240 [117].

2.7.3 Two good metals make a semiconductor: A potassium-nickel

compound under pressure

Properties of materials can undergo a significant change at elevated pressure and temper-

ature. For instance, at ambient conditions, alkali metals are known to have a very simple

electronic band structures that can be described by a nearly free-electron model. However

with increasing pressure, they undergo series of structural phase transitions from a very well

symmetric body-centered cubic metallic phase to other phases accompanied with a decrease in

symmetry. Moreover, heavy alkali metals such as potassium (K), rubidium (Rb) and caesium

(Cs) upon compression can experience a transition from s electronic configuration to d state

in which case the s-d transition enables them to behave like transition metals [121]. Chemical

reactions that are not achievable at ambient conditions can even be triggered at high pres-
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sure as a result of breaking of bonds and formation of new ones leading to the appearance of

unprecedented compounds with unique properties. One of such remarkable compound for-

mation between K and Ni had been synthesized above 30 GPa [121]. This effect of pressure

on the reaction of alkali metal with transition metal has its foundation in Miedema’s rule

[122]. According to this rule, a small difference in charge density at the Wigner-Seitz radius

and a large difference in the electronegativity between two metals support the formation of

compound [122]. The electronegativity of alkali metals are quite different from those of tran-

sition metals so this part of the rule is easily satisfied. Nonetheless, there is a huge difference

in the charge densities of the alkali metals and those of transition elements. The differences in

charge density between them are too large to readily allow compound formation at ambient

conditions. At high pressure, the charge densities of alkali metals grow faster than those of

the transition metals because of the s-to-d transition leading to the formation of compounds

between them.

A little above two decades ago, Parker et al. successfully synthesized a crystalline compound

of K and Ni at about 2500 K above 30 GPa but not able to pinpoint the exact crystallogra-

phy of the observed structure [121]. In this work, a combination of GA and PSO have been

applied to explore the potential energy surface of K-Ni. The search was done at 0 and 37

GPa which is the pressure at which a compound of K-Ni was synthesized. Simulation cells of

up to four KxNiy formula units were employed. Structure optimization, total-energy calcu-

lation, and molecular dynamics (MD) simulation were performed using the Vienna ab initio

simulation package (VASP) [21] and projector-augmented wave (PAW) potentials [20, 123]

with the Perdew-Burke-Ernzerhof (PBE) functional [124]. The K and Ni potentials used

have valence states of 3s23p64s1 and 3s23p63d84s2, respectively, and an energy cutoff of 450

eV. A k spacing of 2π × 0.02 Å was used for Brillouin zone (BZ) sampling.

The convex hull computed at 37 GPa shows that there exists a good number of compounds

with several stoichiometries that are thermodynamically accessible on the energy surface of

K-Ni systems (see Figure 2.13 (a)). After comparing the x-ray diffraction pattern of all

predicted compounds with the experimentally obtained pattern, a particular P21/m K2Ni

51



turns out to be a good match as shown in Figure 2.13 (b). One very interesting property

of this P21/m−K2Ni is that its electronic band structure shows that it is a semiconductor

with energy band gap of about 0.65 eV despite the fact that both K and Ni are metals.

The formation and synthesis of this compound is a confirmation that K can be incorporated

with Ni at high-pressure conditions. It is important for understanding the partition of trace

elements between the core and mantle, a key problem in the evolution of Earth. This study

will provide insight for understanding the partition of trace elements between the Earth’s

core and the mantle, a key problem in getting a full grasp of Earth’s evolution [39].

Figure 2.13: (a) Enthalpy of formation of various K-Ni compounds with respect to
constituent elemental decomposition at 37 GPa.(The red dot was obtained from GA,
all other points are from PSO) (b) Calculated XRD patterns for the P21/m-K2Ni and
the fcc-Ni at 37 GPa, compared with the previous reported experimental XRD pattern
at the same pressure. (c)Electronic band structure of P21/m-K2Ni at 37 GPa [39].
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Chapter 3

HIGH-ENTHALPY CRYSTALLINE PHASES

OF CADMIUM TELLURIDE

This chapter is a slight modification of the paper that had been published in Physical Review

Research. The reference to the published work is as shown below:

• Adeniyi, A. O., Kunz, M., Stavrou, E., Yao, Y. High-enthalpy crystalline phases of

cadmium telluride. Physical Review Research, 2(3), 033072.(2020).

3.1 Introduction

Groups IIB-VIA compounds have attracted research interest for many decades from both ex-

perimentalists and theorists due to their wide applications that include light-emitting diodes,

laser diodes, chemical sensors, field-effect transistors, catalysis, and solar cells. The behaviour

of these compounds at high presure has also been explored for about three decades. At high

pressure, fascinating physical and chemical properties of these materials develop, for instance

their electronic properties may change from that of a semiconductor to metallic [125, 126].

Both experimental and theoretical studies have shown that the widely acceptable transition

path for these compounds is zinc-blende (ZB) or wurtzite (WZ) → NaCl → Cmcm with

increase in pressure [87, 127, 128]. Like the other IIB-VIA binary compounds, cadmium

telluride (CdTe) has found many applications especially in highly efficient optoelectronic

devices. It is a direct-bandgap semiconducting material with a bandgap value matching al-

most perfectly to the solar spectrum [129, 130]. This trait makes CdTe an optimal material

for low-cost high-efficient photovoltaics (PV) applications. Current state-of-the-art CdTe-

based single junction devices can reach a conversion efficiency as high as 22%, providing a
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low-cost alternative to conventional silicon-based devices [131]. Moreover, doped CdTe and

variants have numerous applications in thermoelectrics, ferroelectrics, and quantum dots

[132, 133, 134]. Driven by its versatile applications, the study on CdTe is currently very

active. Since, the properties of CdTe are closely tied to its crystal structure, understanding

the latter and its changes under external stimuli is a key step to developing new applications.

At ambient conditions, CdTe crystallizes in a semiconducting zincblende structure which is a

commonly adopted structure for group II-VI binary binary compounds. About 3.5 GPa, it is

known to transform into a semimetallic rocksalt structure through an intermediate cinnabar

structure which has a very narrow region of stability. Nelmes et al. reported a further trans-

formation of the rocksalt phase (B1) of CdTe to an orthorhombic Cmcm phase at about 10

GPa [127]. The Cmcm phase remains stable to about 40 GPa [127, 135] before undergoing

further pressure induced phase transition at about 42 GPa to an unidentified phase. Up until

now, the structure of the post-Cmcm phase of CdTe has so far been unresolved. Theoretical

calculations with density functional theory have been applied to successfully reproduce the

transition sequence zinc-blende → cinnabar → rocksalt → Cmcm [136, 137]. Interestingly,

the Cmcm phase was predicted to transform a new phase at about 44 GPa which is close to

the experimental transition pressure [136]. However the simulated diffraction pattern of the

predicted P-3m1 structure does not match the x-ray diffraction pattern of the post-Cmcm

phase. Moreover, DFT calculation shows that the enthalpy of CdTe should become higher

than that of its elemental constituents (Cd and Te) at 34 GPa, indicating that CdTe may

actually undergo an elemental dissociation in this pressure neighborhood.

Up to the present time, the post-Cmcm phase of CdTe remains unknown and the predicted

dissociation in this pressure neighborhood adds to the mystery. To address this problem

and understand the mechanisms underlying the interesting phase transitions, a detailed syn-

chrotron XRD (done by Dr. Stavrou at the Lawrence Livermore National Laboratory, Liv-

ermore, California) and first principles computational study (by me under the supervision

of Dr. Yao) of CdTe in the rocksalt to post-Cmcm regions (6 – 63 GPa) are performed.

The experiment successfully reproduces the rocksalt to Cmcm transition at 10.5 GPa and
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the Cmcm to post-Cmcm transition at 42 GPa. The measured XRD pattern for the post-

Cmcm phase agrees very well with the previously reported pattern [135]. A metadynamics

simulation is used to successfully identify the structure of this phase as a monoclinic P21/m

structure. The calculations further reveals that P21/m structure is a distorted form of the

B11 structure (P4/nmm) and can be viewed as an intermediate phase for the Cmcm to B11

transition in a broader pressure range. Consistent with previous reports, both P21/m and

B11 structures are found to have higher enthalpies than their elemental constituents. This

extraordinary phenomenon is attributed to a significant kinetic energy barrier separating

crystalline CdTe from elemental phases in composition space [138].

3.2 Computational Methods

The calculations in this work was done using the density functional theory [4] by solv-

ing the Kohn-Sham equations [10]. Vienna ab initio simulation software package (VASP)

[21] was used for the structure optimization, calculation of the pressure-volume relation as

well as the enthalpy, band structure and the density of states. The projector augmented

planewave (PAW) [20, 123] pseudopotential combined with the Perdew-Burke-Ernzerhof

(PBE) exchange-correlation functional [124] and a kinetic energy cut off of 650 eV was used

with Cd and Te taking 4s24p64d105s2 and 5s25p4 as valence states respectively. Phonon dis-

persion curve was calculated using the Quantum ESPRESSO (QE) code [57, 58] with kinetic

energy cut off of 75 Rydberg. A 4 X 4 X 4 q-point grid was applied for the phonon calculation

and the dynamical matrix. To simulate the phase transition, metadynamics simulations were

performed starting with several supercells of Cmcm phase consisting 8 - 32 CdTe formula

units (f.u) at 300 K and pressure in the range of 50 - 120 GPa. Each metastep involves

molecular dynamics simulation with a canonical ensemble (NVT) for 0.8 ps.

3.3 Results and Discussion

x-ray diffraction experiment performed by Dr Stavrou at Lawrence Livermore National Lab-

oratory revealed the transition of CdTe from the rocksalt structure to Cmcm and from the
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Cmcm structure to an unknown structure at high pressure (see Figure 3.1).

Figure 3.1: Experimental XRD patterns of CdTe at various pressures measured on
pressure increase. The XRD patterns of the rocksalt (Fm-3m), Cmcm, and post-Cmcm
phases are shown by black, red, and blue lines, respectively. The XRD patterns of
mixtures of Cmcm and rocksalt and of Cmcm and post-Cmcm (P21/m) phases are
shown by yellow and green lines, respectively.(The Figure was produced by Dr Stavrou)
[138].

At low pressure in the range 6 - 10.5 GPa, the diffraction pattern is consistent with the

rocksalt (Fm-3m). The first phase transition occurs at about 12 GPa to a structure that

has a diffraction pattern that agrees with previously reported Cmcm phase. This structure

is stable to about 42 GPa at least, before transforming to another phase that has not been

previously solved.
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3.3.1 Structure Determination

In order to identity the unknown high pressure phase, metadynamics simulation was used to

explore the potential energy surface of CdTe. The simulation uses the scaled components of

the edge vectors of the simulation cell as the collective variables. The simulation was carried

out in a vast pressure region, from 50 to 120 GPa, to capture as many phase transitions. At

90 GPa for instance, evolution of the collective variables (Figure 3.2) as well as the enthalpy

(Figure 3.3) indicate a clear phase transition at the 35th metastep.

Figure 3.2: Evolution of the Collective Variables showing a phase transition at 35th

metastep.
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Figure 3.3: Enthalpy per atom evolution in the metadynamics simulation showing a
transition at the 35th metastep.

Many structures were found to have competitive enthalpies in this region but with different

space groups, such as P−1, C2/m, C2/c, P21/m, P2/m, P21/c, Pbcm, I4/mmm, and P−3m1.

Of all these structures, only P21/m structure fits best to the experimental diffraction pattern

of the phase after the Cmcm. Figure 3.4 shows the comparison of the simulated x-ray

diffraction of P21/m structure with experimentally observed pattern at 63 GPa. It can be

seen that all major reflection peaks and features are well reproduced by this structure. At

high 2θ angles (greater than 20◦), the experimental XRD pattern is degraded because of the

reduced diffracted intensity, but the calculation nevertheless reveals several reflections. In

view of this reasonably good match, it is easy to suggest the P21/m structure as the structure

of the post-Cmcm phase.
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Figure 3.4: Experimental XRD pattern for the post-Cmcm phase at 63 GPa compared
with the simulated XRD pattern for the P21/m and P4/nmm structures at the same
pressure [138].

3.3.2 Transition Mechanism

This P21/m structure belongs to a primitive monoclinic unit cell with Z = 4. This assignment

is in agreement with the preliminary indexing of the XRD pattern. The optimized lattice

parameters of the structure at 63 GPa are: a = 5.8793, b = 4.741, c = 4.900 Å and β =

94.19°. The Cd atoms occupy two 2e sites, (0.5051, 0.25, 0.3150) and (0.8025, 0.25, 0.7820)

while the Te atoms occupy another two 2e sites, (0.0054, 0.25, 0.2779) and (0.3281, 0.25,

0.8044). The transition from Cmcm to P21/m structure involves significant shearing of the

(100) plane relative to neighboring plane (see Figure 3.5). The (100) in the Cmcm structure

is a pseudo-hexagonal plane on which Cd and Te atoms occupy the sites alternatively in

a zig-zag manner. The neighboring (100) plane has identical geometry but the sites are

occupied by the other type of atom. As such, the closest Cd-Te distance in the Cmcm
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structure occurs between adjacent (100) planes, connecting the Cd and Te that are on top

of each other. During the continuous transition to the P21/m structure, the (100) planes

become puckered and shift relative to the neighboring plans along the [010] direction. After

the phase transition, these planes become the (001) planes in the P21/m structure.

Figure 3.5: Transition pathway for the B1→ Cmcm→ P21/m phase transition. Shown
on the right is the structural relation between B1 and B11 structures. The Cd and Te
atoms are colored purple and yellow, respectively [138].

Taking a closer look at this transition path, it can be envisaged that if the simulation is al-

lowed to continue, the transition may continue further and eventually get to a high symmetry

P4/nmm (B11) structure. For this reason, it is predicted that the transition from Cmcm

does not complete at the P21/m structure but changes further to a P4/nmm structure at

higher pressure. The B11 structure is the structure of γ-CuTi. Specifically, for the P21/m

structure to become the B11 structure, the Cd 2e sites need to change to (0.5, 0.25, 0.3423)

and (1.0, 0.25, 0.6578), and the Te 2e sites change to (0.0, 0.25, 0.1048) and (0.5, 0.25,

0.8952), while the lattice parameters change to a = 5.01, b = 5.01 and c = 5.71 Å. As can be

seen in Figure 3.4, comparing the simulated XRD pattern for the P21/m structure with that

of the P4/nmm indicate a good amount of resemblance except of the peak broadening which
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results from distortion of the unit cell. From this analysis it seems appropriate to suggest

that the P21/m structure is the intermediate phase between the Cmcm and B11 structures,

for it being the common subgroup along the transition path. In a broader pressure range, the

phase transition of CdTe is viewed as a B1 to B11 transition bypassing Cmcm and P21/m

intermediate phases (Figure 3.5).

3.3.3 Equation of States

Pressure dependence of experimentally obtained lattice parameters shows a good agreement

with the calculated results particularly in pressure range where CdTe is known to have

completely settled in its identified phases (see Figure 3.6). In the region (around 12 - 15 GPa)

between the rocksalt and Cmcm CdTe structures, theoretical evaluations give a slighly higher

value for b and with slight lower values of c. This region can be seen as the intermediate

region in which the system is yet to fully settle into the local minimum that represents

the orthorhombic Cmcm phase. Perhaps, the implemented theoretical methods which are

designed to visit the local minimum of the condensed matter systems may not fully capture

the intermediate region between two phases as can accurately be described by experiments.

Be that as it may, the decreases in the calculated values of b is accurately compensated

by appropriate values of c to allow the CdTe structure maintains its cell volume as can

be seen in Figure 3.7. The drop in volume as the system makes a transition from B1 to

Cmcm and a further drop in volume as it changes from Cmcm to P21/m further support

the phase change of CdTe induced by pressure. To examine the energetics, the enthalpies

of the P21/m and P4/nmm structures are calculated and compared with that of the Cmcm

structure at different pressures (Figure 3.8). This calculation shows that the P21/m structure

becomes thermodynamically more stable than the Cmcm structure near 45 GPa, which is

indeed very close to the experimental transition pressure to the post-Cmcm phase (46 GPa).

The P4/nmm structure is calculated to be more stable than the P21/m structure near 68

GPa. This finding establishes the P21/m structure as the intermediate phase between the

Cmcm and P4/nmm structures. Previously, the B2 structure (as in CsCl) was suggested as a

candidate structure for the post-Cmcm phase on account of its low Madelung energy, which

becomes dominant in determining structures at small volumes [139]. After all, the B1 to B2
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transition has been found in many covalent binaries under high pressure. Our calculation

shows that the B2 structure of CdTe indeed becomes more stable than the Cmcm structure

near 70GPa, but with the P21/m and P4/nmm structures now considered, the B2 structure

has higher enthalpy than both. In fact, the enthalpy difference between the P4/nmm and

B2 structures becomes bigger with increasing the pressure, indicating that the latter has no

region of stability at high pressures. This theoretically obtained equation of states shown in

Figure 3.8 gives a dependable transition sequence that are consistent to the experiments.

Figure 3.6: Pressure dependence of the lattice parameters of CdTe for the rocksalt,
Cmcm, and post-Cmcm phases from experiment (solid symbols) and calculations (lines)
[138].
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Figure 3.7: Volume-pressure data for the rocksalt, Cmcm, and post-Cmcm CdTe.
Experimental and calculated values are shown with solid symbols and dashed lines, re-
spectively. The solid lines are unweighted third-order Birch-Murnaghan EOS fits to the
experimental data points. Experimental and the calculated volume of the superposition
of (Cd + Te)/2 are also shown for comparison [138].
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Figure 3.8: Calculated enthalpies for Cmcm, P21/m, P4/nmm, and B2 (CsCl) struc-
tures at different pressures. The enthalpy of the Cmcm structure is used as the zero-
energy reference. The enthalpy sum for elemental solids Cd and Te is included for
comparison.[138]
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3.3.4 Electronic Property and Dynamical Stability

In agreement with previous experimental reports that CdTe becomes metallic in the B1 phase

[127, 135], electronic structure results from electronic band structure and density of states

calculations show that all the considered structures (B1, Cmcm, P21/m and P4/nmm) are

metallic (see Figures 3.9 - 3.12)

Figure 3.9: Band structure and DOS of the B1 structure at 7.3 GPa. The Fermi level
is indicated with the red line [138].
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Figure 3.10: Band structure and DOS of the Cmcm structure at 15 GPa. The red
line represents the Fermi level [138].
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Figure 3.11: Band structure and DOS of the P21/m structure at 60 GPa. Fermi level
is shown with red line [138].
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Figure 3.12: Band structure and DOS of the P4/nmm structure at 80 GPa. Fermi
level is depicted with red line [138].

In the observed phase transition, the theoretically computed equation of states in Figure 3.8

gives an incontrovertible transition sequence that are consistent to the experiments. Notwith-

standing, the fact that the enthalpies of all the CdTe structures are higher than sum of the

enthalpies of its constituent elements (Cd+Te) at pressures higher than 34 GPa, is very fas-

cinating. With respect to thermodynamic principles, this occurrence is an indication that

CdTe is most likely to decompose in this pressure range. Obviously, it does not decompose to

at least 63 GPa which is the maximum pressure attained in the experiment that shows that

CdTe is stable at high pressure. A similar situation has been reported in zinc telluride (ZnTe)

in that theoretical calculations shows that it should dissociate to elemental components (Zn

+ Te) at 38 GPa [140] whereas experiment shows that it should be stable to at least about

85 GPa [141]. Although this occurrence may seem troubling, it may not be a coincidence but

something particularly related to tellurium compounds. One possible factor that contributes

to this anomaly is the non-inclusion of temperature effects since the calculated equation of
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states is at zero kelvin so it is likely to underestimate/overestimate the decomposition pres-

sure, but the errors should be minor since the vibrational free energy is only in the order

of 10 meV/atom at room temperature. Moreover, since CdTe, Cd and Te are all in solid

state at the room temperature, there are no large heat reservoirs, i.e., heat of fusion and

vaporization, to reverse the huge enthalpy difference between CdTe and the elements. Thus,

we speculate that there exists a large kinetic energy barrier for the decomposition of CdTe,

which needs extra pressure to overcome. To this end, the mechanical and dynamical stability

of the P21/m and P4/nmm structures are examined by the phonon calculations (Figures.

3.13 and 3.14).

Figure 3.13: Calculated phonon dispersion relations for the P21/m structure at 60
GPa [138]
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Figure 3.14: Calculated phonon dispersion relations for the P4/nmm structure at 80
GPa.[138]

The appearance of no imaginary frequencies in the phonon dispersion curves for both P21/m

and P4/nmm confirms that these structures are dynamically stable. Establishing their dy-

namical stability further ascertain that these two structures neither decompose nor undergo

a phase transition in their stable regions. The P21/m and P4/nmm phases are predicted

as high-enthalpy phases which are commonly seen in solids under high-pressure. For exam-

ple, the high-pressure synthesis of new compounds from elemental constituents, which is a

reversed process to decomposition, always requires much higher pressure than what is pre-

dicted for the dissociation pressure. In order to further understand the stability of CdTe at

high pressures, a comparison of theoretically calculated atomic volume of CdTe structures

and a half of the superposition of (Cd + Te) with experimentally obtained values ([142, 143])
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in several pressure points was done (Figure 3.7). The comparison clearly shows that the

atomic volume of CdTe is always larger than the superposition of (Cd + Te)/2 both below

and above the critical pressure for decomposition (34 GPa) as determined by enthalpy cal-

culations. This observation implies that CdTe has a much lower potential energy (higher

stability) than the superposition of (Cd + Te)/2 and provides a plausible explanation for the

experimentally observed stability of CdTe at higher pressures. Still, the observed stability of

CdTe for more than 30 GPa above the theoretical dissociation point is very significant, and

future investigation is encouraged to address this interesting question.

3.4 Conclusion

High-pressure phase transition of CdTe has been investigated by a combined experimental

(by Dr. Stavrou) and computational study (by Adebayo under the supervision of Dr. Yao) up

to 63 GPa. The previously reported B1 to Cmcm and Cmcm to post-Cmcm phase transitions

have been successfully reproduced and identified by synchrotron x-ray diffraction measure-

ments. The long-sought crystal structure for the post-Cmcm phase has been characterized

as a monoclinic P21/m structure. Analysis of the phase transition pathway suggests that the

P21/m structure is an intermediate phase between Cmcm phase and the B11 phase. Using

enthalpy calculation, the P21/m to B11 phase transition is predicted to occur near 68 GPa.

In the pressure range of interest, the enthalpy of CdTe is higher than the enthalpy sum of Cd

and Te solids, indicate that this compound is a high-enthalpy compound which is stabilized

by a tremendously large kinetic barrier.
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Chapter 4

STABLE HELIUM-HYDROGEN COMPOUND

This chapter is a slight modification to the paper published in Physical Review B. The

reference to the published article is as shown below:

• Adeniyi, A. O., Adeleke, A. A., Li, X., Liu, H., Yao, Y. Prediction of a stable

helium-hydrogen compound:first-principles simulations. Physical Review B, 104(2),

024101.(2021).

4.1 Introduction

Helium belongs to group VIIIA in the period table. Members of this group are generally

considered to be chemically nonreactive because of their complete outermost shell. In recent

years however, various research groups have investigated the structures and properties of

compounds formed by elements in the inert group. At high pressures, stable compounds of

inert elements include van der Waals compounds in the form of Laves phase such as Ar(He)2,

Ne(He)2 [144], Ar(H2)2 [145], and Xe(O2)2 [146]. The stability of these structures has been

directly linked to the efficient packing and configurational entropy which are greatly en-

hanced by pressure. Structures of chemically bounded metastable He compounds have been

predicted [147]. Furthermore, reaction between Xe and Fe/Ni which help to provide insight

into the missing Xe paradox in the earth core has also been explored [148]. More recently, He

being the element with highest value of ionization potential and very low value of electron

affinity [147] has received extensive experimental and theoretical exploration regarding its

tendency to undergo a chemical reaction or form stable neutral compounds in which closed

shell electrons of helium could take part in chemical bonding. The results of such inves-

tigations have shown that it reacts with metal, metal oxide, metal fluoride and sulphides
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[95, 149, 150], in which its presence makes a significant impact on the long range Columbic

interactions. It also reacts with ammonia [151], nitrogen [152], water [125] and other in-

ert elements [144], where its presence plays important role in the internal pressure of the

system with notable charge transfer. Despite the fascinating predictions at high pressures,

little is known about the likelihood of helium to undergo a chemical reaction with other el-

ements and form stable compounds that include notable helium bonds at ambient conditions.

Helium and hydrogen are the two most abundant elements in the universe and they con-

tribute the highest percentage to the composition of stars and all the planetary bodies. For

instance they contribute about 70-95% to the mass of Saturn and Jupiter in which several

models predict an inner ionized helium and hydrogen envelope as well as an outer neutral

He and molecular H2 envelope [153, 154]. They are also the major components of recently

discovered exoplanets [155]. To get a good model of these exoplanets, it is important to

understand the equation of states (EOS) of all the various components. In principle, the

mechanical structure and internal heat profile of any planet can be determined completely

from the EOS of its chemical constituents. Any form of inaccuracy in the EOS can lead to

false estimation of what these planets contain as well as their formation process and how

they may evolve. One long unanswered question is why Saturn has about 50% luminosity

more than predicted by existing models [154]. Both Saturn and Jupiter give out about twice

the energy they get from the sun. The method of heat transfer is the same in them and

they are both well mixed in their interior. A cooling model for homogenous planets to es-

timate the luminosity of Jupiter produces a result that closely matches the measured value

whereas the luminosity of Saturn is about 50% more than the model produces [156]. This

indicates that Saturn has other sources of energy that may or may not be present in Jupiter.

One possible contribution to this additional energy source in Saturn as proposed by Smolu-

chowki [157] is H-He demixing [158], during which heavier He droplets fall down from H2-He

layer and exchange gravitational energy for thermal energy through viscous precipitation.

The miscibility of H2 in He matrix or vice versa at high pressure plays an important role

in deciding the phase diagrams of the H2-He mixture. Could a chemical reaction between

helium and hydrogen leading to the formation of a stable He-H2 compound also contribute to
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this additional energy? To answer these fundamental questions and/or propose new models

towards the composition, formation and evolution of these planetary bodies, the EOS for

H2-He system and any stable structure of H2-He has to be accurately estimated [159].

Hydrogen and hydrogen-rich compounds have fascinating physical and chemical properties

especially at extreme conditions. Among other interesting properties, hydrogen has been

predicted to show characteristic of a metallic and superconducting superfluid and high tem-

perature superconductivity [160, 161, 162]. Several compounds of hydrogen with other ele-

ments have been of interest in condensed matter physics because of the potential application

as high temperature superconductors. These include FeH5 [163], YH6 [164], CaH6[165], H2S

, H3S [166], YH10 and LaH10 [50]. To the best of our knowledge, no actual stable com-

pound of helium hydrogen-rich system in which there exists a favorable interaction between

helium and hydrogen either from experiment or theoretical predictions, has been reported.

Pioneer works including first principles calculations on this system have so far been able to

provide insight to understanding the thermodynamics of helium hydrogen mixing [167, 168]

and demixing [169, 170]. Theoretical studies have predicted the phase separation of H2 and

He at high pressures and temperatures [169], as well as the miscibility of H2-He mixtures

under planetary conditions [171]. The reactivity of He has also been demonstrated in helium

hydrates, in which the He filled ice-II and ice-Ih were found to be energetically favorable

against all decomposition reactions at 1 kbar [172]. In a recent experiment, spectral evidence

has shown that there can be sufficient mixing in He-rich mixture for forming strong chemical

association of H2 to He at pressures below 100 GPa [173, 168]. However, it was later argued

that the Raman signal observed in the previous experiment was due to N2 impurities and

subsequent formation of a N2-H2 van der Waals (vdW) solids at high pressure [174]. The

question as to whether there is an interaction between helium and hydrogen that can lead

to the formation of stable He-H2 compounds at right conditions still remains unclear. Thus,

unravelling possible stable compounds of this system and understanding the type of chem-

ical bonding in such compounds will not only be potentially useful in advanced technology

applications such as hydrogen storage but also be an essential tool in accurate modelling

of the formation, composition and evolution of important planetary bodies. Hence, in this
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work the possibility of hydrogen forming a stable compound with helium has been explored.

This study is performed on helium hydrogen-rich [HeH2x] (x = 1, 2,3,4,5,6) systems using ab

initio random structure search and first principles calculations, and it has revealed a ther-

modynamically stable helium-hydrogen compound between 0 and 8 GPa with stoichiometry

He(H2)3 that belongs to the triclinic P-1 space group. Topological analysis shows that this

structure exhibits interaction between the H and He atoms that is similar to vdW interaction

found in He-O interactions for the helium filled ice II [175]. The He(H2)3 structure is also

found to be mechanically stable from the phonon calculations. The present results indicate

the existence of mixing helium-hydrogen system with energetically favorable H2-He interac-

tion that may be sufficient for crystal solidification at low temperature and high pressure,

enabling an understandable effect on the evolution of the interiors of gas giants.

4.2 Computational Method

The search was performed with the random structure search method [88] at ambient con-

ditions with primitive cells that contain 1 helium atom and 2 to 12 hydrogen atoms. No-

table successful applications of this method include the prediction of the ground-state and

metastable structures of novel materials such as ice at high pressures [86], atomic metallic

hydrogen [87], and several other systems [90]. Structural optimization, equation of states,

electron localization function (ELF), density of states (DOS) and electronic band structure

of candidate structures was done using the Vienna ab initio Simulation Package (VASP) [21]

with the Projected Augmented Potentials (PAW) [20, 123]. The H potential has the 1S1

valence state and He has the 1S2 valence state in addition to the Perdew-Burke-Ernzerhof

(PBE) exchange correlation functional [124]. To check the effect of van der Waal interaction

on the formation of the compound, several van der Waal functionals were applied includ-

ing optP86-vdW functional [25], optPBE-vdW [25], optP88-vdW [25] and vdW-D2 [176]

functionals, and semi-empirical DFT-D3 method [177]. Phonon dispersion relation of the

structures was done with density functional perturbation theory as implemented in VASP

after which the results were post processed with the PHONOPY code [61]. The plane wave

basis set was expanded with a kinetic energy cutoff of 480 eV and a dense k-point grid with
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spacing of 0.5
◦
A
−1

. Topological analysis of the charge density was estimated with the quan-

tum theory of atoms in molecules (AIM) [28] as implemented in CRITIC2 [59]. This method

has been used to successfully characterize closed shell interactions such as ionic, dihydrogen,

and hydrogen bonds [178].

4.3 Results and Discussion

4.3.1 Phase Stability and Stable Crystalline Structure

A crystal structure is deemed to be thermodynamically stable if it has a negative formation

enthalpy (∆ Hf ) compared to the mixture of its constituent elements or other likely struc-

tures. Hydrogen has been known to have complicated phase transition in the pressure ranging

from 0 GPa to 500 GPa. In the pressure range < 105 GPa, it has been predicted to be most

stable in the hexagonal P63/m phase before changing to C2/c in the pressure between 105 –

270 GPa, and then changing to Cmca-12 from 270 GPa to 385 GPa and finally to Cmca-4 in

the pressure range 385-480 GPa [179]. Helium on the other hand generally maintains a hexag-

onal closed pack (HCP) structure over a wide pressure range. The search for the structure of

He-H2 systems was performed at 0 GPa and a new compound, He(H2)3, that has a negative

enthalpy of formation relative to the HCP He and the hexagonal P63/m of hydrogen [179]

has been found [180]. The convex hull of the He-H2 system (Figure 4.1) constructed at 0 GPa

indicates that all the stoichiometries in consideration have compound with negative enthalpy

of formation with respect to elemental P63/m H and HCP He. However, the convex hull at 0

GPa does not conclusively suggest the formation of any He-H2 compound since the enthalpy

is not a sufficient measure of thermodynamic stability at ambient pressure. The formation of

He-H2 compounds is therefore expected to occur at high pressures, where all phases become

solid and the enthalpy becomes a meaningful factor of thermodynamic stability [180].
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Figure 4.1: Enthalpy of formation for all the considered He-H2 compounds with
respect to elemental decomposition at 0 GPa and 0 K [180].

Nevertheless, only HeH2, He(H2)2, He(H2)3 and He(H2)6 are on the hull from which He(H2)3

is the only dynamically stable candidate (see phonon dispersion curves later). For this reason,

this work and following discussion is focused on the He(H2)3 compound. To check the thresh-

old for the formation of this structure, the equation of state was estimated up to 20 GPa.

The appropriate stable crystal structures for elemental composition in the pressure range of

interest as highlighted earlier were used for the calculation. This predicted compound belongs

to the triclinic P-1 space group and its formation is continually favoured at high pressure as

established by the variation of ∆Hf with pressure shown in Figure 4.2. Because of the light

masses of hydrogen and helium, zero-point motion may have a large effect on the stability of

the He-H system. Furthermore, at low temperatures, the fluctuation of electron distribution

likely induces vdW interaction which is particularly notable for helium and hydrogen [181].

Thus, ∆Hf was corrected by adding zero-point energy (ZPE) contributions estimated using

harmonic approximation, and vdW contribution obtained by using optP86-vdW functional

[25] (Figure 4.2). The calculation has been repeated using optPBE-vdW [25], optP88-vdW
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[25] and vdW-D2 [176] functionals, and semi-empirical DFT-D3 method [177] (see Figure

4.3). The result of the inclusion of ZPE increases the pressure for decomposition of He(H2)3

(to He and H2 solids) from 8.8 GPa to 9.6 GPa as seen in Figure 4.1 while the application

of optP86-vdW functional slightly lowers the decomposition pressure to about 8.5 GPa. The

inclusion of zero-point motion and vdW interaction supports the stability of the He(H2)3

solid under moderate pressures.

The structural parameters of the P-1 structure optimized at 0 GPa [shown in Figure 4.4 (a)]

are a=3.8972 Å, b=4.1910 Å, c=4.2709 Å , α = 89.1897o, β = 89.165o , γ = 89.6054o with

H(1) at 2i: 0.43278 0.46895 0.44687, H(2) 2i: 0.45252 0.06081 0.95193 , H(3) 2i: 0.06251

0.55858 0.96521 and He 1b: 0.0 0.0 0.5. As shown in Figure 4.4 (c), in the P-1 structure,

each He atom is surrounded by six hydrogen atoms, two from the H(1) and its symmetry

equivalent, two from H(2) and its symmetry equivalent and then two from H(3) and its

symmetry equivalent. There exists different He-H distances and they are measured to be

2.604 Å , 2.650 Å and 2.708 Å for He-H(1), He-H(2) and He-H(3) respectively. At a higher

pressure of 8 GPa, these distances are reduced to 2.191 Å, 2.198 Å and 2.212 Å. Clearly,

the distances are within the sum of the vdW radii of helium (1.4 Å) and hydrogen (1.2 Å),

suggesting that the presence of helium is paramount to the formation and stability of the

compound.
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Figure 4.2: Calculated enthalpy of formation for He(H2)3 with respect to He and
3H2. Black: PBE calculation without any energy correction, Red: with inclusion of
zero-point energy, Blue: with inclusion of vdW interaction obtained from optB86-vdW
functional [180].
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Figure 4.3: Formation enthalpy of the P-1 structure with respect to the hcp He and
P63/m hydrogen computed with PBE potential and then with optPBE-vdW, optB86-
vdW, optB88-vdW, D3 and vdW-D2 functionals [180].
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Figure 4.4: (a) P-1 crystal structure (b) the same structure with the electron localiza-
tion function at He(H2)3 at 0 GPa (isovalue = 0.8) (c) Extended P-1 crystal structure
showing the coordination of He atom [180].

This arrangement suggests that the presence of helium is very paramount to the formation

and stability of the structure. Unsurprisingly, after the removal of helium at 0 GPa, the

structure becomes very unstable as evident from the negative frequencies in the phonon

dispersion curve (see Figure 4.6).

4.3.2 Dynamical stability and Electronic Structure of the P-1 Com-

pound

The force calculation was done using a 3×3×3 supercell containing 189 atoms built from fully

optimized unit cell and results was then post processed with the PHONOPY code [61] to

obtain the phonon dispersion curve. The results of phonon dispersion calculation of the P-1
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structure at 0 GPa (Figure 4.5 (a)) and at 8 GPa (Figure 4.5 (b)) show that it is dynamically

stable and experimentally accessible at 0 GPa as well as at a high pressure of 8 GPa since

the absence of imaginary frequencies is often an indication of the accessibility of a crystal

structure experimentally, as well as its dynamical stability.

Figure 4.5: (a) Phonon dispersion curve for the P-1 structure at 0 GPa and 0 K (b)
Phonon dispersion curve for the P-1 structure at 8 GPa and 0 K [180].

At ambient pressure, the highest frequency phonons in the compound has a value of 130.451

THz (4351.38 cm−1) while the removal of helium leads to an increase in highest vibration

frequency to 131.058 THz (4371.63 cm−1). These values are consistent, within DFT approxi-

mations, with the measured value of 4342 cm−1 (130.17 THz) associated with H-H stretching

mode at ambient condition [182]. In order to put this in perspective, at ambient pressure,

calculated highest frequency phonon in the hexagonal P63/m structure of hydrogen has a

value of 4575.76 cm−1 (137.18 THz). Thus, there exists a notable decrease in the highest

phonon frequency as a result of the presence of helium. This suggests a certain degree of

He-H attractive interaction in the P-1 structure. The calculated phonon dispersion curves

for all other phases on the convex hull shown in Figures 4.7 - 4.9 indicate that they are

dynamically unstable.
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Figure 4.6: Phonon dispersion curve of the P-1 structure at 0 GPa when He atom
was removed [180].
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Figure 4.7: Calculated phonon dispersion curves for the HeH2 compound with mon-
oclinic C2/m symmetry at 0 GPa and 0 K [180].
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Figure 4.8: Calculated phonon dispersion curves for the He(H2)4 compound with
triclinic P1 symmetry at 0 GPa and 0 K [180].
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Figure 4.9: Calculated phonon dispersion curves for the He(H2)6 compound with
triclinic P1 symmetry at 0 GPa and 0 K [180].

The calculated electronic band structure and projected density of states at ambient pressure

and at 8 GPa [Figures 4.10 (a) - 4.10 (d)] reveal that the P-1 structure is a wide gap

insulator. At 0 GPa it possesses an indirect band gap of 8.49 eV which reduces to 7.04 eV at

8 GPa between Γ and R high symmetry points. The density of states at 0 GPa shows that

valence band maximum and conduction band minimum in the P-1 structure has significant

contribution from both helium and hydrogen. The electronic DOS at ambient pressure shows

that in the valence region, the hydrogen bands and helium bands are well separated. At higher

pressure, the widths of all bands increase as a result from the enhanced state dispersion. This

reveals that the intermolecular interaction within the H2 units increase as a direct effect of

compression, and the interaction between hydrogen and helium is enhanced also as seen from
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the apparent orbital overlap from -5 eV to the Fermi level (Figure 4.10 (d)). This is a clear

indication of certain degree of interaction between them. Thus, at this point, the question

can no longer be, is there any sort of interaction between helium and hydrogen in the P-1

structure? But what? In other words, what is the interaction between helium and hydrogen

in this structure and how strong is this interaction. For now, we know that it is strong enough

to support the formation and stability of the structure.

Figure 4.10: (a) Electronic band structure and (b) projected density of states for the
P-1 structure of HeH(2)3 at 0 GPa. (c) Electronic band structure and (d) projected
density of states for P-1 structure at 8 GPa [180].

Electron localization function (ELF) is an essential tool in the identification of places in a

crystal structure where localization of electrons can be found. When applied to a crystal

structure, such calculation can be used to distinguish between core and valence electrons as

well as reveal the presence or absence of covalent bonds or non bonding pair of electrons.
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The result of the ELF calculation in the P-1 structure [Figure 4.4 (b)] shows that the two

hydrogen atoms in the middle of the unit cell are covalently bonded as their electron clouds

completely overlap. In addition, the result shows that any interaction between helium and

hydrogen in this structure has to be closed shell in nature as one may have guessed.

4.3.3 Topological Analysis

The reaction:

He+ 3H2 → He(H2)3 (4.1)

is predicted to be exothermic with reaction enthalpy of about -0.05 eV/atom at 0 GPa.

Furthermore, phonon calculations have shown that the compound is dynamically stable at 0

GPa and higher pressures. Having also seen that the presence of helium is very important

to the formation and stability of the P-1 structure, we now seek to understand the nature of

He-H interaction in this compound as well as the evolution of such interaction with pressure.

Topological analysis of charge density at bond critical points (BCPs) where gradient of the

charge density is zero was done by using quantum theory of atoms in molecules (AIM)

[28]. In this method, the charge density at the critical point (ρ(rBCP )) and its Laplacian

(∇2ρ(rBCP )) can reveal essential information about the strength and type of interaction.

The magnitude of the charge density indicates the relative strength of the bond while its

Laplacian determines the characteristics of interatomic interaction. A negative Laplacian is

associated with covalent bonding whereas a positive Laplacian may be attributed to closed

shell interactions such as dihydrogen, hydrogen bonds and vdW interactions. The potential

energy density (V (rBCP )), kinetic energy density (G(rBCP )), total energy density (H(rBCP ))

and bond dissociation energy (EBD(rBCP )), at the bond critical points which are essential

quantities in characterizing bonding strength and type can be computed from ρ(rBCP ) and

∇2ρ(rBCP ) as:

V (rBCP ) =
~2

4m
∇2ρ(rBCP )− 2G(rBCP ) (4.2)

where,

G(rBCP ) =
3

10
(3π2)2/3ρ5/3(rBCP ) +

1

6
∇2ρ(rBCP ) (4.3)
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[183] and

H(rBCP ) = V (rBCP ) +G(rBCP );EBD = −1

2
V (rBCP ) (4.4)

At 0 GPa, topological analysis revealed bond critical points between helium atom and each

of the distinct hydrogen atoms in the structure. This is an indication that there exists a

quantifiable degree of interaction between helium and hydrogen in the P-1 structure at ambi-

ent conditions. The interatomic distances earlier calculated (in Figure 4.4 (c)) are accurately

reproduced. Calculated ρ(rBCP ) at BCP for shortest helium hydrogen contacts are 0.019

eÅ−3, 0.0174 eÅ−3 and 0.0155 eÅ−3 for He-H(1), He-H(2), and He-H(3) respectively. Multi-

plicity of all these interactions is 2 as we have already established in Figure 4.4. Calculated

∇2ρ(rBCP ) for these interactions are 0.266 eÅ−5 for He-H(1), 0.243 eÅ−5 for He-H(2) and

0.207 eÅ−5 for He-H(3). These ρ(rBCP ) values are much lower than the expected values for

conventional hydrogen bonds (0.04 to 0.24 eÅ−3) [178]. The calculated Laplacian for these

interactions are all positive, which identify the closed shell nature of the interaction. All

other calculated parameters at the bond critical points for these interactions at 0 GPa are

presented in Table 4.1. In addition, a complete table of all other BCPs in the structure at

0 GPa can be found in the Table 4.5. All the results are consistent with vdW interaction

and comparable in strength with those found in He-O closed shell interactions for the helium

filled ice II [184]. The calculated Bader charges also confirm that the He(H2)3 compound

is dominated by vdW interaction at 0 GPa with an appearance of small but non negligible

interaction between He and H (see Table 4.3).

At 8 GPa, the calculated ρ(rBCP ) for He-H(1), He-H(2), and He-H(3) contacts are 0.051

eÅ−3, 0.049 eÅ−3 and 0.050 eÅ−3, respectively, which are notably enhanced from the ambi-

ent pressure values and reach the lower bound of the charge density for hydrogen bonding.

The respective ∇2ρ(rBCP ) are 0.783 eÅ−5, 0.746 eÅ−5 and 0.755 eÅ−5, which are also in-

creased from the ambient values. Table 4.2 shows all the calculated parameters at these

three BCPs between helium and hydrogen at 8 GPa. A complete table of all other BCPs

in the structure at 8 GPa is shown in Table 4.6. To put these results in perspective, we

performed the same analysis on the pure elemental structures at 0 GPa and 8 GPa. In the

P63/m hydrogen, at 0 GPa, non-covalent H-H contacts have ρ(rBCP ) that range from 0.029
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eÅ−3 to 0.035 eÅ−3 with corresponding ∇2ρ(rBCP ) that goes from 0.365 eÅ−5 to 0.436 eÅ−5

as shown in Table 4.7 whereas at 8 GPa, ρ(rBCP ) for the same contacts are from 0.069 eÅ−3

to 0.077 eÅ−3 with corresponding ∇2ρ(rBCP ) having values from 0.647 eÅ−5 to 0.857 eÅ−5

(see Table 4.8). Thus, it appears the strength of the He-H contacts in He(H2)3 crystal may

reach that of hydrogen bonding when it is compressed. Conventional hydrogen bonds have

been reported to have ρ(rBCP ) in the range 0.04 to 0.24 eÅ−3 and ∇2ρ(rBCP ) 0.58 to 3.35

eÅ−5 [178]. Meanwhile, at 0 GPa, He-He contact in the pure He hexagonal closed packed

structure has ρ(rBCP ) value of 0.044 eÅ−3 and ∇2ρ(rBCP ) of 1.109 eÅ−5 that increased to

0.061 eÅ−3 and 1.439 eÅ−5 respectively at 8 GPa (see Table 4.9). Although these results are

reported as obtained, it is important to point out that future work is required to completely

understand all the properties and the stabilization mechanism of this He(H2)3 compound.

In particular, the high-pressure field has in recent years seen the emergence of atypical new

compounds from chemical reactions that do not result in the formation of local chemical

bonds [56]. Perhaps, future theoretical and experimental analysis on the He(H2)3 compound

could give significant insight to the rapidly increasing classes of compounds formed without

an actual chemical bond [185]. Meanwhile the limitation of standard DFT tools to properly

account for the nuclear quantum effect and anharmonicity in hydrogen at low temperature

region is well known [46, 186]. A very important future work would be to apply ab initio

path-integral molecular dynamics (PIMD) or path integral Monte Carlo (PIMC) calculations

on all these phases (He(H2)3, H and He) before comparing the enthalpy so as to properly

account for these effects.

It is worth noting that although the He(H2)3 compound possesses lower internal energy than

the combination of constituent elements throughout the pressure range of consideration, the

contribution of pressure-volume work to the enthalpy of the system triggers the decomposition

of the compound at the aforementioned pressure (see Figure 4.11). In addition, despite the

increase in strength of the interaction between helium and hydrogen in the compound with

pressure, which is evident with the reduction in interatomic distances, and supported by

the comparison of the internal energy, the pressure-work contribution to the enthalpy grows

faster in the compound than in the constituent elements and becomes significant enough to
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induce decomposition.

Table 4.1: Topological properties at the BCPs for all He-H contacts in the P-1 struc-
ture at 0 GPa [180].

Bond
type

d [Å] Multip
licity

ρ(rBCP )
[eÅ−3]

∇2ρ(rBCP )
[eÅ−5]

G
(kJ/mol)

V
(kJ/mol)

H
(kJ/mol)

EBD

(kJ/mol)

He—H1 2.604 2 0.019 0.266 5.247 -3.259 1.987 1.629

He—H2 2.650 2 0.017 0.243 4.779 -2.937 1.841 1.469

He—H3 2.708 2 0.016 0.207 4.065 -2.485 1.580 1.242

Table 4.2: Topological properties at the BCPs for all He-H contacts in the P-1 struc-
ture at 8 GPa [180].

Bond
type

d [Å] Multip
licity

ρ(rBCP )
[eÅ−3]

∇2ρ(rBCP )
[eÅ−5]

G
(kJ/mol)

V
(kJ/mol)

H
(kJ/mol)

EBD

(kJ/mol)

He—H1 2.191 2 0.051 0.783 16.387 -11.450 4.936 5.725

He—H2 2.198 2 0.050 0.755 15.820 -11.073 4.747 5.537

He—H3 2.708 2 0.016 0.746 15.589 -10.850 4.739 5.425
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Table 4.3: Bader charge on all atoms in the P-1 structure at 0 GPa [prime denote
symmetry equivalent atom] [180].

Atom Charge

He 2.014

H1 ; H1’ 1.008 ; 0.986

H2 ; H2’ 1.009 ; 0.987

H3 ; H3’ 1.009 ; 0.988

Table 4.4: Bader charge on all atoms in the P-1 structure at 8 GPa [prime denote
symmetry equivalent atom] [180].

Atom Charge

He 2.024

H1 ; H1’ 1.004 ; 0.988

H2 ; H2’ 1.003 ; 0.988

H3 ; H3’ 1.004 ; 0.988

92



Table 4.5: Topological properties at the BCPs for all other interactions in the He(H2)3

structure at 0 GPa. M is the multiplicity of the interaction [180].

Bond
type

d [Å] Multip
licity

ρ(rBCP )
[eÅ−3]

∇2ρ(rBCP )
[eÅ−5]

G
(kJ/mol)

V
(kJ/mol)

H
(kJ/mol)

EBD

(kJ/mol)

H1—H1 0.748 1 1.806 -32.043 256.365 -1385.320 -1128.950 692.660

H2—H2 0.749 1 1.804 -31.804 258.620 -1383.310 -1124.690 691.655

H3—H3 0.750 1 1.803 -31.934 255.740 -1381.100 -1125.360 690.550

H3—H2 2.514 2 0.032 0.357 7.519 -5.319 2.199 2.660

H3—H1 2.552 2 0.030 0.334 6.983 -4.870 2.112 2.435

H2—H1 2.623 2 0.026 0.289 5.958 -4.045 1.913 2.022

Table 4.6: Topological properties at the BCPs for all other interactions in the He(H2)3

structure at 8 GPa. M is the multiplicity of the interaction [180].

Bond
type

d [Å] Multip
licity

ρ(rBCP )
[eÅ−3]

∇2ρ(rBCP )
[eÅ−5]

G
(kJ/mol)

V
(kJ/mol)

H
(kJ/mol)

EBD

(kJ/mol)

H1—H1 0.742 1 1.869 -39.009 179.090 -1420.48 -1241.38 710.24

H2—H2 0.743 1 1.866 -38.851 179.780 -1417.56 -1237.78 708.78

H3—H3 0.743 1 1.866 -38.853 179.320 -1416.69 -1237.37 708.34

H3—H2 2.096 2 0.080 0.850 20.099 -17.038 3.061 8.519

H3—H1 2.098 2 0.078 0.844 19.820 -16.646 3.173 8.323

H2—H1 2.111 2 0.077 0.816 19.183 -16.140 3.042 8.070
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Table 4.7: Topological properties at the BCPs for non-covalent H-H contacts in P63/m
Hydrogen structure at 0 GPa [180].

Bond
type

d [Å] Multip
licity

ρ(rBCP )
[eÅ−3]

∇2ρ(rBCP )
[eÅ−5]

G
(kJ/mol)

V
(kJ/mol)

H
(kJ/mol)

EBD

(kJ/mol)

H1—H3 2.540 6 0.035 0.436 9.060 -6.257 2.803 3.128

H2—H3 2.608 6 0.030 0.355 7.350 -5.044 2.305 2.522

H1—H2 2.607 12 0.029 0.365 7.478 -5.016 2.462 2.508

Table 4.8: Topological properties at the BCPs for non-covalent H-H contacts in P63/m
Hydrogen structure at 8 GPa [180].

Bond
type

d [Å] Multip
licity

ρ(rBCP )
[eÅ−3]

∇2ρ(rBCP )
[eÅ−5]

G
(kJ/mol)

V
(kJ/mol)

H
(kJ/mol)

EBD

(kJ/mol)

H1—H3 2.072 6 0.077 0.857 19.877 -16.419 3.458 8.210

H2—H3 2.174 6 0.075 0.802 18.762 -15.674 3.086 7.837

H1—H2 2.227 12 0.069 0.647 15.38 -13.142 2.238 6.571
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Table 4.9: Topological properties at the BCPs for He-He contact in HCP He structure
[180].

Bond
type

d [Å] Multip
licity

ρ(rBCP )
[eÅ−3]

∇2ρ(rBCP )
[eÅ−5]

G
(kJ/mol)

V
(kJ/mol)

H
(kJ/mol)

EBD

(kJ/mol)

He—He
(0GPa)

2.241 2 0.044 1.109 21.885 -13.548 8.337 6.774

He—He
(8GPa)

2.130 2 0.061 1.439 29.049 -18.909 10.140 9.454

Figure 4.11: (a) Internal energy contribution to the enthalpy, (b) pressure-volume
work contribution to the enthalpy, (c) enthalpy of the He(H2)3 structure and the ap-
propriate combination of the constituent elements [180].
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4.4 Conclusion

We report a stable helium−hydrogen compound formed at high pressures. It has He(H2)3

stoichiometry, belongs to the triclinic P-1 space group, as well as an arrangement of atoms

that showcases the importance of the presence of helium to the formation and stability

of the structure. Phonon dispersion curve reveals dynamical stability of the structure at

ambient conditions as well as a higher pressure of 8 GPa, hence in principle, experimentally

accessible. Topological analysis of electron density at the bond critical points shows there

exists weak vdW interaction between helium and hydrogen in the He(H2)3 crystal. This

predicted compound will not only give a twist to the chemistry of helium reactivity but also

contribute greatly to our understanding of rapidly increasing classes of compounds formed

without an actual chemical bond.
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Chapter 5

A MACHINE LEARNING POTENTIAL FOR

SODIUM

5.1 Introduction

Under ambient pressure, alkali metals are known to exhibit very simple electronic band struc-

tures that can be described by a nearly free-electron model. With increasing pressure, some

alkali metals undergo series of structural phase transitions from a very well symmetric body-

centered cubic (BCC) metallic phase to insulating phases accompanied with a decrease in

symmetry. A transformation from BCC to FCC is known to be apparent in cesium at 2.2

GPa whereas such transformation takes about 65 GPa to be triggered in sodium [187, 188].

Upon further increase in pressure, they transform to several varieties of lower-symmetry

and mainly complex crystal structures that include distorted variants of BCC as reported

in lithium and sodium [188, 189] to an incommensurate composite structure in rubidium

[190, 191]. Several experimental studies have established that by increasing pressure at room

temperature sodium transforms from BCC phase to FCC at 65 GPa and then to a rela-

tively complex body-centered cubic cI16 structure with 16 atoms in the unit cell at 103

GPa [189, 192]. Compressing sodium above 118 GPa, it takes a primitive orthorhombic oP8

which then transforms to an incommensurate t19 phase at about 125 GPa [193]. Continued

compression to above 160 GPa produced several phases [192, 193]. Theoretical calculations

proposed that these phases could include the tetragonal β-Sn type structure of cesium IV,

orthorhombic oC8 structure of α-gallium [194, 195]. Interestingly, because of Na atoms pair-

ing, calculations showed that the α-gallium phase possesses zero band gap above 800 GPa

[194].
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Properties of materials can undergo unconventional changes such as from metallic to semi-

conducting or insulating at high pressure. For instance in a recent experiment above 200

GPa, it was observed that sodium undergoes a pressure induced transition from metal to

an optically transparent phase with a distorted double hexagonal hP4 symmetry [196]. The

appearance of this dense insulating phase was ascribed to p-d hybridization of valence elec-

trons rather than atom pairing [196]. Notable amount of experimental and theoretical work

on the Na has so far been done at temperatures above 200 K with most reported experiment

performed at room temperature. It is expected that several interesting phase transitions can

be exhibited by Na as well as other alkali metals at high pressures and low temperatures.

For instance, at temperature below 35K and atmospheric pressure, BCC-Na was reported to

undergo a transition to one or more rhombohedral structures, however, exact nature of these

phases have so far remained unexplained [197, 198]. The cI16 structure is a simple distortion

of BCC in which atoms undergo a displacement along the body diagonal directions of the

cubic unit cell, thus there exists a good chance that a similar transition to another interest-

ing structure at low temperatures could occur in the BCC-like cI16 phase [199]. Meanwhile,

previous report shows that at about 120 GPa, sodium may crystallize in numerous complex

low-symmetry crystals containing between 50-512 atoms in a unit cell [193]. The melting

line of sodium shows some unusual behaviour with reliable measurements showing a pressure

induced reduction in the melting line from about 1000 K at 30 GPa to around 300 K at

120 GPa. This anomaly at about 120 GPa has been associated with the presence of many

phases around this pressure at slightly different temperatures that are yet to be identified or

characterized [192, 200]. Additionally, as of present, very little is known about the structural

behaviour of sodium at 120 GPa and low temperatures and further studies become important.

The aforementioned complexity in the phase diagram of sodium coupled with challenges

of experimental procedure in getting a detailed characterization of high pressure high tem-

perature phases [192] has made theoretical methods particularly molecular dynamics and

metadynamics very important tools for investigating complex behaviour in dense sodium.

A significant contribution to the indispensability of these methods depend strongly on the
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quality description of the potential energy surface. DFT based MD and metadynamics sim-

ulations often provide good frameworks for modelling several phases of sodium as well as

any transition between these phases but they are computationally expensive and impracti-

cable for lengthy simulations and large systems. Another primary downside of small-sized

simulation is that the phase transition mechanism with collective atomic motions increase

the activation barrier [201, 202]. A common practise to overcome this limitation is by over-

pressurization. While doing so may enhance the kinetics and push the system to a new

state at the time scale of few picoseconds, it could impinge the transition mechanism. For

these reasons, constructing accurate, reliable and computationally efficient potentials that

can describe various properties in sodium at high pressure are now being explored. A lot of

available potentials for sodium created from pseuodopotential theory [203, 204] and embed-

ded atom model [205, 206] are often limited to a small P-T region of the phase diagram and

do not readily capture all its properties accurately. Furthermore, the transferability of these

potentials are not always satisfactory. Meanwhile an accurate description of the interatomic

potentials is important in atomistic simulation. Thus, creating reliable potentials that can

capture the atomic interactions with accuracy similar to that of the commonly used DFT

methods howbeit at a reduced computational cost even for a larger systems will be very

important. In recent times, machine learning (ML) approach has been employed particularly

because of the ease of representing complex functions. A sizable amount of ML potentials

have been developed in recent times with the use of techniques including artificial neural

networks (ANN) [207, 208, 209], Gaussian process regression (GPR) [210, 211, 212], support

vector machines [213] kernel ridge regression [214, 215] and so on. They have shown good

accuracy and transferabilty close to those of quantum-mechanical simulations and with a

lesser computational cost. This has resulted in a more trackable computational simulations

of large systems over a long time as often required in crystallization and phase transitions.

The PES of materials can be reconstructed using machine learning algorithms on the data

obtained from first principles calculations to get a new sets of interatomic potentials called

machine learning potential (MLP) [210, 216, 217, 218, 219, 220]. Previous applications of

this method to large scale atomic systems show a satisfactory compromise between accuracy

and efficiency [221, 222, 223].
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In this study, we present a MLP for sodium based on the Guassian process regression (GPR)

method and weighted atom-centered symmetry functions (wACSFs) representation of the

PES. In this approach, the sodium PES is described by five data sets that represent different

regions of the PES with each data set consisting of three element groups, i.e., total energies,

interatomic forces, and stress tensors of the cell, which were constructed by DFT calculation

using the Vienna ab initio simulation Package (VASP) [21]. The data sets are from crystal

BCC, FCC, cI16, oP8, tI19, hP4 and several randomly generated structures of sodium for

pressures up to 120 GPa and temperatures up to 300 K. We demonstrate that by learning

from a DFT based calculations, this new ML potential is capable of reproducing numerous

properties of sodium phases in this P-T region with an accuracy comparable to that of the

underlying DFT calculations.

5.2 Methods

5.2.1 First Principles DFT Calculation details

The first principles DFT calculations were performed with VASP [21] in which the interaction

of ions and electrons was captured by the projector augmented wave (PAW) [20, 123] method

in addition to treating the exchange-correlation functional with the generalized gradient

approximation of Perdue-Burke-Ernzerhof (PBE) [124] method. A cut off of 1360 eV was

applied to the plane wave basis set and the Brillouin zone was sampled with a dense k-point

grid of 0.5Å−1 spacing to make sure the total energy converged to a few meV per atom. The

molecular dynamics simulations based on DFT were done with VASP [21]. To construct one

of the data sets for the machine learning algorithm, the MD simulations was performed using

isothermal-isobaric (NpT) ensemble where the temperature was controlled with Langevin

dynamics and the pressure was controlled with Parrinello-Rahman barostat. The timestep

of 1.0 fs and a k-point grid with 0.5 Å−1 spacing were used to sample the first Brillouin zone

for the bcc, fcc, cI16, Cs-IV, oP8, tI19 and hP4 sodium phases, with each phase consisting

of 64 atoms.
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5.2.2 Machine Learning Potential

For any system with large number of atoms and high degrees of freedom, a simple acceptable

format of representing the total energy (E) of the system commonly used in the construction

of empirical potentials is the sum of the local energies (εi) as a function of a descriptor (di)

of all atoms in the system

E =
∑

εi(di). (5.1)

In terms of application to condensed matter physics, the two integral components of any ML

potential are the descriptor that represents a structure numerically in a distinctive approach,

and the ML method that applies the descriptor as input to reconstruct the PES. Several

descriptors have been presented among which atom centered symmetry functions (ACSF)

[224], the bispectrum of neighbor density [225] and smooth overlap of atomic [226] positions

have shown to be good for fitting PESs. To train the potentials, high dimensional neural

networks and Guassian process regression have shown encouraging results. Any of the above

descriptors and ML methods can be employed in constructing a ML potential. In this work,

the applied descriptor and ML method are wACSF and GPR [210, 211, 212], respectively. A

conventional ACSF descriptor is made of a set of radial and angular functions that represent

the energetically relevant environment of an atom based on the positions of nearby atoms

within a certain cutoff radius. A notable limitation in ACSF is that the number of symmetry

functions scales unfavourably with increasing number of species in a chemical system and

to overcome this limitation, wACSF was developed [227]. In wACSF, the descriptor is con-

structed in a manner that permits the symmetry functions to remain the same through the

assignment of different weight parameters for each elements in the system. The radial and

angular parts of the descriptor can be written as:

Grad
i =

∑
j

ωje
−η(Rij−Rs)2fc(Rij) (5.2)

Gang
i = 21−ζ

∑
j,k 6=i

ωjωk(1 + λ cos θijk)
ζe−η(R2

ij+R
2
ik+R2

jk) × fc(Rij)fc(Rjk)fc(Rjk) (5.3)
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where ζ,λ, Rs, and η are parameters that can easily with adjusted. fc is a cutoff function

that describe the nearest regions around the central atom i, Rij are the interatomic distances,

and

θijk =
Rij ·Rjk

RijRjk

(5.4)

is the angle centered at atom i. ωj and ωk are the weight parameters that are used to

differentiate the contributions of individual elements. Finally, the total energy as a function

of individual atomic energies is fitted with the GPR model [210, 211, 212] to the data from

all the DFT calculations. A more elaborate description of this ML method can be found in

ref[228].

5.3 Results and Discussion

5.3.1 Construction of MLP

In order to sample the PES effectively, we applied five different data sets to capture several

regions in it. The first data set is made of randomly generated structures from all the

space groups with the application of CALYPSO [72]. It contains 4600 random structures

that ensure a rough sampling of the PES. The number of Na atoms was between 10 to 21

and the volume per formula unit was between 7 - 37 Å3. A self consistent calculation was

then performed to obtain the total energies, stress tensors and interatomic forces for all the

structures. As shown in the energy volume distribution in Figure 5.1, these structures (black

square dots) are diversely distributed in the high energy area of the PES. This data was

then used to train a rough ML potential. In the second data set, 1000 randomly generated

structures were optimized using the rough ML potential. This optimization was performed

with the atomic simulation environment package (ASE) [229]. The maximum number of

cycle was set to 60 in the optimization. It must be noted that the MLP at this stage is very

rough and cannot be efficient, therefore, it is important to use a small number of conjugate

gradient (CG) cycle at this stage to prevent the structures from deviating too large from

their respective local minima. DFT-based SCF calculation was then performed on these

MLP optimized structures to get the second data sets shown as red square dots in Figure
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5.1.

Figure 5.1: Distribution of energies and volumes for all structures in the training sets
calculated using VASP. Different colours have been used to differentiates between the
five data sets.

It can be clearly seen that the MLP optimization performed on these structures has signif-

icantly lower the highest energy in the distribution. Meanwhile, there are several known

stable structures of Na that depict the local minima or lowest energy states on its PES. They

include BCC, FCC, cI16, Cs-IV, oP8, tI19, R-3m and P63/mmc. To obtain a good potential,

it is important to leverage these known local minima in the training data. Thus, data set

three comprises of fully relaxed states of the aforementioned crystal structures at different

volumes, which ascertain accurate capturing of the energy minima on the PES as shown with

the green square dots on the energy volume distribution in Figure 5.1. One can see that

some of the structures from the first and second sets of data have energies corresponding to
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the minima energy region on the PES, this is an indication that the energy landscape has be

well represented. Be that as it may, it is also important to ensure the training is done with

some level of dynamical set as well as to account for anharmonic effect. Therefore, the fourth

data set (blue square dots in Figure 5.1) was obtained from MD trajectories of a number

of structures including FCC, BCC and cI16 at 120 GPa, 150 K and 300 K using simulation

cells of 32 - 64 atoms with an NPT ensemble. The inclusion of these data sets can effectively

describe the dynamical areas of the PES and also take care of anharmonic effect. Lastly, the

data set five is made from 12 distorted structures of the cI16 phase. This data set is included

to ensure that the potential can learn how to produce the Hessian matrix of sodium crystals.

In Table 5.1, the number of structures used from each of the data set is shown. A total

of 5074 training structures with 1554 test structures that cover a good range of the energy

landscape can be very important for the MLP to be highly effective, as it learns from a wide

range of relevant structures.

Table 5.1: Number of structures in training and testing configurations for each dataset.

Data set Number of Training structures Number of Test structures

1 3586 906

2 784 205

3 167 38

4 526 400

5 11 5

Total 5074 1554
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5.3.2 Testing the MLP

The ability of the trained MLP to perform satisfactorily in estimating total energy, force,

stress and structural optimization was tested as shown in Figure 5.2 a-c. Figure 5.3 a-d

and Figure 5.4 a-e present the enthalpies of different known structures of sodium calculated

at each of their respective stable region using the trained MLP and DFT. As can be seen

in these figures, there is a remarkable agreement in the evolution of the enthalpies for all

the structures. To further check if the MLP can be applied effectively to calculating other

properties, the eigenvalues and eigenvectors of the Hessian matrix was computed with two

different supercells containing 64 atoms and 128 atoms of the cI16 phase using the MLP and

DFT. A comparison of the results is shown in Tables 5.2 and 5.3.

Figure 5.2: The calculated (a) force, (b) stress and (c) total energy for all data sets
using MLP and DFT
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Figure 5.3: The calculated enthalpies for the FCC, cI16, BCC and Cs-IV phases of
Na in their respective stable pressure range using DFT(lines) and MLP (points)
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Figure 5.4: The calculated enthalpies for the oP8, P63/mmc,hP4 R-3m and tI19
phases of Na in the their respective stable pressure range using DFT(lines) and MLP
(points)
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Table 5.2: Eigenvalues (in unit of kbar Å) and corresponding eigenvectors of the
Hessian matrix for cI16 phase consisting of 64 atoms at 0 K and 120 GPa calculated
using MLP and DFT displacement value of 0.69Å. The data obtained from DFT are in
brackets.

eigenvalues

520(377) 520(3257) 1417(5203) 4205(9211) 4589(9261) 106039(109921)

eigenvectors (in column)

0.0(0.70) 0.0(0.0) 0.0(-0.60) 0.71(0.0) 0.58(0.0) 0.40(0.38)

0.0(-0.71) 0.0(0.0) 0.0(-0.59) -0.71(0.0) 0.58(0.0) 0.40(0.38)

0.0(0.0) 0.0(0.0) 0.0(0.54) 0.0(0.0) -0.57(0.0) 0.82(0.84)

0.0(0.0) 0.0(1.0) -1.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0)

1.0(0.0) 0.0(0.0) 0.0 (0.0) 0.0 (1.0) 0.0 (0.25) 0.0(0.0)

0.0(0.0) 1.0 (0.0) 0.0(0.0) 0.0(-0.25) 0.0(1.0) 0.0(0.0)
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Table 5.3: Eigenvalues (in unit of kbar Å) and corresponding eigenvectors of the
Hessian matrix for cI16 phase consisting of 128 atoms at 0 K and 120 GPa calculated
using MLP and DFT with displacement value of 1.2Å. The data obtained from DFT
are in brackets.

eigenvalues

183(310) 470(365) 4179(417) 6272(2844) 16934(3399) 105336(104688)

eigenvectors (in column)

0.0(0.0) 0.0(0.0) -0.30(0.0) 0.65(0.81) 0.42(-0.13) -0.56(-0.57)

0.0(0.0) 0.0(0.0) 0.16(0.0) -0.69(-0.51) 0.44(-0.64) -0.55(-0.58)

0.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(-0.29) -0.79(0.76) -0.61(-0.58)

-1.0(0.56) 0.0(-0.65) 0.0(-0.52) 0.0(0.0) 0.0(0.0) 0.0(0.0)

0.0(0.67) 1.0(0.0) 0.0(0.74) 0.0(0.0) 0.0 (0.0) 0.0(0.0)

0.0(0.49) 0.0(0.76) -0.94(-0.42) -0.32(0.0) -0.1(0.0) 0.1(0.0)

Table 5.4: Calculated zero pressure Bulk modulus and its derivative with respect to
pressure for BCC and cI16 phases of sodium.

K0(GPa) K0’

BCC MLP 30.5 2.58

DFT 30.0 2.59

cI16 MLP 83.2 1.0

DFT 82.3 1.0
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It can be seen that the eigenvalues and eigenvectors from both calculations are closely

matched. This indicates that the MLP can produce a potential energy well with an ac-

curacy similar to that of the underlying DFT. Lastly to check the capability of the MLP

to produce reliable results of elastic properties, the zero pressure bulk modulus (K0) and its

derivative (K0’) with respect to pressure for some sodium phases was computed with DFT

and the MLP. The results (Table 5.4) show that the MLP performs excellently in estimating

these elastic properties of sodium. In the next section, this well trained MLP will be ap-

plied in a metadynamics simulation to explore a possible phase transition in sodium at high

pressure.

5.4 MLP Simulated Phase Transition in Sodium

Previous experiment based report has shown that at about 120 GPa, the cI16 phase of sodium

can transform to numerous phases as a result of any small change in temperature and/or pres-

sure that may include a simple structure such as oP8 with 8 atoms in a unit cell to complex

structures with large number of atoms in a unit cell such as a primitive monoclinic structure

(mP512) that has more than 500 atoms in the unit cell [193]. Simulating such transition and

providing insight to some of the processes involve have been elusive theoretically because

such simulations will require a large box and is therefore computationally unrealistic with a

conventional DFT based calculations. In recent times however, such large scale simulations

are now becoming trackable with the application of machine learning methods to material

systems. To illustrate the significant improvements the application of MLP will bring to

material discovery research in a foreseeable future, we have applied the well trained MLP in

a metadynamics simulation on sodium at 120 GPa and 150 K. Details of the metadynamics

approach to the simulation of phase transition in materials system had already been discussed

in Chapter two.

The simulation box was built from a 4 ×4× 4 supercell of the cI16 phase consisting of 1024

atoms. A displacement value of 1.2 Å was found to be good enough in the computation of

the Hessian matrix for this box. The eigenvalues and the corresponding eigenvectors for the
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system of 1024 atoms are as shown in Table. 5.5. Setting the Guassian parameters to width (

δ s) = 25 (kbar Å3)1/2 and height ( W )= 625 kbar Å was found to be efficient in pushing the

system into a new local minimum that is completely different from the starting configuration

for the simulation performed at temperature of 150 K and hydrostatic pressure of 120 GPa.

At each metastep, MD run of 0.8 ps using an NVT ensemble was performed.

Table 5.5: Eigenvalues (in unit of kbar Å) and corresponding eigenvectors of the
Hessian matrix for cI16 phase consisting of 1024 atoms at 120 GPa calculated using
MLP with displacement value of 1.2Å.

eigenvalues

6252 6252 6252 18714 18714 222847

eigenvectors (in column)

0.0 0.0 0.0 0.0 -0.817 -0.577

0.0 0.0 0.0 -0.707 0.408 -0.577

0.0 0.0 0.0 0.707 0.408 -0.577

0.177 -0.810 -0.560 0.0 0.0 0.0

-0.842 0.170 -0.512 0.0 0.0 0.0

0.510 0.562 -0.652 0.0 0.0 0.0
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Figure 5.5: The evolution of the (a) enthalpy and (b) collective variables (CVs) in
the metadynamics simulation.

112



Figure 5.5 (a) and (b) show the evolution of the enthalpy and that of the collective variables

during the simulation. It can be seen clearly that there has been a transition to another

phase at about the 26th metastep. The snapshots at different metasteps show an obvious

rearrangements of atomic configurations (see Figure 5.6). A comparison of the simulated

x-ray diffraction pattern of the new phase (from metastep 50) with the pattern of the start-

ing phase at 120 GPa and ambient temperature is shown in Figure. 5.7. It is important to

emphasize that the goal of this part of the thesis was not to predict a new phase of sodium

but to illustrate that a well trained MLP can be applied to large systems that may otherwise

be difficult to handle by the mostly used DFT based potentials and by so doing, provide a

notable improvement to our understanding of important physical processes such as growth

and nucleation in crystal formation and phase transition. Be that as it may, this MLP simu-

lated structure has not been reported previously either from experiment or theory for sodium

and future work should be done to characterize and explore its properties. It is a tetragonal

structure with space group I41/ACD that contains 16 atoms in a unit cell. As one can clearly

see from the diffraction pattern, it is different from the cubic cI16 structure which also has

16 atoms in its unit cell. For the cI16 structure to transform to the I41/ACD phase, all

the lattice constants undergo a significant change while the angles remain the same. a and

b decrease by about 19% whereas c increases by about 48%, resulting in a slight volume drop.

Finally, to check if the result of this simulation is reproducible and also if the MLP approach

in this simulation is scalable, the calculation is repeated with a 6 × 6 × 6 simulation box that

contains 3456 atoms of the cI16 phase. As done in the previous simulation, the temperature

and pressure are 150 K and 120 GPa respectively. A displacement of 1.2 Å remains usable in

the calculation of the Hessain matrix for this simulation box and the Guassian parameters

are kept to the values applied in the previous simulation. Table 5.6 shows the calculated

eigenvalues and their corresponding eigenvectors for this simulation box at 120 GPa and 0

K. In comparison with the 4 × 4 × 4 simulation box, the eigenvalues of the Hessian matrix

increase by about 40 % but the eigenvectors are still closely matched. Thus, one can expect

the simulation performed with this box to locate the same potential energy well obtained

with the box that contains 1024 atoms applied in the previous simulation.

113



Figure 5.6: MLP simulated phase transition in sodium revealing important rearrange-
ments of atomic configurations.
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Figure 5.7: Simulated x-ray diffraction pattern for the cI16 and I41/ACD sodium
phases at 120 GPa and 0 K.
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Table 5.6: Eigenvalues (in unit of kbar Å) and corresponding eigenvectors of the
Hessian matrix for cI16 phase consisting of 3456 atoms at 120 GPa and 0 K calculated
using MLP with displacement value of 1.2Å.

eigenvalues

9960 9960 9960 21990 21990 335815

eigenvectors (in column)

0.0 0.0 0.0 -0.817 0.0 -0.577

0.0 0.0 0.0 0.413 0.704 -0.577

0.0 0.0 0.0 0.403 -0.710 -0.577

0.384 -0.1 -0.918 0.0 0.0 0.0

-0.916 0.1 -0.392 0.0 0.0 0.0

0.119 0.991 -0.1 0.0 0.0 0.0

The evolution of the enthalpy and the collective variables during this simulation is shown

in Figure 5.8. It is obvious that the simulation mechanism follows the same path as in the

previous one except that the system spends longer time in the transition region in this case.

This is expected because of the bigger size of the simulation box since it will take a longer

time for heat to distribute throughout the entire bigger box. Snapshots taken at different

metasteps in the simulation are shown in Figure 5.9. At metastep 13, the atoms begin to

rearrange in a new order that starts from a small region (shown with the blue circle) and

grows gradually throughout the entire simulation box as the simulation progresses. One can

easily see that this simulation converges to the same local minima obtained in the previous

simulation and can therefore conclude that the results are reproducible and the MLP method

in this work is scalable.

Before concluding this chapter, I must point out that applying machine learning methods to

condensed matter systems is still very new and there are lots of things unknown and several
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Figure 5.8: The evolution of the (a) enthalpy and (b) collective variables (CVs) in
the metadynamics simulation with 3456 atoms.
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Figure 5.9: Snapshots from different metasteps in the metadynamics simulation per-
formed with 3456 atoms.

questions one must find satisfactory answers to. For instance, how do one proceed when there

are little or no database of reasonable structures for any system one intends to study? Can

these machine learning potentials at one point begin to outperform the underlying potentials

applied in their training? This field of research is till very young and new developments will

surely come forth in coming years. Nevertheless, as this work demonstrates the significant

improvements machine learning can bring to condensed matter systems and their absolute

usefulness in this field, the future can only be exciting.
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5.5 Conclusion

A machine learning potential was successfully created for sodium based on the Guassian

process regression method and weighted atom-centered symmetry functions representation

of the potential energy surface. Here, sodium potential energy surface was described using

different relevant data sets that represent several regions in it with each data set consisting

of three element groups which are total energies, interatomic forces, and stress tensors of the

cell, which were constructed from density functional theory calculations. It was demonstrated

that by learning from the underlying DFT results, the trained MLP was able to reproduce

important properties of all available sodium phases with an exceptional accuracy in compar-

ison to those computed using DFT. In combination with the metadynamics methods, this

well trained MLP was applied to a large simulation boxes containing 1024 and 3456 sodium

atoms in the cI16 phase. These large-scale simulations reveal a notable phase transition at

150 K and 120 GPa with an impressive capturing of the rearrangements of atomic configura-

tions involved in the transition process that may not be evident in a small-scale simulation.

Without a doubt, this work shows that applying machine learning methods to condensed

matter systems will lead to significant increase in our understanding of important processes

such as atomic rearrangements, growth and nucleation process in crystal formation and phase

transition.
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Chapter 6

CONCLUDING REMARKS

The objective of this work is to explore the properties of novel condensed matter materials

with the use of first principles method and computer simulations. Structure properties, elec-

tronic properties, dynamical properties and bonding parameters of selected materials were

investigated. The tools employed are based on density functional theory (DFT), density

functional perturbation theory (DFPT) and projected augmented wave method.

Chapter 1 is discussion of the important fundamental theories behind the computational

methods applied in all the calculations. A general review of what each chapter entails was

also included with a brief highlight of the theoretical tools used.

Chapter 2 is about the detailed explanation of the theoretical mechanisms employed in crystal

structure predictions such as random structure search, genetic algorithm, simulated annealing

and metadynamics. Three published papers were used as examples to illustrate the applica-

tion of these methods.

Chapter 3 presents the high enthalpy crystalline phases of cadmium telluride. The post-cmcm

phase that had not been accurately identified for a long time was successfully characterized

and predicted to also transform to a different phase at about 68 GPa. Enthalpy calculation

results also supported these transition sequence. In addition, CdTe was shown to possess

higher enthalpy than the addition of the enthalpies of its constituent elements above 34 GPa.

Be that as it may, phonon calculations and experiments established its stability beyond this

pressure point which therefore indicate that it is a high enthalpy material which is stabilized

by a huge kinetic barrier.
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Chapter 4 explored the possibility of helium forming a stable compound with hydrogen. A

stable compound of these elements was predicted from first principle random search tech-

nique. It belongs to P-1 space group with atomic arrangements that emphasise the role

of helium in stabilizing the structure. The result of topological analysis showed that there

exists a quantifiable level of van der Waals interaction between helium and hydrogen in this

He(H2)3 crystal at ambient pressure which is greatly enhanced with increasing compression.

Finally in Chapter 5, a machine learning potential was presented for sodium. This MLP

was successfully created for sodium based on the Guassian process regressing (GPR) method

and weighted atom-centered symmetry functions (wACSFs) representation of the potential

energy surface (PES).Five different sets of data were used to represent various regions of the

PES with each data consisting of total energies, interatomic forces and stress tensors of the

cell which were all constructed from density functional theory (DFT) calculations. By learn-

ing from these data, the trained MLP was able to reproduce the properties such as energy,

force, volume ans so on, for all tested sodium structures with accuracy similar to the un-

derlying DFT method. Furthermore, in combination with the metadynamics methods, this

well trained MLP was applied to a large simulation boxes containing 1024 and 3456 sodium

atoms in the cI16 phase. These large-scale simulations reveal a notable phase transition at

150 K and 120 GPa with an impressive capturing of the rearrangements of atomic configu-

rations involve in the transition process that may not be evident in a small-scale simulation.

Without a doubt, this work shows that applying machine learning methods to condensed

matter systems will lead to significant increase in our understanding of important processes

such as atomic rearrangements, growth and nucleation process in crystal formation and phase

transition.

Building on the research results of this thesis, there are numerous interesting future works

that can be explored. For instance, the helium hydrogen system can be expanded to include

helium-rich configurations so as to further explore the potential energy surface for insightful

crystalline compounds. Other important planetary elements such as ammonia and ice at
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extreme conditions typical of planetary bodies can also be investigated with the application

of ab initio molecular dynamics and metadynamics. The results of such exploration can

provide significant insight to the chemical processes that occur inside giant planets. In

addition, the machine learning method can be implemented for different kinds of systems for

a dependable simulations of solid-solid reconstructive phase transition.
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[80] R. Martoňák, A. Laio, and M. Parrinello. Phys. Rev. Lett., 90:075503, (2003).

[81] D.J. Wales and J.P.K Doye. J. Phys. Chem. A, 101:5111, (1997).

[82] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. science, 220:671, (1983).

[83] D.C. Karnopp. Automatica, 1:111, (1963).
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Appendix A

To further establish the theoretical computation performed in chapter 3, the enthalpy of the
He(H2)3 was also compared with that of HCP He and HCP hydrogen in the pressure range of
interest as shown in Figure A.1. A comparison of the enthalpies for HCP hydrogen and the
employed hexagonal P63/m structure indicates that the P63/m is favoured in our pressure
range of interest. (See Figure A.2)

Figure A.1: Formation enthalpy of the P-1 structure with respect to the hcp He and
hcp hydrogen computed with PBE potential and then with optPBE-vdW, optB86-vdW,
optB88-vdW, D3 and vdW-D2 functionals
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Figure A.2: Comparison of the enthalpy for P63/m and hcp hydrogen structures
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