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ABSTRACT 

Phytosterols and tocopherols are bioactives that have numerous health claims. Seeds, oils, 

legumes, cereals, and nuts are the main sources of phytosterols and tocopherols. Daily 

consumption of phytosterols and tocopherols is diverse in various countries where food intake 

habits are significantly different.  Plant oils, a source of phytosterols, are commonly consumed in 

most countries and they are also a rich source of tocopherols. Beside dietary sources, consumption 

of functional foods and nutraceuticals are increasing rapidly in recent years. Plant oil deodorizer 

distillate is generated during the oil refining process offers an ideal source of these compounds. 

Canola is a major source for edible vegetable oils, and the most abundant oilseed crop in Canada.  

With growing consumer preference on natural bioactives, canola oil deodorizer distillate (CODD) 

has great economic values to be utilized as natural source of phytosterols and tocopherols.   

Evaluation of the tandem mass spectrometric (MS/MS) behavior of phytosterols and 

tocopherols is needed for the development of qualitative and quantitative methods for these 

biologically active plant metabolites. Herein, the MS/MS dissociation behavior of phytosterols and 

tocopherols is elucidated to establish generalized MS/MS fingerprints. MS/MS and multistage 

(MS3) analysis revealed common fragmentation behavior among the four tested phytosterols, 

namely β-sitosterol, stigmasterol, campesterol and brassicasterol. Similar analysis was conducted 

for the tested tocopherols (i.e. α-tocopherols, β- tocopherols, γ- tocopherols and δ-tocopherols). 

As such, universal MS/MS fragmentation pathway for both phytosterols and tocopherols were 

successfully established for the first time. Based on the generalized MS/MS fragmentation 

behavior of phytosterols, diagnostic product ions were chosen for the development of profiling 
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methods for over 20 naturally-occurring phytosterols. Precursor ion scan-triggered enhanced 

product ion scan (PIS-EPI) methods were established. Due to enhanced signal intensity, multiple 

ion monitoring-triggered enhanced product ion scan (MIM-EPI) was employed for confirmation. 

The screening approach was applied successfully to identify blinded samples obtained from 

standard mixtures as well as sesame and olive oils.  The oil samples contain other phytosterols and 

their successful identification indicates that, the generalized MS/MS fragmentation behavior is 

applicable to various structures of phytosterols. Similar approach was attempted for tocopherols 

and was only hindered by the low concentration of these bioactive metabolites within oil samples. 
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CHAPTER 1  

INTRODUCTION 

 

1.1. Background 

Canola is one of the most important crops in Canada generating one quarter of all 

farm-related revenues [1]. A report released in 2017 shows that canola contributes $26.7 

billion to the Canadian economy each year, including more than 250,000 Canadian jobs 

and $11.2 billion in wages [1]. The major production provinces include the western 

provinces of Alberta, Saskatchewan, and Manitoba. British Columbia, Ontario, and 

Quebec also grow a large amount of canola.  

The main use of canola is the extraction of edible oil. Every year, almost 10 million 

tons of canola seed is crushed and refined in Canada, producing 3 million tons of canola 

oil and 4 million tons of canola meal [1]. The deodorization distillate (DD) is a major by-

product produced during crude oil refining. Canola oil DD contains large amounts of 

bioactive metabolites like tocopherols (i.e. vitamin E) and phytosterols; other constituents 

include free fatty acid glycerides, aldehydes, and ketones that result from the 

decomposition of acidic compounds[2].  

The most notable bioactives in canola oil DD are phytosterols and tocopherols. They 

are essential for plants and beneficial to human health. Most notably, phytosterols are 

being used for their cholesterol lowering abilities [3, 4] while tocopherols are natural 

anti-oxidants [5-7]. Several strategies have been developed to recover and purify these 

compounds from the DD of different vegetable oils [8-10]. Both bioactivities have been 

incorporated in functional foods, cosmetics, and pharmaceutical products [11, 12].  
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Due to the complex nature of DDs and the similar physicochemical property among 

phytosterols and tocopherols, it is difficult to separate and identify these compounds [13]. 

Dumont & Narine [14] presented the characterization of soybean oil DD through gas 

chromatography (GC)-flame ionization detector (FID). Several components of deodorizer 

distillate samples were identified, including 2 tocopherols (γ-tocopherol and δ-

tocopherol) and 3 phytosterols (campesterol, stigmasterol, and sitosterol). Similarly, 

Naz1 et al. [14] investigated the chemical characterization of the deodorizer distillate of 

canola and sunflower oils, reporting phytosterol percentages at 21.27-25.53% while 

tocopherols were within the ranges of 1.29-5.81%.  

In recent years, natural products have gained more acceptance among global 

consumers than synthetic counterparts. Therefore, natural source of phytosterols and 

tocopherols from the DD may have market desirability and it is, therefore, essential to 

characterize their composition. As such, analytical strategies should be developed to 

allow for the development of identification and quantification methods of phytosterols 

and tocopherols. My M.Sc. project focuses on developing mass spectrometric fingerprints 

for phytosterols and tocopherols. Specifically, the tandem mass spectrometric (MS/MS) 

dissociation behavior of these metabolites is established. The common structures are 

assigned to the various observed product ions. The data is subsequently used for the 

development of screening and identification methods using high performance liquid 

chromatography-tandem tandem mass spectrometry (HPLC-MS/MS). 
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1.2. Edible oil and its main nutrients 

Canada has a vast territory and a wide variety of oil crops. Canola, soybeans, 

sunflowers and flax are the most prevalent oil crops in Canada [15]. However, the 

evaluation of edible vegetable oils has been mainly focusing on fatty acid composition in 

the past [16, 17]. Recent studies evaluated other nutrients, such as squalene, phenolic 

compounds and vitamins [18, 19]. Phytosterols and tocopherols are two important 

nutrients that exist in edible oils which will be further discussed later in 1.4 and 1.5, 

respectively. Chimi et al. [20] reported the strong scavenging ability to hydroxyl radicals 

of polyphenols (eg. hydroxytyrosol and caffeic acid) in olive oil. Squalene is also present 

in vegetable oils, with the highest content in olive oil [21]. As an active substance that 

can be produced by the body, squalene has health benefits, such as inhibiting the growth 

of tumor cells and strengthening the body's immunity [22].  

In summary, it is important to study the nutrients within edible vegetable oils and 

seek the nutritional contents. Research on edible oils helps evaluate their impact on 

health, increase the value of oil products, and promote the development of specialty oils, 

such as blended oils [23].  

1.3. Canola oil deodorizer distillates (CODDs)  

Vegetable oils are rich sources of phytosterols and tocopherols [24, 25]. However, 

vegetable oils are subjected to a refining process in order to improve their taste and shelf 

life prior to consumption. Refining such as neutralization, bleaching and deodorization 

produces many by-products, such as the DD [26, 27]. Deodorization is a crucial step 

during vegetable oil refining process in which considerable phytosterols and tocopherols 

are removed along with the odorous compounds which could influence the taste, smell, 
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and physical appearance of the oil [28]. The potential value of the DD essentially 

depends upon its content of bioactive compounds. It is a rich source of phytosterols and 

tocopherols although the amounts and profiles will differ based on the applied conditions 

during the oil refining process [29, 30]. The amount of tocopherols present in the DDs is 

in the ranges of 10–13% [31] while phytosterols are at 5–30% [32]. Different separation 

methods for these components are reported [33-35]. Solvent extraction and crystallization 

are commonly applied to recover phytosterols over tocopherols. Recovering sterols over 

tocopherols usually use solvent extraction and crystallization, as theses method do not 

require high pressure and do not result in tocopherol oxidation [33]. However, there are 

some disadvantages for solvent extraction and crystallization strategies. They require 

large amounts of solvents that is not an environmentally friendly approach.   

On the other hand, Supercritical fluids are more commonly employed for tocopherols 

separation [34]. In the process of supercritical carbon dioxide extraction, carbon dioxide 

passes through the target mixture under a specific temperature and pressure [36]. The 

biggest advantage of supercritical fluid extraction is that post-reaction separation of the 

components is easy to operate by depressurization. Additionally the experimental process 

does not need high temperatures for the low critical temperature of carbon dioxide [37]. 

Nonetheless, the requirements of high pressure greatly increase cost, and the separation 

method is economically viable only if the rate of production is higher than 25% [38]. 

Only fatty acids can be separated from tocopherol under these specific conditions [31]. 

However, the above discussed methods for tocopherols separation were mainly applied at 

a low scale lab-level. In many instances, DDs are added back to the meal to serve as an 
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energy source; this is a very low value application considering their high content in 

bioactive compounds.  

 

1.4. Phytosterols 

Phytosterols are found in all plants with high concentrations present in unrefined 

vegetable oils [39, 40]. They are structurally and functionally similar to cholesterol; 

however, they possess an extra methyl or ethyl group on the side chain and sometimes the 

side chain bears an additional double bond. More than 250 phytosterols have been 

identified [41]. The structures of the four most common phytosterols are shown in 

Scheme 1.1. Phytosterols are responsible for the stabilization of the phospholipid bilayer 

of the cell membrane which may related to their ability to regulate the fluidity and 

permeability properties of the membrane [42]. They also control other membrane-

associated metabolic processes, such as the activity of membrane-bound enzymes[43]. 
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Scheme 1.1 Schematic representation of the structure and nomenclature of (A) 

phytosterols, cholesterol, and (B) tocopherols 
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As cholesterol analogs, they compete with the absorption of cholesterol, when 

consumed [44]. It is documented that they have the ability to reduce plasma cholesterol 

concentrations by competitively blocking cholesterol absorption from the intestinal 

lumen [45, 46]. As early as in the 1950s, studies on the effects of phytosterols on 

cholesterol levels have showed that both free phytosterols and phytosterol esters have 

cholesterol-lowering effects [14, 47]. Miettinen et al. [48] reported for the first time that 

dietary intake of phytosterol esters can reduce total serum cholesterol and low-density 

lipoprotein (LDL) cholesterol levels in patients with hypercholesterolemia. It is 

established that a daily intake of 2 grams of phytosterols can effectively reduce LDL-C 

by 10% [49], which was shown to reduce the incidence of coronary heart disease by 10-

20% [50].  

Epidemiological data suggest that phytosterols can be related to a reduced risk of 

multiple cancers. In fact, dietary sterols can reduce the incidence of several common 

cancers such as colon, breast and prostate cancer[51]. The anticancer mechanism maybe 

due to phytosterols’ potential effect on the host immune system. Phytosterols could 

promote a stronger anti-tumor response in the host system by inducing enhanced immune 

recognition of cancer cells [51]. Phytosterols could also influence the growth of 

endocrine tumors due to their structural similarity with estrogen [52, 53]. In addition, 

there are many studies, illustrating that phytosterols could directly inhibit tumor growth, 

due to their effects on cell cycle progression [54], apoptosis [55], and tumor metastasis 

[54].  

In addition, these nutritional compounds have been reported to show anti-

inflammatory[56], antibacterial[57], and antitumor activities [58, 59]. Some studies 
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indicate that individuals with high risk for cardiovascular disease might benefit from 

consuming dietary supplements or foods rich in phytosterols [60].  

 
1.5. Tocopherols 

Tocopherols are natural antioxidants biochemically synthesized by plants for the 

protection against the oxidation of plant tissues [61]. Tocopherols, also known as vitamin 

E, are generally a mixture of four isomers, alpha- (�), beta- (�), gamma- (�) and delta- 

(�) tocopherols (Scheme 1.1B). Alpha-tocopherol is the most widely distributed and 

most active vitamin E in nature [62, 63].  

Tocopherols’ main function is to act as an antioxidant in cell membranes, 

lipoproteins, and foods, preventing free radical formation [64]. The antioxidant activity of 

tocopherols stems from their ability to donate phenolic hydrogens to lipid radicals. 

Because of the electron-donating property of methyl groups on the chromanol ring, α-

tocopherol with a fully substituted chromanol ring has the highest potency in donating 

electrons and becomes the most powerful antioxidant [64]. They also showed promising 

effects as preventative and therapeutic agents against cancer [65], probably attributed to 

their antioxidant characteristics, scavenging free-radicals [64, 66-68]. Additionally, it has 

been suggested that tocopherols may enhance the immune response [69] and inhibit the 

progression of cardiovascular diseases [70]. In fact, the American Heart Association 

(AHA) indicates that vitamin E in supplements can help prevent heart diseases [70]. 

Tocopherols are now widely used as additives in different pharmaceuticals, foods, and in 

cosmetics. In the food industry, vitamin E is mainly used as an antioxidant. It helps 
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maintain a stable and long-lasting fresh flavor of processed foods and has been widely 

incorporated in edible oils and dairy products.  

 

1.6. The source and safety of phytosterols and tocopherols  

Phytosterols cannot be synthesized by the human body and can only be obtained 

from food sources. They are mainly found in vegetable oils, cereals, potatoes, vegetables, 

fruits, and nuts [71-73]. Among them, vegetable oils and cereals have the highest 

concentrations of phytosterols [74, 75].  

The United States Food and Drug Administration (FDA) authorized a health claim in 

2000 for conventional foods containing phytosterols, because of the relationship between 

phytosterol esters and the reduced risk of coronary heart disease (CHD) [76]. In 2010, 

FDA amended its health claim based on data for esterified and nonesterified phytosterols 

that expanded the cholesterol lowering effects to include nonesterified phytosterols [77].  

To date, phytosterols are approved for use in North American, Asia, Europe, 

Oceania, and South America [78]. There are no serious side effects with consumption of 

phytosterols at low doses, as reported in both animal and human experiments [79]. There 

are several reports in the literature have suggested that phytosterols may possess 

oestrogenic activity [80, 81]. While phytosterols influence the metabolic profiles of 

cholesterol in the large intestine. This may affect the level of female sex hormone. In one 

study, daily doses of 8.6 g phytosterols in margarine were provided to adult humans for 

3–4 weeks. The result indicated that phytosterols have no effect in gut microflora and 

female sex hormone levels [82]. Another study showed that phytosterols would not 

produce increased concentrations of sterol oxides [83] and was also reported that there is 
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no evidence for the mutagenicity of phytosterols and phytosterol esters. This was 

assessed with an independent bacterial mutation assay, chromosome aberration assay in 

human peripheral blood lymphocytes, and mammalian cell gene mutation assay [84]. In 

conclusion, phytosterols are safe for consumption at low doses and do not have harmful 

effects on reproduction or pose cancer risk. 

Unlike phytosterols, which have a wide range of sources, the main source of vitamin 

E is from edible vegetable oils [85]. In the process of oil refining, the content of vitamin 

E is reduced to about 60-70% of that of crude oil, with most left in the deodorized 

distillate. A-tocopherol is the most common form of vitamin E used in supplements, 

while the main dietary sources are sunflower and olive oils [86]. However, due to the 

higher consumption of soybean and corn oil, gamma-tocopherol is the most common 

form in the American diet [87]. Table 1 lists natural tocopherol contents of various 

refined vegetable oils and crude oils [88]. As shown in Table 1, only α-tocopherol is 

reported after refinement. In fact, Ferrari et al. [89] reported 57%, 14% and 36% loss of 

total tocopherols by chemical refining in corn, soybean and rapeseed oils, respectively. 

Alpaslan et al. [90] reported that 24. 6% of total tocopherols were lost at the end of the 

physical refining process while Medina-Juarez et al. [91] demonstrated that the loss of the 

total tocopherol was 40.6% after physical refining of soybean oil.  
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Table 1.1. The content of vitamin E in crude oil and refined oils 

  Crude oil/（mg/100g）  Refined oil/（mg/100g）  
total α  β＋γ  δ  total α  

Rapeseed oil 52-57 16-22 31-52 0.8-2 34-52 12-18 
Sunflower seed oil 51-74 47-72 2-7 1 32-52 29-49 
Soybean oil 87-113  5-16  58-76  22-33 72-117  5-12  
Corn germ oil 84-148 7-31 74-113 2-6 68-77 14-21 
Palm oil 13-19 11-177 1-3 0.2 0.2-0.9 0.1-0.7 
Coconut oil 0.3-2.5 0.1-0.5 0.2 0.2 0.20-0.9 0.1-0.7 
Cottonseed oil 84-96 41-49 35-50 0.4-0.8 24-69 21-37 
Safflower oil 45-54 43-51 2-8 0.8 27-35 24-32 

 

Dietary intake and metabolic data on tocopherols and other forms of vitamin E, as 

well as their biological activity were studied as early as the 1980s [92]. The lymphatic 

pathway is the major route for absorption of tocopherols or their derivatives [93]. 

Tocopherols has functional use in foods as a nutrient, dietary supplements, and 

antioxidants [94], and is generally admitted as safe chemical preservatives for use in 

foods [95]. Tocopherols are effective antioxidants for animal fat and other animal 

products [96] with recommended use concentrations in the range of 100 to 300 ppm. 

When administered at high doses, tocopherols are reported to induce alterations in several 

parameters such as metabolism, growth, and development [97, 98]. However, the vast 

majority of these alterations are reported to be reversible once tocopherols are no longer 

administered. There are also no safety issues indicating that tocopherols are irritants 

when used as cosmetic ingredients [99]. It can, thus, be concluded that tocopherols can be 

safely incorporated into dietary supplements and cosmetic formulations.  

Extraction of phytosterols and tocopherols from the CODD has great potential 

economic impact, turning a low-value byproduct into one with great benefits that can be 
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potentially incorporated into human food. Therefore, the analysis, both qualitatively and 

quantitatively, is important to the extraction process. Mass spectrometry coupled with 

separation techniques is widely used for the analysis of these bioactives, extracted from 

edible oils and the DDs [100-102]. 

 

1.7. Mass Spectrometry 

Mass spectrometry (MS) plays an essential role in the qualitative and quantitative 

analysis of small molecules, including nonpolar ones, such as phytosterols and 

tocopherols. However, the complexity of DDs makes it difficult for analysis with MS 

only. Gas chromatography (GC)-tandem mass spectrometry (MS/MS) has been the 

conventional method for the analysis of phytosterols [103-106], as  it provides efficient 

separation of phytosterol isomers [107]. However, GC-MS analysis is time-consuming 

due to the need of tedious chemical derivatization [4, 73, 108]. In addition, the use of 

electron impact or chemical ionization may result in the fragmentation of the molecule 

instead of producing the desired intact ionized molecules [109-111]. As an alternative to 

GC-MS, high performance-liquid chromatography (HPLC)-MS has been employed for 

the analysis of phytosterols and tocopherols. Due to the structural similarity of 

phytosterols as well as tocopherols, long HPLC run times are often needed to separate 

these compounds [112, 113], but MS/MS analysis can facilitate the 

detection/quantification of overlapping peaks.  
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1.7. 1.  Ionization techniques 

In mass spectrometry, ionization is the first step in which the analytes enter the gas 

phase as ions. There are several ion sources with each having its own advantages and 

disadvantages for different applications. In soft ionization techniques, such as 

atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI), high 

performance-liquid chromatography (HPLC) is routinely coupled with mass spectrometry 

to analyze underivatized phytosterols and tocopherols [114-117].  

In general, ESI is particularly suitable for the analysis of polar molecules, while 

APCI gives better ionization of less polar compounds[118].  

 

1.7.1.1.  Electrospray ionization (ESI)  

ESI is an ideal choice for compounds with basic or acidic functional groups, namely 

molecules with multiple charges or molecules with electronegative atoms (e.g., O, N, F) 

[119]. ESI allows for the ionization of analytes in solution. The ionized analytes are 

transferred from the solution to the gas phase in the form of single or multiply charged 

ions [120]. It is an ideal ionization source for molecules with electronegative atoms, or 

compounds carrying basic or acidic functional groups. However, in the case of low-

polarity and nonpolar compounds, ESI is not considered as the most effective ionization 

source.  

Despite their hydrophobicity, phytosterols and related compounds, such as squalene, 

were analyzed with ESI coupled to quadrupole instruments [121]. For example, the 

content of free phytosterols in tobacco leaves were determined using HPLC coupled to a 

triple quadrupole mass spectrometry (QqQ) [104]. The chromatographic separation was 
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performed on a BEH phenyl column with water and methanol as mobile phase. However, 

this study is one of the few reports that use ESI as ion source for the quantitative analysis 

of free phytosterols [104]. Four compounds, namely cholesterol, stigmasterol, β-

sitosterol, and ergosterol were quantitatively determined. [M+H−H!O] + ions were 

observed and selected for the quantification in positive ionization. Satisfactory results 

were obtained with a reported limit of quantification (LOQ) in the range of 4.8−9.7 

ng/mL  [104]. Another study of phytosterols used nano-LC coupled with nano-ESI-MS 

operated in the positive ion mode to analyze phytosterols in extra-virgin olive oil [122]. 

The [M+H−H!O] + ion was also observed during qualitative analysis for all tested 

phytosterols (stigmasterol, campesterol, brassicasterol, β-sitosterol, and cholesterol). 

However, quantitative analysis was performed using HPLC coupled with an ultraviolet 

(UV) detector. ESI was sufficient for identification, but it was not used for quantification, 

as the nano LC-MS/MS platform could not detected a mixture of standards at the LOD of 

the LC-UV quantitative method. This was attributed to the low ionization efficiency of 

target phytosterols [122].  

Canabate-Diaz et al. [114] evaluated the efficiency of ESI versus APCI to analyze 

phytosterols in olive oil. The authors reported variations in the ionization of phytosterols 

using ESI; only fucosterol and cholesterol formed [M+H−H!O] + ions while β-sitosterol 

and fucosterol were observed as protonated ions [M+H] +. On the other hand, cholesterol, 

erythrodiol, and uvaol formed sodiated species [M + Na] + while β-sitosterol, erythrodiol, 

and uvaol also produced [2M+H] + ions. It was reported that stigmasterol and sitostanol 

were not detected using ESI [114]. On the other hand, [M+H−H!O] + ions are 

consistently formed with APCI [114, 123]. In addition,  unexpected observation of 
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[M+H] + ions when ammonium acetate is added to the mobile phase was reported and it 

was rationalized by losing gaseous ammonia (NH3) from the ammonium adduct [123]. It 

is apparent that the ionization behavior in ESI for phytosterols was not consistent despite 

that various structures sharing the same structural backbone.  

Similar to phytosterols, tocopherols are also nonpolar molecules lacking protonation 

sites. Lanina, S.A. et al. [124] compared the applicability of ESI versus APCI in both 

positive and negative ionization to analyze four tocopherol homologues, namely, α-, β-, 

γ-, and δ-tocopherol. The protonated[M+H] + and molecular [M.] + ions are formed in 

both ESI and APCI in the positive ion mode (when acetic acid is added to the mobile 

phase). In addition, minor sodium adducts [M+Na] + were also formed in ESI positive 

ionization. [M+H−H2] + ions were also observed for α- and β-,tocopherols which could be 

due to dehydrogenation of [M+H] + ions. However, the formation of adduct ions were not 

observed in positive APCI [124]. Similar ion formation was observed when ESI, APCI, 

and atmospheric pressure photoionization (APPI) were compared in positive ionization 

for the development of a quantitative method for tocopherols in soybean oil [125]. In fact, 

the major observed ion species were [M−H] +, M.+, and [M+H] +. The [M−H] + species 

was suggested to originate from the dehydrogenation of [M+H] + ions [124, 126]. 

Although APPI was chosen for the development of quantification method in that study 

[125], APCI is clearly the most widely used ionization source for tocopherol analysis. 

[124, 127-129] 
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1.7.1.2.  Atmospheric pressure chemical ionization (APCI)  

APCI is another soft ionization technique that is better suited for hydrophobic or 

nonpolar low molecular-weight compounds, like phytosterols and tocopherols, and it is 

widely applied in lipid analysis [130, 131]. Unlike ESI, APCI involves a desolvation 

process before ionization. The gaseous solvent molecules react with ionized nitrogen gas 

and subsequently ionized in the source [132, 133]. Depending on proton affinity, analytes 

are ionized either by charge transfer, addition, or removal of a proton. This technique is 

ideal for low polarity or nonpolar low molecular-weight compounds, and it is widely 

applied in lipid analysis [130, 131]. 

Many studies were published using APCI-MS for the analysis of phytosterols [100, 

134-136]. An early report of the use of LC-APCI- MS for steroid analysis evaluated the 

MS/MS dissociation of 60 steroids [137]. It showed that the ion that was protonated 

followed by the loss of water was the observed base peak of almost all tested steroids. 

However, no phytosterols were assessed in this study. The ionization mechanism using 

APCI for phytosterols was similar to the one reported for steroids, as discussed in the 

following section.  

Reported APCI-MS analysis of phytosterols is primarily quantitative in nature. 

Abundant [M+H-H!O] + and [M+H-acid] + ions were observed for phytosterols and 

phytosterol esters, respectively, for the identification of free and esterified sterols in 

tobacco leaves [138]. MS measurements were performed with a QqQ mass spectrometer 

equipped with an APCI ion source. Millan et al. reported the use of APCI ion-trap 

instrument to determine phytosterols in oenological (grape and wine) matrices [139]. The 

[M+H-H!O] 
+ ions were the most dominant observed ions. The most abundant 
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phytosterol in all samples was β-sitosterol, followed by stigmasterol, fucosterol and 

campesterol. According to Liao et al. [134], APCI-MS analysis in the positive ion mode 

was also successfully applied for the identification of phytosterols in the hexane 

extraction of edible animal fats. APCI positive mass spectra of sterols (campesterol, 

stigmasterol, β-sitosterol, and β-sitostanol) were observed as [M+H-H!O] +.  

The use of tandem MS increases the sensitivity in the quantification of phytosterols 

in edible oils. Quantification of phytosterols in vegetable oils using multiple reaction 

monitor (MRM) mode achieved LOD values in the range of 2−25 ng/mL [102]. In 

addition to vegetable oils, phytosterols were analyzed in plant samples, such as 

vegetables, tobacco, and wine using APCI in positive ionization. [140-142]. For example, 

Millan et al. [142] then established a method for the identification and quantification of 

phytosterols in oenological matrices employing the MRM mode with an LOQ of 8 

ng/mL. This analytical method was then applied for screening and quantifying 

phytosterols present in various matrices (pulp, skin, seed, and wine). Various product 

ions are utilized in MRM mode for the monitoring of phytosterols; however, the 

[M+H−H!O] + ions are the selected precursor ions for most phytosterols.  

Similar to phytosterols, the identification and quantification of hydrophobic 

tocopherols were reported in edible oils [143], nuts [144], and fruits [145, 146], using 

LC-APCI-MS. Identification of tocopherols and tocotrienols in foods, such as peanuts, 

almonds, spinach and bran, as well as other samples, such as latex and tablets [116, 147], 

was accomplished using HPLC-APCI-MS by monitoring the molecular ion [M.]+. 

Similarly, tocopherols and tocotrienols were identified and quantified in human plasma 

using 2H9-R-tocopherylacetate and 2H9-R-tocopherol as internal standards with a lowest 
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LOQ of 96 nmol/L. Clare L. F. et al. [143] developed an MS/MS method for the 

simultaneous quantification of tocopherols and phytosterols in canola oil by monitoring 

two MRM transitions for tocopherols and one transition for phytosterols. The quantitative 

method was then applied to determine tocopherols and phytosterols in different oils 

(canola, palm fruit, sunflower and olive oils) while α-, γ-, δ-tocopherols, and β-sitosterol, 

campesterol, brassicasterol were identified [129].  

According to the above studies, APCI showed better ionization efficiency for 

phytosterols and tocopherols rather than ESI. In general, free phytosterols formed 

[M+H−H!O]+ and phytosterol esters formed [M−Fatty Acid+H] + ions, respectively. 

Unlike ESI, the ionization behavior of phytosterols with APCI is consistent. As for 

tocopherols, no adduct ions were not formed during APCI analysis, whereas sodiated 

adducts [M+Na] + were reported when using ESI in positive ion mode. Thus, APCI 

ionization is widely adapted for the analysis of phytosterols and tocopherols. In fact, 

APCI was employed for the analysis when ESI gave low ion intensity for phytosterols 

[114] and tocopherols [124]. These results may indicate the suitability of APCI as the 

ionization source of choice for the analysis of phytosterols and tocopherols.  

 

1.7.1.3.  The Choice between ESI and APCI 

The choice of the ionization source is crucial as it determines the overall efficiency 

of the analytical method. As discussed above, ESI ionization of phytosterols was 

inconsistent despite structural similarities among the various phytosterols. This could due 

to the low electronegativity and less stability of the generated [M+H] + ion of 

phytosterols. Thus, the application of ESI has limitations, especially when the 
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concentrations of phytosterols are very low. As for tocopherols, research showed that 

APCI and ESI resulted in similar behavior during MS analysis [124, 125]. However, 

there are studies demonstrating that APCI is more sensitive than ESI for tocopherols and 

tocotrienols quantification [148, 149]. In summary, APCI has been widely employed due 

to its great and consistent ionization efficiency in primarily forming [M+H−H!O] + ions 

in phytosterols, and [M.] + ions in tocopherols.  

Despite the wide use of APCI for the analysis of phytosterols and tocopherols, little 

is done to fully characterize the numerous product ions observed during MS/MS analysis. 

There is a need for a universal MS/MS fingerprint of these compounds. Such 

comprehensive analysis will contribute to the development of effective profiling methods 

and the identification of new structures.  

In my research, both ESI and APCI were tested for the qualitative analysis of 

phytosterols and tocopherols.  

 

1.7. 2.  Mass analyzers 

Various MS instruments were utilized to attain structural elucidation and develop 

effective screening strategies. The following sections will summarize various MS 

technologies utilized in my research, including quadrupole, linear ion trap, and orbitrap 

MS instruments. In addition, MS/MS, multi-stage (MSn) analysis will be summarized and 

explained.  

A mass analyzer is the component of the mass spectrometer where ions are separated 

based on their m/z values and sent to the detector and later converted to a digital output. 

There are six general mass analyzers, including three trapping analyzers: linear ion trap 
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(LIT), orbitrap, and Fourier transform ion cyclotron resonance (FTICR), and three non-

trapping analyzers: quadrupole (Q), time of flight (TOF), and sector mass analyzer. In the 

following sections, I will discuss the MS analyzers used in my study.  

 

1.7.2.1.  Quadrupole (Q) 

Quadrupole mass analyzer consists of four cylindrical rods that are parallel to each 

other. One pair of opposing rods is connected together electrically and charged with a 

voltage (Vdc+Vrf), while the other pair of rods is charged with another voltage (V’dc +V’rf), 

where Vdc is direct current (DC) and Vrf is radio frequency (RF) voltage. The RF and DC 

vectors differ by 180 degrees, and the ions of one specific mass-to-charge (m/z) ratios are 

passed by adjusting the RF and DC voltages [150]. The ion at a specific m/z is oscillated 

by the high electric field force of the quadrupole. The Vdc/Vrf value added to the quadrupole 

ensures that only ions with pre-set m/z perform a stable oscillation in the middle, reaching 

the detector through the quadrupole and forming a mass spectrum signal. Other ions form 

an unstable oscillating trajectory causing them to eventually hit the quadrupole rods and 

neutralize [150].  

The quadrupole mass spectrometer excels at applications where targeted ions are 

analyzed. However, the sensitivity is mass-dependent and decreases with the increasing 

value of m/z of the ions. Therefore, its mass range is limited up to 4000 Da [150].  

 

1.7.2.2.  Linear ion trap (LIT) 

The linear ion trap uses a set of quadrupole rods to confine ions radially and a static 

electrical potential on end cap electrodes to confine the ions axially. The linear form of the 
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trap can be either used as a selective mass filter, or as an actual trap by creating a potential 

well for the ions along the axis of the electrodes [150].  

Ions can be captured and stored by the ion trap with a certain alternating applied 

current (AC) voltages. When the amplitude or frequency of the RF voltage between the 

quadrupole rods and the exit lens is changed, the ions with different m/z values can be 

expelled out of the ion trap axially. Ions are expelled radially when an appropriate AC 

voltage on two opposite rods is applied. The ion trap can also be used as a collision cell to 

perform collision-induced dissociation (CID) of ions in the well. This could be used to 

analyze the generated product ions, and determine the composition of the ions by the 

observed fragment ions [150].  

 

1.7.2.3.  Orbitrap 

Orbitrap is also an ion trap mass analyzer consisting of an outer barrel-like electrode 

and a co-axial inner spindle-like electrode. It traps ions in an orbital motion around the 

inner electrode on elliptical trajectories; their electrostatic attraction to the inner electrode 

is balanced by their inertia. Meanwhile, the ions also move back and forth along the axis 

of the central electrode. The mass spectrum is converted from the image current of the 

trapped ions using the Fourier transform of the frequency signal [151, 152]. A mass 

resolution up to 150,000 for ions produced by laser ablation has been demonstrated [151]. 

It also provides a high mass accuracy, a high dynamic range, and high sensitivity [153, 

154]. Based on these properties, orbitrap-based mass spectrometers are used in life science 

such as pharmacology [155], food [156], and safety analysis [157].  
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1.7.2.4.  Tandem mass spectrometry  

Tandem mass spectrometry, also known as MS/MS, involves multiple steps of mass 

analyzers [158]. MS/MS is generally conceived in two ways: tandem in space (e.g. QqQ, 

quadrupole time-of-flight) and tandem in time (e.g. ion trap). Since MS/MS was 

commercialized, it has been successfully applied to both qualitative and quantitative 

analysis [159, 160].  

QqQ consists of two quadrupole mass analyzers in series, with a non-mass-resolving 

quadrupole between them acting as a collision cell. The majority of applications of QqQ 

is the quantification of trace analytes in complex matrices [161]. Quantification of 

different phytosterols and tocopherols in various biological samples have been performed 

with LC-MS/MS [104, 143, 162]. Quadrupole time-of-flight (QqTOF) is similar to QqQ 

but with a TOF as the second mass analyzer instead of quadrupole which allows for 

accurate mass measurements. Therefore, QqTOF is mostly used for the identification of 

target compounds in complex matrices [139, 163].  

Trapping mass analyzers are tandem-in-time instruments. The various stages of MS 

analysis are performed in the same analyzer but at different time. The advantage of 

tandem-in-time mass analyzers is their ability to perform more than two steps of analysis, 

which is referred as MSn. However, it does not perform well in quantitative analysis and 

cannot perform precursor ion scans and neutral loss scans. However, these limitations can 

be overcome by introducing a hybrid quadrupole-linear ion trap (LIT) (QTRAP®) in 

which a LIT, replaces the second Q in the QqQ instrument.  
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1.7.2.5.  Triple quadrupole-linear ion trap  

Triple quadrupole-linear ion trap is based on a triple quadrupole platform where Q3 

can be operated either in the normal RF/DC mode or in the LIT mode [164]. The triple 

quadrupole-linear ion trap system has no new scan functions; however, scan combinations 

of triple quadrupole mode and trap mode can be performed in the same LC/MS run, which 

gives new possibilities for both quantitative and qualitative analysis [165].  

 

1.7. 3.  LIT operating modes 

Scanning modes that were utilized in my work include, precursor ion scan (PIS), 

neutral loss scan (NLS), and multiple reaction monitoring (MRM). Below is a list of several 

modes that have been applied in this study.  

MS3 mode. The triple quadrupole-linear ion trap system has MS3 capabilities that 

involve additional fragmentation step of product ions trapped in the linear ion-trap [164]. 

The precursor ions selected by Q1 to the pressurized collision cell Q2 accomplish the first 

stage MS/MS fragmentation. The produced product ions and residual precursor ions are 

transferred to the Q3 linear ion trap for further analysis. The second generation precursor 

ion is isolated within the linear ion trap, where they are excited by a single frequency 

auxiliary signal and fragmented to give the MS3 product ion spectrum [158].  

MS3 could provide further structural information about each compound and aid in the 

rationalization of the proposed fragmentation pathways [166]. It has been successfully 

utilized to illustrate the fragmentation pattern of different bioactive compounds, hence 

providing further structural information of the observed product ions. For example, 

Tomoko et. al. [167] elucidated the fragmentation behavior of vitamin E homologues using 



 24 
 

MS3 to identify their presence in medicinal plants. However, only base peaks of each 

vitamin E were assigned structures; no detailed fingerprint of tocopherols as well as 

fragmentation mechanism was discussed [167]. To the best of my knowledge, no similar 

research has been reported relating to phytosterols.  

 

Multiple reaction monitoring (MRM): The MRM mode is the most commonly used 

analysis mode in QqQ, in which ions of particular m/z values are selected in the first 

analyzers (Q1), dissociated in the collision cell (Q2), and the selected produced ion is 

analyzed in the second mass analyzer (Q3). When employing MRM methods with a 

QTRAP, the LIT simply operates as a Q analyzer [104]. A quantitative method for the 

determination of free phytosterols, namely, cholesterol, ergosterol, stigmasterol and β-

sitosterol, in tobacco leaves were successfully developed using a QTRAP instrument in 

MRM mode [104].  

 

Neutral loss scans (NLS) and precursor ion scans (PIS): NLS are used for screening 

experiments. Both Q1 and Q3 are scanning simultaneously. Q3 is offset by the neutral loss 

under investigation. Only compounds that have a specific loss are detected [168]. While 

using PIS, Q3 is set to allow only a product ion of specific m/z value to pass and Q1 is 

scanning. PIS are used for screening experiments where a group of compounds produce 

the same product ion(s) [158].  

 
Enhanced product ion mode: In enhanced product ion (EPI) mode, the selection of 

the precursor ion is performed in Q1 utilizing RF/DC isolation at any resolution. Collision‐
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induced dissociation (CID) occurs in the collision cell Q2, and product ions are trapped in 

Q3 operated in LIT mode. This will allow for ion accumulation, resulting in better MS/MS 

spectra.  

 

Information-dependent acquisition: an information-dependent acquisition (IDA) 

method allows for “on-the-fly” MS/MS spectra collection during a single chromatographic 

process. In IDA mode, a survey scan is performed that acquire the data. If the selection 

criteria are met, a second scan (data dependent) is then performed [169, 170]. As such, the 

metabolite detection and MS/MS data acquisition are acquired in the same LC-MS run, 

allowing for identification. The QTRAP retains the traditional triple quadrupole scan 

modes such as NLS, PIS and MRM. However, MIM-dependent MS/MS acquisition, a 

novel scanning method for metabolite identification on a triple quadrupole-linear ion trap 

instrument was employed in this study. The term MIM is a scanning method based on the 

MRM mode, described above. Several possible phytosterol m/z values were monitored in 

both Q1 and Q3. The collision energy in Q2 is set to the lowest value to minimize 

fragmentation. This is aimed at reducing the time needed in the steps to screen for the 

targeted ions [171]. The use of survey scans, with EPI as a dependent scan, is reported to 

achieve better selectivity than MRM-EPI [172].  

 

1.8. Research hypothesis and objectives 

The assignment of the product ion structure is not shown or explained in most of the 

published work for the analysis of phytosterols and tocopherols. However, Mo et. al. [102] 

attempted to propose structures of product ions observed during MS/MS analysis of 

phytosterols. However, only the product ions chosen for selected reaction monitoring 
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(SRM) were assigned structures. Therefore, there is a need to fully characterize the CID-

MS/MS of both phytosterols and tocopherols in which both the structures and genesis of 

the produced ions is clearly elaborated. Such knowledge is needed for developing screening 

and quantification methods as well as for metabolite identification and structural 

determination of related compounds.  

In summary, the fragmentation patterns of phytosterols and tocopherols have not yet 

been fully investigated. There are no reported detailed MS/MS data to establish the 

fingerprints of either phytosterols or tocopherols. In fact, no work has compared the 

MS/MS of various structures to create a general MS/MS fingerprint.  

The main purpose of my M.Sc. project was to investigate the ionization and tandem 

mass spectrometric patterns of phytosterols and tocopherols. Subsequently,  profiling 

methods were established.  

1.8.1.  Establishment of the fragmentation patterns (i.e., fingerprints) of 

phytosterols and tocopherols using APCI-MS/MS. 

1.8.1.1.  Hypothesis 

Tested phytosterols and tocopherols will show similar fragmentation behavior during 

MS/MS analysis, which will lead to a common MS/MS fragmentation pattern for each 

group .  

1.8.1.2.  Objectives 

A. Assessment of the CID-MS/MS fragmentation patterns of selected phytosterols. 

a. Confirm the molecular structure of a series of selected phytosterols and 

tocopherols using single-stage MS, exact mass measurement, MS/MS and MS3 

analysis. 
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b. Establish a universal MS/MS fragmentation pattern for tested compounds. 

• Compare the fragmentation patterns of 4 phytosterols; 

• Identify the unique product ions for different phytosterols to be used in 

targeted analysis.  

 

B. Assessment of CID-MS/MS fragmentation patterns of tocopherols.  

a. Confirm the molecular structure of a series of tocopherols using single-stage 

MS, exact mass measurements, MS/MS and MS3 analysis. 

b. Establish a universal MS/MS fragmentation pattern for tested compounds. 

• Compare the fragmentation patterns of tocopherols;  

• Identify the unique product ions for different tocopherols to be used in 

targeted analysis.  

 

1.8.2.  Establishment of the phytosterols and tocopherols profiling methods using 

HPLC-APCI-MS/MS. 

1.8.2.1.  Hypothesis 

Profiling methods will be able to identify phytosterols and tocopherols in CODD, 

edible oil, and standard mixture.  

1.8.2.2.  Objectives 

Establish HPLC-MS/MS methods for phytosterols and tocopherols profiling using a 

QTRAP mass spectrometer.  

a. Select diagnostic ions for PIS and common neutral loss for NLS. 

b. Establish PSI-EPI scan for phytosterols and tocopherols profiling. 
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c. Establish multiple ion monitoring (MIM)-EPI scanning mode to confirm the 

PSI-EPI data. 
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CHAPTER 2  

THE ESTABLISHMENT OF TANDEM MASS SPECTROMETRIC 

FINGERPRINTS OF PHYTOSTEROLS AND TOCOPHEROLS 

 

This chapter describes the multi-stage tandem mass spectrometric behavior of 

phytosterols and tocopherols with more details than the published paper. The development 

of targeted profiling strategies of phytosterols and tocopherols in vegetable oils was also 

discussed in the published research article. However, the profiling method will be 

discussed later in an individual chapter in the thesis.  
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2.1.  Introduction 

The CID-MS/MS behavior of phytosterols and tocopherols are evaluated in this part. 

Before that, both APCI and ESI were applied to test the ionization behavior of phytosterols 

and tocopherols. Herein, the MS/MS dissociation behavior of phytosterols and tocopherols 

is elucidated, to establish generalized MS/MS fingerprints. MS/MS and multistage (MS3) 

analysis revealed common fragmentation behavior among the four tested phytosterols, 

namely β-sitosterol, stigmasterol, campesterol and brassicasterol. Similar analysis was 

conducted for the evaluated tocopherols (i.e. α-tocopherol, β- tocopherol, γ- tocopherol and 

δ-tocopherol). Mr. Jiang performed all the above MS experiments. HRMS experiments 

were also employed for ions structure validation with the help of Mr. Bryn Shurmer in 

Canadian Food Inspection Agency. As such, a universal MS/MS fragmentation pathway 

for both phytosterols and tocopherols were successfully established for the first time. 

Vegetable oils play an important role in human nutrition since they are a daily food 

component. As characteristic components of vegetable oils, phytosterols and tocopherols 

are essential for plant biochemistry [43, 61] and they also possess beneficial health effects 

to humans [42, 64, 70]. Phytosterols are responsible for the stabilization of the 

phospholipid bilayer of the cell membrane by regulating the fluidity and permeability 

properties of the membrane [42]. They also control other membrane-associated metabolic 

processes, such as the activity of membrane-bound enzymes [43]. Phytosterols are 

structurally and functionally similar to cholesterol; however, they possess an extra methyl 

or ethyl group on the side chain and sometimes with an extra double bond on the side chain. 

As cholesterol analogs, they compete with the absorption of cholesterol [44] if taken orally 
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and they are currently incorporated in food due to their well-established blood cholesterol-

lowering abilities [3, 4, 59]. In addition, they have been reported to show anti-inflammatory 

[56], antibacterial [57] and antitumor [58] activities. There are many structural forms of 

phytosterols, such as β-sitosterol, campesterol, brassicasterol and stigmasterol [173] 

(Scheme 1.1A).  

Tocopherols, on the other hand, are a class of organic compounds with vitamin E 

activity. Structurally, they possess a chromane ring and a hydrophobic side chain (Scheme 

1.1B). They exist naturally in four isoforms, namely alpha, beta, gamma and delta that only 

differ in the number of methyl groups and their position in the chromane ring. Tocopherols 

possess antioxidant activity [5-7] and they have showed promising effects as a preventative 

and therapeutic agent against cancer [64-66]. Additionally, it has been suggested that 

tocopherols may enhance the immune response [69] and inhibit the progression of 

cardiovascular diseases [70] . In summary, tocopherols and phytosterols have a wide range 

of health applications and are used as additives in food, pharmaceutical, and cosmetic 

products [11, 174, 175].  

Phytosterols and tocopherols are found in plants, such as seeds, grains, and legumes 

[24], with high concentrations in unrefined vegetable oils [24, 25]. However, vegetable oils 

are subjected to a refining process to improve their palatability, quality and shelf life. The 

deodorization distillate (DD) is a by-product produced during the deodorization stage of 

crude oil refinement [176]. It contains large amounts of bioactive metabolites including 

tocopherols (i.e. vitamin E) and phytosterols. Depending on the seed oil, the amount or 

compositional distribution of phytosterols and tocopherols will vary [24, 25, 177]. Several 
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strategies have been developed to recover and purify these compounds from plant sources 

as well as from DD of different vegetable oils [8-10].  

To effectively analyze phytosterols and tocopherols, analytical strategies need to be 

developed to allow for their identification and quantification. Liquid chromatography- 

tandem mass spectrometry (LC-MS/MS), either with an electrospray ionization (ESI) or 

atmospheric pressure chemical ionization (APCI), is commonly used for the identification 

and quantification of phytosterols and tocopherols in different biological samples [104, 143, 

162]. For example, Tan and coworkers [104] developed a quantitative method for the 

determination of cholesterol and free phytosterols, namely, ergosterol, stigmasterol and β-

sitosterol in tobacco leaves using multiple reaction monitoring (MRM) mode. Phytosterols 

ionized as protonated species that instantly lost a water molecule forming an abundant 

[M+H-H!O]+ ion, used for MS/MS analysis. Despite that several MRM transitions were 

used for quantification, the structural assignment of the product ions was not shown or 

explained [29]; which is the case in most published methods [104, 143, 162]. However, 

Mo S. et al. [102] proposed structures of the product ions observed during MS/MS analysis 

of phytosterols in the saponified extracts of edible oils. However, only the structures of the 

product ions chosen for selected reaction monitoring (SRM) were reported by showing the 

cleavage site. The exact structures and possible fragmentation mechanisms such as the 

formation of double bond or cyclization were not discussed or elucidated. As for 

tocopherols, Tomoko I. et al. [167] performed MS/MS analysis on the protonated species 

[M+H]+ . However, the reported MS/MS data did not show sufficient dissociation and only 

two major product ions for each of the tocopherols were structurally assigned. 
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Therefore, there is a need to fully characterize the MS/MS behavior of phytosterols and 

tocopherols to allow for the development of selective qualitative and quantitative analytical 

methods. For example, the MS/MS fingerprints of the novel drug delivery agents, gemini 

surfactants, were established, showing unique collision induced dissociation (CID)-

MS/MS behavior among various structural families [178-180]. The data were subsequently 

utilized to develop targeted MS methods to selectively quantify these compounds in 

cellular matrix [155, 181, 182]. Similarly, MS/MS can be used to develop screening 

methods, based on the PIS and NLS [183, 184] 

To the best of our knowledge, no detailed MS/MS analysis of either phytosterols or 

tocopherols were reported to establish their MS/MS fingerprints. In fact, no work has 

compared the MS/MS of various structures of different phytosterols and tocopherols to 

create a generalized MS/MS pattern. Therefore, we evaluated the CID-MS/MS of four 

major phytosterols and tocopherols and the data is further utilized to develop LC-MS-based 

screening strategies.  

 

2.2.  Materials and Methods 

2.2.1.  Samples and Reagents 

All solvents were of LC-MS grade and all chemicals were of analytical reagent grade, 

purchased from Fisher Scientific (Pittsburg, PA, USA) .  

β-Sitosterol, campesterol, stigmasterol, and brassicasterol each at 98% purity were 

purchased from Toronto Research Chemicals (Ontario, Canada) while α-tocopherol 

(99.9%), γ-tocopherol (96.8%), and δ-tocopherol (94%), were purchased from Sigma 

Aldrich (Canada).  
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2.2.2.  Sample preparation 

Stock solutions of phytosterols and tocopherols standards were prepared at 1 mg/mL 

in chloroform and stored at –20°C. For MS, MS/MS, and second-generation MS (MS3) 

analysis, each stock solution was further diluted to 5 μg/mL with acetonitrile containing 

0.01% acetic acid.  

 

2.2.3.  MS analysis 

MS analysis of four standard phytosterols (β-sitosterol, stigmasterol, campesterol and 

brassicasterol) and tocopherols was performed using the AB SCIEX 6500 QTRAP® 

quadrupole-linear ion trap mass spectrometer (Qq-LIT-MS), equipped with an alterable 

APCI/ESI source (AB Sciex, Concord, ON, CA). Reference standards were directly 

infused at a flow rate of 10 µL/min with an integrated syringe pump. The instrument was 

operated in the positive ion mode with a declustering potential (DP) of 40V and 

vaporization temperature of 400 ℃ when APCI was equipped. While positive ESI was 

performed using a5.0 kV spray voltage and a capillary temperature 250 ℃.  

For high resolution MS and MS/MS analysis, a Thermo Scientific Q Exactive™ 

Quadrupole-Orbitrap equipped with APCI source (Thermo Fischer Scientific, Waltham, 

MA, USA) was utilized. The reference standards were introduced via flow injection 

analysis (FIA) using an Ultimate 3000 UHPLC system. The flow rate was 0.4 mL/min 

under isocratic elution (99% acetonitrile and 1% methanol). The injection volume was 10 

µL and the overall run time was 0.5 minutes. To provide back-pressure for the pump, a 

CSH C18 pre-column (130Å, 1.7 µm, 2.1 mm×5 mm, Waters,  Milford, MA, USA) was 

used. Full scan data were acquired from m/z 50 to 500 with a resolution of 98995 (at m/z 
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400). Targeted MS/MS spectra were acquired using the ions appended in an inclusion list. 

The selected ions were subjected to high-energy C-trap dissociation (HCD) with 

normalized collision energy of 35% and an activation time of 100 ms.  

 

2.2.4.   Structure assignment 

2-D structures of all phytosterols, tocopherols, and product ions generated during 

MS/MS analysis were developed using ACD/chemsketch free version software (ACD 

Labs, Toronto, Ontario, Canada). The software was used to draw molecules, ions, 

schematic diagrams, and calculate their properties, e.g. monoisotopic mass. 

 

2.3.  Results and discussion  

2.3.1. Single-stage MS analysis 

Two different ionization techniques, APCI and ESI in positive ionization, were 

evaluated for the analysis of four phytosterols and four tocopherols (Scheme 1.1). 4 

phytosterol standards, namely stigmasterol, brassicasterol, campesterol, and �-sitosterol 

are selected to represent the major sterols generally found in edible oils. APCI showed 

better ionization than ESI particularly for phytosterols during direct infusion (Appendix A-

Figure 1). Tocopherols, however, showed similar performance for both APCI and ESI.  

Full scan MS analysis of phytosterols showed abundant [M+H-#!$]+ ions, resulting 

from the loss of a water molecule from the protonated species. For example, β-sitosterol’s 

(molar mass: 414.71 g·mol−1) mass spectrometric analysis showed a base peak at m/z 

397.37 corresponding to [414.71 + H - #!$] + (Scheme 2.1). However, [414.71 + H - 2H2] 

+ was also observed as a minor ion during phytosterol ionization (Appendix A-Figure 1).  
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Similar analysis was performed with the other 3 phytosterols and similar ionization 

pattern was observed. The [M + H - #!$] + was then selected for MS/MS and MS3 analysis. 

The structures were assigned and justified. Most product ions were formed by cleavage of 

the C-ring or penta cycle of the phytosterols although the C17 side chain also contributed 

to the formation of minor fragment ions.  
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Scheme 2.1. Full scan MS analysis of stigmasterol showing the predominant 

ionization pathway of stigmasterol via loss of a water molecule (precursor ion, [M+H-

%"&]+ at m/z 395.4). 
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On the other hand, tocopherols ionized primarily as the molecular ion, M·+. Exact mass 

measurements using high-resolution mass spectrometry (HRMS, Thermo Scientific Q 

Exactive™ Quadrupole-Orbitrap), were conducted for both phytosterols and tocopherols. 

Observed mass accuracies were less than 3 ppm (Table 2.1). Exact mass measurements 

confirmed the molecular structures of the tested compounds, as well as the proposed 

ionization mechanism (Scheme 2.2).  
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Table 2.1. Full scan MS analysis of phytosterols (a) and tocopherols (b) using 
Quadrupole-Orbitrap instrument. 

a. 
Compound 

Molecular 
Weight 

m/z (theoretical) 
 [M+H-H2O]+ 

m/z 
(measured)  

ppm 

Stigmasterol 412.7 395.3672 395.3662 -2.60 
Brassicasterol 398.7 381.3516 381.3510 -1.52 
β-sitosterol 414.7 397.3829 397.3818 -2.71 
Campersterol 400.7 383.3672 383.3664 -2.16 

 

b. 
Compound 

Molecular 
weight 

m/z (theoretical) 
[M]·+ 

m/z 
(measured) 

ppm 

α-tocopherol 430.7 430.3805 430.3792 -3.02 
β- tocopherol 416.7 416.3649 416.3639 -2.40 
γ- tocopherol 416.7 416.3649 416.3637 -2.88 
δ- tocopherol 402.7 402.3492 402.3490 -0.50 
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2.3.2. Multi-stage MS analysis 

2.3.2.1. MS/MS analysis of phytosterols 

The [M+H-H!O]+ was selected for MS/MS and MS3 analysis of phytosterols. Structural 

identification of each phytosterol was established based on CID-MS/MS and MS3 data 

from QqQ-LIT-MS and confirmed by exact mass measurements using Quadrupole-

Orbitrap-MS/MS. During MS/MS analysis, most product ions were formed by cleavage of 

the C-ring and/or the penta cycle of the phytosterols, while dissociation at the C17 side 

chain contributed to the formation of minor product ions. Schemes 2.1 and 2.2A show the 

full scan MS and MS/MS spectra for stigmasterol from HRMS as representative structure, 

respectively. All tested phytosterols share the same core structure; it is, therefore, highly 

expected that common dissociation behavior will be shared among the various 

phytosterols.  

Stigmasterol is used as a representative model for phytosterols. The MS/MS analysis 

of stigmasterol showed a complex spectrum, and the structure of the major product ions 

were rationalized and confirmed via MS3 analysis. The fragmentation process starts with 

three unique pathways that results in the formation of three singly charged product ions 

observed at m/z 311.27, 297.26 and 285.26 (Scheme 2.2B), designated as ions S1, S2 and 

S3 (S indicates a cleavage on the side chain). Each of these ions undergoes further 

fragmentation as explained below, where three unique dissociation pathways are identified. 

It was observed that the sites 1, 2, and 3 will first break when the cyclic structures dissociate 

(Table 2.2). This can be attributed to the favorable initial dissociation at the bond closed to 

the side chain (i.e. bond 1, in table 2.2). The observed relative abundance of related ions 

confirms this speculation. For example, the order of relative abundance of D1, D2 and D3 

is D1> D3 >D2. Since the fragmentation involves the formation of radical intermediaries 
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[185], radical reaction mechanism will affect how the MS/MS dissociation will be initiated. 

While the tertiary carbon radical ion is more stable, the relative abundance of the product 

ions will differ [186]. However, subsequent to S1, S2 and S3 formation, there are many 

identical product ions that are shared among the three main fragmentation pathways. Table 

2.2 shows the common product ions and fragment site during the CID MS/MS analysis of 

phytosterols.  

Product ion S1 dissociates via five different pathways forming five product ions, 

designated as S4, S5, C1 (C indicates a cleavage in the C ring), D2 and D3 (D indicates a 

cleavage in the D ring) (Scheme 2.2B). Product ion S4 at m/z 269.22 is formed via the dual 

loss of an ethyne moiety and CH4 on the side chain (Scheme 2.2B). On the other hand, 

product ion S5 at m/z 255.21 is generated by the complete elimination of the side chain. 

Inner-ring dissociation of S1 occurs at ring D yielding product ions D2 and D3 at m/z 

229.19 and 215.18, respectively, and at ring C yielding C1 at m/z 201.16 (Table2.2).  

The product ion S4 at m/z 269.22 can undergo two main fragmentation processes. The 

first one involves rearrangement of ring B to a penta-carbon cyclic structure yielding the 

ion at m/z 135.12 (B1). The second fragmentation process involves cleavage of ring D 

yielding the product ion D1 at m/z 241.20. D1 is further dissociated to three product ions 

from the cleavage of ring B or ring C, forming ions B3 at m/z 109.10 and C2 at m/z 187.15, 

respectively (Table 2.2). Product ion C3 at m/z 173.13 is formed via cleavage within ring 

C through the neutral loss of C5H8. Furthermore, product ion, C5, is formed through a loss 

of ethyne moiety as shown in Scheme 2.2B.  

The second major pathway during CID-MS/MS dissociation involves a C=C double 

bond cleavage at the side chain. Cleavage at the C22-C23 bond yields the product ions S2 
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at m/z 297.26 (Scheme 2.2A) due to the neutral loss of C7H14. This product ion can only be 

formed from phytosterols whose side chain have a double bond at positions C22-C23, i.e. 

stigmasterol and brassicasterol (Scheme. 1.1A). The subsequent partial loss of the 

remaining part of the side chain at position C17 leads to the formation of S4 at m/z 269.23. 

Ion S2 loses the whole side chain to form the product ion S5 at m/z 255.21, a dominant 

product ion of the tested phytosterols bearing double bond at position C22-C23 (Scheme 

1.1A). Subsequently, cleavages within ring C of S5 produces two product ions, designated 

as C3, and C4 as shown in Scheme 2.2B. Ions C3, C4 and C5 are common ions observed 

in all tested phytosterols, due to common structural features (Scheme 1.1A). C4 can further 

yield C5 at m/z 147.12 by losing a methyl group on ring B. Further dissociation within ring 

B of C5 leads to formation of B2. The genesis of all observed ions was confirmed by MS3 

analysis (Appendix-A, Table 1).  

The third dissociation mechanism involves the formation of ion S3 at m/z 285.26 that 

is generated from the cleavages of bonds C20-C22 of the side chain. Subsequently, S3 

yields five different product ions (S5, C1, D1, D2 and D3, Scheme 2.2B), which is 

supported by MS3 analysis (Appendix A-Table 1). D1 at m/z 241.20 is produced by inner-

ring cleavage of ring D at the C-17 position. The subsequent dissociation within ring C of 

ion D1 produces two ions at m/z 187.15 (C2) and 147.12 (C5). The former is formed via 

the loss of two ethyne moieties while the latter is formed due to a retro-Diels–Alder 

reaction which is the typical mechanism that is responsible for the cleavage of the 

cyclohexene rings. Furthermore, inner cleavage of ring B yields the ion designated as B3 

at m/z 109.10. All the dissociation pathways and ion structures proposed in Scheme 2.2B 
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were supported by MS3 analysis (Appendix A-Table 1) and exact mass MS analysis 

(Appendix A-Table 2).  

 

  



 44 
 

Table 2.2. The common product ions and corresponding fragmentation sites related 

to the ring structure (Fragmentation on side chain is not included). 

Precursor ion [M+H-H!O]  + Product ions Dissociation sites  

 

 

 

B1 
2, 3 & 12 

B2 
3 & 10 

B3 3 & 11 

C1 1, 2 & 13 

C2 4, 9 & 13 

C3 
2 & 7 

C4 
2 & 8 

C5 
2 & 9 

D1 
1 & 4 

D2 
1 & 5 

D3 
1 & 6 

 

  

+

1 2

3
4 5

6

7
8

9

11
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Scheme 2.2. A. MS/MS spectra of stigmasterol; B. the proposed fragmentation pathway 
showing the genesis of the various product ions as confirmed by MS3 analysis. 
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The detailed MS/MS fragmentation pattern of each tested phytosterols, along with the 

spectrum of all tested phytosterols can be found in Appendix B.  

 

2.3.2.2. MS/MS analysis of tocopherols 

α-tocopherol has been used as a representative example to illustrate the CID-MS/MS 

behavior of tocopherols (Scheme 2.3A). The fragmentation pathway for the tocopherol 

molecular ion [M]·$ at m/z 430.38 is shown in Scheme 2.3B. It should be noted that both 

the protonated and the molecular ions are observed during MS analysis of tocopherols. The 

protonated ion was dominant during direct infusion (10 µL/min), while the molecular ion 

was dominant when HPLC-MS conditions (800 µL/min) either through FIA or when tee-

split flow was employed. This observation was consistent and it was linked to the flow rate 

of the mobile phase. Varying flow rates i.e. 0.05, 0.1, 0.15, 0.2, 0.5 and 0.8 mL/min were 

investigated on their influence on the two competing ionization mechanisms for 

tocopherols. It was found that, with an increase of mobile phase flow rate, the molecular 

ion became the dominant ion. Both the protonated and molecular ions were present at equal 

intensities at 100 µL/min, while the protonated ion was favored at lower flow rates and the 

molecular ion at higher than 100 µL/min flow rates. Both the protonated and molecular 

ions were reported for MS/MS analysis in different studies [101, 126]. However, both ions 

observed at m/z 430 and 431 showed identical spectra during MS/MS analysis. Currently, 

we have no explanation for the observed ionization phenomenon.  
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Scheme 2.3. A. MS/MS of α-tocopherol;  B. the proposed dissociation behavior, 

showing the genesis of the various product ions as confirmed by MS3 analysis. 
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In the present work, the molecular ion was chosen for MS/MS analysis since the 

PIS/MIM profiling (discussed in Chapter 3) will be performed using a mobile phase flow 

rate at 800 μL/min. The CID-MS/MS showed an abundant ion B1 at m/z 165 due to a retro-

Diels−Alder reaction [187] and a minor product ion C1 at m/z 205 due to an α-cleavage at 

site 2-1’(The numbers represent the IUPAC numbering as shown in Scheme 1.1B). The 

molecular ion of tocopherol dissociates via inner ring fragmentation at the sites 1-2 and 3-4 

(Scheme 1.1) with rearrangements to form the highly conjugated stable ion B1 observed at 

m/z 165. Further dissociation of B1 at m/z 165 was verified by MS3 analysis (data not 

shown), resulting in the formation of an abundant ion A1 at m/z 137 through the loss of a 

CO. However, several structures can be assigned to A1 ion based on the Qq-LIT-MS/MS 

data. To assign the appropriate structure, accurate mass measurement was employed. High 

resolution MS/MS analysis showed the product ion at m/z 137.0960 confirming its ring 

structure as shown in Scheme 2.3B. Interestingly, careful examination of the MS/MS high 

resolution spectra showed additional minor ions at m/z 137.1315 (A1’, C8H9O2
+) and 

137.0605(A1’’, C10H17
+) (Scheme 2.3A). These product ions are different from the 

abundant ion at m/z 137.0961 (A1, C9H13O+), an observation which indicates that 

additional product ions were also formed but in a low abundance (Scheme 2.4). A1 

formation is probably favored to its highly conjugated structure in which the charge is 

eventually localized at the electronegative oxygen (Scheme 2.3). The same mechanism 

drives the formation of the ion observed at m/z 177, which appears in beta-, gamma-, and 

delta-tocopherol and the ions at m/z 123, 150, and 191, which appear in beta- and gamma-

tocopherols. These ions represent similar ions, generated from various precursor ions 

(Table 2.2).  



 51 
 

 

  



 52 
 

Table 2.3. The proposed structures of the product ions of observed during MS/MS 

analysis of tocopherols 

 A1 B1 C1 C2 
α-tocopherol 

 
m/z 137.20 

 
m/z 164.20 

 
m/z 205.27 

 
m/z 191.25 

β-tocopherol 

 
m/z 123.17 

 
m/z 150.17 

 
m/z 191.25 

 
m/z 177.22 

γ-tocopherol 

 
m/z 123.17 

 
m/z 150.17 

 
m/z 191.25 

 
m/z 177.22 

δ-tocopherol 

 
m/z 109.15 

 
m/z 136.15 

 
m/z 177.22 

 
m/z 163.19 
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The need for high resolution MS/MS data was also evident when rationalizing the 

structures of the product ions observed at m/z values below 100. Product ions below m/z 

100 can theoretically be formed either from the dissociation of chroman ring or the side 

chain. For example, C5H6O+ (ring) and C6H11
+ (side chain) have the same m/z value at 83. 

However, high-resolution MS/MS analysis showed that the ions with exact m/z values of 

69.0705, 83.0860 and 97.1015 are subsequent losses of CH2 moieties. Such observation 

confirmed that these product ions are generated from the carbon side chain with a CxHy
+ 

formula.  

As a final note, β- and γ- isomers cannot be distinguished from their MS/MS data since 

the only difference between the two isomers is the position of the methyl groups on the 

chroman ring (Scheme 2.1B) and as such, they share the same MS/MS fragmentation 

pattern. The detailed MS/MS fragmentation patterns of other tocopherols and their 

associated spectra can be found in Appendix B.   

 

2.4.  Conclusion 

In this study, the MS/MS dissociation behavior of four phytosterols and four 

tocopherols were discussed. To accomplish this task, the ionization behavior of 

phytosterols and tocopherols were studied using both ESI and APCI ionization techniques. 

APCI was chosen for further analysis as it gave better ionization for these compounds. 

Significant [M+H-H!O] + peaks were detected for phytosterols with APCI. However, both 

protonated and molecular ions were detected when dealing with tocopherols and this 

observation was linked to the flow rate of the mobile phase. This ionization behavior of 
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tocopherols should be taken into account during the development of MS-based qualitative 

or quantitative analytical methods.  

The fragmentation patterns of phytosterols and tocopherols were established and 

confirmed via MS3 analysis and HRMS that verified the chemical structures of product 

ions and the fragmentation pathway. The established MS/MS fingerprints were employed 

to predict the dissociation behavior of other naturally-existing phytosterols due to their 

similar structural features and fragmentation behavior among all tested phytosterols and 

tocopherols, respectively.  

The MS/MS behavior of phytosterols and tocopherols is currently being used to 

develop a targeted LC-MRM-MS/MS quantification method which will be reported upon 

completion. With the use of diagnostic product ions, the selectivity of quantification can 

be ensured especially when dealing with complex matrices.  
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CHAPTER 3  

THE DEVELOPMENT OF TARGETED PROFILING STRATEGIES 

IN VEGETABLE OILS 

 

This chapter focus on the development of targeted profiling strategies of phytosterols 

and tocopherols in vegetable oils. The work presented in this chapter is also included in the 

peer-review research article cited in the disclaimer above.  
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3.1. Introduction 

Based on the generalized MS/MS fragmentation behavior of phytosterols, diagnostic 

product ions were chosen for the development of profiling methods for over 20 naturally-

occurring phytosterols. Precursor ion scan-triggered enhanced product ion scan (PIS-EPI) 

methods were established. Due to enhanced single intensity, multiple ion monitoring-

triggered enhanced product ion scan (MIM-EPI) was employed for confirmation.  

Vegetable oils are one of the major sources of nutrients in the human diets since they 

are a daily food component. However, characterization of vegetable oils has been focused 

only on the principal components, for example, triacylglycerol[188, 189]. In recent years, 

the recognition of minor components that generally constitute the unsaponifiable matter 

has received more attention. These components include important bioactives that affect the 

nutritional quality of individual oils.  

Phytosterols and tocopherols are two important building blocks of the unsaponifiable 

matter. Phytosterols often exist as a mixture of different sterol compounds sharing similar 

skeletal structure. There are several phytosterols reported existing in different vegetable 

oils, such as β-sitosterol, campesterol, brassicasterol and stigmasterol [173] (Scheme 

1.1A). The composition of phytosterols varies among different plant species, which could 

be used for testing adulteration. For example, the phytosterol composition of hazelnut oil 

has been successfully used as a detection tool for adulteration of olive oil with hazelnut oil 

[190]. While tocopherols are natural antioxidants frequently occurring in plants and 

comprise of four homologues (Scheme 1.1B). The composition and content of tocopherols 

also vary among different plant species. Hence, it’s crucial to include profiling of 

phytosterols and tocopherols content in the detailed characterization of vegetable oils.  
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To effectively analyze phytosterols and tocopherols in vegetable oils, comprehensive 

analytical strategies need to be developed. Liquid chromatography-tandem mass 

spectrometry (LC-MS/MS), either with an electrospray ionization (ESI) or atmospheric 

pressure chemical ionization (APCI), is commonly used for the identification and 

quantification of phytosterols and tocopherols in different biological samples [104, 143, 

162]. Here we report the profiling methods for the phytosterol and tocopherol content using 

LC-MS/MS. This part of work is based on the MS/MS behavior analysis of major 

phytosterols and tocopherols.  

The screening approach was applied successfully to identify blinded samples obtained 

from standard mixtures as well as sesame and olive oils. The oil samples contain other 

phytosterols and their successful identification indicates that, the generalized MS/MS 

fragmentation behavior is applicable to various structures of phytosterols. Similar approach 

was attempted for tocopherols and was only hindered by the low concentration of these 

bioactive metabolites within some oil samples.  

 

 

3.2. Materials and Methods 

3.2.1. Samples and Reagents 

All solvents were of LC-MS grade and all chemicals were of analytical reagent grade, 

purchased from Fisher Scientific (Pittsburg, PA, USA).  

Olive oil (Organic Extra Virgin, Terra Delyssa®) and sesame oil (Baraka®) were 

obtained from a local store while canola oil deodorizer distillate (CODD) was a gift from 

LDM foods (Yorkton, Saskatchewan, Canada). β-Sitosterol, campesterol, stigmasterol, and 

brassicasterol each at 98% purity were purchased from Toronto Research Chemicals 
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(Ontario, Canada) while α-tocopherol (99.9%), γ-tocopherol (96.8%), and δ-tocopherol 

(94%), were purchased from Sigma Aldrich (Canada).  

 

3.2.2. Sample preparation 

Stock solutions of phytosterols and tocopherols standards were prepared at 1 mg/mL 

in chloroform and stored at –20°C. For MS, MS/MS, and second-generation MS (MS3) 

analysis, each stock solution was further diluted to 5 μg/mL with acetonitrile containing 

0.01% acetic acid. 

For olive and sesame oil, the unsaponifiable matter was analyzed. The extraction was 

done as reported with some modifications [108, 191, 192]. Briefly, 5 g of each oil was 

saponified with 1M Potassium hydroxide (KOH) prepared in 95% ethanol for 1 h at 65 °C. 

This was followed by the addition of 50 mL water and the unsaponifiable matter was 

extracted three times with 50 mL hexane. The combined organic phase was washed with 

water until the washings were neutral to phenolphthalein and dried under anhydrous 

sodium sulfate. The solvent was then evaporated on a rotovap and the residue further dried 

under high vacuum.  

For CODD, the phytosterols were isolated from the unsaponifiable matter as follows:  

CODD (5 g) was saponified as described above after which water was added to precipitate 

phytosterols. Vacuum filtration was performed and the residue was washed before drying 

under vacuum. For MS analysis, approximately 5 mg of each sample (extracts from olive, 

sesame, and CODD) were dissolved in chloroform and further diluted to the required 

concentration with acetonitrile containing 0.01% acetic acid. 
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3.2.3. Precursor ion scan (PIS)- or multiple ion monitoring (MIM)- triggered 

enhanced product ion scan (EPI)   

IDA methods were performed using AB SCIEX 6500 QTRAP® quadrupole-linear ion 

trap mass spectrometer (Qq-LIT-MS), equipped with an APCI source (AB Sciex, Concord, 

ON, CA). The instrument was operated in the positive ion mode with a declustering 

potential (DP) of 40V and vaporization temperature of 400 ℃. The various MS parameters 

are shown in Table 3.1.  
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Table 3.1. MS parameters during ionization 

MS Parameter Value 

Nebulizer current 2.5 µA 

Curtain gas 30 psi 

Source temperature 400 °C 

Declustering potential 40V 

 

PIS was employed for screening phytosterols and tocopherols using the data gathered 

from MS/MS analysis while MIM was employed for confirmation due to better MS/MS 

signal in the EPI mode.  

 PIS- and MIM-EPI were carried out after HPLC separation of the compounds on an 

Agilent 1290 UHPLC system (Agilent, Santa Clara, CA, USA). The analytical column was 

an Agilent Poroshell C18 column (2.1 mm × 150 mm, 5µm) in series with a guard column 

(2.1 mm × 4.7 mm, 2.7 µm) of the same packing material. An isocratic elution consisting 

of acetonitrile: methanol (99:1 v/v) with 0.1% acetic acid was used at a flow rate of 800 

μL/min. The column temperature was set at 30oC and the injection volume was 3 μL.  

The parameters used for PIS were similar to those already applied in MS/MS analysis. 

The product ions observed for the tested compounds were used as the product ions for PIS 

while the scan range was set from m/z 350 to 450. The DP was set at 80 V, and the collision 

energy (CE) was at 25 eV. The threshold for information-dependent acquisition (IDA) 

triggered for the EPI was set at 50,000 ion counts. For EPI, DP was set at 80 V, and the CE 

was set at 30 eV to induce detailed MS/MS spectrum.  

A MIM-EPI scan was adopted to confirm and acquire better MS/MS signal for target 

compounds. The MIM scan is based on a multiple reaction monitoring (MRM) mode in 
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triple-quadruple MS instruments. Unlike in MRM, the MIM scan was carried out targeting 

the same ions in Q1 and Q3, respectively, with the minimal CE (5 eV) in the collision cell 

[169]. The threshold for IDA triggered for the EPI acquisition was set at 100,000 ion counts 

for phytosterols. Each MIM transition was monitored with a 50 ms dwell time, DP of 80 

V, and a CE of 30 eV. For tocopherols, the threshold for IDA trigger for the EPI acquisition 

was set at 50,000 ion counts and the CE was 40 eV. Other scanning conditions are 

summarized in table 3.2.  
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Table 3.2 MIM-EPI scanning conditions for the analysis of phytosterols and 

tocopherols 

Compound 
 m/z range CE (CES) 

 Q1 Q3 

β-sitosterol 
MIM 397 397 5 

EPI  50-450 25(10) 

campesterol 
MIM 383 383 5 

EPI  50-450 25(10) 

brassicasterol 
MIM 381 381 5 

EPI  50-450 25(10) 

stigmasterol 
MIM 395 395 5 

EPI  50-450 25(10) 

α-tocopherol 
MIM 430 430 5 

EPI  50-450 30(10) 

β-tocopherol 
MIM 416 416 5 

EPI  50-450 35(10) 

γ-tocopherol 
MIM 416 416 5 

EPI  50-450 35(10) 

δ-tocopherol 
MIM 402 402 5 

EPI  50-450 40(10) 
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PIS-EPI and MIM-EPI methods were then applied to blinded samples composed of a 

mixture of reference phytosterols standards and unsaponifiable matter extracted from olive 

and sesame oils to confirm the capability and reliability of the method.  

 

3.3. Results and discussion  

3.3.1. Identification of phytosterols in CODD extraction 

Among the numerous product ions observed, four common product ions, B3, C5, C4 

and D3 at m/z 109, 147, 161 and 215, were chosen for PIS, for the following reasons: (1) 

the product ion showed abundant signal during MS/MS analysis; (2) they were common in 

the four tested phytosterols (Table 3.3); and (3) the structures make them characteristic to 

phytosterols, allowing better selectivity in screening. Two other product ions, S2 and S2’ 

at m/z 297 and 301 (Appendix A-table 3) were also selected as an indicator of the presence 

or absence of double bond on the site C22-C23 of the side chain.  

  



 64 
 

Table 3.3. Summary of product ions of tested phytosterols 

 Stigmasterol 
 

Brassicasterol β-Sitosterol Campesterol 

S1 √ √ × × 

S2 √ √ × × 

S3 √ √ × × 

S4 √ × × × 

S5 √ √ × × 

D1 √ √ × × 

D2 √ √ √ √ 

D3 √ √ √ √ 

C1 √ √ × × 

C2 √ √ × × 

C3 √ √ × × 

C4 √ √ √ √ 

C5 √ √ √ √ 

B1 √ √ √ √ 

B2 √ √ × × 

B3 √ √ √ √ 
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The various phytosterols in tested CODD should yield common product ions (listed in 

Appendix A-table 4). Therefore, these compounds can be detected through PIS method that 

is designed based on the fragmentation pattern of the four tested phytosterol standards. 

Information about the reported phytosterols content in sesame and olive oils is summarized 

in Appendix A-table 5 [24, 102, 114]. All metabolites yielding common product ions at 

m/z 109, 147, 161 and 215 in MS/MS were considered as potential phytosterols. 

Information about the relevant compounds, such as retention time, precursor ions m/z 

value, and major fragment ions, is summarized in Table 3.4. In fact, all phytosterols could 

share the common fragmentation pattern with the tested phytosterols during CID-MS/MS, 

due to their similarity in structure. Furthermore, the specific structures of these compounds 

can be deduced via the analysis of their MS/MS spectra.  

 

Table 3.4. Phytosterols detected and Structural Characterization in CODD via 

PIS using HPLC-MS/MS 

RT*(min)  Identification  MW 
(Da) 

Precursor 
ion (m/z)  

Major product ions (m/z) 

4.1 brassicasterol 398.68 381.4 69, 147, 161, 255, 297 
5.0 campesterol 400.69 383.4 135, 147, 161, 301 
5.8 β-sitosterol 414.72 397.4 135, 147, 161, 297 

* Retention time 
 
 
A PIS-EPI scan was also employed, showing three major chromatographic peaks 

whose signal strength varied substantially (Figure 3.1A). The variation may be due to the 

fact that the collision energy was not optimized for the various phytosterols existing in oils. 

Therefore, a multiple ion monitoring-triggered enhanced product ion scan (MIM-EPI) 
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method was adopted to profile and acquire MS/MS for the targeted compounds. Compared 

to PIS-EPI, MIM-EPI displayed a better profiling performance with stronger signal for 

each possible phytosterol and a more detailed MS/MS spectrum (Figure 3.1B). This is due 

to MIM narrowed ion scan range in Q1, which helps acquire more data points. MIM-EPI 

is reported to be a powerful tool for metabolite profiling, especially useful for identifying 

metabolites with low concentrations [193, 194].  
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Figure 3.1. Comparison of PIS-EPI and MIM-EPI in profiling of phytosterols and 

MS/MS data for stigmasterol. Profiling data obtained by PIS-EPI (A1) and MIM-

EPI(A2); MS/MS spectrum of stigmasterol from PIS-EPI (B1) and MIM-EPI (B2).  
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For tocopherols, only MIM-EPI scan was conducted, since only 4 forms exist in nature. 

Therefore, tocopherols can be detected through MIM scan method easily as only four 

transitions are needed to be monitored.  

The profiling method was then applied to the unsaponifiable matter of CODD. At least 

three tocopherols were detected in the sample (Figure 3.2).  However, the retention time 

and m/z value of β and γ-tocopherols are identical and cannot be differentiated (co-elute at 

3.48 minute).  

  



 69 
 

 
 

 

  

F
ig

ur
e 

3.
2.

 T
ot

al
 io

n 
cu

rr
en

t 
(T

IC
) 

ch
ro

m
at

og
ra

m
 o

f 
M

IM
-E

P
I 

sc
an

 f
or

 t
oc

op
he

ro
ls

 

in
 C

O
D

D
. 



 70 
 

 

A combined MIM-EPI method detecting both phytosterols and tocopherols on the same 

run was also conducted. The phytosterols are dominant due to their high concentrations 

(Figure 3.3A). However, tocopherols can still be identified (Figure 3.3B). This experiment 

has shown the utility of the developed method to simultaneously screening for both 

phytosterols and tocopherols within one sample. 
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3.3.2. Identification of phytosterols and tocopherols in the unsaponifiable 

matter of vegetable oils 

Various phytosterols, reaching up to 16, have been reported as component of vegetable 

oils [114, 195-198]. The developed generalized MS/MS fragmentation behavior (Table 3.3, 

Scheme 2.3B) can theoretically be applied to other naturally-existing phytosterol 

structures.   

 To test the suitability of the scanning method, a blinded experiment was conducted. 

The operator (First author, Jiang, K.) was not aware of the content of the five samples 

prepared by co-author, Gachumi, G. Upon analysis, three samples which are mixtures of 

different standard compounds were successfully identified. The other two are phytosterols 

extracted from sesame and olive oils (Figure 3.4). The identification was based on the 

presence and intensity of the ions as well as the retention time of the observed peaks. 

Specifically, the relative intensity of campesterol is much higher than avenasterol in sesame 

oil according to published reports (Appendix A-table 5). While the relative intensity of 

campesterol, and Avenasterol is similar in olive oil. On the other hand, both δ5 and δ7- 

avenasterol are reported to be present in sesame oil, while only δ5-avenasterol in olive oil 

[199-203]. Thus, sample 4 was successfully identified as an extract from olive oil (Figure 

3.4A), while sample 5 was from sesame oil (Figure 3.4B). It is necessary to indicate that 

the precursor ion in one specific m/z may be generated from different isomers, yielding the 

same MS/MS spectra. For example, avenasterol share the same m/z at 395 with stigmasterol, 

because the only difference of these two phytosterols is the position of the double bond on 

the side chain. However, the chromatographic retention times in the reverse-phase column 
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vary among these structures according to published studies [204, 205]. Therefore, both 

compounds were identified using retention time along with m/z values. Tocopherols were, 

however, not detected in these oil samples (data not shown). This could be due to their 

reported low concentrations in edible oils [200, 202].  
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Figure 3.4. Comparison of precursor ion scan spectra of phytosterols profiling in 

olive oil (A) and sesame oil (B). 
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3.4. Conclusion 

This study has clearly demonstrated how the analysis of two main constituents of the 

unsaponifiable matter, namely, phytosterols and tocopherols, is an important part of 

detailed characterization of vegetable oils. Qualitative profiling MS-based methods were 

developed based on the MS/MS dissociation behaviors. The qualitative approach combined 

PIS and MIM-EPI which enhances the identification capability of quadrupole-linear ion 

trap instrument in metabolite analysis. Both olive and sesame oils have been shown to be 

a possible source of β‐sitosterol, campesterol, and avenasterol. However, this study was 

only able to qualitatively characterize phytosterols that constitute the bulk of the 

unsaponifiable matter in the tested vegetable oils. As being characteristic of the oil content, 

quantitative analysis of phytosterols is still needed.  

The utility of the new profiling method was demonstrated in the identification of the 

phytosterols and tocopherols present in CODD extraction. Three phytosterols, namely 

brasscasterol, campesterol and β-sitosterol, and at least three tocopherols were detected in 

the samples. The result has revealed the CODD’s potential as a rich source of phytosterols 

and tocopherols.  
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CHAPTER 4  

OVERALL DISCUSSION AND FUTURE DIRECTION 

4.1. Discussion 

Qualitative analysis is an integral part of this thesis. Both phytosterols and tocopherols 

produced complex MS/MS spectra, and little has been done to fully characterize the 

numerous product ions observed during MS/MS analysis. In this work, the ionization 

behavior of phytosterols and tocopherols are tested. The universal CID-MS/MS behavior 

of phytosterol (as [M+H-H!O]+) and tocopherol (as [M] ·+) are established, generating 

generalized MS/MS fingerprints. Such comprehensive analysis allowed for the efficient 

profiling of new structures of these compounds as well as developing targeted analysis 

methods. The qualitative approach combined PIS and MIM-EPI was employed for MS-

based profiling in both oil extract and CODD samples. Meanwhile, a quantitative method 

was developed by other research members [out the scope of the thesis], utilizing the 

MS/MS data generated in this thesis.  

4.1.1. Mass spectrometric analysis of phytosterols and tocopherols 

High resolution MS single stage analysis is initially performed for the identification of 

phytosterols and tocopherols. [M+H]+ was either not observed or observed in relatively  

low abundance. On the other hand, the [M+H-H2O] + and [M] ·+ species were dominantly 

observed in the single stage positive ion mode of APCI-MS analysis. Observed mass 

accuracies were less than 3 ppm for all tested compounds (Table 2.1). Other species, such 

as [M+H-H2]+ and [M+H-2H2]+ for phytosterols and  [M+H]+ for tocopherols were also 

observed, albeit at lower abundance.  
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MS/MS dissociation behaviors were subsequently elaborated by investigating the 

fragmentation behavior employing MS/MS and MS3 analysis. Diagnostic product ions 

were successfully identified, and their proposed structures were confirmed via MS3 

analysis and high-resolution MS. These diagnostic ions can be used for qualitative and 

quantitative analysis of the tested as well as related compounds. Similar CID-MS/MS 

dissociation behavior was observed with all tested phytosterols and tocopherols. Thus, a 

general fragmentation pattern of phytosterols (Scheme 2.2) and tocopherols (Scheme 2.3) 

were, for the first time, established. Despite the existence of published work with structural 

assignments for some of the observed product ions [102, 206], only few structures of the 

product ions were reported. The exact structures and possible fragmentation mechanisms, 

such as the formation of double bond or cyclization were not discussed or elucidated 

before, to the best of my knowledge.  

Despite the generation of a generalized MS/MS fragmentation pattern for phytosterols, 

changes of product ions were observed within individual phytosterols that are related to 

the double bond within the side chain. However, side chain fragmentation cannot generate 

characteristic product ions but might affect the observed ion intensity of product ions with 

low m/z values (m/z < 100). For example, the relative abundance of product ion with m/z 

83.09 is much higher in the MS/MS spectrum of phytosterols with double bond on the side 

chain (e.g. stigmasterol) in comparison to phytosterols with saturated side chain. The 

majority of the observed product ions are presented in Table 2.2.  

In the case of tocopherols, the same mechanism drives the formation of all observed 

product ions. For example, the most abundant product ions at m/z 165, 151, 151 and 123 

for the α-, β-, γ-, and δ-tocopherols were observed (Scheme 2.3, Table 2.3). These ions are 
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generated through the same fragmentation mechanism on the chromane ring. The different 

m/z values is due to different number and positions of methyl groups on the chromane ring. 

It is worth emphasizing that all tocopherols share the same side chain. The product ions 

generated from the alkyl side chain effected the analysis of fragmentation in the chromane 

part. HRMS allowed for the confirmation of the proposed structures of the observed 

product ions (for example, product ions A1, A1’ and A”, Scheme 2.3A, Scheme 2.4).   

The established MS/MS pathways of the group of compounds tested were further 

confirmed via MS3 analysis and the molecular formula of the reported product ions was 

also confirmed with MS/MS conducted with HRMS.  

In summary, universal MS/MS dissociation behaviors of phytosterols and tocopherols 

were established. The data will serve as a foundation for metabolite profiling of 

phytosterols and tocopherols and as a base for quantitative methods that employ the MRM 

mode.  

 

4.1.2. Metabolites profiling of phytosterols and tocopherols 

The established MS/MS dissociation data of phytosterols and tocopherols were then 

utilized to develop LC-MS-based screening strategies. Profiling of phytosterols and 

tocopherols is commonly conducted using GC-MS. Mitei et al. [25] have reported the use 

of GC–MS and HPLC for the profiling of phytosterols and tocopherols content of selected 

seed oils from Botswana. However, the phytosterol profiling part was still conducted by 

GC-MS [25]. Millan et al. [139] reported the use of LC-APCI-HRMS for a targeted 

metabolomics study of grapes based on their phytosterol contents. The authors achieved 

accuracy in discriminating between grape varieties based on phytosterol contents. 
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However, with HRMS, some unknown phytosterols with similar structures can be 

overlooked.  

In my research, a qualitative approach combining PIS and MIM-EPI enhanced the 

identification capability of quadrupole-linear ion trap instrument. Utilizing the data 

gathered from MS/MS, PIS-MS method was successfully developed for screening 

phytosterols and tocopherols. MIM was then employed for confirmation due to better 

MS/MS signal in the EPI mode. The developed strategy proved efficient for conducting 

profiling experiments and can aid in identifying new structures. As such, the phytosterol 

profiles for olive and sesame oils were clearly distinguish (Figure 3.4). A combined MIM-

EPI method detecting both phytosterols and tocopherols on the same run was also 

conducted. This experiment has shown the possibility and utility of the developed method 

to simultaneously screen both phytosterols and tocopherols within an oil sample. However, 

tocopherols were detected in CODD extract sample but not in oil samples. This is due to 

the low concentrations of tocopherols within edible oils. In addition, the extraction method 

is optimized for phytosterols, so the signal of tocopherols is possibly suppressed. As such, 

additional work is needed to improve the sensitivity of the profiling strategy.  

 

4.2. Future direction 

4.2.1.  Quantitative analysis  

The identified diagnostic product ions from the established MS/MS pattern of each 

phytosterols and tocopherols can be used for the quantification of these compounds in the 

MRM mode. Quantitative methods can be optimized using the established MS/MS 

fingerprints. Using unique transitions during the MRM-quantification ensures selectivity 
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and sensitivity of the method especially when dealing with complex matrices. In fact, 

information from the MS/MS data acquired in this study has been successfully used to 

quantify target analytes within CODD as well as pharmaceutical formulations intended for 

functional foods [207].  

 

4.2.2.  Qualitative analysis  

As shown in my thesis, MS/MS fingerprints are successfully used for the identification 

of target compounds in oils and DDs. The qualitative profiling method established in the 

study has the potential to identify other structures of phytosterols. For example, avenasterol 

was detected in the profiling method as shown in Figure 3.4. The phytosterol profiles for 

olive and sesame oils clearly distinguish between the two oils. As such, the profiling 

strategies, possibly combined with quantitative analysis, can be applied for the analysis of 

high value oils, such as extra virgin olive oil to detect adulteration with less expensive oils. 

To achieve that, proper internal standards are needed to establish relative quantification 

methods.   

 

4.3.  Final conclusions 

A universal MS/MS dissociation behavior of four phytosterols and four tocopherols 

were established and confirmed. The data would be very useful in the development of MS-

based analytical methods.  

The established MS/MS fingerprints were employed to predict the dissociation 

behavior of other naturally-existing phytosterols due to their similar structural features. 

The qualitative approach combined PIS and MIM-EPI which enhances the identification 
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capability of quadrupole-linear ion trap instrument in metabolite analysis. The utility of the 

new method was then successfully applied for the identification of phytosterols and 

tocopherols in oil samples (sesame and olive) as well as CODD. The MS/MS behavior was 

successfully used to develop a targeted LC-MRM-MS/MS quantification method. 
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Appendix A  

 

Summary of MS/MS/MS experiment for stigmasterol, using QqQ-LIT. 

MS/MS fragment ions 
of stigmasterol 

MS/MS/MS fragment ions 

 α-tocopherol ——→ 269.2  
——→ 255.3 
 
 
 
 
 
 
——→ 241.2 
 
 
 
 
——→ 229.3 
——→ 215.4 
 
 
 
 
 
——→ 201.2 
 
 
——→ 187.2 
——→ 161.3 

 
——→ 187.2 
——→ 173.3 
——→ 161.3 
——→ 147.2 
——→ 135.2 
——→ 121.3 
——→ 109.3 
——→ 187.2 
——→ 173.3 
——→ 147.2 
——→ 135.2 
——→ 109.3 
 
——→ 187.2 
——→ 173.3 
——→ 147.2 
——→ 135.2 
——→ 121.3 
——→ 109.3 
——→ 173.3 
——→ 121.3 
——→ 109.3 

297.3 ——→ 269.2 
——→ 255.3 
——→ 241.2 
——→ 215.4 
——→ 201.2 
——→ 187.2 
——→ 173.3 
——→ 161.3  
——→ 147.2 
——→ 135.2 

285.3 ——→ 229.3 
——→ 215.4 
——→ 201.2 
——→ 187.2 
——→ 173.3 

97.2 ——→  69.1 

 

 

 

 



 109 
 

Summary of product ions accuracy for stigmasterol, using Q-exactive. 

 
m/z  
observed m/z theoretical  

Mass accuracy 
(ppm) 

S1 311.2723 311.2733 3.3026 
S2 297.2570 297.2577 2.2775 
S3 285.2572 285.2577 1.6722 
S4 269.2255 269.2264 3.2575 

S5 255.2100 255.2107 2.8486 
D1 241.1944 241.1951 2.8069 

D2 229.1946 229.1951 2.0812 
D3 215.1790 215.1794 1.9844 
C1 201.1634 201.1638 1.8741 

C2 187.1478 187.1481 1.7473 

C3 173.1321 173.1324 2.1775 
C4 161.1321 161.1325 2.3397 

C5 147.1166 147.1168 1.5430 
B1 135.1166 135.1168 1.6800 
B2 121.1011 121.1012 0.6358 

B3 109.1013 109.1012 1.1274 

 

Structures of tested phytosterols abundant product ions. 

B2 C4 C5 D3 S2   S2’   
109 149 161 215 297  301  
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Structures of phytosterols present in vegetable oils and the expected structure of the 

abundant product ions. 

Avenasterol 

 

109 

 

149 

 

163 

 

215 

 

 

 

 

δ7-Stigmasterol 

 

109 

 

149 

 

161 

 

213 

 

 

 

 

Sitostanol 

 

111 

 

149 

CH3

CH +

CH3

CH3

CH3 CH3

CH3

CH3 CH
+

CH2

CH3

CH +

CH3

CH +

CH3CH3

CH +

CH3

CH3

CH3

CH +

CH3

CH3

CH3 CH3

CH3

CH3 CH
+

CH2

CH3

CH +

CH3

CH +

CH3
CH3

CH +

CH3

CH3

CH3

CH +

CH3

CH3

CH3 CH3

CH3

CH
+

CH3

CH3

CH +
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Campestanol 

 

 

163 

 

217 
 

CH3

CH +

CH3

CH3

CH3 CH3

CH3 CH +

CH3CH3

CH +

CH3

CH3
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Phytosterols content information from literatures (mg/100g) 

 *nd=not detected; -- = not reported; LLOQ = Lower Limit of Quantification 

    Sitosterol Campesterol δ7-Campesterol Stigmasterol 
δ7-

stigmasterol 
Brassicasterol 

Sesame,  

extra virgin[208] 

Free 217.3 ±1.18 36.3 ±0.59 —— 24.1 ±0.33 —— nd* 

Esterified 113.9 ±2.23 38.2 ±1.16 —— 8.9 ±0.11 —— nd* 

Sesame, toasted[208] 

Free 221.0 ±1.18 36.3 ±0.59 —— 26.9 ±0.33 —— nd* 

Esterified 114.4 ±2.23 40.1 ±1.16 —— 9.8 ±0.11 —— nd* 

Roasted Sesame 

Oil[199] 
  260.5 ± 18.6A —— —— 25.1 ± 2.2A 5.0 ± 0.2A 9.4 ± 0.5A 

Crude Sesame Oil[200] 467.7 ± 0.5 13.0 ± 0.2 —— 48.1 ± 0.3 6.4 ± 0.1 —— 

Sesame Oil[201] 

 

337.67±12.89 97.34±12.23 2.93±1.71 32.99±9.71 —— nd* 

toasted 227.41±12.86 96.63±12.81 2.46±1.22 36.42±4.97 4.40±1.79 0.86±0.22 

Sesame Oil[202]   310 100 —— 36 —— nd* 

Sesame Oil[203] 

 

173.78±7.20 45.29±1.45 —— 18.49±1.30 —— —— 

Sesame Oil[209]   263 135 —— 47 —— —— 

Sesame Oil[210]   321.5 ± 46.3 88.0 ± 3.8 —— 41.8 ± 2.7 —— <LLOQ 

Olive 1[208] 

Free 70.3 ±1.18 2.2 ±0.59 —— 1.6 ±0.33 —— nd* 

Esterified 52.0 ±2.23 2.1 ±1.16 —— 1.1 ±0.11 —— nd* 

Olive 2[208] 

Free 74.0 ±1.18 2.3 ±0.59 —— 1.4 ±0.33 —— nd* 

Esterified 55.2 ±2.23 2.0 ±1.16 —— 0.9 ±0.11 —— nd* 

Olive,  

extra virgin[208] 

Free 105.5 ±1.18 3.4 ±0.59 —— 0.9 ±0.33 —— nd* 

Esterified 27.1 ±2.23 1.1 ±1.16 —— nd* —— nd* 

Olive oil refined[202]   133 5.6 —— 2.7 —— <1 

Olive Oil extra virgin[203] 120 5.9 —— 1.5 —— <1 

Olive Oil[122]   120.9 ± 3.0 5.42 ± 0.16 —— 2.36 ± 0.07 —— <LLOQ 
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Table continued  
 

  
δ5-

Avenasterol 
δ7-Avenasterol Sitostanol Campestanol Cholesterol 

24-

Metylencholesterol  

Sesame,  

extra virgin[208] 

24.5 ±0.28 —— 1.1 ±0.09 1.6 ±0.28 nd* 92.24±13.58 

26.9 ±1.16 —— 0.7 ±0.13 nd* nd* —— 

Sesame, toasted[208] 

22.8 ±0.28 —— 1.1 ±0.09 1.1 ±0.28 nd* —— 

30.6 ±1.16 —— 0.9 ±0.13 nd* ±0.18 nd* —— 

Roasted Sesame 

Oil[199] 
20.3 ± 1.6A 9.3 ± 1.1A —— 65.6 ± 5.4A —— —— 

Crude Sesame Oil[200] 70.6 ± 0.3 8.4 ± 0.2 —— —— 0.0 ± 0.0 —— 

Sesame Oil[201] 

50.76±12.86 5.09±1.99 —— 7.19±3.26 0.40±0.01  

 

51.86±2.89 4.98±4.98 —— 7.03±0.33  0.57±0.30 9.89±1.41 

Sesame Oil[202] 
47 6.8 —— 3.1 5.1 12 

Sesame Oil[203] 
—— —— —— —— —— —— 

Sesame Oil[209] 
82 —— 4 2 —— —— 

Sesame Oil[210] 
—— —— —— —— —— —— 

Olive 1[208] 

6.7 ±0.28 

 

1.8 ±0.09 0.7 ±0.28 <0.5 ±0.25 —— 

9.4 ±1.16   1.6 ±0.13 nd* <0.5 ±0.08 —— 

Olive 2[208] 

7.7 ±0.28 
 

1.5 ±0.09 0.7 ±0.28 <0.5 ±0.25 —— 

9.5 ±1.16   1.3 ±0.13 nd* <0.5 ±0.08 —— 

Olive,  

extra virgin[208] 

15.2 ±0.28 
 

0.9 ±0.09 0.7 ±0.28 <0.5 ±0.25 —— 

6.6 ±1.16 

 

0.9 ±0.13 nd* <0.5 ±0.08 —— 

Olive oil refined[202] 19 1.2 5 <1 nd* 60 

Olive Oil extra 

virgin[203] 
23 <1 3.9 <1 nd* 54 

Olive Oil[122] —— —— —— —— —— —— 

 



  

 

The comparison of APCI (A) and ESI (B) ionization for tested phytosterols during direct 

infusion. 

  



 115 

Appendix B  

THE FRAGMENTATION PATTERNS AND SPECTRA OF TESTED PHYTOSTEROLS 

AND TOCOPHEROLS IN APCI-MS/MS ANALYSIS 
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Scheme 1. APCI-MS/MS fragmentation pattern of [M+H-H2O]+ of brassicasterol 
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Scheme 2. APCI-MS/MS fragmentation pattern of [M+H-H2O]+ of β-sitosterol 
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Scheme 3. APCI-MS/MS fragmentation pattern of [M+H-H2O]+ of campesterol 



 119 

 
Scheme 4. APCI-MS/MS fragmentation pattern of [M]·+ of β-tocopherol 
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Scheme 5. APCI-MS/MS fragmentation pattern of [M]·+ of γ-tocopherol 
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Scheme 6. APCI-MS/MS fragmentation pattern of [M]·+ of δ-tocopherol 
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Additional Information 
 

 

Figure 1. An example of MS3 analysis of stigmasterol. A. MS spectra of [M+H-H2O]+; B. MS/MS spectra 
of [M+H-H2O]+; C. MS/MS/MS spectra of product ion m/z 255.2. 
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Scheme 1.  The Main Procedures for PIS- and MIM-EPI -Based phytosterols and tocopherols  

profiling. 
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