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ABSTRACT 
  Microbial communities can support plant and soil health through disease 

suppression, growth promotion, improving stress tolerance and increasing nutrient supply and 

cycling. The microbiome of crops has been suggested as a target to improve agricultural 

sustainability and crop performance. Targeted breeding efforts may allow for the selection of 

more robust crop microbiomes, lessening the need for additional agricultural inputs. However, 

how crop associated microbiomes assemble is still poorly understood. To more effectively 

engineer the microbiome, a more complete knowledge of the selection pressures that shape these 

communities over time and space is needed. Within this, an understanding of what is acting as 

biotic or abiotic filters and imposing these selection pressures is also needed. Once these aspects 

of microbial community assembly in crops are known, more effective selection of microbiomes 

can occur.  

 In addition to agriculture, a more complete understanding of soil microbial community 

assembly processes in natural ecosystems is needed. Invasive species are expected to expend in 

both range and abundance with climate change. Invasive species cause decreases in local plant 

diversity and alter local soil microbial communities and ecosystem services. The invasive plant 

will also disturb native microbial community assembly processes. Understanding how invasive 

species impact soil microbial community assembly processes and the associated ecosystem 

services will provide vital information to aid in restoration efforts. Furthermore, when restoration 

might not be feasible, understanding these processes will allow for more accurate predictions of 

how ecosystem services will change and the proper remediation planning can then occur. 

However, the knowledge of how invasive species affect assembly processes is still unclear.  

 This dissertation found that the primary factor affecting microbial community assembly 

processes in both agricultural and natural ecosystems was time. In the agricultural system, time 

was the growth stage of Brassica napus. In the native grassland, seasonal changes impacted 

bacterial and fungal assembly processes more than invasive biomass. Ecosystem services were 

also affected more by seasonal changes than invasive biomass. Given the annual cyclical nature 

of both plant growth stage and seasonal changes in a grassland, the patterns observed will likely 

endure from year to year.  

 



 v 

ACKNOWLEDGEMENTS 
 

I would like to thank my Supervisor, Dr. Steven Siciliano and all the members of my 

advisory committee, Dr. Bobbi Helgason, Dr. Eric Lamb, Dr. Melissa Arcand, Dr. Jim Germida 

and Dr. Derek Peak. Additionally, I would like to thank all the members of Theme 1.3 of the 

Plant Phenotyping and Image Research Centre (P2IRC). I thank Alix and Kassy Schebel for all 

of their assistance in the lab and all the undergraduate workers who assisted with summer 

fieldwork and processing, but specifically Kira Blomquist who assisted me the most with 

Chapter 1.  

Financial support for my project was provided by the Canada First Research Excellence 

Fund. Personal support was provided by the Saskatchewan Innovation and Opportunity 

Scholarship established by the provincial government, and the Saskcanola Dr. Roger Rimmer 

Graduate Student Scholarship.  

Finally, I would like to thank my parents Ann and David Bell, my sisters Ava and 

Christy, my extended family, Elizabeth Masters Hiatt, Daniel Galbreath, and Aimée Schryer all 

of whom supported me throughout this process. I would also like to thank Mildred Maroo 

Percival Bell for always being by my side.  

  



 vi 

DEDICATION 
 

This dissertation to dedicated to Marie Ruth Gregory Jordan. Love you always. 

  



 vii 

TABLE OF CONTENTS 
 

DISCLAIMER ..................................................................................................................................... iii 

ABSTRACT ........................................................................................................................................ iv 

ACKNOWLEDGEMENTS ........................................................................................................................ v 

LIST OF TABLES .................................................................................................................................. x 

LIST OF FIGURES .............................................................................................................................. xi 

LIST OF ABBREVIATIONS .................................................................................................................. xiv 

1. INTRODUCTION ........................................................................................................................ 1 

1.1 Dissertation Organization ................................................................................................................... 3 

2. Literature Review ........................................................................................................................ 4 

2.1 Determinants of Microbial Diversity .................................................................................................. 4 

2.2 Microbial Community Assembly Processes ....................................................................................... 6 

2.3 Metrics of Microbial Community Assembly Processes ...................................................................... 7 

2.4 Assembly Processes in Agriculture .................................................................................................... 9 

2.5 The Canola Microbiome ................................................................................................................... 11 

2.6 The Soil Microbiome and Invasion ................................................................................................... 11 

2.7 Natural Assembly Processes ............................................................................................................. 13 

2.8 Invasion and Ecosystem Services ..................................................................................................... 13 

3. BRASSICA NAPUS PHYLLOSPHERE BACTERIAL COMPOSITION CHANGES WITH 

GROWTH STAGE ......................................................................................................................... 15 

3.1 Preface ............................................................................................................................................... 15 

3.2 Abstract ............................................................................................................................................. 15 

3.3 Introduction ....................................................................................................................................... 16 

3.4 Methods............................................................................................................................................. 17 



 viii 

3.5 Results ............................................................................................................................................... 25 

3.6 Discussion ......................................................................................................................................... 30 

4. BRASSICA NAPUS BACTERIAL ASSEMBLY PROCESSES VARY WITH PLANT 

COMPARTMENT AND GROWTH STAGE BUT NOT BETWEEN LINES .................................. 43 

4.1 Preface ............................................................................................................................................... 43 

4.2 Abstract ............................................................................................................................................. 43 

4.3 Introduction ....................................................................................................................................... 44 

4.4 Materials and Methods ...................................................................................................................... 46 
4.4.1 Field Collections ........................................................................................................................................ 46 
4.4.2 DNA Extraction and Amplification ............................................................................................................ 47 
4.4.3 Data Processing ......................................................................................................................................... 49 
4.4.4 Statistical Analysis ..................................................................................................................................... 50 

4.5 Results ............................................................................................................................................... 53 

5. SMOOTH BROME INVASION ALTERS MICROBIAL COMMUNITY ASSEMBLY 

PROCESSES AND ECOSYSTEM SERVICES .............................................................................. 65 

5.1 Preface ............................................................................................................................................... 65 

5.2 Abstract ............................................................................................................................................. 65 

5.3 Introduction ....................................................................................................................................... 66 

5.4 Methods............................................................................................................................................. 69 
5.4.1 Field Site and sampling ............................................................................................................................. 69 
5.4.2 Ecosystem Services .................................................................................................................................... 71 
5.4.3 DNA extraction, amplification and sequencing ......................................................................................... 75 
5.4.4 Data Processing ......................................................................................................................................... 75 
5.4.5 Statistical Analysis ..................................................................................................................................... 76 

5.5 Results ............................................................................................................................................... 79 

6. SYNTHESIS AND CONCLUSIONS ...................................................................................... 88 

6.1 Dissertation Overview ...................................................................................................................... 88 

6.2 Synthesis of Findings ........................................................................................................................ 89 

6.3 Future Research Directions ............................................................................................................... 92 



 ix 

7. REFERENCES ...................................................................................................................... 95 

APPENDICES ............................................................................................................................. 111 

APPENDIX 1 .............................................................................................................................. 112 

APPENDIX 2 .............................................................................................................................. 119 

APPENDIX 3 .............................................................................................................................. 127 

 
 

  



 x 

LIST OF TABLES 
Table 3.1 The core microbiome present across all B. napus lines throughout the ten-week 

sampling period. The relative abundance is expressed as a percentage of the total bacterial 

abundance, the core relative abundance, for all lines for the entire sampling period. Plant 

pathogenesis, pigment production, and biofilm formation ability are all adaptations giving 

these core bacteria advantages to colonizing the leaf surface. Expression of these traits are 

denoted with a plus sign if the bacteria has the capability and a negative sign if the bacteria 

do not express this capabilities. ............................................................................................ 23 

Table 3.2 Average diversity metrics of all eight lines of B. napus for each week. Observed 

diversity is simply the average number of ASVs (amplicon sequence variant) per sample 

present and ACE is the Abundance-based Coverage Estimate. Larger numbers represent 

higher diversity. .................................................................................................................... 29 

Table 3.3 Permutational analysis of variance (PERMANOVA) tables. B. napus (NAM) line, 

growth stage, block and all the interactions were used as covariates. Both weighted UniFrac 

distances and unweighted UniFrac distances were analyzed for the Total community, the 

Expanded Core community and the communities present before and after flowering. ........ 32 

Table 5.1 The mean the five ecosystem services for the entire sampling period with standard 

error in parenthesis by Invasion Level. The portion of invaded biomass for each Invasion 

Level is in parenthesis. Significant differences are denoted by superscripted letters and was 

determined using a one-way ANOVA with results listed below the means. ........................ 70 

Table 5.2 Effect size of bacterial and fungal assembly on ecosystem services compared to season 

and invasiona. ........................................................................................................................ 76 

 

  



 xi 

LIST OF FIGURES 
Figure 3.1 Abundance-based Coverage Estimate (ACE) average of the bacterial community on 

the leaf surface against the average BBCH of all 8 lines of B. napus across the ten sampling 

weeks. Each point is the average ACE for that week for the community microbiome (1,968 

ASVs (amplicon sequence variants) with error bars representing the standard error of the 

estimate. The BBCH range represents the range of BBCH observed across the eight 

different lines for that sampling week. Change in BBCH stage is indicated by changes in 

background color with the name of the stage indicated at the top of the colored bar. ......... 25 

Figure 3.2 Relative abundance of genera that composed the Core as well as the communities 

present during the Flowering and Pod stages (Expanded Core). Many of the ASVs 

(amplicon sequence variants) in the Expanded Core were classified into the same genus or 

even species, but due to the nature of ASVs, they remained separate. For this graphic, the 

ASVs present in the Expanded Core have been grouped into genus instead of showing all 

136 individual ASVs in the Expanded Core.  Colors are grouped as genus and the weekly 

range of BBCH observed is present on the x axis. ............................................................... 27 

Figure 3.3 Distance-based redundancy analysis (dbRDA) of the weighted (28% of the variation) 

UniFrac distances (A) and unweighted (24% of the variation) UniFrac distances (B) of the 

Total bacterial community, across the entire 10-week sampling period, constrained by 

BBCH (p = 0.001) stage x B. napus line (NAM) (not significant) (biplots). Points are 

colored based on B. napus growth stage and correspond with the colors in Figure 1. ......... 39 

Figure 4.1 A conceptual diagram of the determination of the assembly processes. Leaf, root and 

rhizosphere communities were sampled, sequenced and processed (See methods). 

Following processing, amplicon sequence variants (ASVs) were imported to R (R Core 

Team 2018). A null model was generated using 999 randomizations from all ASVs present 

in that community. All pairwise comparisons with a |βNTI| > 2 are classified as 

deterministic with βNTI > +2 indicating heterogenous selection and βNTI < -2 indicating 

homogeneous selection. Observations with values |βNTI| < 2 and RCbray > +0.95 were 

classified as dispersal limitation and observations with values |βNTI| < 2 and RCbray < -0.95 

were classified as homogenizing dispersal. Pairwise comparisons within |βNTI| < 2 and 

|RCbray| < 0.95 indicated drift or diversification assembly processes were occurring. ......... 51 



 xii 

Figure 4.2 Pielou’s evenness for the leaf (red), root (green), and rhizosphere (blue) over the ten-

week sampling period. Each point represents 27 samples, and the error bars are the standard 

error. Growth stage is indicated by the dashed lines. The larger the number the more even 

the community. ..................................................................................................................... 53 

Figure 4.3 (A) Mean Nearest Taxon Index (NTI) for leaf, root and rhizosphere samples over the 

ten week sampling period. (B) Mean Net Relatedness Index (NRI) for leaf, root, and 

rhizosphere samples over the ten week sampling period. Each point represents 27 samples, 

and the error bars are the standard error. Growth stage is indicated by the dashed lines. 

Positive values indicate more phylogenetic clustering than expected by chance, whereas 

negative values indicate phylogenetic overdispersion. The gray shaded area indicates a 

significant (p > 0.05) phylogenetic clustering compared to the null hypothesis. ................. 55 

Figure 4.4 Mean βNTI for leaf, root, and rhizosphere samples over the ten week sampling period. 

Each point represents 27 samples, and the error bars are the standard error. Growth stage is 

indicated by the dashed lines. Positive values indicate heterogenous selection is occurring 

whereas negative values indicate homogeneous selection. The gray shaded area indicates a 

significant deviation from the null hypothesis. ..................................................................... 57 

Figure 4.5 Ecological assembly processes in the bacterial communities present in the leaf (A), 

root (B) and rhizosphere (C) across all ten sampling weeks. Deterministic processes were 

classified as heterogenous selection (βNTI > 2) or homogeneous selection (βNTI < -2). 

Stochastic processes were classified as homogeneous dispersal (|βNTI| < 2 and RCbray < -

0.95) or dispersal limitation (|βNTI| < 2 and RCbray > +0.95). Pairwise observations within 

the confines of |βNTI| < 2 and |RCbray| < 0.95 were classified as drift/diversification. Growth 

stage is indicated by the dashed lines. .................................................................................. 59 

Figure 4.6 Distance-based redundancy analysis (dbRDA) of the weighted UniFrac distances for 

the leaf (A, pink), root (B, green) and rhizosphere (C, blue) for the entire ten week sampling 

period. Each has been constrained by BBCH, week prior mean temperature and 

precipitation, sampling day mean temperature and precipitation and NAM line. The amount 

of variation captured for each is in the left-hand corner. ...................................................... 60 

Figure 5.1 Boxplots of the five ecosystem services: Forage Production (A), Water Purification 

(B), Climate Regulation (C), Soil Conservation (D) and Nutrient Cycling (E) by Season and 

Invasion Level. The box boundaries represent the first and third quartiles of the distribution 



 xiii 

and the median is the horizontal line of raw data. The whiskers represent 1.5 times the 

interquartile range. Significant differences within a season are denoted in white letters. .... 73 

Figure 5.2 Mean βNTI values for bacterial (circles) and fungal (triangles) communities across all 

three seasons. Native plots are purple, Mid plots are orange and Invaded plots are green. 

Each point represents at least 34 plots and error bars represent standard error. Positive 

values indicate heterogenous selection is occurring whereas negative values indicate 

homogeneous selection. The gray shaded area indicates a significant deviation from the null 

hypothesis. ............................................................................................................................ 79 

Figure 5.3 Ecological assembly processes in the bacterial (A-C) and fungal (D-F) communities 

across all seasons in Native plots (A, D), Mid plots (B, E) and Invaded Plots (C, F).  

Deterministic processes were classified as heterogenous selection (βNTI > 2) or 

homogeneous selection (βNTI < -2). Stochastic processes were classified as homogeneous 

dispersal (|βNTI| < 2 and RCbray < -0.95) or dispersal limitation (|βNTI| < 2 and RCbray > 

+0.95). Pairwise observations within the confines of |βNTI| < 2 and |RCbray| < 0.95 were 

classified as drift. .................................................................................................................. 82 

Figure 5.4 Bacterial distance-based redundancy analysis (dbRDA) of the weighted UniFrac 

distances during Green-up (A-C), Peak Biomass (D-F), and Senescence (G-I) for Native 

plots (A, D, G), Mid plots (B, E, H), and Invaded plots (C, F, I). All dbRDAs were 

constrained by were constrained by 53 µm aggregate weight, soil pH, field moisture, 

invasive biomass, field temperature and water extractable organic carbon content. 

Significant terms are indicated by a red box around the term. ............................................. 84 

Figure 5.5 A conceptual feedback loop wherein the invasion can alter the existing soil microbial 

community assembly processes leading to differences in diversity, evenness and 

functionality (1. Lamb et al. 2011). Stochastic and deterministic processes then impact 

community structure which can feedback through the deterministic processes of inter and 

intraspecific competition to perpetuate the changed community (2. Van der Putten et al. 

2007). Changes in soil microbial community structure can both perpetuate the invasion (3. 

Inderjit and van der Putten 2010) and alter local ecosystem services (4. Hawkes et al. 2005). 

Altered ecosystem services can then create plant-soil feedbacks which will also perpetuate 

the invasion (5. Levine et al. 2006). ...................................................................................... 86 

 



 xiv 

LIST OF ABBREVIATIONS 
 

ACE   Abundance-based Coverage Estimate 

ANCOVA  Analysis of covariance 

ANOVA  Analysis of variance  

ASV   Amplicon sequence variants 

AAFC   Agriculture and Agri-Food Canada 

βMNTD   Beta mean nearest taxon distance 

βNTI    Beta Nearest Taxon Index 

dbRDA   Distance-based redundancy analysis  

DNA    Deoxyribonucleic acid  

MNTD   mean nearest taxon distance 

NCBI     National Center for Biotechnology Information 

NAM   Nested Association Mapping  

NRI   Net Relatedness Index 

NTI   Nearest Taxon Index 

PERMANOVA Permutational multivariate analysis of variance 

PCoA    principle-coordinates analysis 

PNA    peptide nucleic acid 

pPNA    plastid peptide nucleic acid  

mPNA    mitochondrial peptide nucleic acid  

RCbray    Bray-Curtis-based Raup-Crick  

rRNA    ribosomal ribonucleic acid  

SAD   species abundance distribution 

SAR    species-area relationships 

VPA    Variance partitioning analysis 

WAP   Weeks after planting



 1 

1. INTRODUCTION 
 

Microbial community assembly processes can be broadly defined as how microbial 

communities grow and change over time and space. More specifically community assembly 

processes are what ecological processes shape the abundance and distribution of species within a 

community (Kraft and Ackerly 2014). We will need to have a more complete understanding of 

what shapes microbial abundances and distributions if we want to harness the microbiome more 

effectively for improved crop performance (Chaparro et al. 2012. Busby et al. 2017). Once we 

understand the shaping forces, we can manipulate them to select for more robust microbial 

communities. Additionally, a better understanding of how microbial communities respond to 

disturbance and alter their assembly processes in natural ecosystems could help improve 

remediation efforts (Van der Putten et al. 2013, Graham et al. 2016). Understanding how natural 

ecosystems compare to disturbed systems not only provides a baseline for remediation efforts, it 

will also provide a more complete understanding of how microbial communities operate in 

general.  

One of the core concepts of community assembly is the regional species pool and the area for 

colonization (Kraft and Ackerly 2014). The regional species pool for the purpose of this 

dissertation is the source of microbes that colonize the plant, or the local soil microbial diversity. 

The area to be colonized is the B. napus plant, or the soil surrounding native grassland roots that 

is undergoing the disturbance of invasion. Once the colonists have arrived, various filters or 

processes act upon the colonists to select which species survive and thrive (Kraft and Ackerly 

2014). 

The filters or processes shaping the microbial communities can broadly be defined following 

Vellend’s conceptual synthesis of community ecology (Vellend 2010). The first process is 

selection, which are deterministic processes what will change the composition from the regional 

species pool into the local species pool (Vellend 2010). Examples of well-studied selection 

pressures for microbial communities are habitat (soil vs human gut, Caporaso et al. 2011) and 

within those habitats, other factors such pH (Fierer and Jackson 2006) or soil characteristics such 

as C:N ratio (Kuramae et al. 2010). The second process is dispersal, or the movement of 

microbes across space (Vellend 2010). In microbial communities this process varies greatly from 
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macrobiotic communities as the primary dispersal mechanism for microbes is passive dispersal 

(Nemergut et al. 2013). The third process is drift, or random division, death or other stochastic 

changes in the relative abundance of community members (Vellend 2010). Microbial 

communities may be more subject to drift as most of the species in a community are present in 

low abundances leading to higher chances of local extinction through drift (Nemergut et al. 

2013). The final process shaping microbial communities is diversification which is the 

generation of new genetic material within a community (Vellend 2010). In microbial 

communities the source of the new genetic information can occur through random mutation or 

horizontal gene transfer (Nemergut et al. 2013). Rates of diversification will be faster in 

microbial communities than macrobiotic communities due to the short generation time of most 

microbial species.  

In this dissertation microbial community assembly processes will be examined at three levels 

of increasing complexity. The first and simplest system examined in the phyllosphere of eight 

lines of B. napus over ten weeks. The phyllosphere is the surface and interior of the leaf surface 

(Vorholt 2012). The phyllosphere is a harsh environment with large fluctuations in 

environmental conditions, high amounts of disturbance and low carbon availability (Vacher et al. 

2016) Due to the harsh conditions, phyllosphere microbial communities are generally less 

diverse than soil communities and the assembly processes are likely to be less complex (Vorholt 

2012, Vacher et al. 2016).  

The second level of complexity is the roots and rhizosphere of eight lines B. napus over ten 

weeks. The rhizosphere is a more complex environment than the phyllosphere. Microbial 

communities in the rhizosphere are much more diverse than the communities found in the 

phyllosphere (Bulgarelli et al. 2013). More diversity will lead to more complex assembly 

processes due to increased inter- and intraspecific competition. In addition to increased diversity, 

there are many more carbon sources available for the microbial community in the rhizosphere, 

including soil organic matter and root exudates (Jones et al. 2009). The increased availability of 

carbon means that there are more potential niches than in the carbon limited phyllosphere. The 

increase in potential niches will also increase the complexity of the assembly processes. 

However, B. napus was planted in a monoculture, which is not reflective of natural ecosystems 

making this system less complex than a natural ecosystem.  
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The third and final level of complexity is a natural grassland undergoing invasion, primarily 

by the invasive grass Bromus inermis. The plant diversity in this study is much higher than the 

monoculture of B. napus. The quantity and quality of root exudates is highly plant species 

specific (Jones et al. 2009). The complexity of root exudate chemistry would increase with 

increasing plant diversity (Jones et al. 2009). Much like the increase in niches between the B. 

napus leaf and rhizosphere, we can expect a higher level of available niches in this system and 

thus more complex assembly processes. Smooth brome invasion provides a natural soil microbial 

community assembly experiment as it has shown to reduce plant diversity (Stotz et al. 2019). 

This reduction in plant diversity, as well as the introduction of smooth brome biomass, causes a 

disturbance between the invaded and native plots that helps elucidate the assembly processes. 

Not only can we examine the assembly processes in the native grassland, but we can also 

examine them in the disturbed plots, giving a better overall understanding of how assembly 

processes in natural ecosystems function.  

 

1.1 Dissertation Organization 
 This dissertation is comprised of six chapters, including three research chapters that have 

been written for submission to peer-reviewed journals. Chapter 1 introduces the scientific 

questions addressed by this dissertation and the objectives of the dissertation. Chapter 2 covers 

the key literature and concepted for the following research chapters, namely what is microbial 

community assembly and how it is measured. Chapters 3 to 5 are the research chapters. Each 

chapter consists of preface abstract, material and methods, results and discussion section.  

 Chapter 3 focuses on the bacterial community composition in the phyllosphere of eight 

lines of Brassica napus over ten weeks and what influences the observed changes in 

composition. Chapter 4 examines the bacterial community assembly processes in the 

rhizosphere, roots and leaves of the same eight lines of Brassica napus over ten weeks. Chapter 5 

looks at the soil bacterial and fungal assembly process in a native grassland undergoing invasion 

by Bromus inermis. This chapter also incorporates five ecosystem services and examines how 

they are impacted by both invasion and assembly process. Chapter 6 is a synthesis of the findings 

and future research directions.   
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2. Literature Review 
 
2.1 Determinants of Microbial Diversity  
 

Microbial ecology is a relatively young field that has recently boomed due to the advent 

of next generation sequencing (Widder et al. 2016). To date, most research into microbial 

ecology has focused on microbial community structure and function, or in other words, what 

microbes are there and what they are doing there. For example, we know that every surface of 

the plant is colonized by microorganisms and that these microbial communities can provide 

many benefits to the plant (Bulgarelli et al. 2013). Microbial communities can protect the host 

plant from disease (Newton et al. 2010), increase nutrient supply (Jones et al. 2009), improve 

stress tolerance (Piccoli and Bottini 2013) and improve overall plant productivity 

(Gopalakrishnan et al. 2015). However, despite this close relationship with plant, microbial 

communities are subject to their own evolutionary processes and life histories, but little is known 

about how or why plant associated microbial communities change throughout the growth of the 

plant and with differing space (Coyte et al. 2021).  

Much like macrobiotic communities, we know that microbial communities are shaped by 

their environment, but unlike many larger organisms, microbial communities are also shaped by 

their host (Trivdei et al. 2020). Host genetics, or plant variety can influence the microbial 

community associated with that plant. For example, crop variety has been shown repeatedly to 

impact rhizosphere communities (Edwards et al. 2015, Colemam-Derr et al. 2016, Dombrowski 

et al. 2017). However, this is not consistent throughout the plant, as Bell et al. (2020) found 

that B. napus line had little to no effect on the bacterial community present in the phyllosphere.  

The effect of host genotype is not limited to just crop variety. Wagner et al. (2016) found that 

the host genotype of Boechera stricta, a wild perennial mustard, shaped both the leaf and root 

microbiome.  
 Host genotype will also affect host root morphology and root exudation patterns, both 

of which will shape the microbial community throughout the plant. Differences in root 

morphology can cause differences in water and nutrient uptake, both of which will affect the 

structure and function of microbial communities in the rhizosphere. These difference in water 

and nutrient uptake will also inevitably affect aboveground plant tissues and thus the 

associated microbial communities associated with these plant tissues (Toju et al. 2019). 
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Differences in plant variety and root structure will also alter root exudation patterns. Root 

exudates are the primary driver of microbial recruitment and retention and will vary between 

plant species or varities (Haichar et al. 2014). Additionally, we know that root exudate patterns 

can vary with plant development stage (Haichar et al. 2014), which is the likely cause of the 

variation in rhizosphere communities with plant development stage that has been well 

documented (Smalla et al. 2001, Wagner et al. 2014, Wagner et al. 2016, Copeland et al. 2015, 

Hilton et al. 2017).  

Land use as well as abiotic stress are additional factors shaping microbial community 

composition. Microbial community structure varies with organic and conventional agriculture 

(Hartman et al. 2015, Jangid et al. 2008), fertilizer inputs both in agricultural ecosystems and 

grassland ecosystems (Leff et al. 2015, Ramirez et al. 2012) and different tillage regimes 

(Mbuthia et al. 2015). In natural systems, soil microbial communities vary with grazing (Yang et 

al. 2012), and forest sites have demonstrated lower diversity than pasture or agricultural sites 

(Mendes et al. 2015). Drought or other alterations change soil microbial communities and the 

resulting local biogeochemistry (Nielsen and Ball 2015). In addition to drought, plants can alter 

their microbial community when experiencing nutrient deficiencies (Fabiańska 2019). Finally, 

wildfires alter both the structure and function of soil microbial communities (Ferrenberg et al. 

2013).  

While we know some of the influences on the structure and function of microbial 

communities, we still lack an understanding of the ecological processes and selection pressures 

that cause the observed variations. With the increasing intensity of global climate change it is 

becoming increasingly pressing to understand how microbial communities assemble. In order to 

understand how natural soil microbial communities will change due to the disturbances 

associated with climate change, we must elucidate the microbial community assembly processes 

in systems undergoing invasion now. Finally, with the population expected to expand greatly 

while the climate rapidly changes, we will need to make agriculture both more productive and 

sustainable (Gilbert et al. 2010, Ryan et al. 2009). Targeting the microbiome of crops can help 

provide more productive and sustainable agriculture (Coleman-Derr and Tringe 2014). However, 

we must first gain a better understanding of the microbial community assembly processes 

occurring in crops in order to target the microbiomes more efficiently.  
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2.2 Microbial Community Assembly Processes  
Microbial communities can, and should, be thought of as exactly that, a community. In 

any community, the passing of time and differences in space will affect how the community 

grows and changes. The factors that affect these differences are called microbial community 

assembly processes. Historically, much of the work on community assembly processes has taken 

place in plant and animal communities (Martiny et al. 2006, Vellend 2010). However, in the last 

few years there has been a push to apply these same principles to microbial communities because 

just like macrobiotic communities, microbial communities interact with the biotic and abiotic 

components of their environment (Trivedi et al. 2020), undergo selection processes (Evans et al. 

2017) and experience both intra- and interspecific competition (Freilich et al. 2011). Microbial 

communities follow many of the same biogeographic patterns as macrobiotic communities 

(Martiny et al. 2006), however the ecological rules determining these patterns remain 

understudied and are likely to differ from macrobiotic communities in several important ways 

(Nemergut 2013).  

It is unlikely that microbial communities assemble in the same ways that plant and animal 

communities do because microbes are subject to different selection pressures, ecological 

processes and have a much larger distribution of life histories (Nemergut 2013). Microbes are 

phenotypically plastic and experience horizontal gene transfer, both of which allow for quick 

responses to a changing environment. This, coupled with short generation times, allows for rapid 

evolution of microbial communities, which macrobiotic communities do not experience. 

Furthermore, while microbes do not actively disperse, they still experience near limitless 

dispersion due to their small size and ubiquity in all systems, suggesting that differences in 

microbial community composition are likely due to environmental selection (Martiny 2006). An 

example of this was found by Fierer and Jackson (2006) where the largest determinant of 

microbial community richness in soils was pH, not latitude which is the primary driver of 

macrobiotic community richness. A better understanding of how microbial communities 

assemble and what environmental factors drive this assembly process is needed.  

Assembly processes in microbial communities can be split between two board ecological 

selection processes: deterministic and stochastic. Deterministic selection can be thought of as 

niche-based processes (Chase and Myers 2011, Dumbrell et al. 2010, Vellend 2010). These are 

the non-random selection pressures, such as niche availability, environmental variables or 
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inter/intra-specific competition that shape the structure of a community (Chase and Myers 2011). 

Within deterministic processes where are several sub-categories, namely homogeneous selection 

and heterogenous selection. Homogeneous selection leads to communities that are more similar 

compositions whereas heterogenous selection will lead to more distinct communities (Stegen et 

al. 2012, 2015). Stochastic processes are processes that are more random than factors influencing 

deterministic processes. These random events can be disturbance related, dispersal events, both 

homogenous dispersal (no limitation in dispersal) and dispersal limitation, as well as genetic drift 

(Chase and Myers 2011). Genetic drift is the random death, division or mutation of individual 

community members. Together, both deterministic and stochastic processes will shape the 

composition of microbial communities.  

2.3 Metrics of Microbial Community Assembly Processes 
 Traditionally microbial community assembly processes have been examined using a 

variety of statistical techniques, primarily multivariate statistic. The most straightforward of 

these methods are comparing microbial community structure between various treatments using 

such methods like permutational multivariate analysis of variance (PERMANOVAs) or 

ordination methods like principle-coordinates analysis (PCoA) (Zhou and Ning 2017). 

Significant differences in treatments can be interpreted as differences in selection pressures, 

however this method only indirectly measures selection and assembly processes. Neutral models 

like species-area relationships (SARs) or species abundance distribution (SADs) are other 

methods that have been employed (Matthews and Whittaker 2014). However, these models have 

unrealistic assumptions that assume no deterministic selection is occurring and community 

composition is determined by stochastic processes alone. Variance partitioning analysis (VPA) is 

another popular approach to look at assembly processes (Smith and Lundholm 2010). This 

analysis determines that all accounted for variance arises due to deterministic processes and all 

unaccounted-for variance arise from stochastic processes. However, it not possible to measure all 

environmental variables, so it is highly likely that at least some of this undetermined variance is 

actually deterministic selection.  

A useful tool in untangling assembly processes that is more comprehensive than the 

previously mentioned methods is to use a null-model framework (Kembel et al. 2009, Stegen et 

al. 2012, 2013, 2015). These frameworks use observed microbial phylogenies that are repeatedly 

randomized to give a theoretical phylogeny that would occur in the absence of any selection 
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pressures (Webb 2000). Ecological selection is occurring if the observe phylogeny falls more 

than two standard deviations outside of the theoretical phylogeny (Stegen et al. 2015).  Not only 

can this process allow for the estimation of the selection processes occurring within a community 

(Stegen et al. 2012, Dini-Andreote et al. 2015) it can also give an indication of the strength of the 

selection pressures as the farther the community falls outside of theoretical phylogeny, the 

stronger the selection pressures. There are two different ways to calculate community relatedness 

based on phylogenies. The Nearest Taxon Index (NTI) is the mean nearest nodal distance for a 

given phylogeny whereas the Net Relatedness Index (NRI) is the mean pairwise distance for the 

same phylogeny (Webb 2000). While these two metrics are similar, NRI is more sensitive to 

fundamental shifts in community structure and NTI is more sensitive to changes near the edges 

of the phylogeny, or in other words, individual species abundances (Webb 2000). An NTI/NRI 

value of -2 indicates that the community is phylogenetically more clustered than expected 

whereas a value of +2 indicates that the community more phylogenetically dispersed the 

expected. 

The NTI metric can also be used to look at beta diversity. βNTI is the phylogenetic 

turnover in a microbial community. Similar to NRI/NTI, βNTI utilizes multiple iterations and a 

null distribution of the local phylogeny. |βNTI| > 2 indicate that the community is undergoing 

deterministic selection processes. βNTI values that are greater than two indicate that the 

deterministic process is heterogenous selection, or that a more diverse community is being 

selected for (Stegen et al. 2013). βNTI values that are less than negative two indicate that the 

community is undergoing homogeneous selection, or that the community will be more similar 

than expected by chance. Stochastic processes are indicated by |βNTI| < 2. In these instances, it 

is useful to use the Bray-Curtis-based Raup-Crick (RCbray) index. This index is the probability 

that any given sample has the same composition as other samples. Much like βNTI, it uses 

successive iterations to create a null distribution and compares the actual abundances of AVSs to 

the null hypothesis. This metric can be used to estimate the type of dispersal occurring in that 

community (Ning et al. 2020). Observations with values |βNTI| < 2 and RCbray > +0.95 were 

classified as dispersal limitation and |βNTI| < 2 and RCbray < -0.95 classified as homogenizing 

dispersal (Ning et al. 2020, Lin et al. 2012, Vellend 2010). Pairwise observations not falling 

within the constraints of |βNTI| < 2 or |RCbray| < 0.95 were categorized as drift. Drift in the 
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context of microbial communities is the random division, death or mutation of individual 

members of the community.   

The use of microbial phylogenies to determined microbial community assembly 

processes is a fairly recent innovation (Stegen et al. 2012, Zhou and Ning 2017). Like previously 

used methods, phylogeny based null-model frameworks are not without drawbacks. The largest 

of these drawbacks is related to sampling effort. The null-model created relies on the regional 

species pool (Webb 2000) which is directly related to sampling effort. This also means that these 

metrics are not directly comparable to other studies as the sampling effort and regional species 

pool will not be the same. The second drawback to phylogeny based null-model frameworks is 

that it relies on the assumption that short sequencing reads can accurately depict microbial traits 

related to fitness based on the constructed phylogeny. Horizontal gene transfer can homogenize 

the traits in a given community, however, many bacterial traits that confer specific advantages 

such as methanogenesis or other unusual metabolism strategies are deeply conserved (Martiny et 

al. 2015). Finally, given the difficulty of sequencing and constructing fungal phylogenies, the 

same assumptions of trait conservation are not as robust nor are most surveys of fungal diversity 

complete (Blackwell et al. 2011). However, despite its limitation, the null-model framework 

remains the best current measure of microbial community assembly processes.  

The coupling of the βNTI and the RCbray metrics allows for the estimation of the types of 

ecological assembly processes that are occurring in a given community. Previous methods only 

allowed for a very course estimation of these assembly processes. Additionally, these metrics can 

be combined with traditional statistical methods for analyzing microbial communities which can 

give an approximation of the influences on these assembly processes (Stegen et al. 2012, 2013, 

2015, Bao et al. 2020, Ning et al. 2020). The knowledge of what type of assembly processes are 

occurring could allow for the better approximation of how future microbial communities will 

assemble. If it is known what selection pressures and the external factors that influence those 

pressures a future community will face, this may allow for more targeted microbiome 

manipulation through plant breeding or restoration efforts.  

 

    2.4 Assembly Processes in Agriculture 
 

Most agricultural ecosystems are planted in monocultures, making them a simpler system 

in which to study microbial community assembly processes than natural ecosystems. The 
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domestication of plants had led to an overall reduction in soil microbial diversity with 

mycorrhizal symbiosis being particularly effected (Pérez-Jaramillo et al. 2016, Mariotte et al. 

2018). However, this decreased soil microbial diversity and monoculture structure of agriculture 

has proved to be an effective system in which to study microbial community assembly processes. 

For example, as previously mentioned, we know that plant genotype can influence community 

structure and therefore assembly processes (Edwards et al. 2015, Colemam-Derr et al. 2016, 

Dombrowski et al. 2017). Along with plant genotype, manipulating plant function traits to 

examine their effect on assembly processes is much more straightforward in agriculture (Wood 

et al. 2009). Given that plant species richness is much higher in natural ecosystem it is often 

difficult to differentiate the rhizosphere of one plant species from another. Agriculture has also 

allowed for the close study of how plants recruit microbes in the field (Pérez-Jaramillo et al. 

2016) which is an important aspect in microbial community assembly processes. Nutrient input 

studies are a common theme in agricultural experiments and have played an important role in 

analyzing how microbial communities assemble under different soil nutrient conditions (Mariotte 

et al. 2018, Hartman et al. 2015, Jangid et al. 2008). Due to the reduced complexity and easier 

manipulation of the system, agricultural experiments provide excellent opportunities to study 

microbial community assembly processes.  

 Assembly processes in agriculture can vary significantly, much like community 

composition. Jiao et al. (2020) found that community assembly was dominated by species sorting 

and dispersal in both maize and rice fields in Eastern China at high altitudes, but the effect 

weakened at lower altitudes. Lurie et al. (2015) found assembly processes differed on the root 

interior, root surface and the rhizosphere of rice within the same plant and also that assembly 

differed by rice genotype as well as soil source. In another study with rice, Edwards et al. (2015) 

found that assembly varied by field location and agricultural practice (conventional or organic). 

Carvalho et al. (2020) found that phyllosphere assembly processes in citrus trees also varied 

between organic and conventional practices.  The study of microbial community assembly 

processes in agricultural systems is relatively new but is needed as we continue to unravel the 

microbiomes of crops and their potential manipulation.  
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2.5 The Canola Microbiome  
 
 Work on the canola microbiome has focused primarily on the roots and rhizosphere 

(Smalla et al. 2001, Copeland et al. 2015, Cordero et al. 2020, Gopalakrishnan et al. 2015, 

Schlatter et al. 2019, Glaeser et al. 2020, Taye et al. 2020), or on cultured microbial isolates 

(Ramero et al. 2019) or pathogens from Brassica species, and not on the microbiome as a whole 

(Wassermann et al. 2017). Copeland et al. (2015) is the only study examining the phyllosphere 

microbiome in addition to the rhizosphere microbiome. They found that the canola microbiome 

diversity varied seasonally and with rainfall. They also found that the canola phyllosphere was 

distinct from the rhizosphere. The canola microbiome varies with soil type or sampling location 

(Codero et al. 2020, Schlatter et al. 2019). Sampling time, growth stage and seasonality are 

important factors in shaping the canola microbiome as well (Smalla et al. 2001, Schlatter et al. 

2019, Copeland et al. 2015). Canola variety inconsistent influences bacterial community 

composition (Copeland et al. 2015, Taye et al. 2020, Bell et al. 2021).  

 Given previous findings, sampling site as well as growth stage (or seasonality) are the 

most plausible influences on microbial community assembly processes in canola. However, is it 

improbable that all of the bacterial communities associated with canola assemble in the same 

manner. The phyllosphere environment is a harsh environment with large daily fluctuations in 

temperature, moisture and UV radiation (Vorholt 2012, Vacher et al. 2016). These factors will 

cause very different selection pressures than those occurring in the root and rhizosphere which is 

a comparatively protected environment. In order to work with breeders to create canola with a 

more robust microbiome, we need to first have a better understanding of the assembly processes 

occurring in the canola microbiome.  

 

2.6 The Soil Microbiome and Invasion 
Invasive species cause over $130 billion in economic damage and loss annually (Pejchar 

and Mooney 2009) and this impact is predicted to increase with global climate change (Vilá et al. 

2011). For example, the United States government spent an estimated $3 billion dollars on the 

removal, remediation and control of invasive species (Crafton and Angadjivand 2018).  

Additionally, invasive species drastically alter the ecosystem services which are broadly defined 

as the benefits human derive from natural ecosystems (Daily et al. 1997). An example of an 
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invasive species that has had far reaching effects of ecosystem services is the invasion of 

cheatgrass (Bromus tectorum) in the semi-arid grasslands of North America. Like many invasive 

plants, cheatgrass decreases native plant diversity and abundance, disrupts grazing, increases fire 

frequency and intensity, reduces soil microbial community diversity and abundance and makes 

the soil more susceptible to erosion (Knapp 1996, Lekberg et al.2013).  

Changes in plant species composition will change the quantity and quality of root 

exudates to the soil (Ehrenfeld 2003, Van der Putten et al. 2007, Knapp and Kovács 2012), and 

alter rates of nutrient cycling (Mack and D’Antonio 1998, Mack et al. 2002, Fraterrigo et al. 

2010) as well as change inputs of organic matter to the soil (Ehrenfeld 2003, Suding et al. 2013). 

Despite an increasing knowledge of how invasive plants change plant-soil feedbacks less is 

known about how these changes impact local assembly processes (van der Putten et al. 2007, 

Suding et al. 2013). However, changes in the chemical and physical properties of soil, as well as 

in litter and exudate inputs, are almost certain to impact microbial community assembly 

processes and community composition, which in turn, could give the invading plant species a 

competitive advantage over native plants, perpetuating the invasion and hindering restoration 

efforts.  

 Smooth brome is commonly planted as a forage grass despite being an invasive species 

that has been shown to drastically reduce local plant diversity and alter soil properties (Slopek 

and Lamb 2017, Bahm et al. 2011, Salesman and Thomsen 2011, Stoz et al. 2019, Otfinowski et 

al. 2007, Chagnon et al. 2018) Likely due to these changes, smooth brome alters soil microbial 

communities (Piper et al. 2015, Piper et al. 2015, Mamet et al. 2017). In the same studies, it was 

found that smooth brome increased total soil nitrogen and gross nitrogen mineralization and the 

associated ammonia oxidizing archaea. Smooth brome also increased overall root and shoot 

biomass which will increase both root exudation and litter inputs. Finally, levels of diversity 

were altered in all three studies as well. These results suggest that smooth brome can change soil 

microbial community composition and consequently nutrient cycling for its own betterment. 

Given these alterations to the soil microbial community structure and function, it would follow 

that smooth brome invasion alters microbial community assembly processes. In order to 

remediate soil from smooth brome invasion, a better understanding of how these processes are 

changed relative to native communities is needed.  
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2.7 Natural Assembly Processes  
 
 Much like agricultural ecosystems, natural ecosystems are subject to a wide variety of 

influences. For example, grassland assembly processes are influenced by warming with warming 

increasing the proportion of drift over time (Ning et al. 2020). Homogenous selection in warmed 

plots was also more correlated with drought and plant productivity than control plots. In other 

study, soil nutrients were a key driver of bacterial assembly processes in soil vadose zone but 

depth was the largest determinant of assembly processes in the groundwater saturated zone 

(Sheng et al. 2021). Tripathi et al. (2018) found the soil pH rather than soil successional age, was 

the largest determinant of soil bacterial assembly processes. Zhou et al. (2019) found that 

deterministic processes dominated assembly in phyllosphere and rhizosphere of Phragmite 

australis in a wetland system. Climate change will cause the range of many plant species to shift 

as well as increase the incidence of many disturbances and the spread of invasive species 

(Nicotra et al. 2010). In order to understand how nature ecosystems will respond to these 

changes we need a better understanding of the soil microbial community assembly processes 

associated with them.  

 

2.8 Invasion and Ecosystem Services 
 
 Much like range shift and disturbance regimes, the abundance and distribution of 

invasive species is expected to expand with climate change (Tylianakis et al. 2008). The effect of 

invasive species on ecosystem services has been well documented, such as the aforementioned 

cheatgrass. Moreover, the economic costs of invasive species control, removal and remediation, 

invasive species can severely impact ecosystem services and human health. Invasive plants can 

greatly affect provisioning services, which are defined as the production of food, fiber, or fuel 

(Pejchar and Mooney 2009). For example, there are more than 300 invasive species in 

rangelands in the United States that cause an estimated $2 billion in economic losses annually 

(Ditomaso 2017). In addition to rangeland losses, invasive species also cause major agricultural 

losses each year. One way that invasive species can cause agricultural losses is through the 

disruption of pollination services provided by native bees which are reliant on native plant 

species (Potts et al. 2016).  
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 Ecosystem services are any benefits that human beings and society receive from an 

ecosystem (Daily 1997). The term became more broadly used after the United Nations released 

the Millennium Ecosystem Assessment in 2005. In the document, ecosystem services were split 

into four categories: provisioning, regulating, cultural and supporting services. Provisioning 

services are any production of food, fiber, timber or water for human consumption. Regulating 

services include the maintenance of the climate including such things are greenhouse gas 

emissions and flooding, disease regulation, waste and water regulation. Cultural services are the 

recreational and spiritual aspects that human societies gain from ecosystems. Finally, supporting 

services are soil formation, photosynthesis and nutrient cycling. Given these broad definitions, 

assessing the monetary value of ecosystem services is difficult. The earliest estimation of these 

services was that ecosystem services added $16-54 trillion USD to the global economy annually 

which is a conservative estimation (Costanza et al. 1997). More recently, the World Wildlife 

Foundation estimated global ecosystem services to be worth an estimated $125 trillion (WWF 

2018). Regardless of the monetary value, all ecosystem services continue to be threatened by 

global climate change (Costanza et al. 2017).  

 Soil specific ecosystem services that are reliant in some way on soil microbial 

communities are water cycling, climate regulation, nutrient cycling, and soil conservation (Daily 

et al. 1997) Invasive species will often increase the rates of both nitrogen and carbon cycling 

within a system as well as increasing water demands (Ehrenfeld 2003). Hall and Asner (2007) 

found elevated rates of nitrous oxide emissions with increased invasive biomass demonstrating 

that invasive species can alter climate regulation as well. The invasive shrub Tamarix alters both 

local water cycling and soil conditions (Shafroth et al. 2005). The deep tap root of the shrub 

brings up salts from lower soil horizons salinizing both the surrounding soil and water. The soil 

salinization will impact microbial communities as well as impacting soil conservation efforts.  
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3. BRASSICA NAPUS PHYLLOSPHERE BACTERIAL 
COMPOSITION CHANGES WITH GROWTH STAGE 

 
3.1 Preface 

In this chapter I analyze the composition of the bacterial community on the leaves of 

eight lines of Brassica napus. I discuss how line and growth stage impact this community as well 

as the core community present in all lines. This chapter has been published Bell, J.K., B. 

Helgason, and S.D. Siciliano. 2021. Brassica napus phyllosphere bacterial composition changes 

with growth stage. Plant Soil: 501–516. Dr. Helgason designed the experiment, secured funding 

and provided critical feedback for the manuscript. Dr. Sicilinao designed the experiment, secured 

funding and supervised the laboratory work, statistical analysis and writing.  

 
3.2 Abstract 
 
Aims 

Phyllosphere bacteria play critical roles in plant growth promotion, disease suppression and 

global nutrient cycling but remain understudied.  

Methods 

In this project, we examined the bacterial community on the phyllosphere of eight diverse lines 

of Brassica napus for ten weeks in Saskatoon, Saskatchewan Canada.  

Results 

The bacterial community was shaped largely by plant growth stage with distinct communities 

present before and after flowering. Bacterial diversity before flowering had 111 core members 

with high functional potential, with the peak of diversity being reached during flowering. After 

flowering, bacterial diversity dropped quickly and sharply to 16 members of the core 

community, suggesting that the plant did not support the same functional potential anymore. B. 

napus line had little effect on the larger community but appeared to have more of an effect on the 

rare bacteria.  

Conclusions  



 16 

Our work suggests that the dominant bacterial community is driven by plant growth stage, 

whereas differences in plant line seemed to affect rare bacteria. The role of these rare bacteria in 

plant health remains unresolved.  

3.3 Introduction 
The phyllosphere is one of the largest microbial habitats globally yet remains 

understudied (Vorholt 2012).  The phyllosphere can encompass all the aerial parts of the plant 

(Vorholt 2012), but most commonly is referred to as the surface and interior of the leaves 

(Redford et al. 2010, Vacher et al. 2016).  Phyllosphere microorganisms provide benefits to the 

plant, such as increased nutrient cycling, disease suppression, and growth promotion among 

many others. Fürnkranz et al. (2008) found that some species of tropical plants had higher rates 

of beneficial nitrogen fixation by diazotrophic phyllosphere bacteria.  Vogel et al. (2016) and 

Jarvis et al. (2015) both found that the pre-existing phyllosphere bacterial communities 

combined with plant genetics, impacted the reaction to and the extent of disease on plants that 

had been inoculated with known pathogens. Phyllosphere microbial communities also play 

important roles in promoting plant growth (Batool et al. 2016), and the diversity and abundance 

of these communities can impact the levels of insect herbivory (Humphrey et al. 2014). Finally, 

phyllosphere bacteria are likely an important driver in the global methane cycle and other global 

nutrient cycling processes (Iguchi et al. 2015).  

Despite the importance of phyllosphere microbial communities for overall plant and 

ecosystem functioning, they remain poorly described, particularly in agricultural systems, which 

account for 37% (1385 mil. ha) of the global land use in 2017 (FAOSTAT 2017). With the 

global population predicted to reach 9 billion by 2050, agricultural intensification will increase 

(Glibert et al.2010).  Producing more food on decreasing arable land and in more erratic climate 

conditions poses a unique and difficult problem for crop breeders and farmers. Breeding crops to 

have a more robust microbiome may be a sustainable way to improve crop yield without 

additional inputs or an increase in cultivated land (Ryan et al. 2009). However, before crops can 

be successfully bred to optimize microbiome contributions, we must first understand the 

diversity and dynamics of the microbiome of crop plants.  

Canola (Brassica napus) is produced for its high-quality oil, and increasingly, to be used 

as high-quality animal feed and for the production of biofuels. Canada is the leading producer of 

canola, with an estimated 3 million tons produced in 2018 (AFFC 2019). The importance and 
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large-scale production of canola makes it a good target for microbiome studies.  Canola also has 

large nitrogen requirements. Using microbiome manipulation to increase nitrogen use efficiency 

could help make canola a more sustainable crop. Additionally, the use of genetically modified 

crops, including canola, is widely banned in Europe. Breeding canola with improved 

microbiomes could help lessen the disease pressure placed on canola or rapeseed crops that 

cannot be modified genetically to ameliorate some of this pressure. Work on the microbiome of 

canola and oilseed crops has focused primarily on the roots and rhizosphere (Copeland et al. 

2015, Cordero et al. 2020, Gopalakrishnan et al. 2015, Glaeser et al. 2020), or on cultured 

microbial isolates (Ramero et al. 2019) or pathogens from Brassica species, and not on the 

microbiome as a whole (Wassermann et al. 2017). In some cases, the interaction of canola root- 

and rhizosphere-associated microbiomes with other crops was considered (Hilton et al. 2018, 

Schlatter et al. 2019). To date, only one study has examined the canola phyllosphere microbiome 

(Copeland et al. 2015) observing differences compared to common bean and soybean. They 

further observed that the canola phyllosphere microbiome was affected by rainfall and became 

increasingly different from the rhizosphere community as the growing season progressed.   

Not only does the composition of the phyllosphere remain understudied but what impacts the 

assembly of these communities has also been largely ignored. Many of the studies on the canola 

microbiome have both limited sampling dates and canola lines. In order to successfully breed B. 

napus to have a more robust microbiome we must first gain an understanding of how the 

microbiome develops and changes throughout the growing season for the whole plant, not just in 

the rhizosphere. In this study, we examined the bacterial phyllosphere microbiome of eight 

different lines of B. napus in Saskatchewan over a ten-week period to determine the composition 

of the phyllosphere and what factors are important for the structuring of bacterial communities 

on leaf surfaces. We hypothesized that the phyllosphere bacterial community composition would 

vary with developmental stage and B. napus line. 

 

3.4 Methods 
 

Eight lines of B. napus (Mason et al. 2017, Clarke et al. 2016) were seeded on May 28 or 

29, 2017 in the field at the Agriculture and Agri-Food Canada (AAFC) research farm outside of 

Saskatoon, Saskatchewan, Canada (52.1718° N, 106.5052° W) which lies in the Dark Brown soil 

zone (Chernozem). The plots were seeded using a 6 row, double disc drill with 1284 B. napus 
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seeds applied per plot (6.1m long by 1.8m wide). A granular blend of 20-8-0-20 fertilizer was 

applied on May 23 at the rate of 139 kg ha-1. These lines of Brassica napus are part of the AAFC 

canola breeding program and thus were not commercial canola varieties, but rather different lines 

created by nested associating mapping, referred to as NAM lines (Clarke et al. 2016). They 

ranged in seed origin and color, fiber content, erucic acid content and seed glucosinolate levels 

(SI table 1) meaning that some of them were not technically canola which requires a low erucic 

acid content, but all lines were varying varieties of B. napus.  Differences in these traits will 

result in differences in oil quality and are related to phenological development. Bazghaleh et al. 

(2020) have described the experimental design extensively, but briefly, the site consisted of three 

replicate blocks with each B. napus line seeded randomly within each block, but not repeated 

within a block. All lines were planted on May 28, 2017. The site received 127.9 mm of 

precipitation throughout the growing season with a mean air temperature of 16.4 °C. Several leaf 

samples were collected from each of the eight lines in each block every week for ten weeks 

beginning on June 20, 2017 until August 22, 2017.  Plants on the edges of the block were 

avoided as these leaves were visibly dusty and thus would likely have a different microbiome 

than most leaves on the interior of the rows. Leaves that were clearly diseased, had extensive 

insect damage or were senescing as the plant matured were also avoided, as these leaves did not 

represent the majority of the leaves present and would again bias the microbiome results. During 

flowering, uppermost leaves were avoided as these leaves had a thick layer of petals on them and 

differentiating the leaf microbiome from the flower microbiome would have been impossible. 

However, some petal contamination was impossible to avoid, but was bypassed when feasible. 

Finally, during the later stages of seed development and ripening, leaves that were mostly 

senesced were avoided as dead tissue would cause large changes in the microbiome. Leaf 

samples, consisting of only one or two leaves were placed into sterile whirl-pak bags (Nasco, 

Wisconsin, USA) and placed onto ice. Leaf samples from the same NAM line, but from different 

blocks were not combined and plants were not destructively sampled as only a single leaf or two 

were sampled. One sample from each NAM line in each block was collected (24 samples) as 

well as one randomly selected duplicate sample within block (line was not considered here), 

leading to the collection of 27 samples collected weekly, or 270 samples over the entire growing 

season.  Samples were then returned to the lab and stored at – 80 °C until further processing.  
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Frozen, brittle leaves were crumbled manually in the whirl-pak and a 0.05 g subsample was 

taken and extracted using Qiagen PowerPlant extraction kit (Hilden, Germany) following 

manufacturer instructions. After extraction, DNA was tested for quantity and quality following 

the standard Qubit protocol (Thermo Fisher Scientific, Waltham Massachusetts). Template DNA 

was standardized to 4 ng ml-1 prior to amplification. Bacterial diversity was assessed by 

amplifying the V4 region of the bacterial 16S rRNA using the primer set 515F with Illumina 

adapters (5’ TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTGYCAGCMGCCGCGGTAA 

3’) and the 806R (5’ - GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG GGA CTA 

CCG GGG TAT CT - 3’) (Walters et al. 2015).  The PCR reaction mix consisted of 7 ml 

Invitrogen Platinum SuperFi PCR master mix (Thermo Fisher Scientific, Waltham, 

Massachusetts), 0.1 ml of each primer (10 mM stock), 3 ml (5 mM stock) plastid peptide nucleic 

acid blocker (pPNA)  and 2 ul (5 mM stock) mitochondrial peptide nucleic acid blocker (mPNA) 

(PNA Bio, California, USA) and 10.3 ml nuclease free water, and 2 ml of the standardized 

template DNA. PNAs were included to block the amplification of host DNA, plant mitochondria 

and chloroplasts, which are a common contaminant from plant tissues (Ray et al. 2000, Von 

Wintzingerode et al. 2000). The PCR conditions were 95 °C for 5 min as an initial 

denaturization, followed by 95 °C for 30 sec., 78 °C for 10 sec., 54 °C for 45 sec., 72 °C for 60 

sec. for 35 cycles, and a final elongation of 72 °C for 7 min. Negative controls and PCR 

duplicates were included. PCR product was purified to eliminate primers and impurities using 

1:1 ratio of Nucleomag NGS clean-up and size select (D-mark Biosciences, Scarborough, 

Ontario). Randomly selected duplicates were included during DNA extraction, amplification, 

and sequencing stages adding in 56 duplicates, bringing the total sample size to 326. After 

purification, samples were indexed following the Illumina protocol (Illumina, San Diego, 

California), purified again to remove excess index primers, quantified and standardized to 4 nM, 

and pooled. Pooled libraries were then sequenced using the Illumina MiSeq platform using V3 

chemistry. 

A total of 326 samples were sequenced resulting in 10,839,325 reads with an average of 

18,186 reads per sample. Sequences were imported into QIIME2 v 2019.1 (Bolyen et al. 2018) 

and primers were removed using cutadapt (Martin 2011). Reads were then processed into 

amplicon sequence variants (ASVs) and chimeras were removed using Deblur (Amir et al. 2017) 

resulting in 1,968 ASVs. ASVs were then classified using a 515/806 trained Greengenes 
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database classifier (Desantis et al. 2006). Host mitochondria and chloroplasts were removed after 

classification. Host DNA ranged from 6% to 100% of the read in each sample with an average of 

32% across samples. The abundance and taxonomy artifacts produced in QIIME2 were exported 

to BIOM format (McDonald et al. 2012) for processing in R v. 3.5.3 (R Core Team 2018).  

Where available, species level classification was used although the authors recognize that there 

are issues (Johnson et al. 2019), this is standard practice at the time of writing. If a species level 

classification was not available, the ASV was marked as Unclassified. This was also done for 

higher levels of taxonomy.  

 To select the core microbiome (Shade and Handelsman 2012, Lundberg et al. 2013, 

Vandenkoornhuyse et al. 2015, Shade and Stopnisek 2019), each ASV was converted from 

number of reads to presence or absence. No singletons or doubletons formed part of the core, 

with all members being both prevalent (present every week during sampling)  and abundant (> 

0.05% of all reads). The ASVs that were present across all lines and weeks were selected as the 

Core and represents 15 ASVs, which fall into four different classifications (Table 1). Upon this 

conversion, it was noted that there appeared to be a shift in community composition after 

flowering. The alpha diversity indices for the weeks before and after flowering were similar 

despite there being a shift in community composition. To investigate if there was a shift in 

composition, that was not being reflected accurately in the diverisity indices, the community was 

subset into (i) ASVs present in all weeks up to and including flowering (Flowering) and (ii) those 

present in all weeks after flowering (Pod), using the same prescence and absence matrix that was 

used to select the core that was present across all ten weeks. In order for an ASV to be selected 

for either the Flowering or Pod communities, the ASV had to be present consistently every week 

either before or after flowering. There were 111 ASVs present before and during flowering 

(Flowering) and 16 present post flowering (Pod), a small porportion of the original 1,968 ASVs. 

This separation into Flowering and Pod allowed for the conservation of the shift in community 

composition that would not have been captured by examining the entirety of the sampling period 

together, nor by looking at diversity metrics alone.  The Flowering community has distinct ASVs 

from that of the Pod community as many of the ASVs present during and before the flowering 

stage disappeared once the plants matured into seed and pod development. However, for analysis 

both of these communites do inlcude the original 15 Core ASVs, as this small subset of ASVs 

were present all ten weeks. This resulted in Flowering consisting of 126 ASVs and Pod having 
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31 ASVs.  Unweighted UniFrac distance matrices were performed on the entire data set of 1,968 

ASVs (Total) and well as the combined Core, Flowering and Pod communities (Expanded Core).  

Alpha diversity was calculated using the package vegan in R (Oksanen et al. 2019). All 

diversity measures calculate the variety of organisms in a community based on combinations of 

species richness and evenness (Kim et al. 2017). The Shannon-Weaver index, Abundance-based 

Coverage Estimate (ACE) and the Simpson Index were chosen because they represent a mix of 

approaches to diversity. The Shannon-Weaver index places more emphasis on species richness 

whereas the Simpson index places more emphasis on species evenness (Kim et al. 2017). Unlike 

the previous two indices, the ACE index takes into consideration the abundance of the species 

present and for this study most closely reflected the observed diversity. Shannon-Weaver index, 

ACE (Chao and Lee 1992), Simpson index and species richness (Lou 2007) estimates were 

calculated and showed similar trends, with peak diversity occurring across all lines during week 

4 of sampling and declining steadily with plant maturity (Table 2). However, both the Shannon-

Weaver and the Simpson indices showed an initially very high level of diversity, but this is likely 

an over estimation due to a high abundance of rare ASVs present in the first few weeks. 

The BBCH-scale is a scale used to uniformly identify and quantify the phenological stages 

of plant development, with scales developed for species specific development (Lancashire 1991). 

Despite differences in crop species as well as varietal differences, all plants have the same 

growth stages of leaf development, formation of side shoots, stem elongation, harvestable 

vegetative plant part development, inflorescence emergence, flowering, seed development, 

ripening and senescence.  All B. napus lines were assigned BBCH weekly using the Canola 

Council of Canada BBCH guide (Canola Council of Canada, 2020) and were averaged. This was 

done because despite identical planting times, the eight B. napus lines did exhibit some 

differences in plant development.  Sampling week 1 and 2 took place during the leaf 

development stage for most B. napus lines sampled, with bolting happening during week 3 

(Figure 1). Peak flowering was reached for most lines during sampling week 4 (Flowering) with 

seed development occurring in the following two weeks (Pod). The last four weeks of sampling 

were characterized by ripening of the B. napus seed pods (Pod).  

Permutational analysis of variance (PERMANOVA) was performed using the adonis 

function in the vegan package in R (Oksanen et al. 2019). The weighted and unweighted UniFrac 

(Lozupone and Knight 2005) distances were calculated using the phyloseq package (McMurdie 
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and Holmes 2013), for the entire community (Total), the Expanded Core (Core, Flower and Pod 

communities) as well as the communities present before and during flowering (Flower) and the 
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Table 0.1 The core microbiome present across all B. napus lines throughout the ten-week sampling period. The relative 
abundance is expressed as a percentage of the total bacterial abundance, the core relative abundance, for all lines for the 
entire sampling period. Plant pathogenesis, pigment production, and biofilm formation ability are all adaptations giving these 
core bacteria advantages to colonizing the leaf surface. Expression of these traits are denoted with a plus sign if the bacteria 
has the capability and a negative sign if the bacteria do not express this capabilities. 

 

Order  Genus Species Relative 
Abundance 

Relative 
Abundance 
Core 

Pathogenic Pigmented  Biofilm 
Forming  

Pseudomonadales Pseudomonas Viridiflava 12.9 31.9 + 

(Hu et al. 1998) 

- + 

(Bartoli et al. 

2014) 

Enterobacteriaceae Pantoea Unclassified 10.6 12.5 +/- 

(Walterson and 

Stavrinides 

2015) 

+ 

(Walterson 

and 

Stavrinides 

2015) 

+ 

 

(Walterson and 

Stavrinides 

2015) 

Oxalobacteraceae Massilia Unclassified 5 13.1 - - - 

Xanthomonadales Stenotrophomonas Retroflexus 2.9 5.6 - - + 

(Ren et al. 

2014). 
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communities present after flowering (Pod). UniFrac distances were used instead of Bray-Curtis 

or other similar methods, to maintain the phylogenetic signals as there was a shift in community 

composition from the community present pre-flowering and post-flowering. Other distance 

matrices that do not contain phylogenetic information would not accurately capture this shift.  

Distance-based redundancy analysis (dbRDA) (Legendre and Andersson 1999) was 

performed using the capscale function in the vegan package in R (Oksanen et al. 2019). The 

weighted and unweighted UniFrac matrices for both the Total and the Expanded Core 

communities were constrained by NAM line and BBCH growth stage, as well as the interaction, 

and these constraints were then analyzed using the anova function (base R). Given that block was 

found to not be significant for any of the communities in the PERMANOVA results it was not 

included in the dbRDAs.  

To isolate the effect of B. napus NAM line more thoroughly, a dbRDA was performed 

constraining each UniFrac matrix by growth stage only. This was done to investigate whether 

NAM line influenced the community when it was not outweighed by the importance of growth 

stage. The residuals of this model were extracted, and an additional dbRDAs were performed 

constraining by NAM line. By doing this we accounted for the effect of growth stage without the 

influence of NAM line, then after this variation was accounted for, we could isolate the 

additional variation caused by NAM line alone without the large signal of growth stage 

overshadowing the effect of NAM line.  
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Figure 0.1 Abundance-based Coverage Estimate (ACE) average of the bacterial community 
on the leaf surface against the average BBCH of all 8 lines of B. napus across the ten 
sampling weeks. Each point is the average ACE for that week for the community 
microbiome (1,968 ASVs (amplicon sequence variants) with error bars representing the 
standard error of the estimate. The BBCH range represents the range of BBCH observed 
across the eight different lines for that sampling week. Change in BBCH stage is indicated 
by changes in background color with the name of the stage indicated at the top of the 
colored bar. 

 

3.5 Results  
 

The leaf bacterial community was dominated by a small subset of the total ASVs present. 

The leaf microbial community (Figure 2) of 1,968 ASVs was primarily Proteobacteria (79%), 

followed by Bacteroidetes (7%), Acidobacteria (6%) and Firmicutes (6%). The Proteobacteria 

were primarily Gammaproteobacteria (74%), followed by Betaproteobacteria (20%) and 

Alphaproteobacteria (4.7%). However, despite 1,968 ASVs being present, the majority of the 

community was dominated by a few species. The Expanded Core microbiome of 136 ASVs were 

primarily Pseudomonas virdiflava (Table 1) (12.9% of the Total, 31.9% Core), followed by 

Pantoea sp. (10.6% Total, 12.5% Core), Massilia sp. (5% Total, 13.1% Core) and 

Stenotrophomonas retroflexus (2.9% Total, 5.6% Core) (Figure 2). However, it should be noted 
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that these identifications are tentative due to the difficulty of assigning taxonomy using only one 

region of the bacterial genome.  

Bacterial diversity was highest during week four, or the flowering period for both the 

observed diversity (the number of ASVs present) and abundance-based coverage estimator 

(ACE) (Table 2, Figure 1).  The highest diversity for the Shannon index and inverse Simpson 

was observed during the first sampling week (Table 2), however there was a sharp decline in 

both of these indices during the second sampling week with both reaching a peak during the 

flowering period. The initially high diversity found during week one was likely due to the plants 

being recently emerged from the soil and thus still being colonized by primarily by soil bacteria. 

After flowering, all the diversity indices declined steadily to levels similar to, or lower than those 

observed during the leaf development stages. There was a sharp decrease in diversity between 

weeks six and seven (Fig. 2, Table 2) which could have been caused by low precipitation. 

Diversity increased again during weeks seven to nine, only to decrease again at week ten. The 

overall decline in diversity after flowering could have been caused by the gradual leaf 

senescence that occurs with B. napus during seed production.  

PERMANOVA results indicated that stage was the primary factor shaping the community 

structure. The PERMANOVA of the Total weighted UniFrac distances (Table 3) showed that 

plant development stage (BBCH) significantly affected the community composition (p=0.026, R2 

= 0.029) and that NAM line was nearly significant (p=0.06, R2 = 0.021) (Table 3). There were no 

significant terms for the PERMANOVA of the Total Unweighted UniFrac Distances (Table 3).  

For the Expanded Core, stage was significant in the Weighted Unifrac distances (p=0.018, R2 = 

0.026). In the unweighted Flower community, there was only a marginally significant interaction 

between NAM line, stage and block (Table 3). Stage was significant for both the Weighted 

(p=0.001, R2 = 0.039) and Unweighted (p = 0.001, R2 = 0.052) UniFrac distances of the Pod 

community. Additionally, NAM line was significant (p = 0.045, R2 = 0.048) for the weighted 

UniFrac distances in the Pod community (Table 3).  
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Figure 0.2 Relative abundance of genera that composed the Core as well as the 
communities present during the Flowering and Pod stages (Expanded Core). Many of the 
ASVs (amplicon sequence variants) in the Expanded Core were classified into the same 
genus or even species, but due to the nature of ASVs, they remained separate. For this 
graphic, the ASVs present in the Expanded Core have been grouped into genus instead of 
showing all 136 individual ASVs in the Expanded Core.  Colors are grouped as genus and 
the weekly range of BBCH observed is present on the x axis. 

 

Given the significant, but low, explanatory values given by the PERMANOVAs, dbRDAs 

were done to further isolate the effects driving community composition while maintaining the 

phylogenetic relationships provided by the UniFrac distance matrices. Similar to the 

PERMANOVAs, the db-RDAs indicated that growth stage was the dominate factor shaping the 

bacterial community. BBCH stage significantly (p < 0.001) affected Total bacterial community 

structure for both weighted and unweighted UniFrac dbRDA analyses (Fig 3). NAM line was 

significant only for the unweighted UniFrac analysis of the Total community (p = 0.048; Table 3, 

Fig 3B). There was a marginally significant NAM line by growth stage interaction for the 

unweighted Total community (p=0.058; Table 3) and for the weighted, Expanded Core 

community (p = 0.030; Table 3), likely caused by slight differences in plant development times 
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between lines. In the dbRDA models of the Total community, BBCH stage and NAM line 

explained 28% of the variance in the weighted Unifrac analysis (Fig 3A) and 24% of the 

variance in the unweighted UniFrac analysis (Fig 3B). The slight decrease in explanatory power 

between the weighted and unweighted analysis could have been caused by the bacterial 

community being largely dominated by a small number of ASVs, which would not have been 

reflected in the unweighted distance matrix. When only the Expanded Core was analysed using 

dbRDA, this increased to 41% (SI Fig 1A) and 32% (SI Fig 1B) for the weighted and 

unweighted community analyses (Table 3). This increase in explanatory power is likely caused 

by the reduction in the number of ASVs included in the analysis (1,968 ASVs in the Total to 136 

ASVs in the Expanded Core). Despite there being a large number of rare ASVs, they were not 

abundant thus reducing the noise for the analysis. For the Flowering community, stage was 

significant for both the weighted (p=0.002) and unweighted (p=0.001) UniFrac matrices, but 

neither NAM line nor the interaction of NAM line and stage were significant for either (Table 3). 

For the Pod Development community, stage was significant for both the weighted (p=0.003) and 

the unweighted (p=0.001) UniFrac matrices, but again, neither NAM line nor the interaction was 

significant (Table 3).  

For the Total community dbRDA, BBCH stage alone explained 19% of the variation observed 

for the weighted UniFrac matrix (Fig 3A) and 12% of the variation for the unweighted UniFrac 

matrix (Fig 3B). NAM line was observed to have slight differences in development time and 

visual appearance of the leaves (observations from the field) however these differences had little 

effect on the bacterial communities present on the leaves. After isolating the residuals of each of 

the above models, NAM line explained only 2% of the variation observed and was not 

significant for the weighted UniFrac distance residuals. Similarly, for the unweighted UniFrac 

distance residuals, NAM line explained 3% (p = 0.1) of the variation. For the Expanded Core 

community, growth stage alone explained 28% of the variation observed for the weighted 

UniFrac matrix (Fig 3A) and 19% for the unweighted matrix (Fig 3B). NAM line explained 3% 

for the weighted and unweighted Expanded Core residuals and was not significant. The leaf is an 

inhospitable environment which can change drastically with plant growth stage, thus the small 

differences in NAM line were likely insignificant to shaping the bacterial community when 

compared to the much larger force of plant growth stage. 
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Table 0.2 Average diversity metrics of all eight lines of B. napus for each week. Observed 
diversity is simply the average number of ASVs (amplicon sequence variant) per sample 
present and ACE is the Abundance-based Coverage Estimate. Larger numbers represent 
higher diversity. 

 
 

Stage Week/BBCH Observed ACE Shannon 

Inverse 

Simpso

n 

Leaf 

Development 1/12-14 52.7 36.6 3.4 34.2 

Leaf 

Development 2/14-19 68.5 84.7 2.5 7.7 

Bolting 3/34-55 76.1 91.4 2.5 7.5 

Flowering 4/59-65 77.4 94.4                                                                                                                                                                                              2.7 11.1 

Seed 

Development 5/61-72 48.6 63.9 2.2 7.2 

Seed 

Development 6/70-79 45.1 55.2 2.2 6.4 

Ripening 7/77-79 41.3 49.8 2.2 6.6 

Ripening 8/77-79 44.4 53.3 2.5 8.9 

Ripening 9/80-81 39.2 46.3 2.1 5.1 

Ripening 10/80-85 37.5 44.4 2.3 7.4 
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3.6 Discussion 
 
B. napus growth stage is the dominant factor shaping the bacterial community present on the 

leaves, throughout the growing season with a distinct community present before and after 

flowering. The distinct community is evidenced by the Flowering community with 111 ASVs 

present every week before flowering, with most of these disappearing after flowering, leaving 

only 16 ASVs present in the Pod community. Additionally, significant differences in both 

PERMANOVAs and dbRDAs were found when comparing the weighted UniFrac to the 

unweighted UniFrac distances, with BBCH stage being significant for both the total 

community and the Expanded Core. Differences between weighted UniFrac, which uses 

phylogenetic relationships as well as abundance, and unweighted UniFrac, which does not use 

abundance, indicate that both community structure, and evenness change throughout the 

sampling period (Lozupone et al. 2007). If both community structure and evenness were not 

significantly impacted by BBCH growth stage, there would be no significant differences 

between the weighted and unweighted UniFrac distances.  

The dominance of growth stage appears to outweigh the importance of different B. 

napus lines on shaping the bacterial community despite differences in NAM line as the 

Expanded Core remained abundant and constant and only the composition of the rare ASVs 

seemed to vary. Furthermore, NAM line significantly impacted the community structure only a 

limited number of times (Table 3). It is unclear if this is a B. napus specific finding or perhaps 

a phyllosphere specific finding. Crop variety has been shown to impact rhizosphere 

communities (Edwards et al. 2015, Colemam-Derr et al. 2016, Dombrowski et al. 2017). 

Additionally, Bokulich et al. (2014) found that microbial communities in grape must varied with 

grape cultivar.  However, crop line has variable impacts on phyllosphere communities. Singh et 

al. (2019) found that grape cultivar impacted the microbial community present in the 

phyllosphere. Conversely, Johnston-Monhe et al. (2016) found that maize genotype had no 

effect on microbial communities in the phyllosphere. Most importantly, Copeland et al. (2015) 

did not find that B. napus line impacted the microbial communities in the phyllosphere. The 

lack of impact of line on bacterial community structure could be due to thick, waxy cuticle 
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present on B. napus leaves. The thick cuticle likely makes the B. napus leaf an inhospitable 

environment for bacteria with low availability of plant derived carbon (Vorholt 2012, Vacher et 

al. 2016). More work is needed to characterize the phyllosphere and impact of line on B. napus 

as well as other crops. 
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Table 0.3 Permutational analysis of variance (PERMANOVA) tables. B. napus (NAM) line, growth stage, block and all the 
interactions were used as covariates. Both weighted UniFrac distances and unweighted UniFrac distances were analyzed for 
the Total community, the Expanded Core community and the communities present before and after flowering. 
 

Data Variable Component D.F. 
Sum of 
Squares 

Mean 
Squares 

F. Model R2 p-value 
 

Total               

Weighted 
Unifrac Stage Fixed 4 0.500 0.125 2.333 0.029 0.026*  

 NAM Fixed 7 0.353 0.044 0.824 0.021 0.0667  

 Block Random 2 0.150 0.075 1.403 0.009 0.227  

 Stage x 
NAM 

 29 1.706 0.059 1.098 0.100 0.295  

 Stage x 
Block 

 8 0.270 0.034 0.631 0.016 0.889  

 NAM x 
Block 

 15 0.934 0.062 1.162 0.055 0.25  

 
NAM x 
Stage x 
Block 

 56 2.207 0.039 0.736 0.129 0.968  

Unweighted 
Unifrac Stage Fixed 4 1.132 0.283 1.133 0.014 0.237  

 NAM Fixed 7 1.584 0.198 0.792 0.020 0.938  

 Block Random 2 0.462 0.231 0.924 0.006 0.524  

 Stage x 
NAM 

 29 6.725 0.232 0.928 0.083 0.797  

 Stage x 
Block 

 8 2.105 0.263 1.054 0.026 0.327  
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 NAM x 
Block 

 15 3.504 0.234 0.935 0.043 0.685  

 
NAM x 
Stage x 
Block 

  56 13.966 0.249 0.998 0.173 0.505  

Expanded 
Core 

             

Weighted Stage Fixed 4 1.294 0.324 1.980 0.026 0.018*  

 NAM Fixed 7 1.201 0.172 1.050 0.025 0.362  

 Block Random 2 0.367 0.183 1.121 0.008 0.335  

 Stage x 
NAM 

 29 4.162 0.149 0.910 0.085 0.738  

 Stage x 
Block 

 8 1.377 0.172 1.053 0.028 0.36  

 NAM x 
Block 

 15 2.544 0.182 1.112 0.052 0.274  

 
NAM x 
Stage x 
Block 

 56 8.992 0.167 1.019 0.184 0.442  

Unweighted Stage Fixed 4 1.172 0.293 1.298 0.018 0.125  

 NAM Fixed 7 1.467 0.210 0.929 0.022 0.595  

 Block Random 2 0.402 0.201 0.891 0.006 0.558  

 Stage x 
NAM 

 29 6.405 0.229 1.014 0.096 0.408  

 Stage x 
Block 

 8 1.400 0.175 0.776 0.021 0.877  
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 NAM x 
Block 

 15 3.204 0.229 1.014 0.048 0.455  

 
NAM x 
Stage x 
Block 

  56 12.902 0.239 1.059 0.193 0.229  

Flower             

Weighted Stage Fixed 2 0.107 0.053 0.647 0.011 0.647  

 NAM Fixed 7 0.719 0.103 1.246 0.073 0.253  

 Block Random 2 0.101 0.053 0.610 0.010 0.649  

 Stage x 
NAM 

 14 0.931 0.665 0.806 0.094 0.764  

 Stage x 
Block 

 4 0.423 0.106 1.283 0.043 0.247  

 NAM x 
Block 

 14 0.824 0.059 0.714 0.083 0.873  

 
NAM x 
Stage x 
Block 

 28 2.178 0.778 0.944 0.220 0.587  

Unweighted Stage Fixed 2 0.558 0.279 0.996 0.015 0.446  

 NAM Fixed 7 1.944 0.278 0.992 0.053 0.487  

 Block Random 2 0.558 0.279 0.996 0.015 0.435  

 Stage x 
NAM 

 14 3.905 0.279 0.996 0.107 0.526  

 Stage x 
Block 

 4 1.288 0.322 1.150 0.035 0.160  

 NAM x 
Block 

 14 3.678 0.263 0.939 0.101 0.726  
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NAM x 
Stage x 
Block 

  28 8.794 0.314 1.122 0.242 0.06  

Pod             

Weighted Stage Fixed 1 0.211 0.211 7.654 0.039 0.001*  

 NAM Fixed 7 0.188 0.027 0.973 0.034 0.477  

 Block Random 2 0.107 0.054 1.947 0.020 0.084  

 Stage x 
NAM 

 7 0.224 0.032 1.164 0.041 0.282  

 Stage x 
Block 

 2 0.055 0.275 0.999 0.010 0.376  

 NAM x 
Block 

 14 0.358 0.026 0.930 0.066 0.556  

 
NAM x 
Stage x 
Block 

 12 0.345 0.029 1.044 0.063 0.388  

Unweighted Stage Fixed 1 1.870 1.875 10.660 0.052 0.001*  

 NAM Fixed 7 1.724 0.246 1.401 0.048 0.045*  

 Block Random 2 0.366 0.183 1.041 0.101 0.369  

 Stage x 
NAM 

 7 1.477 0.211 1.199 0.041 0.165  

 Stage x 
Block 

 2 0.411 0.205 1.168 0.011 0.284  
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 NAM x 
Block 

 14 2.370 0.169 0.963 0.066 0.572  

  
NAM x 
Stage x 
Block 

  12 2.604 0.217 1.234 0.072 0.099  
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Copeland et al. (2015) found that the canola phyllosphere was dominated by a few high 

abundant genera with many rare ASVs, with decreasing diversity as the growing season 

progressed. However, they examined only sampling date, but not plant growth stage, so while 

the trends are similar, it is difficult to extrapolate further. The dbRDAs, as well as the 

PERMANOVA results suggest that perhaps B. napus line plays a larger role in structuring the 

rare ASVs present on the leaves, but not the Expanded Core microbiome which was comprised 

of relatively abundant bacteria. This is especially true for the Pod community which showed a 

significant effect of NAM line on the unweighted UniFrac distances, but not in the weighted 

UniFrac distances. Since the unweighted UniFrac distances do not incorporate abundance, 

simply presence or absence of an ASV, this indicates that there might be a larger influence of 

line on the rarer ASVs, which are not given as much weight when using the abundance 

weighted UniFrac distance matrix. However, there appears to be no consistent patterns in what 

rare ASVs are present throughout the sampling season, unlike the Expanded Core community, 

that was generally highly abundant, relative to other taxa. This lack of both consistency and 

abundance suggests that perhaps these rare ASVs are transitory inhabitants of the leaves that 

may be selected for by more nuanced biochemical or morphological characteristics that are line 

specific, such as cuticle thickness or unmeasured secondary metabolites. In other words, the 

composition of the rare ASVs is likely determined by the stochastic effects of random 

replication, death and immigration, whereas the Expanded Core bacterial community is likely 

selected primarily by plant growth stage, making it a more deterministic process.  

 Changes in the plant bacterial microbiome with plant growth stage are well documented 

for rhizosphere soils (Smalla et al. 2001, Wagner et al. 2014, Wagner et al. 2016, Copeland et al. 

2015, Hilton et al. 2017) so it is not surprising that growth stage changes were found in B. napus 

leaves. Additionally, it has been well documented that plants undergo large physiological and 

biochemical changes during flowering and fruit production (Nitsch 1965, Mohan and Rao 1984, 

Shu et al. 2010). B. napus leaves have a thick, waxy cuticle which thickens with age. This 

thickening of the cuticle would make access to plant derived carbon more limited as the plant 

ages, which could be the cause of the shifts observed during the growing season. Furthermore, 

during flowering, the petals are quickly shed, many of which land on the leaf. This additional 

and large source of labile carbon could be one of the factors accounting for the large increase in 

bacterial diversity and abundance seen around the time of flowering. After flowering, as the 
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seeds begin to develop and ripen, many of the different lines started to show signs of leaf 

senescence and death, in some cases shedding their leaves entirely.  This slow leaf senescence 

coupled with the thickened waxy cuticle likely drives the rapid decrease in bacterial diversity 

seen after flowering. While both the PERMANOVA results and the db-RDAs have relatively 

small R2, their cumulative effect explains quite a bit of the variation. It is well established that 

environmental variables or unmeasured variables explain most of the variation seen in microbial 

communities and it is not uncommon to have low R2 (Redford et al. 2010, Wagner et al. 2014, 

Coleman-Derr et al. 2016, Leff et al. 2017, ), therefore these results are valid despite the 

relatively low explanatory power of each variable.  

The most prevalent non-pathogenic ASVs in the phyllosphere appear to be well suited for 

life in this difficult environment. Stenotrophomonas retroflexus forms biofilms, which could aid 

in the colonization of the leaf surface and protect the bacteria from desiccation and UV stress 

(Ren et al. 2014, Lui et al. 2014). Oxalobacteraceae massilia exists in the rhizosphere, root 

surface and seed coat of cucumber plants, so it’s not unexpected to find it on the leaf surface as 

well (Ofek et al. 2012). Additionally, this species varies with plant development stage in 

cucumber plants so given that we see large growth stage patterns in B. napus leaves, we might 

expect to see a similar pattern here (Ofek et al. 2012). Enterobacteriaceae Pantoea is a 

functionally diverse genera with plant growth promoting abilities, nitrogen fixing capabilities, 

can produce antibiotics and might be an opportunistic pathogen (Walterson and Stavrinides 

2015, Coutinho and Venter 2009). Many species of Pantoea are also pigmented, which also 

likely increases their ability to withstand UV stress, making them well suited for life in the 

phyllosphere (Andrews and Harris 2000). Furthermore, Pantoea spp. live in other extreme 

environments such as oil sands (Mitter et al. 2017) and seeds (Feng et al. 2006) indicating that 

they can live in difficult environments such as the phyllosphere. However, given the uncertainty 

of assigning taxonomy based on 16S rRNA sequencing alone, a follow-up, culture dependent 

study to determine the identity and functionality of these ASVs would be needed to confirm 

these potential functions in the B. napus phyllosphere.  
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Figure 0.3 Distance-based redundancy analysis (dbRDA) of the weighted (28% of the 
variation) UniFrac distances (A) and unweighted (24% of the variation) UniFrac distances 
(B) of the Total bacterial community, across the entire 10-week sampling period, 
constrained by BBCH (p = 0.001) stage x B. napus line (NAM) (not significant) (biplots). 
Points are colored based on B. napus growth stage and correspond with the colors in Figure 
1.  
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The most common ASV found was Pseudomonas virdiflava. This is a pathogenic species 

that causes foliar blights, root rots, and stem necrosis (Marina et al. 2008, Sarris et al. 2012). 

Furthermore, this species can cause disease in a wide variety of cultivated plants, including 

cantaloupe, celery and tomatoes. Typical pathology for infection caused by Pseudomonas 

virdiflava is the wilting and yellowing of leaves, which was seen in the B. napus leaves, but the 

plants did not have high disease levels, and this could have been normal leaf senescence. Culture 

dependent methods would need to be employed to verify if the observed wilting and yellowing 

leaves observed in the field was indeed caused by Pseudomonas virdiflava as its presence alone 

does not indicate the cause of disease.  

  The initially very high estimates of diversity during the first sampling week (Table 1) was 

likely caused by the plants being relatively small during the first sampling week as they were still 

in the leaf development stage, with two to six leaves. These plants had only recently emerged 

and may have been predominantly colonized by bacteria originating from the soil. The large 

number of unique or low abundance ASVs found during the first sampling week quickly 

disappeared in subsequent weeks as the leave matured (Fig. 2) and may have been selected 

against by the harsh conditions on the leaf surface. Both the Shannon-Weaver index and the 

Simpson index include estimates of observed diversity as well evenness but not abundance into 

the estimates, which likely lead to the over estimation of initial diversity as rare species are given 

equal weight (Kim et al. 2017).  We did not see the same initial trend in the ACE metric likely 

because the ACE metric uses both evenness and abundance of rare ASVs to estimate the 

likelihood of a particular ASV to be present or not (Kim et al. 2017). A similar phenomenon was 

observed by Copeland et al. (2015) where the Shannon diversity index was very high initially 

and the community composition was similar to the soil, but as the growing season progressed, 

the diversity index decreased, and the leaves developed communities that were distinct from the 

soil.  

 Increasing bacterial diversity between the initial sampling week and the peak at flowering 

could have been caused by a number of factors. It is well established that while phyllosphere 

communities are separate from rhizosphere communities they do have considerable overlap in 

community composition (Wagner et al. 2014, Copeland et al 2015, Wagner et al. 2016). This 

increase in diversity leading up to flowering could stem from the deposition of soil dust from 

nearby farming activities. Vokou et al. (2012) found air samples and the phyllosphere of nine 



 

  41 

different species shared a similar composition, suggesting that aerial deposition is a likely source 

of bacterial diversity on plants. Aerial deposition of soil dust would also explain the overlap in 

community composition between the rhizosphere and phyllosphere seen in other studies as the 

rhizosphere draws its community from the surrounding bulk soil which would also be the source 

of the dust. Additionally, this increase in diversity could be caused by visiting pollinators or 

insect herbivory. Humphrey et al. (2014) found that insect herbivory was positively correlated 

with bacterial diversity in the phyllosphere. The most likely explanation for the increasing 

diversity is a combination of aerial soil deposition, insect drivers and the plants selecting for a 

beneficial community.  

Pre-flowering, the bacterial community on the leaves had greater diversity members 

(Figure 2, SI Table 2), compared to the Pod community. These functionally rich bacteria 

included members of the Bradyrhizobiaceae which are well documented for their widespread 

symbiosis with plants and their ability to fix nitrogen (Marcondes de Souza et al. 2014, 

Gopalakrishnan et al. 2015). There were other nitrogen-associated bacteria present pre-

flowering as well, such as Nitrosovibrio tenuis which oxidized ammonium (Harms et al. 1976) 

and Streptomyces mirabilis which produces the enzyme nitroreductase and has shown 

antifungal and antibacterial activity (Bordoloi et al. 2001, Yang et al. 2012). Other functionally 

useful bacteria present on the leaves pre-flowering that disappear after flowering included 

Burkholderia bryophila which has been shown to have anti-fungal activity, carbon monoxide 

reduction capabilities and plant growth promoting properties (Vandamme et al. 2007, Weber 

and King 2012) which would be useful to the B. napus plant as many of its major pathogens 

are fungal (Canola Council of Canada 2020). Methylobacterium were also present on the 

leaves prior to flowering. This species can use both methane and methanol as a carbon source, 

both of which are byproducts of plant metabolism (Hanson and Hanson 1996, Nisbet et al. 

2009, Dorokhov et al. 2018). Furthermore, Methylobacterium has the ability to form biofilms, 

making it well adapted for life in the phyllosphere (Hanson and Hanson 1996).  

This bacterial diversity largely disappears after flowering (Figure 2, SI Table 2), with 

the majority of the core species found post flowering simply being additional AVSs of the core 

bacteria present throughout the entire growing season and a large dip in diversity seen between 

weeks six and seven.  This decrease in diversity (Fig 2, Table 2) could have been caused by 

weeks five and six having relatively low precipitation and hotter temperatures (unpublished site 



 

  42 

data). The recovery of some diversity in weeks eight and nine was likely caused by these weeks 

experiencing much cooler and wetter conditions, allowing the bacteria present the moisture 

needed to rebound. The phyllosphere is a harsh environment that can fluctuate rapidly in 

temperature, moisture and ultraviolet radiation levels, all of which will have an impact on the 

bacterial communities living on the surface of these leaves (Kinkel 1997, Vorholt 2012, Vacher 

et al. 2016). However, this diversity was not maintained during week ten as most of the leaves on 

the plants were undergoing senescence at this point. Despite this one anomalous large dip in 

diversity, the overall trend of decreasing diversity stands with one exception. Firmicute 

Exiguobacterium was not found in the pre-flowering core community and was abundant in the 

Pod community. Exiguobacterium is not widely studied creating large gaps in knowledge 

about this genus, however it has been shown to grow in difficult environments (Vishnivetskaya 

et al. 2009) which could be the plant preparing for transfer to the seed (Shade et al. 2017) or 

the community adapting to the quickly senescing leaves. 

Plant growth stage, but not B. napus line, was the dominant factor in shaping the bacterial 

phyllosphere across all eight lines of B. napus sampled. There was a small, but abundant Core 

community present throughout the growing season, regardless of plant growth stage with rarer 

ASVs changing rapidly and seemingly without pattern. Initially, there was very high diversity, 

but this was likely caused by colonization by soil bacteria that quickly selected against due to the 

difficult nature of life in the phyllosphere. During the development stages, the bacterial 

community retained some of this diversity which included a higher potential for functional 

diversity. The bacterial community reached peak diversity during flowering and rapidly became 

much less diverse during the pod development and ripening stage, consisting primarily of ASVs 

from a small number of genera. These swift changes in both diversity, abundant and rare ASV 

composition suggests that while the plant has some control over the community composition, 

likely based on growth stage, there is also a probable large stochastic component to the 

community assembly processes. Community assembly process on the phyllosphere warrant 

further investigation as research into harnessing the microbiome for plant health intensifies. This 

work shows that the bacterial community present will change drastically throughout the growing 

season, and that multiple sampling points are necessary to get an accurate look at the microbiome 

and how it interacts with the plant as it develops. 
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4. BRASSICA NAPUS BACTERIAL ASSEMBLY PROCESSES 
VARY WITH PLANT COMPARTMENT AND GROWTH 
STAGE BUT NOT BETWEEN LINES 

 
4.1 Preface 
 
 In this chapter I combine the bacterial sequencing data from eight lines a Brassica napus 

leaves, roots and rhizosphere to examine the assembly processes over the ten week sampling 

period. Dr. Steven Mamet assisted in the data processing and provided feedback on the 

manuscript. Dr. Helgason designed the experiment, secured funding and provided feedback on 

the manuscript. Dr. Siciliano designed the experiment, secured funding, and supervised all 

portions from sample collection to writing.  

 

4.2 Abstract  
 

Holobiont bacterial community assembly processes are an essential element to 

understanding the plant microbiome. To elucidate these processes, leaf, root, and rhizosphere 

samples were collected from eight lines of Brassica napus in Saskatchewan over the course of 

ten weeks. We then used ecological null modeling to disentangle the community assembly 

processes over the growing season in each plant part. The root was primarily dominated by 

stochastic community assembly processes, which defies previous knowledge of a highly 

selective root environment. Leaf assembly processes were primarily stochastic as well. In 

contrast, the rhizosphere was a highly selective environment.  The dominant rhizosphere process 

leads to more similar communities. Assembly processes in all plant compartments were 

dependent on plant growth stage with little line effect on community assembly. The foundations 

of assembly in the leaf were due to the harsh environment leading to dominance of stochastic 

effects whereas the stochastic effects in the root interior likely arise due to competitive 

exclusion. Assuming strong selection could promote beneficial bacteria, engineering canola 

microbiomes to resist disease, which are typically aerially born, should focus on the flowering 

period whereas microbiomes to enhance yield should likely be engineered post-flowering as the 

rhizosphere is undergoing strong selection. 
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4.3 Introduction 
 

Projected rapid increases in climate variability and global population (Gilbert et al. 2010) 

make the need for crops with resilient microbiomes ever more pressing (Ryan et al. 2009). 

Canola (Brassica napus L.) is a globally important oilseed crop with high resource demands, 

making it an ideal target for microbiome engineering. In addition to its high-quality oil, canola 

has been increasingly used as high-quality animal feed and for the production of biofuels. 

However, canola requires large nitrogen inputs and is susceptible to common crop diseases like 

Fusarium wilt, both of which could be addressed through more targeted microbiome 

manipulations. Previous studies of canola associated microbiomes focused primarily on the roots 

and rhizosphere (Copeland et al. 2015, Cordero et al. 2020, Gopalakrishnan et al. 2015, Glaeser 

et al. 2020), specific microbial isolates (Wassermann et al. 2020), or the microbiome of canola 

and other common crops (Hilton et al. 2018, Schlatter et al. 2019). Microbiome-centered 

approaches increase plant tolerance to abiotic stresses, disease, and low nutrients (Coleman-Derr 

and Tringe 2014, Fierer et al. 2010) though these benefits may be helped or hindered by 

microbial community assembly processes. Thus, a clear understanding of microbial community 

assembly is needed before we can create a sustainable microbiome that increases crop yield 

stability (Dini-Andreote and Raaijmakers 2018). 

Two broad processes—deterministic and stochastic—influence community assembly of 

species (Fierer et al. 2010).Deterministic processes rely on ecological filters, such as 

homogenizing (more closely related communities than expected by random chance) or 

heterogenous (more distantly related communities than expected) selection (Dini-Andreote and 

Raaijmakers 2018). Stochastic processes include dispersal events and drift or diversification 

(Hubbell 2001) grouped into homogenizing dispersal and dispersal limitation, where dispersal 

refers to the movement of species from one habitat to another and drift is the random division, 

death, or diversification (mutation) of individuals within a community (Dini-Andreote and 

Raaijmakers 2018, Hubbell 2001). Homogenizing dispersal includes high rates of dispersal 

between habitats leading to similar communities. Dispersal limitation can lead to high rates of 

community turnover and more dissimilar communities. Disentangling the community assembly 

processes in microbial communities is essential to fully understanding how these communities’ 

function. For example, Ning et al. (Ning et al. 2020) found that homogeneous selection of soil 
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microbiome in a grassland was correlated with drought and higher plant productivity under 

warmed conditions. 

The relative influence of stochastic and deterministic processes in community dynamics, 

vary through space and time (Ning et al. 2020, Stegen et al. 2012, 16]. Productivity and resource 

availability (Stegen et al. 2017) are among several factors that influence the relative importance 

of stochastic versus deterministic processes (Kardol et al. 2013). As crop plants develop and alter 

their environment it is reasonable to expect an increase in the relative influence of deterministic 

processes (Chase et al. 2010), as selective pressures filter the initial microbial community (Ning 

et al. 2020). If microbial communities can be linked to improved crop performance, crop 

development programs may be able to leverage the microbiome at specific stages of 

phenological development to improve plant performance. For example, Wagner et al. (2014) 

found that in Boechera stricta (Drummond’s rockcress), microbes could alter plant flowering 

time—an important canola breeding target correlated with yield stability. Understanding how the 

community assembles before flowering would allow the potential manipulation of this 

community to optimize flowering time. A useful metric to disentangle community assembly 

processes is to use a null model framework based on the phylogeny of the microbial 

communities (Dini-Andreote and Raaijmakers 2018, Stegen et al. 2012, Stegen et al. 2017). The 

phylogeny is repeatedly randomized to give a distribution of theoretical phylogenies that could 

occur if no selection processes were acting upon the community (Stegen et al. 2017). If the 

observed phylogeny falls two standard distributions outside of the mean null model distribution, 

then we can conclude that some selection process is acting upon the real community (Stegen et 

al. 2017). This framework allows for a more accurate estimation of ecological processes shaping 

microbial communities.  

 We selected eight phenologically diverse founder lines of a B. napus Nested Association 

Mapping (NAM) panel, to evaluate if bacterial community assembly in plant organs could be 

altered via breeding programs.    We hypothesized that 1) community assembly processes differ 

among plant structures due to environmental differences and 2) assembly processes would vary 

with B. napus line and 3) the root surface and the leaves would have the strongest deterministic 

assembly processes leading to more homogeneous communities, whereas the rhizosphere would 

be dominated by stochastic community assembly processes leading to more heterogenous 

communities.  The leaves, roots, and rhizosphere soil of eight lines of B. napus were sampled 
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weekly over the course of ten weeks beginning three weeks after planting when the plants were 

at the five to six leaf stage. All weeks after this are reported in weeks after planting (WAP). We 

then used a null-model framework as well as ordination approaches to elucidate the assembly 

processes governing bacterial community assembly throughout the growing season. 

 
4.4 Materials and Methods  
 
4.4.1 Field Collections 

In May 2017, eight lines of B. napus (Mason et al. 2017, Clarke et al. 2016) were seeded 

at the Agriculture and Agri-Food Canada (AAFC) research farm outside of Saskatoon, 

Saskatchewan, Canada (52.1718° N, 106.5052° W). These lines of Brassica napus are part of the 

AAFC canola breeding program created by nested associating mapping, referred to as NAM 

lines (Clarke et al. 2016). They ranged in seed origin and color, fiber content, erucic acid 

content, and seed glucosinolate levels (SI table 1). Due to the low erucic acid content, several of 

these lines are not canola, but remain under the B. napus classification. Bazghaleh et al. (2020) 

(Bazghaleh et al. 2020) described the experimental design extensively, but briefly, the 

experiment was a randomized complete block design consisting of three replicate blocks (6.1 m 

long by 1.8 m wide) with each B. napus line arranged randomly within each block. All lines were 

planted on May 29, 2017. The site received 127.9 mm of precipitation throughout the growing 

season with a mean air temperature of 16.4 °C. Both the mean temperature and precipitation 

were slightly below average for the region. Leaf, root, and rhizosphere samples were collected 

from each of the eight lines in each block every week for ten weeks beginning on June 20, 2017, 

until August 22, 2017.  The collections began three weeks after planting when the plants were 

are the 4-6 leaf stage. Root and rhizosphere samples were collected from the same individual 

plant, however due to the destructive sampling methods, leaf samples were collected from 

different plants within the plot.  

Root and rhizosphere samples were collected by combining three canola plants from each 

plot using a sterilized trowel to a depth of approximately 10 cm. Edge rows were avoided to 

avoid possible contamination with other lines or weeds. Roots with attached rhizosphere soil 

were placed in a bag, closed, and placed on ice. All samples were stored at 4 °C until processing. 

Upon processing aboveground material was removed and soil not attached to the roots was 
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collected and stored at -80 °C for further analysis. The roots, with adhering rhizosphere soil, 

were then transferred to a flask containing 100 ml of sterile 0.05M NaCl buffer and shaken at 

180 rpm for 15 minutes. After shaking, the roots were removed, rinsed with deionized water, and 

weighed. A subsample of root material was taken using a flame sterilized scalpel and frozen at -

80 °C for later DNA extraction. The buffer and soil mixture were transferred to centrifuge tubes 

and centrifuged at 5000 rpm for 15 minutes at room temperature. The pellet containing the 

rhizosphere soil was transferred to 1.5 ml tubes and frozen at -80 °C for future DNA extraction. 

A total of 28 root and rhizosphere samples (8 lines by three blocks, with 3 randomly selected 

duplicate biological samples) were collected each week over the ten week sampling period.  

Leaf samples were selected by avoiding leaves with visible signs of disease, insect 

damage, or senescence. Additionally, plants on the edge of plots were avoided as these plants 

were visibly dusty. During flowering, B. napus rapidly drops petals and leaves with heavy flower 

contamination were also avoided. During the seed development and ripening stages when leaf 

senescence was advanced, leaves with large amounts of necrotic tissue were avoided. Leaf 

samples were placed into sterile whirl-pak bags (Nasco, Wisconsin, USA) and placed onto ice. 

Leaf samples from the same NAM line, but from different blocks were not combined and plants 

were not destructively sampled as only a single or two leaf were sampled. Samples were then 

returned to the lab and stored at – 80 °C until further processing. A total of 28 leaf (8 lines by 

three blocks, with 3 randomly selected duplicate biological samples) were collected each week 

over the ten week sampling period.  

4.4.2 DNA Extraction and Amplification 

DNA was extracted from 50 mg root tissue using Qiagen PowerPlant extraction kit 

(Hilden, Germany) following manufacturer instructions. DNA was extracted from 250 mg 

rhizosphere soil using Qiagen PowerSoil extraction kit following manufacturer instructions. 

Frozen, brittle leaves were crumbled manually in the whirl-pak and a 0.05 g subsample was 

taken and extracted using Qiagen PowerPlant extraction kit (Hilden, Germany) following 

manufacturer instructions. Extraction duplicates were included. All root and rhizosphere samples 

were spiked with a known concentration of Aliivibrio fischeri as an internal standard (Smets et al. 

2016). Initially, this was also done with the leaf samples, but after sequencing it was found that 

likely due to the naturally low bacterial abundances on leaves, the majority of samples only 

contained A. fischeri and little host bacteria. Leaf samples were re-extracted without the spike 



 

  48 

which greatly improved bacterial amplification. After extraction, DNA was tested for quantity 

and quality following the standard Qubit protocol (Thermo Fisher Scientific, Waltham 

Massachusetts).  

 Root and rhizosphere DNA from soil was standardized to 5 ng/µl prior to amplification. 

DNA from roots were standardized to 1.5 ng/µl prior to amplification. The V4 region of the 16S 

rRNA was amplified using the primer set 342F with Illumina adapters (5’ - 

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG CTA CGG GGG GCA GCA G - 3’ ) 

and the 806R (5’ - GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG GGA CTA CCG 

GGG TAT CT - 3’) (Mori et al. 2014). The PCR reaction mix (25 µl total) contained 2.5 µl 

DreamTaq Buffer (Thermo Fisher Scientific, Waltham Massachusetts), 2.5 µl dNTP mix 

(Invitrogen, Carlsbad, California), 1 µl of each primer, 0.25 µl DreamTaq (Thermo Fisher 

Scientific, Waltham Massachusetts), 17.75 µl nuclease free water, and 2 µl of the standardized 

template DNA. The PCR conditions were 95 °C for 5 minutes as an initial denaturization, 

followed by 95 °C for 30 seconds, 54 °C for 30 seconds, 72 °C for 30 seconds for 35 cycles, and 

a final elongation of 72 °C for 7 minutes. Negative controls and PCR duplicates were included  

Template DNA from leaf samples was standardized to 4 ng/µl prior to amplification. 

Bacterial diversity in leaves was assessed by amplifying the V4 region of the bacterial 16S rRNA 

using the primer set 515F with Illumina adapters (5’ – 

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTGYCAGCMGCCGCGGTAA - 3’) 

and the 806R (5’ - GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG GGA CTA CCG 

GGG TAT CT - 3’) (Walters et al. 2015). The 515F/806R primers were selected after failed 

attempts to amplify with the same primers as the root and rhizosphere. While there are individual 

primer biases, the 515F/806R were deemed the best possible replacement primers after many leaf 

amplification failures, as the 342F/806R primer pair covers the entire fragment length of the leaf 

primer set (Mori et al. 2014).  The PCR reaction mix consisted of 7 µl Invitrogen Platinum 

SuperFi PCR master mix (Thermo Fisher Scientific, Waltham, Massachusetts), 0.1 µl of each 

primer (10 µM stock), 3 µl (5 µM stock) plastid peptide nucleic acid blocker (pPNA), 2 ul (5 µM 

stock) mitochondrial peptide nucleic acid blocker (mPNA) (PNA Bio, California, USA), 10.3 µl 

nuclease free water, and 2 µl of the standardized template DNA. PNAs were included to block 

the amplification of host DNA, plant mitochondria, and chloroplasts, which are a common 
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contaminant from plant tissues (Ray et al. 2000, Von Wintzingerode 2000). The PCR conditions 

were 95 °C for 5 minutes as an initial denaturization, followed by 95 °C for 30 seconds, 78 °C 

for 10 seconds, 54 °C for 45 seconds, 72 °C for 60 seconds for 35 cycles, and a final elongation 

of 72 °C for 7 minutes. Negative controls and PCR duplicates were included. 

PCR product was purified to eliminate primers and impurities using 1:1 ratio of Nucleomag 

NGS clean-up and size select (D-mark Biosciences, Scarborough, Ontario). Randomly selected 

technical duplicates were included during DNA extraction, amplification, and sequencing stages 

adding in 56 duplicates, bringing the total sample size up to 326. After purification, samples 

were indexed following the Illumina protocol, purified again to remove excess index primers, 

quantified and standardized to 4 nM, and pooled. Pooled libraries were then sequenced using the 

Illumina MiSeq platform using V3 chemistry. Leaf samples were sequenced separately from root 

and rhizosphere samples. A total of 307 root, 307 rhizosphere soil, and 326 leaf samples were 

sequenced. Leaf sequencing runs included more technical duplicates than root/rhizosphere runs 

to assure amplification due to previous sequencing failure. Quality assurance/control samples 

included field duplicates, DNA extraction duplicates, library preparation duplicates, and 

sequencing duplicates.  

 

4.4.3 Data Processing  
 
 A total of 12,813,586 reads were produced for rhizosphere samples with an average of 

41,874 per sample. For roots, a total of 73,911 were produced with an average of 241 reads per 

sample. For leaves, 10,839,325 reads were produced with an average of 18,186 reads per sample 

were produced. Sequences were imported into QIIME2 v. 2019.1 (Bolyen et al. 2019) and 

primers were removed using cutadapt v. 2020.2.0 (Martin et al. 2011). Reads were then 

processed into amplicon sequence variants (ASVs) (Janssen et al. 2018) and chimeras were 

removed using Deblur (Amir et al. 2017), resulting in 1,968 ASVs for leaves, 8,987 ASVs for 

rhizosphere samples, and 990 ASVs for root samples. ASVs were classified using a 342F/806R-

trained (root/rhizosphere) or a 515F/806R-trained (leaves) V3/V4 SILVA 132 database (Quast et 

al. 2013). For leaf samples, host mitochondria and chloroplasts were removed after classification. 

Host DNA ranged from 6% to 100% of the read in each sample with an average of 32% across 

samples.  Mitochondria and chloroplasts were also removed after classification for root and 

rhizosphere samples, however they comprised a very low percentage of the overall reads. Reads 
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classified as archaeal, eukaryotes or unassigned at the kingdom level were removed from all 

samples, but were not abundant overall. The abundance and taxonomy artifacts produced in 

QIIME2 were exported to BIOM format (McDonald et al. 2012) for processing in R v. 3.5.3 (R 

Core Team). Global singletons or ASVs with a sum of zero were removed. Phylogenetic trees 

were created using the fragment insertion method in QIIME2 (Quast et al. 2013). Root and 

rhizosphere abundances were standardized to the Aliivibrio fischeri spike.  

 

4.4.4 Statistical Analysis  

Each plant compartment represents a very different environment, meaning that the bacterial 

communities in each will experience different assembly processes. Due to this, and the necessary 

use of different primer sets, each plant compartment was analyzed separately, and no direct 

comparisons were made between plant compartments. Each analysis was repeated three times, 

for the leaf, root and rhizosphere communities.   

Abundance-based Coverage Estimate (ACE), the Simpson index were calculated using the 

estimate_richness function on phyloseq (Oksanen et al. 2007) and Pielou’s evenness were 

calculated using the vegan package v. 0.5.1 (McMurdie et al. 2013). Permutational analysis of 

variance (PERMANOVA) was performed using the adonis function in the vegan package in R 

(McMurdie et al. 2013). Bray Curtis distance matrices were calculated among samples from the 

same plant compartment (e.g. root) for each time point using the using the phyloseq package v. 

1.34.0 (McMurdie et al. 2013).  

The BBCH-scale (BBCH is not an acronym, but the name of the scale) is a scale used to 

uniformly identify and quantify the phenological stages of plant development, with scales 

developed for species specific development (Lancashire et al. 1991). All B. napus lines were 

assigned BBCH weekly using the Canola Council of Canada BBCH guide (Canoal Council of 

Canada 2020) and averaged. This was done because despite identical planting times, the eight B. 

napus lines did exhibit some differences in plant development. Sampling week 3 and 4 (WAP) 

took place during the leaf development stage for most B. napus lines sampled, with bolting 

during week 5. Peak flowering was reached for most lines during sampling week 6, with seed 

development occurring in the following two weeks. The last four weeks of sampling were 

characterized by ripening of the B. napus seed pods.  
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Figure 4.1 A conceptual diagram of the determination of the assembly processes. Leaf, root 
and rhizosphere communities were sampled, sequenced and processed (See methods). 
Following processing, amplicon sequence variants (ASVs) were imported to R (R Core 
Team 2018). A null model was generated using 999 randomizations from all ASVs present 
in that community. All pairwise comparisons with a |βNTI| > 2 are classified as 
deterministic with βNTI > +2 indicating heterogenous selection and βNTI < -2 indicating 
homogeneous selection. Observations with values |βNTI| < 2 and RCbray > +0.95 were 
classified as dispersal limitation and observations with values |βNTI| < 2 and RCbray < -0.95 
were classified as homogenizing dispersal. Pairwise comparisons within |βNTI| < 2 and 
|RCbray| < 0.95 indicated drift or diversification assembly processes were occurring. 
 

 Community assembly processes were approached using the null model framework (Vellend 

2010, Stegen et al. 2012).  Net Relatedness Index (NRI) were calculated by using the ses.mpd 

function (abundance.weighted=TRUE) in the picante package v. 1.8.2 (Kembel et al 2010). NRI 

is the number is number of standard deviations that the observed phylogeny  differs from the null 

mean pairwise distance (MPD) after 999 iterations (Webb 2001). An NRI value of < -2 indicates 

that the community is phylogenetically more dispersed than expected where as an NRI value 

of  > +2 indicates that the community more phylogenetically clustered the expected. Similarly, 

Nearest Taxa Indices (NTI) were calculated using the ses.mntd function 

(abundance.weighted=TRUE) in the picante package (Kembel et al. 2010). NTI is the number of 

standard deviations that the mean nearest taxon distance (MNTD) (Webb 2001).  differs from the 

null MNTD after 999 iterations. An NTI value of -2 indicates that the community is more 
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distantly related than expected where as an NTI value of +2 indicates that the community more 

closely related than expected. While these metrics are similar, NRI is more sensitive to tree wide 

trends of clustering and evenness whereas NTI is more sensitive to these trends closer to the 

phylogeny tips (Stegen et al. 2013). 

Following Stegen et al. (2013), selection pressures were quantified using βNTI metric in 

the picante package (comdist, abundance.weighted= TRUE) and Bray-Curtis-based Raup-Crick 

(RCbray) in the iCAMP package v. 1.2.9 (Kembel et al. 2010, Ning et al. 2020). RCbray is the 

probability that a given community is more dissimilar (+1) or less dissimilar (-1) than expected 

by chance (Chase et al. 2011). Like the previous metrics, RCbray uses successive iterations to 

determine these probabilities. βNTI measures the difference between the observed βMNTD and 

the null βMNTD. The null distributions for both metrics were generated weekly for each plant 

compartment using 999 randomizations. |βNTI| > 2 indicates that deterministic selection 

dominates community assembly processes at a 5% significance level (Stegen et al. 2012). βNTI 

values > 2 were classified as heterogenous selection. βNTI values less than two were classified 

as homogeneous selection. Observations |βNTI| < 2 indicated predominance of stochastic, rather 

than deterministic processes (p<0.025). Pairwise comparisons between βNTI and RCbray were 

done to determine the stochastic processes dominating bacterial community assembly (Fig. 1). 

Observations with values |βNTI| < 2 and RCbray > +0.95 were classified as dispersal limitation 

and |βNTI| < 2 and RCbray < -0.95 classified as homogenizing dispersal (Ning et al. 2020, Lin et 

al. 2012, Vellend 2010, Webb 2001). Pairwise observations not having values of |βNTI| < 2 or 

|RCbray| < 0.95 were categorized as drift or diversification (Fig. 1). This could indicate that this 

population is weakly experiencing any of the previously mentioned processes or that the 

community is undergoing drift, which is the random division, death or mutation (diversification) 

of individual community members.   

To examine which factors influenced deterministic selection processes distance-based 

redundancy analysis (dbRDA) (Legendre and Andersson 1999) was performed on weighted 

UniFrac distance matrices (Lozupone and Knight 2005) using the capscale function in the vegan 

package in R (Oksanen et al. 2019). The UniFrac distances were calculated using the phyloseq 

package (McMurdie and Holmes 2013). UniFrac distances were used to preserve the 

phylogenetic relationships in the communities. Leaf, root, and rhizosphere dbRDAs were 

constrained by BBCH, week prior mean temperature and precipitation, sampling day mean 
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temperature and precipitation and NAM line. All code available at 

https://github.com/jbell364/Canola-Selection.  

 

 
Figure 4.2 Pielou’s evenness for the leaf (red), root (green), and rhizosphere (blue) over the 
ten-week sampling period. Each point represents 27 samples, and the error bars are the 
standard error. Growth stage is indicated by the dashed lines. The larger the number the 
more even the community.  
 

4.5 Results  
 

Pielou’s evenness (Fig. 2) (Pielou 1966) was the lowest during flowering for both root 

and leaf. Interestingly, rhizosphere diversity was at its lowest during flowering but increased 

steadily after flowering. However, much like the leaf and root communities, Pielou’s evenness 

was the lowest for rhizosphere communities during flowering (Fig. 2, SI Table 1). Both the 

Abundance-based Coverage Estimate (ACE) (Chao and Lee 1992), and the Simpson index (Jost 
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2007) for the leaf and root bacterial communities reached their peaks during weeks six and 

seven, or when the plants were flowering (SI Table 1). 

Bacterial communities on the leaf, root, and rhizosphere were primarily composed of 

Proteobacteria with the largest class being Gammaproteobacteria (SI Fig. 1). In leaves, 

Gammaproteobacteria ranged from a high of 75% during week nine to a low of 40% during week 

twelve. In leaves, the second largest group consisted of classes not found in the root and 

rhizosphere communities (SI Fig. 1) but consisted primarily of Bacteroidetes (7%), 

Acidobacteria (6%), and Firmicutes (6%). In the root, Gammaproteobacteria comprised greater 

than 50% of the community in every week except week three. After Gammaproteobateria, the 

dominant class in the roots was Bacteroidia. Gammaproteobacteria was also the dominant class 

in the rhizosphere, ranging from 30% during week three to 79% during week six (SI Fig. 1). 

Similar to the root communities, Bacteroidia was the second most dominant class present in the 

rhizosphere.  

 The influence of Brassica napus line (NAM line) on bacterial community composition 

was inconsistent in each plant compartment and showed no clear trend throughout the growing 

season. Specifically, NAM line was never a significant explanatory variable for leaf 

communities. For root bacterial communities, NAM line was a significant explanatory variable 

only during weeks four and seven (P= 0.01 and 0.001, R2 = 0.30 and 0.2, respectively). NAM 

line was a significant explanatory variable for six out of the ten sampling weeks for rhizosphere 

bacterial communities (P < 0.05 , R2 = 0.23 – 0.32, SI Table 3) but there was no consistent time 

period in which NAM line was or was not significant. Finally, even when NAM line was 

significant, it rarely explained much of the variation (SI Table 2).  

 Growth stage (BBCH) was consistent influence on all phylogenetic metrics. BBCH was a 

significant (P<0.001) explanatory variable for NTI, NRI (Table 1), and βNTI (SI Table 2). 

Interestingly, NAM line was significant for root NTI values (P=0.03) values but not for root NRI 

values nor root βNTI values (SI Table 3). Similarly, NAM line was significant for rhizosphere 

βNTI values, but not rhizosphere NTI nor NRI values. There were no significant interactions 

between NAM line and BBCH growth stage for any compartment.  
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Figure 4.3 (A) Mean Nearest Taxon Index (NTI) for leaf, root and rhizosphere samples 
over the ten week sampling period. (B) Mean Net Relatedness Index (NRI) for leaf, root, 
and rhizosphere samples over the ten week sampling period. Each point represents 27 
samples, and the error bars are the standard error. Growth stage is indicated by the 
dashed lines. Positive values indicate more phylogenetic clustering than expected by 
chance, whereas negative values indicate phylogenetic overdispersion. The gray shaded 
area indicates a significant (p > 0.05) phylogenetic clustering compared to the null 
hypothesis.  
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The leaf communities were always more clustered than expected, especially after 

flowering, suggesting that there were selection pressures occurring. Mean leaf NRI values were 

consistently greater than zero throughout the entire growing season indicating an increasing trend 

of phylogenetic clustering (Fig. 3B) (Kembel 2009). However, leaf NRI values did not differ 

from the null hypothesis (|NRI| < 2; P > 0.05) until weeks five to twelve (P ≤0.05). Leaf NTI did 

not differ from the null hypothesis until week nine (P ≤ 0.05; Fig. 3A).  

In the root, no strong clustering or over dispersion was detected. Mean Root NTI values 

were consistently different than zero, though did not differ from the null hypothesis (P > 0.05; 

Figure 3A). Root NRI values showed similar trends as NTI values in that they were consistently 

greater than zero and did not differ from the null hypothesis (Fig. 3B). However, BBCH (P< 

0.001) was significant for both NTI and NRI values and NAM line (p=0.0308) significant for 

NRI values.  

Rhizosphere NTI values showed stronger clustering of the bacterial communities than the 

rhizosphere NRI values. Rhizosphere NTI values were greater than zero and differed from the 

null hypothesis (P = > 0.05; Fig. 3A). Rhizosphere NRI were greater than zero but only differed 

from the null hypothesis in weeks six through nine (Fig. 3B). BBCH was significant (P<0.001) 

for both rhizosphere NTI and NRI values and NAM line was not significant.  

βNTI values had consistent trends to NRI and NTI values (Fig. 4). After week five, from 

flowering to ripening, rhizosphere βNTI > -2 (P > 0.001) indicating homogenous selection was 

occurring. Root βNTI values only differed from the null hypothesis during week nine (P > 0.01) 

indicating homogenous selection was occurring during this week. Similarly, leaf βNTI values 

only differed from the null hypothesis (P>0.001) during week six, or flowering, however, unlike 

the root and rhizosphere, the leaf βNTI < +2, which denotes heterogenous selection.  
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Figure 4.4 Mean βNTI for leaf, root, and rhizosphere samples over the ten week sampling 
period. Each point represents 27 samples, and the error bars are the standard error. 
Growth stage is indicated by the dashed lines. Positive values indicate heterogenous 
selection is occurring whereas negative values indicate homogeneous selection. The gray 
shaded area indicates a significant deviation from the null hypothesis. 

 
The primary assembly process in leaves was drift/diversification (Fig. 5A) with only 

weeks six and seven not being dominated by drift/diversification. Interestingly, after week seven, 

selection in the leaves moved from heterogenous selection to homogeneous selection. Drift also 

dominated bacterial community assembly in the root until week seven when the dominant 

process became homogeneous selection (Fig. 5B). Homogeneous selection remained the 

dominant process until week twelve, when drift dominated again. Homogeneous selection was 

the dominant process in all weeks in the rhizosphere with the exception of weeks four and six 

(Fig. 5C). Rhizosphere bacterial communities experienced a noteworthy amount of dispersal 
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limitation, which occurred in weeks three, four and six with dispersal limitation as the dominant 

process during week four (62%). Dispersal limitation was seen in the roots, but this process 

made up less than ten precent in every week except weeks six, seven, and nine. 

To assess which environmental factors could be acting as abiotic filters causing 

homogenous selection, dbRDAs were done on the leaf, root and rhizosphere (Fig. 6) and were 

constrained by BBCH, week prior mean temperature and precipitation, sampling day mean 

temperature and precipitation and NAM line. These filters captured most variation in the leaf 

(19.3%, Fig. 6A), followed by the root (18.4%, Fig. 6B) with the lowest amount of variation 

explained in rhizosphere communities (13.7%, Fig. 6C). Interestingly, while capturing a decent 

amount of the variation in each plant compartment, none of the factors were significant nor did 

the amount of variation captured account for the high levels of deterministic selection seen, 

especially in the rhizosphere. This suggests the presence of a high number of unmeasured filters, 

which could be both biotic (inter- or intraspecies interactions) or abiotic (soil factors, relative 

humidity, etc.). 
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Figure 4.5 Ecological assembly processes in the bacterial communities present in the leaf 
(A), root (B) and rhizosphere (C) across all ten sampling weeks. Deterministic processes 
were classified as heterogenous selection (βNTI > 2) or homogeneous selection (βNTI < -2). 
Stochastic processes were classified as homogeneous dispersal (|βNTI| < 2 and RCbray < -
0.95) or dispersal limitation (|βNTI| < 2 and RCbray > +0.95). Pairwise observations within 
the confines of |βNTI| < 2 and |RCbray| < 0.95 were classified as drift/diversification. Growth 
stage is indicated by the dashed lines. 
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Figure 4.6 Distance-based redundancy analysis (dbRDA) of the weighted UniFrac distances 
for the leaf (A, pink), root (B, green) and rhizosphere (C, blue) for the entire ten week 
sampling period. Each has been constrained by BBCH, week prior mean temperature and 
precipitation, sampling day mean temperature and precipitation and NAM line. The 
amount of variation captured for each is in the left-hand corner. 
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4.6 Discussion  

 
The root is generally thought to be a highly selective environment (Edwards et al. 2015, 

van der Heijden and Schlaeppi 2015), however deterministic selection accounted for more than 

50% of the community assembly processes in only three out of the ten weeks, which was not 

what we hypothesized. Root communities were not more or less clustered than expected by 

chance (NTI and NRI assessments) and strong selection processes were not occurring (βNTI) 

suggesting that root selection processes are not as strong as previously thought. Using a different 

approach, ie dbRDA, we came to the same conclusion.  If the selection processes were primarily 

deterministic, as we hypothesized, the root assembly processes would have been like the 

processes observed in the rhizosphere. One reason the root may have been seen as a highly 

selective environment is because it consistently less diverse than the rhizosphere soil (Philippot 

et al. 2013), van der Heijden and Schlaeppi 2015, Wagner et al. 2016). Our work suggests that 

this lack of diversity found in the root, relative to the rhizosphere, may arise from the priority 

effect or competitive exclusion. When a bacterial species is able to establish itself in or on the 

root, it could maintain that niche solely through competitive exclusion (Tan et al. 2015), not 

allowing more bacterial species to establish and increase diversity (Jacoby and Kopriva 2019). If 

competitive exclusion is the primary reason roots lack diversity, then it would follow that the 

main community assembly process is drift/diversification, as the community would not change 

significantly throughout the growing season once the species has established and excluded 

others. Alternatively, the stable root community could be an example of the priority effect where 

the order and timing of arrival dictates the species composition of the root (Fukami and Najajima 

2011). If assembly in the root is being affected by the priority effect, the dominance of 

Gammaproteobacteria in the root could be an indication of this. Gammaproteobacteria appeared 

quickly and its relative abundance did not change much over the ten-week sampling period. Most 

likely, the stable root community and the predominance of drift as the main assembly process is 

a combination of both competitive exclusion and the priority effect.  

 The leaf is a harsh environment with high prokaryotic mortality and daily disturbance 

events from changes in temperature, moisture, and UV radiation (Vorholt 2012, Vacher et al. 

2016). Given these difficult conditions, it follows that the major selection pressure is the neutral 

process of drift/diversification rather than a more plant driven, deterministic process. Given these 
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severe conditions it could be possible that no single process was able to dominate due to the high 

mortality rates and frequent disturbance. Temperature and precipitation accounted for more 

variation in the leaf community than the root and rhizosphere. Both precipitation events, as well 

as large temperature fluctuations, would be recurrent disturbance events for the leaf community, 

causing stochastic processes to dominate as deterministic processes would be halted. 

Additionally, the root and rhizosphere is more protected from these recurrent disturbances, which 

would allow for deterministic processes to continue, which is what was observed. 

The rhizosphere effect has been well documented (Smalla et al. 2001, Gregory 2006, 

Philiippot et al. 2013) wherein the rhizosphere exhibits changes in bacterial richness when 

compared to the bulk soil. Given the rhizosphere effect is consistent and drastic, there must be 

deterministic selection processes at work. We saw this reflected in the root where homogeneous 

selection comprised more than 50% of the selection processes for all weeks except four. In fact, 

in weeks nine to eleven, homogeneous selection comprised almost all of the selection processes 

occurring in the rhizosphere. The dominance of homogenous selection could have been caused 

by the larger root system which exerted more selection pressure, both of which are correlated 

with growth stage, which has been documented previously (Ceja-Navarro et al. 2021). The 

increase in beneficial bacteria during and after flowering has been documented (Bell et al. 2020) 

so the B. napus plants are likely selecting for beneficial species here to increase seed set and 

ripening. During seed development and ripening the plant likely undergoes an increased demand 

for water and nutrients. To meet these demands, the rhizosphere community would have to shift 

in order to increase nutrient cycling, hence the dominant deterministic process is homogeneous 

selection.  

 One of the hypotheses of this study was that assembly processes would vary with B. 

napus (NAM) line but we were not able to show this. The NAM lines selected for this study 

were chosen to emphasize differences in various characteristics in hopes of understanding how 

NAM line shaped the microbiome (Bazghaleh et al. 2020).  Despite this careful selection, NAM 

line had the smallest effect on assembly processes after plant compartment and growth stage. In 

the rhizosphere, where NAM line had the most consistent effect, the influence of line was not 

consistent throughout the growing season suggesting that it did not have a stable influence on the 

rhizosphere. This is contrary to other studies which have shown a large effect of plant line on 

microbial community structure (Edwards et al. 2015, Colemam-Derr et al. 2016, Dombrowski 
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et al. 2017). The lack of line differences could be a specific effect of B. napus. Previous work on 

these same NAM lines has shown that there is no consistent effect of NAM line on phyllosphere 

bacterial communities nor on the seed microbiome (Morales Moreira et al. 2021, Bell et al 2020). 

Copeland et al. (2015) did not note any effect of canola line on the phyllosphere nor rhizosphere 

as well. Only genetically modified B. napus demonstrated line level differences in the 

microbiome but these did not persist between growing season (Dunfield and Germida 2001, 

Siciliano and Germida 1999, Dunfield and Germida 2003). This suggests that for the microbiome 

of canola, environment and plant growth stage will impact microbial community assembly 

processes more than differences in canola line.  

  Growth stage consistently accounted for differences in NTI, NRI, and βNTI (Table 1, SI 

Table 4) in contrast with variable B. napus line (NAM) influence. Growth stage effect outweighs 

that of NAM lines that are independent of growth stage alterations. Plants undergo large 

physiological shifts throughout their lifecycles (Nitsch 1965, Mohan and Rao 1984, Shu et al. 

2010) which then correspond to changes in the plant microbiome (Smalla et al. 2001, Wagner et 

al. 2016, Copeland et al. 2015, Hilton et al. 2018, Gregory 2006). Changes in community 

assembly processes caused by shifts in plant phenology that result from breeding selection would 

change not only the composition of the plant associated communities through deterministic 

selection. However, shifts in phenology could also change the community dynamics, as one 

species may have an advantage over other species under these new selection pressures. These 

changes could alter the benefits that plant associated communities confer and open a route for 

more successful microbiome manipulation.  

Plant breeders manipulate plant phenology, or growth stage (Piao et al. 2019), which is 

the largest determinant of bacterial community assembly processes on B. napus. Manipulating 

plant phenology as well as the environment conditions through inputs has been suggested as a 

means of engineering more robust plant microbiomes (Ryan et al. 2009, Quiza et al. 2015). 

Periods of time when the microbiome is undergoing strong selection will make good targets for 

microbiome engineering as strong selection likely means the plant is selecting for the most fit 

microbial communities.   If the breeding goal is disease reduction, given that most canola 

diseases are transmitted aerially, it would be wise to focus on the leaf microbiome manipulation. 

The leaf bacterial community reaches maximum diversity and experiences the strongest selection 

during the flowering period. Any efforts to manipulate the bacterial microbiome on the leaf 



 

  64 

should be done before or during when the plant flowers; alternatively, the flowering period could 

be extended to cultivate more of these beneficial bacteria. Similarly, if the breeding target is 

larger yields, then focusing on the rhizosphere communities after flowering would likely be the 

most beneficial. The rhizosphere communities are undergoing strong selection after flowering, 

which could mean the plant is selecting for beneficial relationships to improve seed production 

and ripening. Focusing breeding efforts on this time period could impact these processes. 

Additionally, further study needs to be done on the root exudation patterns occurring during the 

seed development and ripening periods to determine why the selection pressure is highest during 

these periods. Root exudation patterns could then serve as a mechanism to engineer beneficial 

root and rhizosphere communities. A better understanding of the assembly processes of plant 

microbiomes will allow for the most targeted manipulation and hopefully lead to more robust 

microbiomes which can improve agricultural sustainability.  
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5. SMOOTH BROME INVASION ALTERS MICROBIAL 
COMMUNITY ASSEMBLY PROCESSES AND 

ECOSYSTEM SERVICES 
 
 
 

5.1 Preface 
 
 I analyzed soil and fungal sequencing data in this chapter to look at the effects of the 

invasive grass, Bromus inermis on microbial community assembly processes and ecosystem 

services at the Kernen prairie. Dr. Lamb designed the experiment, secured funding and provided 

feedback on the manuscript. Dr. Siciliano designed the experiment and supervised all part of the 

chapter from sample collection to writing.  

 

5.2 Abstract  
 
 Invasive plants alter soil microbial communities and ecosystem services reducing the 

Earth’s carrying capacity for humans. Many ecosystem services are underpinned by soil 

microbial communities, and these communities arise from assembly processes that are likely 

altered by invasion.  We evaluated the hypothesis that invasive effects on grassland ecosystem 

services arise from changes in microbial community assembly processes caused by invasion.  We 

sampled 515 plots undergoing invasion by smooth brome (Bromus inermis) at a native Rough 

Fescue prairie located near Saskatoon, Saskatchewan, Canada. Each week, for 26 weeks, we 

monitored invasion effects on vascular plant communities, ecosystem services, as well as 

bacterial and fungal community structures.  We used the on-going Bromus inermis invasion to 

disentangle the effects of invasion from season on community structure. Invasive effects on 

ecosystem services interacted with seasonal (plant green-up, peak biomass, and plant 

senescence) effects but consistently disrupted ecosystem service provision.  Invasion increased 

heterogenous selection in fungal communities but otherwise had minor effects on assembly 

process.   Only ~20% of community composition could be ascribed to deterministic filters which 

hindered our ability to conclusively link invasion to assembly processes.  Assembly processes 

explained changes in ecosystem services with bacterial assembly accounting for 2.5% of food, 

4% of climate, 9% of conservation and 5.5% of fertility services.   Fungal communities were less 
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consistent in their effects on ecosystem services with only food (3%) and water (4%) services 

influenced by assembly.  After seasonality (27%), bacterial assembly processes (4%) accounted 

for the largest effect on ecosystem services, overshadowing invasion (2%) and fungal assembly 

(2%).   At this 130-hectare site, after seasonal effects, bacterial assembly processes had the 

largest effect on ecosystem services with plant invasion placing a distant third.   

 

5.3 Introduction 
 
 Plant invasion impacts ecosystem services, which are broadly defined as the benefits 

human derive from natural ecosystems (Daily et al. 1997). While the effect of invasive plant 

species on ecosystems can vary, it almost always decreases native diversity and abundance (Vilà 

et al. 2011). Interestingly, invasive species usually increase overall plant biomass causing greater 

nutrient and water demands which then causes the native species to be competitively excluded, 

leading to biodiversity loss (Vilà et al. 2011). Altering nutrient and water demands, coupled with 

changes in native biomass and abundance all have cascading effects on the soil which in turn will 

impact ecosystem services such as climate regulation, water purification and food production 

(Zhang et al. 2019). Changes in ecosystem services have lasting impacts on human health such 

as disease regulation, contamination of water and soil, decreased recreation and in the case of 

smooth brome invasion, the loss of agricultural capacity (Pyšek and Richardson). The mitigation 

and restoration of damaged ecosystem services can be extremely costly (Pejchar and Mooney 

2009). For example, in 2017, the United States government spent an estimated three billion 

dollars on prevention, control and eradication of invasive species (Crafton and Angadjivand 

2018).  

 The abundance and ranges of invasive plant species are expected to increase with climate 

change (Tylianakis et al. 2008). Invasive species can have severe impacts on the local flora, 

which in turn causes changes in soil microbial communities and the ecosystem services that these 

local floras and microfauna communities provide (Van der Putten et al. 2013). Any change plant 

community structure or composition will change the soil microbial communities by altering: (i) 

the input of organic matter (Ehrenfeld 2003, Van Der Putten et al. 2007), (ii) the quality and 

quantity of root exudations (Broz and Vivanco 2007, Knapp and Kovács 2012), and (iii) rates of 

nutrient cycling (Ehrenfeld 2003). While there has been work done to elucidate how invasive 

plants change soil properties (Gibbons et al. 2017), how these changes affect soil microbial 
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communities has yet to reach a consensus (Bunn et al. 2015, Zhang et al. 2019). It is possible that 

invasive plants will cause idiosyncratic changes in the soil microbial communities, i.e. each 

site/species combination will cause unique changes in the soil microbial community.  However, 

it is also likely that the combination increased invasive biomass coupled with the loss of native 

biodiversity that  causes changes in soil structure, organic matter input and nutrient cycling 

which will then alter the fundamentals processes by which microbial communities assemble. 

 Microbial community assembly processes are dominated by two broad forces, 

deterministic and stochastic processes (Fierer et al. 2010). Deterministic processes act on 

communities through ecological filters and can be further subdivided into two additional 

categories. These subdivisions are: homogenizing selection wherein the communities are more 

closely similar communities than expected by random chance, or heterogenous selection wherein 

communities are more distantly related than expected (Dini-Andreote and  Raaijmakers 2018). 

Stochastic processes can be subdivided into three different processes: homogenizing dispersal 

(no impediments to dispersal), heterogenous dispersal (some impediment to dispersal, can lead to 

more dissimilar communities) and drift (random division, death, or mutation) (Hubbell et al. 

2001, Dini-Andreote and Raaijmakers 2018). Given that both deterministic and stochastic 

processes are reliant on ecological and environmental factors, plant invasion will likely alter 

local microbial community assembly processes 

 The null-model framework used to assess microbial phylogenies is fairly recent it has 

several benefits over other methods to examine microbial community assembly processes. 

Firstly, it allows for the integration of both stochastic and deterministic assembly processes 

(Stegen et al. 2013) whereas previous methods classified unexplained variance as stochastic 

assembly processes (Zhou and Ning 2017). Secondly, this method uses microbial phylogenies to 

estimate microbial community assembly processes versus species abundance and richness 

estimates. Phylogenies estimate assembly processes much more accurately (Gerhold et al. 2015) 

because they can detect co-existence and therefore potential niche differentiation. The more 

phylogenetically clustered a community is, the more likely strong selection is occurring because 

ecological traits that conserve niche breadth are often highly conserved (Webb 2000, Martiny et 

al. 2015). If selection was not occurring, it would be more likely that the community would be 

experiencing overdispersion, as there would be no need for the conservation of traits nor niches, 

leading to more similar communities than expected by chance 
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While the null-model method is a better option for estimating assembly processes, it does 

have limitations linked to sampling effort and trait inference (Stegen et al. 2012, Zhou and Ning 

2017). The null-model methods relies on the phylogeny of the regional species pool (Webb 2000, 

Stegen et al. 2012, 2013, 2015) and the estimation of the regional species pool will be a function 

of sampling effort. Further, regional species pool estimates are not directly comparable with 

other studies unless sampling efforts were identical. Secondly, the null-model relies on linking 

microbial traits associated with fitness in an environment with the sequencing target.  Thus, the 

null-model assumes that 16S based phylogenies are linked to traits and thereby fitness. While 

horizontal gene transfer is a factor in many bacterial communities, many bacterial traits that 

confer specific advantages such as methanogenesis or other unusual metabolism strategies are 

deeply conserved (Martiny et al. 2015). Finally, given the difficulty of sequencing and 

constructing fungal phylogenies, the same assumptions of trait conservation are not as robust nor 

are most surveys of fungal diversity complete (Blackwell et al. 2011). However, despite its 

limitation, the null-model framework remains a strong estimate of microbial community 

assembly processes.  

 Smooth brome (Bromus inermis) is commonly planted as a forage grass in 

Western Canada despite being an invasive species that has been widely studied and shown to 

decrease native diversity and alter soil communities (Piper et al. 2015a, Piper et al. 2015b, 

Mamet et al. 2017, Slopek and Lamb 2017, Bahm et al. 2011, Salesman and Thomsen 2011, Stoz 

et al. 2019, Otfinowski et al. 2007, Chagnon et al. 2018). Smooth brome invasion greatly reduces 

native plant diversity (Piper et al. 2015a, Piper et al. 2015b, Mamet et al. 2017, Mamet et al. 

2019, Li et al. 2018), which in turn causes changes in soil microbial communities’ structure and 

function as well as altering soil nutrient cycling. The changes in plant and microbial 

communities and their subsequent alteration of soil nutrient cycling will have long-term effects 

of the ecosystem services provided by prairies in Western Canada.  Any changes caused by 

smooth brome invasion will likely help to perpetuate the invasion, impeding efforts to restore 

native prairie plant populations.  

 To examine how smooth brome impacts microbial community assembly processes and 

ecosystem services, 515 plots of varying levels of invaded biomass were sampled over a 26 week 

period (13-19 plots each week), spanning the entire growing season in 2014 (Bell et al. 2020). 

For every plot sampled, a range of ecosystem services were measured including greenhouse gas 
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emissions, glyphosate degradation and extracellular enzymes, as well as plant surveys and 

biomass data were collected, and soil bacteria and fungi were sequenced. We hypothesized that 

as invasive biomass increases, selection pressure in soil microbial communities would differ 

from those in native plots. Given previous work (Piper et al. 2015a, Piper et al. 2015b, Mamet et 

al. 2017) we hypothesized that we would see the large shift in microbial community assembly 

processes in bacterial communities rather than fungal communities. Additionally, we 

hypothesized a large magnitude of difference between the selection pressures in native vs 

invaded plots, would correlate with ecosystem service differences between native and invaded 

plots.   

 

5.4 Methods 
 
5.4.1 Field Site and sampling 

The methods for this project have been extensively described previously (Bell et al. 

2020). Briefly, samples were collected at Kernen Prairie which is a 130-ha remnant rough fescue 

prairie on the edge of the city of Saskatoon, Saskatchewan, Canada (52°10‟ N, 106° 33‟ W). A 

total of 515 samples were collected from May 15, 2014, continuing through November 5, 2014. 

The site has grassland and low shrub communities, as well as a small number of aspen (Populus 

tremuloides) bluffs and ephemeral wetlands. Native grass species include Plains Rough Fescue 

(Festuca hallii), Wheatgrass (Elymus lanceolatus), and Needlegrass (Hesperostipa curtiseta). 

Common native broadleaf species include Northern Bedstraw (Galium boreale), Pasture Sage 

(Artemisia frigida), and Prairie Rose (Rosa arkansana). Low shrub communities are dominated 

primarily by Western Snowberry (Symphoricarpos occidentalis). The site is undergoing multiple 

invasions by species including the forage grasses Smooth Brome (Bromus inermius) and 

Kentucky Bluegrass (Poa pratensis), and the forbs Canada Thistle (Cirsium arvense), perennial 

sow thistle (Sonchus arvensis), and Absinthe (Artemisia absinthum) (Slopek and Lamb 2017). 

Microtopography, soil water availability, prescribed fire, and grazing history are primary 

influences on the plant community structure of the prairie (Looman 1969, Romo 2003, Gross and 

Romo 2010, Gross and Romo 2019).  

Samples were collected week for 26 weeks starting May 15, 2014, continuing through 

November 5, 2014. An average of 13 samples were collected each week; however some weeks 
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have less sampling points due to adverse weather conditions or sampling crew size. Soil 

temperature and moisture was taken in the field using a 5TE Decagon probe (Pullman, 

Washington). A 1 cm diameter, 15 cm depth core of soil was taken with a push corer in each plot 

for future DNA work and frozen at -80 °C until processing. Two cores were collected (5 cm 

diameter, 30 cm depth) with a slide hammer corer, and soil was passed through a 4.5 mm sieve. 

Sieved soil was then collected for soil aggregate analysis and nutrient analysis. Soil was stored at 

4 °C until processing. A subsample was taken and stored at – 80 °C for DNA extraction.  

 

 

Table 5.1 The mean five ecosystem services for the entire sampling period with standard 
error in parenthesis by Invasion Level. The portion of invaded biomass for each Invasion 
Level is in parenthesis. Significant differences are denoted by superscripted letters and was 
determined using a one-way ANOVA with results listed below the means. 
 

Invasion 

Level 
Forage Water  Climate 

 Soil 

Conservation 

Nutrient 

Cycling 

Native  

(0-14%) 
79.5 (5.2)b 6.47 (0.2)a 10.39 (0.2)a 8.21 (0.2) 8.47(0.2)a 

Mid  

(15-49% 
85.01 (4.2)b 6.13 (0.2)a 9.72 (0.2)b 7.81 (0.2) 8.06 (0.2)b 

Invaded 

 (50-100%) 
127.8 (6.6)a 5.04 (0.2)b 10.51 (0.2)a 8.14 (0.2) 8.41 (0.3)a 

Df 2 2 2 2 2 

Sum of 

Square 
250937 168 61 16 61 

Mean of 

Square 
125468 83.82 30.29 7.92 30.92 



 

  71 

F  25.89 8.87 4.87 0.82 4.87 

P < 0.001 < 0.001 0.008 0.44 0.008 

      
 

Plant species and litter were collected from a 50 by 50 cm quadrat centered on each plot.  

In each plot, vascular plant species were clipped separately, dried at 60 °C and weighed. Dry 

plant biomass was summed into native, invasive, and total biomass and by functional group to 

obtain a plot measures of plant biomass. Litter was also collected and weighed. Plant biomass 

was adjusted for live versus senesced biomass beginning on August 15th. When clipping, percent 

greenness of the biomass was estimated for each species.  Plant community evenness was 

calculated using the Evar index (Tuomisto 2012). Forage quality (poor, fair, good) was assigned 

for each species using the descriptions using established descriptions (Tannas 2003. Tannas 

2003).  

Samples were initially classified as native or invaded based on an early spring survey, 

however individual plots were later reclassified as native or invaded based on the proportion of 

invaded biomass present. Plots with greater than 50% invaded biomass were classified as 

invaded giving 154 invaded samples. Plots with less than 15% invaded biomass were classified 

as native plots resulting in 189 native samples. Samples with 15-49% invaded biomass were 

classified as mid-level invaded (mid) resulting in 175 mid samples. The dataset was then further 

subdivided into three seasons based on plant biomass with green-up encompassing weeks 1-8 

(May 15 – July 3), peak biomass from weeks 9-18 (July 14- September 10) and senescence from 

weeks 19-26 (September 24 – November 5). 

5.4.2 Ecosystem Services 
 
Climate Regulation  

Following Lamb et al. (2011) concentrations of soil carbon dioxide (CO2), methane (CH4), and 

nitrous oxide (N2O) were measured using vented surface chambers, attached to a DX-4015 

Fourier transform infrared trace gas analyzer (FTIR-TGA, Gasmet Technologies Oy, Helsinki, 

Finland) (Bell et al. 2020).   

Water purification  
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Glyphosate degradation was measured using 13C-labelled glyphosate measured on a Picarro 

G2201-I analyzer. The concentration of 13CO2 from the degradation of glyphosate was calculated 

in nmol per g soil per day (Bell et al. 2020).
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Figure 5.1 Boxplots of the five ecosystem services: Forage Production (A), Water Purification (B), Climate Regulation (C), Soil 
Conservation (D) and Nutrient Cycling (E) by Season and Invasion Level. The box boundaries represent the first and third 
quartiles of the distribution and the median is the horizontal line of raw data. The whiskers represent 1.5 times the 
interquartile range. Significant differences within a season are denoted in white letters.
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Nutrient Cycling  

Soil phosphatase and arylsulfatase analyzed following established methods (Eivazi, F. & 

Tabatabai 1977, Whalen and Warman 1996). Phosphatase was analyzed using 10 mM p-

nitrophenyl and arylsulfatase was analyzed using 100 µL of 10 mM p-nitrophenyl (Bell et al. 

2020). Both reactions were read at 405 nm using an iMark microplate reader (Bio Rad, Hercules, 

California).  Soil dehydrogenase was analyzed following Trevors (184). A solution 0.4% 

Iodonitrotetrazolium chloride solution was used as a substrate and methanol was added to 

quench the reaction (Bell et al. 2020). Samples were read at 480 nm using an iMark microplate 

reader (Bio Rad, Hercules, California).   

Potential nitrification was measured using methods from Carter and Gregorich (2008). 

Briefly a test media which was prepared with 4 mM (NH4)2SO4 as a growth substrate, 15 mM 

NaClO3 as an oxidation inhibitor, and 1 mM KHPO4 as a buffer with 4M KCl to terminate the 

reaction. Nitrite production was measured using a colorimetric method (Bell et al. 2020). The 

plate was then read at 543 nm using an iMark microplate reader (Bio Rad, Hercules, California).   

Microfaunal feeding rates were measured using bait lamina sticks (Hamel et al. 2007). 

Sticks were scanned and the average number of the sixteen holes consumed were counted over 

the three-week period (Kratz 1998, Bell et al 2020).   

Soil Conservation 

Soil moisture content was measured using a Mettler Toledo Moisture Analyzer MJ33 

(Colombus, Ohio). Soil pH was measured by adding 10 ml 0.01 M CaCl2 to 5 g air-dried soil and 

then measured using a pH meter. Total organic carbon and nitrogen and inorganic nitrogen was 

extracted by shaking 10 grams of field fresh soil with 50 ml of 2M KCl (Carter and Gregorich 

2008, Bell et al. 2020). Inorganic and total phosphorous were measured using a modified sodium 

bicarbonate protocol (Carter and Gregorich 2008, Bell et al. 2020). The amount of total and 

inorganic phosphate was determined colorimetrically using the ammonium molybdate-antimony 

potassium tartrate-ascorbic acid method (Carter and Gregorich 2008, Bell et al. 2020). Organic 

phosphorus was calculated as the difference between total extractable and extractable inorganic 

phosphorus. Wet aggregate stability was measured using a method adapted from Soil Sampling 

and Methods of Analysis (Carter and Gregorich 2008, Bell et al. 2020) using an oscillating dual-

layered sieve machine modified (Six et al. 2000).  
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5.4.3 DNA extraction, amplification and sequencing  
 

DNA was extracted from 250 mg rhizosphere soil, soil in direct contact with roots, using 

Qiagen PowerSoil extraction kit (Hilden, Germany) following manufacturer instructions. 

Extraction duplicates were included. After extraction, DNA was tested for quantity following the 

standard Qubit protocol (Thermo Fisher Scientific, Waltham Massachusetts). Prior to 

amplification, DNA was standardized to 1 ng/µl. Bacterial diversity was assessed by amplifying 

the V4 region of the bacterial 16S rRNA was amplified using the primer set 515F with Illumina 

adapters (5’ 

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTGYCAGCMGCCGCGGTAA 3’) 

and the 806R (5’ - GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG GGA CTA CCG 

GGG TAT CT - 3’) (Mori et al. 2014).  Fungal diversity was assessed by amplifying using the 

primer set ITS1F (5’-CTTGGTCATTTAGAGGAAGTAA–3’) and ITS2 (5’-

GCTGCGTTCTTCATCGATGC–3’) (Walters et al. 2015). For exact reaction conditions see 

Bell et al. (2020).  In all cases, PCR product was purified to eliminate primers and impurities 

using 1:1 ratio of Nucleomag NGS clean-up and size select (D-mark Biosciences, Scarborough, 

Ontario). After purification, samples were indexed following the Illumina protocol (Illumina 

2013), purified again to remove excess index primers, quantified and standardized to 4 nM, and 

pooled. Pooled libraries were then sequenced using the Illumina MiSeq platform. 

 

5.4.4 Data Processing  
 

For bacteria, a total of 8,506,841 reads were produced with an average of 12,008 reads 

per sample. Sequences were imported into QIIME2 v 2019.1 (Bolyen et al. 2018) and primers 

were removed using cutadapt (Martin 2011). Reads were then processed into amplicon sequence 

variants (ASVs) using DADA2 (Callahan et al. 2016) resulting in 263,940 ASVs with an average 

of 13,055 ASVs per sample. ASVs were then classified using a 515/806 trained a 342F/806R-

trained V3/V4 SILVA 132 database (Quast et al. 2013).  For fungal sequences, a total of 

12,371,309 reads were generated with an average of 21,478 reads per sample. Fungal primers 

were also imported into QIIME2, primers were removed using cutadapt and sequences were 

sorted into ASVs using DADA2 resulting in a total of 17,374 ASVs with an average of 4,735 
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ASVs per sample. Fungal ASVs were then classified using the Unite Database (Abarenkov et al. 

2010). 

 

 

 

Table 5.2 Effect size of bacterial and fungal assembly on ecosystem services compared to 
season and invasiona.   

 
Forage Water Climate 

Soil 

Conservation 

Nutrient 

Cycling Average Effect Sizec 

Bacteria 2.61% NSb 3.89% 8.98% 5.60% 3.89% 

Fungi 2.74% 3.77% 0.58% NS NS 1.78% 

Season 19.38% 23.67% 54.77% 11.51% 38.08% 27.33% 

Invasion 5.82% NS 0.51% NS NS 1.71% 

aEstimated by the linear model Ecosystem service~bacterial mean βNTI * fungal mean βNTI * 

Season *Treatment for each of the five ecosystem services. 
b Not significant at the p<0.05 for that ecosystem service.  Detailed ANOVA table presented in 

SI Table 3.   
cCalculated as the arithmetic mean of all effect sizes, regardless of significance.   

 

5.4.5 Statistical Analysis  
 
 Potential spatial autocorrelation was examined using Moran’s I (Legendre, and Legendre 

1984). Moran’s I was calculated using the Moran.I function in the R v 4.0.3 (R Core Team 2018) 

package ape (Paradis and Schliep 2019). There was spatial autocorrelation, especially in forage 

biomass measurements, however it was inconsistent and likely due to the inherent heterogenous 

nature of prairie species distributions and invasion patchiness (Bell et al. 2020). Due to these 

factors the spatial autocorrelation was not corrected for the current analysis. Temporal 

autocorrelation was examined using the lm and acf functions (base R). There was no temporal 

autocorrelation detected within each season.  
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 To examine the effect of Invasion Level on bacterial and fungal community composition, 

permutational multivariate analysis of variance (PERMANOVA) was conducted on Bray-Curtis 

distances matrices using the adonis function in the package vegan (Oksanen et al. 2019). Given 

the significant interaction of both Invasion Level and Season as well as the inherent seasonality 

of grassland ecosystems, the decision was made to include the original separation into three 

different seasons for all analysis to better isolate the effects of Invasion Level in addition to 

examining the entire sampling period.  

Bacterial and fungal assembly processes were assessed using the βNTI and RCbray metrics. A 

|βNTI| value greater than two indicates that deterministic selection is occurring, whereas a |βNTI| 

value less than two indicates stochastic processes are dominating.  Mean βNTI and RCbray values 

were calculated for each sampling plot by taking the average of all pairwise observations for a 

plot. For both metrics, the null distribution was set within each Season and Invasion Level for 

both bacteria and fungi. Selection pressures were quantified following Stegen et al. (2013), with 

the use of the βNTI metric in the picante package (comdist, abundance.weighted= TRUE) and 

Bray-Curtis-based Raup-Crick (RCbray) in the iCAMP package v. 1.2.9 (Kembel et al 2010, Ning 

et al. 2020). The difference between the observed βMNTD and the null βMNTD is the βNTI 

metric with the null distribution generated using 999 randomizations. Values of |βNTI| > 2 

indicate that deterministic selection is occurring at a 5% significance level (Stegen et al. 2012). 

βNTI values > 2 were classified as likely p<0.025) heterogenous selection. βNTI values less than 

two were classified as homogeneous selection. Observations |βNTI| < 2 indicated that stochastic 

processes were likely (p<0.025) occurring.  The RCbray  metric is the probability that an ASV 

occurs in a sample compared to the distribution and abundance of the ASV across all samples 

and it uses successive iterations to determine these probabilities. Pairwise comparisons between 

βNTI and RCbray were done to determine the stochastic processes dominating bacterial 

community assembly. Observations with values |βNTI| < 2 and RCbray > +0.95 were classified as 

dispersal limitation and |βNTI| < 2 and RCbray < -0.95 classified as homogenizing dispersal (Ning 

et al. 2020, Lin et al. 2012, Vellend 2010, Web 2000). Pairwise observations not falling within 

the constraints of|βNTI| < 2 or |RCbray| < 0.95 were categorized as drift. Values on falling within 

the limits of|βNTI| < 2 or |RCbray| < 0.95 suggest that a population is weakly experiencing any of 

the processes or that the community is undergoing drift, which is the random division, death or 

mutation of individual community members.   
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To examine which factors influenced deterministic selection processes distance-based 

redundancy analysis (dbRDA) (Legendre and Andersson 1999) was performed on weighted 

UniFrac distance matrices (Lozupone and Knight 2005) using the capscale function in the vegan 

package in R (Oksanen et al. 2019). The UniFrac distances were calculated using the phyloseq 

package (McMurdie and Holmes 2013). UniFrac distances were used to preserve the 

phylogenetic relationships in the communities. All dbRDAs were constrained by invasive 

biomass, water extractable organic carbon, soil pH, field moisture and temperature and 53 µm 

aggregate size.   

Nutrient cycling was combined into a single measure by taking the silhouette widths (Borcard et 

al. 2011) of bait lamina and all extracellular enzymes (phosphatase, arylsulfatase, dehydrogenase 

and potential nitrification) to give each measure equal weight. The silhouette widths were then 

used to create a distance matrix of the Euclidean distances. The mean of all Euclidean distances 

was taken for a given plot giving a mean value for nutrient cycling. Similarly, soil conservation 

was calculated in the exact same manner, but using aggregate weights, field moisture, pH and 

soil nutrients values. 

To examine if ecosystem services varied with Invasion Level and section pressure (βNTI), 

ANCOVAs (analysis of covariance) were used with the basic model consisting of Ecosystem 

Service ~ bacterial βNTI*fungal βNTI *Season*Invasion Level. For the entire sampling season, 

only the Invasion Level by βNTI interaction was included. The decision was made to include 

both fungal and bacterial βNTI values, as well as their associated interaction, as this was the 

most biologically realistic. However, models that did not include the bacterial βNTI by fungal 

βNTI were also run to examine the individual effects of bacterial and fungal assembly processes 

on ecosystem services. Ecosystem services were analyzed by Season and Invasion Level using 

the aov function (base R) as well as by the entire sampling period. Analysis of covariance 

(ANCOVA) was done to assess the response of ecosystem services to mean βNTI values of both 

fungi and bacteria, and Invasion Level using the lm and anova functions (base R). All 

interactions were included as well.  
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Figure 5.2 Mean βNTI values for bacterial (circles) and fungal (triangles) communities 
across all three seasons. Native plots are purple, Mid plots are orange and Invaded plots 
are green. Each point represents at least 34 plots and error bars represent standard error. 
Positive values indicate heterogenous selection is occurring whereas negative values 
indicate homogeneous selection. The gray shaded area indicates a significant deviation 
from the null hypothesis. 

 

 

5.5 Results 
 
 Season was the main driver of both bacterial (p<0.001) and fungal (p<0.001) community 

composition with Invasion Level also altering community composition but not significantly 

interacting with Season (SI Table 1).  The over-riding importance of Season on soil community 

composition is reflected in the relatively small effects of Invasion seen on bacterial βNTI 

compared to Season (Figure 2).  For example, Invasion Level was only significant for bacterial 

assembly during Senescence (p = 0.04) with a mean βNTI difference of 0.3 compared to a 
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Green-up/Peak difference of 0.1.   Season and Invasion were trending (p = 0.056) in fungal 

community composition which is reflected in the large differences between fungal assembly 

processes in Green-Up and Senescence, but not Peak.   

Across the entire growing season, invasion altered ecosystem services (Table 1). Invasion 

increased forage biomass, as expected. Additionally, invasion altered climate regulation, soil 

conservation, water purification and nutrient cycling.  The invasive effects of B. inermis 

interacted with seasons for ecosystem services linked to climate regulation, soil conservation and 

nutrient cycling in the largest impact of invasion seen during the green up season (Figure 1). The 

Green Up season marks an 8 week period in which a northern grassland transitions from a snow 

covered, ~0°C to a vibrant ecosystem at ~30°C where the perennial vegetation becomes active 

again and begins to grow.  Thus, at Peak season, climate regulation, soil conservation and 

nutrient cycling, all show a concerted alteration, but the effects of invasion are muted during 

Peak.  As the ecosystem approaches freeze up and Senescence, invasion once again influences 

climate regulation but has little effect on soil conservation or nutrient cycling. In contrast, Forage 

and Water Purification have consistent Invasion effects across all three Seasons. 

 Bacterial assembly processes were consistently a significant factor in ecosystem service 

provision (Table 2).  As one would expect based on Figure 1, Season had the largest influence 

accounting for ~27% of ecosystem effect size.   What was unexpected, was the non-significant 

and minor influence of Bromus inermis invasion on all ecosystem services except forage 

biomass.  For example, B. inermis invasiveness’s effect size was only 0.34% for nutrient cycling 

compared to 5.6% for bacterial assembly processes.   Fungal assembly played an equally 

important role in forage production as bacterial assembly, but interestingly were a dominant 

effect in water purification whereas bacteria were minor and non-significant (0.06%).  On 

average, bacterial assembly had effect sizes roughly double that of fungal assembly or B. inermis 

invasion.     

Homogenous selection accounted for greater than 50% of bacterial assembly processes, 

with a strong Seasonal increase in selection pressure during Peak (Fig 3 A-C).   Invasion 

processes did not interact with this Seasonal effect but increased in processes ascribed to 

dispersal limitation which ranged from 6 to 23% of assembly processes.   A similarly strong 

Seasonal effect, and weaker Invasion effect on bacterial community composition was reflected in 

the PERMANOVA analysis (SI Table 1).  Interestingly, Native plots had a much larger increase 
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in the proportion of heterogenous selection and homogenizing dispersal in during the Senescence 

period than the Mid and Invaded plots from 0% during Peak to 5.5% during Senescence.  

 The primary selection pressure, > 50%, in all fungal communities across all seasons were 

the stochastic processes of drift and dispersal limitation (Figure 3).  Unlike bacteria, Invasion 

Level had a much more pronounced effect on assembly processes with native plots having the 

highest level of deterministic selection pressure, namely heterogenous selection across all three 

Seasons.  Heterogenous selection, ~ 10%, was much lower during Green-Up in Invaded plots 

and during Peak in Mid plots compared to the other seasons.  The Season by Invasion level 

interaction was also reflected in the community composition.     

Bacterial deterministic assembly pressures were greater in Invaded (~22%) compared to 

Native (16%) with the smallest effect seen during Senescence (Fig 4). Aggregate size, soil pH, 

field moisture and temperature, soil carbon and invasive biomass explained more than 15% of 

deterministic assembly processes for all bacterial communities. Soil pH consistently had the 

most explanatory power of soil community composition followed closely by soil moisture.   In 

Mid invaded plots, temperature and 53 µm aggregate weight were also significant constraints on 

microbial community composition.   Invasive biomass constrained bacterial community in 

Native plots during Green-up season and Invaded plots during Peak biomass.   

In contrast to bacteria, fungal deterministic assembly pressures were greater in Native 

(~18%) compared to Invaded (13%) with the greatest effect seen during Senescence (SI Fig 3).  

Aggregate size, soil pH, field moisture and temperature, soil carbon and invasive biomass 

explained wide amount of fungal community variation from the lowest at 8% in Invaded-Peak 

Biomass plots to the highest at 28% in Native-Senescence plots (SI Fig 3). Not unsurprisingly, 

aggregate size was more important for fungal communities than bacteria and was significant (p > 

0.05) for Invaded plots during Green-up, Mid plots (SI Fig B, E, H) during Peak Biomass and 

Senescence as well as Native plots during Senescence. Soil pH and moisture were less 

consistently important for fungal communities.  
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Figure 5.3 Ecological assembly processes in the bacterial (A-C) and fungal (D-F) 
communities across all seasons in Native plots (A, D), Mid plots (B, E) and Invaded Plots 
(C, F).  Deterministic processes were classified as heterogenous selection (βNTI > 2) or 
homogeneous selection (βNTI < -2). Stochastic processes were classified as homogeneous 
dispersal (|βNTI| < 2 and RCbray < -0.95) or dispersal limitation (|βNTI| < 2 and RCbray > 
+0.95). Pairwise observations within the confines of |βNTI| < 2 and |RCbray| < 0.95 were 
classified as drift. 
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5.6 Discussion 

 
 The largest determinant of variation in ecosystem services as well as microbial 

community assembly processes was Season. Northern grasslands are highly seasonal, 

experiencing large fluctuations in temperature, moisture, and plant biomass (Falge et al. 2002) 

which account for the large seasonal shift observed in this study. This is consistent with previous 

results that show that ecosystem services provided by grasslands change substantially with 

seasons (Paruelo et al. 2016). While it may seem obvious that seasonality affects ecosystem 

services, alterations in the seasonality of some of these services could change the severity of 

invasion. For example, Prevéy and Seastedt (2014) found that altering the timing of precipitation, 

something that is expected to happen with climate change (Alexander et al. 2001), increased the 

amount of invasive grass cover and lowered summer soil moisture and nutrients (soil 

conservation). This could mean that with the changing in seasonal cycles caused by climate 

change, the impact of invasive species could be amplified, especially as the growing season in 

temperate areas is expected to lengthen (Christiansen et al. 2011).   

After season, bacterial assembly processes dominated the provision of ecosystem services 

linked to climate regulation, soil conservation and nutrient cycling.  All three of these services 

are tightly linked to bacterial activity, such as CH4 and N2O emissions or the excretion of 

phosphatases.   We had hypothesized that B. inermis invasion would alter assembly processes, 

leading to changes in bacterial communities which would then lead to altered ecosystem 

processes.   Instead, we observed a process in which B. inermis invasion had a small ~2% direct 

effect on ecosystem services, and a modest effect on bacterial community assembly.  Only ~20% 

of community composition could be ascribed to deterministic filters which hindered our ability 

to conclusively link invasion to assembly processes.  
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Figure 5.4 Bacterial distance-based redundancy analysis (dbRDA) of the weighted UniFrac distances during Green-up (A-C), 

Peak Biomass (D-F), and Senescence (G-I) for Native plots (A, D, G), Mid plots (B, E, H), and Invaded plots (C, F, I). All 

dbRDAs were constrained by were constrained by 53 µm aggregate weight, soil pH, field moisture, invasive biomass, field 

temperature and water extractable organic carbon content. Significant terms are indicated by a red box around the term. 
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Despite the small effects of invasion on bacterial assembly, bacterial assembly had a 

large effect ~4% on ecosystem services. One might conceptualize this as an amplification of the 

invasive effect, in which plant invasion only slightly changes overall bacterial community 

composition and assembly, but in so doing amplifies the effects on ecosystem services.   In turn, 

the feedback from altered ecosystems promotes B. inermis invasion, leading to more slight 

changes in assembly (Fig. 5).    These amplification loop example, B. inermis homogenizes the 

local plant community which invasion alters local nitrogen and nutrient cycling (Piper et al. 

2015, inermis homogenization of local plant communities which would alter nutrient cycling as 

well (Stotz et al. 2019, Li et al. 2018).) as well as fungal/bacterial networks (Mamet et al 2017.) 

leading to an increase in bacterial richness (Piper et al. 2015).  Invasive species can perpetuate 

their invasion through the alteration of local nutrient cycling, microbial and plant communities, 

and soil conditions (Mack et al. 2000, Ehrenfeld 2003, Vilà et al. 2011) and it is becoming 

increasingly clear that this is the mechanism that B. inermis uses to continue to spread. Changes 

in soil microbial communities and nutrient cycling caused by B. inermis could have long term 

impacts which can cause a loss of agricultural capacity and other ecosystem services.  

 The largest determinant of both bacterial and fungal assembly processes was season. 

However, within each season, Invaded plots had a higher proportion of dispersal limitation than 

Native plots. The greater water requirements of B. inermis leading to drier soils would impede 

movement of bacteria or fungal spores along water pores and root surfaces (Watt et al. 2006).  

Soil moisture was a significant determinant of both bacterial and fungal community composition 

throughout the growing season.  This impediment of movement caused by drier soil may be the 

explanation of  rare bacterial species increasing in abundance and increasing intra-trophic 

interactions as dispersal would be limited leading to more dissimilar communities (Piper et al. 

2015).   The higher proportion of fungal heterogeneous selection in Invaded plots as well as the 

higher proportion of homogenous selection in Mid fungal plots is consistent with this 

conceptualization of how B. inermis alters soil microbial communities (Piper et al. 2015, Piper et 

al. 2015, Mamet et al. 2017, Mamet et al. 2019).  

 Across Season and Invasion Level, fungal communities weakly experienced deterministic 

selection (Stegen et al 2015). Furthermore, the amount of variation captured by the dbRDAs was 

smaller for fungal communities, suggesting the environmental filters, which act as strong 

selection pressures (Nemergut 2013), did not have as large of an influence on fungal 
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communities as they did on bacterial communities. As noted in the introduction, the extension of 

the null-model hypothesis to fungal communities is not as strongly supported as it is for bacterial 

communities and thus, interpretations of fungal assembly processes should be considered as  

 
Figure 5.5 A conceptual feedback loop wherein the invasion can alter the existing soil 
microbial community assembly processes leading to differences in diversity, evenness and 
functionality (1. Lamb et al. 2011). Stochastic and deterministic processes then impact 
community structure which can feedback through the deterministic processes of inter and 
intraspecific competition to perpetuate the changed community (2. Van der Putten et al. 
2007). Changes in soil microbial community structure can both perpetuate the invasion (3. 
Inderjit and van der Putten 2010) and alter local ecosystem services (4. Hawkes et al. 2005). 
Altered ecosystem services can then create plant-soil feedbacks which will also perpetuate 
the invasion (5. Levine et al. 2006).  
 

tentative.  The different mean βNTI values by Invasion Level as well as the differences in 

community composition with Season and Invasion Level does suggest that B. inermis is 

influencing the soil fungal communities. Additionally, both the Mid and Invaded plots had a 
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larger proportion of heterogenous selection that Native plots suggesting that the fungal 

communities here are undergoing selection for more distinct communities (Zhou and Ding 

2017). Invasive grasses have been shown repeatedly to disrupt native fungal communities and 

nutrient cycling (Egerton-Warburton et al. 2007, Hawkes et al. 2006, Bunn et al. 2015). For 

example, Phillips et al. (2019) found that the invasive grass Bromus diandrus and Avena fatua 

altered the composition of fungi and nitrogen cycling in chaparral ecosystems. The influence of 

B. inermis can also be seen in the mean βNTI values as well. Mid plots, or plots with 15-49% 

invaded biomass, diverged from both Native and Invaded plots across all seasons but particularly 

during Peak Biomass when the influence of B. inermis would have been at its strongest. This 

deviation of the Mid Plots from both the Native and Invaded plots suggests that the presence of 

B. inermis is disrupting normal assembly processes. This is consistent with previous work which 

has shown that B. inermis leads to a reduction in fungal diversity (Mamet et al. 2017).  

Here we showed that bacterial assembly processes are a significant factor in ecosystem 

service provision, more important than invasion status or fungal assembly processes.  However, 

the large stochastic component in microbial communities, ca. 80%, as well as spatial scale 

(Graham et al. 2016), hinders attributing ecosystem services to specific changes in microbial 

community structure and assembly processes.  At this 130-hectare site, after seasonal effects, 

bacterial assembly processes had the largest effect on ecosystem services with plant invasion 

placing a distant third.  We are perplexed by this, as we, believed that above plant invasive 

biomass would be dominant factor, after season on the ecosystem services.  Instead, as is often 

the case, nature has surprised and suggested that these grassland dynamics are more subtle than 

we ever imagined.   Invasive plants change plant-soil feedbacks in a manner that will perpetuate 

the invasion (Ven der Putten et al. 2013, Zhang et al. 2019) as well as evidence that invasive 

species drastically alter ecosystem services (Pejchar and Mooney 2009, Pyšek et al. 2010, Vilà et 

al. 2011, Walsh et al. 2016).  But this mechanism of altering ecosystem services is not occurring 

by altering bacterial assembly.  Instead, bacterial assembly processes are influencing ecosystem 

services in a manner, independent of B. inermis biomass.   Perhaps in this case, the invasion 

whole is much greater than the sum of its invasive parts? 

 

Data Availability 
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All raw sequence files can be found at the National Center for Biotechnology Information 

(NCBI) under Bioproject PRJNA580515. Compiled soil physical and chemical properties, along 

with plant survey data and other ecosystem services can be found in the Dryad repository, along 

with the ASVs estimates (doi:10.5061/dryad.1ns1rn8q7).  

 

 

6. SYNTHESIS AND CONCLUSIONS 
 

6.1 Dissertation Overview  
 

Microbial community assembly processes are the ecological pressures that shape microbial 

community composition and distribution (Kraft and Ackerly 2014). More colloquially, assembly 

processes are how communities grow and change over space and time. Harnessing the 

microbiome to improve crop performance and increase yield is necessary to improve agricultural 

sustainability but we need understand how the microbiome assembles first (Chaparro et al. 2012. 

Busby et al. 2017). Once we understand the shaping forces, we can manipulate them to select for 

more robust microbial communities. Along with agricultural intensification, climate change is 

expected to increase disturbance and cause plants to shift their ranges. These changes will also 

alter soil microbial assembly processes and having a more complete understanding of them will 

help with remediation efforts (Van der Putten et al. 2013, Graham et al. 2016). Understanding 

how natural ecosystems compare to disturbed systems not only provides a baseline for 

remediation efforts, it will also provide a more complete understanding of how microbial 

communities operate in general.  

The key findings from my research are that no matter the degree of complexity of the system, 

time is the most important factor shaping microbial community assembly processes. Time is 

represented by the growth of plants which will occur on a cyclical and annual basis. With each 

new growing season, a new cycle of time will begin again, and the assembly processes will start 

anew. At the simplest level examined, the canola leaf, growth stage, or in other words, time, was 

the key factor shaping the microbial community. At the next level of complexity, the canola root 

and rhizosphere we saw the same dominance of growth stage, with the strongest selection 

pressures occurring during seed set and ripening. Finally, at the highest level of complexity, soil 
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microbial communities in a grassland undergoing invasion, the primary factor shaping both 

community assembly processes and ecosystem services was season, or once again, time. Overall, 

this dissertation highlighted that time is the primary force driving microbial community assembly 

processes and plant or other environmental factors are secondary.  

 
6.2 Synthesis of Findings  
 

 This dissertation was designed to look at the impact of plants on microbial community 

assembly processes at increasing levels of complexity. The first two studies were designed to 

examine the effect of line differences of Brassica napus on the associated microbiome. We used 

eight different lines that were selected with an emphasis on their differences. For these two 

studies, we sampled the leaves, roots, and rhizosphere of the eight lines over a period of ten 

weeks. The final study was designed to examine the effects of Bromus inermis invasion on soil 

microbial community assembly processes and ecosystem services. Despite the intention to 

examine the effects of plants, we found that at each level of complexity, from the simplest (the 

canola leaf) to the most complex (the grassland) the dominant factor shaping microbial 

community assembly processes was time. In the first two studies, time was represented by B. 

napus growth stage. In the final study, time was represented by the seasonal differences in the 

grassland.  

 The leaf surface is an exceptionally harsh environment for microbial communities. These 

communities must contend with large daily fluctuations in UV stress, water and nutrient 

availability as well as huge shifts in temperature (Vacher et al. 2016). Due to these stressors, the 

phyllosphere is less diverse than soil microbial communities and is primarily dominated by 

bacteria (Vorholt 2012, Bulgarelli et al. 2013). The lower level of diversity makes this nutrient 

poor environment the least complex environment on the plant in which to study assembly 

processes. Additionally, because of these factors, we found that the primary force shaping 

microbial communities in the phyllosphere in B. napus was drift or diversification. The constant 

fluctuations in environmental conditions likely act as daily disturbances which does not allow of 

any sort of community stability to be achieved. Due to the near constant disruption, deterministic 

processes like inter- or intraspecific competition would not be able to be fully realized as 

bacterial species are simply trying to survive the disturbance.  
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 B. napus growth stage was the primary factor shaping the bacterial community in the 

phyllosphere. There was a strong effect of growth stage on community composition and 

assembly processes. Plant growth stage has been shown previously to be an important factor 

shaping microbial communities (Smalla et al. 2001, Schlatter et al. 2019, Copeland et al. 2015). 

There was a distinct shift in community composition of the core bacteria before and after 

flowering (Bell et al. 2020). This change in composition was again reflected in the second study, 

where we found a shift from heterogenous selection before flowering to homogenous selection 

after flowering. The switch in selection pressures and the following change in community 

composition was most likely due to the rapidly senescing leaves on the B. napus plants. A shift 

from more function diversity to a more homogenous community, which probably represents 

saprotrophs colonizing the dying leaf, was observed (Bell et al. 2020).  

 The root and rhizosphere are more diverse than the phyllosphere. However, despite the 

increase in diversity, drift was the primary force shaping root communities during the first four 

weeks of sampling. We also observed a dominance of Gammaproteobacteria from the first 

sampling date. This could suggest that there are priority effects wherein the assembly is 

governed by the arrival order of species (Fukami and Nakajima 2011).  Once the 

Gammproteobacteria had established themselves, they could have stopped other species from 

colonizing the root through competitive exclusion (Tan et al. 2015). Mostly likely the 

unexpectedly large portion of drift seen in the roots is a combination of both priority effects and 

competitive exclusion. Unlike the root, the rhizosphere followed expectations and was primarily 

dominated by deterministic effect, namely homogenous selection. This was most likely the 

rhizosphere effect in action (Philippot et al. 2013, Smalla et al. 2001, Gregory 2006).  

 While the leaf, root and rhizosphere all exhibited different selection pressures as well as 

varying community composition, growth stage and not NAM was the primary determinant of 

both composition and selection. This was surprising because the NAM lines had been 

specifically selected to emphasize genetic differences and plant line is known to affect microbial 

community composition (Edwards et al. 2015, Colemam-Derr et al. 2016, Dombrowski et al. 

2017). The lack of line differences is likely a B. napus specific effect as previous work has 

shown little difference in canola line (Copeland et al. 2015, Morales Moreira et al. 2021). 

Despite no NAM differences, we did find a strong influence of canola growth stage in all plant 

compartments. Growth stage, or time, has also shown to affect the microbiome (Colemam-Derr 
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et al. 2016, Dombrowski et al. 2017, Copeland et al. 2015, Hilton et al. 2018). This is not 

surprising, as plants undergo large physiological changes throughout their lifecycles which 

cause changes in leaf structure and root exudate patterns as well as other changes that would 

impact the microbiome (Nitsch 1965, Mohan Ram and Rao 1984, Shu et al. 2010).   

The plant microbiome provides many benefits for the plant including disease suppression 

and nutrient cycling (Bulgarelli et al. 2013) and breeding plants to have a more robust 

microbiome has been suggested to achieve more sustainable agriculture (Ryan et al. 2009). 

Assuming that the plant is actively selecting for beneficial microbes, periods of time where 

strong selection processes are seen could make good targets for plant breeding efforts. For 

example, altering flowering start or duration might allow the phyllosphere community to 

maintain the potential functional diversity that was observed (Bell et al. 2020) which could 

provide increased disease resistance to the plants as most canola diseases are aerially transmitted. 

 In the most complex system analyzed, the Kernen prairie, time was once against the 

largest determinant of microbial community assembly and structure, as well as ecosystem 

services. This system was much more complex than the previously analyzed agricultural systems 

because it is a natural ecosystem that has much higher plant diversity and more complex 

intertrophic interactions. Time in this system, while the largest determinant, is more complex 

than in agriculture systems. The prairie consists of many perennial species which green-up and 

grow much more slowly than planted crops. Furthermore, there is no firm end date to the 

growing season as unless used as pasture, the prairie will not be harvested like agricultural 

systems, but rather will naturally senescence as temperatures and day length decline. Due to 

these differences, time here is not represented as crop growth stage, but rather as season. More 

specifically, this study is split into Green-up, Peak Biomass and Senescence.  

Initially we hypothesized that the amount of invasive biomass would be the primary 

determinant of differences in assembly, composition, and ecosystem services between native 

and invaded plots. However, once again, it was time, or season that played the largest role. 

While the amount of invasive biomass present did interact with season, most differences 

observed in both assembly processes and ecosystem services was attributed to Season and not 

to Invasion Level. Deterministic selection in the form of homogenous selection was strongest 

during the Peak biomass season, when the influence of the plants would be at their strongest. 

However, despite this strong selection, we saw few differences between the Invasion Levels. In 
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fungal communities, selection processes were disrupted by Invasion Level. Invaded plots 

experienced a higher overall proportion of heterogenous selection, which steadily declined 

from Green-up to Senescence. Fungi in native plots resembled bacterial more, in that fungi in 

these plots, experienced the strongest deterministic selection during Peak Biomass. Mid level 

plots resembled Invaded plots more closely, suggesting that Invasion is having a disruptive 

effect on fungal communities. However, despite differences in fungal assembly processes 

caused by Invasion Level, the largest factor shaping both bacterial and fungal assembly and 

composition was time in the form of seasonal differences.  

Ecosystem services varied largely from season to season as well. Season captured an 

average of 27% of the variation in ecosystem services. Surprisingly, the factor that captured 

the most variation after Season was bacterial assembly processes which accounted for ~4%. 

The amount of invasive biomass only accounted for ~2% of the variation in ecosystem 

services, which was like the amount captured by fungal assembly processes. This was contrary 

to our hypothesis where we expected invasive biomass to play a larger role in shaping both 

ecosystem services and microbial community composition and assembly. While invasive 

biomass was not the most important factor, invasive species have been shown to alter both soil 

microbial communities and ecosystem services (Van der Putten et al. 2013), both of which can 

perpetuate the invasion, so the effects of invasion still warrant study. 

 
 
6.3 Future Research Directions 
 
 Future agricultural and natural studies on soil microbial community assembly processes 

would benefit from additional sampling time points. While sampling and processing can be both 

expensive and time consuming, the main factor driving assembly processes in this dissertation 

was time. Most studies consist of very limited time points, making it hard to infer assembly 

processes accurately. Assembly processes do not occur instantaneously, and limited sampling 

points can only offer a snapshot. Ideally, especially in the study of climate change, long term 

data consisting of annual repeated sampling would take place. Long-term sampling coupled 

extensive environmental data would allow for a much more complete understanding of microbial 

community assembly processes and the factors that shape them. Additionally, with an 

increasingly unstable climate (Alexander et al. 2001), a better understanding of inter-annual 
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variation which is likely to become more prevalent will help us understand and eventually 

predict microbial community assembly processes. Relevant environmental data should be 

included with increase sampling to determine, at least partially, what is influencing the observed 

assembly processes. Ideally, this would include measurements such as soil nutrients and texture 

as well as plant cover and meteorological data.  

In addition to more sampling, future projects should implement study and manipulation 

of root exudates. Root exudation are likely the primary factor in recruitment and retention in 

rhizosphere community assembly (Chaparro et al. 2013). Working closely with plant breeders to 

manipulate the quantity and quality of root exudation could provide useful clues on how this 

vital food source impacts microbial community assembly. Moreover, mesocosm experiments 

wherein no plant is present, but an isolated root exudate compound is added could help further 

disentangle how specific compounds impact assembly processes and composition as well as 

ecosystem services such as microbial respiration and decomposition. For natural ecosystems, 

plots or a greenhouse study could be implemented where commonly found species in are planted 

in a full factorial design from monoculture to the most diverse which would include all focus 

plants. This design would allow for a more complete understanding of how individual plants and 

combinations of plants influence assembly processes and ecosystem services. For both the 

mesocosm and greenhouse experiments, multiple sampling points should be included across the 

growing season for the plants or approximating the same time period for the soil only 

mesocosms. For agricultural studies, the inclusion of multiple plant species will not be necessary 

as the majority of crops are grown in monocultures. However, multiple lines should be included, 

and their root exudation patterns should be both examined and if possible manipulated.  

Coupling 16S rRNA data with qPCR and RNA sequencing would provide an even more 

complete picture of microbial community assembly processes. While 16S rRNA data can give an 

idea of what is there, it is impossible to know if these bacteria are alive or how abundant they 

are. qPCR data would provide an estimation of the bacteria numbers in the sample and RNA data 

would give an idea of what is currently active. The 16S rRNA will give an approximation of the 

selection pressures that the community is undergoing. The qPCR and RNA sequencing data will 

give an idea of how the community is responding to these pressures. For example, if the 

community is experiencing heterogenous selection at high rates we would expect the community 

to become more similar and perhaps less diverse. Are the numbers of bacterial going down or are 
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certain species becoming more dominant? The qPCR data would help answer these questions. 

Are there genes associated with antibiotic resistance and stress that are elevated? This could be a 

sign of increased competition which could be the cause of the homogenous selection observed 

from the 16S rRNA data. This increase in competition might lead to more similar communities 

as only the fittest would survive, validating the homogenous selection previously observed. This 

could be applied to answer any number of questions on how microbial communities respond to 

various disturbances, imposed or natural. For example, tracking plant invasions from year to 

year, a site undergoing restoration, soil microbial communities after a recent fire or at a field site 

undergoing moisture or temperature manipulation. They would also work well for agricultural 

manipulations such as fertilizer or tillage trials or intercropping experiments. Combining all the 

techniques will provide us with a much more thorough understanding of how microbial 

communities assemble which can hopefully lead to the more efficient manipulation and 

management of microbial communities.  
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APPENDIX 1 
 

Supplemental information for Chapter 3 

 

Table A1.1: Summary of the NAM lines used in this study, including sources from 
Agrifood and Agriculture Canada (AAFC), United States Department of Agriculture 
(USDA) and Plant Gene Resources of Canada (PGRC) and seed trait qualities.  
 
 
    Seed Quality Traits  

NAM 

Code  
Source Origin 

 

Seed  

Color 

Fiber 
Low 

Erucic 

Low 

Glucosinolate 

NAM 0 AAFC Canada Black Low X X 

NAM 13  Germany Black High X X 

NAM 17 AAFC Canada Black Low X X 

NAM 32 PGRC South Korea Black  X  

NAM 37  Australia Black High X  

NAM 43 USDA Bangladesh Black    

NAM 72 AAFC Canada Yellow Very Low X X 

YN04 AAFC Canada Black Very Low X X 

 
 
 
 
Table A1.2: Summary of the taxonomoy of core phyllosphere members. Yellow represents 
the core, which is always present throughout the growing season. Orange represents the 
members present before or during flowering. Blue represents the members present after 
flowering, during pod development and ripening. 
 

k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Oxalobacteraceae; g__Massilia    
k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Pseudomonadales; f__Pseudomonadaceae; g__Pseudomonas; s__viridiflava    Core 

k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Oxalobacteraceae; g__Massilia    
Flowering 
Core 

k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Oxalobacteraceae; g__Massilia    Pod Core 
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k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Oxalobacteraceae; g__Massilia    
k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Enterobacteriales; f__Enterobacteriaceae; g__Pantoea    
k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Pseudomonadales; f__Pseudomonadaceae; g__Pseudomonas; s__viridiflava    
k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Pseudomonadales; f__Pseudomonadaceae; g__Pseudomonas; s__viridiflava    
k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Pseudomonadales; f__Pseudomonadaceae; g__Pseudomonas; s__viridiflava    
k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Enterobacteriales; f__Enterobacteriaceae; g__Pantoea    
k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Pseudomonadales; f__Pseudomonadaceae; g__Pseudomonas; s__viridiflava    
k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Enterobacteriales; f__Enterobacteriaceae; g__Pantoea    
k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Pseudomonadales; f__Pseudomonadaceae; g__Pseudomonas; s__viridiflava    
k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Enterobacteriales; f__Enterobacteriaceae; g__Pantoea    
k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Pseudomonadales; f__Pseudomonadaceae; g__Pseudomonas; s__viridiflava    
k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Oxalobacteraceae; g__Massilia    
k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Oxalobacteraceae; g__Massilia    
k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Enterobacteriales; f__Enterobacteriaceae; g__Pantoea    
k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Pseudomonadales; f__Pseudomonadaceae; g__Pseudomonas; s__viridiflava    
k__Bacteria; p__Bacteroidetes; c__Sphingobacteriia; o__Sphingobacteriales; f__Sphingobacteriaceae; g__Pedobacter; s__    
k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Pseudomonadales; f__Pseudomonadaceae; g__Pseudomonas; s__viridiflava    
k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Oxalobacteraceae; g__Massilia    
k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Pseudomonadales; f__Pseudomonadaceae; g__Pseudomonas; s__viridiflava    
k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Oxalobacteraceae; g__Massilia    
k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Oxalobacteraceae; g__Massilia    
k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; f__[Exiguobacteraceae]; g__Exiguobacterium; s__    
k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; f__[Exiguobacteraceae]; g__Exiguobacterium; s__    
k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Pseudomonadales; f__Pseudomonadaceae; g__Pseudomonas; s__viridiflava    
k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Oxalobacteraceae; g__Massilia    
k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; f__[Exiguobacteraceae]; g__Exiguobacterium; s__    
k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; f__[Exiguobacteraceae]; g__Exiguobacterium; s__    
k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; f__[Exiguobacteraceae]; g__Exiguobacterium; s__    
k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Pseudomonadales; f__Pseudomonadaceae; g__Pseudomonas; s__viridiflava    
k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Oxalobacteraceae; g__Massilia    
k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Pseudomonadales; f__Pseudomonadaceae; g__Pseudomonas; s__viridiflava    
k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Oxalobacteraceae; g__Massilia    
k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Enterobacteriales; f__Enterobacteriaceae; g__Pantoea    
k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Pseudomonadales; f__Pseudomonadaceae; g__Pseudomonas    
k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Pseudomonadales; f__Pseudomonadaceae; g__Pseudomonas    
k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Pseudomonadales; f__Pseudomonadaceae; g__Pseudomonas    
k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Enterobacteriales; f__Enterobacteriaceae; g__Pantoea    
k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Micrococcaceae; g__Arthrobacter    
k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Pseudomonadales; f__Pseudomonadaceae; g__Pseudomonas; s__fragi    
k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Micrococcaceae; g__Arthrobacter    
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k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Enterobacteriales; f__Enterobacteriaceae; g__Pantoea    
k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Micrococcaceae; g__Arthrobacter    
k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Micrococcaceae; g__Arthrobacter    
k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Micrococcaceae; g__Arthrobacter    
k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Micrococcaceae; g__Arthrobacter    
k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Oxalobacteraceae    
k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Micrococcaceae; g__Arthrobacter    
k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Oxalobacteraceae; g__Massilia    
k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Oxalobacteraceae; g__Massilia    
k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Pseudomonadales; f__Pseudomonadaceae; g__Pseudomonas; s__    
k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Pseudomonadales; f__Pseudomonadaceae; g__Pseudomonas; s__    
k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Pseudomonadales; f__Pseudomonadaceae; g__Pseudomonas    
k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Oxalobacteraceae; g__Massilia    
k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Xanthomonadales; f__Xanthomonadaceae; g__Stenotrophomonas    
k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Pseudomonadales; f__Pseudomonadaceae; g__Pseudomonas; s__    
k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Pseudomonadales; f__Pseudomonadaceae; g__Pseudomonas; s__    
k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Pseudomonadales; f__Pseudomonadaceae; g__Pseudomonas    
k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Micrococcaceae; g__Arthrobacter    
k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Micrococcaceae; g__Arthrobacter    
k__Bacteria; p__Bacteroidetes; c__Sphingobacteriia; o__Sphingobacteriales; f__Sphingobacteriaceae; g__Pedobacter; s__    
k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Micrococcaceae; g__Arthrobacter    
k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Micrococcaceae; g__Arthrobacter    
k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; f__Bacillaceae; g__Bacillus; s__longiquaesitum    
k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Micrococcaceae; g__Arthrobacter    
k__Bacteria; p__Planctomycetes; c__Phycisphaerae; o__WD2101; f__; g__; s__    
k__Bacteria; p__Verrucomicrobia; c__[Spartobacteria]; o__[Chthoniobacterales]; f__[Chthoniobacteraceae]; g__DA101; s__    
k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; f__Bacillaceae; g__Bacillus; s__flexus    
k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Xanthomonadales; f__Sinobacteraceae; g__; s__    
k__Bacteria; p__Bacteroidetes; c__Sphingobacteriia; o__Sphingobacteriales; f__Sphingobacteriaceae; g__Mucilaginibacter; s__composti    
k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Sphingomonadales; f__Sphingomonadaceae; g__Kaistobacter; s__    
k__Bacteria; p__Bacteroidetes; c__Sphingobacteriia; o__Sphingobacteriales; f__Sphingobacteriaceae; g__Pedobacter; s__    
k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Propionibacteriaceae; g__Microlunatus; s__    
k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Micrococcaceae; g__Arthrobacter    
k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Mycobacteriaceae; g__Mycobacterium; s__vaccae    
k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Pseudomonadales; f__Pseudomonadaceae; g__Pseudomonas    
k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Oxalobacteraceae    
k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Oxalobacteraceae    
k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__SC-I-84; f__; g__; s__    
k__Bacteria; p__Bacteroidetes; c__[Saprospirae]; o__[Saprospirales]; f__Chitinophagaceae; g__; s__    
k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Pseudomonadales; f__Pseudomonadaceae; g__Pseudomonas; s__    
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k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Micrococcaceae; g__Arthrobacter    
k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhizobiales; f__Bradyrhizobiaceae    
k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Nitrosomonadales; f__Nitrosomonadaceae; g__Nitrosovibrio; s__tenuis    
k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Propionibacteriaceae; g__Propionibacterium; s__acnes    
k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Micrococcaceae; g__Arthrobacter    
k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Micrococcaceae; g__Arthrobacter    
k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Propionibacteriaceae; g__Microlunatus; s__    
k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Streptomycetaceae; g__Streptomyces; s__mirabilis    
k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhizobiales; f__Rhizobiaceae    
k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Propionibacteriaceae; g__Microlunatus; s__    
k__Bacteria; p__Verrucomicrobia; c__[Spartobacteria]; o__[Chthoniobacterales]; f__[Chthoniobacteraceae]; g__DA101; s__    
k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Pseudomonadales; f__Pseudomonadaceae; g__Pseudomonas; s__    
k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Burkholderiaceae; g__Burkholderia; s__bryophila    
k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Propionibacteriaceae; g__Microlunatus; s__    
k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; f__Bacillaceae; g__Bacillus; s__longiquaesitum    
k__Bacteria; p__Chloroflexi; c__Ellin6529; o__; f__; g__; s__    
k__Bacteria; p__Chloroflexi; c__Ellin6529; o__; f__; g__; s__    
k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Xanthomonadales; f__Xanthomonadaceae; g__Rhodanobacter; s__    
k__Bacteria; p__Actinobacteria; c__Thermoleophilia; o__Gaiellales; f__Gaiellaceae; g__; s__    
k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhizobiales; f__Bradyrhizobiaceae    
k__Bacteria; p__Verrucomicrobia; c__[Spartobacteria]; o__[Chthoniobacterales]; f__[Chthoniobacteraceae]; g__DA101; s__    
k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Oxalobacteraceae    
k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Nitrosomonadales; f__Nitrosomonadaceae; g__Nitrosovibrio; s__tenuis    
k__Bacteria; p__Verrucomicrobia; c__[Spartobacteria]; o__[Chthoniobacterales]; f__[Chthoniobacteraceae]; g__DA101; s__    
k__Bacteria; p__Planctomycetes; c__Phycisphaerae; o__WD2101; f__; g__; s__    
k__Bacteria; p__Chloroflexi; c__Ellin6529; o__; f__; g__; s__    
k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Oxalobacteraceae    
k__Bacteria; p__Verrucomicrobia; c__[Spartobacteria]; o__[Chthoniobacterales]; f__[Chthoniobacteraceae]; g__DA101; s__    
k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__SC-I-84; f__; g__; s__    
k__Bacteria; p__Verrucomicrobia; c__[Spartobacteria]; o__[Chthoniobacterales]; f__[Chthoniobacteraceae]; g__DA101; s__    
k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhizobiales; f__Rhizobiaceae    
k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Sphingomonadales; f__Sphingomonadaceae; g__Kaistobacter; s__    
k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Oxalobacteraceae    
k__Bacteria; p__Planctomycetes; c__Phycisphaerae; o__WD2101; f__; g__; s__    
k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Sphingomonadales; f__Sphingomonadaceae; g__Kaistobacter; s__    
k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhizobiales; f__Bradyrhizobiaceae    
k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__SC-I-84; f__; g__; s__    
k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; f__Bacillaceae; g__Bacillus; s__muralis    
k__Bacteria; p__Verrucomicrobia; c__[Spartobacteria]; o__[Chthoniobacterales]; f__[Chthoniobacteraceae]; g__DA101; s__    
k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; f__Bacillaceae; g__Bacillus; s__flexus    
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k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhizobiales; f__Methylobacteriaceae; g__Methylobacterium    
k__Bacteria; p__Bacteroidetes; c__[Saprospirae]; o__[Saprospirales]; f__Chitinophagaceae; g__; s__    
k__Bacteria; p__Planctomycetes; c__Phycisphaerae; o__WD2101; f__; g__; s__    
k__Bacteria; p__Verrucomicrobia; c__[Spartobacteria]; o__[Chthoniobacterales]; f__[Chthoniobacteraceae]; g__DA101; s__    
k__Bacteria; p__Bacteroidetes; c__[Saprospirae]; o__[Saprospirales]; f__Chitinophagaceae; g__; s__    
k__Bacteria; p__Bacteroidetes; c__[Saprospirae]; o__[Saprospirales]; f__Chitinophagaceae; g__; s__    
k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Geodermatophilaceae    
k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Pseudomonadales; f__Pseudomonadaceae; g__Pseudomonas    
k__Bacteria; p__Chloroflexi; c__Ktedonobacteria; o__Ktedonobacterales; f__Ktedonobacteraceae    
k__Bacteria; p__Chloroflexi; c__Ellin6529; o__; f__; g__; s__    
k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Sphingomonadales; f__Sphingomonadaceae; g__Kaistobacter; s__    
k__Bacteria; p__Verrucomicrobia; c__[Spartobacteria]; o__[Chthoniobacterales]; f__[Chthoniobacteraceae]; g__DA101; s__    
k__Bacteria; p__Bacteroidetes; c__[Saprospirae]; o__[Saprospirales]; f__Chitinophagaceae    
k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Sphingomonadales; f__Sphingomonadaceae; g__Kaistobacter; s__    
k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Nocardioidaceae; g__Kribbella; s__    
k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhizobiales; f__Bradyrhizobiaceae    
k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Sphingomonadales; f__Sphingomonadaceae; g__Kaistobacter; s__    
k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhizobiales; f__Bradyrhizobiaceae    
k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhizobiales; f__Bradyrhizobiaceae    
k__Bacteria; p__Bacteroidetes; c__[Saprospirae]; o__[Saprospirales]; f__Chitinophagaceae; g__; s__    
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Figure A1.1: Distance-based redundancy analysis (dbRDA) of the weighted UniFrac 
distances (A) and unweighted UniFrac distances (B) of the core bacterial community, 
across the entire 10-week sampling period, constrained by BBCH stage x NAM (biplots). 
Points are colored based on canola growth stage.  
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Figure A1.2: Rarefaction curves of all samples 
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APPENDIX 2 
 

Supplemental information for Chapter 4 
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Figure A2.1: Relative abundance of bacterial communities on the leaf, root and rhizosphere 
over the ten week sampling period. Color represent bacterial classes and the growth stage 
of B. napus is indicated by the dotted line. 
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Table A3.1: Weekly diversity indices for the leaf, root and rhizosphere over the ten sampling weeks 
 
 

  

Leaf 
Developme

nt   Bolting 
Flowerin

g  

Seed 
Developme

nt     
Ripenin

g  
  Week 3 4 5 6 7 8 9 10 11 12 

Leaf 

Pielou's 
Evennes

s 0.9 0.9 0.9 0.9 0.5 0.7 0.7 0.8 0.8 0.9 

 ACE 37.7 53.5 60.6 62.3 50.3 32.2 29.8 33.9 20.6 17.9 

 
Inverse 

Simpson 20.8 18.2 21.7 20.1 13.9 13.6 7.4 9.8 7.6 8.1 

Root 

Pielou's 
Evennes

s 0.9 0.8 0.8 0.7 0.7 0.7 0.7 0.8 0.8 0.8 

 ACE 11.0 3.8 13.7 20.9 22.2 27.6 24.7 29.2 34.7 30.6 

 
Inverse 

Simpson 4.7 2.4 4.7 6.3 6.0 6.2 6.9 8.6 11.7 9.9 

Rhizospher
e 

Pielou's 
Evennes

s 0.9 0.8 0.6 0.6 0.6 0.7 0.7 0.8 0.7 0.8 

 ACE 426.7 461.2 299.9 281.2 252.7 315.8 364.4 389.6 491.6 466.1 

  
Inverse 

Simpson 127.0 64.3 25.1 11.8 14.6 18.4 24.3 29.3 42.1 45.7 
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Table A2.2: Weekly PERMANOVAs of the effect of NAM line on leaf bacterial 

communities.  

Leaf       
       

  Df Sum of Sq 

Mean 

Sq 

F. 

Model R2 P 

Week 3       
NAM 7.00 0.14 0.02 1.05 0.34 0.39 

Residuals  14.00 0.27 0.02  0.66  

Total 21.00 0.42   1.00  

       
Week 4       
NAM 7.00 2.35 0.34 0.98 0.26 0.48 

Residuals  20.00 6.87 0.34  0.74  

Total 27.00 9.22   1.00  

       
Week 5       
NAM 7.00 1.38 0.20 0.69 0.17 0.98 

Residuals  24.00 6.86 0.29  0.83  

Total 31.00 8.24   1.00  

       
Week 6       
NAM 7.00 1.94 0.28 0.71 0.12 0.99 

Residuals  38.00 14.86 0.39  0.88  

Total 45.00 16.79   1.00  

       
Week 7       
NAM 7.00 1.75 0.25 1.18 0.25 0.22 

Residuals  25.00 5.29 0.21  0.75  

Total 32.00 7.04   1.00  

       
Week 8       
NAM 7.00 1.12 0.16 0.86 0.22 0.69 

Residuals  21.00 3.92 0.19  0.78  

Total 28.00 5.04   1.00  

       
Week 9       
NAM 7.00 1.14 0.16 0.53 0.12 0.99 

Residuals  28.00 8.57 0.31  0.88  

Total 35.00 9.72   1.00  
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Week 10       
NAM 7.00 1.52 0.22 0.61 0.10 0.98 

Residuals  38.00 13.61 0.36  0.90  

Total 45.00 15.13   1.00  

       
Week 11       
NAM 7.00 0.65 0.09 1.34 0.34 0.15 

Residuals  18.00 1.25 0.07  0.66  

Total 25.00 1.90   1.00  

       
Week 12       
NAM 6.00 1.64 0.27 1.01 0.28 0.43 

Residuals  16.00 4.32 0.27  0.72  

Total 22.00 5.96   1.00  

 

 

 

 

 

 

 

Table A2.3: Weekly PERMANOVAs of the effect of NAM line on root bacterial 

communities.  

Root Df Sum of Sq 

Mean 

Sq 

F. 

Model R2 P 

Week 3       
NAM 7.00 2.73 0.39 0.86 0.25 0.95 

Residuals  18.00 8.15 0.45  0.75  

Total 25.00 10.88   1.00  

       
Week 4       
NAM 7.00 3.94 0.56 1.26 0.30 0.01 

Residuals  21.00 9.41 0.45  0.70  

Total 28.00 13.35   1.00  

       
Week 5       
NAM 7.00 3.17 0.45 1.03 0.29 0.34 

Residuals  18.00 7.89 0.44  0.71  

Total 25.00 11.06   1.00  
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Week 6       
NAM 7.00 2.65 0.38 1.13 0.29 0.14 

Residuals  19.00 6.34 0.33  0.71  

Total 26.00 8.98   1.00  

       
Week 7       
NAM 7.00 4.40 0.63 2.22 0.23 0.00 

Residuals  51.00 14.46 0.28  0.77  

Total 58.00 18.86   1.00  

       
Week 8       
NAM 7.00 2.36 0.34 0.97 0.27 0.60 

Residuals  18.00 6.24 0.35  0.73  

Total 25.00 8.59   1.00  

       
Week 9       
NAM 7.00 2.60 0.36 1.14 0.30 0.14 

Residuals  19.00 6.01 0.32  0.70  

Total 26.00 8.54   1.00  

       
Week 10       
NAM 7.00 2.45 0.35 1.00 0.24 0.47 

Residuals  22.00 7.71 0.35  0.76  

Total 29.00 10.16   1.00  

       
Week 11       
NAM 7.00 2.61 0.37 0.98 0.28 0.59 

Residuals  18.00 6.83 0.38  0.72  

Total 25.00 9.44   1.00  

       
Week 12       
NAM 7.00 2.71 0.39 1.10 0.30 0.20 

Residuals  18.00 6.37 0.35  0.70  

Total 25.00 9.08   1.00  

 

 

Table A2.4: Weekly PERMANOVAs of the effect of NAM line on soil bacterial 

communities.  

 

Soil Df Sum of Sq 

Mean 

Sq 

F. 

Model R2 P 
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Week 3       
NAM 7.00 2.55 0.36 1.08 0.27 0.20 

Residuals  21.00 7.06 0.34  0.73  

Total 28.00 9.61   1.00  

       
Week 4       
NAM 7.00 2.84 0.41 1.18 0.27 0.04 

Residuals  22.00 7.56 0.34  0.73  

Total 29.00 10.40   1.00  

       
Week 5       
NAM 7.00 2.54 0.36 1.10 0.29 0.23 

Residuals  19.00 6.25 0.33  0.71  

Total 26.00 8.79   1.00  

       
Week 6       
NAM 7.00 2.39 0.34 1.25 0.32 0.05 

Residuals  19.00 5.17 0.27  0.68  

Total 26.00 7.55   1.00  

       
Week 7       
NAM 7.00 4.10 0.59 2.61 0.28 0.00 

Residuals  46.00 10.30 0.22  0.72  

Total 53.00 14.39   1.00  

       
Week 8       
NAM 7.00 2.15 0.31 1.09 0.29 0.20 

Residuals  19.00 5.35 0.28  0.71  

Total 26.00 7.50   1.00  

       
Week 9       
NAM 7.00 2.09 0.30 1.14 0.27 0.09 

Residuals  21.00 5.51 0.36  0.73  

Total 28.00 7.60   1.00  

       
Week 10       
NAM 7.00 2.26 0.32 1.26 0.29 0.02 

Residuals  22.00 5.63 0.26  0.71  

Total 29.00 7.89   1.00  
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Week 11       
NAM 7.00 2.01 0.29 0.93 0.25 0.71 

Residuals  19.00 5.85 0.31  0.75  

Total 26.00 7.85   1.00  

       
Week 12       
NAM 7.00 1.98 0.28 1.15 0.30 0.07 

Residuals  19.00 4.69 0.25  0.70  

Total 26.00 6.68     1.00   

 

 

 

 

Table A2.5: Two-way ANOVA for the effect of B. napus line (NAM) and growth stage 

(BBCH) on the BNTI values for the leaf, root and rhizosphere over the ten week sampling 

period. There were no significant interactions so they were not included in the final model.  

    Df 

Sum of 

Sq Mean Sq 

F 

value P 

Leaf NAM 7.00 25.40 3.63 1.56 0.15 

 BBCH 31.00 531.60 17.15 7.35 <0.0001 

 Residuals  246.00 573.80 2.33   
       

Root NAM 7.00 7.80 1.11 1.02 0.42 

 BBCH 32.00 159.18 4.97 5.69 <0.0001 

 Residuals  267.00 418.00 1.57   
       

Rhizopshere NAM 7.00 27.53 3.93 3.94 <0.0001 

 BBCH 32.00 209.30 6.54 6.56 <0.0001 

  Residuals  266.00 265.42 1.00     
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APPENDIX 3 
 

Supplemental information for Chapter 5 

 

 

Table A3.1: PERMANOVA results of the influence of Level of Invasion (Treatment) and 

Season on the total bacterial and fungal communities and the influence of Invasion Level 

(Treatment) on seasonal communities. 

 

  Df 

Sums of 

Sqs Mean Sqs F. Model R2 P 

       
    Bacterial Community Composition     

Season 2 3.10 1.55 6.45 0.02 0.001 

Treatment 2 0.74 0.37 1.53 0.01 0.008 

Season*Treatment 4 1.15 0.29 1.20 0.01 0.072 

Residuals  518 124.44 0.24  0.96  

Total 526 129.43   1.00  

       
       
    Fungal Community Composition     

Season 2 2.91 1.46 3.10 0.01 0.001 

Treatment 2 1.11 0.55 1.18 0.00 0.024 

Season*Treatment 4 2.04 0.51 1.09 0.01 0.059 

Residuals  514 241.34 0.05  0.98  

Total 522 247.40   1.00  

       
       
    Seasonal Bacterial Community Composition   

Green-up       
Treatment 2 0.62 0.31 0.31 0.01 0.065 

Residuals 173 40.88 0.24  0.99  

Total 175 41.49   1.00  

       
       
Peak       
Treatment 2 0.62 0.31 1.29 0.01 0.087 

Residuals 211 50.48 0.24  0.99  

Total 213 51.10   1.00  
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Senescence        
Treatment 2 0.65 0.33 1.32 0.02 0.043 

Residuals 134 33.09 0.25  0.98  

Total 136 33.74   1.00  

       
       
    Seasonal Fungal Community Composition   

Green-up       
Treatment 2 1.01 0.51 1.09 0.01 0.014 

Residuals 171 79.14 0.46  0.99  

Total 173 80.15   1.00  

       
       
Peak       
Treatment 2 1.13 0.57 1.23 0.01 0.021 

Residuals 208 95.87 0.46  0.99  

Total 210 97.00   1.00  

       
       
Senescence        
Treatment 2 1.00 0.50 1.02 0.01 0.318 

Residuals 135 66.33 0.49  0.99  

Total 137 67.33   1.00  
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Table A3.2: The percentage of each ecological assembly processes for bacterial and fungal 

communities in Native, Invaded and Mid plots during green-up, peak biomass and 

senescence. This table accompanies Figure 3 in the main text.  

 

Organism Treatment Season Process Percent 

Bacteria Invaded Green-up Dispersal Limitation 22.59 

Bacteria Invaded Green-up Drift 19.16 

Bacteria Invaded Green-up 

Heterogenous 

Selection 0.11 

Bacteria Invaded Green-up 

Homogenizing 

Dispersal 0.55 

Bacteria Invaded Green-up 

Homogenous 

Selection 57.59 

Bacteria Invaded Peak Dispersal Limitation 10.83 

Bacteria Invaded Peak Drift 12.72 

Bacteria Invaded Peak 

Heterogenous 

Selection 0.07 

Bacteria Invaded Peak 

Homogenizing 

Dispersal 1.47 

Bacteria Invaded Peak 

Homogenous 

Selection 74.91 

Bacteria Invaded Senescence  Dispersal Limitation 19.38 

Bacteria Invaded Senescence  Drift 9.77 

Bacteria Invaded Senescence  

Heterogenous 

Selection 1.36 

Bacteria Invaded Senescence  

Homogenizing 

Dispersal 2.54 

Bacteria Invaded Senescence  

Homogenous 

Selection 66.95 

Bacteria Mid Green-up Dispersal Limitation 14.43 

Bacteria Mid Green-up Drift 15.36 

Bacteria Mid Green-up 

Heterogenous 

Selection 2.22 

Bacteria Mid Green-up 

Homogenizing 

Dispersal 0.93 

Bacteria Mid Green-up 

Homogenous 

Selection 67.07 

Bacteria Mid Peak Dispersal Limitation 8.07 

Bacteria Mid Peak Drift 9.22 

Bacteria Mid Peak 

Heterogenous 

Selection 2.12 

Bacteria Mid Peak 

Homogenizing 

Dispersal 1.63 

Bacteria Mid Peak 

Homogenous 

Selection 78.93 
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Bacteria Mid Senescence  Dispersal Limitation 20.67 

Bacteria Mid Senescence  Drift 11.61 

Bacteria Mid Senescence  

Heterogenous 

Selection 0.12 

Bacteria Mid Senescence  

Homogenizing 

Dispersal 2.56 

Bacteria Mid Senescence  

Homogenous 

Selection 65.04 

Bacteria Native Green-up Dispersal Limitation 14.01 

Bacteria Native Green-up Drift 13.35 

Bacteria Native Green-up 

Heterogenous 

Selection 0.55 

Bacteria Native Green-up 

Homogenizing 

Dispersal 0.38 

Bacteria Native Green-up 

Homogenous 

Selection  71.71 

Bacteria Native Peak  Dispersal Limitation 5.96 

Bacteria Native Peak  Drift 10.54 

Bacteria Native Peak  

Heterogenous 

Selection 0.04 

Bacteria Native Peak  

Homogenizing 

Dispersal 3.06 

Bacteria Native Peak  

Homogenous 

Selection  80.4 

Bacteria Native Senescence  Dispersal Limitation 13.28 

Bacteria Native Senescence  Drift 16.81 

Bacteria Native Senescence  

Heterogenous 

Selection 5.55 

Bacteria Native Senescence  

Homogenizing 

Dispersal 5.88 

Bacteria Native Senescence  

Homogenous 

Selection  58.49 

Fungi Invaded Green-up Dispersal Limitation 8.64 

Fungi Invaded Green-up Drift 36.7 

Fungi Invaded Green-up 

Heterogenous 

Selection 37.73 

Fungi Invaded Green-up 

Homogenizing 

Dispersal 0.68 

Fungi Invaded Green-up 

Homogenous 

Selection 16.25 

Fungi Invaded Peak Dispersal Limitation 4.14 

Fungi Invaded Peak Drift 52.32 

Fungi Invaded Peak 

Heterogenous 

Selection 31.86 
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Fungi Invaded Peak 

Homogenizing 

Dispersal 0.36 

Fungi Invaded Peak 

Homogenous 

Selection 11.32 

Fungi Invaded Senescence  Dispersal Limitation 2.57 

Fungi Invaded Senescence  Drift 55.41 

Fungi Invaded Senescence  

Heterogenous 

Selection 39.8 

Fungi Invaded Senescence  

Homogenizing 

Dispersal 0.18 

Fungi Invaded Senescence  

Homogenous 

Selection 2.05 

Fungi Mid Green-up Dispersal Limitation 9.53 

Fungi Mid Green-up Drift 47.83 

Fungi Mid Green-up 

Heterogenous 

Selection 27.84 

Fungi Mid Green-up 

Homogenizing 

Dispersal 0.56 

Fungi Mid Green-up 

Homogenous 

Selection 14.25 

Fungi Mid Peak Dispersal Limitation 16.47 

Fungi Mid Peak Drift 51.56 

Fungi Mid Peak 

Heterogenous 

Selection 7.33 

Fungi Mid Peak 

Homogenizing 

Dispersal 0.46 

Fungi Mid Peak 

Homogenous 

Selection 24.18 

Fungi Mid Senescence  Dispersal Limitation 3.46 

Fungi Mid Senescence  Drift 65.13 

Fungi Mid Senescence  

Heterogenous 

Selection 27.82 

Fungi Mid Senescence  

Homogenizing 

Dispersal 0.26 

Fungi Mid Senescence  

Homogenous 

Selection 3.33 

Fungi Native Green-up Dispersal Limitation 10.53 

Fungi Native Green-up Drift 53.04 

Fungi Native Green-up 

Heterogenous 

Selection 11.3 

Fungi Native Green-up 

Homogenizing 

Dispersal 0.37 

Fungi Native Green-up 

Homogenous 

Selection 24.76 

Fungi Native Peak Dispersal Limitation 9.76 
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Fungi Native Peak Drift 44.12 

Fungi Native Peak 

Heterogenous 

Selection 33.59 

Fungi Native Peak 

Homogenizing 

Dispersal 1.28 

Fungi Native Peak 

Homogenous 

Selection 11.25 

Fungi Native Senescence  Dispersal Limitation 6.72 

Fungi Native Senescence  Drift 74.96 

Fungi Native Senescence  

Heterogenous 

Selection 15.8 

Fungi Native Senescence  

Homogenizing 

Dispersal 0 

Fungi Native Senescence  

Homogenous 

Selection 2.52 

 

 

 

 

 

 

 

Table A3.3: The results of the ANCOVA on bacterial and fungal mean βNTI values 

together with the basic model consisting of lm(Service~ bacterial βNTI* fungal 

βNTI*Season *Treatment) where Treatment is Level of Invasion.  

 

Forage      

 Df Sum Sq Mean Sq F P 

Bac BNTI 1 70660 70660 18.74 < 0.05 

Fun BNTI 1 73993 73993 19.62 < 0.05 

Season 2 524307 262154 69.52 < 0.05 

Treatment 2 157404 78702 20.87 < 0.05 

Bac*Fun 1 4588 4588 1.21 0.27 

Bac*Season 2 7290 3645 0.97 0.38 

Fun*Season 2 4104 2052 0.54 0.58 

Bac*Treatment 2 14398 7199 1.91 0.15 

Fun*Treatment 2 2650 1325 0.35 0.7 

Season*Treatment 4 26299 6575 1.74 0.14 

Bac*Fun*Season 2 4466 2233 0.59 0.55 

Bac*Fun*Treatment 2 11253 5627 1.49 0.23 

Bac*Treat*Season 4 7957 1989 0.53 0.72 

Fun*Season*Treatment 4 2388 597 0.16 0.96 

4x 4 5555 1389 0.37 0.83 
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Residuals 474 1787402 3771   

      

      

      

Glyphosate      

      

Bac BNTI 1 3.2 3.2 0.45 0.5 

Fun BNTI 1 187.6 187.6 25.99 < 0.05 

Season 2 1178.8 589.41 81.66 < 0.05 

Treatment 2 14.2 7.09 0.98 0.38 

Bac*Fun 1 0.2 0.22 0.03 0.86 

Bac*Season 2 27.4 13.69 1.89 0.15 

Fun*Season 2 10.2 5.09 0.71 0.49 

Bac*Treatment 2 18 8.99 1.25 0.29 

Fun*Treatment 2 28.9 14.47 2 0.14 

Season*Treatment 4 6.7 1.66 0.23 0.92 

Bac*Fun*Season 2 20.6 10.29 1.43 0.24 

Bac*Fun*Treatment 2 17.6 8.8 1.22 0.3 

Bac*Treat*Season 4 19.8 4.95 0.69 0.6 

Fun*Season*Treatment 4 34.9 8.71 1.21 0.31 

4x 4 19.4 4.85 0.67 0.61 

Residuals  3392.3 7.22   

      

      

Climate      

      

Bac BNTI 1 125.81 125.81 55.47 < 0.05 

Fun BNTI 1 18.73 18.73 8.26 < 0.05 

Season 2 1769.22 884.61 390.06 < 0.05 

Treatment 2 16.59 8.3 3.66 < 0.05 

Bac*Fun 1 5.88 5.88 2.59 0.11 

Bac*Season 2 14.2 7.1 3.13 < 0.05 

Fun*Season 2 23.24 11.62 5.12 < 0.05 

Bac*Treatment 2 26.29 13.15 5.79 < 0.05 

Fun*Treatment 2 21.11 10.55 4.66 < 0.05 

Season*Treatment 4 44.73 11.18 4.93 < 0.05 

Bac*Fun*Season 2 0.16 0.08 0.04 0.97 

Bac*Fun*Treatment 2 16.53 8.26 3.64 < 0.05 

Bac*Treat*Season 4 25.76 6.44 2.84 < 0.05 

Fun*Season*Treatment 4 35.14 8.79 3.87 < 0.05 
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4x 4 7.41 1.85 0.81 0.51 

Residuals  1079.5 2.27   

      

      

Soil      

      

Bac BNTI 1 902.8 902.8 83.9 < 0.05 

Fun BNTI 1 2.9 2.9 0.27 0.6 

Season 2 1157 578.5 53.76 < 0.05 

Treatment 2 21 10.52 0.98 0.38 

Bac*Fun 1 30.3 30.32 2.81 0.09 

Bac*Season 2 1180.9 590.47 54.87 < 0.05 

Fun*Season 2 33.4 16.71 1.55 0.21 

Bac*Treatment 2 461 230.51 21.42 < 0.05 

Fun*Treatment 2 7.7 3.83 0.36 0.7 

Season*Treatment 4 504.2 126.04 11.71 < 0.05 

Bac*Fun*Season 2 88.9 44.46 4.13 < 0.05 

Bac*Fun*Treatment 2 37.3 18.67 1.73 0.18 

Bac*Treat*Season 4 415.7 130.94 9.66 < 0.05 

Fun*Season*Treatment 4 41.8 10.45 0.97 0.42 

4x 4 47.7 11.92 1.11 0.35 

Residuals  5122 10.76   

      

      

Nutrient      

      

Bac BNTI 1 293.53 293.53 57.49 < 0.05 

Fun BNTI 1 8.26 8.26 1.62 0.2 

Season 2 1996.53 998.27 195.51 < 0.05 

Treatment 2 17.72 8.86 1.73 0.18 

Bac*Fun 1 17.97 17.97 3.52 0.06 

Bac*Season 2 9.33 4.66 0.91 0.40 

Fun*Season 2 18.64 9.32 1.83 0.16 

Bac*Treatment 2 87.99 43.99 8.62 < 0.05 

Fun*Treatment 2 0.37 0.18 0.04 0.96 

Season*Treatment 4 56.4 14.1 2.76 < 0.05 

Bac*Fun*Season 2 0.67 0.33 0.07 0.94 

Bac*Fun*Treatment 2 47.3 23.65 4.63 < 0.05 

Bac*Treat*Season 4 200.69 50.17 9.82 < 0.05 

Fun*Season*Treatment 4 51.66 12.92 2.53 < 0.05 
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4x 4 5.4 1.35 0.26 0.9 

Residuals  2430.47 5.11   

 

 

 

 

Table A3.4: The results of the ANCOVA on bacterial mean βNTI values with the basic 

model consisting of lm(Service~ bacterial βNTI *Season *Treatment) where Treatment is 

Level of Invasion. 

 

Bacteria       
      
Forage      
 Df Sum Sq Mean Sq F  P 

BNTI 1 70097 70097 18.89 < 0.05 

Treatment 2 253832 126916 34.21 < 0.05 

Season 2 496587 248293 66.92 < 0.05 

BNTI*Treatment 2 16267 8133 2.19 0.11 

BNTI*Season 2 10028 5014 1.35 0.26 

Treatment*Season 4 27367 6842 1.84 0.12 

3x Interaction 4 10235 2559 0.69 0.6 

Residuals 494 1832829 3710   
      
      
Water      
      
BNTI 1 3.2 3.2 0.44 0.51 

Treatment 2 167.6 83.79 11.55 < 0.05 

Season 2 1190.3 595.13 82.01 < 0.05 

BNTI*Treatment 2 5.9 2.96 0.41 0.67 

BNTI*Season 2 36.3 18.17 2.5 0.08 

Treatment*Season 4 4.1 1.03 0.14 0.97 

3x Interaction 4 23.9 5.97 0.82 0.51 

Residuals 494 3548.6 7.26   
      
      
      
      
CO2      
      
BNTI 1 128.09 128.09 51.11 < 0.05 
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Treatment 2 106.24 53.12 21.2 < 0.05 

Season 2 1674.5 837.25 334.08 < 0.05 

BNTI*Treatment 2 20.99 10.49 4.19 < 0.05 

BNTI*Season 2 25.74 12.87 5.14 < 0.05 

Treatment*Season 4 12.94 3.24 1.29 0.27 

3x Interaction 4 25.56 6.39 2.55 < 0.05 

Residuals 494 1243.03 2.51   
      
      
      
Soil      
      
BNTI 1 913.3 913.3 84.11 < 0.05 

Treatment 2 43.3 21.66 1.99 0.14 

Season 2 1136.9 568.44 53.35 < 0.05 

BNTI*Treatment 2 368.9 184.43 16.99 < 0.05 

BNTI*Season 2 1227.5 613.75 56.53 < 0.05 

Treatment*Season 4 558.3 139.59 12.86 < 0.05 

3x Interaction 4 442.5 110.62 10.19 < 0.05 

Residuals 494 5385.6 10.86   
      
      
      
Nutrients      
      
BNTI 1 300.28 300.28 56.09 < 0.05 

Treatment 2 66.1 33.05 6.17 < 0.05 

Season 2 1959.44 979.72 183 < 0.05 

BNTI*Treatment 2 40.17 20.08 3.75 < 0.05 

BNTI*Season 2 7.8 3.9 0.73 0.48 

Treatment*Season 4 67.32 16.83 3.14 < 0.05 

3x Interaction 4 170.09 42.52 7.94 < 0.05 

Residuals 494 2655.38 5.35   
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Table A3.5: The results of the ANCOVA on fungal mean βNTI values with the basic model 

consisting of lm(Service~ fungal βNTI *Season *Treatment) where Treatment is Level of 

Invasion 

 

 

Fungi      
      
Forage      
 Df Sum Sq Mean Sq F  P 

BNTI 1 95829 95829 25.66 < 0.05 

Treatment 2 172250 86125 23.06 < 0.05 

Season 2 557452 278726 74.63 < 0.05 

BNTI*Treatment 2 6491 3246 0.87 0.42 

BNTI*Season 2 4687 2343 0.63 0.53 

Treatment*Season 4 25196 6299 1.69 0.15 

3x Interaction 4 5182 1295 0.35 0.85 

Residuals 492 1387629 3735   
      
      
Water      
      
BNTI 1 175.9 175.9 24.21 < 0.05 

Treatment 2 74.7 37.36 5.16 < 0.05 

Season 2 1124 562.02 77.67 < 0.05 

BNTI*Treatment 2 37.5 18.76 2.59 0.07 

BNTI*Season 2 4.6 2.31 0.32 0.73 

Treatment*Season 4 9.1 2.28 0.32 0.87 

3x Interaction 4 22.6 5.66 0.78 0.54 

Residuals 492 3531.1 7.24   
      
      
      
      
CO2      
      
BNTI 1 6.45 6.45 0.27 0.1 

Treatment 2 54.73 27.36 11.46 < 0.05 

Season 2 1867.06 933.53 391.03 < 0.05 

BNTI*Treatment 2 38.1 19.05 7.98 < 0.05 

BNTI*Season 2 21.78 10.89 4.56 < 0.05 

Treatment*Season 4 32.92 8.23 3.45 < 0.05 
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3x Interaction 4 29.9 7.47 3.13 < 0.05 

Residuals 492 1179.36 2.39   
      
      
      
Soil      
      
BNTI 1 40.3 40.3 2.46 0.12 

Treatment 2 2.6 1.32 0.08 0.92 

Season 2 1820.1 910.05 55.7 < 0.05 

BNTI*Treatment 2 11.1 5.57 0.34 0.71 

BNTI*Season 2 27.1 13.54 0.83 0.44 

Treatment*Season 4 37 9.25 0.57 0.69 

3x Interaction 4 45.9 11.48 0.7 0.59 

Residuals 492 8070.7 16.34   
      
      
      
Nutrients      
      
BNTI 1 30.16 30.16 5.23 < 0.05 

Treatment 2 31.41 15.7 2.72 0.06 

Season 2 2253.53 1126.77 195.53 < 0.05 

BNTI*Treatment 2 8.83 4.42 0.77 0.46 

BNTI*Season 2 19.23 9.61 1.67 0.19 

Treatment*Season 4 8.98 2.25 0.39 0.81 

3x Interaction 4 44.09 11.02 1.91 0.11 

Residuals 492 2846.68 5.76   
 

 

 

 

 

 

 

 

 

 

Table A3.6: The results of the seasonal ANCOVA on bacterial and fungal mean βNTI 

values together with the basic model consisting of lm(Service~ bacterial βNTI* fungal 

βNTI*Treatment) where Treatment is Level of Invasion.  
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Green-up      

Forage      

      

 Df Sum Sq Mean Sq F  P 

Bac BNTI 1.00 514.00 514.00 0.45 0.50 

Fun BNTI 1.00 264.00 263.70 0.23 0.63 

Treatment 2.00 38702.00 193351.20 16.94 < 0.05 

Bac*Fun 1.00 24.00 24.40 0.02 0.88 

Bac*Treatment 2.00 7675.00 3837.70 3.36 < 0.05 

Fun*Treatment 2.00 3515.00 1757.70 1.54 0.22 

3x 2.00 1263.00 631.30 0.55 0.58 

Residuals 157.00 179337.00 1142.30   

      

      

Water      

      

      

Bac BNTI 1.00 2.61 2.61 0.30 0.58 

Fun BNTI 1.00 17.12 17.12 1.99 0.16 

Treatment 2.00 8.23 4.12 0.48 0.62 

Bac*Fun 1.00 1.10 1.09 0.13 0.72 

Bac*Treatment 2.00 8.86 4.43 0.51 0.60 

Fun*Treatment 2.00 18.27 9.13 1.06 0.35 

3x 2.00 29.47 17.74 1.71 0.18 

Residuals 157.00 1327.14 8.62   

      

      

CO2      

      

      

Bac BNTI 1.00 2.45 2.45 0.77 0.39 

Fun BNTI 1.00 14.96 14.96 0.47 < 0.05 

Treatment 2.00 58.82 29.41 9.22 < 0.05 

Bac*Fun 1.00 1.33 1.33 0.42 0.52 

Bac*Treatment 2.00 39.37 19.68 6.17 < 0.05 

Fun*Treatment 2.00 26.50 13.25 4.15 < 0.05 

3x 2.00 2.32 1.16 0.36 0.69 

Residuals 157.00 504.10 3.19   
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Soil      

      

      

Bac BNTI 1.00 0.07 0.07 0.01 0.94 

Fun BNTI 1.00 0.40 0.40 0.04 0.86 

Treatment 2.00 15.70 7.85 0.74 0.48 

Bac*Fun 1.00 15.70 15.68 1.48 0.23 

Bac*Treatment 2.00 311.04 155.52 14.63 < 0.05 

Fun*Treatment 2.00 43.12 21.56 2.03 0.13 

3x 2.00 3.02 1.51 0.14 0.87 

Residuals 157.00 1679.31 10.63   

      

      

Nutrient      

      

      

Bac BNTI 1.00 0.07 0.07 0.01 0.94 

Fun BNTI 1.00 0.43 0.43 0.04 0.85 

Treatment 2.00 16.74 8.37 0.74 0.48 

Bac*Fun 1.00 16.74 16.73 1.48 0.22 

Bac*Treatment 2.00 331.70 165.85 14.63 < 0.05 

Fun*Treatment 2.00 45.99 22.99 2.03 0.14 

3x 2.00 3.23 1.62 0.14 0.86 

Residuals 157.00 1791.33 11.34   

      

      

Peak      

Forage      

      

      

Bac BNTI 1.00 5969.00 5969.00 1.71 0.19 

Fun BNTI 1.00 3261.00 3260.60 0.93 0.34 

Treatment 2.00 36583.00 18291.30 5.23 < 0.05 

Bac*Fun 1.00 1135.00 1134.60 0.32 0.57 

Bac*Treatment 2.00 10594.00 5297.20 1.52 0.22 

Fun*Treatment 2.00 90.00 45.00 0.01 0.99 

3x 2.00 7722.00 3861.00 1.10 0.33 

Residuals 195.00 681422.00 3494.50   
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Water      

      

      

Bac BNTI 1.00 26.03 26.03 3.11 0.07 

Fun BNTI 1.00 34.39 34.39 4.11 < 0.05 

Treatment 2.00 2.83 1.42 0.17 0.84 

Bac*Fun 1.00 0.32 0.32 0.04 0.84 

Bac*Treatment 2.00 22.03 11.01 1.31 0.27 

Fun*Treatment 2.00 25.02 12.51 1.50 0.23 

3x 2.00 17.51 8.75 1.05 0.35 

Residuals 195.00 1631.49 8.37   

      

      

CO2      

      

      

Bac BNTI 1.00 0.03 0.03 0.17 0.68 

Fun BNTI 1.00 0.01 0.01 0.06 0.81 

Treatment 2.00 0.01 0.01 0.04 0.96 

Bac*Fun 1.00 0.02 0.02 0.09 0.76 

Bac*Treatment 2.00 0.12 0.06 0.29 0.75 

Fun*Treatment 2.00 1.98 0.99 0.47 < 0.05 

3x 2.00 0.27 0.13 0.63 0.54 

Residuals 195.00 41.69 0.21   

      

      

Soil      

      

      

Bac BNTI 1.00 1403.86 1403.86 87.63 < 0.05 

Fun BNTI 1.00 10.21 10.21 0.63 0.43 

Treatment 2.00 92.10 46.05 2.87 0.06 

Bac*Fun 1.00 167.83 167.83 10.48 < 0.05 

Bac*Treatment 2.00 933.04 466.52 29.12 < 0.05 

Fun*Treatment 2.00 8.01 4.00 0.25 0.78 

3x 2.00 46.96 23.48 1.47 0.23 

Residuals 195.00 3140.09 16.02   
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Nutrient      

      

      

Bac BNTI 1.00 2.74 2.74 1.70 0.19 

Fun BNTI 1.00 5.10 5.10 3.16 0.08 

Treatment 2.00 10.66 5.33 3.30 < 0.05 

Bac*Fun 1.00 0.07 0.07 0.05 0.83 

Bac*Treatment 2.00 1.93 0.96 0.60 0.55 

Fun*Treatment 2.00 1.22 0.61 0.38 0.68 

3x 2.00 2.24 1.12 0.69 0.50 

Residuals 195.00 316.32 1.61   

      

      

Senescence       

Forage      

      

      

Bac BNTI 1.00 451.00 451.00 0.06 0.81 

Fun BNTI 1.00 7791.00 7791.00 1.03 0.31 

Treatment 2.00 122905.00 61452.00 8.09 < 0.05 

Bac*Fun 1.00 2884.00 2884.00 0.38 0.54 

Bac*Treatment 2.00 3360.00 1680.00 0.22 0.80 

Fun*Treatment 2.00 4033.00 2016.00 0.27 0.77 

3x 2.00 938.00 469.00 0.06 0.94 

Residuals 122.00 926643.00 7595.00   

      

      

Water      

      

      

Bac BNTI 1.00 7.02 7.02 1.96 0.16 

Fun BNTI 1.00 0.42 0.42 0.12 0.73 

Treatment 2.00 10.99 5.50 1.53 0.22 

Bac*Fun 1.00 12.36 12.36 3.45 0.07 

Bac*Treatment 2.00 0.77 0.38 0.11 0.90 

Fun*Treatment 2.00 20.80 10.40 2.90 0.06 

3x 2.00 1.77 0.89 0.25 0.78 

Residuals 122.00 433.68 3.58   
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CO2      

      

      

Bac BNTI 1.00 9.18 9.18 2.10 0.15 

Fun BNTI 1.00 22.95 22.95 5.25 < 0.05 

Treatment 2.00 13.45 6.72 1.54 0.22 

Bac*Fun 1.00 0.13 0.13 0.03 0.87 

Bac*Treatment 2.00 15.34 7.67 1.75 0.18 

Fun*Treatment 2.00 46.42 23.21 5.31 < 0.05 

3x 2.00 7.54 3.77 0.86 0.42 

Residuals 122.00 533.71 4.37   

      

      

Soil      

      

      

Bac BNTI 1.00 3.53 3.53 1.42 0.24 

Fun BNTI 1.00 13.74 13.74 5.54 < 0.05 

Treatment 2.00 4.32 2.16 0.87 0.42 

Bac*Fun 1.00 0.09 0.09 0.04 0.84 

Bac*Treatment 2.00 2.44 1.22 0.49 0.61 

Fun*Treatment 2.00 39.12 19.56 7.88 < 0.05 

3x 2.00 7.46 3.73 1.50 0.23 

Residuals 122.00 302.64 2.48   

      

      

Nutrient      

      

      

Bac BNTI 1.00 3.76 3.76 1.42 0.24 

Fun BNTI 1.00 14.66 14.66 5.54 < 0.05 

Treatment 2.00 4.60 2.30 0.87 0.42 

Bac*Fun 1.00 0.10 0.10 0.04 0.85 

Bac*Treatment 2.00 2.60 1.30 0.49 0.61 

Fun*Treatment 2.00 41.72 20.86 7.88 < 0.05 

3x 2.00 7.96 3.98 1.50 0.23 

Residuals 122.00 322.82 2.65   
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Table A3.7: The results of the seasonal ANCOVA on bacterial mean βNTI values together 

with the basic model consisting of lm(Service~ bacterial βNTI *Treatment) where 

Treatment is Level of Invasion.  

 

Bacteria       
Forage      
Green      

 Df Sum Sq Mean Sq F  P 

BNTI 1 527.00 527.00 0.45 0.50 

Treatment 2 30337.00 15168.50 12.91 < 0.05 

Interaction 2 7978.00 3989.10 3.40 < 0.05 

Residuals 164 192629.00 1174.60   
      
      

Peak      
BNTI 1 5477.00 5477.30 1.57 0.21 

Treatment 2 40924.00 20461.80 5.87 < 0.05 

Interaction 2 7407.00 3703.50 1.06 0.35 

Residuals 202 70627.00 3488.30   
      
      
      
      

Senescence      
BNTI 1 451 451 0.06 0.8 

Treatment 2 126952 63476 0.68 < 0.05 

Interaction 2 6028 3014 0.41 0.66 

Residuals 128 935573 7309   
      
      
      

Water      
Green      
BNTI 1 2.61 2.61 0.30 0.58 

Treatment 2 21.23 10.61 1.23 0.29 

Interaction 2 10.50 5.25 0.61 0.54 

Residuals 164 1978.50 8.61   
      
      

Peak      
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BNTI 1 25.69 25.69 3.03 0.08 

Treatment 2 7.09 3.54 0.42 0.66 

Interaction 2 19.70 9.84 1.16 0.31 

Residuals 202 1708.21 8.46   
      
      
      
      

Senescence      
BNTI 1 7.02 7.02 1.93 0.16 

Treatment 2 11.23 5.61 1.54 0.21 

Interaction 2 7.62 3.80 1.05 0.35 

Residuals 128 461.94 3.64   
      
      
      

CO2      
Green      
BNTI 1 2.44 2.44 0.7 0.4 

Treatment 2 32.1 16.05 0.459 < 0.05 

Interaction 2 39.44 19.72 5.65 < 0.05 

Residuals 164 575.92 3.49   
      
      

Peak      
BNTI 1 0.038 0.038 0.17 0.67 

Treatment 2 0.03 0.01 0.07 0.93 

Interaction 2 0.14 0.07 0.32 0.73 

Residuals 202 43.98 0.22   
      
      
      
      

Senescence      
BNTI 1 23.03 23.03 5.58 < 0.05 

Treatment 2 9.84 4.92 1.09 0.34 

Interaction 2 39.23 19.61 4.37 < 0.05 

Residuals 128 574.6 4.5   
      
      



 

  146 

Soil      
Green      
BNTI 1 0.04 0.04 0.01 0.95 

Treatment 2 10.98 5.45 0.5 0.61 

Interaction 2 246.11 123.05 11.16 < 0.05 

Residuals 164 1819.5 11.03   
      
      

Peak      
BNTI 1 1401.1 1401.1 88.91 < 0.05 

Treatment 2 101.5 50.77 3.22 < 0.05 

Interaction 2 1101 550.52 34.94 < 0.05 

Residuals 202 31.98.8 15.76   
      
      
      
      

Senescence      
BNTI 1 3.53 3.53 1.23 0.27 

Treatment 2 0.59 0.29 0.1 0.90 

Interaction 2 1.98 0.99 0.35 0.71 

Residuals 128 367.24 2.87   
      
      

Nutrients      
      

Green      
BNTI 1 0.04 0.04 0.01 0.95 

Treatment 2 11.71 5.85 0.5 0.61 

Interaction 2 262.46 131.23 11.16 < 0.05 

Residuals 164 1940.85 11.76   
      
      

Peak      
BNTI 1 0.56 0.56 0.35 0.55 

Treatment 2 13.69 6.85 4.29 < 0.05 

Interaction 2 0.98 0.49 0.31 0.74 

Residuals 202 322.3 1.59   
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Senescence      
BNTI 1 3.76 3.76 1.23 0.27 

Treatment 2 0.63 0.32 0.1 0.9 

Interaction 2 2.12 1.06 0.35 0.71 

Residuals 128 391.72 3.06   
 

 

 

Table 3.8: The results of the seasonal ANCOVA on fungal mean βNTI values together with 

the basic model consisting of lm(Service~ fungal βNTI *Treatment) where Treatment is 

Level of Invasion.  

 

Fungi 
     

Forage 

     

Green 

     

 Df Sum Sq Mean Sq F  P 

BNTI 1 353.00 353.00 0.30 0.59 

Treatment 2 35103.00 17551.60 14.73 < 0.05 

Interaction 2 1665.00 832.70 0.70 0.50 

Residuals 163 194173.00 1191.20 

  

 
     

 
     

Peak 

     

BNTI 1 3617.00 3617.00 1.03 0.31 

Treatment 2 34015.00 17007.30 4.82 < 0.05 

Interaction 2 90.00 44.80 0.01 0.99 

Residuals 201 709053.00 3527.60 

  

 
     

 
     

 
     

 
     

Senescence 

     

BNTI 1 8029 8029 1.1 0.29 

Treatment 2 123026 61513 8.43 < 0.05 

Interaction 2 3547 1774 0.24 0.78 

Residuals 128 934403 7300 
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Water 

     

Green 

     

BNTI 1.00 15.45 15.45 1.79 0.18 

Treatment 2.00 6.46 3.23 0.38 0.69 

Interaction 2.00 14.22 7.11 0.83 0.44 

Residuals 164.00 1376.67 8.60 

  

 
     

 
     

Peak 

     

BNTI 1.00 32.01 32.01 3.79 0.05 

Treatment 2.00 4.80 2.40 0.28 0.75 

Interaction 2.00 25.92 12.96 1.54 0.22 

Residuals 202.00 1696.88 8.44 

  

 
     

 
     

 
     

 
     

Senescence 

     

BNTI 1.00 0.75 0.75 0.21 0.65 

Treatment 2.00 10.61 5.30 1.47 0.23 

Interaction 2.00 18.86 9.43 2.62 0.07 

Residuals 128.00 457.59 3.60 

  

 
     

 
     

 
     

CO2 

     

Green 

     

BNTI 1 16.3 16.3 4.75 < 0.05 

Treatment 2 50.74 25.37 7.36 < 0.05 

Interaction 2 20.26 10.13 2.95 < 0.05 

Residuals 164 562.56 3.43 

  

 
     

 
     

Peak 

     

BNTI 1 0.01 0.01 0.07 0.79 

Treatment 2 0.01 0.01 0.04 0.96 

Interaction 2 1.91 0.96 4.57 < 0.05 

Residuals 202 42.2 0.21 
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Senescence 

     

BNTI 1 9.18 9.18 1.88 0.17 

Treatment 2 2.51 1.26 0.26 0.77 

Interaction 2 13.88 6.94 1.42 0.24 

Residuals 128 623.13 4.87 

  

 
     

 
     

Soil 

     

Green 

     

BNTI 1 0.35 0.35 0.03 0.89 

Treatment 2 15.5 7.75 0.62 0.54 

Interaction 2 7.16 3.59 0.29 0.75 

Residuals 164 2045.33 12.47 

  

 
     

 
     

Peak 

     

BNTI 1 21.8 21.8 0.77 0.38 

Treatment 2 71.5 35.23 1.25 0.29 

Interaction 2 4.8 2.4 0.08 0.92 

Residuals 202 5705.1 28.24 

  

 
     

 
     

 
     

 
     

Senescence 

     

BNTI 1 14.72 14.72 5.88 < 0.05 

Treatment 2 4.08 2.03 0.81 0.45 

Interaction 2 34.24 17.12 6.8 < 0.05 

Residuals 128 320.29 2.5 

  

 
     

 
     

Nutrients 

     

 
     

Green 

     

BNTI 1 0.38 0.38 0.03 0.87 

Treatment 2 16.52 8.26 0.62 0.54 
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Interaction 2 7.63 3.82 0.29 0.75 

Residuals 164 2181.69 13.3 

  

 
     

 
     

Peak 

     

BNTI 1 5.39 5.39 3.37 0.06 

Treatment 2 10.34 5.17 3.23 < 0.05 

Interaction 2 1.21 0.61 0.38 0.69 

Residuals 202 323.34 1.6 

  

 
     

 
     

 
     

 
     

Senescence 

     

BNTI 1 15.7 15.7 5.88 < 0.05 

Treatment 2 4.35 2.17 0.81 0.45 

Interaction 2 36.53 18.26 6.84 < 0.05 

Residuals 128 341.65 2.67 
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Figure A3.1: Relative abundance of bacterial communities at the class level for Native, Mid 

and Invaded plots during Green-up (top), Peak Biomass (middle) and Senescence (bottom).  
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Figure A3.2: Relative abundance of fungal communities at the class level for Native, Mid 

and Invaded plots during Green-up (top), Peak Biomass (middle) and Senescence (bottom). 
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Figure A3.3: Fungal distance-based redundancy analysis (dbRDA) of the weighted UniFrac distances during Green-up (A-C), 

Peak Biomass (D-F), and Senescence (G-I) for Native plots (A, D, G), Mid plots (B, E, H), and Invaded plots (C, F, I). All 

dbRDAs were constrained by were constrained by 53 µm aggregate weight, soil pH, field moisture, invasive biomass, field 

temperature and water extractable organic carbon content. Significant terms are indicated by a red box around the term. 


