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ABSTRACT 
With the increasing number of aging structures worldwide, structural health monitoring (SHM) 

has gained considerable research interest. Structural health monitoring (SHM) can provide real-

time information about a structure’s actual condition, thereby mitigating the risk of failure if the 

structural condition is worse than presumed, or extending the service life and saving the 

replacement costs if it has an adequate level of safety. Many SHM techniques have been 

developed in the past 40 years; however, few of them have been successfully implemented on 

real structures. The limited practical application of SHM has been attributed to the lack of mature 

and sophisticated SHM techniques and the lack of economic studies to clearly demonstrate the 

financial benefits to the structural owners. 

Christensen et. al described the theoretical principle of a surface strain-based SHM technique for 

reinforced concrete beams in the book “Monitoring Technologies for Bridge Management” in 

2011. This SHM technique is designed to estimate the remaining effective cross-sectional area of 

the reinforcing bars after corrosion, which can then be used to predict the remaining structural 

capacity and service life, as well as the degree of certainty associated with these predictions. As 

part of the current research project, laboratory experiments were conducted to evaluate the 

effectiveness of the surface strain-based SHM technique on nine small-scale reinforced concrete 

beams. The experimental and data processing procedures were first calibrated to obtain more 

reliable results. The effectiveness of the proposed SHM technique was then determined and 

quantified using the errors between the predicted beam capacities using the identified optimal 

procedures and the actual failure loads. It was found that the proposed technique did not achieve 

accurate estimates of the remaining cross-sectional area of the reinforcing bars or failure load 

when applied to the small and slender beams. However, it is believed to have potential to provide 

better result on large-scale beams.  

The experimental results were also used to demonstrate the value of SHM systems through 

reliability and economic analyses. Two monitoring systems with different levels of uncertainty 

were created. The standard monitoring system was composed of strain measuring equipment 

only, while the enhanced monitoring system included the strain measuring equipment and a 

cover meter, used to reduce the uncertainty of the reinforcing bar locations. It was demonstrated 

that, although the enhanced SHM system was associated with a higher cost, it consistently 
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provided a higher reliability index – leading to an extension of service life – and lower annual 

worth of life cycle costs (AWLCC) when replacement decisions were based on the respective 

SHM data.    
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CHAPTER 1   INTRODUCTION 
 

1.1. Background 

The capacity of a structural element is continuously decreasing due to aging, fatigue, corrosion, 

or damage caused by accidents (Yan et al. 2017b). The phenomenon of aging structures is a 

global issue. For example, the average age of bridges in the U.S. is 47 years (ASCE 2017). In 

many developed countries such as Italy or Japan, most of the transportation infrastructure was 

constructed after World War II and before 1975 (Tonelli et al. 2020). In developing countries 

like China, new structures are being built at a rapid rate, and there are also many historical 

structures that require protection (Gopal et al. 2017). Corrosion is the main reason for the 

degradation of reinforced concrete structures, especially in cold regions like Canada due to the 

use of de-icing salts, since the chloride ions in these salts can accelerate the corrosion of 

reinforcing bars (Palumbo 1991, Fu et al. 2018). It has been estimated that the direct annual cost 

of corrosion is approximately $41 billion in Canada (Shipilov 2016) and $2.5 trillion globally 

(Koch et al. 2016). Under the current circumstances, the traditional inspection method, which 

involves visual inspection performed at certain time intervals, is considered inadequate (FHWA 

2001, Dubey et al. 2008). 

The life-safety issues and huge economic burden associated with the deterioration of structures 

have greatly stimulated the research interest in structural health monitoring (SHM). SHM 

provides continual evaluation of a structure’s integrity using the data obtained from on-board 

sensors (SAE 2013). The implementation of an SHM system can convert the time-based 

inspection and maintenance approach to a condition-based approach (Farrar and Worden 2007). 

Rytter (1993) classified various SHM systems into four levels of sophistication: 

Level 1 detects whether damage exists; 

Level 2 locates the damage; 
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Level 3 quantifies the magnitude of the damage, as well as specifies its location; and 

Level 4 provides a prognostication of the remaining service life, in addition to the information 

provided by Levels 1 through 3. 

Although many promising SHM techniques have been developed in recent years, their transition 

from research to real-life applications has been slow and difficult. One of the main reasons for 

this problem is the lack  of technological maturity (Amafabia et al. 2017, Kralovec and Schagerl 

2020). A literature review regarding the state-of-the-art developments of the main SHM 

techniques is presented in Chapter 2. It was found that most of the techniques can only provide 

Level 2 monitoring. Moreover, many of them only work for a certain type of structure or damage. 

For example, the eddy current method only works for metal structures (Ghoni et al. 2014), and 

the acoustic emission method can only detect crack propagations (Calabrese and Proverbio 2020). 

There has not been an SHM method that can perform Level 4 monitoring on reinforced concrete 

structures.  

In the book “Monitoring Technologies for Bridge Management”, Christensen et al. (2011) 

described the theoretical principles of a new surface strain-based SHM method which can 

perform Level 4 monitoring on corroded reinforced concrete beams. This method only required a 

couple of strain gauges attached to the side of the beam and could estimate the effective 

reinforcing bar area left after corrosion from the measured flexural strain distribution. The 

effective area was then used to predict the remaining load-bearing capacity of the beam. This 

method was demonstrated on a hypothetical beam, but has never been validated experimentally. 

If proven to be effective, this would be a user-friendly and cost-effective Level 4 SHM method 

for reinforced concrete structures.  

Besides the inadequate technical feasibility of SHM systems, another main reason for the slow 

adoption of the SHM technologies is that their value has not been clearly demonstrated to 

structural owners (Farrar and Worden 2007, Cawley 2018). The value of SHM mainly comes 

from two aspects: the life-safety and economic benefits (Farrar and Worden 2007, Yan et al. 

2017b).  

To assess the safety of a structure, the reliability index, β, is commonly used and is associated 

with the risk of failure (Frangopol and Messervey 2011). The reliability index is defined as the 
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difference of the mean resistance and load effect divided by the standard deviation of the 

difference. A high reliability index indicates a high level of safety and a low probability of 

failure. A reliability index of 2 ( corresponding to a probability of failure of 0.02275) to 4 

(probability of failure of 0.0000316) is commonly used in structural assessment (Frangopol and 

Messervey 2011). If the reliability index drops below a certain threshold for a structure, it can be 

increased by repair or replacement of the structural element (increasing the mean resistance) or 

by implementing an SHM system (reducing the uncertainty in structural condition and thereby 

the standard deviation of the difference between mean resistance and load effect). If the second 

option is selected, the monitored structure may be allowed to remain in service while ensuring 

the safe operation of the structure through ongoing monitoring. Therefore, economic benefits can 

be generated through the optimized maintenance schedule, reduced down-time, and prolonged 

lifespan.  

Christensen et al. (2011) also presented a framework for quantifying the economic benefits of 

SHM using the value of information (VOI) approach. VOI is a commonly used concept in 

decision analysis and, in the context of SHM, it is defined as the difference between the expected 

life-cycle costs of the structure with and without the SHM information (Zonta et al. 2014). The 

framework considered two SHM systems with different levels of uncertainty implemented on the 

hypothetical beam mentioned above, and then VOI was quantified considering the data provided 

by the two SHM systems. It was shown that a standard SHM system was able to generate savings 

in the beam’s annualized life-cycle cost, and an enhanced SHM system with higher precision 

measurements could generate more savings. However, this framework also has not been 

demonstrated using experimental data.   

The implementation of an SHM system is an extra cost to the structure’s owner and does not 

change the physical condition of the structure. However, the information provided by an SHM 

system can aid in the structural management decision making and provide life-safety and 

economic benefits regardless of the actual condition of the structure. If the health diagnostics 

provided by the SHM system show that the actual structural condition is worse than presumed, a 

timely replacement or repair may avoid a catastrophic failure of the structure, and thus avoid the 

huge economic loss associated with the failure. If the structural condition is better than presumed, 

the structure’s reliability index will be increased through increased capacity and reduced 
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uncertainty. Even if the structure’s condition is the same as presumed, its reliability index can 

still be improved through the reduced uncertainty alone. The structure can remain in service for a 

longer period of time, and the future inspection and maintenance schedule can be optimized, 

given that its condition is being continuously monitored. 

1.2. Objectives 

The primary objective of this research study was to demonstrate the ability of structural health 

monitoring to extend the service life of a corroding reinforced concrete beam by estimating its 

remaining bending moment capacity and increasing the reliability index, and thereby to develop 

a framework to make the economic case for implementing SHM systems in practice. Specific 

sub-objectives include the following: 

• To experimentally evaluate the effectiveness of the strain-based technique described in 

Christensen et al. (2011) as a Level 4 SHM method for a corroding reinforced concrete 

beam; 

• To demonstrate the improvement in structural reliability that can be achieved using data 

obtained from an enhanced SHM system with a higher level of precision; and 

• To perform life-cycle cost benefit analyses associated with implementing two SHM 

systems (a ‘standard’ and an ‘enhanced’ SHM system) in order to demonstrate the 

economic value of SHM systems. 

1.3. Scope of Research 

This research project involved conducting laboratory experiments to test the effectiveness of the 

surface strain-based SHM technique described in Christensen et al. (2011). The data collected 

through the experiments were used in reliability and economic analyses to demonstrate the value 

of SHM systems.  

For the laboratory experiment, three batches of small-scale reinforced concrete beams were cast 

and subjected to different levels of accelerated corrosion by the impressed current method. Strain 

data were obtained using two different types of instrumentation: electrical strain gauges and a 

digital image correlation (DIC) system. The two sets of data were compared to each other first, 

and then were combined to achieve the optimum SHM diagnostics to estimate the effective 
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reinforcement area and remaining bending moment capacity. The optimum estimates were 

compared to the real beam conditions to evaluate the effectiveness of the proposed SHM 

technique. The real beam conditions were determined using the experimental failure loads and 

the actual remaining reinforcing bar area due to corrosion obtained through gravimetric analyses 

after the extraction of the bar.  

A cover meter was also used in the lab experiment to reduce the uncertainty associated with the 

location of the reinforcing bars. Thus, two SHM systems with different levels of uncertainty 

were formed. The standard SHM system considered only the strain data provided by the 

electrical strain gauges and the DIC system, while the enhanced SHM system considered both 

the strain data and the cover meter data. The experiment was followed by reliability and 

economic analyses to demonstrate and compare the benefits gained through the two SHM 

systems with different levels of uncertainty. 

The reliability index, β, was used to demonstrate the improvement in structural reliability 

associated with using the SHM systems. It was calculated based on the load effect, the estimated 

mean beam resistance, as well as the precision of the measured data gathered from each SHM 

scheme. The economic benefits associated with using the SHM systems were quantified using 

the value of information approach described in Christensen et al. (2011). The allowable life 

spans of the beams estimated by each monitoring scheme were identified. The economic value of 

SHM systems was demonstrated by the savings in the Annual Worth of Life Cycle Costs 

(AWLCC), which were calculated using a total life-cycle cost, an inflation rate, and a life span.  

The effect of loss of bond due to corrosion was not within the scope of this research. The 

prediction of the beam resistance was mainly based on the remaining cross-sectional area of the 

reinforcing bar. The impact caused by loss of bond was eliminated in the proposed lab 

experiment by controlling the corrosion location to be within the constant moment region 

produced by using a four-point loading set up.  

1.4. Organization of Thesis  

This thesis contains five chapters. Details of each chapter are summarized below. 

Chapter 1 provides an introduction to this thesis, which consists of the background, objectives 

and scope of this research study. 
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Chapter 2 presents the results of the literature review relevant to this research. The literature 

review was conducted in four areas, including the technical development of various SHM 

techniques, the economic studies of SHM, prevalent strain measuring equipment, and the 

techniques used for inducing accelerated corrosion on reinforced concrete. 

Chapter 3 describes the setup of the experimental program, as well as the methodologies used for 

the experimental, reliability and economic analyses.  

Chapter 4 provides an evaluation of the practical effectiveness of the proposed surface strain-

based SHM technique based on the experimental results.  

Chapter 5 presents and discusses the results of the reliability and economic analyses considering 

the standard and enhanced SHM systems. A comparison of the estimated reliability indices and 

annualized life-cycle costs between the two SHM systems is provided to demonstrate the value 

of additional precision associated with an enhanced monitoring system.  

Chapter 6 contains the conclusions from this research and recommendations for future work. 
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CHAPTER 2   LITERATURE REVIEW 
 

2.1. Introduction 

Although a wide variety of promising SHM technologies have been developed in the last a few 

decades, few have been adapted to real-world operational structures. Many research papers have 

discussed the reasons why the transition from research to industrial applications is difficult 

(Farrar and Worden 2007, Li et al. 2014, Yan et al. 2017b, Cawley 2018). One fundamental 

reason is that there is lack of a user-friendly yet robust and sophisticated SHM technique that is 

suitable for all kinds of structures (Amafabia et al. 2017, Kralovec and Schagerl 2020). Most 

SHM techniques use very complicated damage identification algorithms, which would typically 

require an expert to interpret (Tonelli et al. 2020). Moreover, different techniques are tested on 

various structures based on the author’s choice (Das and Saha 2018). Thus, it is difficult to 

compare different techniques and to design regulations and standards based on the best practices. 

Lack of guidance from the regulatory agencies is another commonly recognized reason that 

hinders the implementation of SHM (Zhou et al. 2013, Li et al. 2014, Tonelli et al. 2020, Sykora 

et al. 2020). Lastly, a non-technical issue is that its economic benefit is usually not demonstrated 

to the structural owner (Farrar and Worden 2007, Cawley 2018).  

To better understand the current capabilities of various SHM techniques and to identify the 

opportunities for the surface-strain based SHM technique being tested in this thesis, a technical 

review is provided in Section 2.2. Since this research study not only investigates the technical 

feasibility of a new SHM method, but also demonstrates its economic value, existing economic 

studies related to SHM have also been reviewed and discussed in Section 2.3. Strain is an 

important factor for the SHM method being evaluated in this research study and for many other 

SHM systems; thus, different strain measuring equipment is compared in Section 2.4. Lastly, as 

this experimental study involves laboratory experiments on corroded reinforced concrete beams, 

methods to induce accelerated corrosion are introduced in Section 2.5. 
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2.2. Review of Common SHM Technologies 

2.2.1. Introduction 

There are hundreds of review papers about SHM technologies that have been published in the 

past 10 years (569 search results in Engineering Village using the key words “SHM” and 

“Review”). Most of them focus on a specific SHM technique, such as reviews on guided waves 

(Mitra and Gopalakrishnan 2016, Elwalwal et al. 2017), vibration-based damage detection (Das 

and Patro 2016, Avci et al. 2021), fibre optic sensors (Hassan et al. 2012, Bado and Casas 2021), 

piezoelectric sensors (Annamdas and Radhika 2013, Na and Baek 2018), and acoustic emission 

(Khan 2018, Calabrese and Proverbio 2020). Some of them look at the SHM technologies 

suitable for a certain type of structure, such as for composite structures (Amafabia et al. 2017, 

Güemes et al. 2020) or bridges (Bakht et al. 2011, Seo et al. 2016). In fact, such reviews would 

still be too broad. Many of the researchers would further narrow down their scopes to a specific 

technique for certain types of structures. Examples include a review of acoustic emission in 

mines (Manthei and Plenkers 2018) and a review of acoustic emission for reinforced concrete 

structures (Benedetti 2012).  

Although many of the review papers summarize the historical and state-of-the-art development 

of a particular field of SHM well and reading them all would lead to a comprehensive 

understanding of the industry, this approach is not accessible to students, engineers or structural 

owners who are new to SHM. Few attempts have been made to present an overview of SHM. 

This is a challenging task because SHM is multi-disciplinary in nature, and it is getting 

increasingly difficult as the number of techniques and applications of these techniques increase. 

A worthwhile attempt is the book “Structural Health Monitoring” published in 2010 (Balageas et 

al. 2006). This book provides an introduction to SHM followed by comprehensive reviews on 

extensively researched SHM areas including vibration-based damage detection (VBDD), fiber-

optic sensors (FOS), piezoelectric (PZT) sensors, SHM using electrical resistance, 

electromagnetic techniques, and capacitive methods. Through observing the number of papers 

published about a certain topic, VBDD, FOS, PZT, and electromagnetic techniques remain to be 

the areas of focus from the publication of this book until now; however, there are not as many 

research studies and applications about the methods based on electrical resistance and 

capacitance. Additionally, a topic that has become one of the most popular research topics in the 
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last ten years (Cawley 2018, Güemes et al. 2020, Kralovec and Schagerl 2020) but is not 

included in this book is guided wave monitoring. Besides being slightly outdated, another 

shortcoming of this book is that it does not classify various of SHM technologies and introduce 

them by classification. For one, this does not help readers to understand the connections between 

different technologies. Another potential issue is that the methods listed are hot research areas 

about SHM, and they are not mutually exclusive to each other. FOS and PZT sensors focus on 

the sensor technologies, and they need to be combined with other SHM techniques to form a 

system; for instance, PZT sensors are most often used in electromagnetic impedance (EMI) 

based SHM methods. Thus, for the same system, one researcher might call it “an SHM system 

using PZT sensors” and another one might call it “an EMI SHM system”. 

To avoid overlapping, some review studies classify SHM technologies based on the sensor type, 

such as FOS, PZT sensors, eddy current sensors, and accelerometers (Taheri 2019, Warsi et al. 

2019, Maraveas and Bartzanas 2021). But Güemes et al. (2020) argue that it is better to classify 

technologies based on their physical underlying principles, because the same type of sensors can 

be used for different SHM systems.  However, classifying based on physical principles also has 

its drawbacks. Novice SHM engineers or structural owners might not be familiar with all the 

underlying physical principles. Moreover, much research in SHM has been devoted to sensing 

technologies and focusing on physical principles might overlook the advancements made in 

sensing technologies or other areas. Thus, the real issue is that an SHM system is generally made 

of three components: sensors, a data acquisition system ( which can be further broken down into 

data processing, data transmission and data storage), and a health diagnostics algorithm (Housner 

et al. 1997). The names of different SHM methods are typically given by their developers based 

on the key innovative features. However, the key feature could be associated with any one of the 

three components of an SHM system. 

Most classification methods and SHM technologies are only referable to one of the components, 

as shown in Figure 2.1. For example, FOS is a type of sensor, whereas VBDD is mostly a 

methodology used for health diagnostics, and wireless sensors refer to a type of data 

transmission technology. Therefore, the following sections, 2.2.2 to 2.2.4, discuss the 

classifications and technologies associated with each component in an SHM system. Note that 

the review can not be provided in too much detail considering the broad scope and the large 
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number of technologies developed lately, but it is an attempt to cover the major advancements in 

all the components of SHM. Lastly, the future of SHM is discussed in Section 2.2.5. 

 

Figure 2.1. Classifications of SHM technologies based on components of an SHM system. 



 

11 
 

2.2.2 Sensing Technologies 

The rapid development of SHM methods is largely driven by the advancements in sensing 

technologies (Bisby and Briglio 2006). Depending on the specific requirements of the structure 

being monitored, engineers might be interested in certain measurements indicating structural 

status, such as strains, displacements, accelerations, and stress, or in some environmental factors, 

such as temperatures, moisture levels, wind pressure and soil condition of the foundation (Bisby 

and Briglio 2006, Yi and Li 2012). The area that has received the most research attention is 

strain sensors, such as fibre optic sensors (FOS) and digital image correlation (DIC). Other 

popular types of sensors include piezoelectric sensors, ultra-sonic sensors, and acoustic emission 

devices (AE). Maraveas & Bartzanas (2021) reviewed the most prevalently used sensors for 

SHM of agricultural structures. The review included both traditional and novel sensors and 

concluded that notable improvements in sensing technologies include increased accuracy and 

transmission speed, reduced noise, and deployment of machine learning. Warsi et al. (2019) also 

conducted a review of cutting-edge sensing technologies used in SHM and concluded that micro 

and nano electric sensors have drawn significant interest in the past ten years due to the 

advantages of being compact, durable, and cost effective. They provided a thorough discussion 

and comparison of the present micro-electromechanical sensors including accelerometers, 

bolometers, resonators, and their corresponding data acquisition systems.  

The developments of various sensing technologies are too extensive to be reviewed in this 

chapter. However, since strain is an important factor for the SHM method being evaluated in this 

thesis and for many other SHM methods, a detailed review of the prevalent strain measuring 

techniques is provided in Section 2.3.  

Besides the advancements in sensor design, there are also many studies that focus on the optimal 

sensor placement (OSP). Since a wide distribution of sensors for a large structure can be costly, 

the goal of OSP is to use a minimum number of sensors to acquire adequate information for 

SHM analysis (Yi and Li 2012, Sun and Büyüköztürk 2015). Techniques such as neural 

networks (Worden and Burrows 2001), information entropy (Papadimitriou 2004), particle 

swarm optimization (Rao and Anandakumar 2007) and Bayesian optimization (Flynn and Todd 

2010) have been applied to OSP. Yi & Li (2012) discussed the evaluation criteria for identifying 

the suitability of sensor locations and compared multiple influential OSP methods including 
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deterministic optimization method, sequential sensor placement method, genetic algorithms, 

simulated annealing algorithm, monkey algorithm, ant colony optimization algorithm and 

particle swarm optimization algorithm. Sun and Büyüköztürk (2015) conducted a review of the 

developments in OSP and proposed a new discrete optimization method using the artificial bee 

colony algorithm. This method was tested on a truss bridge and two high-rise buildings and was 

proven to be efficient and effective.  

2.2.3 Data Acquisition 

The data acquisition system can be further divided into data processing, transmission, and 

storage (Housner et al. 1997). While these components are usually developed by researchers in 

mathematical, electrical and computer engineering fields independently, the advancements made 

in these areas have contributed to the development of SHM. 

The amount of data collected by an SHM system can be massive and may contain misleading 

information due the influence of environmental factors. Thus, the data need to be processed first 

to reduce their size and noise before being analyzed by the health diagnostics system (Bisby and 

Briglio 2006). Data are usually processed after they have been transferred to the base station. 

However, due to the bandwidth limit of emerging wireless technologies, data sometimes are 

processed at the sensor nodes before transmission. Yan et al. (2017) discussed the most 

commonly used techniques for feature extraction: frequency domain analysis, wavelet transform, 

time-frequency analysis, compressed sensing and sparse representation, empirical mode 

decomposition and stochastic resonance. However, there is no technique that is suitable for all 

situations. Vibration-based SHM methods generally rely heavily on data processing. Pablo & 

Adeli (2016) compared the advantages and disadvantages of ten data processing techniques for 

vibration-based SHM. They also introduced four novel mathematical algorithms that have the 

potential to be used but have not yet been applied to SHM. Albuquerque et al. (2019) reviewed 

the conventional data processing techniques used for impedance-based SHM methods and 

introduced a new technique based on the Hinkley criterion that can detect structural defects more 

effectively in a noisy environment.  
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Data transmission methods can mainly be classified as wired or wireless. Conventional wired 

monitoring systems have the advantage of anti-interference and have been successfully 

implemented on many operating structures, for instance, the Tsing Ma suspension bridge in 

Hong Kong (Shaladi et al. 2015).  However, the installation and equipment costs associated with 

wired systems are very large, and they are vulnerable to deterioration for long-term monitoring 

(Abdulkarem et al. 2020). Thus, an increasing amount of research focuses on adapting wireless 

sensor network (WSN) technologies to SHM systems (Wang et al. 2012, Shaladi et al. 2015). A 

WSN system contains sensor nodes, which collect data from sensors, and then the sensor nodes 

transmit the data to the base station through various communication technologies (Abdulkarem et 

al. 2020). Currently, the most popular communication technologies are Zigbee, Bluetooth, Wi-Fi, 

and Tele Communication (Yan et al. 2017b). These communication technologies were developed 

independently and have had mature applications in other areas. However, bringing these 

technologies to WSN for SHM can be challenging because different SHM systems have varying 

degrees of requirements regarding data transfer rate, coverage range, energy efficiency, expected 

lifespan and working condition (Yan et al. 2017b). Abdulkarem et al. (2020) conducted a 

comprehensive review and chronologically summarized the academic prototypes and 

commercial WSN platforms tested for SHM from 2005 to 2019. Over the years, advancements 

have been made to the compatibility of different sensor types, optimization of sensor topology, 

and the functionality of the sensor node. Now most of the accelerometers, conventional strain 

sensors, and fibre optic sensors are compatible with WSNs.  Some of the data processing is 

carried out at the sensor nodes instead of at the base station to significantly reduce the amount of 

raw data needed to be transferred, which further saves storage space, energy consumption and 

transmission bandwidth (Abdulkarem et al. 2020). The possible areas of focus for future research 

about WSN-based SHM include fault tolerance, cloud data storage and processing, SHM 

algorithms and distributed processing,  optimal sensor node placement, and energy harvesting 

technologies (Abdulkarem et al. 2020).  

An SHM system usually has high demand on the longevity and storage space of the data storage 

system. A large scale structure with hundreds of sensors implemented can generate gigabytes of 

data every day (Furtner et al. 2013). These data need to be available for many years. A common 

practice is to remove raw data and only keep processed data. However, reinterpretation would 
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not be possible if raw data are lost (Bisby and Briglio 2006). The development of cloud storage 

and computing technologies has provided an excellent solution to this issue. The cloud databases 

can be classified as open source, academic and commertial databases; Tsvetanov (2021) listed 

and compared the options available under each category. In recent years, the theoretical 

frameworks of several cloud-based SHM systems have been proposed (Lan and Liu 2013, Zhao 

et al. 2015, Searls et al. 2019). Jeong et al. (2019) successfully tested their system on bridges 

along the I-275 corridor in Michigan and concluded that a cloud-based cyber infrastructure 

platform can manage the sensor data effectively and retrieve the data efficiently.  

2.2.4 Health Diagnostics 

Diagnostics is arguably the most important component of an SHM system (Bisby and Briglio 

2006). The principles used for diagnostics and prognostics typically determine the level of 

sophistication of an SHM system, also known as the Rytter levels (Rytter 1993, see p.1). At the 

same time, these principles play an important role in the selection of other components, i.e., the 

type of sensors, data processing algorithms, data transfer methods, and data storage platforms. 

Therefore, most of the SHM methods are named by the underlying physical principles used by 

the health diagnostics system. Some of the main SHM methods that have been studied 

extensively and applied successfully to real structures include strain-based methods, vibration-

based damage detection (VBDD), guided waves, acoustic emission (AE), ultrasonic and 

electromagnetics (Cawley 2018).         

Strain-based SHM methods have been applied to a wide range of structures including buildings, 

bridges, highways, tunnels, pipes and wind turbines (Bado and Casas 2021). Research about 

strain-based SHM techniques mainly focuses on the advancements of the strain sensors such as 

FOS and DIC technologies. In terms of the health diagnostics principles, there are mainly two 

categories for the strain-based methods: detection of damage-induced strains and strain mapping 

(Güemes et al. 2020). The first method uses distributed sensors to catch strains located at the 

damaged area. This approach is simple and robust but has quite limited coverage, since damage 

is only detectable if a strain gauge is located exactly at the location of damage (Güemes et al. 

2018). Thus, this approach is not realistic to monitor an entire structure using the traditional 

discrete strain measuring equipment. However, the development of distributed fibre optic sensors 
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has significantly increased the monitoring coverage. Bado and Casas (2021) provided a 

comprehensive review of the recent application of distributed optical fiber sensors on civil 

engineering structures. The other method, strain mapping, does not require sensors to be place 

right at the location of damage. Basically, the occurrence of local damage will result in strain 

redistribution, and the changes in the strain field will be analyzed by sophisticated algorithms to 

detect and locate the damage (Güemes et al. 2018). However, local cracks might have little 

impact to the global strain field, and thus are very difficult to detect (Güemes et al. 2020).  

Guided wave monitoring is one of the most popular research topics in the last 10 years (Cawley 

2018, Güemes et al. 2020, Kralovec and Schagerl 2020). Through analyzing the ultrasonic 

mechanical wave propagation within bounded structural media, it can detect relatively small 

damage in a large area using just a small number of transducers. However, due to the dispersive 

nature of the guided waves, the computational cost related to this method is generally high (Mitra 

and Gopalakrishnan 2016). Therefore, guided wave-based monitoring has been successfully 

applied to one-dimensional structures such as pipes, rails, cables, truss members and reinforcing 

bars. Further research is still need to for it to be implemented on more complex structures (Mitra 

and Gopalakrishnan 2016, Cawley 2018).  

VBDD methods have drawn significant attention since the 1970s (Cawley 2018). The principle 

of the VBDD method is that damage can be detected and located through monitoring changes in 

a structure’s dynamic response to imposed or ambient excitation forces (Zhou 2006). Similar to 

the guided wave monitoring method, VBDD has the potential to assess the integrity of the whole 

structure using a small number of sensors (Cawley 2018, Pepe et al. 2019). However, VBDD 

methods are more sensitive to changes in environmental factors, which makes it harder to 

identify small defects. Only severe damage is detectable in real-life applications (Cawley 2018, 

Güemes et al. 2020). This situation can potentially be improved by adopting artificial 

intellegence such as machine learning and deep learning into the diagnostics algorithm. Avci et 

al. (2021) conducted a comprehensive review of the recent applications of machine learning and 

deep learning methods used for VBDD in civil structures. It has been proven that machine 

learning and deep learning are more suitable to deal with fuzzy and noise-contaminated data than 

traditional data processing methods. Interest has been particularly drawn to 1D and 2D 
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convolutional neural networks (one type of deep learning algorithm), since they are extremely 

easy to train and have high computational efficiency (Avci et al. 2021).     

AE and electromagnetic technologies were originally developed as NDT methods, but they can 

also be attached to the structure permanantly and thus be converted to SHM systems (Mba 2006, 

Amafabia et al. 2017, Cawley 2018). There are several review papers published about the 

advancements and applications of AE in SHM (Wevers and Lambrighs 2009, Behnia et al. 2014, 

Manthei and Plenkers 2018, Khan 2018, Calabrese and Proverbio 2020). Strantza et al. (2015) 

evaluated the crack detection capabilty of AE and other NDT methods on metallic structures, and 

concluded that all the tested methods can serve as long-term SHM methods and identify the 

crack locations effectively. Electromagnetic based SHM methods mainly consist of  

electromechanical impedance (EMI) and eddy current (EC) methods. The development of EMI 

techiniques for SHM is discuss in Chapters 1 to 7 of the book “Smart Materials in Structural 

Health Monitoring, Control and Biomechanics” (Bhalla and Soh 2012). Cirp et al. (2019) 

reviewed the state-of-art damage classification methodologies for EMI SHM technique and 

proposed an improved classification method using neural networks and self-organizing maps. 

The state-of-art development and applications of eddy current testing have been summarized in a 

few review papers (Ghoni et al. 2014, Sophian et al. 2017, AbdAlla et al. 2019).  

Detailed comparisons of the commonly used SHM methods are provided in Table 2.1; a surface 

strain-based technique is being experimentally evaluated in this thesis.  

2.2.5 Future of SHM  

As shown in Table 2.1., there has not been an easy-to-use SHM method that can provide Level 4 

monitoring of reinforced concrete structures. The surface strain-based SHM technique, if proven 

to be effective, would fill this gap. It also can be noted from the table that each SHM method 

currently has its own advantages and limitations and thus no SHM method is sufficient to 

monitor an entire full-scale structure on its own. Although breakthroughs can occur at any time, 

a more practical approach at the moment is through the combination of different techniques (Li 

et al. 2014, Xiang et al. 2018, Kralovec and Schagerl 2020). This approach is commonly referred 

to as data fusion or multiple-sensor approach. Kralovec (2020) reviewed this topic and concluded 

that a reliable multi-sensor SHM system can be created by combining static (i.e. strain-based or 
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electrical impedance tomography ) and dynamic (i.e. vibration-based, EMI, guided waves, and 

acoustic emission) damage assessment methods. Khodaei and Aliabadi (2016) hold similar 

opinions and experimentally validated a multi-sensor system using guided waves, EMI and 

weighted energy arrival method as a Level 3 SHM system. Combined with structural analysis 

data, future multi-sensor approaches have the potential to form a robust system that can reach the 

highest level of monitoring (i.e., be able to estimate current capacity and remaining service life). 

However, further research is still required to identify the optimal combinations and analysis 

algorithms (Kralovec and Schagerl 2020).   

A challenge for the development of a multi-sensor approach or SHM in general is that various 

techniques have been tested on very different structures, which makes it difficult to compare 

these methods side by side (Das and Saha 2018). To address this issue, the North American task 

group was formed in 1999 by the International Association for Structural Control (IASC) and 

American Society of Civil Engineers (ASCE). The task group designed a benchmark structure, 

which was a 2-bay by 2-bay steel-frame structure, and tested various existing SHM methods on 

this structure (Dyke et al. 2002, Johnson et al. 2002). Over the years, more researchers have 

participated in the benchmark study. A review of the SHM techniques implemented on the 

benchmark structure was provided by Das (2018). However, it is unclear why the task group has 

disappeared and has not developed any other benchmark structures. Future benchmark structures 

should be more complex and comparable to real-life structures, and benchmark studies would 

require worldwide collaborations from the researchers. Such benchmark studies would make 

objective comparisons of different SHM techniques possible and thus promote the development 

of SHM guidelines and standards (Zhou et al. 2013).   
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Table 2.1. Comparisons of main SHM techniques and the surface-strain based SHM technique. 

SHM 
Technique 

Suitable Usage Rytter 
Level* 

Main Sensor Type Strengths Drawbacks Application Reference 

Surface 
Strain-based 

Corroded 
Reinforced concrete 
beams 

4 Any type of strain gauges Easy principles; High 
sophistication; 

Only suitable for local 
damage detection 

Laboratory experiments on 
corroded RC beams 

 

Strain-based Global monitoring 2, 3 Various kinds of strain 
gauges 

Simple and robust Large number of sensors 
required; Difficult procedures 
for installation 

Real-life applications on 
buildings, bridges, tunnels, 
pipes, and wind turbines 

(Güemes et al. 
2018, 2020, Bado 
and Casas 2021) 

Vibration-
based damage 
detection 

Global monitoring 
for large damage on 
various types of 
structures 

2 Accelerometers Full structural coverage 
with a small number of 
sensors 

Sensitive to environmental 
noise; Only severe damage 
detectable 

Many real-life applications 
on various bridges, 
concrete, steel frame, 
masonry, and composite 
buildings 

(Peeters and De 
Roeck 2001, 
Brownjohn et al. 
2011, Avci et al. 
2021) 

Guided Waves One dimensional 
structure such as 
pipes, rail, cables, 
truss structures, and 
concrete rebar 

2 Various actuation and 
sensing transducers: PZT 
wafer, FO sensors, and 
non-contact laser Doppler 
vibrometers 

Cheap; Large coverage 
with less transducers; Non-
sensitive to low Frequency 
noise; capable of detecting 
small defects 

Dispersive in nature; 
Complicated analysis for 2D 
or 3D structures 

Commercialized on one-
dimensional structures 

(Mitra and 
Gopalakrishnan 
2016, Cawley 
2018, Güemes et al. 
2020) 

Acoustic 
Emission 

Propagation of 
cracks in all sorts of 
structures: metallic, 
RC, and composite 

2 AE sensors (FBG or PZT 
based) 

High sensitivity; Capable of 
remotely detecting damage; 
Not sensitive to 
environmental vibration 
noise 

Can only be applied if 
structural components are 
adequately stressed; Difficult 
to detect existing non 
propagating defects; Sensitive 
to friction noise 

Many industrial 
applications including 
bridges, pressure vessels, 
storage tanks, aircraft, 
concrete, steel and 
composite structures 

(Wevers and 
Lambrighs 2009, 
Khan 2018, Cawley 
2018, Tonelli et al. 
2020) 

Electro-
Mechanical 
Impedance 

Any type of damage 
in mechanical, civil 
or even biological 
fields 

2 PZT transducer Sensitive to small defects; 
Simple data acquisition; 
Immune to mechanical, 
electrical and electro-
magnetic noise 

Limited sensing range; Not 
capable of evaluating whole 
structural integrity; Need to 
choose appropriate frequency 
range; Need to compensate 
for temperature change 

Steel beam, concrete 
structures, composite 
reinforced masonry walls, 
steel bridge joints and pipe 
joints 

(Bhalla and Soh 
2012, Li et al. 
2014, Na and Baek 
2018, Junior et al. 
2020) 

Eddy Currents Cracks on electro-
conductive 
structures 

4 Eddy current sensor No contact needed; no need 
of special specimen 
preparation 

Limited to electro-conductive 
materials; small coverage area 

Metal structures, aircraft (Strantza et al. 
2015, Jiao et al. 
2016, AbdAlla et 
al. 2019) 

* Rytter levels 1 to 4 correspond to increasing levels of sophistication in SHM diagnostics. Levels 1 to 3 indicates the SHM system has the ability to identify, 
locate, and quantify the damage respectively, while a level 4 SHM system can perform prognostics in addition to the information provided by levels 1 through 3 
(Rytter 1993). 
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Lack of comprehensive SHM guidelines and standards has been widely acknowledged as one of 

the main reasons for the slow transition from research to real-life applications of SHM (Del 

Grosso 2014, Li et al. 2014, Yang et al. 2017).  The first guideline for this subject was published 

by Intelligent Sensing for Innovative Structures (ISIS) of Canada in 2001 (Mufti). This guideline 

provides a comprehensive state-of-the-art review of the SHM technologies at that moment. 

However, this guideline has never been updated and no new standard has been published in 

Canada.  Several other guidelines or standards for SHM have been published around the world. 

Moreu et al. (2018) has tabulated and compared the codes, standards and guidelines published in 

Australia, China, Canada, European Union, UK, Switzerland, and the United States. Although 

most of the standards are not compulsory, they can promote the implementation and code 

development for SHM (Moreu et al. 2018). It is worth mentioning that China has published a 

series of codes and standards for SHM including DB/T29-208-2011, CECE 333:2012, JGJ/T 

302-2013, JT/T 1037-2016, and GB 50982-2014. Yang et al. (2017) have reviewed and 

discussed the main features of these five standards. Among these, GB 50982-2014 is the first and 

exclusive national code that enforces the implementation of SHM on high-rise (>250 m) and 

long-span (single span >100 m) structures (GB 50982 2014). Many representative applications of 

SHM on large-scale structures are available now in China, which demonstrates that a national 

code is a milestone for closing the gap between research and practical applications of SHM 

(Yang et al. 2017, Cawley 2018). Del Grosso (2014) proposed that a top-down approach could 

be used to develop a new generation of standards for SHM. Moreu et al. (2018) suggested that 

when the United States and other countries are developing their SHM codes in the future, they 

could borrow elements and lessons learned from the Chinese SHM code.  

2.3. Economic Studies about SHM 

It has long been recognized that wide industrial adoption of SHM systems is largely driven by its 

economic benefits (Farrar and Worden 2007, Cawley 2018, Sousa et al. 2019). Many research 

studies claim that, besides life-safety benefits, the implementation of SHM can also provide 

economic benefits (Farrar and Worden 2007, Harms et al. 2010, Yan et al. 2017a, Manco et al. 

2021). However, how to quantify the economic benefits remains an open research problem 

(Zhang et al. 2021), and this problem became a focus of study only after 2010 (Qin et al. 2015, 

Long et al. 2020). The implementation and continuous operation of SHM systems would 
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certainly cause additional costs to the structural owners. Meanwhile, savings can usually be 

generated in the total life-cycle costs (LCC) of the structures. This is because the additional 

information provided by the SHM systems can assist the operators and engineers to optimize the 

inspection and maintenance strategies, and thus structures may have fewer scheduled inspections, 

timely maintenance, shortened down time, and eventually prolonged lifespan (Agusta et al. 2019, 

Larsson Ivanov et al. 2021). To evaluate the value of an SHM system is to evaluate the value of 

information (VOI) brought by the system (Klerk et al. 2019). As early as 2011, Christensen et al. 

proposed a VOI framework to quantify the value of SHM systems. The framework considered 

the different uncertainties associated with different SHM systems and adopted a combination of 

reliability analysis, decision theory and Bayesian analysis (Christensen et al. 2011). The method 

used is comparable to the state-of-the-art guidelines (Diamantidis et al. 2019) and research 

(Klerk et al. 2019, Zambon et al. 2020, Larsson Ivanov et al. 2021). A hypothetical reinforced 

concrete beam was used to demonstrate that the implementation of a standard SHM system could 

result in 6.61% reduction in the annualized LCC, while an enhanced SHM system could result in 

savings of 18.7%. However, this framework has never been validated experimentally. 

Sebastian Thöns started to apply LCC and VOI analysis to SHM in 2013 (Thöns 2013, Thöns 

and Faber 2013, Thöns et al. 2013). He then became the chair of the scientific networking project, 

COST Action TU1402, in 2014. COST Action TU1402 was formed by a joint group of 

researchers and practitioners from 29 European countries, as well as China, USA and Australia 

and aimed to quantify the value of SHM. Although the economic studies started much later than 

the technical developments, the formation of TU1402 has significantly promoted the 

development process in this field. Within the active period of the project, from March 2014 to 

March 2019, the members of TU 1402 published 80 peer reviewed papers in total, held many 

workshops and developed three guidelines for operators, practicing engineers and scientists 

(Diamantidis et al. 2019, Sousa et al. 2019, Thöns 2019).   

These guides were developed based on the results over the four-year of operation of this project 

and aimed to standardize the decision process of whether to pursue more Structural Health 

Information (SHI). In this context, SHI can refer to any additional information related to the 

health of a structure. It is not limited to the data gathered from SHM systems, but also from NDT, 

load testing, or other forms of inspections. But the value of SHM can certainly be quantified 
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based on the framework proposed in these guidelines. The guideline for operators recommends 

the use of SHI value analyses to structure owners due to its benefits in cost savings, life-safety, 

and sustainability. This guide contains a tabulated summary of the case studies performed on 

types of structures including buildings, dikes, bridges, offshore wind-parks, and roofs. For these 

various structural types, the value of SHI was estimated to be 10 to 90% of the expected total 

cost of the structure (Sousa et al. 2019). The guideline for practicing engineers recommends 

using the value of information (VOI) approach to quantify the value of SHI and discusses how to 

use the results for decision making (Diamantidis et al. 2019). The last guideline targets scientists 

and contains the most mathematical details about the standardized framework for quantifying the 

value of SHI (Thöns 2019).  

After the end of the TU1402 project, the VOI approach has been continuously used and 

improved by many researchers (Zambon et al. 2020, Skokandić and Mandić Ivanković 2020, 

Sykora et al. 2020, Larsson Ivanov et al. 2021, Khan et al. 2021). For instance, Sykora et al. 

(2020) and Khan et al. (2021) performed VOI analysis for monitoring historic masonry structures 

and testing chloride content in reinforced concrete bridges, based on the framework developed 

by TU1402. Zambon et al. (2020) conducted a case study on a concrete bridge pier crosshead 

using a novel VOI framework that considered tiered assessments. A common conclusion from 

the recent research is that the value of SHM deployment is mostly affected by the uncertainties 

associated with the monitored infrastructure. Even an SHM system with lower accuracy can offer 

a high return rate when the structure is associated with high risks, but its value can be low or 

even negative for a very stable structure (Sousa et al. 2019, Bolognani et al. 2019, Klerk et al. 

2019, Larsson Ivanov et al. 2021, Khan et al. 2021).   

2.4. Strain Measuring Equipment 

2.4.1. Introduction 

Strain is a critical factor for the SHM technique being evaluated in this research study. Thus, four 

of the most prevalent strain measurement techniques are reviewed here, including mechanical 

strain gauges, electrical strain gauges, fiber optic sensors (FOS), and digital image correlation 

(DIC). The developmental history, working principles, state-of-the-art capability, advantages, 

and disadvantages of these strain measuring methods are discussed in this section.  
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2.4.2. Mechanical Strain Gauges 

The first mechanical strain gauge was invented by Charles Huston in 1879 (Isah et al. 2020). It 

was designed to measure the elongation or contraction of a length on the surface of a specimen. 

This type of gauge usually consists of an invar main beam with two locating points. The 

movements of the locating points are measured by a dial or digital gauge (Brooks 2015). Then, 

the average strain can be calculated using the measured length change divided by the total gauge 

length. Generally, longer gauge lengths provide higher sensitivities in strain measurements. 

Figure 2.2 shows several dial-version gauges with different gauge lengths and their 

corresponding sensitivities (Brooks 2015). Also, digital gauges can provide higher sensitivity 

than dial gauges. Table 2.2 compares the sensitivity of dial and digital gauges with various gauge 

lengths (MeasureX 2015). The typical gauge length used for concrete laboratory testing is 200 

mm (Brooks 2015). 

Mechanical strain gauges can work in extremely hazardous environments including high 

temperature and high humidity. It is cost-effective considering it is reusable. Also, they are easy 

to use since they do not require any surface preparation (Brooks 2015, Jia et al. 2015). However, 

the attachment of mechanical strain gauges can produce undesired stress concentrations at the 

contact points (Khoo et al. 2016). They are also subject to the shortcoming of not being as 

accurate and easily damaged when a specimen breaks (Huang et al. 2010, Motra et al. 2014). 

Additionally, it is difficult to track strain changes at different locations simultaneously using 

mechanical strain gauges.  

Table 2.2. Comparison of the sensitivities of mechanical strain gauges with dial and digital 

readings (MeasureX 2015). 

Gauge Length (mm) Sensitivity for Dial Gauges (µε) Sensitivity for Digital Gauges (µε) 
100 16 8 
150 10.7 5.3 
200 8 4 
250 6.4 3.2 
300 5.3 2.7 
400 4 2 
500 3.2 1.6 
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Figure 2.2. Mechanical strain gauges with various gauge lengths and their corresponding 

sensitivities (Brooks 2015). Copyright © Elsevier. Used with permission. 

2.4.3. Electrical Strain Gauges 

Electrical strain gauges were invented by Edward E. Simmons and Arthur C. Ruge in 1938 and 

they have been the most widely used strain determination method since then, due to the 

advantages of being cost-effective, robust and accurate (Huang et al. 2010, Jia et al. 2015, Isah et 

al. 2020). This type of gauge usually consists of a metallic foil pattern supported by an insulating 

backing. The backing is attached to the test specimen using a suitable adhesive, so the electrical 

strain gauge will deform along with the test specimen. The deformations will lead to linear 

changes in the foil’s electrical resistance, which are continuously being measured by a reading 

unit (Omega 2016). Thus, the resolution of electrical strain gauges depends on the sensitivity of 

the reader unit to the small changes in the electrical resistance of the foil grid. A typical electrical 
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strain gauge can typically measure strain in micro-strain (µε), which is ε × 10−6 (Isah et al. 

2020). Although this type of gauge is generally considered more reliable than the other strain 

measurement methods, the existence of an electromagnetic field or change in temperature can 

affect its strain measurement (Yin et al. 2007, Guan et al. 2011, Isah et al. 2020). Moreover, 

when it is applied to the surface of concrete, its accuracy is affected by the non-homogeneity of 

concrete and the roughness of the concrete surface; thus, factors including the gauge length, 

change of temperature and aging of the gauges must be considered (Guan et al. 2011, Isah et al. 

2020). 

Guan et al. (2011) performed a laboratory experiment to test the accuracy of using electrical 

strain gauges to measure concrete surface strains. It was found that, unlike for a homogeneous 

material, the length of the electrical strain gauges had a major impact on the accuracy of the 

measurements: the longer the gauge, the higher the accuracy. More specifically, 100 mm, 200 

mm, and 300 mm gauges had errors of 9%, 7%, and 5%, respectively (Guan et al. 2011). The 

errors increased to 22% and 16% for the 100- and 200-mm long gauges, respectively, 90 days 

after they were adhered, which suggests that aging caused a significant decrease in the accuracy 

of the electrical strain gauges (300 mm gauges were not included in the aging test). 

2.4.4. Fibre Optic Sensors  

Fiber optic technology was originally developed for long distance telecommunication in the 

1970’s (Güemes and Sierra-Pérez 2013). Optical fibres, usually made from silica, have the 

ability to transmit light with very little energy loss. Further developments in the field of 

optoelectronics allowed optical fibres to be used to make sensors for measuring physical, 

chemical, electrical and biological parameters (Michie 2000, Güemes and Sierra-Pérez 2013). In 

the field of SHM, fibre optic strain sensors are of particular interest to researchers. Fibre optic 

strain sensors can be divided into three categories based on their operating principle: 

interferometric, grating-based, and distributed (Di Sante 2015). An overview of the major sensor 

types is provided in Figure 2.3. 
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Figure 2.3. Overview of the categorization of major fibre optic strain sensor types (Di Sante 

2015). Copyright © Multidisciplinary Digital Publishing Institute (MDPI) under Creative 

Commons Attribution (CC BY) License. 

Sensors using different operating principles also have different measuring capabilities, as 

demonstrated in Figure 2.4. Interferometric sensors are also called single point sensors, as they 

can only pick up strain changes at a single location, similar to electrical strain gauges. However, 

these sensors can offer extremely high resolution in strain measurement (can exceed 1 µε) (Di 

Sante 2015). The FOSs are generally known for having the multiplexing capability (Yin et al. 

2007, López-Higuera et al. 2010, Abdo 2014, Paliwal and John 2017, Isah et al. 2020). This is 

actually referring to the grating based or distributed sensors, not the interferometric sensors. The 

grating-based sensors are quasi distributed. The most extensively researched type of quasi 

distributed sensor, the Fiber Bragg Grating (FBG) sensor, can have up to 1000 localized sensors 

placed at intervals along the fiber length (Güemes et al. 2018). Typically, FBG sensors can 

measure strains up to ±15000 µε with an approximate resolution of 1 µε (Loupos and Amditis 

2017).  Over the last two decades, the distributed sensors have gained more and more interest 

from researchers. In the distributed FOS systems, the fiber itself works simultaneously as sensors 

to detect change of temperature or strain and as transmitter of the information (Di Sante 2015, 

Güemes et al. 2018). This type of sensor can have a sensing length up to 150 km, which means 

they have great potential in monitoring large scale structures (Di Sante 2015). The resolution, 

however, varies with the sensing length and the acquisition rate. One of the cutting edge 

distributed sensors that is available commercially, NEUBRESCOPE NBX-8200 (Neubrex, 
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Japan), offers a spatial resolution of 20 cm with accuracy of 10 µε, over a sensing length range of 

50 m to 3 km (Neubrex 2020).  

In addition to the multiplexing capability offered by the grating based and the distributed sensors, 

FOSs in general offer several other advantages. First, FOSs are extremely small and light. The 

optical fibres have a diameter of 125 µm, which is about the same thickness as a human hair. 

(Güemes and Sierra-Pérez 2013). Also, they are unaffected by electrical and magnetic noise, and 

they are safe for operation in explosive and hazardous environments. The disadvantages include 

sensitivity to ambient conditions that affect light intensity such as light source, dust, moisture, 

smoke (Abdo 2014). 

 

Figure 2.4. Demonstration of measuring capabilities of single point (interferometric sensors), 

quasi-distributed (grading-based sensors) and distributed sensors (Güemes et al. 2018). 

Copyright © MDPI under Creative Commons Attribution (CC BY) License. 

2.4.5. Digital Image Correlation (DIC) 

The Digital Image Correlation technique was first proposed in the 1980s (Yamaguchi 1981, 

Peters and Ranson 1982, Sutton et al. 1983). It is a non-contact optical method for full-field 

displacement and strain measurements. Due to the need for the full-field measurements, the DIC 

technique has been developed quickly and applied widely over the last a couple of decades (Hild 

and Roux 2006, Pan 2018, Pereira and D’Almeida 2019). 
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A DIC system is generally composed of digital cameras, lenses with different focal lengths, and 

a personal computer with analysis software installed (Pereira and D’Almeida 2019). In 

preparation for the DIC technique, a high contrast speckle pattern needs to be deposited on the 

surface of the object. Then, a series of digital, high resolution images are taken by one or more 

cameras to capture the changes of the speckle pattern before and after deformation (Hensley et al. 

2017). These images are analyzed with correlation-based matching algorithms to calculate full-

field displacement in pixels, which later is converted to standard units like micrometres (Pan 

2018). Even though the principle of the DIC technique is relatively simple compared to other 

optical interferometry methods, it still requires a substantial amount of computation. Thus, the 

DIC algorithms have gradually evolved and have become less complex and more accurate (Chen 

et al. 2013, Khoo et al. 2016, Pereira and D’Almeida 2019). Besides the analyzing algorithms, 

the accuracy of the DIC systems also depends on the following factors: the digital image 

resolution, the size of the specimen, the distance between camera and specimen, the focal length 

of the lens, and the application of the speckle pattern (Cintrón and Saouma 2008, Khoo et al. 

2016). The accuracy for the most advanced DIC systems is considered to be a few micrometers 

(Li et al. 2017).  

While other techniques like mechanical and electrical strain gauges can only provide 

measurements in one dimension within a fixed gauge length, the DIC technique can measure 

displacements and strains in two dimensions if one camera is used and in three dimensions if two 

or more cameras are used. Although the DIC system has a higher up-front cost, its operational 

cost is near zero. Other advantages of the DIC technique include high strain limits, flexible and 

easy implementation, and insensitivity to environmental noise (Huang et al. 2010, Khoo et al. 

2016, Pan 2018). However, the results obtained by the DIC system can be considered acceptable 

for many applications, but not accurate (Cintrón and Saouma 2008). Therefore, the DIC system 

is more commonly used in situations where the object’s deformation is large (Hensley et al. 2017, 

Pereira and D’Almeida 2019).  

2.4.6. Summary 

Mechanical and electrical strain gauges are classic strain measuring tools with affordable price 

and high reliability. However, a mechanical strain gauge is unable to monitor strain changes at 
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multiple locations simultaneously; thus, it is deemed unsuitable for the SHM technique being 

tested in this research study. FOSs and the DIC system are relatively new technologies, but both 

are extensively researched and can measure in micro strains at their optimum conditions. The 

FOS  has a unique advantage in measuring large-scale structures due to its multiplexing 

capabilities (Di Sante 2015, Isah et al. 2020). However, the lab experiment conducted in the 

current study was designed using small-sized beams. Also, the FOSs have not been fully 

commercialized yet; thus, there is a limited number of suppliers on the market. Although the 

optical fibres are supposed to be extremely cheap, the unit price of a semi-distributed sensor with 

1 m sensing length was quoted as $145 by Yieldpoint Inc. and $273 by Hoskin Ltd., which is 

very high-priced for one-time use. Thus, the FOS was ruled out for this experiment as well. 

Finally, this lab experiment proceeded with two strain measuring techniques: electrical strain 

gauges and the DIC system. The purpose of testing with two different methods was to 

demonstrate how the different levels of accuracy of the obtained SHM data can affect the 

evaluated reliability index of the monitored structure. 

2.5. Accelerated Corrosion Using the Impressed Current Method 

2.5.1. Introduction 

The corrosion of reinforcing bars is the biggest threat to the integrity of reinforced concrete 

structures, as it can cause cracking in concrete, decrease in structural capacity due to loss of bond 

and loss of effective area of the reinforcing bars, and in extreme cases, it can even lead to the 

failure of the structure (Palumbo 1991, Malumbela et al. 2010, Zhang et al. 2012, Hong et al. 

2020). Compounding general corrosion issues, in cold regions like Canada, the increased use of 

de-icing salts containing chloride ions accelerates the corrosion of reinforcing bars and the 

deterioration of bridges, roadways, and other structures (Palumbo 1991, Fu et al. 2018). It has 

been estimated that the annual direct cost of corrosion, which is defined as the cost to the owner, 

is about $41 billion in Canada (Shipilov 2016), and $2.5 trillion globally (Koch et al. 2016). The 

indirect cost, which considers the cost to the user and the environment, is much more complex 

and difficult to quantify. A systematic study conducted through the collaboration of the U.S. 

Federal Highway Administration (FHWA), National Association of Corrosion Engineers (NACE) 
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International, and CC Technologies conservatively estimated the indirect cost of corrosion to be 

approximately equal to the direct cost of corrosion (Koch et al. 2016).  

Studying corrosion mechanisms, their development, and their consequences through laboratory- 

conducted experiments is critical in generating information to increase structural safety and 

decrease the economic loss associated with corrosion (Stansbury and Buchanan 2000). However, 

corrosion can take years to develop in natural environments (Malumbela et al. 2012) and, thus, 

the corrosion of reinforcement in beams in laboratory experiments is generally accelerated by 

means of an impressed current. This method is time efficient, cost effective and easy to control 

(Ahmad 2009), but it has been criticized by several researchers for resulting in different surface 

characteristics than those obtained under natural circumstances, meaning that specimens 

corroded through the impressed current method might not represent the behaviour of in-service 

structural members accurately (Yuan et al. 2007, Ahmad 2009, Fu et al. 2018).  

An alternative way to accelerate the corrosion of reinforced concrete is called the artificial 

environment method and was developed by Yuan et al. (2007). This method accelerates the 

corrosion process by placing the specimen in a chamber where environmental factors including 

high and low temperatures, dry and wet conditions, rainfall, salt spray, and ultraviolet light can 

be simulated and repeated in accelerated cycles (Yuan et al. 2007).  The characteristics of 

corrosion occurring under an artificial climate environment are very similar to those occurring 

under a natural environment (Yuan et al. 2007, Dai et al. 2020); however, the time required to 

generate corrosion can only be reduced by a certain extent. For example, according to Dai et al. 

(2020), 167 days were spent to achieve a 2% mass loss of the reinforcing bars using the artificial 

environment method. Thus, this method was considered to be unrealistic for achieving a high 

degree of corrosion in limited timeframe (Dai et al. 2020). Therefore, the impressed current 

method remains to be the most practical method for accelerating the corrosion process. This 

section discusses its principle, setup, methods of estimation, advantages, and disadvantages. 

2.5.2. Principles of Corrosion and the Impressed Current Method 

Corrosion of metals in nature is the chemical or electrochemical reaction between a metal and its 

environment, which causes the degradation of the metals (Cicek and Al-Numan 2011). Although 
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concrete has a high pH, which naturally prevents the reinforcing bars from corrosion when it is 

intact (Palumbo 1991), the use of de-icing salt can serve as an electrolyte and accelerate the 

electrochemical corrosion of the steel bars. Electrochemical corrosion of metals under aqueous 

electrolytes can occur in both acidic and alkaline environment.  

The oxidization of iron may be written as follow:  

Fe →  Fe2+ + 2e−                                                         (2.1) 

Then, under acidic environment, the freed electrons are consumed by the surrounding hydrogen 

ions forming hydrogen (Jones 1996): 

2 H+ +  2e− →  H2                                                        (2.2) 

Under aqueous alkaline environment, the reaction and the products of the redox reaction are a bit 

different (Jones 1996): 

2 H2O +  2e− →  H2 + 2OH−                                             (2.3) 

Since iron can exist in two oxidation states (+2 or +3), Fe2+ can be further oxidized to 

Fe3+(Jones 1996): 

Fe2+ +  3H2O →  Fe(OH)3 + 3H+ + e−                                   (2.3) 

Since the electrons have a negative charge, the liberated electrons can change the potential at the 

surface of the metal. A negative potential means the electrochemical reaction in Equation 2.2 

does not happen fast enough and there are excess electrons accumulated at the surface. The 

accumulated electrons will slow down the degradation rate of the metal (Jones 1996). A positive 

potential, on the other hand, means there is a deficiency of electrons generated by Equation 2.1. 

The higher the potential, the greater the deficiency, and the faster the degradation of the metal 

will happen (Jones 1996). Therefore, the surface potential can be measured and used as an 

indicator of the corrosion rate (Jones 1996). Based on these principles, an external power supply 

can be connected to the reinforcing bar to either protect the metal from corrosion or to accelerate 
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the corrosion through altering the surface potentials. This method is called the impressed current 

method. 

For corrosion of metals in aqueous electrolytes, the final reaction products can be described as a 

function of potential and the pH of the environment in a Pourbaix diagram as shown in Figure 

2.5 (Barthel and Deiss 2021). 

 

Figure 2.5. A Pourbaix diagram for Fe under aqueous alkaline environment (Barthel and Deiss 
2021). Copyright © Wiley Online Library under Creative Commons Attribution (CC BY) 
License. 
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2.5.3. Setup of the Impressed Current Method 

The setup of the impressed current method simulates an electrolyte cell, which includes a DC 

power supply, a cathode, an anode and an electrolyte (Palumbo 1991, Ahmad 2009). The anode 

is simply the steel bar that needs to be corroded (Malumbela et al. 2012). During the corrosion 

process, the steel bar is being forced to lose electrons, thus it is connected to the cathode of the 

DC power supply.  The counter electrode, which is connected to the anodes of the DC power 

supply, has a wide range of options to choose from. In terms of material, it can be made of 

stainless steel, copper and titanium, for their excellent electrical conductivity. As for the shape of 

the counter electrodes, bars, plates or meshes of the previously mentioned metals have been 

reported in literature without posing any differences in the corrosion results (Malumbela et al. 

2012). Lastly, the electrolyte is used to enable the current flow between the specimen and the 

counter electrode (Ahmad 2009). A common practice is to submerge the specimen in a NaCl 

solution with concentration ranges from 3% to 5%. The chloride solution not only provides 

electrical contact, but also breaks the thin protective film on the surface of the specimen once 

they penetrate the concrete cover (Palumbo 1991). Some researchers have also tried adding 2% 

to 5% NaCl by weight of cement into the concrete mixture during the casting of the specimens, 

which will save the time for the diffusion of the chloride irons (El Maaddawy and Soudki 2003, 

Imam et al. 2015). However, the specimens still need to be submerged in an electrolyte or be 

placed in a 100% humidity chamber to ensure the flow of current.  

An illustration of a typical set up for using the impressed current method to corrode an RC beam 

is shown in Figure 2.6.  
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Figure 2.6. An illustration of a typical setup for the impressed current method. 

2.5.4. Estimation of the Degree of Corrosion 

Faradays’ law can provide a theoretical estimation of the mass loss of steel due to corrosion, 

assuming all the applied current is engaged in the corrosion reaction (Ahmad 2009, Hong et al. 

2020): 

𝑀𝑀 = 𝑊𝑊𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑇𝑇
𝑛𝑛𝑛𝑛

                                                           (2.3) 

where M is the mass loss of steel per unit surface area (g/cm2), W is the atomic weight of               

steel (56 g/mol), 𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎 is the applied current density (A/ cm2), T is the total time that the current 

has been applied (s), n is the number of equivalents exchanged, and F is Faraday’s constant, 

which equals 96487 A·s/mol. 

Malumbela et al. (2012) compared the data from 11 research studies in the literature. They 

concluded that the accuracies of using Faraday’s law to predict mass loss due to corrosion varied 

between underestimating -6.7% and overestimating 23.9%. The average difference between 

predicted and actual mass loss was 1.3% with a standard deviation of 3.6%. It was also 

discovered that the actual corrosion tends to be consistently less than predicted at higher levels of 

corrosion. This might be related to the massive accumulation of corrosion products on the 

surface of the steel bar, thus inhibiting further corrosion (Malumbela et al. 2012).  



 

34 
 

 

The impressed current method works regardless of the level of the current densities being used. 

While 100 to 2000 µA/cm2 are commonly used by researchers (Malumbela et al. 2012),  

Almusallam & Al-gahtani (1996) used a current density as high as 10400 µA/cm2 in order to 

achieve the target amount of corrosion in time. In a natural environment, the current density is 

typically between 0.1 and 10 µA/cm2 (Malumbela et al. 2012). Assuming an average current 

density of 3 µA/cm2 under natural conditions, and an impressed current of 10400 µA/cm2 in the 

laboratory, the corrosion in the lab is 3467 times faster than in the natural environment. In other 

words, ten years of corrosion can be achieved within one day using the impressed current method. 

2.4.5. Advantages and Disadvantages 

The prominent advantage of the impressed current method is its ability to achieve a high degree 

of corrosion in a very short period of time. The corrosion rate is not only high, but also can be 

easily adjusted through tuning  the current intensity and the power-on time (Yuan et al. 2007, 

Ahmad 2009, Hong et al. 2020). In addition, the corrosion results are very predictable and highly 

repeatable, which makes this method ideal for laboratory experiments (Fu et al. 2018). 

However, some researchers have pointed out that the distribution of the corrosion product on the 

surface of the reinforcing bar achieved by the impressed current method is different from that 

achieved when corroded under the natural environment (Yuan et al. 2007, Ahmad 2009, Fu et al. 

2018). The corrosion grows evenly around the rebar perimeter when subjected to an impressed 

current, while under natural conditions, the corrosion tends to be greater on the side closest to the 

surface of the concrete (Yuan et al. 2007, Fu et al. 2018).  Due to this difference in surface 

characteristics, the specimen corroded using the impressed current method may not be fully 

representative of the naturally corroded structural members in-service (Fu et al. 2018).  

Moreover, there have been some controversies regarding the effects of using different levels of 

current density (Malumbela et al. 2012). Although it has been proven that target corrosion degree 

can be achieved regardless of the level of the current density being used, the same degree of 

corrosion caused by a different level of current density may result in different degrees of 

cracking of the beams, and therefore leads to different ductility and load bearing capacities. A 

couple of studies have shown that higher current densities are more detrimental to the corroded 
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beams (Mangat and Elgarf 1999, El Maaddawy and Soudki 2003), while other studies suggested 

the opposite (Alonso et al. 1998, Malumbela et al. 2010). It was suggested that this topic should 

be investigated further (Malumbela et al. 2012).  

2.6. Summary 

From a technical perspective, various SHM technologies have been developed and improved 

rapidly over the last few decades; however, the transition from research to field deployment is 

difficult. A major reason for this issue is that, currently speaking, no technology is perfect. A 

review of the state-of-the-art SHM technologies shows that most of the SHM methods provide 

Level 2 monitoring, which means they can identify the existence and location of the damage, but 

they can not quantify the severity of the damage, not to mention provide prognostics of the 

structure. Currently, there has not been an SHM method that can perform Level 4 monitoring of 

reinforced concrete structures. The surface strain-based method, if proven to be effective, would 

fill this gap. This method is suitable for local damage detection, and thus, it has the potential to 

be paired with other Level 2 global damage detection methods to form a robust and sophisticated 

SHM system. Such a combined SHM system would have an advantage compared to each 

individual SHM method and is likely to promote real-life applications of SHM.  

The economic study related to SHM has drawn significant attention over the last ten years, 

because it has been commonly acknowledged that, for the wide adoption of SHM, it is critical to 

demonstrate the quantified SHM value to the structural owners. The economic value of SHM 

comes from the provided additional information which can be used to optimize the maintenance 

strategy and cause savings in the structure’s life-cycle cost. The VOI is a commonly used 

concept in quantifying the economic value of SHM. It is defined as the difference between the 

expected life-cycle costs of the structure without and with the SHM information (Zonta et al. 

2014). VOI is easy to define, but difficult to demonstrate, as each structure is in a different 

condition. A simple SHM system applied on a high-risk structure may result in high returns, but 

a sophisticated SHM system applied on a stable structure may even yield a negative VOI. More 

case studies applying VOI approach on various types and conditions of structures would be 

beneficial to provide a more comprehensive and objective description of the value of SHM 

systems. Christensen et al. (2011) proposed a VOI framework to compare the value of SHM 
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systems with different levels of sophistication, followed by a demonstration using a hypothetical 

reinforced concrete beam. In the latter part of this thesis, data obtained from the experimental 

results are used to demonstrate the framework, and the estimated savings associated with using a 

standard and enhanced SHM system are compared to the actual costs of the SHM instruments to 

see if the investment is economically justified.  

The literature review also compared four types of strain measuring equipment commonly used in 

SHM, including the mechanical strain gauge, electrical strain gauge, FOS, and DIC. It was found 

that the mechanical strain gauge was unsuitable for the experiment conducted in this research 

study due to its lack of ability to measure strains at multiple locations simultaneously. FOS has 

gained a lot of popularity in research due to its multiplexing capability. However, the 

multiplexing capability is not critical to this experimental study, and the commercialized FOSs 

are more than ten times more expensive than electrical strain gauges. Therefore, this lab 

experiment proceeded with using electrical strain gauges and the DIC system.  

Lastly, the principle of corrosion and the techniques used to accelerate the corrosion of 

reinforced concrete in a laboratory environment were reviewed. The impressed current method is 

the only feasible method that can induce a large amount of corrosion in a reasonable timeframe; 

however, it was found that the resulting distribution of the corrosion product might be different 

from that produced in the natural environment. The state-of-the-art advancements in accelerated 

corrosion using the impressed current method have been adopted into the experimental design, 

and it is important to be aware that the difference in the distribution of corrosion product might 

alter the mechanical properties of the specimen, such as the debonding behaviour and beam’s 

capacity.  
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CHAPTER 3   METHODOLOGY 
 

3.1. Overview 

For this research project, a laboratory experiment on nine small-scale reinforced concrete beams 

was conducted. These beams were cast in three batches, with each batch subjected to accelerated 

corrosion by the impressed current method to achieve a different amount of weight loss in the 

reinforcing bars. Four-point loading tests were performed before and after corrosion. During 

these tests, the beams were monitored by electrical strain gauges and a DIC system using the 

surface strain-based SHM technique described by Christensen et al. (2011). As a Level 4 SHM 

technique, its purpose was to accurately estimate the effective reinforcing bar area and the 

remaining beam capacity due to corrosion. The estimates obtained from the SHM system were 

compared to the experimental results to evaluate the effectiveness of the proposed SHM 

technique. The experimental data were also used in reliability and economic analyses to 

demonstrate the value of SHM systems with different levels of uncertainty. In order to create an 

enhanced monitoring system with low levels of uncertainty, a cover meter was used to determine 

the location of the reinforcing bars with greater certainty. The SHM system considering strain 

data alone was called the standard SHM system, while the cover meter was combined with the 

strain measuring equipment to create an enhanced monitoring system. 

This chapter describes the methodologies used for the laboratory experiment and the following 

technical and economic analyses in detail. Section 3.2 describes the experimental program 

including specimen preparation, the monitoring equipment and procedures, the accelerated 

corrosion process using the impressed current method, and loading test procedure. Section 3.3 

explains the theoretical principles of the SHM technique, and the methodologies for the 

reliability and economic analyses are presented in Section 3.4 and 3.5, respectively. 
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3.2. Experimental Program 

3.2.1. Specimen Preparation 

The experimental program consisted of testing nine small-scale reinforced concrete beams, 

which were cast in three batches. Each batch comprised three beams and 12 companion concrete 

cylinders. The dimensions of the beams are shown in Figure 3.1, while the concrete mix designs 

are given in Table 3.1. The design for beams in batches 2 and 3 differed from that of Batch 1, as 

explained later in this section. 

 

Figure 3.1. Configuration of beams used for the experimental program: (a) Batch 1; and (b) 
Batches 2 and 3. 

Table 3.1. Concrete mix designs, specified as mass ratios. 

Batch 1 Mix Design 

Water Cement Sand Gravel Superplasticizer Sodium Chloride* 

0.40 1.00 1.65 2.92 0.01 0.05 

Batch 2&3 Mix Designs 

Water Cement Sand Gravel Superplasticizer Sodium Chloride* 

0.55 1.00 2.37 1.58 0.003 0.05 

*Sodium chloride was only added to the middle section for controlled corrosion. 
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In general, beams in all three batches had small cross sections, so pea gravel with grain sizes 

ranging from 3.2 mm to 9.5 mm (1/8 to 3/8 inches) was used as coarse aggregate. The sand 

available in the structural laboratory was used as fine aggregate. Superplasticizer (Supercizer 5, 

Fritz-Pak Corporation, Dallas, TX) was used to increase the workability of the concrete mixture. 

A single No. 15 steel reinforcing bar with a nominal yield strength of 400 MPa was used as the 

flexural reinforcement for Batch 1 beams. The reinforcing bars protruded from both ends of the 

beams for the convenience of connecting to the DC power supply for the accelerated corrosion 

process using the impressed current method. The mechanical properties of the steel bar and 

concrete used for each batch of beams were determined through companion specimen tests in 

laboratory. The results are summarized in Appendix A.   

The casting of each batch of beams was completed on two separate days, with 48 hours in 

between. On the first day, the ordinary concrete mix (without sodium chloride) was used to cast 

all but the middle sections of the beams (see Fig 3.1). The middle sections were left empty and 

were separated from the ends by plastic blockers while the end sections were being cast. The 

blocker was cut into three pieces with a hole in the middle to allow the bar to pass through it, as 

shown in Figure 3.2 (a). Then these blockers were screwed to the bottom and sides of the 

wooden forms. Some preparation work was done prior to mixing the concrete. The required mass 

of each ingredient was calculated based on the beam configuration, assuming 30% waste, and the 

wooden beam molds were covered with a thin layer of debonding oil (AR Rich-Cote, Acrow-

Richmond, Toronto). Then the pre-measured ingredients were mixed using a drum mixer with 9 

ft3 capacity (Model C9-CE, Monarch Industries, Winnipeg) in the order of coarse aggregate, 

sand, cement. The dry materials were mixed for about 2 minutes before water was added 

gradually to the mixer. The superplasticizer and sodium chloride (if needed) were added last. 

Then, the concrete was mixed for another five minutes. This was followed by a slump test, 

conducted as specified in ASTM C143/C143M-15 (ASTM 2015), to ensure the mixture met the 

required consistency. The slump test results are presented in Appendix A. After the slump test, 

the concrete mixture was poured into the molds in three layers, while the molds were sitting on a 

concrete vibrating table. Lastly, the beams were covered with damp cloths to prevent moisture 

loss. 
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After the concrete in the ends of the beams had cured for 48 hours, the plastic blockers were 

removed. Bonding adhesive (Sikadur 32 Sika Inc., Canada) was applied to the concrete surfaces 

at the cold joints. The concrete mixing process was the same as before. The mix was poured into 

the middle section of the beam in three layers, and each layer was rodded 25 times. In order to 

measure the concrete strength and modulus, 12 companion concrete cylinders were cast from the 

concrete mixture containing NaCl because the middle sections were the critical regions for the 

loading tests. The beams and companion cylinders were covered with damp cloths and left to 

cure for another 48 hours before demolding. After demolding, they were transferred to a 100% 

humidity chamber for curing.  

                         

                                        (a)                                                                       (b) 

Figure 3.2. (a) Blocker design for Batch 1; (b) The beam moulds showing the modified blocker 
design for Batch 2 and Batch 3. 

After preparing and testing the Batch 1 beams, it was determined that several factors could be 

improved. Firstly, the concrete mixture had a slump of 40 mm, which was lower than desired and 

made proper consolidation difficult. This resulted in honeycombing in the concrete, as shown in 

Figure 3.3. These beams also failed in shear instead of flexure at the end of the post-corrosion 

loading tests due to the relatively high reinforcement ratio. The reinforcement ratio used by the 
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Batch 1 beams was 200 mm2

80 mm×140 mm
= 0.0179. Although this less than the maximum allowable 

reinforcement ratio specified by CSA A23.3-14 (2014), which is 0.025, the cross-sectional area 

of the beams was too small to fit in any shear reinforcement. As a result, the shear resistances of 

the beams were lower than the bending moment resistance. Moreover, the blockers did not 

perform as desired. Some concrete seeped through the holes in the blockers and covered the 

screws, which made them extremely difficult to remove. Lastly, the bonding adhesive, Sikadur 

32, had a very high ability to bond surfaces. Even though de-bonding oil had been applied to the 

wooden forms, pieces of the form adhered to the beams where the bonding adhesive had been 

applied and they became inseparable. This is apparent in Figure 3.3. 

 

Figure 3.3. Side surface of the middle region of a beam from Batch 1, showing honeycombing in 
the concrete. 

Based on the factors listed above, the mix design and configuration for the following batches of 

beams were modified, as shown in Table 3.1 and Figure 3.1 (b). The mix design for Batches 2 

and 3 had a higher water cement ratio of 0.55, higher water percentage of the total mixture, and a 

smaller amount of gravel. The beam length for Batches 2 and 3 was increased to 2.0 m and the 

reinforcing bar size was decreased to a No. 10 bar to ensure that the beams would fail in flexure. 

Since there was less reinforcement in these beams, the neutral axis (N.A.) location moved 

upward. To ensure that the compression region was deep enough for the installation of the 

desired number of strain gauges, the beam width was also decreased. Thick Styrofoam blockers 

were used instead of the plastic ones because the Styrofoam could be removed more easily by 

being broken up and blown out with compressed air. Also, wax paper was used to line the forms 



 

42 
 

 

in the middle section where the bonding adhesive was used to prevent the beams from adhering 

to the forms. These changes made to Batches 2 and 3 resolved all the issues encountered in Batch 

1. However, the wax paper wrinkled after being exposed to moisture in the concrete, which 

caused the side surfaces of the beams to be uneven, as shown in Figure 3.4. 

After the beams had cured for 28 days, they were taken out of the humidity chamber and had 

their surfaces were prepared for monitoring during the load test. Both the electrical strain gauges 

and the DIC system required a clean and smooth surface on which to work, so an angle grinder 

was used to grind and polish the side surfaces of the concrete beams in the middle sections. After 

this, the dust and debris generated by the grinding process were removed using compressed air, 

and each surface was wiped clean using a non-woven sponge and Acetone. As shown in Figure 

3.4, the processed surface in the middle was smooth and clean, whereas outside of this region, 

the surface was still wrinkled. 

 

Figure 3.4. A photo of the side surface of a beam from Batch 3 in the middle region, showing 

wrinkling on the surface and the finish after smoothing and cleaning. 

3.2.2. Instrumentation 

The instruments used to monitor the beams during the load tests included electrical strain gauges, 

a DIC system, and a cover meter.  Except for the pre-corrosion load test for Batch 1 and the 

second post-corrosion load test for Batch 2, the beams were monitored by electrical strain gauges 

on one side and by the DIC on the other side. Only electrical strain gauges were used to monitor 

one side of the beams during the pre-corrosion load test for Batch 1, because this was the original 

plan for the experiment. Then starting from the post-corrosion load tests, the DIC system was 
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used to monitor the other side of the beams. Lastly, the purpose of using electrical strain gauges 

to monitor both sides of the beams during the second post-corrosion load test for Batch 2 was to 

verify the existence of eccentric loading and to control variables The cover meter was used to 

locate the reinforcing bars for all the load tests.  

Electrical Strain Gauges 

Four electrical strain gauges were applied to one of the side surfaces of each beam, oriented to 

measure longitudinal strain during the pre-corrosion and post-corrosion load tests. A second post 

corrosion load test was conducted on Batch 2 beams, for which eight electrical strain gauges 

were applied, four on each side. These strain gauges were placed in the middle section of the 

beams where the reinforcing bars were corroded.  

For Batch 1, gauges were attached in both the compression and tension zones, as shown in 

Figure 3.5 (a). However, it was discovered that the gauges in the compression zones were more 

durable and yielded more reliable data, which may have been due to the extreme local tensile 

strains at the crack locations. Also, gauges in the tension zone were more prone to damage 

during the corrosion process because the accumulated rust from the corroding rebar caused the 

beams to crack, allowing the rust to cover the strain gauges. Therefore, for Batches 2 and 3, all 

gauges were placed in the compression zone. Due to the limitations of space, one of the gauges 

was attached to the top surface close to the edge, as shown in Figure 3.5 (b). The exact locations 

of the attached strain gauges are described in Appendix B. 

Since concrete is a non-homogeneous material, electrical strain gauges with a gauge length five 

times the largest grain of the aggregate were selected. Thus, electrical strain gauges with a 60 

mm gauge length (model PL-60-11-3LJCT-F, Tokyo Sokki Kenkjujo Co. Ltd., Japan) were used 

to even out the non-homogeneous effect of the concrete. This type of strain gauge can measure 

strain up to 0.02 (Tokyo Measuring Instruments Lab 2021), and in the actual measurement, they 

had a precision of 2 micro strain (2 ×10-6). 
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                                           (a)                                                                     (b) 

Figure 3.5. (a) Illustration of electrical strain gauge locations for Batch 1 and (b) for Batches 2   
and 3. 

The type of adhesive used to attach the strain gauges for Batch 1 was CN-E, made by the same 

manufacturer that made the strain gauges (Figure 3.6 (a)). For Batch 2, a different adhesive, 

Gorilla Super Glue, was used (Figure 3.6 (b)), but it did not work well, even though it had the 

same main ingredients as the CN-E. As a result, CN-E was used again for Batch 3. Also, as 

described below, Batch 2 beams were not tested to failure during the first post-corrosion load test. 

After the first post-corrosion load test, the previously attached electrical strain gauges were 

ground off, and new ones were attached using the CN-E adhesive for the second post-corrosion 

load test.   

                              

(a)                                                              (b) 

Figure 3.6. (a) CN-E adhesive used for Batches 1 and 3; (b) Gorilla super glue used for Batch 2. 
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DIC System 

As previously mentioned, during the load tests, strains were measured on one side of the beams 

using the electrical strain gauges, and on the other side using the DIC system (model VIC-3D 

and VIC-2D, Correlated Solutions Inc., US). DIC is a non-contact optical method that measures 

in-plane displacements and strains by tracking the relative movement of painted dots on a surface. 

As a preparation, the surface was first painted white using spray paint (340 G in flat white, 

Tremclad®, Canada) and left to dry for 24 hours. Then a contrasting speckle pattern, as shown in 

Figure 3.7, was hand drawn on the white surface using a fine tip marker. These dots had a 

diameter of approximately 1 mm and the spacing was also approximately 1mm.  

 

Figure 3.7. Contrasting speckle pattern on the middle section of a beam for the DIC system. 

The idea of monitoring the second side of the beams using the DIC system was proposed after 

the pre-corrosion load tests for Batch 1 had been conducted. Therefore, DIC data for the pre-

corrosion load tests for this batch of beams were not obtained. The set-up for the DIC system 

used in the post-corrosion load tests for Batch 1 is shown in Figure 3.8. Two cameras were used; 

thus, the collected data were analyzed using the DIC 3D software. However, the orientation of 

the beams in the test machine was changed to accommodate the longer beams for Batches 2 and 

3, and only one camera was used due to spatial limitations, as seen in Figure 3.9. The data for 

these beams were analyzed using the DIC 2D software. The 2D system measured displacements 

and strains in two dimensions, which was adequate for the purposes of this research study. The 

advantage of a 2D system is that it has higher resolution. According to the manufacturer, the 3D 
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system has a strain resolution of 100 microstrain, while the 2D system has a resolution between 

10 and 50 microstrain (Correlated Solutions Inc. 2018). 

 

Figure 3.8. DIC system set-up for Batch 1 beams. 
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Figure 3.9. DIC system set-up for Batch 2 and Batch 3 beams. 

Cover meter 

In addition to the strain monitoring equipment used during the loading tests, a cover meter was 

also used prior to conducting the loading tests to reduce the uncertainty in the location of the 

reinforcing bars. A cover meter (Proceq Profometer 5+, Proceq Inc, USA), as shown in Figure 

3.10, was borrowed from ISL Engineering and Land Services Ltd. This device utilizes the pulse-

induction method, and its accuracy is reported to be ±2 mm or 5%, whichever is greater (Proceq 

2007).  
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Figure 3.10. Using the Proceq Profometer 5+ to measure the rebar cover depth of a beam. 

3.2.3. Corrosion Procedure 

Following the pre-corrosion loading tests, the beams were subjected to accelerated corrosion 

using the impressed current method. The objective was to only corrode the middle 100 mm 

section of the reinforcing bars to achieve weight losses of 30%, 20% and 10% for Batches 1, 2 

and 3, respectively. As described earlier, NaCl had already been added to the concrete mixture in 

the middle sections, so that area was more prone to corrosion than the rest of the beam.  

The experimental setup for the accelerated corrosion process is shown in Figure 3.11. The 

cathode of a 30 V DC power supply (UK3005-H, iiBro, China) was connected to one end of the 

reinforcing bar, and the anode was connected to a counter electrode. In this case, a sheet of 

copper mesh served as the counter electrode and was wrapped around the middle 100 mm 

section of the beam. This measure was used to further ensure that corrosion would be 

concentrated in the middle section. A thick layer of wet cotton towel was wrapped outside the 

copper mesh, and the moisture served as an electrolyte that provided for a continuous electrical 

circuit between the anode and the cathode and through the beam. If the cotton cloth were to get 

drier, the resistance of the circuit would increase, and it would require higher voltage to maintain 

the same current through the system. Therefore, to prevent the moisture from evaporating, the 

beams were placed inside a curing room, where the relative humidity was 100%. A 5% sodium 

chloride solution was added to the cloth daily to maintain optimum conductivity. 
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Figure 3.11. Setup for accelerated corrosion, shown in elevation and cross-section. 

Preliminary Test 

A short 200 mm long beam with the same cross-sectional dimensions as the Batch 1 beams was 

used to test the corrosion procedure first and served as a preliminary test; it is shown in Figure 

3.12 (a). The target weight loss in the middle 100 mm length of rebar for this test was 10%. The 

average current that went through the circuit was 50 mA, which was the maximum constant 

current that could be maintained by a 30 V DC power supply. The surface area of the section of 

the steel bar to be corroded was 𝜋𝜋(16 mm)(100 mm) = 5026.5 mm2. Thus, the current density 

can be calculated as 50 mA
5026.5 mm2 = 0.00995 mA

mm2 = 995 μA
cm2 . Based on the literature review, 

current densities from 100 to 2000 μA
cm2 are commonly used for the impressed current method 

(Malumbela et al. 2012). The current density used in this experiment was in the middle of that 

range. The time duration required for the corrosion process was calculated based on Faradays’ 

law: 

 𝑀𝑀 = 𝑊𝑊𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑇𝑇
𝑛𝑛𝑛𝑛

                                                           (3.1) 

where M is the mass loss of steel per unit surface area (g/ cm2), W is the atomic weight of steel 

(56 g/mol), 𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎 is the applied current density (0.995 mA/ cm2), T is the time period (s) that must 

be solved for, 𝑛𝑛 is the number equivalents exchanged (2 for Fe), and F is Faraday’s constant 

(96487 A·s/mol) 
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According to Faraday’s law, the theoretical duration for the corrosion process to achieve the 

target weight loss was 12 days (287 hrs). A sample calculation demonstrating Faraday’s law is 

provided in Appendix C. After applying the current for 287 hrs, the corroded reinforcing bar was 

extracted and cleaned. The reinforcing bar was extracted by breaking the beam using a hammer. 

The corrosion product was removed from the steel bar sections using the chemical method 

described in ASTM G1 (2017). The procedure of the chemical method involves immersing the 

corroded steel bar in hydrochloric acid solution for 10 mins. The solution was made by adding 

500 mL hydrochloric acid (HCL, sp gr 1.19), 3.5 g hexamethylene tetramine, and distilled water 

to make 1 litre. Figure 3.12 (b) shows the corroded steel bar being cleaned in the HCL solution.  

The preliminary test validated that the corrosion method was able to concentrate the corrosion in 

the target area. All corrosion occurred within a 160 mm length. The middle 100 mm section 

experienced uniform severe corrosion, and the remaining 60 mm was slightly corroded, as shown 

in Figure 3.12 (c). The average weight loss of the middle section was 11.2 %, which was close to 

the expected value. 

      
                             (a)                                                                            (b) 

 
(c) 

Figure 3.12. (a) Preliminary test for the accelerated corrosion on the short beam; (b) Cleaning 
process for the corroded steel bar in the preliminary test; (c) Cleaned steel bar in the preliminary 
test. 
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Corrosion of the Beams 

The targeted weight loss and the estimated total amount of current required to meet the target for 

each batch of beams is shown in Table 3.2. An average current of 50 mA was used for all beams. 

Based on the calculations using Faraday’s law, Batch 1, 2 and 3 were corroded for 35.9, 12.2 and 

6.1 days, respectively. The current rate was selected based the limitaions of the circuit 

resistances and the voltage capacity of the DC power supply. The resistance of the circuit 

connecting each beam was similar, and 20 V was required to maintain the constant 50 mA 

current when the cotton towel was fully saturated. The DC power supply could provide a  

maximum of 30 V; therefore,  10 V were left as contingency in case the resistance of the circuit 

increased when the cotton towel got drier.  

Table 3.2. Corrosion target and current requirement for each batch of beams. 

Batch 

Number 

Rebar 

Size 

Target Weight 

Loss 

Estimated Required Current 

(A · hr) 

Required Duration of 

Corrosion (day) 

Batch 1 No.15 30% 43.0 35.9 

Batch 2 No.10 20% 15.3 12.2 

Batch 3 No.10 10% 7.31 6.1 

 

After corrosion was completed, the DIC surfaces were repainted due to the corrosion stains. 

Electrical strain gauges were checked for integrity and replaced if they had lost connection. 

Following the post-corrosion load test, the reinforcing bars were extracted and cleaned following 

the same procedure as was used in the preliminary test. Then, the middle 100 mm sections were 

cut off using a table saw and weighed using a scale with a precision of 0.1 g. Their weights were 

compared to the weight of the uncorroded reinforcing bar, and thus, the actual percentage weight 

losses were determined.  

3.2.4. Loading Test Set-up and Procedures 

Four-point loading tests, set up as shown in Figures 3.13 and 3.14, were performed on the beams 

before and after corrosion using an Instron 600DX Universal Testing Machine (UTM) with a 

capacity of 600 kN. With this specific loading setup, the impact of potential loss of bond due to 

corrosion was minimized. Since corrosion was concentrated in the middle 100 mm section, the 

rest of the reinforcing bar maintained its original bond strength. The use of the four-point loading 
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set-up created a constant moment region within a 200 mm length centered at mid-span; therefore, 

bonding was not required in the corroded sections. 

Figure 3.14 shows a beam being monitored by the DIC system and electrical strain gauges during 

a loading test. In this figure, the left-hand side surface of the beam is painted with a speckle 

pattern and is being monitored by the DIC system. The right-hand side has electrical strain 

gauges attached and is connected to a data acquisition (DAQ) system.  

 
Figure 3.13. Four-point loading test set-up. 

 

Figure 3.14. The experimental set-up, showing a beam being monitored by the DIC system and 
electrical strain gauges during a loading test. 
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Each beam was loaded multiple times during the pre-corrosion and post-corrosion loading tests 

and results from multiple tests were averaged. For each loading cycle, the beam was loaded to its 

cracking load (approximately 4 kN for Batch 1 beams and 2 kN for Batch 2 and Batch 3 beams) 

at a constant rate of 3 kN/min. The machine held the cracking load for approximately 30 seconds. 

After this, the load was increased at the same rate pausing at 1 kN intervals until the end of the 

elastic region was reached (approximately 10 kN for Batch 1 beams and 5 kN for Batch 2 and 

Batch 3 beams). This was to ensure the beams had been fully cracked. The end of elastic region 

was taken as the yielding of steel. Taking Batch 3 as an example, the loads were held at 2 kN, 3 

kN, 4 kN and 5 kN. A sample calculation showing the theoretical cracking load and the end of 

elastic region is provided in Appendix D. 

The beams were unloaded completely at the end of each loading cycle, then the same loading 

procedures were repeated at least three times to get averaged results.  

At the end of the post-corrosion loading tests, the beams were loaded to failure at a uniform rate 

of 3 kN/min. The failure was detected by the loading machine and was defined as the point at 

which when the beam’s capacity dropped 20% from the maximum that had been reached.  

The pre-corrosion loading tests or post-corrosion loading tests on all three beams from each 

batch were completed on the same day. Then, their corresponding companion specimens were 

tested either on the same day or the following day to determine the mean and standard deviation 

of their strength and modulus. Twelve companion specimens were prepared for each batch of 

beams; six of them were tested after the pre-corrosion loading test, and six were tested after the 

post-corrosion loading test. A compressometer with a dial gauge was attached to the concrete 

cylinders for the compression tests to determine the elastic modulus. The compressometer 

measures displacements with a precision of 0.0025 mm (0.0001’’) within a gauge length of 101.6 

mm (four inches). The loading rate for the compression test was 0.25 MPa/s, which complied 

with the loading rate specified by CSA A23.2-14 (2014). The compressive test results are listed 

in Appendix A. 
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3.3. Theoretical Principles of the Surface Strain-based SHM Technique 

3.3.1. The Original Theory Using Two Strain Readings 

The theoretical principles of the surface strain-based SHM technique were first described by 

Christensen et al. (2011). Assuming that the reinforced concrete beam has a linear strain 

distribution on the side surface when subjected to a certain load and the strains can be measured 

accurately, the effective cross-sectional area of the reinforcing bar can be calculated simply using 

the readings from two strain gauges and principles of mechanics of materials. The following 

paragraphs provide a step-by-step description of the procedure. 

As shown in Figure 3.15. (a), two strain gauges are located at the midspan of the beam (where 

the bending moment is the largest) at different depths, d1 and d2, respectively. A strain diagram, 

Figure 3.15 (b), can be constructed using the data provided by these strain gauges. Since ΔABO 

and ΔCDO are similar triangles, we can obtain the following relationship: 

𝜀𝜀1
𝜀𝜀2

= 𝑐𝑐−𝑑𝑑1
𝑑𝑑2−𝑐𝑐

                                                                   (3.2) 

where 𝜀𝜀1  and 𝜀𝜀2  are the strain readings provided by the gauges at depths of 𝑑𝑑1  and 𝑑𝑑2 . The 

distance from the top of the beam to the neutral axis, c, can be calculated by rearranging the 

equation above: 

𝑐𝑐 = 𝜀𝜀1𝑑𝑑2+𝜀𝜀2𝑑𝑑1
𝜀𝜀1+𝜀𝜀2

                                                               (3.3) 

 

Figure 3.15. (a) Beam being monitored with two strain gauges; and (b) the strain diagram 

showing the relationship of the similar triangles. 
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Based on the principles of mechanics of materials, the neutral axis is located at the centroid of 

the cross-section as long as the beam is still under elastic deformation. Using the cracked 

transformed cross-section shown in Figure 3.16, the distance from the top of the beam to the 

centroid, ȳ, can be calculated as 

ȳ =
(𝑏𝑏𝑏𝑏)𝑐𝑐2+𝐴𝐴𝑡𝑡𝑑𝑑

𝑏𝑏𝑏𝑏+𝐴𝐴𝑡𝑡
                                                            (3.4)             

where b is the width of the beam, d is the distance from the top surface to the rebar location, and 

At is the transformed rebar area. Equation 3.4 is valid only if the beam is fully cracked (i.e. 

cracked from the bottom of the beam up to the neutral axis location). If the applied load is not 

high enough to fully crack the beam, the location of the centroid would be lower than the 

location of the neutral axis. However, the applied load can not be too high either. The strain 

distribution would not be linear if the beam reaches the inelastic deformation zone. Therefore, 

theoretically the optimum level of the applied load should result in the beam reaching the higher 

end of the elastic zone. When the beam is fully cracked under the elastic deformation range,  𝑐𝑐 =

ȳ, Equation 3.4 can be rearranged to obtain the transformed rebar area, 𝐴𝐴𝑡𝑡.  

𝐴𝐴𝑡𝑡 = 𝑏𝑏𝑐𝑐2

2(𝑑𝑑−𝑐𝑐)
                                                              (3.5)                    

The transformed rebar area is defined as the actual rebar area times the modular ratio. The 

modular ratio, n, is the ratio of the Young’s modulus of steel to that of concrete. Therefore, the 

actual steel bar area can be calculated as: 

   𝐴𝐴𝑠𝑠 = 𝐴𝐴𝑡𝑡
𝑛𝑛

                                                                (3.6) 

This actual rebar cross-sectional area, 𝐴𝐴𝑠𝑠, is the effective area left after corrosion. Therefore, it 

can be used to estimate the bending moment capacity,  𝑀𝑀𝑢𝑢 as follows: 

𝑀𝑀𝑢𝑢 = 𝐴𝐴𝑠𝑠𝑓𝑓𝑦𝑦𝑑𝑑 −
𝐴𝐴𝑠𝑠2𝑓𝑓𝑦𝑦2

2𝑏𝑏𝛼𝛼1𝑓𝑓𝑐𝑐′
                                            (3.7) 

where 𝑓𝑓𝑦𝑦 and 𝑓𝑓𝑐𝑐′ are the yielding stress of steel and the specified compressive strength of concrete, 

respectively, b is the width of the cross-section, and 𝛼𝛼1 is the Whitney stress block parameter 

which is calculated based on 𝑓𝑓𝑐𝑐′.. 
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Figure 3.16. The cracked transformed section used to find centroid. 

3.3.2. Locating the Neutral Axis Using Multiple Strain Readings 

Section 3.3.1. provided a walk-through of the principles of the proposed SHM technique 

considering the simplest scenario, for which only two strain readings were obtained. In that case, 

assuming the beam is under elastic deformation and the surface strains are distributed linearly, 

the similar triangle method was used to find the neutral axis location. However, during the 

experimental program, additional electrical and DIC strain readings were obtained to increase the 

reliability of the data. Thus, the similar triangle method was not adequate to calculate the N.A. 

location. Instead, the N.A. could be located using a linear best fit function obtained by applying 

the least squares method, in which the strain gauge locations and readings can be taken as the x- 

and y-coordinates respectively, as shown in Figure 3.17. The x-intercept of the derived best fit 

trendline is the estimated N.A. location.  

             

Figure 3.17. Illustration of finding the N.A. location using the best fit function through multiple 

strain readings. 
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When combining data from the two faces to locate the N.A., three different methods were 

proposed and tested to find the optimal analysis procedures. The alternative methods are 

explained below and illustrated in Figure 3.18. Sample Calculations are given in Appendix E. 

• Method 1: Obtain the best fit function for the DIC and the ESG sides separately, then 

take an average between the two N.A. locations.  

• Method 2: Merge the data from the two sides into one data set, and then apply best fit.  

• Method 3: Firstly, obtain the best fit function for the DIC side, then use this function to 

interpolate the DIC strains at the same depths as the ESGs. Next, find the average of the 

interpolated DIC readings and the corresponding ESG readings. Lastly, find the best fit 

function using the averaged strains. 
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Figure 3.18. Illustration of locating neutral axes using the integrated data from two faces: (a) 
Method 1; (b) Method 2; and (c) Method 3. 

If the two faces are perfectly complementary to each other, or in other words, the estimated 

neutral axis locations on the two faces are equal in distance and opposite in direction from the 

theoretical N.A. location, then Method 1 should be effective. Method 2 should work well when 

the number of measurement locations on both sides is similar, as was the case for the second 

post-corrosion load test for Batch 2, for which both sides were monitored by four electrical strain 

gauges. In the other load tests, however, the number of extensometers on the DIC side was 

significantly larger than the number of electrical strain gauges, and thus, the results might be 

partial to the DIC data. Method 3 is the most complicated procedure, but it might be able to 

overcome the weighting issue associated with Method 2.  

3.4. Methodology for the Reliability Analysis 

3.4.1. Reliability Analysis 

One way to quantify a structure’s level of safety is through the reliability index, which is defined 

as follows (Frangopol and Messervey 2011): 

𝛽𝛽 = 𝜇𝜇𝑅𝑅−𝜇𝜇𝐿𝐿

�𝜎𝜎𝑅𝑅
2+𝜎𝜎𝐿𝐿

2
                                                          （3.8） 

where 𝜇𝜇𝑅𝑅 and 𝜇𝜇𝐿𝐿 are the mean values of resistance and load effect, respectively, and 𝜎𝜎𝑅𝑅 and 𝜎𝜎𝐿𝐿 

are their corresponding standard deviations. This equation assumes that the two variables are 

normally distributed. 
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The reliability indexes were calculated using Equation 3.8 based on the monitoring data provided 

by the standard and enhanced SHM systems separately. For this research study, 𝜇𝜇𝑅𝑅  was the 

estimated moment resistance of the monitored beams. 𝜇𝜇𝐿𝐿 was considered to be the maximum 

allowable moment that can be applied to the beams. In reality, 𝜇𝜇𝐿𝐿 should be taken as the design 

load of the structure. However, under the circumstances of this lab experiment, an assumed value 

was needed. To make the assumption more reasonable, 𝜇𝜇𝐿𝐿 was taken as the largest integer value 

of the moment in kN∙m smaller than a beam’s factored design resistance calculated based on 

CSA A23.3-14 (2014). 𝜇𝜇𝑅𝑅  was re-calculated after the beams had been corroded, but 𝜇𝜇𝐿𝐿  was 

assumed to be the same, because it was intended to evaluate whether the beams still had 

adequate level of safety after corrosion. Since the loads were applied by a universal testing 

machine in a laboratory setting, the standard deviation of the applied moment, 𝜎𝜎𝐿𝐿 , was 

approximated to be zero. Lastly, the standard deviation of the moment resistance, 𝜎𝜎𝑅𝑅 , was 

calculated as an accumulation of the standard deviations of all the independent variables used in 

the process of calculating the mean beam resistance.  

For the purpose of illustrating this process, assume that a function f (x1, x2, …, xn) is based on n 

independent variables. Also assume each variable follows a normal probability distribution and 

has a standard deviation, 𝜎𝜎𝑥𝑥𝑥𝑥. Then, the standard deviation of the result of this function can be 

calculated using Equation 3.9 (Nowak and Collins 2000): 

𝜎𝜎𝑓𝑓(𝑥𝑥𝑖𝑖) = �∑ �𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖
�
2

× 𝜎𝜎𝑥𝑥𝑖𝑖2
𝑛𝑛
𝑖𝑖=1                                               (3.9) 

Taking the calculation of the transformed area, 𝐴𝐴𝑡𝑡, as an example, 𝐴𝐴𝑡𝑡 is calculated based on three 

variables: the beam width, b; the neutral axis location, c; and the rebar location, d, as shown in 

Equation 3.10: 

𝐴𝐴𝑡𝑡 = 𝑏𝑏𝑐𝑐2

2(𝑑𝑑−𝑐𝑐)
                                                              (3.10) 

Assuming that the standard deviations of b, c, and d have already been obtained and denoted as 

𝜎𝜎𝑏𝑏, 𝜎𝜎𝑐𝑐, and 𝜎𝜎𝑑𝑑, then the standard deviation of the transformed area, 𝜎𝜎𝐴𝐴𝑡𝑡, can be calculated as: 

𝜎𝜎𝐴𝐴𝑡𝑡 = �� 𝑐𝑐2

2(𝑑𝑑−𝑐𝑐)
�
2
𝜎𝜎𝑏𝑏2 + �2𝑏𝑏𝑏𝑏𝑏𝑏−𝑏𝑏𝑐𝑐

2

2(𝑑𝑑−𝑐𝑐)2
�
2
𝜎𝜎𝑐𝑐2 + � −𝑏𝑏𝑐𝑐2

2(𝑑𝑑−𝑐𝑐)2
�
2
𝜎𝜎𝑑𝑑2                      (3.11) 
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Therefore, it is critical to identify the standard deviation of each individual variable. The 

methods used are described in Section 3.4.2. 

After the mean and standard deviation of the estimated beam resistance were determined, 

probability distribution diagrams were constructed using the following formula for a normal 

probability distribution (NIST/SEMATECH 2012) to illustrate the probabilities of failure 

associated with different monitoring systems: 

𝑃𝑃(𝑥𝑥) = 1
𝜎𝜎𝑅𝑅√2𝜋𝜋

𝑒𝑒
−(𝑥𝑥−𝜇𝜇𝑅𝑅)2

2𝜎𝜎𝑅𝑅
2                                                  (3.12) 

An example probability distribution diagram, associated with alternative monitoring systems, is 

shown in Figure 3.19. The probability distribution curve for the enhanced monitoring system is 

narrower than that of the standard monitoring system, because enhanced monitoring produces 

more certainty about the estimated mean resistance. The area below the curve to the left of the 

applied moment indicates the probability of failure. Thus, for the enhanced monitoring system to 

get the same probability of failure as the standard monitoring system, the beam would be allowed 

to remain in service and deteriorate for a longer period of time.  

 
Figure 3.19. Probability distribution diagram of a beam’s flexural capacity associated with 

standard and enhanced monitoring systems.  
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3.4.2. Determination of the Standard Deviations of Variables 

All the variables used in this research study were assumed to follow a normal probability 

distribution that could be represented by its mean and standard deviation. The standard 

deviations were determined in three different ways, depending on the specific variable. The first 

way was based on the precision of the instrument used to make the measurement. It was assumed 

that the precision of a measurement device corresponded to the 90% confidence limits, which lie 

1.645 standard deviations from the mean. For instance, beam width was measured using a ruler 

with        1 mm precision, so the standard deviation of beam width was 1 𝑚𝑚𝑚𝑚
1.645

= 0.606 𝑚𝑚𝑚𝑚. 

The second way to determine a variable’s standard deviation was through experimental statistics. 

The mechanical properties of steel and concrete were determined through testing the companion 

specimens in the lab. The standard deviation of the material properties was then calculated 

directly using the test results. Detailed results can be found in Appendix A. Another property that 

was determined through statistics was the estimated neutral axis locations. While a certain load 

was being held during the load test, strain data were obtained with a sampling rate of 1/s. Each 

set of strain data corresponded to an estimated neutral axis location. Thus, since each load was 

held for approximately 30 s, 30 neutral axis locations were obtained. The mean and standard 

deviation of the estimated neutral axis locations were then determined through the statistical 

method.   

Lastly, if a variable was neither measured directly nor obtained through laboratory testing, then 

its standard deviation was determined through literature references. For instance, without the 

help of a cover meter, the tolerance for the cover depth over the reinforcing steel in a reinforced 

concrete beam is ±12 mm as specified by CSA A23.1 (2014). This was assumed to correspond 

to the 90% confidence limit. Considering the Young’s modulus of reinforcing steel, Mansour et. 

al (1984) reviewed the test results for 300 samples, and concluded a weighted average coefficient 

of variation to be 0.031. Thus, for a steel bar with a modulus of 200 GPa, the standard deviation 

was estimated to be 6.2 GPa. 

A list of variables used to determine a beam’s moment capacity and their corresponding standard 

deviations are presented in Table 3.3. 
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Table 3.3. List of variables and their corresponding standard deviations. 

Symbol Variable Definition Standard Deviation Source 
c Estimated N.A. Location varies Experimental Statistics 
f’c Concrete Compressive Strength varies Experimental Statistics 
Ec Concrete Young’s Modulus varies Experimental Statistics 
fy Steel Yield Strength varies Experimental Statistics 
Es Steel Young’s Modulus 6.2 MPa Literature (Mansour et.al, 1984) 
db Rebar Diameter 0 mm Assumed to be very small 
b Beam Width 0.608 mm Ruler Precision (±1 mm) 
h Beam Height 0.608 mm Ruler Precision (±1 mm) 

cc Concrete Cover Thickness 
7.3 mm (standard) Literature (CSA A23.1, 2014) 

1.2 mm (enhanced) Cover Meter Precision (±2 mm) 

 

3.5. Methodology for the Economic Analysis 

The economic values associated with implementing the standard and enhanced SHM systems 

were quantified using the VOI approach assuming the beams tested in the laboratory were the 

edge beams on the University Bridge in Saskatoon, SK. The edge beam is one of the most easily 

corroded structural members of a bridge, since it does not have waterproof surfacing like the 

bridge deck does (Racutanu 1999).  Without the help of any SHM systems, the current 

replacement cycle of edge beams is 45 years on average, and the cost of replacement (including 

demolition and reconstruction) is around $820/meter (Mattsson et al. 2007). Assuming a 5% 

inflation rate, the replacement cost of edge beams is equivalent to $1624/meter in 2021. The 

university bridge has a length of 378 metres (City of Saskatoon 2020), so the total cost to replace 

the edge beams on both sides of the bridge is 378 𝑚𝑚 × 2 × $1624/𝑚𝑚 = $1,227,744. This value 

was assumed to be the total life cycle cost of the edge beams without SHM monitoring.  

Assume that the present time is 45 years into the service life of this bridge. Without the 

information provided by any SHM system, a bridge inspector may decide to replace all the edge 

beams due to the uncertainty of the deterioration condition of the beams. However, if an SHM 

system was implemented to reduce the uncertainty in the actual condition of the beams, they may 

be allowed to remain in service, thus extending their service lives, if they were found to have an 

adequate level of safety, defined as possessing a reliability index that exceeds a critical value. In 
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structural assessment, the target reliability index is commonly taken as 2 to 4 (Frangopol and 

Messervey 2011). In this research, a lower reliability index of 2 was adopted as the critical value, 

𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.  

The reliability indexes obtained for the beams using the information provided the standard and 

enhanced monitoring systems were compared to the critical value. If the reliability index for the 

beam was less than 𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, the beam was assumed to be taken out of service immediately. On 

the other hand, if the reliability index for the beam was greater than 𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 , the beam was 

assumed to remain in service and continue to deteriorate while being monitored continuously 

until its reliability index dropped to the minimum acceptable value, 𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 2. The minimum 

allowable mean resistance of the structure, 𝜇𝜇𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, was calculated by rearranging Equation 3.8 

above: 

𝜇𝜇𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 × �𝜎𝜎𝑅𝑅2 + 𝜎𝜎𝐿𝐿2 + 𝜇𝜇𝐿𝐿                                         (3.13) 

After obtaining the minimum allowable resistance, 𝜇𝜇𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, the minimum allowable reinforcing 

bar area due to corrosion, 𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 , could be solved using Equation 3.7 earlier and taking               

𝑀𝑀𝑢𝑢 = 𝜇𝜇𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅. 

The maximum allowable mass loss of reinforcement was calculated as: 

𝑀𝑀 = (𝐴𝐴𝑠𝑠 − 𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)𝑙𝑙𝑙𝑙                                                    (3.14) 

where 𝐴𝐴𝑠𝑠 was the current reinforcing bar area estimated by the SHM system, 𝑙𝑙 was the length of 

the corroded section, and 𝜌𝜌 was the density of the steel. Then, the mass loss was transformed into 

the additional service life by rearranging Faraday’s law: 

𝑇𝑇 = 𝑀𝑀𝑀𝑀𝑀𝑀
𝑊𝑊𝐼𝐼

                                                             (3.15) 

where M is the mass loss at the reinforcement per unit surface area (g/ cm2), W is the atomic 

weight of steel (56 g/mol), I is the current density in natural corroding condition (A/ cm2), T is 

the time period (s) that must be solved for, n is the number equivalents exchanged (2), and F is 

Faraday’s constant (96487 A·s/mol). The corrosion of metal is a process by which the metal 

loses its electrons to the surrounding environment; thus, it will generate a weak electric current, 

and this current can be used to quantify the speed of the corrosion. In a natural environment, the 
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current density is typically between 0.1 and 10 µA/cm2 (Malumbela et al. 2012). For this 

research study, a high current density of 10 µA/cm2 was assumed to give the most conservative 

estimates of the extended service lives. The extended service life is inversely proportional to the 

assumed current density. For example, if 5 µA/cm2 was assumed instead of 10 µA/cm2, the 

calculated additional service life would be doubled. It is important to recognize that the 

calculated values were just predictions made for the purpose of the economic analyses. In reality, 

the beam would be monitored consistently, so they would be taken out of service based on their 

real-time conditions.  

For a beam with an extended life-span, its total life cycle cost may be the same as the 

unmonitored beam with a service life of 45 years, but the total cost is distributed over a longer 

period of time. Thus, the one that has a longer life-span clearly has more economic benefits. 

Therefore, it is appropriate to estimate the value based on the annual worth of life cycle costs 

(AWLCC), which is calculated using the following formula (ASTM 2017): 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑃𝑃[𝑖𝑖(1+𝑖𝑖)𝑦𝑦]
(1+𝑖𝑖)𝑦𝑦−1

                                                       (3.16) 

where P stands for the present value of the total life cycle cost; i is the discount rate (assumed to 

be 5%); and y is the compounding period, which is equal to the expected life span of the 

structure, in years. 

The values of SHM systems with different levels of uncertainty were quantified by comparing 

the AWLCC calculated based on the information available in the following three scenarios: 1. 

No SHM system; 2. Implementation of a standard SHM system; and 3. Implementation of an 

enhanced SHM system. 
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CHAPTER 4   EVALUATION OF THE PRACTICAL 

EFFECTIVENESS OF THE SURFACE STRAIN-

BASED SHM TECHNIQUE 
 

4.1. Overview 
The prerequisite to evaluating the effectiveness of the proposed SHM technique is to find the 

best possible procedures for implementing such a technique. Despite the simplicity and the 

rationality of the theory of the SHM technique being tested, its practical effectiveness could be 

affected by many factors and could potentially be improved via certain modifications to the 

procedures of data collection and analysis. Preliminary analyses were conducted during the time 

gaps between the load tests, and the results of the antecedent load test were used to make 

modifications in the data collection and analysis procedures used for the following load test. The 

preliminary analysis focused on investigating the optimal sensor locations and the optimal 

applied load level for the beams; the results of these analyses are presented in Appendix F. It was 

found that more reliable strain data were obtained when the electrical strain gauges were placed 

in the compression zone, in the same plane (i.e., not on the top of the beams), and ideally not too 

close to the neutral axis. Moreover, a higher applied load (but within the beam’s elastic 

deformation region) is recommended because the disparity between the neutral axis location 

estimated using data from the two sides of the beam was reduced by applying higher loads. 

For the preliminary analyses, N.A. locations were estimated using strain data from each face 

separately. The accuracy of the estimates was not ideal, and it was found that the estimates from 

the two faces generally lay on opposite sides of the theoretical N.A. location. Therefore, it was 

suspected that the estimates from two sides were complimentary to each other and that estimates 

obtained using combined data from the two faces would be better. After all load tests were 

completed, the data were processed once again systematically using the data from the two faces  
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combined. Three different methods for combining the data from the two faces were employed, as 

described in Section 3.3.2, and the performance is discussed in Section 4.4. The coefficient of 

determination (R2) and the standard deviation of the estimated N.A. locations were also 

calculated and referenced for selecting the optimal results, which corresponded to the procedures 

required to produce the maximum effectiveness of the strain-based SHM technique. The 

effectiveness of the proposed SHM technique was then evaluated based on the accuracy in 

estimating the N.A location, the steel bar cross-sectional area, and the beam capacity. The 

estimated values were compared to the actual or theoretically calculated values, as shown in 

Figure 4.1. 

 

Figure 4.1. Comparisons used to evaluate the effectiveness of the surface strain-based SHM 
technique in the pre- and post-corrosion load tests. 

In the pre-corrosion load tests, the actual steel bar areas were known values, equal to the original 

cross-sectional areas of the steel bars. Theoretical N.A. locations and bending moment capacities 

were calculated based on the known steel bar areas. The estimated steel bar area obtained using 

the SHM data was compared to the original steel bar area, whereas the estimated N.A. location 

and bending moment capacity were compared to theoretical values. In the post-corrosion load 

tests, the actual steel bar area and bending moment capacity were obtained directly from the 

experiments. The theoretical N.A. location and bending moment capacity were calculated based 

on the actual steel bar area. The SHM estimates were compared to these actual and/or theoretical 
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values as shown in Fig 4.1. The actual bending moment capacity was also compared to the 

theoretically calculated one to demonstrate the difficulty in estimating the actual capacity of 

reinforced concrete beams.  

All the experimental data required to calculate the SHM estimates and to evaluate the 

effectiveness of the SHM technique are presented in Section 4.2. The theoretically calculated 

values are presented in Section 4.3. The estimates of the N.A. locations, steel bar areas, and 

beam capacities are compared to the theoretical and/or experimental values in Section 4.4. 

Finally, the effectiveness of the proposed SHM technique is summarized in Section 4.5. 

4.2. Measured Data 

4.2.1. Introduction 

This section presents the data obtained from the experimental program, including the measured 

material properties, the measured beam dimensions and reinforcing bar locations, samples of the 

raw strain data, as well as the actual failure loads of the beams. All these data were essential for 

the following analyses. The measured material properties and beam dimensions were critical to 

the calculation of theoretical N.A. locations and the prediction of the flexural capacities. The 

N.A. locations were estimated using the strain readings and their corresponding locations. The 

actual failure loads were used as the evaluation criteria for the effectiveness of the SHM method. 

4.2.2. Material Properties 

Twelve companion concrete cylinders were cast for each batch of beams, six of which were 

tested at the time of the pre-corrosion load test; the other six were tested at the time of the post-

corrosion load test to determine the concrete compressive strength and modulus. Three samples 

were cut from each steel bar and tested to determine the bar’s tensile strength. A nominal 

modulus of 200 GPa was assumed for the steel, and the yield strength and ultimate tensile 

strength were determined by the Instron 600DX UTM internal software. The averaged results of 

the steel bar tensile tests and concrete compressive tests are listed in Tables 4.1 and 4.2, 

respectively. The detailed test result of each specimen is provided in Appendix A. The moduli of 

steel and concrete were critical variables used in the calculation of the theoretical N.A. locations 

and the effective cross-sectional areas of the reinforcing bars. The strengths of these materials 

were mainly used for predicting the beams’ cracking loads, their elastic limits, and their ultimate 
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capacities. Furthermore, the standard deviations of these material properties were used in the 

reliability analyses, which are discussed in Chapter 5. 

Table 4.1. Summary of measured steel bar tensile properties. 

Steel Bar # 
 

Yield Strength (MPa) Ultimate Strength (MPa) 
Beam # 

Mean Standard Deviation Mean Standard Deviation 

No.15 bar 482.3 1.1 607.4 0.9 

Batch 1, Beam 1 

Batch 1, Beam 2 

Batch 1, Beam 3 

No.10 bar-1 444.9 1.0 666.9 1.2 
Batch 2, Beam 1 

Batch 2, Beam 2 

No.10 bar-2 448.6 1.3 664.8 3.6 
Batch 2, Beam 3 

Batch 3, Beam 1 

No.10 bar-3 437.3 1.9 649.3 2.0 
Batch 3, Beam 2  

Batch 3, Beam 3 

 

Table 4.2. Summary of measured concrete compression properties. 

Loading Test 

Age of 

Specimens 

(days) 

Strength (MPa) Modulus (GPa) 

Mean 
Standard 

Deviation 
Mean 

Standard 

Deviation 

Batch 1 Pre-corrosion 28 55.9 2.0 32.9 1.5 

Batch 1 Post-corrosion 110 45.1 7.1 33.0 1.7 

Batch 2 Pre-corrosion 28 36.9 0.8 25.1 0.7 

Batch 2 Post-corrosion* 42 36.9 0.8 25.1 0.7 

Batch 2 Second Post-

corrosion 
160 41.3 1.1 22.7 0.7 

Batch 3 Pre-corrosion 28 38.3 1.1 22.8 1.1 

Batch 3 Post-corrosion 36 39.2 1.1 23.1 0.7 
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*Since the companion concrete cylinders were only tested at the second post-corrosion loading 

test, concrete properties in the post-corrosion load test were assumed to be identical to those in 

the pre-corrosion load test.  

A second post-corrosion load test for Batch 2 was conducted because not much useful 

information could be concluded from the original post-corrosion load test. Thus, the six 

companion concrete cylinders prepared for the original Batch 2 post-corrosion load test were 

saved for the second one, and the concrete properties in the original post-corrosion load tests 

were assumed to be the same as those in the pre-corrosion load test. The gap between the pre-

corrosion load test and the original post-corrosion load test was only two weeks, and the gap 

between the second post-corrosion load test and the original one was three months.  

4.2.3. Measured Beam Configurations 

The design configurations for the beams are shown in Figure 3.1; however, the actual 

configurations of the fabricated beams may vary considerably, for which reason CSA A23.3-14 

specifies a ±12 mm tolerance for beam height, width, and concrete cover thickness (CSA 2014). 

To decrease the uncertainties in the beam dimensions, a tape measure with a precision of 1 mm 

was used to measure the beam height and width, and a cover meter (model Profometer 5+, Proceq 

SA, Switzerland) with a precision of 2 mm was used to measure the concrete cover depth. The 

uncertainty of reinforcing bar locations was also decreased drastically since they were calculated 

using the beam heights and the cover depths.  

The measured beam dimensions are displayed in Table 4.3. Because a grinder was used to 

smooth the concrete surfaces of the beams in Batches 2 and 3, there were differences in the 

beams’ widths and heights before and after corrosion. The reinforcing bars’ cross-sectional areas 

in the pre-corrosion load tests were taken to be the nominal areas of the bars used for the beams. 

To determine the remaining area in the post-corrosion load tests, the bars were extracted and 

cleaned following the procedure specified in ASTM G1. The weight loss of the middle 100 mm 

section was measured and used to calculate the loss of cross-sectional area. 
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Table 4.3. Measured beam dimensions. 

Batch # Beam # 
Width 

(mm) 

Height 

(mm) 

Concrete Cover 

Thickness (mm) 

Rebar 

Location*

(mm) 

Rebar 

Area 

(mm2) 

Batch 1 Pre-

corrosion 

Beam 1 80 140 31 101 200 

Beam 2 80 140 33 99 200 

Beam 3 80 140 33 99 200 

Batch 1 Post-

corrosion 

Beam 1 80 140 31 101 190 

Beam 2 80 140 33 99 165 

Beam 3 80 140 33 99 179 

Batch 2 Pre-

corrosion 

Beam 1 73 142 33 103 100 

Beam 2 72 142 33 103 100 

Beam 3 73 138 30 102 100 

Batch 2 Post-

corrosion 

Beam 1 72 142 33 103 78 

Beam 2 72 142 33 103 80 

Beam 3 73 138 30 102 80 

Batch 2 Second 

Post-corrosion 

Beam 1 72 142 33 103 78 

Beam 2 71 141 33 102 80 

Beam 3 72 136 30 100 80 

Batch 3 Pre-

corrosion 

Beam 1 72 139 34 99 100 

Beam 2 70 140 34 100 100 

Beam 3 72 140 33 101 100 

Batch 3 Post-

corrosion 

Beam 1 71 140 34 100 88 

Beam 2 70 140 34 100 86 

Beam 3 70 140 33 101 90 

* Reinforcing bar location is measured from the bottom surface of the beam to the bottom 

surface of the bar. 

4.2.4. Strain Data 

This section provides samples of raw strain data obtained from the electrical strain gauge (ESG) 

data acquisition (DAQ) system and the DIC analysis software.  
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The raw data provided by the ESG DAQ system were in the form of Excel spreadsheets 

containing strain readings from each strain gauge along with the corresponding time and loads. 

As an example, the raw data for the first cycle of the post-corrosion load tests for Batch 3 Beam 

3 is provided in Appendix G, and the changes of strain are plotted in Figure 4.2. The strain 

values at each gauge location increased linearly as the load increased from 0 to 4 kN. This was 

expected since the beam was still within the elastic deformation region. The neutral axis 

locations were calculated by combining the strain data with their corresponding gauge locations, 

which were measured using a tape measure with a precision of 1 mm. The measurements of the 

gauge locations are provided in Appendix B. 

 
Figure 4.2. ESG readings plotted against increasing loads from the post-corrosion load test for 

Batch 3 Beam 3 Cycle 1 

As for the DIC system, high resolution photos were taken at one second intervals throughout the 

loading process. Afterwards, the photos were imported to the DIC 3D (for Batch 1) or 2D (for 

Batches 2 and 3) software to analyze the displacements of the black dots painted on the side 

surfaces. Then the strains were calculated in the software as secondary analyses using the 

displacement data. To extract the strain data at certain locations, virtual extensometers can be 

drawn at any location and in any direction within the patterned area. A screen capture of the 
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strain field on the side surface with numerous virtual extensometers on it is shown in Figure 4.3 

(a). The averaged strains over the length of the extensometers can be calculated and exported to 

an Excel spreadsheet with corresponding time stamps. The DIC system was not connected to the 

UTM, so the exported data did not contain the corresponding applied load. The DIC strain data 

from the same load test as the one used for Figure 4.2 are plotted with respect to time in Figure 

4.3 (b). The DIC data in this figure appears to level off rather than continue to increase because 

the applied loads were held constant at 3 kN and 4 kN for a period of time. Only the ESG DAQ 

system was connected to the loading machine, and thus only the ESG strain readings were 

correlated to the applied loads. Fortunately, both systems provided time stamps for the measured 

strain readings. Thus, the N.A. locations derived using the DIC data were correlated to the 

applied loads through the time stamps. Strain measurements are plotted against applied load in 

Figure 4.3 (c). In this figure, the DIC strains increase linearly as the load increases. However, the 

top extensometer “E0” was in a the similar location to Gauge 3 on the ESG side, but the DIC 

reading was much smaller than the ESG one.  

 

(a) 
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(b) 

 

(c) 

Figure 4.3. DIC Analysis from post-corrosion load test for Batch 3 Beam 3 Cycle 1: (a) strain 

field on the side surface of the beam when the applied load was 3 kN, with numerous virtual 

extensometers defined, (b) a plot of the average strain along each virtual extensometer against 

time, and (c) a plot of the average strain along each virtual extensometer against applied load. 
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To obtain the locations of these virtual extensometers, the same screen capture was imported into 

ImageJ2 (Rueden et al. 2017), which is an open-source software designed for scientific image 

processing. This software can measure the pixel length between two points on a picture and 

convert it to any given unit after setting scales using a known reference. Thus, its precision can 

potentially be as high as 0.001 mm. However, to achieve such high precision, it would require 

the scale reference to be measured with equal precision, which is quite impossible. The scale 

reference was measured using a tape measure with a precision of 1 mm. Therefore, the precision 

of ImageJ derived lengths was assumed to be 1 mm in subsequent analyses.  

By comparing the strain diagrams for ESG (Figure 4.1) and DIC (Figure 4.2 (b)), it is obvious 

that the ESG data have a much lower level of fluctuations. The higher noise in the DIC readings 

might be due to lower precision compared to the ESGs, and other environmental factors such as 

vibrations of the loading machine, dust in the air, and lighting conditions in the lab. 

4.2.5. Measured Failure Loads of the Beams 

The loads that ultimately broke the beams and their corresponding failure modes in the post-

corrosion load tests are summarized in Table 4.4. Beams in Batch 1 failed in shear due to the 

relatively high reinforcement ratio and the lack of shear reinforcement. The design for beams in 

Batches 2 and 3 was adjusted to reduce the amount of reinforcement, and thus, they failed in 

flexure as desired. The actual failure loads are used to evaluate the accuracy of the SHM 

estimates of bending moment capacity in Section 4.5. 

Table 4.4. Actual failure loads of the beams. 

Batch # Beam # Actual Failure Load (kN) Failure Mode 

Batch 1 
Beam 1 14.8 Shear 
Beam 2 12.0 Shear 
Beam 3 17.5 Shear 

Batch 2 
Beam 1 12.2 Flexure 
Beam 2 9.9 Flexure 
Beam 3 9.8 Flexure 

Batch 3 
Beam 1 11.3 Flexure 
Beam 2 12.4 Flexure 
Beam 3 12.7 Flexure 
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4.2.6. Measured Loss of Steel Bar Areas due to Corrosion 

After the beams had been loaded to failure in the post-corrosion load tests, the corroded 

reinforcing bar were extracted, cut, and cleaned following the procedures described in Section 

3.3.3. In percentage terms, the actual loss of steel bar area was assumed to be equivalent to the 

loss of mass, which was determined by comparing the remaining mass of the middle 100 mm 

length of bar to that of the uncorroded steel bar of the same length. Table 4.5. summarizes the 

actual mass losses for all of the beams. 

The corrosion levels achieved for Batches 2 and 3 were very close to the target values. However, 

the mass losses achieved for Batch 1 beams were much lower than expected. This may have been 

caused by the corrosion not being concentrated in the middle 100 mm section. Since Batch 1 

beams used a larger bar size, more rust was generated for the same percentage of mass loss. Thus, 

large horizontal cracks formed on these beams, and sodium chloride solution may have 

penetrated these cracks, leading to corrosion taking place over a greater bar length. However, the 

first specimen in Batch 1 experienced an extremely low amount of corrosion. During the 

corrosion of Batch 1 beams, the resistance of beam 1 suddenly dropped in the middle of the 

process, so a short-circuit in the electrical circuit is suspected. However, the location of the short-

circuit could not be identified through inspection.  

Table 4.5. Target and actual mass loss for each beam. 

Batch # Beam # Target Weight Loss Actual Weight Loss 

Batch 1 

Beam 1 30% 5.1% 

Beam 2 30% 17.7% 

Beam 3 30% 10.5% 

Batch 2 

Beam 1 20% 21.7% 

Beam 2 20% 20.3% 

Beam 3 20% 20.2% 

Batch 3 

Beam 1 10% 11.5% 

Beam 2 10% 13.6% 

Beam 3 10% 9.8% 
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4.3 Theoretically Calculated Values 
To evaluate the effectiveness of the proposed SHM technique, the estimated N.A. locations, 

effective steel bar areas, and the bending moment capacities were compared to the actual or 

theoretical values. The measured actual steel bar areas were known values in both pre- and post-

corrosion load tests. Before corrosion, the nominal steel bar area was 200 mm2 for beams in 

Batch 1, and 100 mm2 for beams in Batches 2 and 3.  The measured actual remaining steel bar 

areas after corrosion were summarized in Section 4.2.6. Theorical N.A. locations and bending 

moment capacities were calculated based on the actual steel bar areas, measured beam 

configurations, and material properties presented in Sections 4.2.2 and 4.2.3. 

Tables 4.6 to 4.12 summarize the calculated theoretical values of N.A. locations and bending 

moment capacities for the beams in each load test, along with the associated variables used for 

the calculations, including the material properties, beam configurations, and effective reinforcing 

bar areas. The load capacity for shear failure was also calculated and compared to the load 

capacity for flexural failure. Based on the calculations, Batch 1 beams were governed by shear 

failure, which was validated by the experiments. It would be unreasonable to compare the SHM 

predicted flexural capacity to the actual capacity if the beams failed in shear. Thus, in subsequent 

sections, the beam’s shear capacity was estimated using SHM data and compared to the actual 

and theoretical values for Batch 1. Beams in batches 2 and 3 failed in flexure as planned. Sample 

calculations are provided in Appendix D.  
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Table 4.6. Theoretically calculated values for strength and neutral axis location for Batch 1 

beams for the pre-corrosion load test, along with measured or assumed values for the required 

variables. 

Property Category Property Beam 1 Beam 2 Beam 3 

Material 

Properties 

concrete strength (MPa) 55.9 55.9 55.9 

concrete modulus (GPa) 32.9 32.9 32.9 

steel yield strength (MPa) 482 482 482 

steel modulus (GPa) 200 200 200 

Beam 

Configurations 

width （mm） 80 80 80 

depth (mm) 140 140 140 

concrete cover depth (mm) 31 33 33 

depth to rebar, d (mm) 103 101 101 

original steel bar area (mm2) 200 200 200 

Corrosion Condition 
corrosion percentage 0% 0% 0% 

effective steel area (mm2) 200 200 200 

Theoretical Values 

elastic neutral axis location (mm) 42.3 41.7 41.7 

bending moment capacity (kN⋅m) 8.38 8.19 8.19 

load capacity for flexural failure (kN) 30.5 29.8 29.8 

load capacity for shear failure (kN)  24.6 24.6 24.6 

 

 

 

 

 

 

 



 

78 
 

 

Table 4.7. Theoretically calculated values for strength and neutral axis location for Batch 1 

beams for the post-corrosion load test, along with measured or assumed values for the required 

variables. 

Property Category Property Beam 1 Beam 2 Beam 3 

Material 

Properties 

concrete strength (MPa) 45.1 45.1 45.1 

concrete modulus (GPa) 33.0 33.0 33.0 

steel yield strength (MPa) 482 482 482 

steel modulus (GPa) 200 200 200 

Beam 

Configurations 

width （mm） 80 80 80 

depth (mm) 140 140 140 

concrete cover depth (mm) 31 33 33 

depth to rebar, d (mm) 103 101 101 

original steel bar area (mm2) 200 200 200 

Corrosion Condition 
corrosion percentage 5.1% 17.7% 10.5% 

effective steel area (mm2) 190 165 179 

Theoretical Values 

elastic neutral axis location (mm) 41.4 38.8 40.0 

bending moment capacity (kN⋅m) 7.76 6.74 7.23 

load capacity for flexural failure (kN) 28.2 24.5 26.3 

load capacity for shear failure (kN)  22.1 22.1 22.1 
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Table 4.8. Theoretically calculated values for strength and neutral axis location for Batch 2 

beams for the pre-corrosion load test, along with measured or assumed values for the required 

variables. 

Property Category Property Beam 1 Beam 2 Beam 3 

Material 

Properties 

concrete strength (MPa) 36.9 36.9 36.9 

concrete modulus (GPa) 25.1 25.1 25.1 

steel yield strength (MPa) 445 445 449 

steel modulus (GPa) 200 200 200 

Beam 

Configurations 

width （mm） 73 72 73 

depth (mm) 142 142 138 

concrete cover depth (mm) 33 33 30 

depth to rebar, d (mm) 103 103 102 

original steel bar area (mm2) 100 100 100 

Corrosion Condition 
corrosion percentage 0% 0% 0% 

effective steel area (mm2) 100 100 100 

Theoretical Values 

elastic neutral axis location (mm) 37.8 38.0 37.6 

bending moment capacity (kN⋅m) 4.14 4.13 4.12 

load capacity for flexural failure (kN) 9.73 9.72 9.70 

load capacity for shear failure (kN)  18.5 18.3 18.0 
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Table 4.9. Theoretically calculated values for strength and neutral axis location for Batch 2 

beams for the first post-corrosion load test, along with measured or assumed values for the 

required variables. 

Property Category Property Beam 1 Beam 2 Beam 3 

Material 

Properties 

concrete strength (MPa) 36.9 36.9 36.9 

concrete modulus (GPa) 25.1 25.1 25.1 

steel yield strength (MPa) 445 445 449 

steel modulus (GPa) 200 200 200 

Beam 

Configurations 

width （mm） 72 72 73 

depth (mm) 142 142 138 

concrete cover depth (mm) 33 33 30 

depth to rebar, d (mm) 103 103 102 

original steel bar area (mm2) 100 100 100 

Corrosion Condition 
corrosion percentage 22% 20% 20% 

effective steel area (mm2) 78 80 80 

Theoretical Values 

elastic neutral axis location (mm) 34.5 34.8 34.4 

bending moment capacity (kN⋅m) 3.31 3.37 3.36 

load capacity for flexural failure (kN) 7.79 7.92 7.92 

load capacity for shear failure (kN)  18.3 18.3 18.0 
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Table 4.10. Theoretically calculated values for strength and neutral axis location for Batch 2 

beams for the second post-corrosion load test, along with measured or assumed values for the 

required variables. 

Property Category Property Beam 1 Beam 2 Beam 3 

Material 

Properties 

concrete strength (MPa) 41.3 41.3 41.3 

concrete modulus (GPa) 22.7 22.7 22.7 

steel yield strength (MPa) 445 445 449 

steel modulus (GPa) 200 200 200 

Beam 

Configurations 

width （mm） 72 71 72 

depth (mm) 142 141 136 

concrete cover depth (mm) 33 33 30 

depth to rebar, d (mm) 103 102 100 

original steel bar area (mm2) 100 100 100 

Corrosion Condition 
corrosion percentage 22% 20% 20% 

effective steel area (mm2) 78 80 80 

Theoretical Values 

elastic neutral axis location (mm) 35.9 36.2 35.6 

bending moment capacity (kN⋅m) 3.34 3.36 3.32 

load capacity for flexural failure (kN) 7.86 7.90 7.81 

load capacity for shear failure (kN)  19.3 18.9 18.5 
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Table 4.11. Theoretically calculated values for strength and neutral axis location for Batch 3 

beams for the pre-corrosion load test, along with measured or assumed values for the required 

variables. 

Property Category Property Beam 1 Beam 2 Beam 3 

Material 

Properties 

concrete strength (MPa) 38.3 38.3 38.3 

concrete modulus (GPa) 22.8 22.8 22.8 

steel yield strength (MPa) 449 437 437 

steel modulus (GPa) 200 200 200 

Beam 

Configurations 

width （mm） 72 70 72 

depth (mm) 139 140 140 

concrete cover depth (mm) 34 34 33 

depth to rebar, d (mm) 99 100 101 

original steel bar area (mm2) 100 100 100 

Corrosion Condition 
corrosion percentage 0% 0% 0% 

effective steel area (mm2) 100 100 100 

Theoretical Values 

elastic neutral axis location (mm) 38.5 39.2 39.0 

bending moment capacity (kN⋅m) 4.00 3.94 3.99 

load capacity for flexural failure (kN) 9.40 9.27 9.40 

load capacity for shear failure (kN)  18.2 17.8 18.3 
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Table 4.12. Theoretically calculated values for strength and neutral axis location for Batch 3 

beams for the post-corrosion load test, along with measured or assumed values for the required 

variables. 

Property Category Property Beam 1 Beam 2 Beam 3 

Material 

Properties 

concrete strength (MPa) 39.2 39.2 39.2 

concrete modulus (GPa) 23.1 23.1 23.1 

steel yield strength (MPa) 449 437 437 

steel modulus (GPa) 200 200 200 

Beam 

Configurations 

width （mm） 71 70 70 

depth (mm) 140 140 140 

concrete cover depth (mm) 34 34 33 

depth to rebar, d (mm) 100 100 101 

original steel bar area (mm2) 100 100 100 

Corrosion Condition 
corrosion percentage 11.5% 13.6% 9.8% 

effective steel area (mm2) 89 86 90 

Theoretical Values 

elastic neutral axis location (mm) 37.0 36.8 37.7 

bending moment capacity (kN⋅m) 3.63 3.46 3.64 

load capacity for flexural failure (kN) 8.53 8.15 8.56 

load capacity for shear failure (kN)  18.3 18.0 18.0 

 

4.4. Estimated N.A. Locations Considering Combined Data from Two Faces 
As discussed in Section 4.1, a preliminary analysis was performed to optimize the procedures 

used to estimate the neutral axis locations from measured strain data. The accuracy of the 

estimated N.A. locations considering the strain data from each individual face has been presented 

and discussed in Appendix F. From those preliminary analysis results, the optimal gauge 

locations and level of the applied load were identified. The results also suggested that estimates 

obtained using the combined data from two faces were more accurate and reliable. Therefore, the 

three different methods for combining the data from two faces, as described in Section 3.3.2, 

were applied to find the estimated N.A. locations, and the results are compared and discussed in 
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this section. Unreliable data identified by the preliminary analyses were excluded from these 

analyses. A detailed sample calculation of using a best fit function to find the estimated N.A. 

location and the corresponding coefficient of determination (R2) is provided in Appendix E. This 

sample calculation was performed using strain data at one instant in time. Since the applied load 

was maintained at a certain level for 30 to 60 seconds, the estimated N.A. locations and 

corresponding coefficients of determination presented in this section correspond to the average 

values over the period that the load was held constant. The standard deviation was also 

calculated based on the variation of the instantaneous values for the estimated N.A. location 

obtained during this time period. Due to the large amount of calculation required, the analyses 

were automated in Python. The sample Python codes are provided in Appendix H.  

The best estimates for each load test are highlighted in the tables in this section; these were used 

to estimate the effective steel bar areas and predict the remaining bending moment capacities in 

Section 4.5. In reality, the actual condition of the beams would be unknown, so the best estimates 

were not selected based on how close they were to the theoretical values, but were rather based 

on the standard deviation and coefficient of determination of the results as if the theoretical 

values were unknown. In theory, estimates with the lowest standard deviation and high 

coefficient of determination should be more accurate. Thus, these two factors were used for 

screening the optimum results. 

4.4.1. Batch 1 Pre-corrosion Load Test 

Only one side of the Batch 1 beams was monitored during the pre-corrosion load tests. Thus, this 

batch did not have the two face combined estimates. Based on the preliminary analysis presented 

in Appendix F, data obtained from the tension zone were not reliable, so the best estimates were 

selected among the results obtained using the data in the compression zone only (“ESG_cmprs”) 

and the data in the compression zone and excluding the top gauges (“ESG_G2&G3”).  

The estimated N.A. locations using these two data groups and their corresponding coefficients of 

determination and standard deviations are presented in Table 4.13. The estimate with the lowest 

standard deviation for each beam is highlighted in green (also noted with double asterisks), and 

the estimate with the highest coefficient of determination is highlighted in yellow (also noted 

with a single asterisk). These cells were selected using the conditional formatting function in 

Excel. Since the number of decimal places displayed was fixed, some values may appear to be 
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the same but only one of them was highlighted. Since the “ESG_G2&G3” data group only 

contained data from two gauges, both data points were located on the line, and the coefficients of 

determination were equal to unity for all the corresponding estimates for this data group. Thus, 

the coefficients of determination were not used to identify the best estimates for this data group, 

and the coefficient of determination criterion was restricted to the “ESG_cmprs” data group.  

The estimated N.A. locations for this set of load tests are plotted against their corresponding 

coefficient of determination and standard deviation values in Figures 4.4 (a) and (b), respectively. 

The calculated theoretical N.A. locations are also shown in the figures. It was expected that the 

accuracy of the estimates would increase as the coefficient of determination increased and as the 

standard deviation decreased. However, these trends were not observed for this set of load tests 

when considering the estimates provided by each data group separately. It might because all the 

coefficients of determination were quite high for this set of the load tests (>0.97) and the 

standard deviations were quite low (<0.7 mm). The estimates were also close to the theoretical 

values. The estimates provided by the “ESG_cmprs” data group were within         3 mm of the 

theoretical values. The “ESG_G2&G3” estimates had higher differences and higher standard 

deviations. Thus, comparing the estimates made by these two data groups, estimates with lower 

standard deviations would also be more accurate.  

For Beams 1 and 2, the estimate with the lowest standard deviation was closer to the theoretical 

value than the estimate with the highest coefficient of determination. For Beam 3, since there 

were only two strain gauges located in the compression zone, coefficient of determination could 

not be applied as the selection criteria. Overall, using standard deviation as the criterion for 

selecting the best estimate was observed to be more robust and provided better estimates based 

on the results from this set of load tests.  
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Table 4.13. Batch 1 pre-corrosion load test N.A. locations in mm, and the corresponding 
coefficients of determination and standard deviations. 

Beam # Load Cycle # ESG_cmprs ESG_G2&G3 Theoretical 
Mean R2 STDV Mean R2 STDV 

Beam 1 

5 kN Cycle 1 44.81 1.00 0.29 45.43 1.00 0.32 42.90 
Cycle 2 39.54 0.99 0.11 41.80 1.00 0.15 42.90 

6 kN Cycle 1 44.61 *1.00 0.25 45.17 1.00 0.24 42.90 
Cycle 2 39.89 0.99 0.09 42.23 1.00 0.11 42.90 

7 kN Cycle 1 43.73 1.00 0.34 44.50 1.00 0.26 42.90 
Cycle 2 39.99 0.99 0.11 42.41 1.00 0.09 42.90 

8 kN Cycle 1 43.03 1.00 0.08 43.97 1.00 0.11 42.90 
Cycle 2 39.82 0.99 0.10 42.48 1.00 **0.08 42.90  

Beam 2 

5 kN 
Cycle 1 41.71 0.97 0.28 49.34 1.00 0.27 42.30 
Cycle 2 43.94 0.97 0.08 51.22 1.00 0.23 42.30 
Cycle 3 44.26 0.98 0.14 51.63 1.00 0.38 42.30 

6 kN 
Cycle 1 41.89 0.97 0.18 49.35 1.00 0.24 42.30 
Cycle 2 43.86 0.98 0.07 50.76 1.00 0.19 42.30 
Cycle 3 44.10 0.98 0.08 50.93 1.00 0.21 42.30 

7 kN 
Cycle 1 42.92 0.97 0.10 49.90 1.00 0.14 42.30 
Cycle 2 43.90 0.98 0.07 50.27 1.00 0.15 42.30 
Cycle 3 44.11 0.98 0.07 50.31 1.00 0.18 42.30 

8 kN 
Cycle 1 43.20 0.98 **0.06 49.95 1.00 0.16 42.30 
Cycle 2 44.02 0.98 0.06 50.25 1.00 0.15 42.30 
Cycle 3 44.07 *0.98 0.06 50.08 1.00 0.15 42.30 

Beam 3 

5 kN 
Cycle 1 N/A N/A N/A 47.87 1.00 0.67 42.30 
Cycle 2 N/A N/A N/A 48.14 1.00 0.48 42.30 
Cycle 3 N/A N/A N/A 46.25 1.00 0.60 42.30 

6 kN 
Cycle 1 N/A N/A N/A 46.35 1.00 0.65 42.30 
Cycle 2 N/A N/A N/A 47.15 1.00 0.61 42.30 
Cycle 3 N/A N/A N/A 45.26 1.00 0.46 42.30 

7 kN 
Cycle 1 N/A N/A N/A 45.28 1.00 0.38 42.30 
Cycle 2 N/A N/A N/A 45.97 1.00 0.39 42.30 
Cycle 3 N/A N/A N/A 44.42 1.00 0.31 42.30 

8 kN 
Cycle 1 N/A N/A N/A 42.92 1.00 0.66 42.30 
Cycle 2 N/A N/A N/A 44.43 1.00 0.34 42.30 
Cycle 3 N/A N/A N/A 43.30 1.00 **0.26 42.30 

Note: * Estimate with the highest coefficient of determination for each beam is highlighted in           
yellow. 

          ** Estimate with the lowest standard deviation for each beam is highlighted in green. 
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(a) 

 

(b) 

Figure 4.4. Batch 1 pre-corrosion load test N.A. locations, plotted against (a) the corresponding 
coefficients of determination, and (b) the corresponding standard deviations. 
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4.4.2. Batch 1 Post-corrosion Load Test 

The preliminary analysis for Batch 1 post-corrosion load tests investigated the reliability of data 

from the DIC gauges in the tension zone and the old electrical strain gauges attached prior to 

corrosion. It was found that using the strains from the tension zone had a negative effect on the 

accuracy of the estimated N.A. location, while the use of data from the old electrical strain 

gauges did not have an obvious effect. Therefore, the DIC data in the compression zone 

(“DIC_cmprs”) and all the ESG data (“ESG_all”) were combined to find the estimated N.A. 

locations using the three methods. Estimates obtained considering data from each face 

individually and considering data from two faces combined using the three methods described in 

Section 3.2.2 are summarized in Table 4.14.  

In Table 4.14., conditional formatting was applied to highlight the highest coefficient of 

determination in yellow and the lowest standard deviation in green for each beam. Estimates 

obtained using “ESG_all” and “Method 3” were excluded from the selection based on 

coefficients of determination, since fewer electrical strain gauges were used in the post corrosion 

load tests (3 for Beam 1, 4 for Beam 2, and 2 for Beam 3). Estimates obtained using Method 1 

did not have coefficients of determination, since they were obtained by taking an average of the 

estimates from two faces directly. In the end, selection of the best estimates using coefficient of 

determination were restricted to “DIC_cmprs” and “Method 2”. The estimates made by 

“ESG_cmprs” generally had higher coefficients of determination than “Method 2”. This means 

the strains were more linearly distributed on each single face but were not identical on the two 

faces. However, the DIC estimates had much higher standard deviations than the ESG estimates. 

Estimates using “ESG_all” had the lowest standard deviations among all five different 

combinations, and the estimates considering data from two faces combined had higher standard 

deviations than considering ESG data alone, probably due to the high noise from the DIC data. 

Since it was speculated from the preliminary analysis that the two face combined data should be 

able to provide more accurate estimates, the estimate that had the lowest standard deviation 

among Methods 1 to 3 were highlighted in blue, and they were all from Method 3. Comparing 

the estimated N.A. locations corresponding to the highlighted cells to the theoretical N.A. 

location for each beam, it can be observed that, for Beams 1 and 2, estimates selected based on 

the standard deviations were better than those selected based on the coefficients of determination, 

and the two face combined data resulted in better estimates than using electrical strain gauges 
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alone, even though the two face combined estimates had higher standard deviations. For Beam 3, 

“DIC_cmprs” provided the best estimate; however, it did not differ much from the other two 

estimates. 

The estimated N.A. locations for this set of load tests are plotted against the corresponding 

coefficient of determination and standard deviation values in Figures 4.5 (a) and (b), respectively. 

The outliers, such as the estimates made for Beam 2 Cycle 1, were omitted from the figure due to 

the limited boundary of the axes. It can be observed that the estimates show a convergence trend 

to the theoretical values as the coefficient of determination increases and as the standard 

deviation decreases.  
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Table 4.14. Batch 1 post-corrosion load test N.A. locations in mm, and the corresponding coefficients of determination and standard deviations. 

Beam # Load Cycle # 
DIC_cmprs ESG_all Method 1 Method 2 Method 3 

Theoretical 
Mean R2 STDV Mean R2 STDV Mean R2 STDV Mean R2 STDV Mean R2 STDV 

Beam 1 

5 kN 

Cycle 1 61.93 0.69 12.00 41.01 1.00 0.09 51.47 N/A 8.48 57.05 0.63 9.02 49.58 1.00 4.18 42.00 

Cycle 2 49.88 *0.96 1.57 38.67 1.00 0.11 44.27 N/A 1.11 49.56 0.71 1.33 44.42 1.00 ***0.69 42.00 

Cycle 3 47.96 0.93 5.25 38.69 1.00 0.09 43.32 N/A 3.71 50.43 0.67 5.79 43.53 1.00 2.36 42.00 

Cycle 4 40.59 0.72 1.98 39.11 1.00 0.07 39.85 N/A 1.40 39.37 0.91 1.15 39.74 1.00 0.87 42.00 

Cycle 5 51.11 0.77 4.04 39.85 1.00 0.09 45.48 N/A 2.86 46.30 0.88 2.94 44.49 1.00 1.49 42.00 

6 kN 

Cycle 1 61.28 0.77 6.51 40.97 1.00 0.08 51.13 N/A 4.60 54.19 0.75 2.92 49.05 1.00 1.79 42.00 

Cycle 2 49.70 0.95 2.64 38.83 1.00 0.09 44.27 N/A 1.87 48.20 0.81 2.08 44.09 1.00 1.13 42.00 

Cycle 3 48.56 0.93 3.01 38.88 0.99 **0.06 43.72 N/A 2.13 48.85 0.78 2.42 43.68 1.00 1.25 42.00 

Cycle 4 41.42 0.75 3.34 39.33 1.00 0.09 40.38 N/A 2.36 39.25 0.92 2.00 40.15 1.00 1.34 42.00 

Cycle 5 50.75 0.74 6.27 39.93 1.00 0.07 45.34 N/A 4.43 43.55 0.90 3.06 43.88 1.00 2.09 42.00 

Beam 2 

5 kN 

Cycle 1 -296.91 0.54 5804.73 31.55 0.97 **0.07 -132.68 N/A 4104.57 -162.93 0.03 208.83 70.47 0.98 6.32 39.30 

Cycle 2 49.23 0.94 1.88 30.09 0.96 0.20 39.66 N/A 1.34 68.14 0.29 4.37 39.92 0.99 0.74 39.30 

Cycle 3 49.03 0.98 2.08 31.46 0.97 0.16 40.25 N/A 1.48 70.65 0.33 3.93 40.47 0.99 ***0.74 39.30 

Cycle 4 46.41 0.95 2.18 29.58 0.21 0.16 38.00 N/A 1.55 -865.74 0.00 1703.62 41.07 0.73 1.06 39.30 

Cycle 5 49.09 0.95 6.98 30.14 0.21 0.17 39.61 N/A 4.94 -1331.97 0.00 5738.69 42.53 0.72 2.35 39.30 

6 kN 

Cycle 1 223.88 0.63 146.83 31.74 0.97 0.10 127.81 N/A 103.82 1139.36 0.01 7782.03 64.40 0.98 4.19 39.30 

Cycle 2 49.28 0.94 2.78 30.75 0.97 0.11 40.02 N/A 1.97 61.61 0.41 4.62 39.81 0.99 1.02 39.30 

Cycle 3 49.23 *0.99 2.66 31.92 0.98 0.11 40.57 N/A 1.89 60.53 0.50 2.67 40.28 0.99 0.78 39.30 

Cycle 4 46.84 0.95 2.52 30.03 0.21 0.15 38.44 N/A 1.79 314.07 0.00 2949.78 41.29 0.71 1.27 39.30 

Cycle 5 53.25 0.94 10.49 30.52 0.21 0.15 41.89 N/A 7.42 378.88 0.01 566.18 43.54 0.65 3.26 39.30 

Beam 3 

5 kN 
Cycle 1 57.70 0.82 4.62 48.89 1.00 0.32 53.30 N/A 3.27 76.73 0.47 9.22 53.60 1.00 2.32 40.60 

Cycle 2 48.42 0.95 2.08 53.12 1.00 0.37 50.77 N/A 1.49 51.77 0.89 2.42 50.38 1.00 ***1.25 40.60 

Cycle 3 58.95 0.69 10.72 53.19 1.00 0.53 56.07 N/A 7.59 67.96 0.63 13.12 55.67 1.00 4.89 40.60 

6 kN 
Cycle 1 55.11 0.83 3.06 48.82 1.00 **0.31 51.97 N/A 2.18 64.83 0.67 4.34 52.10 1.00 1.52 40.60 

Cycle 2 48.48 *0.96 2.37 53.22 1.00 0.38 50.85 N/A 1.69 50.44 0.95 2.70 50.56 1.00 1.43 40.60 

Cycle 3 55.88 0.76 9.12 53.50 1.00 0.40 54.69 N/A 6.45 59.88 0.78 9.32 54.29 1.00 4.21 40.60 

Note: * Estimate with the highest coefficient of determination for each beam is highlighted in yellow. 

          ** Estimate with the lowest standard deviation for each beam is highlighted in green. 
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(a) 

 

(b) 

Figure 4.5. Batch 1 post-corrosion load test N.A. locations, plotted against (a) the corresponding 
coefficients of determination, and (b) the corresponding standard deviations. 
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4.4.3. Batch 2 Pre-corrosion Load Test 

Based on the preliminary analysis results, the most reliable data groups for this set of loading 

tests were “DIC_ cmprs” on the DIC side and “ESG_23” on the ESG side. The estimated N.A. 

locations considering these two data sets individually and combined are presented in Table 4.15 

along with their corresponding coefficients of determination and standard deviations.  

The same conditional formatting used in the previous tables was applied. The highest coefficient 

of determination obtained for each beam is highlighted in yellow. Again, since data from only 

two electrical strain gauges were considered for “ESG_G2&G3” and “Method 3” estimates, their 

coefficients of determination could not be used to select the best estimates. Between 

“DIC_cmprs” and “Method 2”, “DIC_cmprs” provided higher coefficients of determination. 

Method 2 involves merging the strain data and locations from the two faces into one data set and 

finding the best fit line. A low coefficient of determination means the data do not fit well on the 

same line. Therefore, it can be inferred that the two faces had different strain distributions during 

the loading tests.  

The lowest standard deviation obtained for each beam among all five data combinations is 

highlighted in green, and the lowest value among the two-face combined data analyses is 

highlighted in blue. Similar to the previous batch, using ESG data alone provided the most stable 

estimates, and among the two-face combined data analyses, Method 3 was the best. The 

theoretical N.A. location was calculated to be around 38 mm below the top surface of the beam 

for all these beams. Comparing the estimated N.A. locations associated with the highlighted cells 

to the theoretical values, it is evident that the closest estimates were in blue, green, and yellow 

for Beams 1 to 3, respectively. Thus, from this set of the load tests, there is no way to conclude 

the best screening method to obtain the optimum result.  

The estimated N.A. locations for this set of load tests are plotted against the corresponding 

coefficient of determination and standard deviation values in Figures 4.6 (a) and (b), respectively. 

Since these estimates were high and varied widely, the figures show a clear trend of converging 

to the theoretical values as the coefficient of determination increases and as the standard 

deviation decreases. This verifies that both coefficient of determination and standard deviation 

can be used for selecting the best estimate. However, it is noted that coefficient of determination 

is sensitive to the number of data points used to find the best fit function.  
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Table 4.15. Batch 2 pre-corrosion load test N.A. locations in mm, and the corresponding coefficients of determination and standard 
deviations. 

Beam # Load Cycle # 
DIC_cmprs ESG_G2&G3 Method 1 Method 2 Method 3 

Theoretical 
Mean R2 STDV Mean R2 STDV Mean R2 STDV Mean R2 STDV Mean R2 STDV 

Beam 1 

3 kN 
Cycle 1 72.79 0.91 8.43 101.62 1.00 30.04 87.21 N/A 22.06 207.26 0.02 863.72 76.56 1.00 7.84 37.8 

Cycle 2 92.42 0.75 12.12 98.61 1.00 25.60 95.51 N/A 20.03 -221.05 0.01 360.32 92.70 1.00 12.94 37.8 

Cycle 3 69.02 0.90 8.43 102.74 1.00 27.54 85.88 N/A 20.37 120.26 0.09 43.19 75.32 1.00 7.99 37.8 

4 kN 
Cycle 1 66.98 0.95 6.67 65.91 1.00 2.92 66.44 N/A 5.15 114.60 0.11 30.76 66.43 1.00 4.82 37.8 

Cycle 2 90.18 0.91 10.86 66.34 1.00 2.93 78.26 N/A 7.95 4316.53 0.00 17166.45 81.87 1.00 7.31 37.8 

Cycle 3 61.34 0.92 7.94 69.05 1.00 2.84 65.20 N/A 5.96 79.19 0.30 19.10 63.75 1.00 5.58 37.8 

5 kN 
Cycle 1 58.97 0.97 5.19 59.67 1.00 1.45 59.32 N/A 3.81 77.68 0.28 15.26 59.08 1.00 3.49 37.8 

Cycle 2 77.55 0.85 8.39 60.39 1.00 1.14 68.97 N/A 5.99 202.08 0.02 627.13 70.92 1.00 5.04 37.8 

Cycle 3 54.75 0.96 5.35 62.51 1.00 1.04 58.63 N/A 3.85 62.40 0.58 10.02 57.56 1.00 3.42 37.8 

6 kN 
Cycle 1 58.69 *0.97 4.28 57.99 1.00 0.43 58.34 N/A 3.04 71.14 0.42 7.89 58.31 1.00 2.56 37.8 

Cycle 2 73.05 0.88 6.16 58.87 1.00 **0.36 65.96 N/A 4.37 140.82 0.05 39.58 67.17 1.00 3.31 37.8 

Cycle 3 53.24 0.97 3.09 60.94 1.00 0.65 57.09 N/A 2.24 57.44 0.76 4.07 56.25 1.00 ***2.03 37.8 

Beam 2 

3 kN 

Cycle 1 -1.18 0.87 3.38 29.24 1.00 1.03 14.03 N/A 2.50 18.23 0.46 1.09 20.46 1.00 1.25 38.0 

Cycle 2 -25.19 0.90 10.80 36.51 1.00 0.84 5.66 N/A 7.66 14.36 0.34 1.51 17.11 1.00 2.39 38.0 

Cycle 3 -5.66 0.75 10.39 37.68 1.00 0.80 16.01 N/A 7.37 18.69 0.39 1.98 23.24 1.00 2.50 38.0 

Cycle 4 -31.84 0.83 18.23 38.28 1.00 0.80 3.22 N/A 12.90 15.26 0.19 1.12 18.31 1.00 1.97 38.0 

4 kN 

Cycle 1 2.74 0.90 2.23 31.95 1.00 0.65 17.35 N/A 1.65 20.76 0.44 0.83 23.66 1.00 0.92 38.0 

Cycle 2 -13.37 0.92 7.53 38.61 1.00 0.45 12.62 N/A 5.33 17.11 0.36 0.78 21.51 1.00 1.09 38.0 

Cycle 3 2.72 0.84 3.21 39.53 1.00 0.36 21.13 N/A 2.29 20.73 0.42 0.85 26.22 1.00 1.04 38.0 

Cycle 4 -23.23 0.91 13.13 40.03 1.00 0.35 8.40 N/A 9.29 18.10 0.19 0.88 23.26 1.00 1.51 38.0 

5 kN 

Cycle 1 8.12 0.91 1.90 35.76 1.00 1.21 21.94 N/A 1.59 22.86 0.45 0.73 26.99 1.00 1.01 38.0 

Cycle 2 -2.81 0.94 4.07 39.86 1.00 0.28 18.52 N/A 2.88 19.82 0.39 0.71 25.29 1.00 0.88 38.0 

Cycle 3 7.64 0.88 2.91 40.50 1.00 0.22 24.07 N/A 2.07 22.45 0.43 1.01 28.43 1.00 1.13 38.0 

Cycle 4 -4.12 0.96 7.37 40.87 1.00 0.20 18.37 N/A 5.21 20.91 0.22 1.20 27.09 1.00 1.46 38.0 
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Table 4.15. Continued. 

Beam 2 6 kN 

Cycle 1 8.40 0.91 2.53 36.30 1.00 0.37 22.35 N/A 1.81 23.16 0.45 0.87 27.47 1.00 ***0.68 38.0 

Cycle 2 1.04 0.95 3.14 40.74 1.00 0.18 20.89 N/A 2.23 20.74 0.40 0.73 26.60 1.00 0.91 38.0 

Cycle 3 9.62 0.89 2.45 41.14 1.00 0.16 25.38 N/A 1.73 23.55 0.43 0.88 29.86 1.00 0.94 38.0 

Cycle 4 5.96 *0.98 2.56 41.37 1.00 **0.13 23.66 N/A 1.82 22.13 0.27 0.75 28.39 1.00 1.02 38.0 

Beam 3 

3 kN 
Cycle 1 31.04 0.99 2.93 79.80 1.00 17.78 55.42 N/A 12.74 32.09 0.92 2.73 40.40 1.00 2.49 37.6 

Cycle 2 27.45 0.97 2.40 56.43 1.00 2.98 41.94 N/A 2.70 28.72 0.90 2.12 35.57 1.00 1.88 37.6 

Cycle 3 19.12 0.96 2.47 74.64 1.00 9.51 46.88 N/A 6.95 23.65 0.57 1.57 31.07 1.00 1.64 37.6 

4 kN 
Cycle 1 35.33 0.99 2.50 53.21 1.00 3.17 44.27 N/A 2.86 36.20 0.96 2.34 41.70 1.00 1.66 37.6 

Cycle 2 28.53 0.98 1.63 49.91 1.00 1.08 39.22 N/A 1.38 29.84 0.90 1.41 36.05 1.00 1.12 37.6 

Cycle 3 23.13 0.97 2.17 57.79 1.00 2.37 40.46 N/A 2.28 26.87 0.62 1.53 34.13 1.00 1.32 37.6 

5 kN 
Cycle 1 36.37 1.00 1.62 47.10 1.00 0.93 41.74 N/A 1.32 36.95 0.97 1.65 40.88 1.00 1.02 37.6 

Cycle 2 29.54 0.99 1.72 46.93 1.00 0.65 38.23 N/A 1.30 30.80 0.90 1.39 36.41 1.00 1.04 37.6 

Cycle 3 25.03 0.99 2.24 52.14 1.00 1.17 38.59 N/A 1.79 28.32 0.64 1.69 35.05 1.00 1.55 37.6 

6 kN 
Cycle 1 37.21 *1.00 1.92 44.90 1.00 0.28 41.05 N/A 1.37 37.55 0.95 1.88 40.83 1.00 1.04 37.6 

Cycle 2 30.11 0.99 1.75 45.35 1.00 **0.20 37.73 N/A 1.24 31.37 0.88 1.42 36.68 1.00 1.02 37.6 

Cycle 3 24.68 0.99 1.38 49.57 1.00 0.22 37.12 N/A 0.99 28.14 0.60 0.92 34.75 1.00 ***0.90 37.6 

Note: * Estimate with the highest coefficient of determination for each beam is highlighted in yellow. 

          ** Estimate with the lowest standard deviation for each beam is highlighted in green. 

          *** Estimate with the lowest standard deviation among the two-face combined data analyses is highlighted in blue. 
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(a) 

 

(b) 

Figure 4.6. Batch 2 pre-corrosion load test N.A. locations, plotted against (a) the corresponding 
coefficients of determination, and (b) the corresponding standard deviations. 
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4.4.4. Batch 2 First Post-corrosion Load Test 

In the post-corrosion load tests for Batch 2, each beam had three working electrical strain gauges.   

The DIC data in the compression zone (“DIC_cmprs”) and all the ESG data (“ESG_all”) were 

combined using Methods 1 to 3 to estimate the N.A. locations. The results and the corresponding 

coefficients of determination and standard deviations are presented in Table 4.16. The same 

conditional formatting used in the previous tables was applied. For Beam 1, the cell highlighted 

in yellow, which is the estimate that has the highest coefficient of determination, is the closest to 

the theoretical value. For Beam 2, the estimate with the highest coefficient of determination was 

obtained using Method 3, and it also had the lowest standard deviation among the estimates 

obtained using two-face combined data. This estimate is closer to the theoretical value than the 

estimate obtained using ESG data alone. For the last beam, the estimate with the lowest standard 

deviation among all five data combinations was from Method 2, and this estimate is better than 

the one selected based on the highest coefficient of determination (although still not close to the 

theoretical value). 

The estimated N.A. locations for this set of load tests are plotted against the corresponding 

coefficient of determination and standard deviation values in Figures 4.7 (a) and (b), respectively. 

The same convergence trend is observed for this set of the load tests. Overall, however, the 

estimated N.A. locations from this set differed greatly from the theoretical values. As discussed 

in the preliminary analysis in Appendix F, the high difference might be due to the type of 

adhesive used to attach the strain gauges, the unevenness of the surface, and the slenderness of 

the beams (i.e., twisting). This batch of beams was not loaded to failure during this set of the 

load tests. The attached strain gauges and the DIC speckle pattern were ground off to create a 

smooth surface. Four new electrical strain gauges were attached on each side of the beam using 

the adhesive provided by the manufacturer of the gauges. Then, another set of loading tests was 

performed.  
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Table 4.16. Batch 2 first post-corrosion load test N.A. locations in mm, and the corresponding coefficients of determination and standard 
deviations. 

Beam # Load Cycle # 
DIC_cmprs ESG_all Method 1 Method 2 Method 3 

Theoretical 

Mean R2 STDV Mean R2 STDV Mean R2 STDV Mean R2 STDV Mean R2 STDV 

Beam 1 

3 kN 

Cycle 1 130.91 0.13 543.26 18.40 0.54 0.73 74.65 N/A 384.14 60.46 0.17 106.70 8.38 0.45 4.19 34.50 

Cycle 2 -903.58 0.11 7698.02 -739.27 0.09 597.21 -821.42 N/A 5459.68 -148.53 0.25 94.88 -149.16 0.58 562.65 34.50 

Cycle 3 44.72 0.38 17.37 28.63 0.77 **0.10 36.67 N/A 12.28 91.64 0.12 11.09 29.39 0.77 0.53 34.50 

Cycle 4 33.48 0.74 6.85 -489.31 0.08 2757.72 -227.91 N/A 1950.01 36.06 0.82 6.04 80.01 0.74 8.98 34.50 

4 kN 

Cycle 1 -76.67 0.07 569.82 21.72 0.57 1.01 -27.47 N/A 402.92 549.78 0.02 3309.68 15.83 0.53 2.68 34.50 

Cycle 2 162.51 0.30 157.13 124.07 0.57 4.11 143.29 N/A 111.14 -305.65 0.02 4286.31 257.95 0.48 29.44 34.50 

Cycle 3 48.59 0.56 9.59 29.29 0.78 0.12 38.94 N/A 6.78 89.82 0.18 5.19 30.59 0.79 ***0.36 34.50 

Cycle 4 34.69 *0.87 4.22 158.42 0.22 17.67 96.55 N/A 12.85 40.41 0.83 5.78 65.45 0.83 5.27 34.50 

Beam 2 

3 kN 

Cycle 1 72.45 0.71 11.27 57.56 0.91 0.87 65.00 N/A 7.99 54.91 0.98 2.75 56.47 0.98 1.93 34.80 

Cycle 2 20.28 0.85 6.67 71.27 0.94 2.61 45.77 N/A 5.06 23.72 0.93 3.84 36.85 0.99 3.15 34.80 

Cycle 3 26.92 0.73 10.66 73.12 0.95 3.70 50.02 N/A 7.98 26.79 0.93 4.37 40.01 0.99 3.69 34.80 

4 kN 

Cycle 1 56.55 0.84 4.55 53.73 0.96 **0.22 55.14 N/A 3.22 49.74 0.98 1.72 51.44 0.99 1.03 34.80 

Cycle 2 18.93 0.93 3.37 59.37 0.98 0.80 39.15 N/A 2.45 23.07 0.92 2.26 35.39 1.00 1.66 34.80 

Cycle 3 21.37 0.89 3.25 60.16 0.98 0.89 40.77 N/A 2.38 25.24 0.92 1.94 37.35 *1.00 ***0.40 34.80 

Beam 3 

3 kN 

Cycle 1 -2028.67 0.14 10378.97 -19.15 0.84 1.66 -1023.91 N/A 7339.04 63.61 0.64 1.93 121.05 *0.92 4.31 34.40 

Cycle 2 46.69 0.32 574.14 -19.09 0.79 2.98 13.80 N/A 405.98 27.82 0.81 2.35 67.07 0.84 4.82 34.40 

Cycle 3 46.54 0.07 196.70 -20.56 0.77 3.28 12.99 N/A 139.11 27.75 0.72 2.54 81.44 0.71 5.75 34.40 

Cycle 4 22.14 0.12 79.06 -21.88 0.76 3.63 0.13 N/A 55.96 20.47 0.89 1.63 57.51 0.74 4.26 34.40 

4 kN 

Cycle 1 -237.11 0.25 386.76 -29.70 0.67 1.05 -133.40 N/A 273.48 62.66 0.65 ***0.92 128.15 0.82 8.05 34.40 

Cycle 2 -85.84 0.22 361.39 -45.12 0.61 1.85 -65.48 N/A 255.55 32.59 0.80 2.14 73.60 0.84 3.61 34.40 

Cycle 3 12.78 0.05 277.49 -52.36 0.58 3.97 -19.79 N/A 196.24 30.29 0.72 1.79 76.24 0.80 3.82 34.40 

Cycle 4 44.43 0.14 51.18 -56.75 0.55 4.32 -6.16 N/A 36.32 25.18 0.90 1.54 63.68 0.81 3.33 34.40 

Note: * Estimate with the highest coefficient of determination for each beam is highlighted in yellow. 

          ** Estimate with the lowest standard deviation for each beam is highlighted in green. 

          *** Estimate with the lowest standard deviation among the two-face combined data analyses is highlighted in blue. 



 

98 
 

 

(a) 

 

(b) 

Figure 4.7. Batch 2 first post-corrosion load test N.A. locations, plotted against (a) the 
corresponding coefficients of determination, and (b) the corresponding standard deviations. 
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4.4.5. Batch 2 Second Post-corrosion Load Test 

Based on the preliminary analysis results, the top gauges negatively affected the accuracy of the 

results, so the data from the top gauges were excluded when combining the data from two faces. 

The estimated N.A. locations and the corresponding coefficients of determination and standard 

deviations are presented in Table 4.17. The same conditional formatting rules described earlier 

were also applied to this table.  

Since strain gauge locations were the same on both sides, the best fit line obtained using 

Methods 2 and 3 were the same. Also, the estimated N.A. locations and the corresponding 

standard deviations were the same. However, Method 2 resulted in much lower coefficients of 

determination compared to Method 3, because Method 2 used 6 data points to derive the best fit 

line and Method 3 only used three average strain values from the two faces. The coefficients of 

determination for the single face estimates were also quite close to one, which means the strains 

were linearly distributed on each face. However, low coefficients of determination for Method 2 

indicates the strains on the two faces were different. The gauges were placed at the same 

locations on both sides. If the readings were the same, the coefficients of determination using 

Method 2 would be as high as the ones obtained using data from each individual face. If the 

difference in strain readings was caused by eccentric loading, it was expected that the estimates 

on the two faces would lie on opposite sides of the theoretical values. However, for this set of 

load tests, the estimates from both faces were consistently higher than the theoretical values, and 

the estimates made using two-face combined data were not obviously better than those obtained 

using data from each face individually. Therefore, it is suspected that the difficulty in obtaining 

accurate estimates was caused by more complicated mechanisms such as twisting due to the 

slenderness effect.  

The estimated N.A. locations for this set of load tests are plotted against the corresponding 

coefficient of determination and standard deviation values in Figures 4.8 (a) and (b), respectively. 

The convergence trend was obvious from these figures. But this batch of the estimates did not 

get very close to the theoretical value even when the coefficients of determination were close to 

one and when the standard deviations were close to zero. Many estimates with high coefficients 

of determination still had high errors.  
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Table 4.17. Batch 2 second post-corrosion load test N.A. locations in mm, and the corresponding coefficients of determination and 
standard deviations. 

Beam # Load Cycle # 
Face 1 Face 2 Two Face Method 1 Two Face Method 2 Two Face Method 3 

Theoretical 

Mean R2 STDV Mean R2 STDV Mean R2 STDV Mean R2 STDV Mean R2 STDV 

Beam 1 

3 kN 

Cycle 1 74.28 1.00 3.52 65.07 0.95 2.09 69.68 N/A 2.80 68.67 0.60 2.51 68.67 0.98 2.51 35.90 

Cycle 2 57.88 1.00 1.40 78.70 0.97 1.87 68.29 N/A 1.64 70.20 0.15 1.75 70.20 0.98 1.75 35.90 

Cycle 3 65.59 1.00 1.42 69.84 0.98 1.19 67.71 N/A 1.30 68.07 0.38 1.26 68.07 0.99 1.26 35.90 

Cycle 4 62.04 *1.00 4.58 68.01 0.99 5.48 65.03 N/A 5.03 65.29 0.58 5.09 65.29 1.00 5.09 35.90 

Cycle 5 55.36 1.00 3.19 71.09 0.98 5.78 63.23 N/A 4.48 63.91 0.34 4.65 63.91 1.00 4.65 35.90 

Cycle 6 63.41 0.98 5.73 70.67 0.99 6.26 67.04 N/A 6.00 67.47 0.44 6.09 67.47 0.98 6.09 35.90 

Cycle 7 65.88 1.00 6.59 70.32 0.99 5.92 68.10 N/A 6.26 68.44 0.41 6.25 68.44 0.99 6.25 35.90 

Cycle 8 69.36 1.00 6.88 72.37 0.99 6.78 70.86 N/A 6.83 71.11 0.40 6.85 71.11 0.99 6.85 35.90 

Cycle 9 70.72 1.00 7.26 68.80 0.99 5.79 69.76 N/A 6.52 69.61 0.62 6.38 69.61 0.99 6.38 35.90 

Cycle 10 69.82 1.00 7.65 72.97 0.99 6.85 71.40 N/A 7.25 71.64 0.40 7.20 71.64 1.00 7.20 35.90 

Cycle 11 78.55 1.00 9.95 71.84 0.99 6.39 75.19 N/A 8.17 74.57 0.63 7.74 74.57 0.99 7.74 35.90 

4 kN 

Cycle 4 52.73 1.00 0.60 58.32 0.99 0.33 55.52 N/A 0.47 55.67 0.75 0.44 55.67 1.00 0.44 35.90 

Cycle 5 48.25 1.00 0.52 60.24 0.99 0.37 54.25 N/A 0.45 54.55 0.52 0.46 54.55 1.00 0.46 35.90 

Cycle 6 52.47 0.99 0.45 58.98 0.99 0.40 55.72 N/A 0.42 55.97 0.64 0.41 55.97 0.99 0.41 35.90 

Cycle 7 52.67 1.00 2.08 57.74 0.99 2.01 55.20 N/A 2.04 55.47 0.63 2.06 55.47 1.00 2.06 35.90 

Cycle 8 54.48 1.00 2.47 58.56 0.99 2.26 56.52 N/A 2.36 56.74 0.64 2.37 56.74 1.00 2.37 35.90 

Cycle 9 55.28 1.00 2.42 56.47 0.99 2.12 55.87 N/A 2.27 55.92 0.82 2.26 55.92 1.00 2.26 35.90 

Cycle 10 54.75 1.00 2.40 58.80 0.99 2.39 56.78 N/A 2.40 57.01 0.62 2.41 57.01 1.00 2.41 35.90 

Cycle 11 58.77 1.00 3.05 57.69 0.99 2.37 58.23 N/A 2.71 58.16 0.83 2.66 58.16 1.00 2.66 35.90 

5 kN 

Cycle 7 48.76 1.00 0.14 53.73 0.99 0.17 51.25 N/A 0.16 51.45 0.71 0.14 51.45 1.00 0.14 35.90 

Cycle 8 49.45 1.00 0.21 53.63 0.99 0.20 51.54 N/A 0.21 51.72 0.74 0.20 51.72 1.00 0.20 35.90 

Cycle 9 49.56 1.00 1.04 51.34 1.00 1.02 50.45 N/A 1.03 50.50 0.89 1.03 50.50 1.00 1.03 35.90 

Cycle 10 48.65 1.00 1.20 52.78 1.00 1.23 50.72 N/A 1.22 50.89 0.75 1.23 50.89 1.00 1.23 35.90 

Cycle 11 51.32 1.00 1.44 51.97 1.00 1.16 51.64 N/A 1.30 51.66 0.91 1.29 51.66 1.00 1.29 35.90 
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Table 4.17. Continued. 

Beam # Load Cycle # Face 1 Face 2 Two Face Method 1 Two Face Method 2 Two Face Method 3 Theoretical 
Mean R2 STDV Mean R2 STDV Mean R2 STDV Mean R2 STDV Mean R2 STDV 

Beam 1 6 kN 

Cycle 9 47.18 1.00 0.12 49.28 1.00 0.11 48.23 N/A 0.11 48.28 0.91 **0.10 48.28 1.00 **0.10 35.90 

Cycle 10 45.91 1.00 0.14 50.06 1.00 0.14 47.98 N/A 0.14 48.11 0.82 0.13 48.11 1.00 0.13 35.90 

Cycle 11 47.57 1.00 0.81 48.87 1.00 0.68 48.22 N/A 0.75 48.26 0.93 0.75 48.26 1.00 0.75 35.90 

Beam 2 

3 kN 

Cycle 1 56.32 0.98 0.83 -37.80 0.75 2.78 9.26 N/A 1.81 -1219.92 0.00 685.20 -1219.92 0.06 685.20 36.20 

Cycle 2 53.17 0.99 0.47 235.00 0.54 47.60 144.08 N/A 24.04 81.58 0.49 2.49 81.58 0.99 2.49 36.20 

Cycle 3 50.18 0.99 2.03 185.01 0.67 82.94 117.59 N/A 42.48 73.56 0.56 7.72 73.56 1.00 7.72 36.20 

Cycle 4 52.92 0.99 2.92 326.51 0.45 1982.43 189.71 N/A 992.68 90.52 0.27 15.66 90.52 0.99 15.66 36.20 

Cycle 5 52.79 0.99 2.87 220.44 0.68 152.86 136.62 N/A 77.87 76.86 0.62 10.41 76.86 1.00 10.41 36.20 

Cycle 6 52.47 1.00 2.68 383.51 0.58 552.14 217.99 N/A 277.41 77.91 0.61 10.33 77.91 0.99 10.33 36.20 

Cycle 7 52.97 1.00 2.96 412.83 0.62 667.89 232.90 N/A 335.42 78.22 0.63 11.16 78.22 0.99 11.16 36.20 

Cycle 8 53.23 1.00 2.70 227.55 0.66 171.53 140.39 N/A 87.12 73.36 0.66 8.52 73.36 0.99 8.52 36.20 

Cycle 9 52.38 1.00 2.66 209.47 0.67 145.33 130.92 N/A 74.00 72.98 0.70 8.71 72.98 0.99 8.71 36.20 

4 kN 

Cycle 3 46.59 0.99 0.13 90.43 0.96 2.85 68.51 N/A 1.49 59.71 0.79 0.64 59.71 1.00 0.64 36.20 

Cycle 4 47.22 0.99 0.22 105.11 0.95 3.79 76.17 N/A 2.00 64.56 0.56 0.87 64.56 1.00 0.87 36.20 

Cycle 5 46.56 1.00 1.04 81.51 0.97 7.61 64.03 N/A 4.33 57.73 0.85 2.55 57.73 1.00 2.55 36.20 

Cycle 6 46.54 1.00 1.17 85.70 0.96 10.08 66.12 N/A 5.62 58.37 0.84 3.00 58.37 1.00 3.00 36.20 

Cycle 7 46.54 1.00 1.12 83.15 0.97 9.35 64.85 N/A 5.23 57.82 0.85 2.86 57.82 1.00 2.86 36.20 

Cycle 8 47.05 1.00 1.17 78.55 0.97 8.81 62.80 N/A 4.99 56.32 0.83 2.72 56.32 1.00 2.72 36.20 

Cycle 9 46.50 1.00 1.08 78.00 0.97 8.29 62.25 N/A 4.69 56.08 0.86 2.62 56.08 1.00 2.62 36.20 

5 kN 

Cycle 5 44.41 1.00 0.11 66.57 0.99 0.72 55.49 N/A 0.42 52.33 0.91 0.27 52.33 1.00 0.27 36.20 

Cycle 6 43.85 1.00 0.15 65.97 0.99 0.82 54.91 N/A 0.49 51.69 0.91 0.34 51.69 1.00 0.34 36.20 

Cycle 7 43.58 1.00 0.66 63.35 1.00 3.23 53.46 N/A 1.95 50.78 0.92 1.39 50.78 *1.00 1.39 36.20 

Cycle 8 44.19 1.00 0.60 60.82 0.99 2.75 52.50 N/A 1.67 50.01 0.89 1.19 50.01 1.00 1.19 36.20 

Cycle 9 43.66 1.00 0.61 60.25 0.99 3.16 51.96 N/A 1.89 49.61 0.92 1.33 49.61 1.00 1.33 36.20 
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Table 4.17. Continued. 

Beam # Load Cycle # Face 1 Face 2 Two Face Method 1 Two Face Method 2 Two Face Method 3 
Theoretical 

   Mean R2 STDV Mean R2 STDV Mean R2 STDV Mean R2 STDV Mean R2 STDV 

Beam 2 6 kN 

Cycle 7 41.79 1.00 0.10 55.40 1.00 0.51 48.59 N/A 0.30 47.08 0.95 0.23 47.08 1.00 0.23 36.20 

Cycle 8 42.66 1.00 **0.08 53.79 1.00 0.38 48.23 N/A 0.23 46.88 0.92 ***0.16 46.88 1.00 ***0.16 36.20 

Cycle 9 41.97 1.00 0.50 52.66 1.00 1.77 47.31 N/A 1.13 46.13 0.95 0.91 46.13 1.00 0.91 36.20 

Beam 3 

3 kN 

Cycle 1 230.02 0.33 325.27 -72.68 0.97 3.41 78.67 N/A 164.34 571.63 0.02 5315.71 571.63 0.09 5315.71 35.60 

Cycle 2 54.06 1.00 0.27 -519.20 0.90 110.09 -232.57 N/A 55.18 96.46 0.40 1.70 96.46 1.00 1.70 35.60 

Cycle 3 53.17 1.00 1.08 -928.67 0.72 3840.56 -437.75 N/A 1920.82 88.53 0.49 8.83 88.53 1.00 8.83 35.60 

Cycle 4 53.65 1.00 1.36 -8131.10 0.62 34494.87 -4038.73 N/A 17248.11 97.16 0.40 13.02 97.16 1.00 13.02 35.60 

Cycle 5 53.40 1.00 1.41 -585.43 0.59 2697.69 -266.02 N/A 1349.55 96.88 0.40 13.11 96.88 1.00 13.11 35.60 

Cycle 6 56.94 1.00 1.65 -161.06 0.91 95.48 -52.06 N/A 48.56 124.40 0.26 25.53 124.40 1.00 25.53 35.60 

Cycle 7 58.21 0.98 1.98 619.24 0.70 4301.11 338.73 N/A 2151.54 116.06 0.34 20.94 116.06 0.99 20.94 35.60 

Cycle 8 51.44 1.00 1.32 -119.02 0.51 1278.00 -33.79 N/A 639.66 86.64 0.47 9.73 86.64 1.00 9.73 35.60 

4 kN 

Cycle 3 50.48 1.00 0.18 231.44 0.91 11.33 140.96 N/A 5.76 73.34 0.64 0.44 73.34 1.00 0.44 35.60 

Cycle 4 50.22 1.00 0.17 248.89 0.90 15.51 149.55 N/A 7.84 74.31 0.63 0.62 74.31 1.00 0.62 35.60 

Cycle 5 49.56 1.00 0.85 214.14 0.91 84.81 131.85 N/A 42.83 70.98 0.67 4.04 70.98 1.00 4.04 35.60 

Cycle 6 51.96 1.00 1.17 434.10 0.56 1486.73 243.03 N/A 743.95 79.55 0.55 6.04 79.55 1.00 6.04 35.60 

Cycle 7 52.33 0.99 1.40 266.14 0.90 159.17 159.24 N/A 80.28 76.84 0.65 6.00 76.84 1.00 6.00 35.60 

Cycle 8 47.59 1.00 0.90 158.61 0.94 43.51 103.10 N/A 22.20 65.92 0.70 3.53 65.92 1.00 3.53 35.60 

5 kN 

Cycle 5 47.71 1.00 **0.09 118.04 0.97 1.78 82.87 N/A 0.94 63.13 0.76 ***0.24 63.13 1.00 ***0.24 35.60 

Cycle 6 49.07 1.00 0.18 154.76 0.96 6.14 101.91 N/A 3.16 67.06 0.69 0.54 67.06 1.00 0.54 35.60 

Cycle 7 48.55 0.99 0.86 106.80 0.99 12.19 77.67 N/A 6.52 63.42 0.80 2.55 63.42 1.00 2.55 35.60 

Cycle 8 45.11 1.00 0.59 90.55 0.99 8.63 67.83 N/A 4.61 57.21 0.82 1.84 57.21 1.00 1.84 35.60 

6 kN 
Cycle 7 46.27 0.99 0.52 77.05 1.00 1.35 61.66 N/A 0.94 56.17 0.88 0.48 56.17 1.00 0.48 35.60 

Cycle 8 43.62 1.00 0.39 70.56 1.00 2.56 57.09 N/A 1.47 52.34 0.89 0.87 52.34 *1.00 0.87 35.60 

7 kN Cycle 8 38.55 1.00 1.82 50.06 1.00 4.90 44.30 N/A 3.36 43.01 0.95 2.83 43.01 1.00 2.83 35.60 

Note: * Estimate with the highest coefficient of determination for each beam is highlighted in yellow. 

          ** Estimate with the lowest standard deviation for each beam is highlighted in green. 

          *** Estimate with the lowest standard deviation among the two-face combined data analyses is highlighted in blue. 
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(a) 

 

(b) 

Figure 4.8. Batch 2 second post-corrosion load test N.A. locations, plotted against (a) the 
corresponding coefficients of determination, and (b) the corresponding standard deviations. 
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4.4.6. Batch 3 Pre-corrosion Load Test 

Batch 3 beams did not have any issues with the surface smoothness and the type of adhesive 

used for the electrical strain gauges. The DIC data from the compression zone were combined 

with all the ESG data for the two-face combined analysis. The results and the corresponding 

coefficients of determination and standard deviations are presented in Table 4.18. The same 

formatting rules were applied to this table.  

For all three beams, the estimates with the highest coefficients of determination were obtained 

using Method 3. The coefficients of determination for the estimates obtained using data from 

each face individually were also high, and the coefficients of determination for Method 2 

estimates were low as usual indicating different strain distributions on the two faces. Estimates 

using ESG data alone had the lowest standard deviation except for Beam 1. For Beam 1, an 

estimate obtained using Method 2 had the lowest standard deviation, but it was less accurate than 

the estimate made by Method 3 which had the highest coefficient of determination. For Beams 2 

and 3, the estimates closest to the theoretical values were in blue and green, respectively. 

The estimated N.A. locations for this set of load tests are plotted against the corresponding 

coefficient of determination and standard deviation values in Figures 4.9 (a) and (b), respectively. 

It is obvious that the estimates converge to the theoretical value as the standard deviation of the 

estimates drops. However, the convergence trend for coefficients of determination is not as clear. 

Many estimates made by considering ESG data alone and two-face combined using Method 3 

had coefficients of determination very close to one but still differed greatly from the theoretical 

N.A. location. 
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Table 4.18. Batch 3 pre-corrosion load test N.A. locations in mm, and the corresponding coefficients of determination and standard 
deviations. 

Beam # Load Cycle # 
DIC_cmprs ESG_all Method 1 Method 2 Method 3 

Theoretical 
Mean R2 STDV Mean R2 STDV Mean R2 STDV Mean R2 STDV Mean R2 STDV 

Beam 1 

3 kN 
Cycle 1 13.49 0.99 1.59 124.47 0.97 7.80 68.98 N/A 4.69 24.72 0.42 1.00 29.60 *1.00 1.30 38.50 

Cycle 2 22.72 0.98 0.83 115.18 0.95 10.87 68.95 N/A 5.85 26.40 0.69 **0.66 36.69 1.00 0.73 38.50 

Cycle 3 23.91 0.97 0.96 115.93 0.95 9.65 69.92 N/A 5.31 29.98 0.58 1.07 37.74 1.00 1.17 38.50 

4 kN 
Cycle 1 14.89 0.99 1.18 55.30 0.86 20.18 35.10 N/A 10.68 24.16 0.58 1.12 26.87 0.98 2.16 38.50 

Cycle 2 22.76 0.99 1.13 84.19 0.98 3.30 53.47 N/A 2.21 26.51 0.71 0.96 35.99 1.00 0.82 38.50 

Cycle 3 23.89 0.98 0.93 82.93 0.98 3.35 53.41 N/A 2.14 29.57 0.62 0.93 36.63 1.00 0.86 38.50 

Beam 2 

3 kN 
Cycle 1 29.05 0.76 4.21 57.04 1.00 0.82 43.05 N/A 2.52 34.58 0.45 2.48 44.18 1.00 1.98 39.20 

Cycle 2 68.96 0.85 7.94 44.29 1.00 0.18 56.62 N/A 4.06 64.38 0.69 5.78 54.30 1.00 2.41 39.20 

Cycle 3 64.55 0.87 5.87 44.09 1.00 0.17 54.32 N/A 3.02 57.17 0.86 3.10 51.69 1.00 1.49 39.20 

4 kN 
Cycle 1 32.16 0.87 1.71 56.99 1.00 2.61 44.58 N/A 2.16 36.28 0.55 ***1.29 44.74 1.00 1.63 39.20 

Cycle 2 61.50 0.92 4.73 43.54 1.00 0.07 52.52 N/A 2.40 58.05 0.81 3.54 51.20 *1.00 1.67 39.20 

Cycle 3 59.69 0.92 5.13 43.43 1.00 **0.06 51.56 N/A 2.59 53.42 0.90 3.04 49.59 1.00 1.53 39.20 

Beam 3 

3 kN 
Cycle 1 52.64 0.80 7.18 40.44 1.00 0.35 46.54 N/A 3.76 49.76 0.75 5.86 45.96 *1.00 3.02 39.00 

Cycle 2 65.37 0.91 7.08 36.94 1.00 0.12 51.15 N/A 3.60 78.37 0.19 14.34 51.21 1.00 2.99 39.00 

Cycle 3 75.87 0.83 8.61 36.27 1.00 0.14 56.07 N/A 4.38 88.59 0.15 12.42 54.10 1.00 2.58 39.00 

4 kN 
Cycle 1 52.35 0.90 3.93 39.22 1.00 0.08 45.78 N/A 2.00 49.40 0.76 2.31 45.28 1.00 ***1.50 39.00 

Cycle 2 64.18 0.93 5.59 36.79 1.00 0.06 50.48 N/A 2.83 72.20 0.25 9.27 50.11 1.00 2.20 39.00 

Cycle 3 70.83 0.88 5.12 36.29 1.00 **0.05 53.56 N/A 2.58 77.25 0.22 5.40 51.89 1.00 1.54 39.00 

Note: * Estimate with the highest coefficient of determination for each beam is highlighted in yellow. 

          ** Estimate with the lowest standard deviation for each beam is highlighted in green. 

          *** Estimate with the lowest standard deviation among the two-face combined data analyses is highlighted in blue. 
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(a) 

 

(b) 

Figure 4.9. Batch 3 pre-corrosion load test N.A. locations, plotted against (a) the corresponding 
coefficients of determination, and (b) the corresponding standard deviations. 
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4.4.7. Batch 3 Post-corrosion Load Test 

All electrical strain gauges were still functioning after corrosion. Similar to the analysis 

conducted for the pre-corrosion load test, the DIC data in the compression zone and all the ESG 

data were combined for the two-face analysis. The results and the corresponding coefficients of 

determination and standard deviations are presented in Table 4.19, in which the same conditional 

formatting rules were applied.  

For this set of load tests, the estimates obtained using Method 3 consistently had the highest 

coefficients of determination, and the estimates obtained using ESG data alone had the lowest 

standard deviations. Among the estimates made by two-face combined data, the estimates with 

the lowest standard deviations were generated by Methods 1 or 3. Comparing estimated N.A. 

locations associated with the cells highlighted in three different colors to the theoretical values, 

for all three beams, the blue cells were the closest. This means the best estimates can be selected 

based on the lowest standard deviation among two-face combined estimates.   

The estimated N.A. locations for this set of load tests are plotted against the corresponding 

coefficient of determination and standard deviation values in Figures 4.10 (a) and (b), 

respectively. The convergence trends are clear in both figures.  
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Table 4.19. Batch 3 post-corrosion load test N.A. locations in mm, and the corresponding coefficients of determination and standard 
deviations. 

Beam # Load Cycle # 
DIC_cmprs ESG_all Method 1 Method 2 Method 3 

Theoretical 
Mean R2 STDV Mean R2 STDV Mean R2 STDV Mean R2 STDV Mean R2 STDV 

Beam 1 

3 kN 

Cycle 1 32.58 0.86 2.10 75.67 0.97 1.91 54.12 N/A 2.00 41.34 0.43 1.23 52.29 0.99 2.04 37.00 

Cycle 2 29.47 0.90 2.05 65.25 0.99 1.00 47.36 N/A 1.52 39.02 0.43 1.30 45.86 1.00 1.40 37.00 

Cycle 3 25.55 0.90 2.22 64.28 0.99 0.90 44.92 N/A 1.56 36.82 0.36 1.11 45.36 1.00 1.71 37.00 

Cycle 4 32.05 0.96 1.40 63.45 0.99 0.85 47.75 N/A 1.13 39.35 0.52 0.84 46.49 1.00 1.28 37.00 

Cycle 5 25.63 0.95 1.28 57.04 0.99 0.71 41.33 N/A 1.00 34.33 0.49 0.74 40.67 1.00 0.91 37.00 

Cycle 6 29.31 0.99 1.31 49.04 1.00 0.89 39.18 N/A 1.10 34.42 0.83 0.88 36.51 1.00 0.56 37.00 

4 kN 

Cycle 1 31.33 0.94 1.38 66.45 0.99 0.55 48.89 N/A 0.96 39.31 0.49 0.84 47.76 1.00 1.22 37.00 

Cycle 2 29.26 0.93 1.05 60.11 0.99 0.30 44.68 N/A 0.68 37.87 0.47 0.68 43.76 1.00 0.84 37.00 

Cycle 3 26.86 0.94 1.70 59.31 0.99 0.28 43.09 N/A 0.99 36.40 0.43 0.94 43.33 1.00 1.28 37.00 

Cycle 4 31.98 0.97 1.47 58.45 0.99 0.44 45.21 N/A 0.95 38.41 0.57 0.93 44.53 1.00 0.98 37.00 

Cycle 5 27.91 0.97 1.18 52.26 1.00 1.06 40.09 N/A 1.12 34.64 0.59 0.82 39.57 1.00 0.94 37.00 

Cycle 6 28.26 0.98 0.94 45.24 1.00 0.56 36.75 N/A 0.75 32.72 0.76 0.52 36.12 1.00 0.46 37.00 

5 kN 
Cycle 4 31.76 0.98 0.99 54.78 1.00 0.92 43.27 N/A 0.96 37.62 0.63 0.65 42.61 1.00 0.85 37.00 

Cycle 5 27.97 0.98 1.38 49.38 1.00 0.66 38.68 N/A 1.02 34.07 0.64 0.81 38.32 1.00 0.69 37.00 

Cycle 6 28.27 0.98 0.98 44.34 1.00 **0.12 36.30 N/A 0.55 32.50 0.77 0.71 35.61 1.00 1.38 37.00 

6 kN 
Cycle 4 31.84 0.99 0.70 51.97 1.00 0.39 41.91 N/A 0.54 37.00 0.65 0.49 41.71 1.00 0.50 37.00 

Cycle 5 29.16 0.99 0.84 47.42 1.00 0.53 38.29 N/A 0.69 34.35 0.68 0.46 38.21 1.00 ***0.41 37.00 

Cycle 6 27.97 0.98 0.83 43.22 1.00 0.26 35.60 N/A 0.54 32.02 0.74 0.61 35.55 *1.00 1.42 37.00 

Beam 2 3 kN 

Cycle 1 32.57 0.96 1.65 -8535.58 0.06 151684.17 -4251.51 N/A 75842.91 50.02 0.38 2.71 59.35 0.99 2.97 36.80 

Cycle 2 20.42 0.94 2.16 169.90 0.95 22.54 95.16 N/A 12.35 33.41 0.35 1.89 40.65 1.00 2.21 36.80 

Cycle 3 29.68 0.96 1.88 161.26 0.94 21.76 95.47 N/A 11.82 41.88 0.50 2.66 47.84 1.00 2.28 36.80 

Cycle 4 27.82 0.95 1.25 154.94 0.95 19.17 91.38 N/A 10.21 38.04 0.50 1.47 46.10 1.00 1.92 36.80 

Cycle 5 26.44 0.96 1.02 100.31 0.96 6.53 63.37 N/A 3.77 35.28 0.56 1.04 40.92 1.00 1.15 36.80 

Cycle 6 25.08 0.93 0.94 75.04 0.97 3.36 50.06 N/A 2.15 33.73 0.57 0.82 38.29 1.00 0.93 36.80 

Cycle 7 27.65 0.95 0.69 45.35 0.99 0.26 36.50 N/A 0.48 31.77 0.81 0.55 34.73 1.00 0.56 36.80 
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Table 4.19. Continued. 

Beam # Load Cycle # 
DIC_cmprs ESG_all Method 1 Method 2 Method 3 

Theoretical 
Mean R2 STDV Mean R2 STDV Mean R2 STDV Mean R2 STDV Mean R2 STDV 

Beam 2 

4 kN 

Cycle 1 34.65 0.98 1.78 164.08 0.85 12.22 99.36 N/A 7.00 48.35 0.53 2.58 55.07 1.00 2.13 36.80 

Cycle 2 22.84 0.96 1.83 97.52 0.99 2.59 60.18 N/A 2.21 34.28 0.43 1.82 40.38 *1.00 1.66 36.80 

Cycle 3 30.54 0.97 1.80 94.94 0.98 2.91 62.74 N/A 2.36 40.63 0.59 2.01 45.64 1.00 1.64 36.80 

Cycle 4 29.44 0.97 1.57 91.06 0.98 7.56 60.25 N/A 4.57 37.92 0.62 1.56 43.88 1.00 1.25 36.80 

Cycle 5 27.59 0.97 0.89 74.24 0.98 1.62 50.92 N/A 1.25 35.39 0.63 0.85 40.39 1.00 0.87 36.80 

Cycle 6 26.27 0.95 1.62 62.53 0.98 1.28 44.40 N/A 1.45 34.00 0.63 1.38 38.13 1.00 1.19 36.80 

Cycle 7 27.89 0.96 0.59 44.00 0.99 **0.15 35.94 N/A ***0.37 31.76 0.83 0.45 34.69 1.00 0.48 36.80 

5 kN 

Cycle 4 30.42 0.98 0.89 73.47 0.99 3.43 51.95 N/A 2.16 37.81 0.68 0.82 43.03 1.00 0.79 36.80 

Cycle 5 28.67 0.98 0.48 63.39 0.99 2.08 46.03 N/A 1.28 35.52 0.70 0.43 39.85 1.00 0.50 36.80 

Cycle 6 27.30 0.97 0.46 56.24 0.99 1.30 41.77 N/A 0.88 34.03 0.70 0.45 37.51 1.00 0.54 36.80 

Cycle 7 28.20 0.96 0.60 42.89 0.99 0.27 35.55 N/A 0.43 31.80 0.85 0.46 34.44 1.00 0.40 36.80 

6 kN 

Cycle 4 30.72 0.98 0.79 65.38 0.99 1.18 48.05 N/A 0.98 37.35 0.70 0.68 42.48 1.00 0.65 36.80 

Cycle 5 29.64 0.98 0.54 58.21 0.99 0.60 43.92 N/A 0.57 35.82 0.74 0.46 39.80 1.00 0.50 36.80 

Cycle 6 27.91 0.97 0.67 53.05 0.99 0.51 40.48 N/A 0.59 34.17 0.72 0.50 37.63 1.00 0.51 36.80 

Cycle 7 28.71 0.97 0.69 42.04 0.99 0.21 35.37 N/A 0.45 32.02 0.86 0.52 34.56 1.00 0.40 36.80 

Beam 3 3 kN 

Cycle 1 78.66 0.78 11.36 105.76 0.90 17.69 92.21 N/A 14.53 159.53 0.07 43.76 85.43 0.99 9.33 37.70 

Cycle 2 86.04 0.70 15.40 84.46 0.97 5.23 85.25 N/A 10.31 129.87 0.16 31.36 84.79 0.99 9.65 37.70 

Cycle 3 67.02 0.83 7.28 77.45 0.98 3.75 72.24 N/A 5.51 103.83 0.15 13.57 70.12 1.00 5.66 37.70 

Cycle 4 73.17 0.82 10.35 74.69 0.98 3.30 73.93 N/A 6.83 112.28 0.25 65.14 73.35 1.00 6.88 37.70 

Cycle 5 45.36 0.76 6.59 58.68 1.00 1.52 52.02 N/A 4.06 48.29 0.79 4.65 51.19 1.00 4.19 37.70 

Cycle 6 47.80 0.77 4.64 56.82 1.00 1.45 52.31 N/A 3.04 54.14 0.78 4.24 51.31 1.00 3.15 37.70 
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Table 4.19. Continued. 

Beam # Load Cycle # 
DIC_cmprs ESG_all Method 1 Method Method 3 

Theoretical Mean R2 STDV Mean R2 STDV Mean R2 STDV Mean R2 STDV Mean R2 STDV 

Beam 3 

4 kN 

Cycle 1 60.14 0.89 5.87 68.86 0.99 2.07 64.50 N/A 3.97 77.92 0.42 8.02 63.15 1.00 3.87 37.70 

Cycle 2 63.99 0.84 5.14 64.86 0.99 1.06 64.43 N/A 3.10 73.87 0.56 4.70 64.22 1.00 3.05 37.70 

Cycle 3 56.63 0.90 4.08 62.17 1.00 0.78 59.40 N/A 2.43 70.73 0.44 4.30 58.58 1.00 2.66 37.70 

Cycle 4 59.25 0.91 4.54 60.76 1.00 1.04 60.01 N/A 2.79 70.09 0.63 4.88 59.79 1.00 2.89 37.70 

Cycle 5 39.19 0.89 2.69 51.50 1.00 0.55 45.34 N/A 1.62 42.24 0.86 1.69 44.81 1.00 1.72 37.70 

Cycle 6 41.55 0.87 2.90 49.96 1.00 0.50 45.76 N/A 1.70 45.24 0.90 2.64 45.08 *1.00 1.85 37.70 

5 kN 

Cycle 4 49.44 0.95 2.32 53.89 1.00 1.60 51.67 N/A 1.96 56.82 0.79 2.55 51.20 1.00 1.69 37.70 

Cycle 5 36.86 0.94 1.35 47.54 1.00 0.96 42.20 N/A 1.16 39.89 0.90 1.04 41.72 1.00 0.97 37.70 

Cycle 6 38.64 0.91 2.21 46.48 1.00 0.78 42.56 N/A 1.50 41.80 0.93 2.07 41.98 1.00 1.40 37.70 

6 kN 

Cycle 4 44.70 0.97 1.84 47.80 1.00 0.88 46.25 N/A 1.36 48.37 0.93 1.79 46.03 1.00 1.17 37.70 

Cycle 5 37.02 0.96 1.50 44.85 1.00 **0.28 40.93 N/A 0.89 39.06 0.92 1.04 40.78 1.00 ***0.83 37.70 

Cycle 6 38.06 0.94 1.79 44.02 1.00 0.30 41.04 N/A 1.04 40.21 0.95 1.56 40.75 1.00 1.02 37.70 

Note: * Estimate with the highest coefficient of determination for each beam is highlighted in yellow. 

          ** Estimate with the lowest standard deviation for each beam is highlighted in green. 

          *** Estimate with the lowest standard deviation among the two-face combined data analyses is highlighted in blue. 



 

111 
 

 

(a) 

  

(b) 

Figure 4.10. Batch 3 post-corrosion load test N.A. locations, plotted against (a) the 

corresponding coefficients of determination, and (b) the corresponding standard deviations. 
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 4.4.8. Summary 

Overall, the analysis presented in Sections 4.4.1. to 4.4.7 shows that both the standard deviation 

and coefficients of determination associated with best fit strain distribution can be used as 

indicators of the quality of the strain data in terms of its usefulness to calculate the N.A. location. 

It was found that the lower the standard deviation or the higher the coefficients of determination, 

the closer the estimates were to the theoretical values. The results selected by the highest 

coefficients of determination, lowest standard deviation and lowest standard deviation 

considering two-face combined data are summarized in Table 4.20. It was found that screening 

by standard deviation showed more advantages than screening by coefficients of determination. 

First, coefficients of determination are sensitive to the quantity of the data. If only two data 

points are used to identify the best fit function, the coefficients of determination would 

consistently be one, and thus be meaningless. The standard deviation does not have this 

limitation. The best results selected by the lowest standard deviation are generally closer to the 

theoretical values than the results selected by the highest coefficients of determination. The 

average of the absolute percent difference between the optimal coefficient of determination 

results and the theoretical value was 41%, whereas the average difference between the optimal 

standard deviation results and the theoretical value was 27%.   

Considering ESG data alone generally provided the estimates with the lowest standard deviations. 

However, the results obtained using two-face combined data were generally better than those 

using the data from a single face. The average difference was only 24%. Thus, it is 

recommended to select the optimum data among the two face combined analyses (“Methods 1 to 

3”) based on the lowest standard deviation. Therefore, the blue cells (with triple asterisks) from 

Tables 4.11 to 4.19 were used to represent the best estimates that can be achieved by the surface 

based SHM techniques. The accuracy and feasibility of the proposed SHM technique are 

discussed in the following section. 

Note the average percent difference for the optimal coefficient of determination and standard 

deviation results were calculated excluding the values for Batch 1 pre-corrosion, because in that 

set of experiments, only one side surface was monitored and there were no results for two-face 

combined analysis. For a fair comparison, other data for Batch 1 pre-corrosion were also 

excluded when calculating the average percentage errors. 
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Table 4.20. Summary of estimated N.A. locations selected based on the optimal coefficient of 

determination and standard deviation, in mm. 

Beam Identification Theoretical R2 |% diff| STDV |% diff| STDV 
(two-face) |% diff| 

Batch 1 Beam 1 Pre 42.3 44.6 5% 42.5 0% N/A N/A 

Batch 1 Beam 2 Pre 41.7 44.1 6% 43.2 4% N/A N/A 

Batch 1 Beam 3 Pre 41.7 N/A N/A 43.3 4% N/A N/A 

Batch 1 Beam 1 Post 41.4 49.9 20% 38.9 6% 44.4 7% 

Batch 1 Beam 2 Post 38.8 49.2 27% 31.6 19% 40.5 4% 

Batch 1 Beam 3 Post 40.0 48.5 21% 48.8 22% 50.4 26% 

Batch 2 Beam 1 Pre 37.8 58.7 55% 58.9 56% 56.3 49% 

Batch 2 Beam 2 Pre 38.0 6.0 84% 41.4 9% 27.5 28% 

Batch 2 Beam 3 Pre 37.6 37.2 1% 45.4 21% 34.8 8% 

Batch 2 Beam 1 First Post 34.5 34.7 1% 28.6 17% 30.6 11% 

Batch 2 Beam 2 First Post 34.8 37.4 7% 53.7 54% 37.4 7% 

Batch 2 Beam 3 First Post 34.4 121.1 252% 62.7 82% 62.7 82% 

Batch 2 Beam 1 Second Post 35.9 62.0 73% 48.3 34% 48.3 34% 

Batch 2 Beam 2 Second Post 36.2 50.8 40% 42.7 18% 46.9 30% 

Batch 2 Beam 3 Second Post 35.6 52.3 47% 47.7 34% 63.1 77% 

Batch 3 Beam 1 Pre 38.5 29.6 23% 26.4 31% 26.4 31% 

Batch 3 Beam 2 Pre 39.2 51.2 31% 43.4 11% 36.3 7% 

Batch 3 Beam 3 Pre 39.0 46.0 18% 36.3 7% 45.3 16% 

Batch 3 Beam 1 Post 37.0 35.6 4% 44.3 20% 38.2 3% 

Batch 3 Beam 2 Post 36.8 40.4 10% 44.0 20% 35.9 2% 

Batch 3 Beam 3 Post 37.7 45.1 20% 44.9 19% 40.8 8% 

  Average 41%   27%   24% 

4.5. Accuracy of the Estimated N.A. Location, Steel Bar Area, and Beam 

Capacity 

The best estimates of the N.A. locations considering data from the two-faces, selected based on 

the lowest standard deviation of the estimated N.A. location while the load was held constant, 

were used to calculate the steel bar area and beam bending moment capacity. The estimates of 

the pre- and post corrosion loading tests are compared to the theoretical and actual values in 

Tables 4.21 and 4.22, respectively. 
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Table 4.21. Comparison of the estimated N.A. locations, steel bar areas, and bending moment capacities in the pre-corrosion load tests 
to the theoretical and actual values. 

Beam # 
Strain Data 

Method 
Applied 

Load 
(kN) 

N.A. Location (mm) As (mm2) Ultimate Capacity (kN) 

Side 1 Side 2 Estimated Theoretical % Error Estimated Actual % Error Estimated Theoretical % Error 
Batch 1 pre-corrosion 

Beam 1 ESG_G2&G3 none N/A 8 42.5 42.3 0% 203 200 2% 30.9 30.5 1% 

Beam 2 ESG_cmprs none N/A 8 43.2 41.7 4% 220 200 10% 32.2 29.8 8% 

Beam 3 ESG_G2&G3 none N/A 8 43.3 41.7 4% 221 200 11% 32.4 29.8 9% 

Batch 2 pre-corrosion 

Beam 1 ESG_G2&G3 DIC_cmprs Method 3 6 56.3 37.8 49% 309 100 209% 23.0 9.7 137% 

Beam 2 ESG_G2&G3 DIC_cmprs Method 3 6 27.5 38.0 -28% 45 100 -55% 4.6 9.7 -52% 

Beam 3 ESG_G2&G3 DIC_cmprs Method 3 6 34.8 37.6 -8% 82 100 -18% 8.1 9.7 -17% 

Batch 3 pre-corrosion 

Beam 1 ESG_all DIC_cmprs Method 3 3 26.4 38.5 -31% 39 100 -61% 3.9 9.4 -59% 

Beam 2 ESG_all DIC_cmprs Method 3 4 36.3 39.2 -7% 82 100 -18% 7.8 9.3 -16% 

Beam 3 ESG_all DIC_cmprs Method 3 4 45.3 39.0 16% 150 100 50% 13.3 9.4 42% 
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Table 4.22. Comparison of the estimated N.A. locations, steel bar areas, and bending moment capacities in the post-corrosion load 
tests to the theoretical and actual values. 

Beam # Strain Data Method 
Applied 

Load 
(kN) 

N.A. Location (mm) As (mm2) Ultimate Capacity (kN) 

Side 1 Side 2 Estimated Theoretical % Error Estimated Actual % Error Estimated Actual % Error 

Batch 1 post-corrosion 
Beam 1 ESG_all DIC_cmprs Method 3 5 44.4 41.4 7% 230 190 21% 32.8 14.8 122% 
Beam 2 ESG_all DIC_cmprs Method 3 5 40.5 38.8 4% 185 165 12% 27.0 12.0 125% 

Beam 3 ESG_all DIC_cmprs Method 3 5 50.4 40.0 26% 345 179 93% 42.1 17.5 141% 

Batch 2 first post-corrosion 
Beam 1 ESG_all DIC_cmprs Method 3 4 30.6 34.5 -11% 58 78 -25% 5.9 12.2 -51% 
Beam 2 ESG_all DIC_cmprs Method 3 4 37.4 34.8 7% 96 80 20% 9.4 9.9 -6% 

Beam 3 ESG_all DIC_cmprs Method 3 4 62.7 34.4 82% 454 80 468% 26.3 9.8 168% 

Batch 2 second post-corrosion 
Beam 1 ESG_notop ESG_notop Method 2 6 48.3 35.9 34% 173 78 122% 15.8 12.2 29% 
Beam 2 ESG_notop ESG_notop Method 2 6 46.9 36.2 30% 160 80 100% 14.6 9.9 47% 

Beam 3 ESG_notop ESG_notop Method 2 5 63.1 35.6 77% 437 80 446% 27.0 9.8 175% 

Batch 3 post-corrosion 
Beam 1 ESG_all DIC_cmprs Method 3 6 38.2 37.0 3% 96 89 8% 9.2 11.3 -19% 
Beam 2 ESG_all DIC_cmprs Method 3 4 35.9 36.8 -2% 81 86 -6% 7.7 12.4 -38% 

Beam 3 ESG_all DIC_cmprs Method 3 6 40.8 37.7 8% 111 90 23% 10.3 12.7 -19% 
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For the pre-corrosion load tests, the estimated steel bar area is compared to the actual value, 

which is the original cross-sectional area of the uncorroded bars. The actual steel bar area was 

combined with measured beam dimensions and material properties to compute the theoretical 

N.A. location and bending moment capacity. Thus, the estimated N.A. locations and bending 

moment capacities can be compared to the theoretical values.  

Despite the fact that the conditions of the Batch 1 beams were not ideal, the estimates were quite 

accurate for the pre-corrosion load test, as seen in Table 4.21. The estimated N.A. locations were 

within 4% (less than 1.5 mm) of the theoretical values.  However, the 4% error was amplified to 

approximately 10% for the steel bar area comparison. This demonstrates that the N.A. location is 

not particularly sensitive to a change in the effective steel bar area.  Lastly, the errors associated 

with the bending moment capacity slightly decreased to around 8%. There is not much room to 

further improve the accuracy of the estimated N.A. locations, since the errors were already 

within 1.5 mm, and the beam’s dimensions and strain gauge locations were measured with a 

precision of 1 mm. Therefore, the best estimate using the surface strain-based SHM technique in 

predicting bending moment capacity for a small-scale beam like this would be approximately 8%.   

If a full-size beam was being monitored and the error in estimated N.A. location could be kept at 

1 mm, then the error in predicting the effective steel bar area would be lower.  For example, 

consider a beam with cross-sectional dimensions of 400 mm in width and 700 mm in height with 

the same material properties. Using Equations 3.5 and 3.6, the estimated steel bar area decreases 

from 1005 mm2 to 988 mm2 when the estimated N.A location decreases from 131 mm to 130 

mm below the top surface.  Thus, a 1 mm change in N.A. location only corresponds to 1.7% 

difference in steel bar area. For the small-size beam used in the experiments, a 1 mm error in 

N.A. estimation corresponded to a 8% error in the estimated steel bar area. Therefore, the 

proposed SHM technique has the potential to reach higher accuracy on full-size beams. 

In the pre-corrosion load tests for the beams in Batches 2 and 3, the errors associated with the 

estimates were much higher. The differences between the estimated and theoretical N.A. 

locations ranged from -31% to 49%. These errors were magnified to -61% to 209% for the steel 

bar area estimates and -59% to 137% for the bending moment capacity estimates. One possible 

explanation for the larger errors is that, compared to Batch 1, beams in these two batches had 

different dimensions and were much more slender. The slenderness effect can cause lateral 
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deflections and twisting in RC beams similar to what is experienced by slender steel beams 

(Revathi and Menon 2008). This could cause surface strains to be less uniform and leads to the 

high errors in the estimates. Also, a smaller amount of reinforcement was used for beams in these 

two batches, which could have further aggravated the slenderness effect (Revathi and Menon 

2008).  In addition, for the same percentage loss reinforcement due to corrosion, a smaller 

amount of reinforcement would cause less change to the N.A. location. Therefore, slenderer 

dimensions and a smaller reinforcement ratio could be the reason that the estimates for Batches 2 

and 3 were less accurate.  

For the post-corrosion load tests, the estimated steel bar areas were compared to the actual values 

determined using the gravimetric method after the steel bars had been extracted and cleaned. The 

actual steel bar areas were combined with measured beam dimensions and material properties to 

compute the theoretical N.A. locations. Thus, the estimated N.A. locations were compared to the 

theoretical values. The estimated bending moment capacity was compared to the actual failure 

load.  

The estimates for beams in Batch 2 had very high errors. The estimated failure loads differed 

from the actual failure loads by -51% to 175%. Batches 1 and 3 were relatively more accurate. 

However, Batch 1 beams failed in shear instead of in flexure, so the actual failure loads were 

much lower than the estimated values. The calculated theoretical shear capacity for Batch 1 

beams was          22.1 kN, and it does not depend on the amount of reinforcement, but is rather 

linearly proportional to the cross-sectional area of the beam. The bottom of the beams was 

cracked due to corrosion. This damage would not affect the beam’s bending moment capacity 

much but would likely significantly affect its shear capacity. Therefore, the actual failure loads 

were much smaller than the theoretical shear capacity as well.  

Even though the estimated N.A. locations for Batch 3 beams were quite close to the theoretical 

values, the estimated failure load differed significantly from the actual failure load. For example, 

for Beam 2 in Batch 3, the error in the estimated N.A. location was only -2%, but the error in the 

failure load was -38%. Since concrete is a non-homogeneous material, it is difficult to predict its 

bending moment capacity accurately. Table 4.23 compares both the estimated and the theoretical 

bending moment capacities to the actual failure loads. For Batch 3, the theoretically calculated 

values also differed from the actual values by 25% to 34%.  
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Table 4.23. Comparison of the estimated and theoretical bending moment capacities to the actual 
failure loads. 

Beam # Actual Estimated % Error Theoretical % Error 
Batch 1 post-corrosion 

Beam 1 14.8 32.8 122% 28.2 91% 
Beam 2 12.0 27.0 125% 24.5 104% 
Beam 3 17.5 42.1 141% 26.3 50% 

Batch 2 first post-corrosion 
Beam 1 12.2 5.9 -51% 7.8 -36% 
Beam 2 9.9 9.4 -6% 7.9 -20% 
Beam 3 9.8 26.3 168% 7.9 -19% 

Batch 2 second post-corrosion 
Beam 1 12.2 15.8 29% 7.9 -36% 
Beam 2 9.9 14.6 47% 7.9 -20% 
Beam 3 9.8 27.0 175% 7.8 -20% 

Batch 3 post-corrosion 
Beam 1 11.3 9.2 -19% 8.5 -25% 
Beam 2 12.4 7.7 -38% 8.2 -34% 
Beam 3 12.7 10.3 -19% 8.6 -33% 

 

4.5. Summary 

In the preliminary analysis presented in Appendix F, the estimated N.A. locations considering 

strain data from each face individually were compared to the theoretically calculated values. It 

was demonstrated that the effectiveness of the proposed SHM method was related to the surface 

smoothness of concrete, applied loads, number and locations of the gauges, and beam 

slenderness. It was found that the estimates were closer to the theoretical value when the applied 

loads were higher. This is because the beams might not be fully cracked when the applied loads 

were low. But Equation 3.4 is only valid when the beam has been fully cracked while under the 

elastic deformation zone. The preliminary analysis results also suggested that combining the 

strain data from the two side surfaces could improve the accuracy of the estimated N.A locations. 

Therefore, in this chapter, estimates were obtained using the two-face combined data and are 

presented with the corresponding coefficients of determination for the best-fit strain distributions 

and standard deviations of the estimated N.A. locations. It was found that both coefficient of 

determination and standard deviation can indicate the accuracy of the estimates. But using 

standard deviation as the screening criteria for the best result is more robust and reliable. 
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Therefore, among all the N.A. location estimates calculated for each beam at different applied 

load and using different data processing methods, the “best” estimate that was used to represent 

the effectiveness of the surface strain-based SHM technique was selected based on the lowest 

standard deviation associated with the combined two-face strain data.  

The selected estimates of N.A. location were used to estimate the effective steel bar area and 

remaining bending moment capacity, and the estimates were compared to the theoretical or 

actual values to determine the accuracy of the estimates. Batch 1 pre-corrosion load tests 

obtained the most accurate N.A. location estimates. The estimated and theoretical N.A. locations 

were within 2% of each other or less than 1 mm. However, the differences were magnified to 

approximately 6% for the bending moment capacities. The N.A. locations would be more 

sensitive to the change in the loss of reinforcement are if larger beams were used.  

In the post-corrosion load tests for Batch 1, the differences between the estimated and theoretical 

N.A. locations were between 3% and 24%, while the differences between the estimated bending 

moment capacities and the actual failure loads were between 121% and 142%. The large 

differences were because the beams all failed in shear instead of flexure. It was difficult to fit 

shear reinforcement in such a small cross-section. Therefore, for beams in Batches 2 and 3, 

slenderer beam dimensions and smaller reinforcement ratios were used.  

Beams in Batches 2 and 3 all failed in flexure, but the errors in the estimates were quite high. In 

the pre-corrosion load tests for Batch 2, the surface had wrinkles and a thicker type of adhesive 

was used to attach the electrical strain gauges. The estimated N.A. locations differed from the 

theoretical values by between -28% and 49%. Even after the surfaces were smoothed using a 

grinder and appropriate adhesive was used for the post-corrosion load tests, the errors in the 

estimated N.A. locations during the post-corrosion load tests were still as high as -11% to 82 %, 

and the estimated bending moment capacities differed from the actual failure load by -51% to 

175%. For Batch 3, the differences between the estimated and theoretical N.A. locations were 

between -31% to 16% for the pre-corrosion load tests and -2% to 8% for the post corrosion load 

tests. The estimated beam capacities differed from the actual failure loads by -19% to 38%. The 

high errors experienced by Batches 2 and 3 might be due to the slenderness effect. 

Overall, this set of lab experiments did not demonstrate that the proposed SHM method had 

adequate effectiveness for practical implementation. The large errors in the results are believed 
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to be related to the choice of using small-scale beams. First, it was difficult to fit shear 

reinforcement into such a small cross-section. Without shear reinforcement, the beams were 

prone to fail in shear instead of in flexure. As a result, the length of the beams had to be 

increased to ensure that the flexural capacity was lower than the shear capacity. However, the 

increased length increased the slenderness effect, which further affected the accuracy of the 

estimates. The cross-sectional area for Batches 2 and 3 beams did not differ much from Batch 1 

beams, however, the results obtained for Batches 2 and 3 were much worse than the results 

obtained for Batch 1. Therefore, the main reason for the increased errors was attributed to the 

increased slenderness of the beams. The small reinforcement ratios and small dimensions would 

also cause the N.A. location to be less sensitive to the loss of reinforcement due to corrosion. It is 

thought that the proposed SHM method may have the potential for better accuracy if used to 

monitor full-scale beams, which are larger in size, less slender, and laterally stable.  

Another big challenge relates to the non-homogeneous properties of the concrete, which makes it 

difficult to accurately predict a reinforced concrete beam’s flexural capacity even if all the 

required variables are known. As shown in Table 4.23, the theoretical flexural capacity 

calculated using the actual amount of reinforcement obtained after the bar had been extracted, 

cleaned, and weighed still differed from the actual failure load by -36% to -19%. Moreover, in 

real life applications, naturally corroded beam would be less uniform and subjected to other 

issues that affect the beam capacity, such as loss of bond. To fully understand the potential of the 

proposed SHM technique, it is recommended that additional experiments be conducted on larger 

beams.  
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CHAPTER 5   RELIABILITY AND ECONOMIC 
ANALYSIS 

 

5.1. Introduction 

Uncertainties are inevitable in structural design, because all the factors considered in design, 

including material properties, structural member dimensions, and the design loads are not known 

with complete certainty. For instance, the National Building Code of Canada (2015) specifies 

snow loads based on a 50-year return period, which means there is a 2% chance of these loads 

being exceeded in any one year.  Thus, it is unrealistic to design a structure that is absolutely safe; 

rather, the structures are designed with an adequate level of safety, or in other words, with an 

acceptable risk of failure.  

One way to quantify a structure’s level of safety is through the reliability index, which is defined 

as follows (Frangopol and Messervey 2011): 

𝛽𝛽 = 𝜇𝜇𝑅𝑅−𝜇𝜇𝐿𝐿

�𝜎𝜎𝑅𝑅
2+𝜎𝜎𝐿𝐿

2
                                                          （5.1） 

where 𝜇𝜇𝑅𝑅 and 𝜇𝜇𝐿𝐿 are the mean values of resistance and load effect, respectively, and 𝜎𝜎𝑅𝑅 and 𝜎𝜎𝐿𝐿 

are their corresponding standard deviations. This equation assumes that the two variables are 

normally distributed. To build a structure with an extremely high reliability index is not cost-

effective; therefore, reliability indexes between 2 and 4 are typically adopted in structural 

assessments, which correspond to probabilities of failure between 0.02275 and 0.0000316 

(Frangopol and Messervey, 2011). 

For an existing structure, assuming that the load effect and its corresponding uncertainty are 

fixed, the reliability index can be increased in two ways: increasing the structural resistance 

through repairing or replacing the deteriorated structural members or decreasing the standard 

deviation in the estimated resistance by reducing the uncertainties of the variables on which it 

depends. 
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Implementing SHM systems can improve the reliability of a structure by means of the second 

approach mentioned above, even though an SHM system does not have any effect on the current 

condition of the structure. Furthermore, when multiple SHM systems are available to implement 

on a structure, assuming all of them can provide close estimates to the actual structural condition, 

the one with the highest level of precision should yield the highest reliability index. If a certain 

reliability index is used to determine whether to take a structural member out of service, an SHM 

system with a lower level of precision will result in lower 𝛽𝛽 values that may suggest replacement 

providing that the estimated resistance doesn’t change. However, the same structural member 

monitored by an advanced and more precise SHM system may be evaluated as having an 

adequate level of safety and be approved for a longer service time. Thus, even though a more 

advanced SHM system is usually associated with a higher cost, it can generate economic benefits 

through an extended lifespan. To determine if the implementation of an advanced SHM system, 

or even the implementation of any SHM system, is worth the investment, many factors must be 

considered, including the value, life span, the deterioration rate of the target structure, as well as 

the SHM costs. 

As described in Chapter 3, Christensen et al. (2011) demonstrated how the economic benefits of 

alternative SHM systems with different uncertainties can be compared using the annual worth 

life-cycle cost (AWLCC) of a hypothetical beam. However, this approach has never been 

verified experimentally. The second objective of this research study was to demonstrate the value 

of a more precise SHM system through reliability and economic analyses using the experimental 

data. Two SHM systems with different levels of uncertainty were simulated by combining the 

data collected from different sets of monitoring equipment; a standard SHM system consisted of 

the strain monitoring equipment only, and an enhanced SHM system consisted of a cover meter 

in addition to the strain monitoring equipment. The use of strain monitoring equipment could 

identify the remaining effective reinforcing bar area due to corrosion, while the use of a cover 

meter reduced the uncertainty of the reinforcing bar location. Both of these SHM systems led to 

increased confidence in the estimated flexural resistances of the beams. 

The methodologies used for the reliability and economic analyses were described in Chapter 3. 

The results of these analyses considering the two SHM systems are discussed in Sections 5.2 and 

5.3, respectively. Lastly, a summary is provided in Section 5.4. 
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5.2. Results of Reliability Analysis 

The reliability index was calculated separately for each beam and each load test based on the 

measurements from the standard and enhanced SHM systems, and the results are summarized in 

Table 5.1. Sample calculations can be found in Appendix I. As a reminder, the load effect was 

assumed to be known with certainty for these calculations. It would be difficult to calculate a 

reliability index for the case with no monitoring, because the remaining beam capacity is 

unknown.  

The load effect, 𝜇𝜇𝐿𝐿, was determined using the factored design resistance for each batch of beams 

as a reference. The factored design load for Batch 3 Beam 3 calculated according to CSA A23.3-

14 was 3.28 kN·m (See Appendix I). As mentioned in Section 3.4.1, the load effect, 𝜇𝜇𝐿𝐿 was 

taken as the largest integer smaller than a beam’s design load. Thus, for Batch 3, 𝜇𝜇𝐿𝐿 was set to 3 

kN·m. Batches 2 and 3 had the same design configurations, thus, the same design load was 

assumed for Batch 2 beams. The design load for Batch 1 beams was around 6.84 kN·m; thus,  𝜇𝜇𝐿𝐿 

was set to 6 kN·m for Batch 1.  

The analysis for both the standard and enhanced SHM systems used the same N.A. locations, as 

selected in Chapter 4, because a cover meter will not affect the estimate of the neutral axis 

locations since they are based on measured strains. Thus, the estimated flexural resistances of the 

beams provided by these two SHM systems were identical. However, the standard deviations 

differed for the two systems. For the standard SHM system, the tolerance for the concrete cover 

thickness, specified by CSA A23.1-14 as ± 12 mm, was used to calculate a standard deviation of 
12 𝑚𝑚𝑚𝑚
1.645

= 7.3 𝑚𝑚𝑚𝑚. For the enhanced monitoring system, the ± 2 mm precision of the cover meter 

was used to calculate the standard deviation of the cover thickness as 2 𝑚𝑚𝑚𝑚
1.645

= 1.2 𝑚𝑚𝑚𝑚. Thus, the 

enhanced SHM system provided the same mean resistance estimates, but with less uncertainty 

( 𝜎𝜎𝑅𝑅  was smaller). Consequently, the enhanced SHM system consistently provided higher 

reliability indexes than the standard SHM system, as shown in Table 5.1.  

There were three beams for which negative β values were calculated for both the standard and 

enhanced SHM systems. A negative β value means the estimated capacity of the beam (𝜇𝜇𝑅𝑅) is 

lower than the load effect (𝜇𝜇𝐿𝐿). If the estimates accurately represent the actual beam condition, 

then a negative β value is an alarming alert that the structure requires immediate rehabilitation or 
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replacement. However, the negative β values obtained from this analysis are mainly due to the 

errors associated with the new SHM technique being evaluated. Since this technique did not 

achieve the desired accuracy, especially for smaller and slender beams, some of the β values for 

Batches 2 and 3 were unrealistically high or negative.  

Table 5.1. Reliability indexes of the standard and enhanced SHM systems. 

Batch 

# 
Loading Test 

Load 

Effect 

(kN*m) 

Estimated 

Flexural 

Resistance 

(kN*m) 

Standard SHM Enhanced SHM 

STDV 

(kN*m) 
𝜷𝜷 STDV 

(kN*m) 
𝜷𝜷 

Batch 

1 

Beam 1 Pre 6 8.5 1.2 2.1 0.5 5.5 
Beam 1 Post 6 9.0 1.4 2.2 0.7 4.6 
Beam 2 Pre 6 8.9 1.3 2.2 0.5 6.1 
Beam 2 Post 6 7.4 1.1 1.3 0.6 2.6 
Beam 3 Pre 6 8.9 1.3 2.2 0.5 6.0 
Beam 3 Post 6 11.6 1.9 3.0 1.1 5.3 

Batch 

2 

Beam 1 Pre 3 9.8 1.5 4.6 0.7 9.5 
Beam 1 Post 3 2.5 0.3 -1.5 0.1 -3.6 

Beam 1 Second Post 3 6.7 0.9 3.9 0.3 12.3 
Beam 2 Pre 3 2.0 0.3 -3.8 0.1 -7.2 
Beam 2 Post 3 4.0 0.5 1.8 0.2 4.8 

Beam 2 Second Post 3 6.2 0.9 3.6 0.3 11.3 
Beam 3 Pre 3 3.5 0.5 0.9 0.3 1.8 
Beam 3 Post 3 11.2 1.5 5.3 0.4 21.8 

Beam 3 Second Post 3 11.5 1.6 5.3 0.4 21.1 

Batch 

3 pre 

Beam 1 Pre 3 1.7 0.2 -5.4 0.1 -9.6 

Beam 1 Post 3 3.9 0.6 1.7 0.2 4.4 

Beam 2 Pre 3 3.3 0.5 0.6 0.3 0.9 

Beam 2 Post 3 3.3 0.5 0.6 0.2 1.5 

Beam 3 Pre 3 5.7 0.9 2.9 0.5 5.0 

Beam 3 Post 3 4.4 0.6 2.1 0.3 4.7 
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A reliability index of 2 to 4 is commonly used in structural assessment (Frangopol and 

Messervey 2011). For the purpose of this discussion, it was assumed that a beam would be 

replaced when β drops below 2.  

For Batch 1 beams, the estimates of the beams’ conditions were quite accurate in the pre-

corrosion load tests. However, in the post-corrosion load tests, the beam resistances were 

overestimated for Beams 1 and 3. Therefore, the reliability indexes for these two beams 

increased after corrosion. For Beam 2, β given by the standard monitoring system dropped from 

2.2 in the pre-corrosion load test to 1.3 in the post corrosion load test, which means it required 

replacement after corrosion. However, with the enhanced monitoring system, β dropped from 5.5 

to 2.5, which means the beam still had an adequate level of safety to remain in service. 

The estimates for Batch 2 beams had the highest error among all three batches. The beam 

capacities for Beams 2 and 3 were underestimated in the pre-corrosion load tests. Thus, the 

reliability indexes increased instead of decreasing after the corrosion. The estimates for Beam 3 

in the post-corrosion load tests were significantly overestimated, thereby resulting in an 

unrealistically high reliability index. It was difficult to draw useful conclusions when the errors 

in the estimates were so high. However, it was obvious that the enhanced monitoring system was 

able to provide higher reliability indexes. And when the reliability index was negative, the 

enhanced monitoring system also magnified the magnitude of the negative reliability index.   

For Batch 3 Beam 1, the bending moment capacity was significantly underestimated in the pre-

corrosion load test. Thus, negative β values were provided by both the standard and enhanced 

SHM systems, but the β values increased to more reasonable values in the post-corrosion load 

test. For Beam 2 in the pre-corrosion load test, its bending moment capacity was slightly 

underestimated, and it coincidentally happened to be the same as the estimate in the post-

corrosion load test. For the standard SHM system, the standard deviation of the estimated beam 

capacity did not change, so the β values provided by the standard system were the same in the 

pre-corrosion and post-corrosion load tests. For the enhanced SHM system, the standard 

deviation decreased slightly in the post-corrosion load test, so the β value increased accordingly. 

The bending moment capacities for Beam 3 were slightly overestimated in both pre-corrosion 

and post-corrosion load tests. The reliability index evaluated by the standard SHM system was 

2.9 before the corrosion process, and the value dropped to 2.1 in the post-corrosion load test, 



 

126 
 

which was approaching the critical value of β. This means the beam would require replacement 

soon if the standard SHM system were employed. However, with the enhanced SHM system, β 

was 5.0 in the pre-corrosion load test, and this value dropped to 4.7 in the post-corrosion load 

test. Based on these results, the beam could remain in service for a much longer period. The 

probability distribution diagrams for these two cases are shown in Figure 5.1. The probability of 

failure in each case corresponds to the area below the probability curves to the left of the load 

effect. The figure shows that even after the corrosion process, the enhanced monitoring system 

resulted in a lower probability of failure than that of the standard monitoring system before the 

corrosion. Therefore, the replacement of this beam can be safely delayed due to the use of a more 

precise SHM system. 

 

Figure 5.1. The probability distribution diagrams for bending moment resistance before and after 
corrosion for the standard and enhanced monitoring systems for Batch 3 Beam 3. 

Theoretically, it was expected that β would decrease for all the beams after corrosion. 

Unfortunately, this was not the case due to the high errors in the estimated moment resistance. 

Nevertheless, the enhanced monitoring system consistently provided higher β values than the 

standard monitoring system (or higher absolute values in the negative cases), in some cases 

illustrating that the enhanced monitoring system is capable of extending the service life. 
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5.3. Results of Life-cycle Cost Analysis 

The currency used for the economic study in this section is the U.S. dollar. In order to represent a 

more realistic case, it was assumed that the beams monitored in the lab experiment were the edge 

beams of the University Bridge in Saskatoon, SK. It was also assumed that the present time is 45 

years into the service life of the bridge. Without the information provided by an SHM system, a 

bridge inspector may decide to replace all the edge beams due to the uncertainty of the 

deterioration condition of the beams. The total cost of replacement, as explained in Section 3.5, 

is $ 1,227,744 in 2021. If the reliability indexes provided by the SHM systems were used to aid 

this decision and a critical β value of 2 was applied, as shown in Table 5.2, six out of nine beams 

monitored by the standard SHM system showed adequate levels of safety, and this number went 

up to eight out of nine for the enhanced system. 

Table 5.2. Decision regarding the replacement of the corroded beams based on reliability indexes. 

Batch # Load Test # 
Standard SHM Enhanced SHM 

β Decision β Decision 

Batch 1 
Beam 1 Post 2.2 Remain 4.6 Remain 
Beam 2 Post 1.3 Replace 2.6 Remain 
Beam 3 Post 3.0 Remain 5.3 Remain 

Batch 2 
Beam 1 Second Post 3.9 Remain 12.3 Remain 
Beam 2 Second Post 3.6 Remain 11.3 Remain 
Beam 3 Second Post 5.3 Remain 21.1 Remain 

Batch 3 

Beam 1 Post 1.7 Replace 4.4 Remain 

Beam 2 Post 0.6 Replace 1.5 Replace 

Beam 3 Post 2.1 Remain 4.7 Remain 

 

The value of SHM systems mainly come from the extended life spans of the monitored structures. 

The beams that demonstrated adequate levels of safety would remain in service and be monitored 

continuously until their reliability indexes drop below the critical value. The length of the 

additional service life depends on the current beam capacity, the corrosion rate and the 

uncertainty associated with the SHM measurements. A very conservative estimate of the 

remaining service life can be obtained using Equations 3.13 to 3.15 assuming the highest rate of 
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corrosion (10 µA/cm2) under natural environment. The results are summarized in Table 5.3, with 

sample calculations provided in Appendix J. 

Table 5.3. Estimated remaining service life, in years, provided by the standard and enhanced 
SHM systems. 

Beam ID Standard SHM System Enhanced SHM System 

Batch 1 Beam 1 1.2 9.4 
Batch 1 Beam 2 0 1.3 
Batch 1 Beam 3 11.9 23.2 
Batch 2 Beam 1 12.9 23.7 
Batch 2 Beam 2 9.4 19.8 
Batch 2 Beam 3 53.2 88.8 
Batch 3 Beam 1 0 3.7 
Batch 3 Beam 2 0 0 
Batch 3 Beam 3 1.2 5.7 

 

The economic benefits of the extended service life can be quantified by AWLCC, which breaks 

down the total life cycle cost of an asset into equal annualized costs considering the life span and 

discount rate. Without using any SHM system, the calculation of AWLCC only considers the 

replacement cost, which is  $ 1,227,744 in present value, over a 45-year life span. Assuming a 

discount rate of 5%, the AWLCC was calculated to be $69,075 per year using Equation 3.15. If a 

monitoring system is implemented, there can be two scenarios depending on whether the 

reliability index exceeds the critical threshold. If the reliability index is less than 2, the beam will 

be replaced immediately, at its originally schedule time, and the AWLCC will be even higher 

than if no SHM system had been used due to the additional cost of the monitoring system. On the 

other hand, if the reliability index is higher than 2, the additional service life might reduce the 

AWLCC of the beams and thus, the cost of the SHM system can be justified economically. For 

the standard SHM system, the total cost of monitoring was estimated assuming four electrical 

strain gauges were placed every two meters, and that the price of the gauge was the same as 

those used in the lab experiment, which was approximately $10 per gauge. The University 

Bridge is 378 metres long (City of Saskatoon 2020), which means the total length of the edge 

beams on both sides is 756 m.  Thus, the additional costs of the sensors are  $10 × 4 × 756 m
2 𝑚𝑚

=



 

129 
 

$15,120. A 32-analog input DAQ module costs $1155 (OMB-DAQ-2416, Omega, Canada). 

Thus, the costs of the DAQ systems associated with the strain gauges are $1155 ×
4×756 m

2 𝑚𝑚
32

=

$54,574. The total costs of the standard SHM system should be the sum of the costs for the 

gauges and the DAQ system, which is $69,694. A $6,000 cover meter is added to the enhanced 

monitoring system. Thus, the total costs for the implementation of the enhanced monitoring 

system are $75,694 up front. This does not include labour costs, which are omitted for this 

illustration. 

A cashflow diagram is provided in Figure 5.2 using Batch 3 Beam 3 as an example. With the 

help of the standard or the enhanced monitoring system, the lifespan of these edge beams could 

be extended to 46.2 and 50.7 years, respectively. The additional service life was estimated using 

Faraday’s Law, as described in Section 3.5, assuming a very aggressive corrosion rate. Since the 

replacement cost would occur in the future, the first step in calculating the AWLCC was to bring 

the future cost to its present value, given the 5% discount rate. Then, the present value of the 

replacement cost was combined with the SHM expense to calculate the AWLCC based on the 

estimated life span of 46.2 and 50.7 years. The AWLCC for Batch 3 Beam 3 monitored by the 

standard and enhanced monitoring system, was $68,526/year and $54,834/year, respectively. 

Without using any SHM systems, the AWLCC is $69,075/year. This means that the standard 

SHM system saved $549/year, while the enhanced SHM system saved $14,241/year. Sample 

calculations are provided in Appendix J.   

The AWLCC for all the beams tested in the post-corrosion load tests are listed in Table 5.4. The 

predicted condition of the beams varied widely, ranging from requiring immediate replacement, 

which would result in a higher AWLCC with the implementation of SHM systems, to extending 

the life span up to 88.8 years, which would drastically reduce the AWLCC. In the end, the 

average savings provided by the standard monitoring system for all nine beams tested in lab was 

$14,803/year, while the savings associated with the enhanced monitoring system was 

$26,342/year. 
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Figure 5.2. Cashflow for different monitoring scenarios for Batch 3 Beam 3. 

The AWLCC analysis performed in this section was conducted for the purpose of demonstrating 

the savings provided by the implementation of SHM systems and comparing alternative 

monitoring systems. It is recognized, however, that the AWLCC values are not accurate, since 

the bending moment capacities estimated by the strain based SHM technique had high errors, 

especially for the slender and less reinforced beams in Batch 2 and Batch 3. The results of this 

economic analysis showed that the implementation of SHM systems resulted in reducing the 

AWLCC, and a more sophisticated system resulted in greater savings. However, the calculated 

savings would be different if any of the variables changed, including the total life cycle costs, the 

actual conditions of the beams, the deterioration rate, the discount rate, and the SHM costs. This 

research study, nevertheless, provided an example of how the economic value of alternative 

SHM systems can be evaluated. 
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Table 5.4. AWLCC for all beams tested in the post-corrosion load tests based on the information 

given by the standard and enhanced monitoring systems. 

Beam ID 
Standard SHM System  Enhanced SHM System 

Additional Service 

Life (year) 
AWLCC 

($/year) 
 Additional Service 

Life (year) 
AWLCC 

($/year) 

Batch 1 Beam 1 1.2 68440  9.4 45708 

Batch 1 Beam 2 0 72996  1.3 68687 

Batch 1 Beam 3 11.9 40322  23.2 24481 

Batch 2 Beam 1 12.9 38572  23.7 23935 

Batch 2 Beam 2 9.4 45464  19.8 28374 

Batch 2 Beam 3 53.2 8136  88.8 4599 

Batch 3 Beam 1 0 72996  3.7 60644 

Batch 3 Beam 2 0 72996  0 73334 

Batch 3 Beam 3 1.2 68526  5.7 54834 

  Average  54272    42733 

 Savings 14803   26342 

 

5.4. Summary 

This chapter described the reliability and economic analyses for the beams monitored in the lab 

experiment. The results showed that the reliability index of these beams can be significantly 

improved by the additional precision possessed by an enhanced monitoring system. A higher 

reliability index reflects greater confidence in the safety of the beam; thus, the beam would be 

approved for a longer service life. The extended service life can decrease the beam’s AWLCC in 

two ways: delayed replacement cost (a present cost becomes a future cost), and an increased 

number of compounding periods. Assuming that the beams monitored in the lab experiment 

represented the edge beams of the University Bridge, the savings associated with the standard 

and enhanced monitoring systems were calculated to be $14,803/year and $26,342/year, 

respectively. Thus, the value of implementing a more sophisticated SHM system was 

demonstrated through improved reliability indexes and decreased AWLCCs for the beams. 
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CHAPTER 6   CONCLUSION AND 
RECOMMENDATIONS 

 

6.1. Conclusions 

The objectives of this research study were to experimentally evaluate the effectiveness of the 

surface strain based SHM method proposed by Christensen et al. (2011) and to demonstrate the 

value of implementing SHM systems with different levels of uncertainty through changes in the 

reliability index and the AWLCC of the monitored structure. The surface strain-based method, if 

proven to be effective, would be a Level 4 SHM technique, while most of the other SHM 

technologies for monitoring reinforced concrete beams are Level 2. It estimates the effective 

reinforcing bar area and remaining capacity of a corroded concrete beam through measuring the 

strain distribution on the side surfaces of the beam. The development of powerful techniques like 

this and the quantification of its economic benefits should encourage the field implementation of 

SHM systems.  

The results of the experimental tests on nine small-scale corroded concrete beams showed that 

the accuracy of the proposed SHM technique was not ideal. The predicted flexural capacity 

differed from the actual failure load by -51% to 175%. The main reason for the large errors in the 

results is believed to be related to the use of small-scale beams. The surface strain distribution 

was greatly affected by the slenderness of the beams. Beams in the first batch were slightly wider 

and shorter than those in the second and third batches and used a higher amount of reinforcement; 

for these beams, the estimates of the N.A. locations were within 1 mm of the theoretical values. 

The small size of the beams also meant that a change in N.A. location was not particularly 

sensitive to a loss in the steel bar area due to corrosion. Although the errors of the estimated N.A. 

locations for Batch 1 beams in the pre-corrosion load tests were all within 1 mm, these errors 

were amplified to 6% for the estimated effective steel bar areas and 5% for the estimated flexural 

capacities.  
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If the error in estimated N.A. location could be kept at 1 mm for monitoring a full-size beam, 

then a 1 mm change in N.A. location only corresponds to about 1.7% difference in steel bar area. 

Therefore, the proposed SHM technique has the potential to reach higher levels of accuracy on 

full-size beams. 

In addition to the issues associated with the use of the small beam sizes, there were other sources 

of error that could not be ignored. Because concrete is non-homogeneous in nature, it was 

difficult to make an accurate prediction of the capacity of a concrete beam. The theoretical 

flexural capacity calculated using the actual measured reinforcing bar area differed from the 

actual value by -36% to -19%. Moreover, in real life conditions, corrosion causes a decrease in a 

beam’s capacity not only through reduced effective reinforcing bar area, but also through 

debonding between the steel bar and the concrete. In this set of lab experiments, the effect of loss 

of bond was eliminated by controlling the corrosion location and using a four-point loading set 

up. The use of the impressed current method for the accelerated corrosion also caused uniform 

corrosion around the targeted section of the steel bar, which is different from the conditions of 

beams that corrode under natural conditions. Therefore, even if the proposed SHM technique can 

estimate the effective steel bar area accurately, it would still be a challenge to estimate the beam 

capacity due to corrosion in real life.  

Although the accuracy of the experimental results on these small-size beams was not satisfactory, 

many useful lessons were learned to improve the accuracy of the proposed SHM method: 

1. The quality of the strain data is critical to the accuracy of estimated properties. To obtain 

reliable strain data, ideally the surface should be smooth, and the strain gauge should be 

placed in the compression zone, in the same plane and some distance away from the N.A. 

location. 

2. The proposed SHM technique works better on beams that are less slender and have 

higher reinforcement ratios. 

3. Within a beam’s elastic deformation range, the higher the applied load, the higher the 

accuracy of the estimates.  

4. Combining the data from two side surfaces improved the accuracy of the estimates. 

5. It was found that both coefficient of determination of the best-fit strain distribution and 

standard deviation of the estimated N.A. locations can be used to estimate the reliability 
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of the estimated properties. The most accurate estimate is generally associated with a 

high coefficient of determination and low standard deviation values. However, using 

standard deviation as the screening criterion for the best estimate is more robust, as 

coefficient of determination can not be used as the screening criteria if only two strain 

gauges are used.  

The experimental results were also used to demonstrate the value of SHM systems through 

reliability and economic analyses. Two SHM systems with different levels of uncertainty were 

formed and compared to each other. The standard SHM system considered only the strain data, 

while the enhanced SHM system considered both the strain data and data from a cover meter. It 

was demonstrated that the enhanced SHM system was able to increase the reliability index, and 

consequently, resulted in more savings in the annual worth of the life cycle costs (AWLCC) of 

the monitored structure. The economic analysis was conducted assuming the beams monitored in 

the lab were the edge beams of the University Bridge in Saskatoon, SK. Considering a total 

replacement cost of $1,227,744 and a discount rate of 5%, the standard SHM system provided an 

estimated saving of $14,803/year even when the additional costs of the SHM equipment were 

included. The enhanced SHM system resulted in a saving of $26,342/year including the 

additional cost of the cover meter. 

The implementation of an SHM system does not always result in economic savings. If the 

condition of a structure is found to be lower than the required level of safety, the owner would 

incur the same replacement costs plus the cost of the SHM system. Nevertheless, the 

implementation of an SHM system can ensure the safety of the structure and aid the owner or 

engineer in the decision making regarding the maintenance and rehabilitation schedules.  

6.2. Recommendations for Future Work 

The following recommendations are made for further evaluating the effectiveness of the surface 

strain-based SHM technique: 

1. Current experimental results demonstrated that the proposed SHM technique did not 

perform well on small-size beams; however, it has the potential to perform better on full-

size beams. Therefore, it is recommended that laboratory experiments be conducted on 

full-size beams. 
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2. The corrosion that occurred in this set of lab experiments was well-controlled. The 

impact of loss of bond was eliminated and the corrosion occurred uniformly around the 

targeted section of the steel bars. Before field implementation, the proposed SHM 

technique should be tested on naturally corroded beams considering the debonding effect 

and localized pitting corrosion.  

3. It is recommended that the SHM technique be tested using fibre optic sensors. The fibre 

optic sensors were not cost effective for the small beams used in this lab experiment; 

however, they would be more suitable for large scale structures. The multiplexing 

capability of the fibre optic sensors has the potential to convert the technique from a local 

SHM technique to a global one.  

Lastly, more economic studies related to SHM systems using the framework demonstrated in this 

research study are recommended. To encourage the field implementation of SHM techniques, it 

is important to demonstrate the economic value associated with the implementation of SHM 

systems to structural owners.  
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APPENDIX A Companion Specimen Test Results 
 

As the steel bars used in the concrete beams were not from the same heat, their ultimate tensile 

strengths were determined through tensile tests conducted in the laboratory. Each steel bar was 

cut into three short sections (30 to 40 cm long）to be used as tensile test samples. The Instron 

600DX UTM was used along with a pre-programmed test procedure in conformance with the 

ASTM A1034 (ASTM 2015). 

The rest of the No.15 bar was cut into three pieces and used as reinforcement for Batch 1 beams. 

However, since Batch 2 and 3 beams were longer, each steel bar could only be used for two 

beams. The beam number that each steel bar was put into is listed in Table A.1, together with the 

mean and standard deviation of their tensile strengths.   

The slump test results and the cast date of each batch of concrete are presented in Table A.2.  

The compressive testing results for the concrete cylinders are summarized in Table. A.3. The 

strengths for Batch 2 and Batch 3 were close to expected, however, for Batch 1 the concrete 

cylinders demonstrated high compressive strengths (with a mean of 55.9 MPa) in the pre-

corrosion loading tests. The post-corrosion loading test was performed 110-day following the 

beam casting, and the compressive strength had dropped to 45.1 MPa. Generally concrete gains 

strength as it cures, and it is very rare that the concrete strength drops over time. It was found 

that the compressive strength of concrete may drop 15% to 17% for hot weather concreting 

(Mouret et al. 1997). However, the beams used in this experiment were cured in a humidity room 

at room temperature. Thus, it is unclear why the concrete compressive strength had dropped with 

time. 

The outlier is defined as any individual specimen having more than 15% higher or lower than the 

average of the set. Note an outlier was identified during the pre-corrosion compressive cylinder 

testing for Batch 2.  
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Table A.1. Steel Bar Tensile Test Results. 

Steel Bar # Sample # 
Yield Strength 

(Mpa) 

Ultimate Tensile 

Strength (Mpa) 
Beam # 

No.15 bar 

1 481.8 606.4 

Batch 1, Beam 1 

Batch 1, Beam 2 

Batch 1, Beam 3 

2 481.4 607.7 

3 483.5 608.1 

Mean 482.3 607.4 

Standard Deviation 1.1 0.9 

No.10 bar-1 

1 445.6 668.3 

Batch 2, Beam 1 

Batch 2, Beam 2 

2 443.8 666.3 

3 445.4 666.1 

Mean 444.9 666.9 

Standard Deviation 1.0 1.2 

No. 10 bar-2 

1 448.5 667.4 

Batch 2, Beam 3 

Batch 3, Beam 1 

2 447.3 660.7 

3 450.0 666.3 

Mean 448.6 664.8 

Standard Deviation 1.3 3.6 

No.10 bar-3 

1 435.2 646.9 

Batch 3, Beam 2  

Batch 3, Beam 3 

2 439.0 650.3 

3 437.7 650.6 

Mean 437.3 649.3 

Standard Deviation 1.9 2 

 

Table A.2. Concrete Slump Test Results on the Day of Casting. 

Batch # Cast Date Slump (mm) 

Batch 1 July 26, 2018 46 

Batch 2 December 5, 2018 78 

Batch 3 December 21, 2018 76 
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Table A.3. Concrete Compressive Testing Result. 

Phase 
Cylinder 

# 
Test Date 

Age 

(day) 

Strength 

(MPa) 
Modulus (GPa) 

Batch 1 

Pre-

corrosion 

1 August 23, 2018 28 58.2 31.6 

2 August 23, 2018 28 54.1 31.0 

3 August 23, 2018 28 56.4 33.0 

4 August 23, 2018 28 58.1 34.5 

5 August 23, 2018 28 53.7 32.9 

6 August 24, 2018 29 54.6 34.7 

                                 Mean 55.9 32.9 

Standard Deviation 2.0 1.5 

Batch 1 

Post-

corrosion 

1 November 13, 2018 110 36.7 30.0 

2 November 13, 2018 110 39.4 34.3 

3 November 13, 2018 110 47.5 33.7 

4 November 13, 2018 110 57.0 33.0 

5 November 14, 2018 111 44.9 34.0 

6 November 14, 2018 111 45.0 -* 

                                 Mean 45.1 33.0 

Standard Deviation 7.1 1.7 

Batch 2 

Pre-

corrosion 

1 January 2, 2019 28 26.2 (outlier) 24.8 

2 January 2, 2019 28 36.2 24.7 

3 January 3, 2019 29 38.3 25.9 

4 January 3, 2019 29 36.6 24.6 

5 January 3, 2019 29 36.5 24.7 

6 January 3, 2019 29 36.8 26.0 

                                 Mean 36.9 25.1 

Standard Deviation 0.8 0.7 

* Data missing due to dial gauge malfunctioning. 
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Table A.3. Continued. 

Phase Cylinder # Test Date Age (day) Strength (MPa) Modulus (GPa) 

Batch 2 Second 

Post-corrosion 

1 May 14, 2019 160 41.0 23.1 

2 May 14, 2019 160 41.4 21.9 

3 May 14, 2019 160 41.2 22.9 

4 May 14, 2019 160 40.5 21.7 

5 May 14, 2019 160 43.5 23.3 

6 May 14, 2019 160 40.4 22.9 

Mean 41.3 22.7 

Standard Deviation 1.1 0.7 

Batch 3 Pre-

corrosion 

1 January 18, 2019 28 37.8 21.9 

2 January 18, 2019 28 38.9 24.7 

3 January 18, 2019 28 39.7 22.3 

4 January 18, 2019 28 37.9 23.4 

5 January 18, 2019 28 39.1 22.4 

6 January 18, 2019 28 36.6 22.1 

Mean 38.3 22.8 

Standard Deviation 1.1 1.1 

Batch 3 Post-

corrosion 

1 January 26, 2019 36 37.2 21.9 

2 January 26, 2019 36 38.8 23.0 

3 January 26, 2019 36 39.1 23.4 

4 January 26, 2019 36 40.6 23.4 

5 January 26, 2019 36 39.7 22.9 

6 January 26, 2019 36 39.6 24.0 

Mean 39.2 23.1 

Standard Deviation 1.1 0.7 
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APPENDIX B   Strain Gauge Locations 
 

The detailed electrical strain gauge locations measured from the top surface of the beams are 

listed in the Table B.1. to Table B.5.   

Table B.1. Batch 1 Pre-corrosion Strain-gauge Location (mm). 

  Gauge 1 Gauge 2 Gauge 3 Gauge 4 

Beam 1 61 (tension zone) 31 15 0 

Beam 2 60 (tension zone) 30 15 0 

Beam 3 131 (tension zone)  117 (tension zone) 25 12 

 

Table B.2. Batch 1 Post-corrosion Strain-gauge Location (mm). 

  Gauge 1 Gauge 2 Gauge 3 Gauge 4 

Beam 1 31 23 (new) 15 0 (new) 

Beam 2 22 (new) 0 （new） 15  0  

Beam 3 131 (broken) 18 (new) 25 (broken) 0 (new) 

 

Table B.3. Batch 2 Pre- and Post-corrosion Strain-gauge Location (mm). 

 Gauge 1 Gauge 2 Gauge 3 Gauge 4 

Beam 1 30 20 10 (broken) 0 

Beam 2 30 20 10 0 (broken) 

Beam 3 30 20 10 (broken) 0 
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Table B.4. Batch 2 Second Post-corrosion Strain-gauge Location (mm). 

  Gauge 1 Gauge 2 Gauge 3 Gauge 4 Gauge 5 Gauge 6 Gauge 7 Gauge 8 

Beam 1 30 20 10 0 30 20 10 0 

Beam 2 30 20 10 0 30 20 10 0 

Beam 3 30 20 10 0 30 20 10 0 

 

Table B.5. Batch 3 Pre- and Post-corrosion Strain-gauge Location (mm). 

  Gauge 1 Gauge 2 Gauge 3 Gauge 4 

Beam 1 30 20 10 0 

Beam 2 30 20 10 0 

Beam 3 30 20 10 0 
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APPENDIX C   Sample Calculation of Corrosion 
Rate Using Faraday’s Law 

 

Faraday’s law was used to estimate the total amount of current required to for the corrosion 

process. The following is a sample calculation demonstrating this p1rocess, using the preliminary 

corrosion test as an example. 
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APPENDIX D  Sample Calculation for the 
Theoretically Calculated Values 

 

The following sample calculations took Batch 3 Beam 3 in the pre-corrosion load test as example, 

showing how the cracking load, theoretical neutral axis location, elastic limits, and beam 

capacity are calculated. 

The cracking load and elastic limits were used to determine the suitable loading range during the 

load test. The cracking load was calculated based on CSA A23.3-14 (2014). Two elastic limits 

were calculated for each beam. The more conservative, or lower, estimate assumed that the 

elastic region ends when the most extreme concrete fiber at the top of the beam reaches 45% of 

its ultimate compressive strength. However, the beams in Batches 2 and 3 were designed for 

lower capacities, and consequently the gaps between the cracking load and this elastic limit were 

very narrow. Additionally, it was found that a higher applied load could mitigate the magnitude 

of error. Therefore, a more liberal (higher) elastic limit was estimated using steel yielding as the 

criterion.  

The theoretical neutral axis location and beam capacity were compared to the estimates provided 

by the SHM systems, and thus the effectiveness of the proposed SHM technique can be 

evaluated.  
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APPENDIX E   Sample Calculation of Using Best Fit 

Function to Find Neutral Axis Locations 
 

A sample calculation of using the least square method to find the best fit function of the gauges’ 

location and readings is provided in this section. The x-intercept in the best fit function is the 

neutral axis location measured from the top surface of the beam.   

The data used for this sample calculation is from the Batch 3 pre-corrosion loading test for Beam 

3 Cycle 1 at 60s. The load being applied at this moment was 3kN. The results obtained at the end 

of this sample calculation are slightly different than those presented in Chapter 4, because the 

sample calculation found the neutral axis location at an instant, whereas tables in Chapter 4 list 

averaged neutral axis locations over the period of time while a certain load was maintained.   
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APPENDIX F  Procedure Optimization based on 

N.A. Locations Estimated using data from Each 

Individual Face 

F.1. Introduction 

This appendix presents and discusses the results of preliminary analyses which were conducted 

during the time gaps between the load tests. The preliminary analyses consisted of estimating the 

N.A. locations using the data from each face individually. The main purpose of conducting these 

analyses was to identify the optimum gauge locations and the level of the load that can provide 

the most reliable data and most accurate estimates.  

Assume the strain distribution of the concrete is perfectly linear with the distance away from the 

N.A. and the strains can be measured accurately, the location of the gauge should not affect the 

accuracy of the estimates. However, some places can potentially be problematic to the reliability 

of the obtained strain data. For example, cracks might occur in the tension zone, and the extreme 

tensile strains at the cracks might damage the integrity of the gauges. If all the gauges were to be 

placed in the compression zone, due to the limitation of space, gauges might be placed on the top 

of the beams, which is not in the same plane with the other gauges, or close to the N.A. location, 

which might have very small readings.  To verity these assumptions, N.A. locations were 

estimated using data with and without gauges in the problematic locations, and the differences of 

the results with the theoretical N.A. locations were calculated and compared. 

Like the location of the gauges, the level of the applied load to the beams, in theory, should not 

have an effect at the accuracy of the estimates. After the beam has been cracked, the N.A. should 

remain at the same location throughout the elastic deformations state of the beams. To verify this, 

the estimated N.A. locations were computed using strain data obtained at different applied load, 

and the accuracy of the results were compared.  
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In Section F.3, the conditions of the beams at each load test and the composition of the data 

groups to be compared are explained before the estimated N.A. locations using different data 

groups are presented and compared to the theoretical values. Besides investigating the effect of 

the gauge locations and the level of the applied load, the consistency of the estimates from the 

two sides and any other abnormal phenomenon observed are also discussed. Lastly, the outcomes 

of the preliminary analysis for each load test were summarized in Section F.3., along with 

recommendations to data collection and processing procedures.  

F.2. Neutral Axis Analysis by Each Load Test 

F.2.1. Batch 1 Pre-corrosion Load Test 
Prior to corrosion, Batch 1 beams had a cracking load of 4.9 kN, and a conservative elastic limit 

of 14.8 kN. During this load test, each beam was gradually loaded until 8 kN repeatedly. This 

batch of beams had honeycombing in the concrete, which may have affected the quality of the 

bond between the concrete and the electrical strain gauges.  The surfaces of this batch of beams 

also had pieces of wooden form adhered to them due to the use of adhesive at the cold joints. 

Therefore, the suitable area for the attachment of gauges was reduced.  

Only electrical strain gauges were used for monitoring, and there were four gauges attached to 

each beam. Both Beam 1 and Beam 2 had three gauges attached to the side surfaces, one in the 

tension zone (G1), two in the compression zone (G2 and G3), and the fourth on the top of the 

beams (G4). Beam 3 had all gauges attached on the side surface, two in the tension zone (G1 and 

G2) and two in the compression zone (G3 and G4). The gauges in the tension zone and gauges 

on top of the beams were suspected to have negative effects to the estimated results. To 

investigate the impact of locating the gauges in these two locations, N.A. locations were 

estimated using all strain data (ESG_all), data excluding the top gauges (ESG_notop), data 

excluding the ones in the tension zones (ESG_cmprs), and data excluding the top and tension 

gauges (ESG_G2&G3). The estimated N.A. locations using these data groups for Batch 1 pre-

corrosion load test are summarized in Table F.1. The theoretical N.A. locations for Beams 1 to 3 

were 42.9 mm, 42.3 mm, and 42.3 mm, respectively. The estimates are compared to the 

theoretical values and illustrated in Figures F.1 to F.3. Since Beam 3 did not have any gauge 

placed on top of it, the cells for “ESG_all” and “ESG_cmprs” are left empty as they are 

equivalent to “ESG_notop” and “ESG_G2&G3”, respectively. Also, for Beam 3, it was actually 
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G1 and G2 located in the less questionable locations (in the compression zone and on the side 

surface), but the name “ESG_G2&G3” generally represents gauges in these locations.  

Table F.1. Batch 1 pre-corrosion load test N.A. locations, measured from top surface in mm. 

Beam # Load Cycle # ESG_all ESG_notop ESG_cmprs ESG_G2&G3 

Beam 1 

5 kN 
Cycle 1 55.6 57.1 44.8 45.4 
Cycle 2 51.2 52.6 39.5 41.8 

6 kN 
Cycle 1 55.6 57.1 44.6 45.2 
Cycle 2 51.5 52.9 39.9 42.2 

7 kN 
Cycle 1 55.1 56.8 43.7 44.5 
Cycle 2 51.7 53.1 40.0 42.4 

8 kN 
Cycle 1 54.8 56.4 43.0 44.0 
Cycle 2 51.8 53.4 42.5 39.8 

Beam 2 

5 kN 
Cycle 1 54.6 57.6 41.7 49.3 
Cycle 2 57.3 60.8 43.9 51.2 
Cycle 3 56.1 59.0 44.3 51.6 

6 kN 
Cycle 1 55.3 58.6 41.9 49.4 
Cycle 2 57.0 60.4 43.9 50.8 
Cycle 3 55.9 58.7 44.1 50.9 

7 kN 
Cycle 1 56.1 59.5 42.9 49.9 
Cycle 2 56.7 59.9 43.9 50.3 
Cycle 3 55.8 58.5 44.1 50.3 

8 kN 
Cycle 1 56.3 59.6 43.2 49.9 
Cycle 2 56.9 60.0 44.0 50.2 
Cycle 3 55.8 58.5 44.1 50.1 

Beam 3 

5 kN 
Cycle 1 N/A 87.3 N/A 47.9 
Cycle 2 N/A 58.8 N/A 48.1 
Cycle 3 N/A 53.7 N/A 46.2 

6 kN 
Cycle 1 N/A 88.9 N/A 46.3 
Cycle 2 N/A 58.4 N/A 47.1 
Cycle 3 N/A 53.6 N/A 45.3 

7 kN 
Cycle 1 N/A 86.8 N/A 45.3 
Cycle 2 N/A 57.2 N/A 46.0 
Cycle 3 N/A 53.1 N/A 44.4 

8 kN 
Cycle 1 N/A 62.0 N/A 42.9 
Cycle 2 N/A 53.0 N/A 44.4 
Cycle 3 N/A 51.0 N/A 43.3 
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Figure F.1. Comparison of estimated N.A. locations to the theoretical value for Batch 1 Beam 1 
pre-corrosion load test. 

 

Figure F.2. Comparison of estimated N.A. locations to the theoretical value for Batch 1 Beam 2 
pre-corrosion load test. 
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Figure F.3. Comparison of estimated N.A. locations to the theoretical value for Batch 1 Beam 3 
pre-corrosion load test. 

The results of Batch 1 pre-corrosion load test can be used to analyze the quality of the data from 
the tension zone and from the top of the beam, as well as the effect of the level of the applied 
load.  

Effect of the Location of the Gauges 

As shown in Figures F.1. to F.3, estimates obtained using the data groups “ESG_all” and 

“ESG_notop” were consistently the furthest away from the theoretical N.A. locations. These two 

data groups both contained gauges in the tension zone. Therefore, it proved that strain data from 

the tension zone had a negative impact to the accuracy of the results, and strain gauges should 

not be placed in the tension zone in the future. Excluding the gauges on top of the beams, 

however, did not show a clear advantage. Estimates using “ESG_comprs” and “ESG_G2&G3” 

were equally close to the theoretical value for Beam 1. For Beam 2, excluding the gauges on top 

of the beams led to bigger errors. This might be an indication that Batch 1 beams did not have 

severe asymmetrical conditions, thus having a top gauge which was not in the same plane as the 

other gauges did not harm the results. This also suggested that having more strain data would 

increase the accuracy in estimation if the data were reliable.  

Effect of the Level of the Applied Load 

Increasing the applied load had little impact on the results for this batch of beams, as predicted 

by theory. However, in a few cases such as “ESG_cmprs” for Beam 1 and “ESG_notop” for 
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Beam 3, the accuracy of the estimates increased with higher loads. Also, it was observed that for 

Beam 1 “ESG_all” and Beam 2 “ESG_all” and “ESG_notop”, even though the accuracy of the 

estimates did not increase, the variances among different cycles were reduced. Based on this 

batch of data, higher loads had the potential to increase the accuracy and reduce the variance of 

the results, but the evidence were not obvious.   

F.2.2. Batch 1 Post-corrosion Load Test 

After corrosion, the cracking load and the elastic limit of batch 1 beams changed to around 4.3 

kN and 11 kN, respectively. Due to concerns about the corroded beams’ conditions, these beams 

were only loaded to a maximum of 6 kN repeatedly. In addition to the electrical strain gauges, 

the DIC 3D system was implemented for monitoring the strain changes on the opposite side of 

the beams. 

Most of the electrical strain gauges attached for the pre-corrosion load tests were broken and 

completely disconnected from the reader unit due to corroded wires. A few gauges in the 

compression zone were still functioning, however, their integrity was questioned. Two new 

gauges were attached to the compressive zone of each beam to ensure the minimum required 

number of gauges was met. Beam 2 had one new gauge placed on the top of the beam and beside 

an old one.  However, these two gauges provided different readings under the same load. One 

possible reason is due to the asymmetrical conditions, so the strains were indeed different; the 

other possible reason is that the old gauge was not functioning well. Therefore, comparisons 

were made between estimated N.A. locations using all ESG data (ESG_all), the data from new 

ESGs (ESG_new), as well as all DIC data (DIC_all), and the DIC data in the compression zone 

only (DIC_cmprs). The results are summarized in Table F.2. Again, the estimates are compared 

to the theoretical values and illustrated in Figures F.4 to F.6. 
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Table F.2. Batch 1 post-corrosion load test N.A. locations, measured from top surface in mm. 

Beam # Load Cycle # DIC_all DIC_cmprs ESG_all ESG_new 

Beam 1 

5 kN 

Cycle 1 68.4 61.9 41.0 41.0 
Cycle 2 78.4 49.9 38.7 37.8 
Cycle 3 69.7 48.0 38.7 37.9 
Cycle 4 52.4 40.6 39.1 38.2 
Cycle 5 76.6 51.1 39.9 39.0 
Cycle 6 64.3 46.4 39.4 38.3 

6 kN 

Cycle 1 69.5 61.3 41.0 40.7 
Cycle 2 79.0 49.7 38.8 37.9 
Cycle 3 69.2 48.6 38.9 38.0 
Cycle 4 52.9 41.4 39.3 38.3 
Cycle 5 73.9 50.7 39.9 39.1 
Cycle 6 65.5 -26.0 39.6 38.4 

Beam 2 

5 kN 

Cycle 1 78.6 -296.9 31.5 34.4 
Cycle 2 70.9 49.2 30.1 32.8 
Cycle 3 73.3 49.0 31.5 33.9 
Cycle 4 68.6 46.4 29.6 34.1 
Cycle 5 69.4 49.1 30.1 34.4 

6 kN 

Cycle 1 78.6 223.9 31.7 34.5 
Cycle 2 70.8 49.3 30.8 33.4 
Cycle 3 72.6 49.2 31.9 34.3 
Cycle 4 71.1 46.8 30.0 34.4 
Cycle 5 68.0 53.3 30.5 34.7 

Beam 3 

5 kN 
Cycle 1 58.2 57.7 N/A 48.9 
Cycle 2 63.3 48.4 N/A 53.1 
Cycle 3 58.7 58.9 N/A 53.2 

6 kN 
Cycle 1 58.3 55.1 N/A 48.8 
Cycle 2 64.5 48.5 N/A 53.2 
Cycle 3 58.4 55.9 N/A 53.5 
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Figure F.4. Comparison of estimated N.A. locations to the theoretical value for Batch 1 Beam 1 
post-corrosion load test. 

 

Figure F.5. Comparison of estimated N.A. locations to the theoretical value for Batch 1 Beam 2 
post-corrosion load test. 
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Figure F.6. Comparison of estimated N.A. locations to the theoretical value for Batch 1 Beam 3 
post-corrosion load test. 

For the Batch 1 post-corrosion load tests, all the electrical strains gauges attached before 

corrosion in the tension zone were lost, and there were not enough gauges to compare the effect 

of the top gauges. So, the ESG results were mainly used to investigate the reliability of the old 

gauges by comparing the accuracy of the estimates of “ESG_all” and “ESG_new”. The effect of 

the tension strains was continued to be investigated by the DIC data. The results estimated based 

on the DIC data were compared to those based on the ESG data in general. Lastly, since these 

beams were only loaded to 6 kN, the influence of the applied load on the accuracy of the 

estimates was not evident. 

Integrity of the Old Gauges 

The reliability of the gauges attached prior to corrosion was determined by comparing the 

accuracy of the estimates using “ESG_all” and “ESG_new”. For Beam 1, the benefits of using 

only data from the new electrical strain gauges are not distinct. For Beam 2, “ESG_new” 

provided slightly more accurate results than “ESG_all”. For Beam 3, the comparison was not 

available, since all the old gauges attached on this beam before corrosion were lost. In general, 

the integrity of the old gauges seemed reliable as long as they stayed connected.  
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Reliability of the DIC Data 

On the DIC side, using data in the compression zone only substantially improved the results 

compared to those obtained using all the DIC data, which indicated that for the DIC monitoring, 

strain data in the tension zone were also not reliable. Note “DIC_cmprs” results had a couple of 

the outliers in the first cycle of the load tests for Beam 2. These outliers were automatically 

omitted in Figure F.5 due to the restricted boundaries of the y-axis. When compared to the ESG 

data, the gaps between the estimates and the theoretical values were quite high for the DIC data, 

which might be due to the poor quality of the collected data. The DIC readings are very sensitive 

to the surface conditions, so the honeycombing on the surfaces of these beams may have 

negatively affected the accuracy of the DIC data. A screen capture of an image from the DIC 

analysis software (VIC-3D, Correlated Solutions Inc., US) provided in Figure 4.5 shows that 

extreme or empty strain values are presented at the dents on the concrete surfaces.  

 

Figure F.7. DIC image for Batch 1 Beam 3 post-corrosion load test. 

Consistency of the Data from the Two Faces 

It was also observed from the figures that for Beams 1 and 2, the estimates obtained by the DIC 

data and ESG data lied on the opposite side of the theoretical N.A. locations. Thus, eccentric 
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loading was suspected to had happened to these load tests, causing one side less loaded and the 

other side heavier loaded.  Better estimates may be obtained by combining the data from the two 

faces. However, for Beam 3, the two sides were consistent with each other, and both 

overestimated the distance of the N.A. location from the top of the beam.  

F.2.3. Batch 2 Pre-corrosion Load Test  

Observation of the results obtained for the beams in Batch 1 motivated changes to be made for 

the subsequent batches of beams. To ensure the beams failed in flexure instead of in shear, the 

length of the beams was increased, and a smaller size of reinforcing steel bar was used for 

Batches 2 and 3. The decrease in the amount of reinforcement led to the neutral axes moving 

upwards. Since it was discovered that the strain data provided by the gauges in the compression 

zone performed better, the beams’ width was decreased to ensure the neutral axes were located 

around 40 mm below the top surface, so there was enough space to put all gauges in the 

compression zone. The concrete mix proportions were also adjusted to avoid honeycombing. As 

for the beams’ surface smoothness, even though the use of wax paper prevented the form from 

adhering to the beams, it caused wrinkling on the concrete surfaces, which may have affected the 

reliability of the measured strain data. Figure F.8 shows an example of the DIC analysis for 

Beam 3.  Higher compressive strain readings were measured along the ditches on the surface. On 

the ESG side, a new type of adhesive with a thicker texture was used for this batch of beams. It 

was expected that this new type of glue could fill in the unevenness of the surfaces. 

As a result of less reinforcement and lower moment capacity for this batch of beams, the gap 

between the cracking load (around 2.2 kN) and the conservative elastic limit (around 4.9 kN) 

was also narrow. Therefore, the beams were gradually loaded to 6 kN repeatedly, which was 

within the liberal elastic limit (around 8.5 kN).   

Four ESGs, labelled G1 to G4 were placed at 30, 20, 10 and 0 mm below the top surface of each 

beam. Refer to Appendix B. Like the analysis done for the Batch 1 post-corrosion load test, 

comparisons were made among “DIC_all”, “DIC_cmprs”, “ESG_all”, and “ESG_notop”. It was 

suspected that G1 may have been too close to the N.A., so it might not be able to provide reliable 

measurements under such a small deformation. Thus, an additional alternative using data from 

G2 and G3 only was compared with the other four alternatives. The results are summarized in 
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Table F.3.  The results were also compared to the theoretical values and illustrated in Figures F.9 

to F.11. 

 

Figure F.8. DIC analysis from the pre-corrosion load test for Batch 2 Beam 3 Cycle 3 at 6 kN, 
showing how surface wrinkling affected calculated strains. 
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Table F.3. Batch 2 pre-corrosion load test N.A. locations, measured from top surface in mm. 

Beam # Load Cycle # DIC_all DIC_cmprs ESG_all ESG_notop ESG_23 

Beam 1 

3 kN 
Cycle 1 63.8 72.8 -580.9 138.9 101.6 
Cycle 2 85.2 92.4 -1038.7 120.1 98.6 
Cycle 3 65.3 69.0 4.6 -21.6 102.7 

4 kN 
Cycle 1 64.9 67.0 364.5 102.1 65.9 
Cycle 2 85.8 90.2 232.6 95.0 66.3 
Cycle 3 66.0 61.3 197.8 90.7 69.1 

5 kN 
Cycle 1 64.6 59.0 98.2 71.2 59.7 
Cycle 2 81.5 77.6 96.4 69.9 60.4 
Cycle 3 63.2 54.7 95.9 69.7 62.5 

6 kN 
Cycle 1 63.7 58.7 81.1 64.6 58.0 
Cycle 2 80.7 73.0 79.1 63.4 58.9 
Cycle 3 62.8 53.2 78.9 63.6 60.9 

Beam 2 

3 kN 

Cycle 1 -8.1 -1.2 227.9 38.8 29.2 
Cycle 2 -14.9 -25.2 -1351.5 46.8 36.5 
Cycle 3 0.7 -5.7 682.1 48.4 37.7 
Cycle 4 -13.8 -31.8 284.2 48.5 38.3 

4 kN 

Cycle 1 -4.8 2.7 151.1 39.8 31.9 
Cycle 2 -10.6 -13.4 126.6 46.6 38.6 
Cycle 3 2.6 2.7 127.0 47.8 39.5 
Cycle 4 -8.2 -23.2 118.4 47.5 40.0 

5 kN 

Cycle 1 0.3 8.1 93.3 41.6 35.8 
Cycle 2 -4.2 -2.8 88.5 46.1 39.9 
Cycle 3 5.9 7.6 87.8 47.0 40.5 
Cycle 4 -0.2 -4.1 84.6 46.7 40.9 

6 kN 

Cycle 1 0.7 8.4 87.8 42.2 36.3 
Cycle 2 -2.4 1.0 77.1 46.0 40.7 
Cycle 3 7.7 9.6 76.5 46.7 41.1 
Cycle 4 3.7 6.0 74.0 46.4 41.4 

Beam 3 

3 kN 
Cycle 1 29.9 31.0 -746.6 138.7 79.8 
Cycle 2 26.7 27.4 178.9 100.1 56.4 
Cycle 3 18.4 19.1 132.9 79.4 74.6 

4 kN 
Cycle 1 34.7 35.3 94.6 74.0 53.2 
Cycle 2 28.2 28.5 79.1 64.8 49.9 
Cycle 3 22.1 23.1 74.5 59.8 57.8 

5 kN 
Cycle 1 36.6 36.4 66.3 57.5 47.1 
Cycle 2 29.5 29.5 63.6 55.7 46.9 
Cycle 3 23.9 25.0 61.8 53.3 52.1 

6 kN 
Cycle 1 37.7 37.2 58.1 52.0 44.9 
Cycle 2 30.1 30.1 57.8 51.9 45.4 
Cycle 3 23.9 24.7 57.0 50.5 49.6 
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Figure F.9. Comparison of estimated N.A. locations to the theoretical value for Batch 2 Beam 1 
pre-corrosion load test. 

 

Figure F.10. Comparison of estimated N.A. locations to the theoretical value for Batch 2 Beam 2 
pre-corrosion load test. 
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Figure F.11. Comparison of estimated N.A. locations to the theoretical value for Batch 2 Beam 3 

pre-corrosion load test. 

This set of ESG data were used to investigate the reliabilities of the top gauges and gauges 

located close to the N.A. locations. And for the DIC data, Comparisons were made between 

“DIC_all” and “DIC_cmprs” again. Also, the consistency of the results from the two faces and 

the effect of the level of loading are discussed. In general, the estimates made by both sides were 

quire poor, the reasons are also discussed. 

Effect of the Location of the Electrical Strain Gauges 

For all three beams, “ESG_all” provided the worst estimates, while “ESG_notop” provided 

better estimates, and the “ESG_G2& G3” gave the most accurate estimates. “ESG_all” was the 

worst meaning the strain gauges placed close to the N.A. locations had a negative effect to the 

accuracy of the estimates. And estimates using data excluding the top gauges (“ESG_G2& G3”) 

had better results than “ESG_notop” indicated that the top gauges also had a negative impact. 

This was not observed for the Batch 1 beams. The reason might be because Batch 2 beams were 

slenderer, and the slenderness effect had caused the lateral deflection and twisting of the beams. 
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Effect of the Level of the Applied Load 

There was an obvious improvement of accuracy under higher applied load, in general. This 

might because higher load can promote more linearly distributed strains. 

Consistency of the Data from the Two Faces 

Estimates from two sides were consistent for Beam 1 but were opposite for Beams 2 and 3.  

Effect of the Location of the DIC gauges 

For this set of the load tests, estimates obtained using all DIC data and DIC data in the 

compression zone only were very consistent with each other. The data from the tension zone did 

not affect the accuracy of the estimates. It was suspected the beams did not crack or they had 

extremely tight bonding.   

Slenderness Effect  

In general, both DIC and ESG estimates for this set of beams were poor, which may have been 

due to the wrinkling of surfaces and the new type of adhesive used for the ESGs. Since this batch 

of beams were slenderer and the estimates were off, slenderness effect was suspected. 

Slenderness effect can cause lateral deflections and twisting of RC beams similar to what is 

experienced by slender steel beams (Revathi and Menon 2008). Thus, the surface strains could 

be affected and be uneven on the two sides. The beams in Batch 2 were much slenderer than 

those in Batch 1, because the length was increased, and the width was decreased. Aside from a 

beam’s dimension, the slenderness of concrete beams is also affected by the reinforcement ratio 

and concrete strength (Revathi and Menon 2008), both of which were smaller for Batch 2 beams 

as well. Existing concrete codes do not account for slenderness effects when calculating a 

beam’s bending moment capacity (Revathi and Menon 2008). CSA A23.3 -14 only specifies that 

the minimum required thickness of simply supported beams be 1/16th of the clear span length, 

and that the maximum distance between lateral supports be 50b or 200b2/d, whichever is smaller 

(CSA 2014). The beams used in this lab experiment met all the requirements in the CSA 

concrete code. However, many researchers have reported that the current provisions in concrete 

codes are not adequate to account for slenderness effects, and many studies have shown the 



 

184 
 

existence of lateral buckling on even less slender RC beams (Revathi and Menon 2008, Girija 

and Menon 2011, Samad et al. 2016).  

F.2.4. Batch 2 First Post-corrosion Load Test 

After corrosion, the beams’ cracking load changed to around 2.1 kN and the conservative elastic 

limit dropped to around 4.5 kN, so each beam was gradually loaded until 4 kN repeatedly.  The 

built-up corrosion product had cracked the beams longitudinally then spilled out and strained the 

DIC pattern drawn previously. Therefore, a grinder was used to remove the stains as well as the 

wrinkled surfaces on the DIC sides; then, new patterns were drawn on the smooth surfaces. For 

the purpose of protecting the ESGs during the corrosion process, the exposed copper wires at the 

connections were covered by a layer of glue to isolate any moisture and oxygen. Only three out 

of twelve gauges were damaged this time (G3 for Beam 1, G4 for Beam 2, and G3 for Beam 3). 

Comparisons were made among estimated N.A. locations using all the DIC data, the compressive 

DIC data, and the ESG data from all the working gauges. The results are presented in Table F.4. 

Comparisons to the theoretical values are illustrated in Figures F.12 to F.14. 
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Table F.4. Batch 2 first post-corrosion load test N.A. locations, measured from top surface in mm. 

Beam # Load Cycle # DIC_all DIC_cmprs ESG_all 

Beam 1 

3 kN 

Cycle 1 72.5 130.9 18.4 

Cycle 2 -137.6 -903.6 -739.3 

Cycle 3 104.6 44.7 28.6 

Cycle 4 32.1 33.5 -489.3 

4 kN 

Cycle 1 92.5 -76.7 21.7 

Cycle 2 -791.9 162.5 124.1 

Cycle 3 94.8 48.6 29.3 

Cycle 4 36.6 34.7 158.4 

Beam 2 

3 kN 

Cycle 1 55.6 72.4 57.6 

Cycle 2 17.1 20.3 71.3 

Cycle 3 20.9 26.9 73.1 

4 kN 

Cycle 1 49.2 56.5 53.7 

Cycle 2 15.3 18.9 59.4 

Cycle 3 18.0 21.4 60.2 

Beam 3 

3 kN 

Cycle 1 65.8 -2028.7 -19.2 

Cycle 2 27.2 46.7 -19.1 

Cycle 3 26.4 46.5 -20.6 

Cycle 4 16.8 22.1 -21.9 

4 kN 

Cycle 1 64.6 -237.1 -29.7 

Cycle 2 31.9 -85.8 -45.1 

Cycle 3 28.3 12.8 -52.4 

Cycle 4 21.4 44.4 -56.8 
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Figure F.12. Comparison of estimated N.A. locations to the theoretical value for Batch 2 Beam 1 
first post-corrosion load test. 

 

Figure F.13. Comparison of estimated N.A. locations to the theoretical value for Batch 2 Beam 2 
first post-corrosion load test. 
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Figure F.14. Comparison of estimated N.A. locations to the theoretical value for Batch 2 Beam 3 
first post-corrosion load test. 

As shown in the table and the figures, the advantage of using higher loads was not apparent. This 

might be because the applied loads were not high enough.  The ESG results had very high errors, 

which might be due to the type of glue used and any inconspicuous damage that may have been 

experienced during the corrosion process. Using the DIC data in the compression zone only 

increased the accuracy of the estimates for Beam 1; however, its advantage was not evident for 

Beams 2 and 3. Lastly, for all three beams, the estimated N.A. locations from two sides lay on 

the opposite side of the theoretical N.A. location.  

Since not many useful conclusions could be drawn from the Batch 2 post-corrosion load test, the 

beams were saved from failure at the end of the post-corrosion load test, and a second post-

corrosion load test was conducted. 

F.2.5. Batch 2 Second Post-corrosion Load Test 

The previously attached ESGs and the painted DIC surface, as well as the wrinkling on both side 

surfaces, were removed using a grinder. Four new ESGs were attach on each of the side surfaces 

using the original adhesive that came with the ESGs from the same manufacturer. The results of 

the N.A. analysis for each individual face are presented in Table F.5. Face 2 was originally the 

DIC side. Comparisons to the theoretical values were presented in Figures F.15 to F.17.    
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Table F.5. Batch 2 second post-corrosion load test N.A. locations, measured from top surface in mm. 

Beam # Load Cycle # Face 1 Face 2 
ESG_all ESG_notop ESG_G2&G3 ESG_all ESG_notop ESG_G2&G3 

Beam 1 

3 kN 

Cycle 1 93.6 74.3 73.9 93.3 65.1 50.0 
Cycle 2 59.3 57.9 53.5 120.4 78.7 64.1 
Cycle 3 71.1 65.6 60.4 95.0 69.8 59.3 
Cycle 4 70.1 62.0 62.4 90.5 68.0 58.6 
Cycle 5 61.2 55.4 59.0 99.5 71.1 60.7 
Cycle 6 70.1 63.4 53.5 97.3 70.7 60.9 
Cycle 7 72.3 65.9 62.4 96.4 70.3 61.1 
Cycle 8 76.6 69.4 63.5 99.4 72.4 62.3 
Cycle 9 81.7 70.7 68.5 90.1 68.8 60.0 

Cycle 10 78.8 69.8 68.1 100.6 73.0 64.0 
Cycle 11 92.9 78.5 73.3 96.7 71.8 63.1 

4 kN 

Cycle 4 58.2 52.7 53.9 70.8 58.3 51.9 
Cycle 5 52.0 48.2 50.5 74.8 60.2 53.3 
Cycle 6 56.3 52.5 46.7 72.3 59.0 52.6 
Cycle 7 56.0 52.7 51.0 70.2 57.7 52.2 
Cycle 8 58.2 54.5 51.5 71.0 58.6 52.7 
Cycle 9 60.5 55.3 53.9 66.9 56.5 51.1 

Cycle 10 59.1 54.8 53.6 71.8 58.8 53.6 
Cycle 11 64.8 58.8 56.3 69.2 57.7 52.6 

5 kN 

Cycle 7 51.7 48.8 47.7 63.7 53.7 49.1 
Cycle 8 52.2 49.5 47.3 62.8 53.6 49.0 
Cycle 9 53.0 49.6 48.5 58.8 51.3 47.3 

Cycle 10 51.6 48.6 47.6 61.7 52.8 48.8 
Cycle 11 55.1 51.3 49.5 59.8 52.0 48.0 

6 kN 
Cycle 9 50.2 47.2 46.2 56.0 49.3 45.7 

Cycle 10 48.3 45.9 44.9 57.5 50.1 46.5 
Cycle 11 50.3 47.6 45.9 55.3 48.9 45.4 
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Table F.5. Continued.  

Beam # Load Cycle # Face 1 Face 2 

ESG_all ESG_notop ESG_G2&G3 ESG_all ESG_notop ESG_G2&G3 

Beam 2 

3 kN 

Cycle 1 67.3 56.3 48.6 -24.8 -37.8 -12.1 
Cycle 2 60.2 53.2 47.8 -970.3 235.0 -387.7 
Cycle 3 55.5 50.2 44.8 334.7 185.0 -1723.7 
Cycle 4 58.5 52.9 47.5 -174.3 326.5 -974.2 
Cycle 5 59.2 52.8 48.3 -2031.6 220.4 -55.1 
Cycle 6 61.1 52.5 49.7 34.6 383.5 -1084.7 
Cycle 7 62.9 53.0 49.6 16.6 412.8 1172.5 
Cycle 8 63.8 53.2 51.5 -3353.2 227.6 108.1 
Cycle 9 61.4 52.4 50.0 -44.0 209.5 10689.2 

4 kN 

Cycle 3 50.2 46.6 42.4 148.7 90.4 130.1 
Cycle 4 50.3 47.2 43.4 204.0 105.1 164.5 
Cycle 5 50.1 46.6 43.5 115.5 81.5 108.8 
Cycle 6 51.1 46.5 44.5 128.9 85.7 126.5 
Cycle 7 51.4 46.5 44.1 119.3 83.2 111.8 
Cycle 8 52.5 47.1 45.5 102.8 78.5 109.0 
Cycle 9 51.3 46.5 44.6 105.2 78.0 107.6 

5 kN 

Cycle 5 47.1 44.4 41.6 83.8 66.6 74.6 
Cycle 6 47.0 43.9 42.1 81.7 66.0 74.9 
Cycle 7 46.7 43.6 41.5 76.3 63.4 69.9 
Cycle 8 47.8 44.2 42.7 70.4 60.8 68.0 
Cycle 9 46.9 43.7 41.8 70.5 60.3 67.9 

6 kN 
Cycle 7 44.2 41.8 39.7 63.6 55.4 57.4 
Cycle 8 45.4 42.7 41.0 59.8 53.8 56.3 
Cycle 9 44.4 42.0 40.1 58.5 52.7 55.3 
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Table F.5. Continued.  

Beam # Load Cycle # Face 1 Face 2 
ESG_all ESG_notop ESG_G2&G3 ESG_all ESG_notop ESG_G2&G3 

Beam 3 

3 kN 

Cycle 1 -208.5 230.0 47.5 -55.4 -72.7 -110.8 
Cycle 2 146.6 54.1 51.4 -131.0 -519.2 -326.1 
Cycle 3 129.4 53.2 50.3 -473.5 -928.7 -1213.9 
Cycle 4 151.8 53.6 51.6 -181.2 -8131.1 -753.0 
Cycle 5 154.5 53.4 51.7 -170.6 -585.4 -311.4 
Cycle 6 -8097.3 56.9 55.5 -82.9 -161.1 -94.7 
Cycle 7 254.2 58.2 49.9 -134.4 619.2 -266.3 
Cycle 8 115.0 51.4 50.0 -285.2 -119.0 493.0 

4 kN 

Cycle 3 87.4 50.5 48.6 1966.0 231.4 494.0 
Cycle 4 86.0 50.2 48.8 -3972.6 248.9 605.6 
Cycle 5 81.7 49.6 48.5 47.2 214.1 1164.0 
Cycle 6 103.8 52.0 51.2 1095.5 434.1 -223.3 
Cycle 7 88.9 52.3 46.8 200.8 266.1 287.4 
Cycle 8 71.5 47.6 46.5 1941.3 158.6 332.7 

5 kN 

Cycle 5 68.0 47.7 47.0 184.0 118.0 158.3 
Cycle 6 75.7 49.1 48.6 289.5 154.8 230.7 
Cycle 7 66.1 48.5 44.4 156.6 106.8 126.2 
Cycle 8 58.4 45.1 44.1 121.6 90.6 109.2 

6 kN Cycle 7 57.0 46.3 42.5 93.6 77.0 85.0 
Cycle 8 52.3 43.6 42.1 83.1 70.6 78.0 
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Figure F.15. Comparison of estimated N.A. locations to the theoretical value for Batch 2 Beam 1 
second post-corrosion load test. 

 

 

Figure F.16. Comparison of estimated N.A. locations to the theoretical value for Batch 2 Beam 2 
second post-corrosion load test. 
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Figure F.17. Comparison of estimated N.A. locations to the theoretical value for Batch 2 Beam 3 

second post-corrosion load test. 

The Existence of Eccentric Loading 

The main purpose of this set of data was to verify the existence of eccentric loading. Both sides 

were monitored by ESGs, and the factors associated with the unevenness of the surface and the 

type of the glue were removed. Although the estimates from the DIC and ESG data frequently 

lay on the opposite sides of the theoretical N.A. location for the other load tests, the phenomenon 

was not observed for this set of the load tests. Both sides overestimated the distance of the N.A. 

locations measured from the top of the beams.   

Effect of the Location of the Electrical Strain Gauges 

For Beam 1, Face 1 data aligned with Face 2 data well. For both faces, “ESG_all” provided the 

worst estimates, and “ESG_notop” and “ESG_G2&G3” were comparable. For Beams 2 and 3, 

Face 2 data were significantly worse than the Face 1 data. And for each face, again “ESG_all” 

provided the worst estimates, and “ESG_notop” and “ESG_G2&G3” were comparable. Thus, the 

top gauges had a negative effect to the accuracy of the results.  

Effect of the Level of the Applied Load 

For all beams, better results were achieved under higher applied loads.  
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F.2.6. Batch 3 Pre-corrosion Load Test 

Batch 3 beams had the same design configuration and concrete mix ratios as Batch 2 beams. The 

cracking load was about 2.1 kN and the conservative elastic limit was about 4.9 kN. Since Batch 

2 did not achieve accurate estimates under lower applied load, Beam 1 and Beam 2 were loaded 

to 6 kN in this load test, which was still within the liberal elastic limit (8.2 kN). Beam 3 

exhibited a proportional relationship between strain and load even at lower loads, so it was not 

loaded past the conservative elastic limit. Moreover, to increase the reliability of the measured 

strain data, the concrete surfaces were smoothed using a grinder, and the original type of 

adhesive was used for attaching the ESGs. The results of the individual face analysis are 

provided in Table F.6. Comparisons to the theoretical values were presented in Figures F.18 to 

F.20.    

Table F.6. Batch 3 pre-corrosion load test N.A. locations, measured from top surface in mm. 

Beam # Load Cycle # DIC_all DIC_cmprs ESG_all ESG_notop ESG_23 

Beam 1 

3 kN 
Cycle 1 7.5 13.5 124.5 107.4 119.1 
Cycle 2 21.4 22.7 115.2 95.0 115.1 
Cycle 3 23.7 23.9 115.9 95.9 116.5 

4 kN 
Cycle 1 8.6 14.9 55.3 48.7 90.7 
Cycle 2 21.1 22.8 84.2 74.5 88.3 
Cycle 3 23.9 23.9 82.9 73.8 87.3 

Beam 2 

3 kN 
Cycle 1 32.9 29.1 57.0 55.4 69.7 
Cycle 2 102.8 69.0 44.3 44.8 57.5 
Cycle 3 98.1 64.5 44.1 44.7 57.1 

4 kN 
Cycle 1 41.5 32.2 57.0 57.2 66.2 
Cycle 2 93.5 61.5 43.5 44.1 56.4 
Cycle 3 91.5 59.7 43.4 44.1 56.1 

Beam 3 

3 kN 
Cycle 1 133.3 52.6 40.4 40.6 49.5 
Cycle 2 153.5 65.4 36.9 37.8 46.2 
Cycle 3 602.6 75.9 36.3 37.1 45.6 

4 kN 
Cycle 1 158.0 52.3 39.2 39.6 48.2 
Cycle 2 151.3 64.2 36.8 37.7 45.9 
Cycle 3 411.8 70.8 36.3 37.1 45.4 
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Figure F.18. Comparison of estimated N.A. locations to the theoretical value for Batch 3 Beam 1 
pre-corrosion load test. 

 

Figure F.19. Comparison of estimated N.A. locations to the theoretical value for Batch 3 Beam 2 
pre-corrosion load test. 
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Figure F.20. Comparison of estimated N.A. locations to the theoretical value for Batch 3 Beam 3 
pre-corrosion load test. 

Effect of the Location of the Gauges 

For the ESG side, the location of the strain gauges did not affect the accuracy of the estimates 

much. The DIC results using the compressive strains only performed much better than using all 

the data for Beams 2 and 3. But the difference was not obvious for Beam 1. 

Effect of the Level of the Applied Load 

For Beam 1 and 2, better results were achieved under higher applied loads. Beam 3 did not 

demonstrate this trend. However, the ESG estimates for Beam 3 were already very close to the 

theoretical value even at lower loads.  

Complementarity of the Data from the Two Faces 

Complementarity of the data from the two faces were observed for Beam 1, but not for Beams 2 

and 3.  

F.2.7. Batch 3 Post-corrosion Load Test 

After corrosion, the cracking load, as well as the conservative and liberal elastic limits changed 

to around 2.1 kN, 4.8 kN and 7.3 kN, respectively. All the beams were loaded to 6 kN repeatedly. 

The same protection method was applied to the ESGs during corrosion, but all the electrical 

strain gauges attached for the pre-corrosion load test survived the corrosion process, perhaps 
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because Batch 3 beams were corroded less than Batch 2. However, the DIC faces were still 

stained by the corrosion product, so the DIC patterns were ground off and repainted. The results 

of the individual face analysis are summarized in Table F.7. Comparisons to the theoretical 

values were presented in Figures F.21 to F.23.    

Table F.7. Batch 3 post-corrosion load test N.A. locations, measured from top surface in mm. 

Beam # Load Cycle # DIC_all DIC_cmprs ESG_all ESG_notop ESG_G2&G3 

Beam 1 

3 kN 

Cycle 1 31.8 32.6 75.7 66.9 66.4 
Cycle 2 29.5 29.5 65.2 59.8 58.5 
Cycle 3 25.3 25.6 64.3 59.2 57.6 
Cycle 4 32.5 32.0 63.4 58.6 57.2 
Cycle 5 24.2 25.6 57.0 53.6 52.2 
Cycle 6 26.8 29.3 49.0 47.5 46.1 

4 kN 

Cycle 1 31.7 31.3 66.5 61.1 60.6 
Cycle 2 29.8 29.3 60.1 56.6 55.3 
Cycle 3 26.9 26.9 59.3 56.0 54.5 
Cycle 4 33.1 32.0 58.5 55.3 54.0 
Cycle 5 26.2 27.9 52.3 50.2 48.9 
Cycle 6 25.1 28.3 45.2 44.4 43.3 

5 kN 
Cycle 4 33.2 31.8 54.8 52.6 51.5 
Cycle 5 26.8 28.0 49.4 48.0 46.8 
Cycle 6 24.4 28.3 44.3 43.7 42.5 

6 kN 
Cycle 4 33.5 31.8 52.0 50.5 49.3 
Cycle 5 28.4 29.2 47.4 46.4 45.2 
Cycle 6 23.3 28.0 43.2 42.8 41.6 

Beam 2 

3 kN 

Cycle 1 35.7 32.6 -8535.6 4080.5 -87.0 
Cycle 2 16.9 20.4 169.9 139.4 164.0 
Cycle 3 30.1 29.7 161.3 131.3 162.4 
Cycle 4 27.4 27.8 154.9 127.2 156.5 
Cycle 5 25.5 26.4 100.3 85.1 92.7 
Cycle 6 21.8 25.1 75.0 65.5 66.9 
Cycle 7 29.4 27.6 45.4 42.8 39.6 

4 kN 

Cycle 1 41.1 34.6 164.1 158.9 -4205.1 
Cycle 2 19.6 22.8 97.5 88.1 90.8 
Cycle 3 32.1 30.5 94.9 85.4 90.3 
Cycle 4 30.4 29.4 91.1 82.2 87.0 
Cycle 5 27.6 27.6 74.2 66.8 67.9 
Cycle 6 24.2 26.3 62.5 56.8 56.2 
Cycle 7 30.6 27.9 44.0 41.9 38.7 

5 kN 

Cycle 4 32.7 30.4 73.5 68.2 69.6 
Cycle 5 30.1 28.7 63.4 58.6 58.1 
Cycle 6 26.9 27.3 56.2 52.2 50.8 
Cycle 7 31.9 28.2 42.9 41.1 38.0 

6 kN 

Cycle 4 33.8 30.7 65.4 61.4 61.2 
Cycle 5 32.2 29.6 58.2 54.5 53.2 
Cycle 6 28.6 27.9 53.1 49.8 48.0 
Cycle 7 33.6 28.7 42.0 40.5 37.4 
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Table F.7. Continued. 

Beam # Load Cycle # DIC_all DIC_cmprs ESG_all ESG_notop ESG_G2&G3 

Beam 3 

3 kN 

Cycle 1 69.4 78.7 105.8 88.8 181.4 
Cycle 2 73.5 86.0 84.5 73.6 80.8 
Cycle 3 77.3 67.0 77.5 69.7 75.1 
Cycle 4 83.3 73.2 74.7 67.7 72.3 
Cycle 5 50.4 45.4 58.7 57.5 59.3 
Cycle 6 63.4 47.8 56.8 56.0 57.2 

4 kN 

Cycle 1 66.7 60.1 68.9 66.2 83.5 
Cycle 2 69.4 64.0 64.9 61.4 63.3 
Cycle 3 74.3 56.6 62.2 59.6 60.9 
Cycle 4 80.1 59.3 60.8 58.4 59.4 
Cycle 5 49.9 39.2 51.5 51.4 51.3 
Cycle 6 61.7 41.5 50.0 50.0 49.9 

5 kN 
Cycle 4 78.7 49.4 53.9 53.1 52.8 
Cycle 5 53.7 36.9 47.5 47.8 47.1 
Cycle 6 62.4 38.6 46.5 46.8 46.1 

6 kN 
Cycle 4 79.0 44.7 47.8 48.1 46.6 
Cycle 5 58.6 37.0 44.9 45.3 44.2 
Cycle 6 64.4 38.1 44.0 44.5 43.6 

 

 

Figure F.21. Comparison of estimated N.A. locations to the theoretical value for Batch 3 Beam 1 
post-corrosion load test. 
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Figure F.22. Comparison of estimated N.A. locations to the theoretical value for Batch 3 Beam 2 
post-corrosion load test. 

 

Figure F.23. Comparison of estimated N.A. locations to the theoretical value for Batch 3 Beam 3 
post-corrosion load test. 

Effect of the Location of the Gauges 

The ESG results using Gauges 2 and 3 were slightly better than the other two ESG results, but 

the difference was not significant. The DIC results using the compressive strains only performed 
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much better than using all the data for Beams 3. But the differences were not obvious for Beams 

1 and 2. 

Effect of the Level of the Applied Load 

For all beams, better results were achieved under higher applied loads.  

Consistency of the Data from the Two Faces 

Consistency of the data from the two faces were observed for Beam 3, but not for Beams 1 and 2. 

F.4. The Optimal Procedures 

The preliminary analyses done in this appendix aimed to find the optimum strain collection and 

analysis procedures. The results of the preliminary analysis are summarized in Table F.8.  

Modifications in the data collection procedures were made throughout the seven load tests to 

identify the optimal procedures for implementing the proposed SHM technique. Although the 

final accuracy of the results achieved by Batch 3 was still below expectations, many lessons were 

learned from these analyses.  

Regarding the location of the gauges, it was suspected that gauges located in the tension zone, on 

the top of the beam, and close to N.A. locations might have adverse effect on the accuracy of the 

estimates. Among the 18 load tests that compared the effect of using tensile strains, 11 of them 

showed it resulted in negative effects, and seven of them showed there was no significant impact. 

The top gauges caused negative effect for six out of 14 cases. No significant impact was found 

for the rest of the cases, except for Batch 1 Beam 2 pre-corrosion load test, including the top 

gauge increased the accuracy of the estimates. Having gauges located close to the N.A. location 

did not seem to be very problematic, as long as they are in the compression side; only two out of 

the 12 cases showed negative effect, and the rests showed no significant impact. In summary, for 

obtaining more reliable strain data, strain gauges should be placed in the compression zone and 

ideally in the same plane (i.e., not on the top of the beams). Especially for the electrical strain 

gauges, the gauges placed in the tension zone were less reliable and more prone to damage due to 

the extreme strains at the tensile cracks. Gauges close to the neutral axes were less problematic, 

but it is not recommended if the space is enough.  
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Table F.8. Summary of the results of the preliminary analyses. 

Load Test Tension Gauge Top Gauge Gauge Close to N.A. Higher Load Two Face Opposite 

Batch 1 Beam 1 Pre negative no difference N/A no difference N/A 
Batch 1 Beam 2 Pre negative positive N/A no difference N/A 
Batch 1 Beam 3 Pre negative N/A N/A no difference N/A 
Batch 1 Beam 1 Post negative N/A N/A no difference Yes 
Batch 1 Beam 2 Post negative N/A N/A no difference Yes 
Batch 1 Beam 3 Post negative N/A N/A no difference No 
Batch 2 Beam 1 Pre negative negative negative positive No 
Batch 2 Beam 2 Pre no difference negative no difference positive Yes 
Batch 2 Beam 3 Pre no difference negative negative positive Yes 
Batch 2 Beam 1 First Post negative N/A N/A no difference Yes 
Batch 2 Beam 2 First Post no difference N/A N/A no difference Yes 
Batch 2 Beam 3 First Post no difference N/A N/A no difference Yes 
Batch 2 Beam 1 Second Post N/A negative no difference positive No 
Batch 2 Beam 2 Second Post N/A negative no difference positive No 
Batch 2 Beam 3 Second Post N/A negative no difference positive No 
Batch 3 Beam 1 Pre no difference no difference no difference positive Yes 
Batch 3 Beam 2 Pre negative no difference no difference positive No 
Batch 3 Beam 3 Pre negative no difference no difference no difference No 
Batch 3 Beam 1 Post no difference no difference no difference positive Yes 
Batch 3 Beam 2 Post no difference no difference no difference positive Yes 
Batch 3 Beam 3 Post negative no difference no difference positive No 
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For the optimum level of the applied load, it appears that the accuracy of the estimates can be 

improved and the variance between different cycles of the loading can be reduced by applying 

higher loads in most of the cases. For the cases that did not show significant impact, it was 

mostly because they were not loaded to a much higher load or accurate estimates were already 

obtained at lower loads. So, in short, higher loads are better than lower ones. This might because 

the concrete is a non-homogeneous material and higher loads can cause the strain to be more 

evenly distributed. Larger strain readings under higher loads may also mitigate some errors and 

increase the accuracy in the strain gauge readings.  

Regarding the data analysis procedures, the N.A. locations estimated considering the strain data 

from each face separately were not as accurate as expected. However, it was found that for many 

cases, the estimates from each face lay on opposite side of the theoretical N.A. locations. 

Therefore, eccentric loading was suspected causing the one side to be less loaded and the other 

side to be higher loaded. Therefore, the average of the estimates using data from both sides 

should be closer to the theoretical N.A. location than any estimates from each individual face.  

Although the second post-corrosion load tests for Batch 2 beams proved that eccentric loading 

did not happen to all cases, and for some cases, the estimates from the two faces aligned with 

each other quite well, it would still be beneficial to obtain the estimates using combined data 

from two faces, as more data should increase the reliability of the results. Therefore, it is 

recommended that the N.A. locations should be estimated considering strains obtained from the 

two side surfaces. Three different methods for combining the data were tested and discussed in 

Chapter 4.  
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APPENDIX G   Sample Raw Strain Data Provided 

by ESG and DIC 
 

Table G.1. ESG Raw Data from the Pre-corrosion Load Test for Batch 3 Beam 3 Cycle 1. 

Load (kN) Strain 1 Strain 2 Strain 3 Strain 4 Time (s) 
0.29 2.58E-06 -8.12E-07 6.90E-08 1.69E-06 1 
0.28 2.27E-06 -7.64E-07 3.53E-07 1.11E-06 2 
0.30 2.05E-06 -1.35E-06 1.47E-06 1.52E-06 3 
0.27 2.18E-06 -6.05E-07 6.90E-07 8.92E-07 4 
0.28 2.39E-06 -1.04E-06 7.16E-07 7.02E-07 5 
0.29 2.25E-06 -5.28E-07 1.15E-06 1.65E-06 6 
0.29 1.69E-06 -2.64E-07 2.81E-07 1.29E-06 7 
0.28 1.60E-06 -4.48E-07 5.09E-07 1.14E-06 8 
0.28 1.51E-06 4.01E-07 2.81E-07 7.87E-07 9 
0.28 8.50E-07 -1.43E-06 -1.54E-06 -1.18E-06 10 
0.37 -2.78E-06 -7.37E-06 -8.40E-06 -7.91E-06 11 
0.51 -7.64E-06 -1.53E-05 -1.79E-05 -1.84E-05 12 
0.60 -1.15E-05 -2.12E-05 -2.52E-05 -2.65E-05 13 
0.68 -1.43E-05 -2.42E-05 -2.98E-05 -3.08E-05 14 
0.69 -1.48E-05 -2.60E-05 -3.23E-05 -3.26E-05 15 
0.69 -1.61E-05 -2.72E-05 -3.47E-05 -3.45E-05 16 
0.78 -1.71E-05 -2.88E-05 -3.53E-05 -3.76E-05 17 
0.77 -1.81E-05 -3.08E-05 -3.87E-05 -4.06E-05 18 
0.86 -1.94E-05 -3.46E-05 -4.31E-05 -4.51E-05 19 
0.85 -2.17E-05 -3.71E-05 -4.70E-05 -4.99E-05 20 
0.95 -2.32E-05 -4.02E-05 -5.00E-05 -5.50E-05 21 
1.01 -2.54E-05 -4.27E-05 -5.46E-05 -5.91E-05 22 
1.02 -2.75E-05 -4.46E-05 -5.84E-05 -6.50E-05 23 
1.11 -2.84E-05 -4.77E-05 -6.22E-05 -6.87E-05 24 
1.18 -2.92E-05 -4.99E-05 -6.50E-05 -7.23E-05 25 
1.20 -3.07E-05 -5.27E-05 -6.90E-05 -7.78E-05 26 
1.27 -3.21E-05 -5.42E-05 -7.12E-05 -8.03E-05 27 
1.31 -3.34E-05 -5.62E-05 -7.55E-05 -8.51E-05 28 
1.35 -3.52E-05 -5.89E-05 -7.79E-05 -8.84E-05 29 
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Table G.1. Continued. 

Load (kN) Strain 1 Strain 2 Strain 3 Strain 4 Time (s) 
1.42 -3.51E-05 -6.08E-05 -8.09E-05 -9.34E-05 30 
1.42 -3.70E-05 -6.28E-05 -8.40E-05 -9.74E-05 31 
1.51 -3.88E-05 -6.44E-05 -8.66E-05 -1.02E-04 32 
1.60 -3.88E-05 -6.70E-05 -9.02E-05 -1.07E-04 33 
1.59 -3.95E-05 -6.95E-05 -9.39E-05 -1.11E-04 34 
1.68 -4.18E-05 -7.15E-05 -9.68E-05 -1.16E-04 35 
1.70 -4.25E-05 -7.26E-05 -1.00E-04 -1.20E-04 36 
1.76 -4.32E-05 -7.46E-05 -1.04E-04 -1.24E-04 37 
1.77 -4.41E-05 -7.55E-05 -1.04E-04 -1.26E-04 38 
1.84 -4.49E-05 -7.78E-05 -1.08E-04 -1.32E-04 39 
1.92 -4.63E-05 -8.11E-05 -1.12E-04 -1.38E-04 40 
1.99 -4.71E-05 -8.30E-05 -1.16E-04 -1.43E-04 41 
2.09 -4.84E-05 -8.46E-05 -1.19E-04 -1.47E-04 42 
2.11 -4.80E-05 -8.59E-05 -1.20E-04 -1.51E-04 43 
2.17 -4.94E-05 -8.75E-05 -1.24E-04 -1.56E-04 44 
2.17 -5.04E-05 -8.92E-05 -1.26E-04 -1.59E-04 45 
2.25 -5.16E-05 -9.08E-05 -1.30E-04 -1.63E-04 46 
2.27 -5.09E-05 -9.19E-05 -1.31E-04 -1.66E-04 47 
2.35 -5.22E-05 -9.49E-05 -1.34E-04 -1.72E-04 48 
2.43 -5.38E-05 -9.60E-05 -1.39E-04 -1.78E-04 49 
2.49 -5.39E-05 -9.88E-05 -1.43E-04 -1.83E-04 50 
2.52 -5.59E-05 -1.01E-04 -1.46E-04 -1.87E-04 51 
2.57 -5.69E-05 -1.02E-04 -1.48E-04 -1.92E-04 52 
2.60 -5.73E-05 -1.04E-04 -1.52E-04 -1.97E-04 53 
2.57 -5.81E-05 -1.04E-04 -1.51E-04 -1.94E-04 54 
2.65 -5.85E-05 -1.06E-04 -1.55E-04 -2.01E-04 55 
2.75 -6.06E-05 -1.09E-04 -1.60E-04 -2.09E-04 56 
2.82 -6.17E-05 -1.13E-04 -1.65E-04 -2.15E-04 57 
2.91 -6.23E-05 -1.15E-04 -1.69E-04 -2.20E-04 58 
2.90 -6.35E-05 -1.16E-04 -1.72E-04 -2.25E-04 59 
3.00 -6.48E-05 -1.17E-04 -1.74E-04 -2.29E-04 60 
3.00 -6.54E-05 -1.20E-04 -1.78E-04 -2.33E-04 61 
3.08 -6.62E-05 -1.22E-04 -1.82E-04 -2.38E-04 62 
3.17 -6.75E-05 -1.24E-04 -1.84E-04 -2.44E-04 63 
3.19 -6.79E-05 -1.26E-04 -1.89E-04 -2.48E-04 64 
3.25 -6.85E-05 -1.28E-04 -1.91E-04 -2.54E-04 65 
3.23 -6.98E-05 -1.30E-04 -1.94E-04 -2.59E-04 66 
3.25 -6.97E-05 -1.29E-04 -1.94E-04 -2.57E-04 67 
3.25 -6.89E-05 -1.29E-04 -1.94E-04 -2.57E-04 68 
3.24 -6.90E-05 -1.28E-04 -1.94E-04 -2.57E-04 69 
3.24 -6.94E-05 -1.28E-04 -1.93E-04 -2.56E-04 70 
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Table G.1. Continued. 

Load (kN) Strain 1 Strain 2 Strain 3 Strain 4 Time (s) 
3.25 -6.78E-05 -1.29E-04 -1.92E-04 -2.56E-04 71 
3.24 -6.84E-05 -1.28E-04 -1.94E-04 -2.57E-04 72 
3.24 -6.75E-05 -1.28E-04 -1.93E-04 -2.56E-04 73 
3.25 -6.85E-05 -1.28E-04 -1.93E-04 -2.56E-04 74 
3.22 -6.83E-05 -1.28E-04 -1.93E-04 -2.58E-04 75 
3.16 -6.79E-05 -1.27E-04 -1.93E-04 -2.57E-04 76 
3.21 -6.79E-05 -1.28E-04 -1.93E-04 -2.57E-04 77 
3.15 -6.83E-05 -1.27E-04 -1.93E-04 -2.57E-04 78 
3.16 -6.77E-05 -1.28E-04 -1.93E-04 -2.57E-04 79 
3.17 -6.87E-05 -1.28E-04 -1.92E-04 -2.57E-04 80 
3.15 -6.90E-05 -1.28E-04 -1.94E-04 -2.58E-04 81 
3.15 -6.89E-05 -1.28E-04 -1.93E-04 -2.57E-04 82 
3.17 -6.84E-05 -1.28E-04 -1.94E-04 -2.57E-04 83 
3.15 -6.88E-05 -1.29E-04 -1.93E-04 -2.56E-04 84 
3.16 -6.78E-05 -1.29E-04 -1.93E-04 -2.58E-04 85 
3.17 -6.80E-05 -1.29E-04 -1.94E-04 -2.58E-04 86 
3.16 -6.85E-05 -1.28E-04 -1.94E-04 -2.57E-04 87 
3.17 -6.77E-05 -1.29E-04 -1.95E-04 -2.58E-04 88 
3.17 -6.79E-05 -1.29E-04 -1.94E-04 -2.58E-04 89 
3.17 -6.92E-05 -1.28E-04 -1.94E-04 -2.58E-04 90 
3.16 -6.76E-05 -1.29E-04 -1.94E-04 -2.59E-04 91 
3.16 -6.81E-05 -1.28E-04 -1.94E-04 -2.59E-04 92 
3.15 -6.81E-05 -1.28E-04 -1.94E-04 -2.58E-04 93 
3.17 -6.75E-05 -1.28E-04 -1.94E-04 -2.58E-04 94 
3.16 -6.87E-05 -1.28E-04 -1.95E-04 -2.59E-04 95 
3.15 -6.81E-05 -1.29E-04 -1.95E-04 -2.59E-04 96 
3.15 -6.83E-05 -1.29E-04 -1.95E-04 -2.58E-04 97 
3.17 -6.86E-05 -1.29E-04 -1.95E-04 -2.58E-04 98 
3.18 -6.88E-05 -1.29E-04 -1.94E-04 -2.58E-04 99 
3.18 -6.83E-05 -1.29E-04 -1.94E-04 -2.58E-04 100 
3.18 -6.83E-05 -1.29E-04 -1.94E-04 -2.58E-04 101 
3.19 -6.90E-05 -1.29E-04 -1.95E-04 -2.59E-04 102 
3.17 -6.89E-05 -1.29E-04 -1.95E-04 -2.59E-04 103 
3.18 -6.85E-05 -1.28E-04 -1.95E-04 -2.59E-04 104 
3.14 -6.89E-05 -1.28E-04 -1.95E-04 -2.59E-04 105 
3.17 -6.79E-05 -1.29E-04 -1.96E-04 -2.60E-04 106 
3.17 -6.91E-05 -1.29E-04 -1.95E-04 -2.59E-04 107 
3.18 -6.90E-05 -1.28E-04 -1.95E-04 -2.59E-04 108 
3.17 -6.88E-05 -1.29E-04 -1.95E-04 -2.59E-04 109 
3.18 -6.82E-05 -1.29E-04 -1.95E-04 -2.59E-04 110 
3.15 -6.86E-05 -1.29E-04 -1.95E-04 -2.60E-04 111 
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Table G.1. Continued. 

Load (kN) Strain 1 Strain 2 Strain 3 Strain 4 Time (s) 
3.18 -6.79E-05 -1.29E-04 -1.95E-04 -2.60E-04 112 
3.17 -6.77E-05 -1.29E-04 -1.95E-04 -2.60E-04 113 
3.17 -6.88E-05 -1.29E-04 -1.95E-04 -2.60E-04 114 
3.14 -6.84E-05 -1.29E-04 -1.95E-04 -2.61E-04 115 
3.17 -6.86E-05 -1.29E-04 -1.95E-04 -2.60E-04 116 
3.15 -6.84E-05 -1.29E-04 -1.95E-04 -2.60E-04 117 
3.18 -6.89E-05 -1.29E-04 -1.96E-04 -2.60E-04 118 
3.16 -6.84E-05 -1.29E-04 -1.95E-04 -2.61E-04 119 
3.15 -6.88E-05 -1.30E-04 -1.96E-04 -2.60E-04 120 
3.14 -6.79E-05 -1.30E-04 -1.95E-04 -2.61E-04 121 
3.15 -6.83E-05 -1.29E-04 -1.96E-04 -2.62E-04 122 
3.17 -6.92E-05 -1.29E-04 -1.96E-04 -2.61E-04 123 
3.16 -6.84E-05 -1.29E-04 -1.95E-04 -2.61E-04 124 
3.16 -6.86E-05 -1.29E-04 -1.96E-04 -2.61E-04 125 
3.15 -6.85E-05 -1.30E-04 -1.96E-04 -2.61E-04 126 
3.16 -6.82E-05 -1.29E-04 -1.97E-04 -2.61E-04 127 
3.15 -6.82E-05 -1.29E-04 -1.96E-04 -2.61E-04 128 
3.17 -6.86E-05 -1.30E-04 -1.96E-04 -2.61E-04 129 
3.18 -6.86E-05 -1.30E-04 -1.95E-04 -2.61E-04 130 
3.16 -6.92E-05 -1.30E-04 -1.96E-04 -2.62E-04 131 
3.15 -6.91E-05 -1.29E-04 -1.97E-04 -2.61E-04 132 
3.16 -6.94E-05 -1.30E-04 -1.97E-04 -2.63E-04 133 
3.15 -6.93E-05 -1.30E-04 -1.97E-04 -2.64E-04 134 
3.24 -7.02E-05 -1.33E-04 -2.00E-04 -2.67E-04 135 
3.33 -7.10E-05 -1.35E-04 -2.04E-04 -2.73E-04 136 
3.35 -7.23E-05 -1.37E-04 -2.08E-04 -2.79E-04 137 
3.42 -7.30E-05 -1.39E-04 -2.12E-04 -2.85E-04 138 
3.49 -7.44E-05 -1.42E-04 -2.16E-04 -2.90E-04 139 
3.48 -7.52E-05 -1.44E-04 -2.19E-04 -2.94E-04 140 
3.58 -7.63E-05 -1.46E-04 -2.23E-04 -2.98E-04 141 
3.62 -7.74E-05 -1.49E-04 -2.26E-04 -3.03E-04 142 
3.64 -7.74E-05 -1.49E-04 -2.29E-04 -3.08E-04 143 
3.65 -7.84E-05 -1.51E-04 -2.31E-04 -3.11E-04 144 
3.75 -7.86E-05 -1.53E-04 -2.36E-04 -3.19E-04 145 
3.82 -8.07E-05 -1.57E-04 -2.40E-04 -3.26E-04 146 
3.90 -8.23E-05 -1.59E-04 -2.45E-04 -3.32E-04 147 
3.96 -8.34E-05 -1.62E-04 -2.49E-04 -3.38E-04 148 
3.97 -8.35E-05 -1.64E-04 -2.52E-04 -3.42E-04 149 
4.08 -8.56E-05 -1.67E-04 -2.56E-04 -3.48E-04 150 
4.06 -8.70E-05 -1.68E-04 -2.60E-04 -3.52E-04 151 
4.13 -8.85E-05 -1.70E-04 -2.63E-04 -3.57E-04 152 
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Table G.1. Continued. 

Load (kN) Strain 1 Strain 2 Strain 3 Strain 4 Time (s) 
4.15 -8.88E-05 -1.74E-04 -2.68E-04 -3.64E-04 153 
4.22 -8.94E-05 -1.76E-04 -2.72E-04 -3.70E-04 154 
4.28 -9.08E-05 -1.78E-04 -2.76E-04 -3.74E-04 155 
4.21 -9.12E-05 -1.77E-04 -2.76E-04 -3.73E-04 156 
4.21 -9.02E-05 -1.77E-04 -2.75E-04 -3.74E-04 157 
4.25 -9.04E-05 -1.77E-04 -2.75E-04 -3.74E-04 158 
4.23 -9.05E-05 -1.77E-04 -2.74E-04 -3.74E-04 159 
4.22 -9.11E-05 -1.77E-04 -2.76E-04 -3.73E-04 160 
4.22 -9.10E-05 -1.76E-04 -2.75E-04 -3.73E-04 161 
4.21 -9.10E-05 -1.77E-04 -2.75E-04 -3.74E-04 162 
4.20 -9.02E-05 -1.77E-04 -2.75E-04 -3.74E-04 163 
4.24 -9.15E-05 -1.77E-04 -2.75E-04 -3.74E-04 164 
4.22 -9.04E-05 -1.77E-04 -2.75E-04 -3.74E-04 165 
4.22 -9.09E-05 -1.77E-04 -2.75E-04 -3.74E-04 166 
4.23 -9.08E-05 -1.78E-04 -2.74E-04 -3.74E-04 167 
4.23 -9.04E-05 -1.77E-04 -2.75E-04 -3.74E-04 168 
4.20 -9.10E-05 -1.77E-04 -2.76E-04 -3.75E-04 169 
4.15 -9.08E-05 -1.77E-04 -2.75E-04 -3.74E-04 170 
4.12 -9.13E-05 -1.78E-04 -2.76E-04 -3.74E-04 171 
4.14 -9.12E-05 -1.78E-04 -2.75E-04 -3.75E-04 172 
4.14 -9.06E-05 -1.78E-04 -2.76E-04 -3.75E-04 173 
4.13 -9.09E-05 -1.78E-04 -2.76E-04 -3.76E-04 174 
4.13 -9.16E-05 -1.79E-04 -2.76E-04 -3.75E-04 175 
4.14 -9.16E-05 -1.78E-04 -2.76E-04 -3.75E-04 176 
4.13 -9.03E-05 -1.78E-04 -2.76E-04 -3.75E-04 177 
4.15 -9.04E-05 -1.78E-04 -2.76E-04 -3.76E-04 178 
4.14 -9.11E-05 -1.78E-04 -2.77E-04 -3.76E-04 179 
4.15 -9.14E-05 -1.79E-04 -2.77E-04 -3.76E-04 180 
4.13 -9.11E-05 -1.78E-04 -2.78E-04 -3.76E-04 181 
4.15 -9.11E-05 -1.78E-04 -2.76E-04 -3.76E-04 182 
4.14 -9.02E-05 -1.78E-04 -2.77E-04 -3.76E-04 183 
4.15 -9.10E-05 -1.78E-04 -2.78E-04 -3.76E-04 184 
4.15 -9.16E-05 -1.79E-04 -2.78E-04 -3.75E-04 185 
4.16 -9.11E-05 -1.78E-04 -2.77E-04 -3.76E-04 186 
4.16 -9.14E-05 -1.78E-04 -2.77E-04 -3.76E-04 187 
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Table G.2. DIC Raw Data from the Pre-corrosion Load Test for Batch 3 Beam 3 Cycle 1. 

Load (kN) Time (s) E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15 E16 E17 E18 E19 

0.29 1 6.5E-05 2.7E-05 3.6E-07 6.9E-05 5.3E-05 5.4E-05 3.2E-05 5.7E-05 4.8E-05 3.0E-05 3.1E-05 5.4E-05 1.2E-04 1.0E-04 1.5E-04 1.1E-04 1.5E-04 9.7E-05 3.5E-05 8.6E-05 

0.28 2 2.8E-05 4.3E-05 1.5E-05 9.4E-05 3.9E-05 4.1E-05 5.7E-05 7.2E-05 4.6E-05 1.9E-05 8.0E-05 9.5E-05 1.2E-04 8.6E-05 1.4E-04 9.3E-05 1.3E-04 6.9E-05 2.0E-05 7.3E-05 

0.30 3 4.5E-05 6.5E-05 6.9E-06 1.0E-04 5.9E-05 7.6E-05 5.4E-05 5.7E-05 7.5E-05 8.2E-05 6.5E-05 1.2E-04 1.3E-04 1.4E-04 1.1E-04 1.3E-04 1.8E-04 1.1E-04 8.7E-05 9.1E-05 

0.27 4 1.7E-05 1.7E-05 4.2E-05 7.3E-05 2.8E-05 5.6E-05 4.6E-05 7.7E-05 5.5E-05 6.4E-05 1.5E-05 5.9E-05 1.2E-04 9.9E-05 1.0E-04 1.2E-04 1.3E-04 1.2E-04 4.9E-05 6.4E-05 

0.28 5 9.5E-06 8.2E-05 3.5E-05 5.7E-05 6.9E-05 5.2E-05 8.6E-05 4.0E-05 3.4E-05 4.6E-05 8.0E-05 8.2E-05 1.3E-04 1.2E-04 1.2E-04 1.2E-04 1.3E-04 9.5E-05 4.1E-05 6.6E-05 

0.29 6 3.7E-05 2.3E-05 3.2E-05 4.4E-05 3.2E-05 3.8E-05 4.9E-05 4.0E-05 5.7E-05 4.0E-05 4.8E-05 8.5E-05 1.1E-04 1.1E-04 1.3E-04 1.1E-04 1.1E-04 9.6E-05 4.7E-05 4.5E-05 

0.29 7 3.4E-05 3.5E-05 1.8E-05 9.4E-05 5.8E-05 7.7E-05 3.6E-05 6.0E-05 3.5E-05 7.2E-05 5.4E-05 8.0E-05 1.2E-04 1.1E-04 1.1E-04 9.4E-05 8.9E-05 1.1E-04 8.1E-05 6.6E-05 

0.28 8 -1.0E-05 2.4E-05 -8.3E-06 6.0E-05 4.3E-05 2.5E-05 -3.3E-07 4.3E-05 2.6E-05 -1.1E-05 1.8E-05 1.0E-04 1.1E-04 7.8E-05 1.2E-04 8.8E-05 7.6E-05 8.5E-05 2.0E-05 6.7E-05 

0.28 9 4.8E-05 4.0E-05 1.6E-05 6.9E-05 4.1E-05 5.6E-05 4.4E-05 6.3E-05 1.9E-05 4.4E-05 3.6E-05 6.9E-05 1.0E-04 9.1E-05 1.2E-04 8.7E-05 1.0E-04 9.3E-05 3.6E-05 4.9E-05 

0.28 10 9.5E-07 5.4E-05 1.4E-06 3.8E-05 3.3E-05 4.2E-05 1.4E-05 1.3E-05 6.3E-06 5.1E-05 3.2E-05 7.9E-05 8.7E-05 6.9E-05 1.0E-04 8.0E-05 7.9E-05 8.5E-05 5.0E-05 9.7E-06 

0.37 11 -7.9E-06 1.8E-05 -3.3E-05 2.5E-05 2.6E-05 4.2E-05 -5.1E-07 1.9E-05 3.0E-05 5.2E-05 2.7E-05 7.5E-05 7.7E-05 1.1E-04 7.6E-05 6.9E-05 8.7E-05 6.5E-05 3.3E-05 4.5E-05 

0.51 12 3.2E-05 2.6E-05 2.6E-05 6.3E-05 6.3E-05 4.2E-05 2.3E-05 4.2E-05 3.6E-05 7.9E-05 6.8E-05 7.9E-05 1.2E-04 8.6E-05 1.2E-04 1.0E-04 1.4E-04 9.4E-05 8.1E-05 7.6E-05 

0.60 13 -1.6E-05 1.2E-05 -1.7E-05 6.1E-05 -1.4E-05 3.6E-06 1.7E-05 6.3E-05 2.8E-05 4.6E-05 4.2E-05 7.6E-05 1.1E-04 1.1E-04 9.3E-05 7.4E-05 1.1E-04 1.1E-04 1.3E-05 5.5E-05 

0.68 14 -5.3E-05 -2.3E-05 -1.7E-05 2.1E-06 1.8E-05 -1.4E-05 -1.7E-05 1.4E-05 5.8E-06 -9.9E-07 -1.7E-05 5.0E-05 7.2E-05 5.6E-05 8.1E-05 9.0E-05 9.5E-05 4.6E-05 8.4E-06 4.0E-05 

0.69 15 -2.0E-05 -4.8E-06 2.2E-05 4.3E-05 3.4E-05 1.1E-05 3.0E-05 5.2E-05 9.8E-06 3.9E-05 2.5E-05 8.4E-05 1.2E-04 9.3E-05 9.1E-05 8.9E-05 1.1E-04 7.1E-05 3.2E-05 3.0E-05 

0.69 16 -5.2E-05 -4.1E-05 -6.9E-05 -1.5E-05 -2.1E-05 -9.1E-06 -2.1E-05 2.7E-05 1.1E-05 1.2E-05 2.9E-05 5.9E-05 9.0E-05 9.2E-05 1.0E-04 1.0E-04 1.3E-04 9.9E-05 5.3E-05 6.6E-05 

0.78 17 2.9E-05 5.5E-07 -2.9E-05 4.0E-05 1.4E-06 1.8E-05 7.7E-06 5.2E-05 4.5E-05 4.5E-05 3.5E-05 6.8E-05 6.5E-05 1.1E-04 1.1E-04 5.5E-05 1.1E-04 5.8E-05 1.7E-05 2.4E-05 

0.77 18 -2.2E-05 -3.6E-05 -3.7E-05 4.5E-07 -1.2E-05 5.6E-06 -1.7E-05 7.0E-07 2.1E-06 3.2E-05 3.0E-05 6.4E-05 8.6E-05 7.6E-05 1.3E-04 7.5E-05 7.9E-05 4.4E-05 2.6E-06 1.2E-05 

0.86 19 -3.7E-05 1.4E-05 -5.1E-05 3.6E-05 -1.3E-05 3.5E-06 -5.2E-06 7.1E-06 -2.2E-06 5.2E-05 1.1E-05 1.2E-04 1.0E-04 1.1E-04 8.0E-05 6.6E-05 1.0E-04 5.8E-05 8.0E-06 -1.4E-05 

0.85 20 -7.3E-05 -2.8E-05 -2.6E-05 -2.4E-05 -4.1E-05 -2.6E-05 -2.3E-05 4.0E-06 -1.9E-05 4.4E-05 -1.1E-05 3.7E-05 7.8E-05 6.2E-05 6.3E-05 7.1E-05 7.5E-05 6.0E-05 1.7E-06 -8.6E-06 

0.95 21 -4.7E-05 -5.4E-05 -7.2E-05 -1.4E-07 -2.6E-05 -1.3E-08 3.9E-07 3.5E-05 -1.4E-05 2.5E-06 2.0E-06 6.6E-05 8.9E-05 8.4E-05 6.1E-05 7.6E-05 5.6E-05 6.1E-05 4.2E-05 3.7E-05 

1.01 22 -4.7E-05 -6.0E-05 -6.1E-05 -4.4E-06 3.1E-06 -2.8E-06 -4.6E-05 -1.8E-05 -2.3E-06 3.3E-05 2.1E-05 5.5E-05 9.6E-05 6.6E-05 1.1E-04 6.2E-05 8.7E-05 7.2E-05 -1.5E-05 -5.1E-07 

1.02 23 -7.3E-05 -6.2E-05 -4.9E-05 -7.7E-06 -2.2E-05 -1.3E-05 -5.4E-05 1.2E-05 1.8E-05 7.8E-06 3.7E-06 4.2E-05 9.3E-05 7.5E-05 9.8E-05 7.0E-05 9.7E-05 5.4E-05 4.6E-06 8.4E-05 

1.11 24 -1.4E-04 -7.4E-05 -1.1E-04 -8.3E-06 -3.0E-05 -3.0E-05 -1.1E-05 -2.3E-05 -3.5E-05 -1.8E-05 -8.7E-06 4.3E-05 2.9E-05 5.1E-05 8.0E-05 6.0E-05 6.0E-05 4.2E-05 1.7E-05 -1.2E-05 

1.18 25 -1.2E-04 -6.0E-05 -8.7E-05 -9.6E-05 -8.2E-05 -4.8E-05 -4.0E-05 -2.1E-05 -2.9E-05 -3.2E-05 -3.2E-05 -2.4E-05 2.5E-05 2.0E-05 1.2E-05 3.3E-05 1.1E-05 -3.2E-06 -7.1E-05 -8.5E-05 

1.20 26 -2.8E-05 -6.2E-05 -4.8E-05 2.2E-05 -3.9E-05 2.6E-05 -8.0E-06 3.1E-05 -8.9E-06 4.1E-05 2.9E-05 9.4E-05 8.3E-05 9.2E-05 9.1E-05 5.7E-05 8.7E-05 5.4E-05 7.0E-05 -1.2E-05 

1.27 27 -6.3E-05 -6.3E-05 -4.1E-05 2.8E-05 3.1E-05 3.1E-05 2.1E-05 5.5E-05 2.7E-05 4.2E-05 3.4E-05 8.9E-05 7.1E-05 4.3E-05 7.9E-05 3.8E-05 3.5E-05 2.8E-05 -2.6E-05 -7.6E-06 

1.31 28 -6.9E-05 -6.6E-05 -5.2E-05 -2.1E-05 -2.0E-05 5.2E-07 -2.3E-05 1.2E-05 -4.0E-05 5.3E-06 1.1E-05 6.0E-05 8.8E-05 6.5E-05 9.2E-05 6.7E-05 8.4E-05 2.6E-05 -4.6E-05 2.4E-05 

1.35 29 -1.1E-04 -8.3E-05 -8.4E-05 -1.8E-05 -6.0E-05 -4.6E-05 -1.3E-05 2.0E-05 -2.3E-05 3.0E-05 1.3E-05 8.8E-05 9.0E-05 6.8E-05 8.5E-05 4.9E-05 9.0E-05 5.5E-05 -4.2E-05 -1.4E-05 

1.42 30 -1.1E-04 -1.1E-04 -9.9E-05 -2.5E-05 -4.0E-05 -2.7E-05 -5.4E-05 -7.4E-06 -3.0E-05 7.5E-06 3.1E-05 7.1E-05 1.0E-04 9.1E-05 8.3E-05 7.6E-05 8.0E-05 7.7E-05 -2.5E-05 2.1E-05 

1.42 31 -1.2E-04 -7.1E-05 -5.9E-05 -2.6E-05 -3.0E-05 -9.8E-06 -7.3E-06 1.7E-05 2.4E-05 2.0E-05 1.7E-05 8.1E-05 8.0E-05 8.0E-05 1.0E-04 6.4E-05 4.4E-05 6.4E-05 1.4E-05 5.8E-05 
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Table G.2. Continued. 

Load (kN) Time (s) E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15 E16 E17 E18 E19 

1.51 32 -1.6E-04 -1.2E-04 -1.1E-04 -6.9E-05 -1.1E-04 -4.0E-05 -7.5E-05 -5.0E-05 -8.4E-06 1.3E-06 1.3E-05 4.1E-05 5.2E-05 2.6E-05 6.5E-05 7.0E-05 6.8E-05 3.9E-05 -2.2E-05 -2.9E-05 

1.60 33 -1.0E-04 -8.3E-05 -8.1E-05 -4.7E-05 -7.5E-05 -1.9E-05 -6.2E-06 -1.1E-05 -2.4E-05 2.2E-05 -4.4E-06 3.9E-05 9.1E-05 6.2E-05 9.6E-05 6.2E-05 8.3E-05 5.9E-06 -6.5E-06 -3.8E-05 

1.59 34 -1.0E-04 -8.2E-05 -1.1E-04 -4.2E-05 -5.9E-05 -5.3E-05 -4.7E-05 2.1E-05 -9.9E-06 -1.7E-05 5.1E-06 3.5E-05 9.7E-05 6.7E-05 8.9E-05 6.5E-05 7.2E-05 3.0E-05 -3.6E-05 2.0E-05 

1.68 35 -1.6E-04 -1.1E-04 -1.3E-04 -2.7E-05 -6.4E-05 -3.4E-05 -3.7E-05 1.9E-05 -3.9E-05 9.7E-06 1.9E-05 4.9E-05 7.7E-05 3.0E-05 7.7E-05 4.8E-05 7.7E-05 1.7E-06 -1.2E-05 -2.6E-05 

1.70 36 -1.6E-04 -1.3E-04 -1.1E-04 -3.4E-05 -5.5E-05 -4.2E-05 -5.7E-05 -3.2E-05 -8.4E-06 -6.9E-07 1.3E-06 6.9E-05 6.1E-05 5.3E-05 4.9E-05 5.0E-05 5.2E-05 4.9E-05 -3.8E-05 2.9E-06 

1.76 37 -1.4E-04 -1.1E-04 -1.2E-04 -5.1E-05 -7.4E-05 -5.5E-05 -3.9E-05 -2.3E-06 -5.3E-05 7.4E-06 2.5E-05 4.2E-05 9.5E-05 4.6E-05 4.7E-05 6.7E-05 5.0E-05 2.4E-05 -2.5E-06 -3.9E-05 

1.77 38 -1.4E-04 -1.3E-04 -7.8E-05 -5.0E-05 -5.1E-05 -3.6E-05 -3.2E-05 -3.2E-05 -1.7E-05 4.0E-05 -6.4E-06 7.5E-05 7.6E-05 5.1E-05 7.7E-05 3.8E-05 8.6E-05 3.5E-05 -3.1E-05 6.6E-06 

1.84 39 -1.5E-04 -8.9E-05 -1.4E-04 -8.5E-05 -9.0E-05 -6.9E-05 -3.8E-05 -3.0E-05 -2.1E-05 7.4E-06 1.8E-06 3.9E-05 5.4E-05 2.5E-05 5.9E-05 4.4E-05 6.3E-05 2.7E-05 -3.7E-05 -7.3E-06 

1.92 40 -1.3E-04 -1.2E-04 -1.6E-04 -7.3E-05 -1.0E-04 -5.7E-05 -5.5E-05 -6.5E-06 -2.7E-05 8.0E-07 3.5E-05 4.0E-05 8.2E-05 4.6E-05 6.0E-05 6.5E-05 5.4E-05 2.7E-05 -1.5E-05 -7.4E-05 

1.99 41 -2.1E-04 -1.2E-04 -1.7E-04 -8.5E-05 -1.1E-04 -9.5E-05 -8.1E-05 -1.9E-05 -4.7E-05 -3.3E-05 -2.6E-05 2.7E-05 2.7E-05 2.3E-05 3.9E-05 5.0E-05 4.3E-05 -5.1E-06 -4.8E-05 -7.5E-05 

2.09 42 -1.3E-04 -1.3E-04 -1.6E-04 -5.3E-05 -1.0E-04 -6.4E-05 -3.3E-05 -3.2E-05 -1.8E-05 -2.2E-05 -1.3E-06 4.7E-05 1.0E-04 5.8E-05 8.0E-05 3.8E-05 5.3E-05 -2.1E-06 -2.3E-05 -4.4E-05 

2.11 43 -1.8E-04 -2.0E-04 -1.6E-04 -1.5E-04 -1.5E-04 -9.5E-05 -7.5E-05 -3.7E-05 -5.2E-05 -1.5E-05 -7.2E-06 6.6E-05 5.0E-05 3.7E-05 3.9E-05 3.3E-05 2.0E-05 1.6E-06 -4.3E-05 -2.2E-05 

2.17 44 -1.9E-04 -1.5E-04 -1.5E-04 -5.5E-05 -9.6E-05 -8.5E-05 -7.0E-05 -8.2E-07 -2.3E-05 -5.2E-06 1.9E-06 2.1E-05 3.2E-05 2.8E-05 1.2E-05 2.1E-05 3.6E-05 -9.8E-06 -1.1E-04 -2.0E-05 

2.17 45 -2.1E-04 -1.9E-04 -1.4E-04 -8.9E-05 -1.2E-04 -1.1E-04 -8.1E-05 -3.0E-05 -7.1E-05 -7.1E-06 -6.4E-06 4.7E-05 5.7E-05 1.8E-05 2.7E-05 8.8E-07 5.5E-05 2.6E-05 -4.5E-05 -6.8E-05 

2.25 46 -8.7E-05 -9.3E-05 -8.2E-05 -2.5E-05 -4.7E-05 1.8E-05 -3.4E-06 5.5E-05 4.5E-05 8.1E-05 2.9E-05 9.3E-05 9.6E-05 1.8E-05 3.9E-05 5.7E-05 4.0E-05 2.1E-05 -5.2E-05 -1.6E-06 

2.27 47 -1.7E-04 -1.8E-04 -1.8E-04 -1.1E-04 -1.2E-04 -1.6E-04 -9.9E-05 -1.1E-04 -1.0E-04 -9.0E-05 -6.0E-05 -5.2E-05 -6.9E-05 -9.2E-05 -7.3E-05 -1.2E-04 -8.0E-05 -1.4E-04 -2.1E-04 -1.6E-04 

2.35 48 -2.6E-04 -2.3E-04 -2.4E-04 -1.7E-04 -1.6E-04 -1.6E-04 -1.5E-04 -1.1E-04 -1.5E-04 -8.8E-05 -1.2E-04 -4.3E-05 -5.1E-05 -5.4E-05 -4.9E-05 -9.8E-05 -9.8E-05 -1.5E-04 -1.8E-04 -1.7E-04 

2.43 49 -3.1E-04 -2.4E-04 -2.5E-04 -1.8E-04 -2.0E-04 -1.6E-04 -1.6E-04 -8.6E-05 -1.2E-04 -4.8E-05 -9.3E-05 -3.9E-05 3.2E-06 -2.1E-05 1.4E-05 1.1E-05 4.3E-05 1.1E-05 -5.7E-05 -7.2E-05 

2.49 50 -2.2E-04 -1.5E-04 -1.7E-04 -1.4E-04 -1.6E-04 -1.4E-04 -1.4E-04 -9.2E-05 -8.6E-05 -7.8E-05 -4.7E-05 -2.7E-05 -1.6E-05 -2.1E-05 4.3E-06 -1.4E-06 2.7E-05 -2.4E-05 -5.2E-05 -7.4E-05 

2.52 51 -2.4E-04 -2.5E-04 -1.9E-04 -9.9E-05 -1.5E-04 -1.1E-04 -9.6E-05 -1.1E-05 -4.8E-05 -3.3E-05 -6.0E-06 3.9E-05 4.3E-05 1.6E-05 3.7E-05 2.0E-05 4.7E-05 -3.0E-05 -7.6E-05 -6.5E-05 

2.57 52 -2.2E-04 -1.9E-04 -1.8E-04 -1.2E-04 -1.3E-04 -1.0E-04 -9.1E-05 -5.0E-05 -8.1E-05 -2.3E-05 -4.3E-05 7.5E-06 5.1E-05 -1.4E-05 4.3E-05 1.7E-05 1.4E-05 -1.7E-05 -1.0E-04 -5.3E-05 

2.60 53 -2.1E-04 -1.9E-04 -2.1E-04 -9.5E-05 -1.3E-04 -1.1E-04 -6.4E-05 -3.8E-05 -7.2E-05 -5.5E-06 -1.4E-05 2.6E-05 6.0E-05 3.0E-05 3.9E-05 4.6E-06 1.1E-05 -4.3E-06 -7.1E-05 -8.7E-05 

2.57 54 -2.0E-04 -2.2E-04 -1.6E-04 -1.1E-04 -1.3E-04 -1.1E-04 -1.1E-04 -4.2E-05 -7.9E-05 -5.3E-05 6.3E-06 3.8E-05 5.0E-05 -9.4E-07 3.2E-05 1.1E-05 2.6E-05 -8.9E-06 -8.4E-05 -4.7E-05 

2.65 55 -2.3E-04 -1.8E-04 -1.9E-04 -9.6E-05 -1.2E-04 -1.0E-04 -1.2E-04 -3.0E-05 -4.6E-05 -3.9E-05 -4.0E-05 -1.6E-05 1.8E-05 1.2E-05 2.8E-05 -2.4E-05 1.3E-05 -1.7E-05 -1.1E-04 -7.9E-05 

2.75 56 -2.6E-04 -1.9E-04 -2.2E-04 -1.0E-04 -1.4E-04 -9.4E-05 -1.3E-04 -2.4E-05 -8.9E-05 -5.1E-05 -3.1E-06 1.1E-05 4.0E-05 2.5E-05 2.4E-05 8.7E-06 2.1E-05 -5.3E-05 -9.2E-05 -9.2E-05 

2.82 57 -2.4E-04 -2.2E-04 -2.0E-04 -1.2E-04 -1.5E-04 -8.8E-05 -8.8E-05 -5.9E-05 -6.8E-05 -1.8E-05 -3.3E-05 4.2E-05 4.1E-05 9.1E-06 2.6E-05 1.7E-05 2.3E-05 -1.8E-05 -8.9E-05 -1.1E-04 

2.91 58 -2.3E-04 -2.0E-04 -2.1E-04 -1.2E-04 -1.5E-04 -1.4E-04 -9.2E-05 -7.9E-05 -8.6E-05 -5.0E-05 -7.4E-05 -1.3E-05 2.7E-05 -2.4E-05 3.2E-05 -5.1E-05 -3.1E-05 -4.8E-05 -1.5E-04 -1.1E-04 

2.90 59 -2.3E-04 -2.0E-04 -2.0E-04 -1.1E-04 -1.3E-04 -1.3E-04 -1.3E-04 -1.5E-05 -4.5E-05 1.6E-05 -8.2E-06 -1.0E-06 2.0E-05 -5.2E-05 9.1E-06 -1.9E-05 -2.3E-05 -7.6E-05 -8.5E-05 -5.2E-05 

3.00 60 -2.6E-04 -1.8E-04 -2.0E-04 -1.3E-04 -1.2E-04 -1.0E-04 -1.0E-04 -4.1E-05 -5.9E-05 -4.4E-05 -2.7E-05 5.9E-06 6.5E-06 1.5E-06 3.3E-05 4.2E-06 2.1E-06 -5.1E-05 -8.7E-05 -9.4E-05 

3.00 61 -3.0E-04 -2.9E-04 -3.1E-04 -2.4E-04 -2.3E-04 -2.2E-04 -1.9E-04 -1.3E-04 -1.1E-04 -1.3E-04 -1.2E-04 -4.2E-05 -5.4E-05 -1.0E-04 -4.0E-05 -7.2E-05 -9.8E-05 -1.4E-04 -1.8E-04 -2.2E-04 

3.08 62 -1.6E-04 -1.8E-04 -2.5E-04 -1.3E-04 -1.3E-04 -1.1E-04 -1.0E-04 -4.6E-05 -3.8E-05 -2.1E-05 -3.2E-05 -4.4E-05 1.6E-05 -1.2E-05 7.3E-06 -1.7E-05 -3.3E-06 -5.7E-05 -1.6E-04 -1.3E-04 
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Table G.2. Continued. 

Load (kN) Time (s) E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15 E16 E17 E18 E19 

3.17 63 -2.4E-04 -2.0E-04 -2.6E-04 -1.2E-04 -1.2E-04 -1.5E-04 -1.4E-04 -3.4E-05 -5.8E-05 2.9E-05 -4.7E-05 -5.6E-07 1.7E-05 1.2E-05 2.0E-05 2.1E-05 1.1E-05 -3.6E-05 -7.4E-05 -3.1E-05 

3.19 64 -2.1E-04 -2.0E-04 -2.6E-04 -1.5E-04 -1.7E-04 -1.0E-04 -1.2E-04 -1.0E-04 -4.8E-05 -4.3E-05 -7.6E-05 -1.3E-05 9.4E-06 -3.1E-05 -6.3E-06 -5.4E-06 -7.1E-06 -5.7E-05 -1.2E-04 -7.7E-05 

3.25 65 -2.2E-04 -2.1E-04 -2.0E-04 -1.4E-04 -1.6E-04 -1.3E-04 -1.2E-04 -9.4E-05 -8.2E-05 -1.1E-05 -3.4E-05 -3.0E-05 1.8E-05 -3.6E-05 1.6E-05 6.6E-06 -3.0E-05 -7.7E-05 -1.2E-04 -8.7E-05 

3.23 66 -2.7E-04 -2.1E-04 -2.5E-04 -1.6E-04 -1.7E-04 -1.2E-04 -1.2E-04 -8.4E-05 -5.9E-05 -2.8E-05 -4.5E-05 -1.2E-05 4.0E-05 -1.7E-05 6.9E-06 -1.1E-07 -1.9E-06 -6.2E-05 -1.5E-04 -1.2E-04 

3.25 67 -2.4E-04 -2.1E-04 -2.4E-04 -1.3E-04 -1.5E-04 -1.1E-04 -1.2E-04 -2.5E-05 -5.1E-05 -4.0E-05 -5.6E-05 -2.7E-05 2.3E-05 4.0E-06 1.4E-05 3.0E-05 -2.3E-05 -5.6E-05 -1.2E-04 -1.2E-04 

3.25 68 -2.3E-04 -2.3E-04 -2.5E-04 -1.5E-04 -1.6E-04 -1.0E-04 -8.4E-05 -4.9E-05 -8.8E-05 -6.7E-05 -3.0E-05 -8.4E-06 3.8E-05 -1.3E-05 6.3E-06 -2.9E-05 -1.1E-05 -4.6E-05 -8.0E-05 -4.6E-05 

3.24 69 -3.1E-04 -2.0E-04 -2.3E-04 -1.6E-04 -1.5E-04 -1.5E-04 -1.6E-04 -6.8E-05 -9.9E-05 -5.5E-05 -4.2E-05 -3.1E-06 2.5E-05 -8.3E-06 -2.4E-05 -1.4E-05 -2.6E-05 -3.3E-05 -1.3E-04 -7.4E-05 

3.24 70 -2.4E-04 -2.1E-04 -2.6E-04 -1.3E-04 -2.0E-04 -1.3E-04 -1.1E-04 -7.1E-05 -6.3E-05 -3.7E-05 -4.0E-05 3.2E-06 -5.0E-06 -4.6E-06 2.7E-05 -8.4E-06 1.4E-05 -4.1E-05 -9.8E-05 -1.5E-04 

3.25 71 -3.1E-04 -2.6E-04 -2.3E-04 -1.9E-04 -1.9E-04 -1.6E-04 -1.7E-04 -1.3E-04 -1.0E-04 -9.5E-05 -7.0E-05 -3.0E-05 -2.2E-05 -6.4E-05 -4.1E-05 -6.8E-05 -7.0E-05 -8.9E-05 -1.9E-04 -1.5E-04 

3.24 72 -2.5E-04 -2.5E-04 -2.0E-04 -1.7E-04 -1.8E-04 -1.2E-04 -1.1E-04 -7.1E-05 -6.4E-05 -3.2E-05 -3.5E-05 -6.3E-06 3.9E-05 -1.2E-05 4.1E-05 2.1E-05 1.9E-05 -2.0E-05 -9.1E-05 -1.6E-04 

3.24 73 -2.7E-04 -2.3E-04 -2.2E-04 -9.2E-05 -1.7E-04 -1.3E-04 -1.1E-04 -5.4E-05 -3.7E-05 -6.0E-05 -4.9E-05 3.4E-05 1.7E-05 -9.5E-06 -2.4E-06 -3.0E-05 1.1E-05 -6.3E-05 -1.2E-04 -1.2E-04 

3.25 74 -2.6E-04 -2.2E-04 -2.5E-04 -1.5E-04 -1.8E-04 -1.2E-04 -1.7E-04 -6.9E-05 -8.3E-05 -4.9E-05 -6.5E-05 1.3E-05 2.7E-05 3.2E-05 1.7E-05 -1.5E-05 1.7E-05 -5.0E-05 -1.1E-04 -9.7E-05 

3.22 75 -2.7E-04 -2.1E-04 -2.1E-04 -1.1E-04 -1.5E-04 -1.2E-04 -1.0E-04 -6.2E-05 -3.5E-05 -1.6E-05 -1.1E-05 1.3E-05 -2.8E-05 7.9E-06 -3.7E-06 1.0E-05 -1.2E-05 -3.8E-05 -1.5E-04 -1.2E-04 

3.16 76 -3.0E-04 -2.4E-04 -2.2E-04 -1.5E-04 -1.6E-04 -1.2E-04 -1.1E-04 -8.6E-05 -5.4E-05 -5.7E-05 -6.0E-05 -5.2E-06 4.2E-07 -2.7E-05 1.9E-05 -7.4E-06 -1.1E-05 -4.4E-05 -1.4E-04 -7.2E-05 

3.21 77 -2.7E-04 -2.5E-04 -2.4E-04 -1.4E-04 -1.4E-04 -1.4E-04 -1.4E-04 -8.9E-05 -8.2E-05 -7.7E-05 -4.8E-05 3.0E-06 -1.1E-05 -1.2E-05 6.4E-07 -4.2E-05 -1.6E-05 -7.0E-05 -1.3E-04 -9.8E-05 

3.15 78 -2.7E-04 -2.7E-04 -2.8E-04 -2.0E-04 -2.3E-04 -2.0E-04 -1.5E-04 -1.1E-04 -6.7E-05 -1.1E-04 -7.3E-05 -2.1E-05 -5.6E-06 -5.6E-05 -1.6E-05 -1.4E-05 -3.0E-05 -1.2E-04 -2.0E-04 -1.4E-04 

3.16 79 -2.4E-04 -2.1E-04 -2.1E-04 -1.2E-04 -1.5E-04 -1.3E-04 -1.1E-04 -6.4E-05 -5.4E-05 -3.3E-05 -2.0E-05 2.2E-05 2.2E-05 2.5E-05 -2.0E-06 1.0E-06 1.3E-05 -5.6E-05 -1.4E-04 -6.7E-05 

3.17 80 -3.3E-04 -2.9E-04 -2.5E-04 -1.2E-04 -1.8E-04 -1.5E-04 -1.2E-04 -8.5E-05 -1.1E-04 -5.7E-05 -5.2E-05 -1.6E-05 -1.8E-05 -4.4E-05 -5.0E-06 -4.3E-05 -3.5E-05 -8.5E-05 -1.6E-04 -1.4E-04 

3.15 81 -3.5E-04 -3.1E-04 -2.6E-04 -2.6E-04 -2.1E-04 -1.9E-04 -1.8E-04 -1.1E-04 -1.4E-04 -8.4E-05 -6.6E-05 -3.3E-05 -3.3E-05 -5.2E-05 -2.9E-05 -4.1E-05 -4.8E-05 -6.1E-05 -1.4E-04 -1.3E-04 

3.15 82 -2.7E-04 -2.3E-04 -2.1E-04 -1.5E-04 -1.5E-04 -1.1E-04 -1.2E-04 -7.5E-05 -5.2E-05 1.4E-05 -4.4E-05 1.4E-05 -2.1E-06 1.2E-05 2.7E-05 -3.9E-06 -7.6E-06 -4.2E-05 -1.4E-04 -5.8E-05 

3.17 83 -2.6E-04 -2.3E-04 -2.3E-04 -1.5E-04 -1.5E-04 -1.2E-04 -1.0E-04 -4.1E-05 -8.4E-05 -5.4E-05 -5.5E-05 -1.8E-05 -2.6E-05 -3.1E-05 -8.4E-06 -4.2E-05 -1.8E-05 -1.1E-04 -1.3E-04 -1.5E-04 

3.15 84 -3.0E-04 -2.8E-04 -2.6E-04 -1.6E-04 -2.1E-04 -1.7E-04 -1.8E-04 -9.2E-05 -9.9E-05 -6.1E-05 -3.5E-05 1.1E-06 1.8E-06 1.7E-06 -1.4E-05 -1.2E-05 7.4E-06 -2.0E-05 -7.1E-05 -7.9E-05 

3.16 85 -1.8E-04 -1.7E-04 -1.3E-04 -9.0E-05 -1.1E-04 -6.8E-05 -6.8E-05 -1.1E-05 1.3E-05 1.1E-05 1.4E-05 4.8E-05 3.1E-05 1.5E-05 2.2E-05 -2.5E-06 -1.6E-05 -2.9E-05 -1.1E-04 -1.0E-04 

3.17 86 -2.7E-04 -1.8E-04 -1.9E-04 -1.4E-04 -1.4E-04 -1.0E-04 -1.3E-04 -4.0E-05 -7.1E-05 -2.8E-05 -3.9E-05 2.7E-05 2.1E-05 -4.4E-05 -5.3E-06 -1.3E-07 -1.4E-06 -6.6E-05 -1.6E-04 -1.4E-04 

3.16 87 -2.9E-04 -2.3E-04 -2.3E-04 -2.1E-04 -1.8E-04 -1.7E-04 -1.1E-04 -8.2E-05 -8.6E-05 -4.8E-05 -3.9E-05 -1.8E-05 3.8E-07 -2.7E-05 3.7E-06 1.6E-05 -4.5E-05 -3.8E-05 -8.5E-05 -1.4E-04 

3.17 88 -2.6E-04 -2.6E-04 -2.4E-04 -1.9E-04 -1.9E-04 -1.5E-04 -1.6E-04 -7.6E-05 -7.6E-05 -3.1E-05 -5.6E-05 5.0E-06 3.0E-05 -7.8E-06 -2.7E-06 -1.6E-05 1.2E-05 -3.2E-05 -1.2E-04 -1.3E-04 

3.17 89 -3.0E-04 -2.5E-04 -2.2E-04 -1.4E-04 -1.7E-04 -1.0E-04 -1.3E-04 -4.1E-05 -5.0E-05 1.4E-05 9.7E-08 5.9E-05 7.5E-05 2.2E-05 4.5E-05 4.8E-05 4.9E-05 -3.0E-06 -1.1E-04 -6.7E-05 

3.17 90 -4.2E-04 -4.0E-04 -4.3E-04 -3.3E-04 -3.4E-04 -3.0E-04 -2.7E-04 -1.8E-04 -2.0E-04 -1.6E-04 -2.0E-04 -1.5E-04 -1.6E-04 -1.7E-04 -1.7E-04 -1.9E-04 -1.8E-04 -1.9E-04 -2.7E-04 -2.4E-04 

3.16 91 -2.7E-04 -2.0E-04 -2.1E-04 -1.4E-04 -1.2E-04 -1.1E-04 -1.0E-04 -2.3E-05 -5.7E-05 -4.2E-05 -7.1E-05 -1.2E-05 -4.5E-07 -6.9E-06 5.2E-06 -1.7E-05 5.5E-06 -5.5E-05 -9.5E-05 -9.9E-05 

3.16 92 -2.3E-04 -2.3E-04 -2.0E-04 -1.5E-04 -1.7E-04 -1.1E-04 -1.2E-04 -6.2E-05 -5.3E-05 -2.0E-05 -5.3E-05 -2.4E-05 7.8E-06 -8.4E-06 1.1E-05 -2.9E-05 -6.2E-06 -3.3E-05 -1.1E-04 -1.0E-04 

3.15 93 -2.5E-04 -2.3E-04 -2.6E-04 -1.6E-04 -1.3E-04 -1.3E-04 -1.2E-04 -7.0E-05 -6.9E-05 -4.3E-05 -5.5E-05 -8.8E-06 1.0E-05 -2.2E-05 2.4E-05 1.2E-05 -2.7E-05 -6.1E-05 -1.0E-04 -1.2E-04 
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Table G.2. Continued. 

Load (kN) Time (s) E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15 E16 E17 E18 E19 

3.17 94 -2.7E-04 -1.8E-04 -1.9E-04 -1.4E-04 -1.3E-04 -1.2E-04 -1.3E-04 -4.5E-05 -5.8E-05 -3.6E-05 -4.9E-05 3.8E-05 6.4E-06 -4.0E-06 3.3E-05 -7.9E-06 -5.2E-06 -6.2E-05 -1.5E-04 -9.5E-05 

3.16 95 -3.0E-04 -2.3E-04 -2.3E-04 -1.5E-04 -1.5E-04 -1.2E-04 -7.6E-05 -5.4E-05 -6.0E-05 -5.1E-05 -1.9E-05 1.8E-05 1.2E-05 -9.9E-07 2.8E-05 -1.8E-05 -2.1E-05 -5.2E-05 -1.3E-04 -1.2E-04 

3.15 96 -2.2E-04 -2.0E-04 -2.2E-04 -1.4E-04 -1.6E-04 -1.3E-04 -1.4E-04 -6.0E-05 -6.6E-05 -2.7E-06 -1.9E-05 -7.9E-06 -1.8E-05 -3.5E-05 -1.4E-05 -4.1E-05 1.3E-05 -6.1E-05 -7.6E-05 -8.6E-05 

3.15 97 -2.5E-04 -2.1E-04 -2.3E-04 -1.0E-04 -1.4E-04 -8.7E-05 -1.1E-04 -7.7E-05 -4.6E-05 -8.8E-05 -5.6E-05 -6.5E-06 9.6E-06 4.7E-06 1.0E-05 -3.3E-05 1.1E-05 -4.8E-05 -1.0E-04 -1.4E-04 

3.17 98 -2.6E-04 -2.5E-04 -2.3E-04 -1.7E-04 -1.6E-04 -1.1E-04 -6.8E-05 -5.0E-05 -4.9E-05 -9.1E-06 -2.5E-05 -6.8E-06 5.5E-06 -6.6E-06 -2.3E-06 -3.8E-05 4.4E-06 -7.5E-05 -1.2E-04 -9.1E-05 

3.18 99 -2.9E-04 -2.3E-04 -2.0E-04 -1.9E-04 -1.2E-04 -1.2E-04 -1.3E-04 -6.9E-05 -9.8E-05 -3.1E-05 -5.5E-05 -5.0E-05 1.3E-05 -3.8E-05 -1.2E-05 -4.0E-05 -5.3E-06 -8.3E-05 -1.1E-04 -1.2E-04 

3.18 100 -2.2E-04 -2.1E-04 -2.7E-04 -1.5E-04 -1.6E-04 -9.8E-05 -1.2E-04 -7.6E-05 -3.1E-05 -3.7E-05 -2.6E-05 2.0E-05 4.0E-05 4.7E-06 1.6E-05 4.5E-06 -9.0E-06 -1.8E-05 -1.3E-04 -1.2E-04 

3.18 101 -2.1E-04 -1.6E-04 -2.4E-04 -1.1E-04 -1.3E-04 -1.2E-04 -1.3E-04 -3.9E-05 -2.5E-05 -3.6E-05 -2.9E-05 3.2E-06 4.6E-05 8.7E-06 5.1E-06 5.1E-08 -5.2E-06 -6.6E-05 -1.1E-04 -9.0E-05 

3.19 102 -2.2E-04 -2.0E-04 -2.0E-04 -1.3E-04 -1.6E-04 -1.2E-04 -1.1E-04 -5.3E-05 -5.5E-05 -6.8E-06 -2.5E-05 -1.4E-05 1.7E-05 -1.1E-05 -6.0E-06 -9.1E-06 3.1E-05 -4.0E-05 -9.9E-05 -1.3E-04 

3.17 103 -2.4E-04 -2.5E-04 -2.4E-04 -1.3E-04 -1.8E-04 -1.4E-04 -8.6E-05 -6.5E-05 -2.2E-05 9.0E-06 -1.3E-06 -4.7E-06 1.9E-05 -2.3E-05 3.1E-05 -2.7E-05 1.2E-06 -4.6E-05 -1.1E-04 -1.2E-04 

3.18 104 -3.0E-04 -2.3E-04 -2.6E-04 -1.3E-04 -1.8E-04 -1.4E-04 -1.5E-04 -7.6E-05 -1.2E-04 -4.7E-05 -3.8E-05 -4.5E-05 -1.9E-05 -4.0E-05 -1.4E-05 -3.9E-05 -2.4E-05 -4.0E-05 -1.1E-04 -1.4E-04 

3.14 105 -2.8E-04 -2.4E-04 -1.9E-04 -1.9E-04 -2.0E-04 -1.4E-04 -1.4E-04 -6.9E-05 -8.9E-05 -4.7E-05 -2.6E-05 8.1E-06 -9.0E-06 6.8E-06 8.5E-06 2.2E-07 -4.0E-06 -5.3E-05 -1.4E-04 -1.1E-04 

3.17 106 -2.6E-04 -2.3E-04 -2.3E-04 -1.3E-04 -1.6E-04 -1.3E-04 -1.3E-04 -6.5E-05 -8.8E-05 -3.3E-05 -5.3E-05 -4.0E-06 6.4E-06 -4.4E-07 -6.3E-06 -2.9E-05 1.1E-06 -6.6E-05 -1.2E-04 -1.2E-04 

3.17 107 -2.9E-04 -2.7E-04 -2.5E-04 -1.6E-04 -1.8E-04 -1.7E-04 -1.1E-04 -9.6E-05 -7.9E-05 -6.3E-05 -5.3E-05 -1.6E-05 7.1E-06 -3.0E-05 -1.0E-06 -1.7E-05 -5.4E-06 -5.4E-05 -1.3E-04 -1.6E-04 

3.18 108 -2.6E-04 -2.4E-04 -2.3E-04 -1.5E-04 -1.9E-04 -1.4E-04 -1.1E-04 -6.2E-05 -7.4E-05 -4.4E-05 -3.0E-05 -1.8E-05 3.5E-05 -3.3E-05 -1.5E-05 -1.5E-05 -2.4E-05 -6.3E-05 -1.0E-04 -1.3E-04 

3.17 109 -2.7E-04 -2.8E-04 -2.3E-04 -2.0E-04 -2.1E-04 -1.4E-04 -1.1E-04 -7.0E-05 -1.2E-04 -5.9E-05 -4.9E-05 -1.7E-05 7.8E-06 -1.7E-05 -1.2E-06 -1.9E-05 -1.7E-05 -6.0E-05 -1.5E-04 -1.3E-04 

3.18 110 -2.6E-04 -2.4E-04 -2.1E-04 -1.3E-04 -1.6E-04 -1.4E-04 -1.1E-04 -5.4E-05 -6.7E-05 -7.7E-05 -4.4E-05 -5.4E-06 -1.3E-05 -4.3E-05 2.0E-05 -1.4E-05 -1.2E-06 -7.7E-05 -1.1E-04 -9.4E-05 

3.15 111 -2.6E-04 -2.4E-04 -2.3E-04 -1.2E-04 -1.6E-04 -1.2E-04 -1.1E-04 -5.5E-05 -7.0E-05 1.5E-05 -4.9E-05 3.0E-06 9.9E-06 -7.2E-07 -1.7E-05 -1.9E-05 -2.8E-06 -4.7E-05 -9.0E-05 -1.1E-04 

3.18 112 -2.3E-04 -2.4E-04 -2.8E-04 -1.6E-04 -1.9E-04 -1.4E-04 -1.2E-04 -6.2E-05 -9.6E-05 -3.5E-05 -4.7E-05 2.7E-05 4.6E-06 3.6E-05 2.6E-05 1.1E-05 -7.8E-06 1.3E-05 -1.1E-04 -1.7E-04 

3.17 113 -2.3E-04 -1.9E-04 -1.9E-04 -1.5E-04 -1.2E-04 -1.0E-04 -5.7E-05 -2.5E-05 -7.2E-05 -1.8E-05 -7.4E-06 1.8E-05 3.1E-05 3.2E-05 1.7E-06 -1.2E-05 7.2E-06 -4.3E-05 -1.1E-04 -5.5E-05 

3.17 114 -2.4E-04 -2.3E-04 -2.1E-04 -1.5E-04 -1.4E-04 -1.0E-04 -1.2E-04 -8.0E-05 -3.6E-05 -4.4E-05 -2.1E-05 3.2E-05 4.7E-05 -6.1E-06 -2.5E-06 2.4E-06 1.6E-05 -1.9E-05 -1.1E-04 -9.3E-05 

3.14 115 -2.5E-04 -1.8E-04 -2.4E-04 -1.3E-04 -1.4E-04 -1.1E-04 -8.9E-05 -7.3E-05 -7.7E-05 -5.5E-05 -2.3E-05 -4.7E-06 2.4E-05 -9.7E-07 7.2E-06 -4.3E-05 -2.9E-05 -4.1E-05 -9.9E-05 -8.3E-05 

3.17 116 -2.6E-04 -2.1E-04 -2.0E-04 -1.2E-04 -1.6E-04 -1.2E-04 -9.3E-05 -2.5E-05 -4.5E-05 -1.9E-05 -2.9E-05 1.3E-05 1.1E-05 2.4E-05 1.8E-05 1.5E-05 -2.6E-05 -3.7E-05 -9.4E-05 -8.8E-05 

3.15 117 -2.0E-04 -1.8E-04 -1.8E-04 -1.2E-04 -1.0E-04 -8.8E-05 -6.4E-05 -4.4E-05 3.5E-06 -1.1E-06 -1.4E-06 3.9E-05 7.1E-05 3.3E-05 5.1E-05 1.9E-05 1.3E-06 -2.6E-05 -6.8E-05 -9.2E-05 

3.18 118 -2.8E-04 -2.5E-04 -2.4E-04 -1.9E-04 -1.8E-04 -1.6E-04 -1.3E-04 -9.4E-05 -1.2E-04 -5.9E-05 -5.7E-05 -6.1E-06 -4.7E-05 -2.1E-05 2.6E-05 -2.7E-05 -4.8E-05 -5.4E-05 -1.2E-04 -7.1E-05 

3.16 119 -2.7E-04 -2.2E-04 -1.9E-04 -1.4E-04 -1.5E-04 -1.0E-04 -1.4E-04 -4.7E-05 -3.7E-05 -2.8E-05 -1.8E-05 2.9E-05 2.0E-05 3.5E-05 1.9E-05 1.2E-05 -1.1E-05 -4.8E-05 -7.5E-05 -8.1E-05 

3.15 120 -2.7E-04 -2.6E-04 -2.8E-04 -1.9E-04 -2.0E-04 -1.4E-04 -1.6E-04 -9.3E-05 -1.2E-04 -7.8E-05 -5.3E-05 -2.1E-05 -1.1E-06 -5.6E-05 -1.2E-05 -3.8E-05 -2.5E-05 -3.4E-05 -1.1E-04 -1.2E-04 

3.14 121 -3.7E-04 -3.5E-04 -3.2E-04 -2.4E-04 -2.0E-04 -2.3E-04 -2.1E-04 -1.4E-04 -1.1E-04 -1.2E-04 -1.3E-04 -9.9E-05 -7.6E-05 -7.9E-05 -9.5E-05 -1.1E-04 -8.9E-05 -9.1E-05 -1.5E-04 -1.8E-04 

3.15 122 -2.9E-04 -2.9E-04 -3.0E-04 -2.0E-04 -1.9E-04 -1.8E-04 -2.2E-04 -1.8E-04 -1.7E-04 -1.2E-04 -1.5E-04 -1.1E-04 -8.7E-05 -1.1E-04 -9.5E-05 -1.1E-04 -1.2E-04 -1.7E-04 -2.2E-04 -2.2E-04 

3.17 123 -2.5E-04 -2.5E-04 -2.4E-04 -1.5E-04 -1.6E-04 -1.3E-04 -1.3E-04 -4.1E-05 -7.9E-05 -5.8E-05 -1.8E-05 4.0E-06 1.5E-06 3.1E-07 2.4E-05 -2.5E-05 -2.1E-05 -3.5E-05 -8.7E-05 -9.2E-05 

3.16 124 -2.5E-04 -2.6E-04 -2.1E-04 -1.5E-04 -1.7E-04 -1.4E-04 -1.4E-04 -5.1E-05 -6.8E-05 -4.1E-05 -6.3E-05 -1.1E-05 -1.7E-05 -3.9E-05 -2.0E-05 -3.1E-05 -2.4E-05 -5.9E-05 -1.5E-04 -1.2E-04 
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Table G.2. Continued. 

Load (kN) Time (s) E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15 E16 E17 E18 E19 

3.16 125 -2.6E-04 -2.1E-04 -2.5E-04 -2.0E-04 -1.4E-04 -1.2E-04 -1.1E-04 -7.4E-05 -8.1E-05 -5.4E-05 -1.2E-05 -2.7E-05 6.5E-07 -1.1E-05 6.7E-06 -8.5E-06 -2.4E-07 -3.9E-05 -1.3E-04 -9.1E-05 

3.15 126 -2.7E-04 -2.2E-04 -2.3E-04 -1.6E-04 -1.8E-04 -1.6E-04 -1.4E-04 -7.8E-05 -7.9E-05 -5.2E-05 -3.3E-05 -1.3E-05 -3.9E-05 -3.1E-06 2.1E-05 -3.2E-05 2.1E-06 -7.3E-05 -1.4E-04 -1.1E-04 

3.16 127 -3.1E-04 -2.5E-04 -2.3E-04 -1.5E-04 -1.9E-04 -1.2E-04 -1.2E-04 -5.6E-05 -6.2E-05 -3.1E-05 -3.4E-05 -3.1E-06 3.0E-05 -1.8E-06 -3.9E-06 5.4E-07 -2.9E-05 -9.6E-05 -1.2E-04 -9.9E-05 

3.15 128 -2.3E-04 -2.1E-04 -2.3E-04 -1.5E-04 -1.5E-04 -1.4E-04 -1.2E-04 -6.5E-05 -5.9E-05 -1.5E-05 -2.1E-05 -2.3E-05 -2.7E-06 -3.3E-05 -1.6E-05 -3.1E-05 -1.1E-05 -5.6E-05 -1.5E-04 -9.8E-05 

3.17 129 -2.4E-04 -2.5E-04 -2.6E-04 -1.4E-04 -1.6E-04 -1.4E-04 -1.1E-04 -6.2E-05 -4.6E-05 -4.2E-05 -5.0E-05 -6.3E-06 4.6E-05 2.4E-06 4.8E-05 -3.3E-05 -2.1E-05 -5.9E-05 -1.4E-04 -1.8E-04 

3.18 130 -2.7E-04 -2.0E-04 -2.3E-04 -1.7E-04 -1.5E-04 -1.4E-04 -1.5E-04 -6.5E-05 -8.9E-05 2.7E-06 -4.3E-05 -1.1E-05 1.1E-05 -1.2E-05 -9.9E-06 8.4E-06 -9.3E-06 -5.0E-05 -8.9E-05 -1.3E-04 

3.16 131 -2.8E-04 -2.6E-04 -2.3E-04 -1.7E-04 -1.6E-04 -1.4E-04 -1.2E-04 -1.1E-04 -7.4E-05 -6.7E-05 -3.0E-05 -2.6E-05 -2.4E-06 -4.1E-05 -2.1E-05 -4.9E-05 -8.6E-05 -8.4E-05 -1.6E-04 -1.0E-04 

3.15 132 -2.7E-04 -2.7E-04 -2.5E-04 -1.6E-04 -2.0E-04 -1.5E-04 -1.2E-04 -9.4E-05 -9.9E-05 -4.1E-05 -5.3E-05 -3.8E-05 -5.2E-05 -2.9E-05 -3.6E-05 -3.4E-05 -1.2E-05 -6.1E-05 -7.6E-05 -1.0E-04 

3.16 133 -2.6E-04 -2.3E-04 -2.3E-04 -1.7E-04 -1.5E-04 -1.5E-04 -1.3E-04 -6.3E-05 -9.3E-05 -7.7E-05 -6.8E-05 -2.8E-05 4.4E-06 -2.9E-05 -1.3E-05 -2.7E-05 -1.9E-05 -9.1E-05 -1.3E-04 -1.7E-04 

3.15 134 -2.8E-04 -2.1E-04 -2.7E-04 -1.8E-04 -1.7E-04 -1.5E-04 -1.3E-04 -4.0E-05 -9.6E-05 -3.2E-05 -4.2E-05 1.0E-05 3.3E-05 -2.7E-05 -7.3E-06 -3.0E-05 -7.2E-05 -7.4E-05 -1.1E-04 -1.0E-04 

3.24 135 -3.2E-04 -2.9E-04 -2.9E-04 -1.9E-04 -2.4E-04 -1.9E-04 -1.8E-04 -8.2E-05 -5.9E-05 -7.3E-05 -4.7E-05 -1.4E-05 2.3E-05 -4.8E-06 -3.0E-05 -3.5E-05 -2.2E-05 -6.2E-05 -1.5E-04 -9.9E-05 

3.33 136 -3.2E-04 -2.9E-04 -2.6E-04 -2.3E-04 -2.0E-04 -1.4E-04 -1.3E-04 -8.9E-05 -1.1E-04 -3.6E-05 -5.6E-05 -6.7E-06 9.3E-06 -1.8E-05 3.3E-06 -1.8E-05 -5.3E-06 -9.5E-05 -9.5E-05 -1.1E-04 

3.35 137 -3.2E-04 -2.6E-04 -2.3E-04 -2.1E-04 -2.1E-04 -1.4E-04 -1.2E-04 -8.3E-05 -7.3E-05 -4.1E-05 -1.9E-05 -1.7E-05 -2.3E-05 -4.0E-05 -4.1E-07 -3.0E-05 -2.5E-05 -6.5E-05 -1.4E-04 -1.2E-04 

3.42 138 -2.8E-04 -2.6E-04 -2.5E-04 -1.9E-04 -2.0E-04 -1.6E-04 -1.4E-04 -1.2E-04 -7.5E-05 -4.7E-05 -5.5E-05 -5.1E-06 7.3E-06 -2.6E-05 -1.5E-05 -2.1E-05 -4.0E-05 -6.3E-05 -1.0E-04 -1.3E-04 

3.49 139 -2.8E-04 -2.4E-04 -2.6E-04 -1.8E-04 -1.5E-04 -1.5E-04 -1.3E-04 -4.2E-05 -8.9E-05 -7.8E-05 -3.8E-05 -1.4E-05 1.0E-05 -2.4E-05 -1.5E-06 -5.1E-05 -4.4E-05 -8.7E-05 -1.5E-04 -1.5E-04 

3.48 140 -3.2E-04 -2.8E-04 -2.8E-04 -1.7E-04 -2.0E-04 -1.5E-04 -1.3E-04 -8.0E-05 -8.6E-05 -4.3E-05 -3.7E-05 -5.6E-05 4.8E-06 -1.1E-05 -6.1E-06 -3.5E-05 -2.7E-05 -8.3E-05 -1.8E-04 -1.7E-04 

3.58 141 -3.8E-04 -2.6E-04 -3.3E-04 -1.8E-04 -2.2E-04 -1.9E-04 -1.2E-04 -1.1E-04 -1.1E-04 -6.0E-05 -7.3E-05 -3.8E-05 -3.4E-06 -8.0E-06 -5.2E-05 -5.5E-05 -4.9E-05 -9.9E-05 -1.9E-04 -1.7E-04 

3.62 142 -3.3E-04 -3.1E-04 -2.9E-04 -2.2E-04 -2.3E-04 -1.9E-04 -1.4E-04 -9.3E-05 -8.4E-05 -1.7E-05 -6.8E-05 -6.0E-05 -3.5E-05 -4.8E-05 -2.8E-05 -1.7E-05 -2.5E-05 -7.9E-05 -1.6E-04 -1.5E-04 

3.64 143 -3.5E-04 -3.1E-04 -3.2E-04 -2.5E-04 -2.3E-04 -1.7E-04 -1.4E-04 -9.6E-05 -8.9E-05 -6.7E-05 -6.1E-05 -2.8E-05 -4.7E-06 -8.9E-06 -8.4E-06 -3.6E-05 -3.7E-05 -1.0E-04 -2.0E-04 -1.9E-04 

3.65 144 -4.1E-04 -2.8E-04 -2.7E-04 -2.3E-04 -2.5E-04 -1.5E-04 -1.6E-04 -9.8E-05 -8.9E-05 -5.9E-05 -8.1E-05 -1.5E-05 -2.6E-05 -6.8E-05 -4.5E-05 -5.6E-05 -3.5E-05 -9.5E-05 -1.8E-04 -1.7E-04 

3.75 145 -3.7E-04 -3.3E-04 -3.3E-04 -2.1E-04 -2.1E-04 -1.9E-04 -1.6E-04 -1.3E-04 -1.3E-04 -6.3E-05 -7.6E-05 -1.5E-05 -5.4E-05 -6.7E-05 4.1E-06 -7.7E-05 -5.4E-05 -1.1E-04 -1.7E-04 -2.0E-04 

3.82 146 -4.0E-04 -3.5E-04 -3.4E-04 -2.5E-04 -2.6E-04 -1.9E-04 -1.7E-04 -1.3E-04 -9.5E-05 -5.1E-05 -6.3E-05 -2.8E-05 -2.0E-05 -6.4E-05 -4.7E-05 -9.0E-05 -6.5E-05 -1.1E-04 -1.8E-04 -1.6E-04 

3.90 147 -3.4E-04 -3.3E-04 -3.3E-04 -2.3E-04 -2.7E-04 -2.0E-04 -1.9E-04 -1.4E-04 -1.3E-04 -7.8E-05 -9.3E-05 -2.7E-05 -4.0E-05 -4.9E-05 -2.9E-05 -6.7E-05 -4.9E-05 -1.1E-04 -2.0E-04 -1.8E-04 

3.96 148 -4.1E-04 -3.1E-04 -3.3E-04 -2.5E-04 -2.7E-04 -2.1E-04 -1.9E-04 -1.1E-04 -1.2E-04 -9.9E-05 -8.7E-05 -4.8E-05 -2.8E-05 -6.0E-05 -2.8E-05 -6.6E-05 -4.7E-05 -1.1E-04 -1.8E-04 -1.8E-04 

3.97 149 -4.0E-04 -3.6E-04 -3.1E-04 -2.4E-04 -2.3E-04 -1.9E-04 -2.0E-04 -1.2E-04 -9.6E-05 -5.3E-05 -6.4E-05 -2.4E-05 -9.4E-06 -4.6E-05 -3.8E-05 -6.3E-05 -1.6E-05 -1.0E-04 -1.7E-04 -1.9E-04 

4.08 150 -3.5E-04 -2.7E-04 -3.0E-04 -2.1E-04 -2.0E-04 -2.0E-04 -1.4E-04 -3.3E-05 -7.9E-05 -3.9E-05 -5.7E-05 -3.2E-05 2.4E-05 -3.8E-05 1.7E-06 -2.5E-05 -2.4E-05 -1.1E-04 -1.8E-04 -1.7E-04 

4.06 151 -3.6E-04 -3.5E-04 -3.4E-04 -2.5E-04 -2.5E-04 -2.3E-04 -2.0E-04 -1.3E-04 -1.2E-04 -9.2E-05 -6.8E-05 -4.2E-05 -6.8E-05 -4.0E-05 -5.3E-05 -7.4E-05 -7.2E-05 -1.1E-04 -1.7E-04 -1.6E-04 

4.13 152 -4.1E-04 -3.4E-04 -3.6E-04 -2.8E-04 -2.4E-04 -2.2E-04 -1.8E-04 -1.3E-04 -1.3E-04 -8.3E-05 -6.5E-05 -5.3E-05 -4.3E-05 -4.0E-05 -5.2E-05 -5.3E-05 -4.7E-05 -1.3E-04 -2.0E-04 -1.8E-04 

4.15 153 -4.0E-04 -3.5E-04 -2.9E-04 -2.6E-04 -2.6E-04 -2.1E-04 -2.1E-04 -9.0E-05 -7.2E-05 -4.8E-05 -7.0E-05 -3.0E-05 -1.1E-05 -5.2E-05 -4.6E-05 -6.8E-05 -7.3E-05 -1.0E-04 -1.7E-04 -1.7E-04 

4.22 154 -3.9E-04 -3.7E-04 -3.0E-04 -2.5E-04 -2.6E-04 -2.1E-04 -1.3E-04 -1.2E-04 -1.1E-04 -6.1E-05 -8.5E-05 -2.8E-05 -3.9E-05 -7.3E-05 -3.3E-05 -6.8E-05 -7.1E-05 -1.3E-04 -1.8E-04 -1.6E-04 

4.28 155 -4.0E-04 -3.2E-04 -3.1E-04 -2.4E-04 -2.3E-04 -2.0E-04 -1.8E-04 -1.1E-04 -1.2E-04 -8.3E-05 -7.6E-05 -5.4E-05 -5.3E-05 -9.1E-05 -6.5E-05 -6.3E-05 -7.4E-05 -1.5E-04 -2.1E-04 -2.7E-04 
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Table G.2. Continued. 

Load (kN) Time (s) E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15 E16 E17 E18 E19 

4.21 156 -3.7E-04 -3.1E-04 -3.5E-04 -2.7E-04 -1.9E-04 -1.8E-04 -1.6E-04 -9.9E-05 -9.9E-05 -8.0E-05 -6.5E-05 -4.1E-05 -2.9E-05 -2.2E-05 -1.9E-05 -3.9E-05 -5.0E-05 -1.4E-04 -1.6E-04 -1.8E-04 

4.21 157 -3.9E-04 -3.2E-04 -3.3E-04 -2.5E-04 -2.8E-04 -1.9E-04 -1.7E-04 -9.1E-05 -1.2E-04 -3.7E-05 -5.3E-05 -1.4E-05 -3.3E-05 -4.1E-05 -1.8E-05 -4.3E-05 -5.7E-05 -1.1E-04 -1.9E-04 -2.0E-04 

4.25 158 -3.9E-04 -3.6E-04 -3.7E-04 -2.6E-04 -2.5E-04 -2.5E-04 -1.9E-04 -1.1E-04 -1.1E-04 -1.2E-04 -1.1E-04 -5.3E-05 -5.6E-05 -7.7E-05 -6.2E-05 -5.3E-05 -9.1E-05 -1.4E-04 -2.1E-04 -2.1E-04 

4.23 159 -4.2E-04 -3.2E-04 -2.9E-04 -2.1E-04 -2.5E-04 -1.9E-04 -1.8E-04 -1.3E-04 -1.1E-04 -5.6E-05 -8.9E-05 -4.7E-05 -3.5E-05 -4.9E-05 -7.7E-05 -7.6E-05 -8.9E-05 -1.4E-04 -1.7E-04 -2.5E-04 

4.22 160 -4.4E-04 -3.5E-04 -3.5E-04 -2.6E-04 -2.9E-04 -2.4E-04 -2.0E-04 -1.3E-04 -1.7E-04 -1.1E-04 -8.8E-05 -7.0E-05 -4.6E-05 -1.3E-04 -7.6E-05 -1.0E-04 -1.2E-04 -1.4E-04 -2.3E-04 -2.7E-04 

4.22 161 -3.8E-04 -3.4E-04 -3.2E-04 -2.5E-04 -2.7E-04 -2.3E-04 -2.1E-04 -1.4E-04 -1.2E-04 -8.9E-05 -9.9E-05 -3.5E-05 -4.0E-05 -5.2E-05 -6.1E-05 -7.7E-05 -6.1E-05 -1.6E-04 -2.2E-04 -2.4E-04 

4.21 162 -3.5E-04 -3.8E-04 -3.0E-04 -2.3E-04 -2.4E-04 -1.9E-04 -1.7E-04 -1.2E-04 -1.1E-04 -8.0E-05 -7.5E-05 -4.3E-05 -6.9E-05 -5.5E-05 -5.9E-05 -8.3E-05 -8.1E-05 -1.2E-04 -1.6E-04 -2.5E-04 

4.20 163 -4.2E-04 -3.6E-04 -3.3E-04 -2.6E-04 -2.5E-04 -2.1E-04 -1.9E-04 -1.3E-04 -1.2E-04 -6.5E-05 -8.8E-05 -7.2E-05 -5.0E-05 -6.3E-05 -4.5E-05 -5.1E-05 -3.8E-05 -1.4E-04 -2.3E-04 -1.8E-04 

4.24 164 -3.9E-04 -3.5E-04 -3.2E-04 -1.9E-04 -2.3E-04 -1.8E-04 -1.7E-04 -1.2E-04 -1.0E-04 -5.9E-05 -8.6E-05 -2.3E-05 -4.3E-05 -7.1E-05 -2.1E-05 -4.3E-05 -5.5E-05 -9.4E-05 -1.7E-04 -1.5E-04 

4.22 165 -3.9E-04 -3.4E-04 -3.3E-04 -2.9E-04 -2.8E-04 -2.1E-04 -1.6E-04 -1.5E-04 -1.2E-04 -6.9E-05 -8.3E-05 -5.5E-05 -4.9E-05 -7.3E-05 -1.9E-05 -6.9E-05 -4.2E-05 -1.1E-04 -1.8E-04 -2.0E-04 

4.22 166 -3.6E-04 -3.2E-04 -3.2E-04 -2.4E-04 -2.4E-04 -1.9E-04 -1.9E-04 -1.1E-04 -8.5E-05 -1.1E-04 -9.2E-05 -4.8E-05 -3.0E-05 -5.8E-05 -5.3E-05 -6.9E-05 -7.1E-05 -1.2E-04 -1.7E-04 -2.5E-04 

4.23 167 -3.8E-04 -3.3E-04 -3.4E-04 -2.6E-04 -2.5E-04 -2.0E-04 -1.7E-04 -1.2E-04 -8.8E-05 -9.8E-05 -1.2E-04 -4.5E-05 -3.0E-05 -5.9E-05 -5.2E-05 -6.4E-05 -7.7E-05 -1.2E-04 -1.9E-04 -2.2E-04 

4.23 168 -3.5E-04 -3.3E-04 -3.7E-04 -2.4E-04 -2.7E-04 -2.0E-04 -1.8E-04 -1.2E-04 -1.5E-04 -1.2E-04 -8.3E-05 -6.0E-05 -3.4E-05 -7.3E-05 -5.4E-05 -6.1E-05 -6.7E-05 -1.3E-04 -1.7E-04 -2.2E-04 

4.20 169 -3.7E-04 -3.3E-04 -3.3E-04 -2.1E-04 -2.1E-04 -1.9E-04 -1.5E-04 -7.7E-05 -6.8E-05 -6.8E-05 -5.9E-05 -2.6E-05 -2.1E-05 -6.2E-05 -4.4E-05 -3.8E-05 -4.7E-05 -1.3E-04 -1.6E-04 -2.2E-04 

4.15 170 -3.6E-04 -3.4E-04 -3.4E-04 -2.9E-04 -2.2E-04 -2.2E-04 -1.9E-04 -1.3E-04 -1.2E-04 -1.1E-04 -1.1E-04 -8.8E-05 -7.6E-05 -1.1E-04 -6.7E-05 -8.3E-05 -4.0E-05 -1.5E-04 -2.4E-04 -2.1E-04 

4.12 171 -4.1E-04 -3.7E-04 -3.4E-04 -2.4E-04 -3.0E-04 -2.2E-04 -1.7E-04 -4.8E-05 -8.4E-05 -9.8E-06 -6.2E-05 2.4E-06 -7.7E-06 -1.2E-05 -2.3E-05 -2.3E-06 -1.1E-05 -1.0E-04 -1.5E-04 -2.1E-04 

4.14 172 -4.7E-04 -4.1E-04 -3.9E-04 -3.0E-04 -3.0E-04 -2.7E-04 -2.0E-04 -1.3E-04 -1.7E-04 -1.2E-04 -1.3E-04 -8.2E-05 -8.3E-05 -1.5E-04 -9.9E-05 -9.7E-05 -9.0E-05 -1.4E-04 -2.1E-04 -2.1E-04 

4.14 173 -4.0E-04 -3.6E-04 -3.4E-04 -2.7E-04 -2.6E-04 -2.1E-04 -1.8E-04 -1.1E-04 -1.2E-04 -8.9E-05 -9.2E-05 -6.9E-05 -4.0E-05 -9.4E-05 -4.0E-05 -5.1E-05 -2.9E-05 -1.1E-04 -1.9E-04 -2.1E-04 

4.13 174 -4.1E-04 -3.6E-04 -3.8E-04 -2.5E-04 -2.7E-04 -2.4E-04 -1.7E-04 -1.1E-04 -1.3E-04 -1.4E-04 -1.2E-04 -6.1E-05 -9.4E-05 -8.2E-05 -6.8E-05 -7.4E-05 -8.1E-05 -1.1E-04 -2.4E-04 -2.3E-04 

4.13 175 -3.5E-04 -3.5E-04 -3.3E-04 -2.3E-04 -2.6E-04 -1.9E-04 -1.3E-04 -4.9E-05 -1.1E-04 -5.5E-05 -5.5E-05 -3.3E-05 -2.7E-05 -6.0E-05 -2.1E-05 -3.9E-05 -2.9E-05 -1.0E-04 -1.9E-04 -2.0E-04 

4.14 176 -4.2E-04 -3.5E-04 -3.6E-04 -2.4E-04 -2.6E-04 -2.2E-04 -1.7E-04 -1.3E-04 -1.4E-04 -1.1E-04 -8.4E-05 -5.3E-05 -3.8E-05 -9.1E-05 -5.2E-05 -7.8E-05 -8.6E-05 -1.4E-04 -2.1E-04 -2.1E-04 

4.13 177 -3.9E-04 -3.2E-04 -3.7E-04 -2.5E-04 -2.1E-04 -1.8E-04 -1.4E-04 -1.1E-04 -1.1E-04 -7.9E-05 -2.7E-05 -5.1E-06 -8.0E-06 -4.7E-05 -4.2E-05 -5.2E-05 -2.1E-05 -1.1E-04 -2.0E-04 -2.4E-04 

4.15 178 -3.7E-04 -3.6E-04 -3.1E-04 -2.0E-04 -2.4E-04 -1.8E-04 -1.2E-04 -9.0E-05 -8.7E-05 -1.0E-04 -7.8E-05 -2.7E-05 -1.6E-05 -3.1E-05 -5.8E-05 -6.3E-05 -5.0E-05 -1.9E-04 -1.6E-04 -2.0E-04 

4.14 179 -4.0E-04 -3.7E-04 -3.8E-04 -2.8E-04 -2.7E-04 -2.1E-04 -1.8E-04 -1.3E-04 -1.1E-04 -9.0E-05 -9.1E-05 -4.1E-05 -2.5E-05 -7.3E-05 -6.2E-05 -7.3E-05 -8.8E-05 -1.5E-04 -2.1E-04 -2.0E-04 

4.15 180 -3.5E-04 -3.5E-04 -3.2E-04 -2.7E-04 -2.2E-04 -2.1E-04 -1.5E-04 -1.0E-04 -9.3E-05 -7.7E-05 -7.3E-05 -4.5E-05 -4.5E-05 -6.2E-05 -4.7E-05 -3.6E-05 -4.9E-05 -1.2E-04 -2.0E-04 -1.9E-04 

4.13 181 -3.7E-04 -3.9E-04 -3.4E-04 -2.7E-04 -2.2E-04 -2.4E-04 -1.7E-04 -1.2E-04 -1.1E-04 -9.6E-05 -8.9E-05 -4.5E-05 -5.2E-05 -8.7E-05 -7.2E-05 -8.9E-05 -7.1E-05 -1.4E-04 -1.9E-04 -2.3E-04 

4.15 182 -3.8E-04 -3.7E-04 -3.1E-04 -2.5E-04 -2.8E-04 -2.0E-04 -1.7E-04 -1.2E-04 -1.3E-04 -1.2E-04 -1.3E-04 -5.4E-05 -7.9E-05 -1.0E-04 -5.3E-05 -7.8E-05 -8.5E-05 -1.5E-04 -1.9E-04 -2.9E-04 

4.14 183 -3.6E-04 -3.5E-04 -3.5E-04 -2.4E-04 -2.4E-04 -2.2E-04 -1.9E-04 -9.2E-05 -1.4E-04 -7.8E-05 -7.8E-05 -5.8E-05 -1.4E-05 -7.1E-05 -3.6E-05 -7.2E-05 -6.7E-05 -1.2E-04 -1.8E-04 -2.0E-04 

4.15 184 -3.8E-04 -3.4E-04 -3.5E-04 -2.5E-04 -2.7E-04 -2.0E-04 -1.8E-04 -1.1E-04 -1.2E-04 -9.4E-05 -7.3E-05 -4.7E-05 -4.0E-05 -9.0E-05 -5.7E-05 -6.5E-05 -9.5E-05 -1.5E-04 -2.3E-04 -1.6E-04 

4.15 185 -4.1E-04 -3.4E-04 -3.1E-04 -2.3E-04 -2.4E-04 -1.8E-04 -1.8E-04 -7.2E-05 -8.1E-05 -6.3E-05 -6.2E-05 -5.9E-06 -3.1E-05 -4.1E-05 -4.3E-05 -8.6E-05 -6.9E-05 -1.1E-04 -2.1E-04 -2.2E-04 

4.16 186 -4.5E-04 -3.6E-04 -3.8E-04 -2.6E-04 -2.8E-04 -2.2E-04 -1.7E-04 -1.4E-04 -1.6E-04 -1.1E-04 -1.2E-04 -1.0E-04 -7.2E-05 -7.8E-05 -9.8E-05 -8.3E-05 -8.2E-05 -1.9E-04 -2.3E-04 -2.7E-04 
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APPENDIX H   Python Codes  
The following are the sample Python Codes for calculating the estimated N.A. locations using 

Batch 3 pre-corrosion load tests as an example. 
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APPENDIX I Sample Calculation for the Reliability 

Index 
The following are the sample calculations for the reliability analysis using Batch 3 Beam 3 in 

pre-corrosion load test as an example. 
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APPENDIX J Sample Calculation for Economic 

Analysis 
The following are the sample calculations for the economic analysis using Batch 3 Beam 3 as an 
example. 
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APPENDIX K   Copyright Permission for Figure 2.2 
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