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ABSTRACT 

Bacillus probiotics have been utilized to improve body weight gain or feed conversion ratio 

in poultry production since 1970s, however, the mechanisms of action of Bacillus probiotics are 

not well delineated. Two major pathways were hypothesized; a direct pathway mediated by  

probiotic organism and an indirect pathway mediated via modified host intestinal microbiota. Two 

new gnotobiotic experimental systems were developed to differentiate these pathways. Firstly, the 

direct hypothesis was accessed by combination of in ovo inoculation and sterilized individual 

HEPA-filtered containers. Bacillus subtilis C-3102 spores (BS) were delivered to amniotic fluid 

at E17 by in ovo inoculation. Vegetative growth and mono-association by BS was observed at 

hatch.  Multiple direct effects were observed including modified body and organ weight as well 

inflammation, barrier function, and nutrient digestion gene expression. The response to mono-

association with other bacteria, including Enterococcus faecalis (ENT03), Lactobacillus salivarius 

(LCT01), Escherichia coli (ECL01 and ECL02), Bacteroides fragilis (BCT06), and Clostridium 

butyricum (CLS01), representing taxonomic families dominant in chicken were also investigated. 

Live but not heat-killed E.coli inoculation were lethal before E20. Other strains demonstrated 

variation in colonization density, and intestinal gene expression of inflammation and barrier 

function. Mixture of 5 bacterial species, Simplified Microbiota (SM) inoculant, were administered 

to 1-day-old germ-free birds in HEPA-filtered isolators. In 2 of 4 isolators, irradiated feed was 

supplemented with BS. At 14 day of age, culture of intestinal contents demonstrated colonization 

with all SM species without contamination. Vegetative BS was observed in BS supplemented SM 

birds associated with reduced abundance of ECL01 and ENT01. BS reduced relative organ weight, 

increased digestion and nutrient transport gene expression. Observations suggest probiotic actions 

of B. subtilis in broilers result from both direct and indirect mechanisms. Direct mechanisms 

increasing digestive and absorptive capacity are supported by observations in ovo and in SM model. 

Colonization patterns observed in SM model suggest competitive reduction of E.faecalis and 

E.coli, may be indirect mechanisms. The in ovo and SM models developed here to simplify the 

intestinal microbial environment were demonstrated to aid in the differentiation of direct and 

indirect mechanisms of action of gut modifiers such as probiotic bacteria.  
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1 GENERAL INTRODUCTION 

The study of microorganisms known as microbiology, began in 1674 when Antonie van 

Leeuwenhoek observed bacteria in samples taken from the human mouth (Dock, 1928). Since their 

discovery, microbiology has revealed genetically diverse kingdoms with huge ecological roles in 

diverse environments from soil to deep oceans, to the digestive tract of animals affecting 

everything from soil fertility to climate change to animal health. Despite over 300 years of 

development of ever improving technologies to investigate microbial communities, knowledge of 

their composition and function remains limited and the whole truth of their biology and function 

is still beyond our reach.  

Despite our lack of complete knowledge of microbial ecophysiology, man has successfully 

harnessed the “power” of microbial activity to enhance society. Numerous examples include early 

applications in the making of beer, wine and milk products, to the more recent harnessing of 

microbial biosynthetic capacity in making industrial and biomedical products with the application 

of genetic engineering. The first scientific report about the “power of microbial activity” in 

promoting health was made by a Russian scientist, Ilya Illych Mechnikov in 1907. He took his 

interest in the longevity of Cossacks in Bulgaria and suggested that their long life resulted from 

their high consumption of lactic acid bacteria fermented products (Metchnikoff, 1907). Since 

making this association, the relationship between human health and lactic acid bacteria has been 

extensively studied and exploited. One of the most extensively-investigated lactic acid strains 

might be Lactobacillus casei Shirota (Morotomi, 1996).  Lactobacillus casei Shirota was isolated 

from human intestine in 1930 and has been marketed as a functional lactic acid bacteria (Yakult®, 

Yakult Honsha Co., Ltd., Tokyo Japan) since 1935 (Shirota et al., 1966).  Not only in human life 

but also in animal production, bacterial strains have been utilized based upon traditional 

experience, anecdotal observation and scientific study in parts of Europe and the United States as 

well as in Japan for at least the most recent 40 years (Kozasa, 1989). These bacteria-based products 

have been identified using the term “Probiotic”.  

The term “Probiotic” is a composite word made from “Pro” meaning “for” in Latin and 

“Biotic” meaning “Life” in Greek. The word was first used by Lilly and Stillwell for describing 

substances secreted by one organism which stimulates the growth of another (Lilly and Stillwell, 

1965). The probiotic preparations for human use are primarily based on lactic acid bacteria, 
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including members of the Lactobacillus, Streptococcus and Bifidobacterium genera (Fuller, 1991). 

In contrast, Bacillus spp. have often been selected and marketed as probiotic species for animal 

production due to their ability to form spores permitting high stability and observations of health 

and growth promoting effects (Cutting, 2011).  

The Bacillus species that have been most extensively utilized as probiotic bacterial 

products include B. subtilis, B. cereus, B. coagulans and B. licheniformis (Cutting, 2011). The 

growth promoting effect of these Bacillus species started to be recognized in the early 1970s and 

several early products were launched in Japan in this decade (Kozasa, 1989; Y, 1979). Scientific 

reports about the effect of Bacillus probiotics on broiler productivity started to appear in the peer-

reviewed literature in the 1980s (Nguyen et al., 1988; Sullivan et al., 1986). In addition to their 

growth promoting effect, Bacillus probiotics were observed to affect the composition of the 

intestinal microbiota (Ozawa et al., 1981) suggesting a potential mode of action. The relationship 

between the intestinal microbial community structure and broiler health and performance became 

an active area of research during 1990s because of growing concern regarding the development of 

antibiotic resistant bacteria linked to overuse of antibiotics in livestock production. Usage of 

antibiotics for livestock production continues to be a public concern and the application of 

probiotics is expected to serve as one alternative tool to limit pathogen colonization and promote 

bird health and performance.  

Through microbial profiling of excreta and intestinal contents, oral supplementation of B. 

subtilis has been shown to exhibit an inhibitory effect on zoonotic bacterial pathogens colonizing 

the chicken gut (La Ragione et al., 2001; La Ragione and Woodward, 2003; Maruta et al., 1996a; 

Maruta et al., 1996b). The pre-harvest reduction of zoonotic pathogens in the intestinal tract of 

food animals, especially those important in foodborne illness such as Salmonella species, by 

Bacillus probiotics has also been observed in other food animal species such as piglet and turkey 

(Scharek-Tedin et al., 2013; Wolfenden et al., 2011). Nowadays, Bacillus probiotics are commonly 

marketed as effective in control of pathogenic bacteria such as Salmonella as a major component 

of their role as an alternative to antibiotics.  

Bacillus probiotics have been reported as efficacious in promoting bird health and 

performance in several scientific reports (Cavazzoni et al., 1998; Cutting, 2011; Fuller, 1989; Hong 

et al., 2005; Kozasa, 1989). On the other hands, no clear significant benefit of Bacillus probiotic 

supplementation was also reported (Jenny et al., 1991; Samanya and Yamauchi, 2002). Because 
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of these variable results, much of the poultry industry remains skeptical about the efficacy of 

probiotics for growth promotion and pathogen control. Unfortunately, this problem remains an 

open question for scientists and manufacturers due to lack of knowledge about mechanism of 

action of Bacillus probiotics in both pathogen control and/or growth performance. In other words, 

while a number of empirical studies support the efficacy of probiotics for pathogen control and 

growth promotion, the lack of mechanistic knowledge leaves open the interpretation that studies 

demonstrating benefit can be attributed to normal biological variation.  

We hypothesize that variation in the efficacy of probiotics is caused by differences of 

conventional background microbiota of test animals between each trial. In many culture-based 

studies, the chicken intestinal microbiota has been reported and published since the 1960s and 

combined show both an incomplete and highly variable representation of the taxonomic 

composition (Rehman et al., 2007). With the latest molecular biological techniques, recent studies 

have improved knowledge of the inventory of micro-organisms represented in the chicken 

intestine; however, large animal to animal variation in microbiota composition is still recorded 

even under carefully controlled trial conditions (Stanley et al., 2013b). Based on this knowledge, 

we also hypothesize the mechanism of action of Bacillus probiotics could be broadly separated 

into direct action on host physiology or indirect action via shifting the intestinal microbial 

composition. These mechanisms are not mutually exclusive and could be either additive or 

synergistic. Furthermore, the high bird-to-bird variation observed in the composition of the 

intestinal microbiota suggests that variability in efficacy of probiotic supplementation could be 

related to variation in the “starting” microbial composition in each setting.  

To improve the opportunity to establish the mechanisms of action of probiotic Bacillus spp., 

a simplification and control of bacterial communities colonizing the gastrointestinal tract would 

be advantageous.  Therefore, we have developed gnotobiotic models in the chicken based on either 

in ovo inoculation or HEPA-filtered isolator rearing. We anticipate these models will minimize 

variation observed in conventional birds and permit investigation and separation of the direct and 

indirect mechanisms of action of B. subtilis.   
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2 LITERATURE REVIEW 

2.1 Bacillus probiotics 

2.1.1 Characterization and commercial application of Bacillus spp. 

B. subtilis is defined as the type species for the genus Bacillus according to the Bergey's 

Manual of Determinative Bacteriology Ninth Edition (Bergey and Holt, 1994). B. subtilis is a 

Gram positive bacterium with rod-shaped straight cells measuring  0.5-2.5 x 1.2-10µm, and 

growing in aerobic or facultatively anaerobic conditions (Holt et al., 1994). Bacillus spp. are well 

known to form spores which ensure long-term residence of the bacteria in inhospitable 

environments, such as conditions of high temperature, limited moisture, high pressure and 

chemical toxins (Nicholson et al., 2000). Bacillus spp. are primarily considered as a soil organism; 

however, sporulation ability allows members of this genus to spread into diverse environments 

and they are thus found in almost every terrestrial environment such as in decaying organic matter, 

on plant surfaces and the gut of insects, birds and mammals (Nicholson, 2002). 

A couple of Bacillus spp., such as B. cereus, are well known as having the potential to 

cause foodborne illness (Van Doren et al., 2013), while others, such as  B. pumilus and B. subtilis 

have been implicated as causative agents in foodborne disease but without clear consensus on their 

role in the illness (Logan, 2012). Generally, Bacillus spp. are recognized as non-harmful safe 

bacteria such that several species have been utilized historically as inoculants to make fermented 

foods (Chen et al., 2012). As a result, members of the Bacillus genus are often very familiar to 

people in lay environments, particularly those who live in eastern Asian countries. Natto is a 

traditional Japanese soybean food product which is fermented with B. subtilis var. natto. 

Interestingly, a health benefit of natto for humans was already recognized in the17th century in 

Japan (全国納豆協同組合連合会, 2004). The first scientific studies about the antagonistic 

function of B. subtilis var. natto against disease (dysentery) were reported in Bulletin of the Naval 

Medical Association at 1936 (Arima, 1936; Kozasa, 1989). More recently Natto was shown to 

have probiotic properties, such as enhancing body weight gain, suppressing number of Candida 

albicans and promoting growth of Lactobacillus (Hong et al., 2005).  Bacillus fermented products 

are also very popular in other Eastern Asian countries, where often unique products are associated 
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with specific regions such as Tempeh in Indonesia, Tuong in Vietnam, Doenjang in Korea and 

Chinese cheese in China and Taiwan (Chen et al., 2012). 

A wide diversity of industrially important strains of Bacillus spp. are used for a variety of 

purposes, such as feed additives, insecticides, soil improvement agents and industrial enzymes 

(Schallmey et al., 2004; Su et al., 2020). Bacillus thurigiensis was originally recognized as a 

pathogen of the silkworm. Several strains of the species were genetically modified to enhance their 

toxic activity against target insect pests and utilized as insecticides since 1960s (Lucena et al., 

2014). Bacillus thurigiensis is one of the most commercially successful entomopathogenic bacteria 

and is used in the biological control of insects in agronomical and industrial areas (de la Fuente-

Salcido et al., 2013). Producing commercially valuable enzymes was also recognized as a major 

property of B. subtilis at the beginning of the twentieth century (Olivier, 1946). Amylase is one of 

the most popular industrial enzymes which is currently produced using  Bacillus and large volumes 

are sold to the starch industry for production of syrups and ethanol, and to detergent manufacturers 

to enhance stain removal ability (Cherry and Fidantsef, 2003). Bacillus species are also widely 

used for production of other industrially important enzymes, such as proteases, lipases and 

phytases (Hasan et al., 2006). More relevant to the focus of this review, a number of Bacillus 

strains have been utilized as probiotic feed additives in animal production (Table 1.1) and 

recognized for their beneficial characteristics on poultry health and performance (Ramlucken et 

al., 2020).  Bacillus spp. continue to serve many important functions in our modern life. 

 

2.1.2 Definition of probiotics 

The term probiotic was coined to contrast with the term antibiotic and was first used by 

Lilly and Stillwell describing substances secreted by one organism which stimulate the growth of 

another (Lilly and Stillwell, 1965). After the first appearance, the term has been used in several 

different ways and the definition has been modified many times. 

In animal production, Parker started to use this word to describe growth promoting animal 

feed supplements and defined the term as “organisms and substances which contribute to intestinal 

microbial balance” (Parker, 1974). Fuller considered this wording imprecise and unsatisfactory as 

antibiotic compounds would be included (Fuller, 1991). So, he revised the definition as “A live 

microbial feed supplement which beneficially affects the host animal by improving its intestinal 
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microbial balance” (Fuller, 1989). Since 1989, many scientists have continued to redefine the term 

so that there are currently several definitions commonly utilized without significant consensus. 

According to several reviews that have examined the probiotic definition, it seems like one concept 

that has consensus among scientists is that probiotics consist of a live bacterium (Schrezenmeir 

and de Vrese, 2001).  

An issue resulting in considerable debate regarding Fuller’s definition has been the ability 

to define an improved “intestinal microbial balance”. Nevertheless, this definition was 

groundbreaking because it focused on the interaction between intestinal microbiota as a 

mechanism of action of probiotics as well as emphasizing the importance of live cells as an 

essential component. 

In 2002, a joint working group of the Food and Agriculture Organizations (FAO) of the 

United Nations and World Health Organization (WHO) published draft guidelines for the 

evaluation of probiotics in food. They offered adoption of the definition of probiotics as “Live 

microorganisms which when administered in adequate amounts confer a health benefit on the host” 

(FAO/WHO., 2012). Note that viability was still an essential requirement in this definition.  

After 2010, several scientists and manufactures started to bring conflicting views on the 

necessity of the viable status of probiotic products. Lahtinen (2012) raised the question on viable 

status arguing several potential mechanisms of probiotic action that are not directly dependent on 

cell viability. However, products which consist of dead microorganisms are not recognized as 

probiotic at the time this thesis was written. The term ‘inactivated probiotics’ has been adopted by 

academics and the industrial communities to describe products based on killed microorganisms. 

Where such products show efficacy there is considerable potential advantage with respect to ease 

of product handling, processing and storage. Recently, this concept is slowly being accepted, and 

this change might affect the definition of the probiotics in the future. 

  



 

 

Table 1.1. Example of Bacillus probiotic products marketed for poultry production.   
Strain Manufacturer Product name Reference 

Bacillus subtilis DSM17299 CHR HANSEN GALLIPRO® 
https://www.chr-hansen.com/ 
Knarreborg et al. (2008), Knap et al. (2010), Knap et al. 
(2011) 

Bacillus subtilis C-3102 
Asahi Biocycle Co., 

Ltd. 
CALSPORIN® 

https://www.asahibiocycle.com/ 
Maruta et al. (1991), Maruta et al. (1996a), Fritts et al. 
(2000), EFSA (2006b), Jeong and Kim (2014) 
Liu et al. (2019), Rahimi et al. (2019),  

Bacillus subtilis spp. (3 strains) 
Novus International, 

Inc. 
SORULIN® https://www.novusint.com/ 

Bacillus cereus ver toyoi RUBINUM Toyocerin® https://www.rubinum.es/ 

Bacillus subtilis DB9011 
Idemitsu Kosan Co., 

Ltd. 
Molucca https://www.idemitsu.com/ 

Bacillus subtilis PB6 Kemin Industries Inc. CLOSTAT® 
https://www.kemin.com/ 
EFSA (2009), Jayaraman et al. (2013) 

Bacillus subtilis BN 
Meguro Institute Co., 

Ltd. 
Growgen® 

http://www.meguro-kenkyujo.co.jp/ 
Horie et al. (2018) 

Bacillus subtilis DSM5750 
Bacillus licheniformis DSM5749 

CHR HANSEN BioPlus2B® 
https://www.chr-hansen.com/ 
EFSA (2016b) 

Bacillus spp. (5 strains) DuPont 
Enviva® Provalen 

Plus 
https://www.dupontnutritionandbiosciences.com/ 

Bacillus spp. DSM BlanciusTM 
https://www.dsm.com/ 
 

Bacillus licheniformis DSM 28710 HuvePharma B-Act® 
https://www.huvepharma.com/  
EFSA (2016a) 
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2.1.3 History of Bacillus probiotics in animal production 

In multiple broiler markets around the world, Bacillus spp. are registered as a feed additive 

and utilized for broiler production (Silley, 2006). However, until recently Bacillus probiotics have 

not received extensive scientific study. For example, the first review about probiotics in poultry 

nutrition was written in 1985 (Jernigan et al., 1985). In this review, a total of 11 studies examining 

the effect of probiotics on broiler production were summarized, none of which examined the 

performance response to Bacillus probiotics. After the founding concept of probiotics by 

Metchnikoff (Metchnikoff, 1907), lactic acid bacteria and yeast have been the main species 

examined for probiotic properties in the English literature.  This may reflect the broader use of 

these bacteria in Western cultures compared with Bacillus spp. which were commonly used in 

Asian cultures. One of the earliest reports examining the growth promoting effects of Bacillus 

probiotics was reported in 1986 (Sullivan et al., 1986) followed by a further report by Nguyen et 

al. (1988). As a consequence, a review article examining probiotics published in 1990 was the first 

to mention three Bacillus species (B. cereus toyoi, B. subtilis and B. licheniformis) as possible 

probiotic strains (Vanbelle et al., 1990).  

In a review article about the effect of probiotics in poultry published in 1997, the author 

referenced reports in which no performance benefit was observed and described the effect of 

probiotics on poultry using the statement: “The lack of consistency in the results has caused many 

people to be skeptical about the positive effects of probiotics in chicken.” (Jin et al., 1997). In 

contrast, more recent review articles summarizing avian probiotics referenced only positive reports 

on probiotic efficacy in poultry and did not identify lack of consistency as a concern (Khan and 

Naz, 2013; Smith, 2014). This change may signify a change in the scientific community regarding 

the potential of probiotic applications. Indeed, a literature search employing the key word 

“probiotic” returns over 4,000 original research articles in 2020 alone.  

Probiotic industry participants indicate that the marketing and use of Bacillus spp. 

probiotics began at least by 1980 in Japan. An industry magazine article published in Japan in 

1978 (Kimura, 1978) reported significant market penetration of Bacillus spp. probiotics in that 

country in the 1970s. In a peer-reviewed journal article published in Japanese, Kozasa (1989) cited 

several scientific publications examining the efficacy of Bacillus spp. probiotics in poultry dating 

back to the 1970s. 
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2.1.4 Regulations for Bacillus probiotics 

It is often mis-stated that probiotic products are unregulated, and that quality and efficacy 

of the product is not tested scientifically and legally. In fact, probiotic products for animal 

production must be registered or approved to be on the market in most countries. Current 

regulations in major marketing areas are described briefly as follows. 

In the European Union (EU), the Standing Committee on Plants, Animals, Food and Feed 

(PAFF Committee) plays a key role in animal health and welfare and is the regulatory authority 

responsible for feed additives (European Union, 2020). A European Food Safety Authority (EFSA) 

panel has authority to evaluate the probiotics and all probiotic products used in animal nutrition in 

the EU must be registered as microbial feed additives. The manufacturers must demonstrate data 

which include safety, efficacy and stability of their products (strains) by appropriate trials, and 

then all data should be documented and submitted to the EFSA scientific community according to 

regulation No. 1831/2003 of the European parliament and of the council of 22 September 2003 on 

additives for use in animal nutrition. Probiotics are categorized as zootechnical additives and a 

total of five strains of Bacillus are on the EU approval list as gut flora stabilizers which is one of 

functional groups in the category (European Union, 2014). In EU regulation, zootechnical 

additives are defined as “any additive used to affect favorably the performance of animals in good 

health or used to affect favorably the environment” and a functional subgroup termed “gut flora 

stabilizers” is described as “micro-organisms or other chemically defined substances, which, when 

fed to animals, have a positive effect on the gut flora” (European Union, 2003). 

In the United States (US), the US Food and Drug Administration (FDA) is the primary 

federal agency responsible for regulation of animal feed. Under Memorandum of Understanding, 

American Association of Feed Control Officials (AAFCO) provides “model laws” and regulations 

that nearly all states have adopted as the basis for their feed-control program (U.S. Food & Drug 

Administration, 2019). Manufacturers are required to use the term of direct-fed microorganisms 

(DFM) instead of probiotics. A definition of DFMs can be found in section 36.14 Direct-Fed 

Microorganisms in the yearly Official Publication by AAFCO and appropriate bacterial species 

for use in animal feeds are listed. The scientific name of the bacteria in the DFM should be listed 

on the product label without their specific strain name unlike other countries. In addition, reference 

to the efficacy of DFMs (probiotics) for sales purpose in the US is strictly prohibited. Strain 

approval for sale is based on safety rather than efficacy. As of 2020, a total of six Bacillus species 
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are listed as reviewed species in section 36.14 Direct-Fed Microorganisms including B. 

amyloliquefaciens, B. lentis, B. licheniformis, B. pumilus, B. coagulans and B. subtilis (Association 

of American Feed Control Officials, 2020). 

In Japan, probiotics for animal feed can be sold in two different formats, as probiotics (feed 

additive) and as a Mixed Feed. Ministry of Agriculture, Forestry and Fisheries is the administrator 

of all feed ingredient and feed additives for livestock. Selling the probiotic product as a feed 

additive is the first option for probiotic manufacturers because of several limitations on the sale of 

Mixed Feed. To be approved as a feed additive, scientific data about safeness of the strain and 

providing at least three trial results which shows effectiveness of the product on the target animal 

species are required. Specifications and safeness of the product strains must be shown through the 

data from both in vivo and in vitro studies. Efficacy of the product on body weight gain and feed 

conversion ratio must be shown in multiple field trials. Generally, these application processes are 

time and labor consuming and the process usually takes at least a few years until it is finished. In 

return for these cumbersome procedures, two claims are allowed for the product in the Japanese 

market, improving body weight gain and feed conversion ratio.  

As noted above, probiotic products can as be sold as Mixed Feed in Japan. The registration 

process of Mixed Feed is simpler and easier compared with the process for registration of a feed 

additive, however there are two demerits to consider on this option. No efficacy claim is available 

for Mixed Feed and the product should be mixed into feed on site. This means products in Mixed 

Feed category are not allowed to be added to a premix of feed at the feed mill, thus only feed 

additives can be mixed into premix of animal feed at feed in Japan. As of 2014, a total of seven 

strains of Bacillus have been registered as a feed additive in Japan, B. coagulans, 3 strains of B. 

subtilis, 2 strains of B. cereus and B. badius.  

In Canada, the Canadian Food Inspection Agency (CFIA) is the regulatory authority for 

feed ingredients. Single Ingredient Feeds (SIF) is defined as "any substance or mixture of 

substances that is assessed or evaluated as being acceptable for use in feeds and that is described 

in an item of Schedule IV or V" and listed ingredients in Part I have been evaluated for both safety 

and efficacy (Canada, 2020). In 2017, a new category was added in the ingredient list as “Gut 

Modifier”. Feed claims, such as improves feed intake, improves feed efficiency, and improves 

daily weight gain, will be available for Gut Modifiers under the Feed Act and Regulations in 

Canada, presumably based on submission of supporting scientific data. The Veterinary Drugs 
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Directorate (VDD) and CFIA continue to work together to explore solutions and to formalize the 

registration process for the Gut Modifier (Illing and Price, 2017). 

 

2.2 Efficacy of Bacillus probiotics in poultry production 

2.2.1 Efficacy on body weight gain and feed conversion ratio of poultry 

Improving body weight gain and feed conversion ratio (FCR) is a major claim and goal of 

Bacillus probiotics in broiler production. An examination of the influence of a dried B. subtilis 

culture on performance of broilers fed different protein levels (Sullivan et al., 1986), and of the 

effect of two commercial Bacillus probiotic products on broiler performance (Nguyen et al., 1988), 

were the earliest reports found about the growth promoting effect of probiotics. Jiraphocakul et al. 

(1990) fed 0.10% to 0.025% of dried B. subtilis culture to turkeys and reported significant 

improvement on body weight gain (p<0.01) and FCR (P<0.05) at 12 weeks of age. In these early 

studies, strain information and number of viable bacteria in the supplement were not considered 

as important parameters. Another early study shows 10 or 20 g/kg of B. subtilis culture 

supplementation improved feed efficiency, reduced nitrogen utilization and the ratio of abdominal 

fat or liver to body weight in female broiler chickens (Santoso et al., 1995). Cavazzoni et al. (1998), 

reported that their newly isolated B. coagulans improved efficacy in growth and feed conversion 

ratio of broiler chicken at day 49 comparable to that of the virginiamycin treatment group.  

Again, a serious defect of these early studies was lack of information about the identity of 

the strain and optimal concentration of supplemented bacterium. This was a common fault of all 

early probiotic studies, not only for Bacillus probiotic studies.  The importance of information on 

strain identity and dosage started to be recognized around the middle of the 1990s.  Recent results 

indicated that effective concentration of Bacillus probiotics in feed is at least more than 1x105 CFU 

per gram of feed. B. subtilis C-3102 (3x105 CFU/g of feed) significantly increased body weight 

gain to 42-days of age and improved FCR (p<0.05) from the 21- to 42-day period (Fritts et al., 

2000). Improving growth performance of broilers by supplementation of B. subtilis C-3102 in feed 

continuously was reported by several investigators (Aliakbarpour et al., 2012; Gracia et al., 2008; 

Jeong and Kim, 2014). B. subtilis DSM17299 was supplemented into broiler feed with 8.5x105 

CFU/g and chick performance was significantly enhanced (p<0.05) at day 35 (Knarreborg et al., 

2008). A probiotic product which contains three Bacillus strains showed significant improvement 
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on feed efficiency of 21-d-old broilers (Waititu et al., 2014). Bacillus coagulans NJ0516 

significantly improved FCR when the final concentration of the probiotics were 2x106  CFU/g of 

feed or 4x106 CFU/g of feed (Wang and Gu, 2010). Molnar et al. (2011) conducted dose response 

trial of B. subtilis DSM17299 by using several dosages between 7.27x108 CFU/g to 7.27x1011 

CFU/g. All broilers fed B. subtilis supplemented diet had significantly higher body weights than 

the control group from day 7 to the end of growing period. In this case, no differences in body 

weight gain between supplementation levels of B. subtilis DSM17299 were reported in this trial. 

In addition to results from publications in scientific journals, many data were also taken in 

the approval process in the EU. For example, B. subtilis C-3102 was registered as a zootechnical 

feed additive (functional group: gut flora stabilizer) in the EU in 2006. For the approval, efficacy 

of the product was demonstrated in member countries of the EU and in 2004 results were reported 

to the European Commission. A total of four trials were made with broilers in this case and there 

was a statistically significant benefit in final weight, daily weight gain and/or feed efficiency in 

three of the four trials (EFSA, 2006b). Other registered strains also provided data supporting a 

growth promoting effect and all data has been published in the EFSA Journal. B. subtilis PB6 

improved final body weight and FCR in three studies (EFSA, 2009). Results from seven trials were 

provided by B. subtilis DSM17299 manufacturers and four showed significant weight gain 

improvement in treated group and improvement of FCR was observed in two trials (EFSA, 2006a). 

Based on these results from scientific research at academic and industry, effect of Bacillus 

probiotics on body weight gain and FCR can be claimed in several national markets in Europe or 

in Japan. These and other published studies indirectly support marketing in other countries such 

as the US, where performance claims are not permitted. 

 

2.2.2 Effect of Bacillus probiotics on gut microbiota of broiler 

In addition to growth promoting effects, the Bacillus probiotic has been observed to affect 

intestinal microbiota. Ozawa et al. (1981) demonstrated that administration of B. subtilis strain BN 

shifted the intestinal microbiota of weaning piglets. This ability to “shift” microbial populations 

by Bacillus supplementation has become one of the main topics of Bacillus probiotic studies since 

late 1990s. Maruta et al. (1996a) observed a large change in the intestinal microbial population of 

broiler chickens following B. subtilis C-3102 supplementation. After two weeks continuous 
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feeding of 3x105 CFU/g of B. subtilis C-3102, a significant increase in the number of lactobacilli 

and a decrease in the number of Clostridium spp. and Salmonella spp. was reported in the broiler 

gut. Similarly, a significantly larger population of Lactobacillus was found in the small intestine 

of chickens fed with feed incorporated with 0.1% of B. subtilis CIP5832 culture product (Jin et al., 

1996b). Increasing the relative proportion of lactobacilli in the poultry intestine is considered one 

of the major effects of Bacillus probiotics supported by a number of studies using several different 

strains of Bacillus. For example, freeze dried B. subtilis KD1 increased lactobacilli concentrations 

in the rectum of the 21 d-old broilers and 42 d-old broilers (Wu et al., 2011). Further, increased 

Lactobacillus following B. subtilis probiotic supplementation in the feed has continued to be 

reported in several publications as listed in Table 1.2. 

Reduction of the number of coliforms and Campylobacter spp. on the broiler carcasses was 

also observed when 3x105 CFU/g of B. subtilis C-3102 was supplemented in the feed during the 

entire production period (Fritts et al., 2000). The addition of B. subtilis KD1 significantly reduced 

the E.coli concentrations in broilers (Wu et al., 2011). B. subtilis C-3102 decreased number of 

intestinal pathogens of chicken in the field, such as Enterobacteriaceae, Clostridium perfringens, 

Salmonella and Campylobacter (Maruta et al., 1996a). Reduction of Clostridium by B. subtilis 

PB6 was confirmed under Clostridium perfringens challenge conditions (Jayaraman et al., 2013). 

At day 35, broilers fed diets supplemented with B. subtilis LS1-2 showed a significant decrease in 

caecal Clostridium and coliform counts (Sen et al., 2012a). 

Effect of Bacillus probiotics on intestinal microbiota might have wide diversity and more 

strains and species could be affected by Bacillus supplementation. Modulation of ileal microbial 

communities by B. subtilis DSM17299 was observed in broilers and complex and diverse bacterial 

composition in the ileum was seen in the majority of chickens fed with the test strain (Knarreborg 

et al., 2008). B. subtilis C-3102 modulates microbiota composition dramatically in the in vitro 

gastrointestinal model and at least 58 strains of 400 investigated bacterial groups and species were 

influenced (Hatanaka et al., 2012). 

Since Metchnikoff hypothesized an important role of lactobacilli on human lifespan, 

lactobacilli have been generally recognized as a beneficial bacterium for human and animal health. 

In several articles, a lactobacilli dominant microbiota is often described as an indicator of good 

health status and a microbial “balance” skewed toward lactobacilli is generally considered as 

beneficial for animals and humans. Although Lactobacillus spp. have been recognized by the 
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scientific community as lacking pathogenic species and proinflammatory characteristics (Willing 

and Van Kessel, 2009), work clearly establishing a performance or health benefit associated with 

increased colonization remains limited. There is the possibility that the changes we could see in 

these reference works might be just a part of the phenomenon and Bacillus might have more impact 

on the chicken microbiota. 



 

 
 

Table 1.2. Shift of microbiota in the gut of broiler observed with Bacillus probiotic supplementation in scientific publications.  
Reference Test Animal Age Region Probiotic strain Increase Decrease 

Jin et al. (1996b) Broiler  
21 Intestine B. subtilis Lactobacilli   
28 Intestine B. subtilis Lactobacilli   

Maruta et al. (1996a) Broiler 
14 Feces B. subtilis C-3102 Lactobacillus   

49  Feces B. subtilis C-3102   C. perfringens 
  Salmonella 

Wu et al. (2011) 
Broiler 21 Rectum B. subtilis KD1 Lactobacillus Escherichia coli 
Broiler 42 Rectum B. subtilis KD1 Lactobacillus Escherichia coli 

Jeong and Kim (2014)  Broiler  

35 Cecum  B. subtilis C-3102  Lactobacillus  Escherichia coli 
    Salmonella 
 

Excreta B. subtilis C-3102  
Lactobacillus 

  

Escherichia coli 
 Salmonella 
 C. perfringens 

Sen et al. (2012b)  Broiler  
35  Cecum  B. subtilis LS1-2    Clostridium spp. 

    Coliforms 
Ahmed et al. (2014) Broiler 35 Cecum Bacillus amyloliquefaciens   Escherichia coli 

Lei et al. (2015)  
Broiler 21 Excreta Bacillus amyloliquefaciens Lactobacillus Escherichia coli 
Broiler 42 Excreta Bacillus amyloliquefaciens Lactobacillus Escherichia coli 

Hossain et al. (2015) Broiler  
35 Ileum B. subtilis DSM17299*1 Lactobacillus Escherichia coli 

 
Cecum  B. subtilis DSM17299*1  

Lactobacillus Escherichia coli 
 Bifidobacteria C. perfringens 

Park et al. (2017) Broiler 42 Small intestine B. subtilis C14, RX17*2 Lactobacillus Salmonella 
*1 Tested as combination product of Bacillus subtilis DSM 17299, Clostridium butyricum and Lactobacillus acidophilus. 
*2 Tested under S. gallinarum ATCC9184 challenge condition.   

15 
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2.2.3 Effect of Bacillus probiotics on Salmonella infection 

2.2.3.1 Relationship between Salmonellosis and poultry production 

Controlling the number of zoonotic pathogens in animal production is an important issue 

for society, given the significant incidence of human food borne illness. Shigella, Listeria, 

Escherichia coli O157:H7, Salmonella and Campylobacter are all well-known agents of food-

borne illness. Among these bacterial pathogens, the risks of Salmonella contamination can be one 

of the most serious infections for consumers and have devastating effects for the industry. In the 

early 20th century, Salmonella groups of organisms were already recognized as predominant in 

food poisoning outbreaks (Savage, 1929). Over 90 years has already passed, and Salmonella 

continues to be a major foodborne illness for human society. Results from surveillance programs 

by Centers for Disease Control and Prevention in United States indicated that Salmonella is 

estimated to cause over one million illnesses in the United States, including 19,336 hospitalizations 

and 378 deaths (Batz et al., 2012). It is estimated that Salmonella spp. caused 11% of foodborne 

illness and 28% of foodborne illness-related deaths (Scallan et al., 2011). In fact, a total of 6,647 

outbreaks of foodborne disease were recorded in United States during 1998 to 2002 and 

Salmonella serotype Enteritidis accounted for the largest number of outbreaks and outbreak-related 

cases (Lynch et al., 2006). In England, over 740,000 laboratory reports of Salmonella enterica 

infection were received and almost 43% were for S. enterica ser. Enteritidis during 1945 to 2011 

(Lane et al., 2014). Salmonella has been estimated to cause 627,200 cases of infection and cost 

846.2 million CAD per year in Canada (Todd, 1989). Salmonellosis has become a worldwide 

public health hazard. 

Unfortunately, it is well known that poultry products, specifically meat and eggs, have been 

the most common source linked to Salmonella infection. Surveys in the US indicated that poultry 

was known as a vehicle of Salmonella in 20.9% of food borne illness caused by Salmonella from 

1999 to 2008 (Batz et al., 2012). A total of 37,557 Salmonella Enteritidis infections were reported 

by the National Veterinary Services Laboratories in US from 1968 to 2011 and chicken was the 

source of the infection in 15,526 clinical cases (Centers for Disease Control and Prevention, 

2013a). In addition, direct contact with a farm animal, a chicken, is also recognized as a 

transmission route for Salmonellosis (Cummings et al., 2012). Since the 1990s, a total of 45 
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Salmonella outbreaks have been linked to live poultry and which causes 1563 illnesses, 221 

hospitalizations and five deaths (Centers for Disease Control and Prevention, 2013b). According 

to Humphrey (2006), for the last 20 years, there has been a pandemic of Salmonella Enteritidis 

infection in almost all parts of the world. Control of food-borne Salmonella infection is one of the 

major public-health goals and an important task in poultry production. 

To develop effective strategies for reducing the risk of Salmonella from poultry products, 

several feed additives have been investigated such as organic acids, probiotics, prebiotics and 

certain specific carbohydrates, egg proteins, essential oils and bacteriophages (Berge and Wierup, 

2012). Bacillus probiotics is also considered a candidate for Salmonella infection measures and it 

has gained much attention as alternative to antibiotics (Knap et al., 2011; Lee et al., 2011; Tellez 

et al., 2012). 

 

2.2.3.2 Efficacy of Bacillus probiotic on Salmonella infection of poultry 

Efficacy of Bacillus probiotics on Salmonella infection of broiler chicken has been studied 

since early 1990s and reduction of number or detection ratio of Salmonella in the chicken gut by 

administration of Bacillus probiotics has been reported by several scientists.  

Maruta et al. (1996a) reported that seven weeks of continuous feeding of 3x105CFU B. 

subtilis C-3102 per gram of feed significantly decreased detection ratio of Salmonella from excreta 

of broiler chickens in a field trial. Detection ratio of Salmonella was 20/20 in control group and 

10/20 in Bacillus supplemented group. Also, the number of Salmonella decreased from 4.07 log 

CFU/g in control group to 3.31 log CFU/g in treatment group. The same strain of Bacillus has 

been tested at the University of Arkansas where researchers examined carcass microbiological 

status of broiler chickens at the end of the trial. All 94 pre-chilled carcasses of birds fed control 

diet were positive for Salmonella, while 41 of 96 carcasses of birds fed B. subtilis C-3102 were 

positive at this trial (Fritts et al., 2000). In another Leghorn chicken trial, only 38% of birds from 

the Bacillus cereus toyoi supplemented group were Salmonella positive, whereas 63% of birds 

were still Salmonella-positive in the untreated control group at three week after innoculation (Vila 

et al., 2009). Knap et al. (2011) investigated fecal shedding of Salmonella at their broiler trial and 

tested birds fed with B. subtilis DSM17299 showed only 58% Salmonella-positive birds compare 

with control birds, which had 100% presence of Salmonella. B. subtilis B2A supplementation was 
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significantly associated with reduced intestinal Salmonella burden in day 28 old broilers (Park and 

Kim, 2014). Menconi et al. (2013) isolated seven strains of Bacillus from soil and poultry sources 

and indicate seven days continuous feeding of one isolate or a combination of two isolates 

significantly reduced the number of Salmonella in the crop and in the ceca of broiler chicken. In 

some cases a single oral inoculum of 1x109 spores of B. subtilis was sufficient to suppress 

colonization and persistence of Salmonella Enteritidis in 20-day-old specific pathogen free 

chickens (La Ragione and Woodward, 2003).                                                                                                      

 

2.3 Mechanisms of actions of Bacillus probiotics  

Exact mechanisms of action of Bacillus probiotics, for example, how does Bacillus 

probiotic reduce the number of Salmonella in the chicken gut, is still not fully explained just like 

mechanisms for other effects of the probiotics. This is a common challenge for all probiotics 

beyond Bacillus probiotics. Currently, no probiotic effect is perfectly understood or controlled. 

According to the variability in results from many reported studies, the mechanism might not be 

only one and there may be several complex pathways. Also, the effect might be the result of an 

accumulation of small changes from several different mechanisms (Dumonceaux et al., 2006). To 

approach this expected complex system, we need to classify the phenomenon from Bacillus 

probiotic trial very carefully. We hypothesized that at least four categories of mechanisms of 

actions might be available, two of direct responses and two of indirect responses. In this section, 

the hypothesis will be explained by using the Salmonella reduction as example for the action of 

the Bacillus probiotics. 

 

2.3.1 Direct response 

2.3.1.1 Direct effect of Bacillus probiotics on the number of Salmonella in the gut 

The biological properties of B. subtilis against other bacteria has been well known since 

1940s (Olivier, 1946). The potential of B. subtilis as an antibiotic substance producer has been 

recognized for over 50 years and it was reported that the bacteria is able to produce more than two 

dozen antibiotics with an amazing variety of structures (Stein, 2005). Consequently, it is well 

known that several Bacillus species show antagonistic activity against other bacterial species in 
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co-culture. It is reported that 15 strains in 117 Bacillus isolates were found to have the ability to 

inhibit the growth of Salmonella Enteritidis DMST 15676 and Salmonella Typhimurium TISTR 

292 (Thirabunyanon and Thongwittaya, 2012). Another article reported that all of seven Bacillus 

strains isolated from the environment showed antagonistic activities and three of them showed 

strong anti-Salmonella activity against 21 different Salmonella sero-types (Moore et al., 2013). 

According to results from an intestinal epithelial cell culture model using Caco-2 cells, B. subtilis 

culture medium itself significantly inhibited Salmonella Enteritidis invasion of epithelial cells in 

the model (Thirabunyanon and Thongwittaya, 2012). Live B. subtilis were removed from the cell 

culture media before Salmonella was added suggesting that B. subtilis secreted antimicrobial 

compounds into the media. However, the exact substance responsible for the antagonistic activity 

has not been identified. Indeed, each Bacillus strain appears to produce a unique cocktail of 

antibiotic substances (Katz and Demain, 1977). A few antibiotics have been found to be produced 

by a great variety of B. subtilis strains (e.g. subtilosin, surfactin, bacilysin), on the other hand, 

some antibiotics (e.g. lantibiotic sugtilin, ericin, mersacidin) are produced by specific strains of 

Bacillus (Stein, 2005). In particular, the antimicrobial activity of biosurfactants have received 

attention recently from several scientists due to their role as anti-adhesive agents to pathogens 

(Singh and Cameotra, 2004). Surfactin is one of those biosurfactants produced by some B. subtilis 

strains and known as strong antimicrobial substance against Gram negative bacteria (Hsieh et al., 

2004). Results from the above-mentioned studies are often shown as collateral evidence to support 

existence of a direct effect of Bacillus probiotics against Salmonella in the gut. However, direct 

response theory does not have full consent from scientists despite a strong and simple logic. At 

least three unsolved questions might need to be solved before reaching consent on direct effect 

theory.  

The first question is related to the differences in the number of active cells of Bacillus in 

the gut versus the plate medium. The spot test and paper disc diffusion method are popular methods 

to measure Minimum Inhibitory Concentration (MIC). These two methods employ high 

concentrations of vegetative Bacillus cells in close proximity to target bacteria (Moore et al., 2013). 

In contrast, Bacillus concentration in chicken feed is, at the most, between 105 CFU to 107 CFU 

of spores and recovery of vegetative Bacillus cells in intestinal contents is typically relatively low 

(2-5 log CFU/g). Therefore, in vivo, the ratio of Bacillus to target (pathogenic) bacterium is 
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considerably lower than during culture tests. Furthermore, these in vitro culture test rarely if ever 

are conducted in the context of a complex microbiota as observed in the gut environment. 

A second question, as alluded to above, is the germination ratio of Bacillus in the gut. 

Bacillus probiotic products consist of a spore powder. The strains need to germinate to become 

metabolically active and produce antibiotics (Marahiel et al., 1993). Approximately 50% of 

Bacillus subtilis in a colony is still vegetative cells on plate medium after 24 h incubation (Gomez-

Aguado et al., 2013). Based on this, it is considered that over 108 CFU of Bacillus strains are 

involved in the production of antimicrobial materials as vegetative cells during in vitro inhibition 

trials. Even if all Bacillus spores in the feed germinate in the gut, a supposition that is unlikely 

(Casula and Cutting, 2002; Hamaoka et al., 2010), total counts (vegetative plus spores) only reach 

around 105 CFU to 106 CFU per gram of contents. Combined, these findings regarding the relative 

abundance of vegetative cells in the gut environment suggest that a direct antimicrobial effect of 

Bacillus probiotics against Salmonella or other target bacteria is unlikely. 

A third question which needs to be considered is a lack of dose response effect. The dose 

response relationship is not clearly confirmed in Bacillus probiotic trials. Park and Kim (2014)  

reported an effect of dietary Bacillus subtilis B2A on intestinal Salmonella populations in broiler 

chicks with different supplementation levels, such as 1.1 x 104, 1.1 x 105 and 1.1 x 106 CFU per 

gram in diet. In this trial, B. subtilis B2A significantly reduced number of Salmonella in small and 

large intestine both, however the response was not dose dependent. In another feeding trial, five 

different doses of B. subtilis DSM17299 between 1.56 x 105 CFU/g to 2.08 x 108 CFU/g were 

administered in feed.  Bacillus supplementation was demonstrated to lower colonization by E. coli, 

but again the effect was not dose dependent (Molnar et al., 2011). If there is a direct pathway to 

suppress number of Salmonella or other pathogens, the effect of Bacillus probiotics could be 

expected to be dose dependent.  

Direct antagonistic effect against Salmonella is a simple and strong theory and it could be 

part of the mechanisms of action of Bacillus probiotics. However, further information about the 

life cycle (germination and sporulation) of Bacillus in the gut will be needed to address the three 

points described above. 
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2.3.1.2 Direct effect of Bacillus probiotics on host physiology 

The direct stimulation of the immune system by supplemented Bacillus probiotic is another 

possible hypothesis of the mechanisms of action. It is known that several immune mechanisms 

play a role in systemic clearance of Salmonella Enteritidis in chicken gut (Desmidt et al., 1998). 

The innate immune system is one of the primary defense systems against bacterial 

infections. The Initial event at intestinal cells in Salmonella-infected chicken is detection of 

lipopolysaccharide (LPS) by toll-like receptors (TLR) (Barrow, 2007). LPS is known as a 

component of the outer membrane of Salmonella and other Gram-negative bacteria. TLR4 is one 

of the most extensively studied pattern recognition receptors and known as the LPS receptor 

(Albiger et al., 2007). Rodent studies have demonstrated that vegetative cells of B. subtilis can 

stimulate expression of the toll-like receptor genes for TLR2 and TLR4 (Huang et al., 2008). This 

pathway could amplify phagocytic function in the intestine and reduce number of Salmonella in 

the chicken gut. Lee et al. (2011) demonstrated that four Bacillus strains enhanced Salmonella 

phagocytic activity of macrophages on Salmonella Enteritidis in broilers. In this article, it was also 

reported that the effect was strain dependent and they could confirm the enhancement by four of 

the nine test Bacillus strains. 

Other data also suggest stimulation of innate immune response by Bacillus probiotic 

strains. Effect of B. subtilis var. natto on T and B lymphocytes from the spleen of test chicken was 

reported in 1986 (Inooka et al., 1986). B. subtilis were able to stimulate proliferation of cells in 

gut-associated lymphoid system of mice (Huang et al., 2008). These data might suggest a higher 

immunological activity of the mucosa of Bacillus treated animals. In another chicken trial, 

response to Newcastle Disease vaccination was significantly higher in the Bacillus treatment group 

(Molnar et al., 2011). The significant increase of Newcastle disease antibody titer by a probiotic, 

which included Bacillus cereus, was also confirmed in chicken by a different research group (Li 

et al., 2009).  

These data are still insufficient and very fragmentary; however, several studies suggest the 

existence of a direct effect of Bacillus probiotics on the host immune system in chicken and it 

might have roles on the clearance of Salmonella or other pathogens in the gut. 
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2.3.2 Indirect response 

As described above, several studies have reported that B. subtilis can alter the intestinal 

microbial composition, such as increasing Lactobacillus and reducing several detrimental bacterial 

groups (Jeong and Kim, 2014; Jin et al., 1996b; Maruta et al., 1996a; Song et al., 2014). These 

changes in microbial composition could be an indirect mechanism of action for Bacillus probiotics. 

For example, the altered microbial composition could result in enhanced competitive exclusion, a 

widely accepted mechanism considered to protect chickens from Salmonella infection as originally 

presented in the early 1970s (Nurmi and Rantala, 1973). Alternatively, the Bacillus-altered 

microbial composition could mediate changes in host immune responses. This indirect pathway 

may be more consistent with the variable results reported on efficacy of Bacillus probiotics.  These 

variable results suggest the existence of uncontrollable factors in the trial design, one of which 

could be the variable starting microbiome reported among individual birds and rearing 

environments (Stanley et al., 2013b).  

 

2.3.2.1 Indirect effects via modified host intestinal microbiota  

As described above, increasing the number of lactobacilli in the gut contents is often 

reported as one of the beneficial effects of Bacillus probiotics. The mechanism of the increase is 

still unclear; however, this shift of microbiota could be one of the pathways of Bacillus action in 

the gut.  

Lactobacillus is a commonly detected genus in the gastrointestinal tract of chicken and 

known as a suppressor of other bacteria. Intestinal Lactobacillus genus have wide antagonism 

against several food poisoning bacterial species in the small intestine of chicken (Nakphaichit et 

al. (2011). An antagonistic effect of intestinal lactobacilli against Salmonella has also been well 

documented. Jin et al. (1996a) isolated twelve Lactobacillus strains from three-week-old broilers 

and indicated that all twelve Lactobacillus strains showed inhibition against five different 

serotypes of Salmonella isolated from chicken. In a study where one-day old broiler chicks were 

administered a Lactobacillus probiotic and subsequently challenged with Salmonella Enteritidis, 

administration of the Lactobacillus probiotic strains caused a reduction of Salmonella enumerated 

in ceca 24h after the challenge (Higgins et al., 2007; Higgins et al., 2010). Reduction of Salmonella 

in broiler chickens and turkeys by 11 different Lactobacillus strains was also reported (Menconi 
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et al., 2011). L. reuteri R-17485 and L. johnsonii R-17504 significantly decreased the colonization 

of Salmonella Enteritidis in ceca, liver and spleen of challenge chicks (Van Coillie et al., 2007). 

Therefore, a significant body of evidence would support that the effect of Bacillus probiotics on 

colonization of the chicken gut by Salmonella and other bacterial pathogens could be mediated 

indirectly by increasing colonization by members of the Lactobacillus genus.  

Two mechanistic questions that could be posed here are how does Bacillus increase 

lactobacilli in the gut and how does the increased lactobacilli suppress the Salmonella in the gut? 

Several potential mechanisms might be available for both questions. 

Hosoi et al. (1999) reported that B. subtilis var. natto has growth-promoting effect on 

lactobacilli when they are co-cultured aerobically in vitro (Hosoi et al., 2000). In this case, only 

intact Bacillus spores enhanced the growth of Lactobacillus and autoclaved spores did not  (Hosoi 

et al., 1999). This data suggests the importance of germination to enhance Lactobacillus in the gut. 

Microbiology textbooks have described B. subtilis as a strict aerobe, but other studies have shown 

that B. subtilis can grow anaerobically by using nitrate or nitrite as a terminal electron acceptor 

(Nakano and Zuber, 1998). Even so, B. subtilis consume massive amounts of oxygen when they 

grow and all oxygen in liquid medium (Tripticase Soy broth) which includes saturated dissolved 

oxygen was consumed within 2.5 hours by only 3x105 CFU/ml of B. subtilis inoculation 

(Unpublished 2003 Hamaoka). Making anaerobic conditions by consuming oxygen in the 

environment could be one of the pathways to increase lactobacilli and other anaerobic bacterium.  

How does Lactobacillus reduce the number of Salmonella in the chicken gut? A direct 

effect of Lactobacillus on Salmonella is confirmed by several in vitro studies (Fazeli et al., 2009; 

Jin et al., 1996a; Kezerwetter-Swida and Binek, 2005). It is reported that all eight Lactobacillus 

strains isolated from gastrointestinal tract of chicken have the ability to inhibit Salmonella spp. 

using the agar spot test (Hutari et al., 2011). In another study, 43 tested strains of Lactobacillus, 

including 24 strains isolated from excreta of chickens, showed inhibition against Salmonella 

Enteritidis and Typhimurium (Yamazaki et al., 2012). A total of 53 Lactobacillus strains were 

isolated from the cloaca and vagina of laying hens and evaluated by spot test for antagonistic 

function against 20 different Salmonella enterica strains. There was a difference in the strength of 

the inhibition; however, almost all lactobacilli strains showed inhibition against Salmonella strains 

in anaerobic condition (Van Coillie et al., 2007). These data suggest that inhibition against 

Salmonella is a common ability among lactobacilli although the strength is strain dependent. 
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Unlike Bacillus species, Lactobacillus is free from the argument on concentration and metabolism 

in the gut environment. According to results from 13 different microbial profiling studies, the 

concentration of lactobacilli in the ileum of chicken is around 8.0 log CFU/g (Rehman et al., 2007). 

Sometimes, over 9.0 log CFU/g of lactobacilli have been observed in field studies (Jin et al., 1996b; 

Maruta et al., 1996a).  

The concept of competitive exclusion also includes competition for nutrients, adherence to 

mucosal binding sites, as well as generating an antimicrobial environment through acidification 

(organic acid synthesis) or producing antimicrobial substances. Lactobacilli produce organic acids 

in anaerobic condition, such as lactic acid and acetic acid. Production of lactic acid might relate to 

Salmonella inhibition. The organic acid could make an intestinal environment with low pH which 

might suppress growth of Salmonella. In fact, the amount of produced lactic acid and strength of 

inhibition corresponded quite well in in vitro tests (Van Coillie et al., 2007). 

 Ability to adhere to the host mucus layer is also considered a possible pathway to reduce 

Salmonella, by blocking the adhering sites where Salmonella would attach. Adhesion to epithelial 

cells is important in predicting gastrointestinal colonization (Spivey et al., 2014) and a single strain 

of Lactobacillus acidophilus significantly reduced attachment of Salmonella to ileal epithelial cells 

of chicken (Jin et al., 1996c). Valeriano et al. (2014) reported Lactobacillus strain LM1 showed 

good adhesion and significant displacement of Salmonella on cell surface in in vitro trials.  

Lactobacillus is known as a major dominant intestinal bacterium strain in the chicken gut 

(Wei et al., 2013) and again, increasing Lactobacillus by Bacillus probiotic supplementation is 

recognized as one of the effects of the probiotics. Involvement of lactobacilli in mechanisms of 

Bacillus probiotics against Salmonella infection could be a leading hypothesis.  

 

2.3.2.2  Indirect effect via modified host intestinal microbiota and host physiology 

This is a difficult hypothesis to approach because of the factorial relationship between the 

diverse bacterial species present in the gut and how it is affected by the addition of the Bacillus 

probiotic and subsequently which of the many pathways by which bacteria may affect the host 

mediating a change in host physiology or immunity (Willing and Van Kessel, 2009). 

In the case where Bacillus increases abundance and/or metabolism of Lactobacillus spp., 

the relationship between lactobacilli and the host immune system is increasingly well studied.  
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According to review articles about the effect of lactobacilli on host immune system, lactobacilli 

possibly affects secretory-IgA levels, IgA-secreting cells, cytokine-producing cells, toll like 

receptor expression, villi structure, mucin secretion, antimicrobial peptide productions 

immunoglobulin titers, macrophage function and leucocyte counts (Ashraf and Shah, 2014; 

Cunningham-Rundles et al., 2011; Kemgang et al., 2014; Valeriano et al., 2014). Similar host 

immune system responses have been described for other potentially probiotic organisms (Hanchi 

et al., 2018; Maldonado Galdeano et al., 2019). Thus, it is plausible that the increase in 

Lactobacillus species previously reported following Bacillus spp. supplementation (Jeong and 

Kim, 2014; Jin et al., 1996b; Maruta et al., 1996a; Wu et al., 2011) could mediate changes in host 

response.  

Of course, other species in the gut may also be altered by the supplementation of Bacillus. 

Any of these bacteria could mediate direct beneficial changes in host physiology (digestive 

function, immunity). One approach to investigating this route is the use of transcriptomic, 

proteomic and/or metabolomics analyses to assess changes in host response pathways, first in a 

conventional environment, and subsequently in simplified environments including potentially 

mono-associated environments. Pathways activated in a conventional environment with Bacillus 

supplementation could be examined for activation by other bacteria in a simplified environments 

to establish which bacteria species are capable of pathway activation. Again though, such an 

approach is not feasible to test all commensal bacterial species found in the poultry gut and 

potentially modulated by Bacillus.   

 

2.4 Life cycle (germination and sporulation cycle) of Bacillus in the chicken gut 

Investigation of the life cycle of Bacillus (germination-sporulation cycle) in chicken gut is 

a crucial factor to clarify mechanisms of action of Bacillus probiotics, because this information is 

basic to assessing the metabolic activity of Bacillus in chicken gut and thus the possible 

mechanisms of action. For example, it is well known that Bacillus spp. produce several 

antibacterial compounds (Olivier, 1946) such that colonies of cultured (vegetative) cells show a 

zone of inhibition of growth against several foodborne pathogens such as Salmonella, E. coli and 

Clostridium on agar media (Thirabunyanon and Thongwittaya, 2012). Without knowledge of the 

extent and localization of germination of Bacillus spores in the chicken gut when supplemented in 
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the diet, the relevance and extent of this direct anti-pathogen effect cannot be assessed. Indirect 

mechanisms of pathogen control may also be affected by the location and extent of spore 

germination. Hosoi et al. (1999) reported lactobacilli was increased by the supplementation of 

intact spores of B. subtilis var. natto, but that this effect was absent when the spores were 

autoclaved. Thus, germination might be key to altering the intestinal microbial composition and 

an indirect mechanism of action.  

Several research data indicate that at least part of the Bacillus probiotic spore can germinate 

in the gastrointestinal tract. In mice, B. subtilis strains are able to carry out their entire life cycle in 

the gut (Tam et al., 2006) and a significant number of spores germinate in the jejunum and ileum 

and may colonize the small intestine briefly (Casula and Cutting, 2002). Both studies conclude 

that Bacillus has a potential to colonize the mouse gut.  

In chicken, the number of shedding spores in the excreta decreased with time in case of 109 

CFU spores of B. subtilis SC2362 administered to 1-day-old chick by a bolus oral gavage (Cartman 

et al., 2008). Shedding number of Bacillus spores in the gut was over 107 CFU/g 6 hour after the 

inoculation and the number decreased to around 103 CFU/g 168 hour later. In another study, the 

reduction was also confirmed when a single dose of 106 spores of B. subtilis PHL-NP22 was 

gavaged per chick on day of hatch (Latorre et al., 2014). Continuous feeding of 106 spores of B. 

subtilis PHL-NP22 to one-day old chicks was also tested and the number of recovered B. subtilis 

was consistently about 105 spores per gram of digesta (Latorre et al., 2014).  

In Japan, the regulations requires clarification of the distribution and excretion of the feed 

additive candidate in the gut of target animals. As of 2014, a total of 6 Bacillus products were 

registered as a feed additive in Japan. This means investigation about the life cycle of six different 

Bacillus strains has already been reported to the Ministry of Agriculture, Forestry and Fisheries in 

Japan when the strain was approved. However, the data is not available to the public. 

One of the strong limitations to approaching the life cycle of Bacillus spp. in chicken gut 

is the limitation on the analytical technology. Culture-based methods, based on the resistance of 

spores to heat inactivation, are available to observe the proportion of cells in spore or a vegetative 

state. The advantage the culture-based method is only viable target cells in the sample can be 

detected and the target cells, Bacillus strains in this case, can be kept for further analysis if it is 

necessary. On the other hand, identification of the target bacteria strain relies on morphology and 

some bacteria strain is still unculturable.  Molecular approaches have been investigated to improve 
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upon challenges to the culture-based approach to differentiation of spore and vegetative cells. For 

example, Casula and Cutting (2002) developed a test based on RT-PCR by creating a genetically 

engineered chimeric gene which is strongly expressed only in vegetative cells. Quantitative RT-

PCR detection of the expressed gene would serve as a proxy for vegetative cell number. Other 

scientists have tried to measure germination and sporulation in the mouse gut by quantitative 

expression analysis of natural germination and sporulation genes (Tam et al., 2006). Indeed, a 

semi-quantitative RT-PCR using this approach was developed to detect vegetative cells of B. 

subtilis SC2362. The problem with RT-PCR is PCR worked accurately for vegetative cells, but 

not for spores due to low efficacy on extracting DNA from spores. Furthermore, the absolute 

detection limit of the assay was found to be 3.33x105 cells per gram of tissue (Cartman et al., 

2008). 

 A new reliable method to enumerate spores of Bacillus has not been developed yet and the 

culture-based method is still one of the most potent tools to count total number of Bacillus in the 

sample. Therefore, there is still no clear conclusion about the life-cycle of Bacillus probiotics 

strains in the chicken gut and further investigations are required to clearly identify the site of 

Bacillus germination and the management and nutritional practices which optimize germination. 

In addition to germination, it is starting to be recognized that sporulation is a major Bacillus 

activity in the gut as a form of survival and propagation in the gut environment (Serra et al., 2014). 

Information on the site of germination/sporulation and optimization conditions are important 

considerations in establishing the role of germination and the mechanisms of action that support 

the highest probiotic effect. 

 

2.5 Characterization, function and control of chicken intestinal microbiota  

2.5.1 Intestinal microbiota of chicken 

The composition and diversity of intestinal microbiota in chicken gut has been investigated 

by culture-based methods for over 70 years. In the last 20 years, advanced molecular technologies 

started to be utilized for microbial community profiling and providing a more detailed picture of 

chicken gut microbiota for scientists.  

Chicken embryos developing inside the eggs laid by healthy hens are microbiologically 

sterile (Furuse and Okumura, 1994). Colonization of bacterium starts right after hatching due to 
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exposure to the environment around neonatal chicks, then the intestinal microbiota increases in 

complexity over the first four to six weeks (Barnes, 1979). Basically, bacterial density in the 

chicken gut increases with age (Benno and Mitsuoka, 1986) and is ultimately dominantly 

comprised of Bacteroidaceae, Clostridiaceae, Lactobacillaceae, Enterococcaceae and 

Enterobacteriaceae families (Lu et al., 2003). It is currently well-known that diversity and 

composition of intestinal microbiota can be affected by feed, age, feed additives and other 

environmental factors (Guan et al., 2003; Stanley et al., 2013b). In the adult, anaerobes are 

dominant over aerobes throughout the gastrointestinal tract of chicken. Based on knowledge from 

several microbial profiling studies using a culture-based method, the number of intestinal bacteria 

is highest in ceca and lowest in the gizzard (Rehman et al., 2007). Concentration of microbiota in 

ceca is roughly estimated around 1011 bacteria per gram of digesta by direct microscope cell count 

(Barnes, 1979; Salanitro et al., 1974b). According to a summary of 18 studies about cecal 

microbiota in chicken, the total count of anaerobes by culture-based method was maximum 10.9 

log10 CFU and minimum 9.5 log10 CFU per gram of intestinal content (Rehman et al., 2007). This 

result indicates that roughly a minimum of 10% to a maximum of 90% of the bacteria population 

in the chicken gut are culturable strains and the remaining bacteria are not to be detected by culture-

based method. 

There is consensus that the upper GI tract of chicken is dominated by lactobacilli. Lu et al. 

(2003) reported that 68% of sequences from the ileum were related with Lactobacillus and the 

remaining part of the composition was occupied by Clostridiaceae, Streptcoccus and Enterococcus. 

The highest diversity of Lactobacillus spp. is confirmed in the crop (Gong et al., 2007). Indeed, 

several different studies illustrated that lactobacilli were the main bacteria genes in the upper 

intestinal tract of chicken in the trials and abundance was a maximum of 99% in the jejunum 

(Amit-Romach et al., 2004; Lu et al., 2008; Rehman et al., 2007; Stanley et al., 2012). 

In contrast, species in the Clostridiaceae family are the most abundant group in chicken 

cecum. The dominant species in ceca was Clostridia-related sequences and Clostridium occupied 

40% of tested sequences (Gong et al., 2007). Lu et al. (2003) and Dumonceaux et al. (2006) also 

reported that bacteria in the Clostridiales order was the most abundant group detected in chicken 

ceca and occupied over 65% of the total number of sequences from ceca.  Studies at an early era 

also indicated that Clostridia were constituted around 20% of cecal microbiota (Salanitro et al., 

1974a; Salanitro et al., 1974b).  
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A total of 33,598 16S rRNA gene sequences of bacteria found in chicken gut were retrieved 

from available databases by Wei et al. (2013). Analysis of sequences showed a total of 915 

operational taxonomic units were found in the chicken and 117 established bacterial genera were 

included with most genera belonging to the phyla Firmicutes, Proteobacteria, and Bacteroidetes 

(Wei et al., 2013). It is also known that 4% to 25% of the strains in chicken gut are still recognized 

as unclassified (Gong et al., 2002; Wei et al., 2013). These data indicate the probable presence of 

unknown functional bacterium in the chicken gut. 

In recent years, several scientific reports have indicated the existence of embryonic, pre-

hatchling, microbiota in the chicken by next generation sequencing (NGS) method (Akinyemi et 

al., 2020; Lee et al., 2019).  Authors suggest the chicken’s gut microbiota may be seeded before 

hatching. On the other hand, making “germ-free” chickens as test animals is a well-established 

technique (Guitton et al., 2020) which argues against pre-hatch colonization. In addition, as 

described above, establishment of the complexity of the gut microbiota after the hatch is also a 

well-studied topic in the past even by next generation sequencing (Videnska et al., 2014). There 

was consensus on sterility of well-managed chicken embryos and the development of postnatal 

microbiota before. To fill the gap between new findings on embryonic microbiota and traditional 

understanding on sterility in the embryonic stage, quantitative information may be necessary for 

further discussion in addition to composition data shown by NGS. For example, Kizerwetter-

Świda and Binek (2008) reported that number of Enterococcus found in 18 day old chicken embryo 

was between 102 to 104 cfu/g in yolk sac. Egg yolk is suitable medium for bacterial growth and 

Enterococci reach to above 107 CFU/g in the yolk within 24 hours after inoculation or 

contamination and could grow above 108 CFU/g 48 hours later (Imai, 1980). Septicemia is also 

known as a fatal factor for the avian embryos (Amer et al., 2017; Hansen et al., 2015b; Orajaka 

and Mohan, 1985). Therefore, further investigation may be required to understand whether the 

microbiota establishment in the embryonic stage is normal for chicken or not. 

 

2.5.2 Function of intestinal microbiota of chicken  

Recently, several scientists started to investigate the functional impact of changes in the 

composition of the intestinal microbiota. One idea to approach the functional impact of the 

microbiota is to transfer whole microbiota from a donor animal demonstrating a particular 
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phenotype, to a recipient germ-free animal to determine whether all or part of the phenotype of the 

donor is transferred to the recipient. For example, it was reported that intact uncultured microbiota 

taken from obese mice, when transferred to germ-free mice, conveyed significantly greater 

increases in body mass and adiposity of recipient mice compared with microbiota taken from lean 

individuals (Turnbaugh et al., 2006). Controlling body weight and composition is a major interest 

in human and animal health science and these studies have confirmed a relationship between 

microbiota composition or metabolism and adiposity (Muscogiuri et al., 2019). In poultry, studies 

have also identified links between the composition of the intestinal microbiome and growth 

performance. The differences in intestinal microbiota between chickens with high FCR and low 

FCR were analyzed by high-throughput sequencing methods and 24 unclassified bacterial species 

were found to be significantly differentially abundant between high and low performing birds 

(Stanley et al., 2012). The same research team compared high performance and low performance 

birds in the same flock and they found a bacterial genus, Bacteroides was associated with high 

energy efficiency birds, a phenotype consistent with members of this genus recognized as cellulose 

and starch degraders (Stanley et al., 2013a). The linkage between adiposity and ratio of two 

different bacterial phyla, the Bacteroidetes and Firmicutes, has also been recognized at human and 

animal trials. The relative proportion of Bacteroidetes was decreased in obese people compare with 

lean people (Ley et al., 2006). Association between the Firmicutes and Bacteroidetes ratio and 

weight gain was also reported in chicken and duck trials and higher Firmicutes/Bacteroidetes ratio 

was confirmed with significant body weight gain in the Lactobacillus spp. probiotic treatment 

group (Angelakis and Raoult, 2010). 

Kogut (2019) indicated a possible link between microbial composition in the gut and 

metabolic or immune functions that could have wide-ranging implications for poultry health. 

Development of the avian immune system begins at the embryonic stage and continues until a 

few weeks of age post hatch (Panda et al., 2015). As reviewed by Kau et al. (2011), gnotobiotic 

studies have confirmed that the gut microbiota affects development of both immune defense and 

inflammatory responses.  The presence of commensal bacteria promotes the maturation of the 

intestinal immune system in comparison to GF chickens and influences the immune cells present 

in the intestine (particularly T-cells), the expression of cytokines, the expression of toll-like 

receptor proteins, and activation and priming of the acquired immune system (Oakley et al., 

2014; Kogut et al., 2019). Manipulation of commensal microorganisms in the gut may provide 



 

31 
 

new opportunities for enhancing immunity in the gut (Atarashi et al., 2011; Ivanov et al., 2009) 

and adding beneficial bacteria to the intestine by probiotics and prebiotics are considered as a 

methodology to manipulate the gut microbiome for the potential benefits on immune systems 

(Kogut, 2019).  

 

2.5.3 Controlling the intestinal microbiota of chicken for research 

The term gnotobiotic means a defined microbiota. Currently, the only approach to a 

completely defined microbiota in animals is to first generate a germ-free animal and subsequently, 

in a controlled environment, expose the animals to a defined bacteria or group of bacteria.  The 

first efforts to make germ-free chicks were done at the end of 19 century and successes to maintain 

germ-free chicks for a short period was recorded in 1913 by Schottelius (Reyniers et al., 1950). 

After that, the gnotobiotic chicken has been utilized to investigate the effect or function of 

individual bacterial strains by comparison between germ-free chicken and mono-associated 

chickens. Germ-free birds were reported to have improved growth and feed efficiency compared 

to conventional birds when highly digestible diets are provided, a response attributed to lower 

maintenance requirements associated with lack of immune stimulation  (Furuse and Okumura, 

1994). In contrast to germ-free mice, the microbial synthesized vitamins are not utilized in chicken 

(Coates, 1973) and vitamin supplementation did not increase the growth rate of germ-free chicken 

(Reyniers et al., 1950).  

Morishita et al. (1971) inoculated 11 different Lactobacillus strains to ex-germ-free birds 

and found that  non-intestinal lactobacilli, such as strains isolated from Swiss-cheese starter or 

pickled cabbage, failed to be established in the gut of germ-free chicken. Watkins and Miller 

(1983a) reported an attachment of Lactobacillus strains on intestinal epithelia through physical 

contact through observation from Lactobacillus acidophilus mono-associated chicks using 

electron microscopy. Further, Salmonella challenge in the Lactobacillus acidophilus mono-

associated chicken resulted in significantly less shedding of Salmonella in excreta compared with 

the germ-free birds (Watkins and Miller, 1983b). Inhibitory effects of Lactobacillus acidophilus 

against pathogenic Escherichia coli (Watkins et al., 1982) and Salmonella reduction in Escherichia 

coli mono-associated chicken were also confirmed by similar type of trials (Fukata et al., 1989; 
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Fukata et al., 1991a). Another study showed the mixture of E. coli and Lactobacillus sp. suppressed 

Salmonella colonization most effectively in gnotobiotic chickens (Baba et al., 1991). 

The use of a germ-free environment allows the effects of bacterial strains to be observed 

in a mono-associated state. An advantage of the approach is that differences between germ-free 

animals and mono-associated animals is wholly ascribable to the inoculated strain. On the other 

hand, the disadvantage of the mono-associated condition is that colonization occurs without 

competition affecting colonization density (Morishita et al., 1981) and potentially activated 

metabolic pathways (Luczynski et al., 2016). Furthermore, differentiation of responses attributable 

to the inoculant strain from generic responses to any (most) bacteria is difficult. Faith et al. (2014) 

adopted an interesting approach to overcome these challenges. This group isolated 17 major 

abundant strains from obese human feces and tested the effect of 94 combinations with a subset 

size 7.6 ± 3 strains made by random selection. Measurements on the immune system, adiposity 

and several facets of metabolism were made in mice associated with each of the 94 combinations 

compared with germ-free mice. Computer simulation provided efficient trial combinations. The 

effect of test strains alone and combined were investigated and estimated from the results. For 

most parameters investigated, the response to a single strain was not unique and additional 

response were typically not observed following colonization of 3-5 strains. These results indicated 

that most test strains show a significant effect on host physiology in mono-associated condition 

and there is no guarantee that such effects will be observed when in combination with other 

bacteria.  

Another approach to minimize variation in intestinal microbiota of test animals is to 

inoculate starter strains at the beginning of the trial to stabilize background microbiota in each 

trial. A primitive idea to achieve this concept might be done by inoculating gut contents to transfer 

“normal” intestinal microbiota from adult broiler to chick in early stage of their life (Nurmi and 

Rantala, 1973; Rantala and Nurmi, 1973). However, recreating the same composition of 

conventional microbiota in an open environment is a great challenge and still not achieved. For 

example, a mixture of 48 different bacterial strains from adult birds were given to one day old 

chicken (Impey et al., 1982). It was reported that adult-type microbiota was established by the 

inoculation, but the composition of cecal microbiota were different among three repeated trials. 

Yin et al. (2010) made three groups of inoculants with different bacterial composition and 

inoculated the mixtures by oral gavage within 4 h after hatch. The results indicated that the three 



 

33 
 

different inoculums could lead development of different bacterial communities in the gut and a 

different composition were still observable 15 days after the inoculation. However, reproducibility 

of this unique balance for each inoculant in subsequent studies was not reported. Finally, Stanley 

et al. (2013b) reported high variation of microbiota in the chicken among three similar trials under 

carefully controlled conditions. Recreating the same composition of conventional microbiota in 

open environment has yet to be achieved.  

 

2.6 In ovo inoculation as test model 

The technique of in ovo inoculation was first tested by Sharma and Burmester (1982) as an 

embryonic vaccination. In the current US broiler industry, in ovo injection is in use in more than 

90% of hatcheries (Peebles, 2018) and widely accepted as a safe and effective vaccination method 

for Marek’s disease (Sarma et al., 1995; Sharma and Witter, 1983), Infectious Bursal Disease 

(Newswire, 1997; Sharma, 1985), Newcastle disease (Sanling et al., 2020; Stone et al., 1997), and 

Avian influenza (Breedlove et al., 2011). The in ovo technique is used not only for vaccination 

purposes but also utilized for nutritional supplementation of minerals (Ahmadzadeh et al., 2019; 

Vaibhav Bhagwan et al., 2020; Yair et al., 2015), vitamins (Hayakawa et al., 2019; Zhu et al., 

2019), amino acids (Kop-Bozbay and Ocak, 2019; Nazem et al., 2019), and carbon sources 

(Ghanaatparast-Rashti et al., 2018; Retes et al., 2018; Zhai et al., 2011).  

Chicken embryos are also used as a laboratory animal model (Ruijtenbeek et al., 2002). 

For example, the chicken embryo was reported as fast and robust model to test the function of 

muscle fusion genes (Daniel et al., 2017). Also, the embryo has been shown to be a suitable 

bioassays for the impact assessment of endocrine disrupting chemicals on reproductive tissues 

(Jessl et al., 2018). The in ovo technique has been utilized as a method for the assessment of 

biological activity of oligosaccharides (Gulewicz, 2004; Villaluenga et al., 2004), assessment of 

the effect of hormones to control bird’s aggressive behaviors (Ahmed and Essa, 2020) and toxicity 

of a total of 80 rubber chemicals (Hemminki, 1983). 

The in ovo technology has also been used as a method to introduce probiotic bacteria prior 

to hatch. Three different purposes can be seen with probiotic in ovo inoculation, such as enhancing 

growth performance, manipulation of intestinal microbiota, and stimulation of the innate immune 

system. Safeness and benefit of Lactobacillus. reuteri in ovo inoculation was first reported in the 
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1990's (Edens et al., 1997). In ovo inoculation was investigated as a possible delivery method for 

commercial probiotics (de Oliveira et al., 2014; Huff et al., 2015) and positive effects of in ovo 

inoculation on growth performance were reported with Lactobacillus acidophilus (Triplett et al., 

2018), Enterococcus faecium (Claudia et al., 2020; Skjøt-Rasmussen et al., 2019), Lactobacillus 

animalis (Beck et al., 2019), Bifidobacterium longum (Abdel-Moneim et al., 2020; Beck et al., 

2019), Bifidobacterium bifidum (El-Moneim et al., 2020), Bifidobacterium animalis (Abdel-

Moneim et al., 2020; Triplett et al., 2018) and a cocktail of probiotic strains (de Oliveira et al., 

2014; Majidi-Mosleh et al., 2017b; Pender et al., 2017).  Injection of Bacillus spp. probiotic into 

broiler embryos was also tested by Arreguin-Nava et al. (2019) and significant body weight gain 

at day 7 was confirmed in Bacillus treatment.  

 

2.7 Conclusions 

The gut microbiome plays an important role in host physiology including impacts on 

health, digestive function and energy metabolism. The oral administration of Bacillus probiotics 

has been shown to impact health and performance outcomes in the bird and may do so through 

manipulation of the gut-microbiome interface. The detailed mechanisms that contribute to health 

and performance benefits following Bacillus administration are not understood. Understanding the 

mechanisms involved are critical to refining the application of Bacillus probiotics to establish 

conditions under which benefit is expected and to inform development of improvements in this 

technology.  

Two different mechanistic pathways could be hypothesized for effect of Bacillus probiotic 

in chicken production. Bacillus probiotics may show some efficacy mediated by direct effects on 

the host such as direct stimulation of immune system or digestive functions. On the other hand, 

the latest developments in molecular biological technology have revealed a complex intestinal 

microbiota in the chicken gut and probiotic studies show a shift of gut microbiota composition by 

Bacillus probiotics supplementation in the feed. This shifted microbiota may cause changes on 

host physiologies as an indirect effect of Bacillus probiotics. For these two different hypotheses, 

making gnotobiotic chicken could be a powerful approach to separate outcomes mediated directly 

by the probiotic compared with those mediated by indirectly by changes to the microbial 

composition.  Firstly, the direct mechanisms could appear and be observed in comparison between 
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germ-free birds and Bacillus mono-associated birds. Secondly, the complexity, dynamics and 

variability of the intestinal microbiota provide a challenge to investigating indirect mechanisms of 

action of Bacillus probiotics. Therefore, approaches to simplifying the microbiota to assess the 

indirect mechanisms should be valuable. 



 

 
 

2.8 Overall objectives and Hypothesis 

Dietary supplementation of B. subtilis has been shown to improve growth performance and 

shift intestinal microbiota by lowering detrimental bacterial colonization in broiler chickens (Knap 

et al., 2011; Maruta et al., 1996a; Tellez et al., 2012). We hypothesize that the mechanisms of 

action of B. subtilis C-3102 include both direct and indirect components. Direct mechanisms could 

include direct inhibition of the detrimental bacterium or direct stimulation of host functions such 

as mucosal barrier, improvement in digestion or absorption resulting in better growth performance. 

Alternatively, indirect mechanisms could include B. subtilis-mediated shifts in gut commensal 

microbial populations such that members of the altered population either exclude detrimental 

bacteria or enhance the immune or digestive functions of the host, which could contribute to 

improved growth performance. 

Knowledge regarding the mode of action of probiotics such as Bacillus probiotics is 

important given the variation in response reported in the literature and commercially. By 

understanding mode of action we can better predict when probiotic administration will be 

beneficial or make appropriate adjustments to the dosage, timing, nutritional balance of the host, 

and combination with other feed additives in order to support efficacy.  In addition, mode of 

action studies may reveal new facts to select or develop the next generation of probiotics with 

new strains or new combinations of the bacterium. Therefore, we expect this series of research 

will be a step in the path to more efficacious probiotic products. 

The overall objective of this research is to establish gnotobiotic models to control 

microbial colonization of the chicken gastrointestinal tract as an approach to determining the 

mechanism of action by which supplementation of B. subtilis C-3102 spores in feed of broiler 

chickens improves growth performance as an alternative to antibiotics. Specific objectives 

include: 

 

 

1. To develop an in ovo bacterial inoculation model to investigate the effect of B. subtilis 

C-3102 on development of the gastrointestinal tract of the chicken. 

2. To isolate representatives of major taxonomic groups in the chicken gastrointestinal 

tract and employ an in ovo bacterial inoculation model to compare effects of different 

bacteria on gastrointestinal development. 
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3. To establish a simplified microbiota model in chicken. 

4. To characterize the effect of simplified microbiota on chicken physiology with and 

without B. subtilis C-3102 supplementation. 

5.  To characterize mechanisms by which B. subtilis C-3102 affects the health and 

performance of broiler chickens when supplemented as a feed additive. 



 

 
 

3 EFFECT OF BACILLUS SUBTILIS C-3102 ON INTESTINAL DEVELOPMENT IN 
THE CHICK EMBRYO 

3.1 Abstract 

To investigate the direct effect of a probiotic on intestinal development, healthy chicken 

embryos were mono-associated with Bacillus subtilis C-3102. The exterior of fertilized eggs was 

sanitized and incubated under standard conditions in a HEPA-filtered sanitized incubator. At day 

17 of incubation (E17), the amniotic fluid was injected (100 µl) with sterile saline (Germ-free; 

n=20) or saline containing 6.7 x 106 spores of B. subtilis C-3102 (BS; n=20). The eggs were then 

placed into sterilized individual heated containers with HEPA-filtered humidified air supply until 

study completion. Chicks were killed either immediately following hatch (n=10) or exactly 24 

hours after hatch.  Body weight, organ size, ileal gene expression, Bacillus spores and Bacillus 

vegetative cells in intestinal contents were measured and analyzed by two-way ANOVA using BS 

and Age as main effects.  Culture confirmed germination and replication of BS in chicken intestinal 

tract without evidence of microbial contamination. BS increased (P < 0.05) incubation time to 

hatch, yolk sac weight and relative liver weight, but decreased (P < 0.05) yolk sac free body weight 

at hatch and 24 hours after hatch. Ileal expression of interleukin (IL)-6, toll-like receptor (TLR) 2 , 

TLR 4, peptide transporter-1 (PepT1), aminopeptidase N (APN), insulin-like growth factor-1 (IGF-

1), growth hormone (GH) and mucin-2 (MUC2) were increased (P < 0.05) with age, whereas 

mono-association with BS upregulated (P < 0.01) expression of TLR 2 and 4, tended (P < 0.10) to 

upregulate PepT1, APN, IGF-1 and GH, and downregulated (P < 0.01) Claudin 4. Age and BS 

interacted (P < 0.05) such that IL-8 transcript abundance was higher in BS birds only at hatch and 

proliferating cell nuclear antigen (PCNA) was lower in BS birds only at 24 hours. An interaction 

for MUC2 indicated that BS initially increased expression at hatch and decreased expression at 24 

hours. Pathway analysis of RNA sequencing (RNAseq) data confirmed enrichment Bacillus 

enrichment of Chemokine pathways at both hatch and 24 h of age, and enrichment of digestion 

and absorption pathways at 24 h post hatch. The mechanisms of action of Bacillus probiotics in 

the gut may include metabolic activities associated with bacterial germination and vegetative 

metabolism. Although there was evidence of advanced maturation of digestive function, in ovo B. 
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subtilis C-3102 modified body and organ weight as well as intestinal gene expression primarily 

associated with unfavorable effects on embryonic development.  

 

3.2 Introduction 

Bacillus subtilis has been recognized as a growth promoter for broiler production at least 

since 1970 (Kozasa, 1989; Mitsuoka, 1991) and strains of Bacillus spp. are regulated and registered 

as probiotics for animal production in the EU (EFSA, 2006b; Silley, 2006), the USA (Pendleton, 

2015) and Japan (Kojima, 1995). Despite an over 40-year history of use, the mechanisms that 

underlie performance benefits observed with Bacillus probiotics are not fully elucidated.  

Multiple mechanisms have been proposed including secretion of antimicrobial substances 

(Katz and Demain, 1977; Stein, 2005), modulation of protective immunity (Desmidt et al., 1998; 

Huang et al., 2008; Lee et al., 2011), reduction of detrimental bacteria (Fritts et al., 2000; La 

Ragione and Woodward, 2003; Maruta et al., 1996a; Vila et al., 2009) and increased intestinal 

Lactobacillus populations (Hosoi et al., 1999; Jeong and Kim, 2014; Maruta et al., 1996a; Wu et 

al., 2011). These potential mechanisms can be classified into two categories from an intestinal 

microbiological point of view, including a direct effect of Bacillus probiotics on host physiology 

and an indirect effect mediated via a shift intestinal microbial composition. However, it is 

impossible to separately observe these direct and indirect effects in a conventional environment 

with a diverse gut microbiota.  

Gnotobiotic poultry models have been reported as early as 1950 (Reyniers et al., 1950) and 

have been used previously to elucidate probiotic mechanisms (Fukata et al., 1991b; Morishita et 

al., 1971; Watkins and Miller, 1983a).  While gnotobiotic models are powerful tools, they are very 

difficult to establish and commonly experience contamination problems (Cheled-Shoval et al., 

2014; Phillips et al., 1962). We therefore elected to take advantage of the germ-free state of the 

developing embryonic digestive tract (Furuse and Okumura, 1994) and of previously established 

methods for in ovo delivery of vaccines (Sarma et al., 1995), antibiotics (Bailey and Line, 2001), 

minerals (Ahmadzadeh et al., 2019; Vaibhav Bhagwan et al., 2020; Yair et al., 2015), nutrients 

(Dong et al., 2013; Kadam et al., 2013; Retes et al., 2018; Saeed et al., 2019), and selected bacteria 

(Arreguin-Nava et al., 2019; de Oliveira et al., 2014; Majidi-Mosleh et al., 2017b; Pender et al., 
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2017; Triplett et al., 2018). The in ovo inoculation model offers a relatively simple model to assess 

the direct effect of selected bacteria (alone or in combination) on chick gastrointestinal 

development. However, extrapolation to post-hatch conditions will be disadvantaged by the 

incomplete development pre-hatch (Geyra et al., 2001) . 

The objectives of this experiment were to further develop the in ovo inoculation model to 

permit isolation and hatching of individual eggs under gnotobiotic conditions and to extend the 

analysis of a gnotobiotic environment on gut development to the 24-hour post hatch period. This 

model was employed to investigate the direct effects of in ovo inoculation with B. subtilis C-3102 

(BS) at day 17 of incubation (E17) on the development of chick embryos at the time of hatch and 

24 h after hatch. We hypothesized that BS inoculation would hasten gut development resulting in 

a more robust chick at hatch. 

 

3.3 Material and Methods 

3.3.1 Animal Care 

All animal experiments were conducted with the approval of the University of 

Saskatchewan Animal Research Ethics Board (Protocol # 20150017) according to the guidelines 

of the Canadian Council on Animal Care. 

 

3.3.2 Animals, Experimental Design and Sample Collection 

Fertilized eggs (White Leghorn, ISA Bovans White x Lohmann LSL-Lite) were obtained 

from the University of Saskatchewan Poultry Research and Teaching Unit (Saskatoon, SK). 

Fertilized eggs (n=132; 55 g to 65 g), free of cracks and other defects, were collected on the day 

of lay and stored at 13 °C overnight. The selected eggs were soaked in 0.5% of sodium 

hypochlorite at 30 °C for 12 minutes and then transferred to a HEPA-filtered sterilized incubator 

at 37.8 °C. At the end of day 17 (E17), eggs containing undeveloped chicken embryos and with 

weight loss greater than the mean weight loss for all incubated eggs plus one standard deviation 

were discarded. Of the remaining eggs, 40 were randomly selected and assigned to four treatment 
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groups balanced for weight at the beginning of the incubation (E0) and subject to further 

decontamination by soaking 0.5% sodium hypochlorite for three seconds at 30 °C. Subsequently, 

a small hole was made in the shell at the top of each air cell using a Dremel® rotary tool (Racine, 

WI, U.S.) with a diamond tip. Using a pipette, sterile saline (100 µl) was injected into amniotic 

fluid of eggs in two germ-free (GF) treatment groups and saline containing 6.7 x 106 CFU/100 µl 

(6.8 log CFU) of B. subtilis C-3102 was injected into 2 B. subtilis (BS) treatment groups. The hole 

in the shell was sealed using a food industry grade 100% silicone sealant (Kitchen grade 100% 

silicone, DAP®, Canada) and eggs were placed in a sterile, HEPA-filtered hatcher (Robbins®, 

Robbins Incubator Co., California, USA) for 10 min until the silicone solidified. The eggs were 

then placed into sterile individual sterile hatching jars and sealed.  The temperature and humidity 

in the individual hatching jars were maintained at 38 °C and around 50% relative humidity by 

circulation of humidified air through a 0.45 µm filter (Nalgene Syringe Filter 0.45µm SFCA, 

Thermo Scientific) using an air pump (Whisper® Aquarium Air Pump, Tetra, Blacksburg, VA, 

U.S.A.). Time of hatch was recorded for all birds.  One GF and one BS treatment group (n=10 / 

group) were killed immediately following hatch and chicks in remaining two treatment groups 

(n=10 / group) were killed 24 hours after the time of hatch.   

Following euthanasia, body weight, yolk sac weight and weight of the gizzard, bursa of 

Fabricius and liver were recorded. Length of the small intestine including the duodenum (duodenal 

loop), jejunum (proximal end of duodenal loop to Meckel’s diverticulum), and ileum (Meckel’s 

diverticulum to ileal-cecal junction) were also measured and recorded. Cecum contents and gizzard 

contents were collected to confirm microbial status. For samples collected 24 hours after hatch, 

microbial status of the gizzard was determined using a cotton swab as liquid contents were 

insufficient to permit direct collection. Segments from the middle location of the small intestinal 

region and the cecum were placed in 10% formalin to permit histological analysis (1 cm) or snap 

frozen in liquid nitrogen to permit analysis of gene expression.  

 

3.3.3 Culture of Intestinal Contents and Spore Enumeration 

To confirm germ-free or Bacillus mono-associated status in intestine of newly hatched 

chicks, fresh gizzard or cecal content (50 µL) was diluted (1:10 w/v) in 0.1% peptone water and 
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spread on BBLTM TrypticaseTM soy broth with 2% agar  (TS agar; Becton, Dickinson and Co. 

Sparks, MD, USA) and incubated at 37 ˚C for 24 hours aerobically, or spread on BL agar (Eiken 

Chemical Co., Ltd., Japan) and incubated at 37 ̊ C for 48 hours anaerobically (Anaeropack System, 

Mitsubishi Gas Chemical Company, INC., Tokyo, Japan).  Remaining contents for gizzard and 

cecum were heat treated at 65 ˚C for 35 min to kill vegetative cells prior to plating to enumerate 

spores. 

 

3.3.4 Preparation of Bacillus subtilis C-3102 inoculant.  

Bacillus subtilis C-3102 (DSM 15544) was cultured on TS agar at 37 ˚C for 24 hours and 

kept at 5 ˚C for 24 hours to ensure spore formation. Colonies were collected aseptically by 

sterilized platinum loop, placed into plastic tubes containing ice cold sterile saline and 

homogenized using POLYTRON® Model K Homogenizer (Kinematica, Luzern, Switzerland) at 

full speed for 30 sec. The homogenized solution was centrifuged at 10,000 g for 20 min, the 

supernatant discarded and the spore-containing pellet re-dissolved into fresh ice cold sterilized 

saline. This washing process was repeated until the supernatant became clear. Pellets were 

transferred to filter paper and dried overnight at 60 °C to kill vegetative cells. Dried remaining 

spores were finely ground using a sterilized mortar and pestle and number of B. subtilis C-3102 

spores per gram dry weight enumerated by aerobic culture on TS agar at 37 °C for 24 h. Dried 

spores were separated into aliquots (1.0 g) and heated to 60 °C for 2 hours to ensure destruction of 

any contaminating vegetative bacteria. The spore powder was kept at room temperature until the 

trials and number of viable B. subtilis C-3102 per g of powder was re-confirmed by culture-based 

enumeration before use. For in ovo inoculation, the spore powder was dissolved into sterile saline 

and adjusted to 6.7 x 107 CFU per ml (6.7 x 106 CFU per bird) 10 min prior to the injection and 

kept at room temperature. 

3.3.5 Histochemistry 

After formalin-fixation in 10% neutral buffered formalin at least for 24 hour, tissue samples 

were submitted to the Prairie Diagnostic Services Laboratory (Saskatoon, SK, Canada) for paraffin 

embedding, sectioning (5 µm thickness) and staining with hematoxylin and eosin (H&E). A total 

of at least four cross sections were prepared from two different regions of each section for each 
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bird.  Using an observer blinded to treatment, at least 10 well oriented villi and 10 crypts were 

measured per bird under Axiostar plus light microscope (Carl Zeiss Canada Ltd., Toronto, ON) 

and AxioVision 4.1 measurement software (Carl Zeiss Canada Ltd.). Mean values were recorded 

for each sample. 

 

3.3.6 RNA extraction from ileum tissue 

Frozen ileal tissues were finely ground and mixed using a mortar and pestle under liquid 

nitrogen. Total RNA was extracted from 30 mg of ground tissue using the RNeasy Mini Kit 

(Qiagen, Mississauga, ON) incorporating RNase-Free DNase (Qiagen, Mississauga, ON) to 

remove genomic DNA from the sample. Total RNA concentration was quantified by optical 

density at 260 nm using a NanoDrop spectrophotometer (Thermo Scientific, Wilmington DE). 

Only samples with a 260/280 ratio between 1.80 and 2.00 were retained for gene expression 

analysis. The total RNA (5 µg) was reverse transcribed with random hexamer primers using High 

Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Inc., Foster City, CA, USA) and 

the cDNA was stored at -80 °C until gene expression analysis was performed by quantitative real-

time PCR (qPCR). 

 

3.3.7 Quantitative real-time PCR gene expression analysis 

Specific transcript abundance was measured using quantitative real-time PCR (qPCR) 

carried out using CFX96 real-time PCR detection system on a C1000 thermal cycler (Bio-Rad 

Laboratories, Inc., California, U.S.A.). As a template for each reaction, 2.0 µL of a 1/100 dilution 

of cDNA was utilized and mixed with 1.0 µL of 10 µM forward and reverse primer (Table 3.1), 

10.0 µL of SsoFastTM EvaGreen® Supermix (Bio-Rad Laboratories, Inc., California, USA) and 

6.0 µL of nuclease free water. The qPCR reaction conditions were 95 °C for 2 min followed by 40 

cycles at 95 °C for 5 seconds and annealing at 53-61 °C for 5 seconds (see Table 3.1). A melting 

curve analysis was conducted at the completion of amplification cycles by increasing temperature 

from 65 °C to 95 °C in 0.5 °C increments for 5 seconds each. Standard curves were prepared using 

1.0 µL of a 5-fold dilution series of pooled cDNA in triplicate assigning an arbitrary value to the 
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highest concentration standard. All standard curves demonstrated a PCR efficiency between 98.8% 

and 117%. All samples were analyzed in duplicate and duplicates with greater than 10% coefficient 

of variation were repeated.  

A total of eight different candidate genes were tested as housekeeping genes for this study 

(Table 3.2). Mean threshold value for each sample was not different (P >0.05) among treatment 

groups for  GAPDH, SDHA and TFRC, such that for each sample, the mean of the arbitrary value 

for each of these housekeeping genes, interpolated from the standard curve, was divided by the 

arbitrary value of the gene of interest to normalize expression values (Livak and Schmittgen, 2001). 

Fold change was calculated relative to the mean normalized arbitrary value for the Germ-free 

treatment at hatch and 24 hours of age. 



 

   
 

Table 3.1 Primers used for qPCR quantification of genes of interest 

Symbol Gene name Accession no. Ori Primer sequences (5'-3') Temp3 

IL-6 Interleukin-6 JN639849 F1 GAAATCCCTCCTCGCCAATCTGA 55 
    R2 TGAAACGGAACAACACTGCCATCT   
IL-8 Interleukin-8 AJ009800 F ATGAACGGCAAGCTTGGAGCT 61 
    R TCACAGTGGTGCATCAGAATTGA   
TLR2 Toll-like receptor 2 NM_204278.1 F GGCTGTGAACCTGAGAACC 55 
    R CTGATGACTGCTGAGAATACG   
TLR4 Toll-like receptor 4 NM_001030693 F ATCACTTCTGTCTGTCTCC 53 
    R CTGTTGCCACTCCTTATCTTG   
APN Aminopeptidase-N NM_204861.1 F GTCCAACAGAGCCACTTCC 54 
    R CGTCCACCAGCCAATACC   
SGLT-1 Sodium glucose co-

transporter 1 
AJ236903.1 F GTCTACCTGTCAATCCTTTCAC 52 
  R GGCATCATACCCTCCAACC   

PepT-1 Peptide Transporte-1 AY129615.1 F ATGTTCCTTGCTGGTCTGG 52 
    R TGCGTATTGCTGCTTATTGAG   
cGH Chicken Growth 

hormone gene 
HE608816 F CACCACAGCTAGAGACCCACATC 58 

    R CCCACCGGCTCAAACTGC   
IGF-I Insulin-like growth 

factor-I 
JN942578 F GGTGTCGAGCTGGTTGATGC 58 

    R CGTACAGAGCGTGCAGATTTAGGT   
CDN1 Claudin-1   F TGGAGGATGACCAGGTGAAGA 58 
      R CGAGCCACTCTGTTGCCATA   
CDN4 Claudin-4 GI: 363741048 F CGGGATCCGATGGCCTCCATGGGGCT 58 
      R GTGGAATTCCTTACACGTAGTTGCTG   
CDN5 Claudin-5   F CAGAAGCGGGAGATAGGGG 58 
      R TACTTGACGGGGAAGGAGGT   
PCNA Proliferating Cell 

nuclear antigen 
NM_204170 F GGGTTCGGGCGGCATCAG 57 

    R TCTTCATTTCCAGCACACTTCAG   
MUC2 Mucin 2 XM_421035 F CCTGTGCAGACCAAGCAGAAA 58 
    R CCTCTGTTTTTCAGCAAAGAACAC   
1 F: Forward, 2 R: Reverse, 3 Annealing temperature   

45 



 

    
 

Table 3.2  Primers used for qPCR quantification of housekeeping genes. 

Symbol Gene name Accession no.   Primer sequences (5'-3') Temp3 

GAPDH Glyceraldehyde-3-phospate 
dehydrogenase 

NM_204305 F1 GTGAAAGTCGGAGTCAACGGA 60 

    R2 AAGGGATCATTGATGGCCAC   

RPL30 Ribosomal protein L30 NM_001007479 F GAGTCACCTGGGTCAATAA 56 
    R CCAACAACTGTCCTGCTTT   
SDHA Succinate dehydrogenase 

complex, subunit A 
XM_419054 F CAGGGATGTAGTGTCTCGT 58 

    R GGGAATAGGCTCCTTAGTG   
18S 18S ribosomal RNA  AF173612 F CGAAAGCATTTGCCAAGAAT 58 
    R GGCATCGTTTATGGTCGG   
PGK1 Phosphoglycerate kinase 1 NM_204985 F AAAGTTCAGGATAAGATCCAGCTG 58 
    R GCCATCAGGTCCTTGACAAT   
RPS7 40S ribosomal protein S7 XM_419936 F TAGGTGGTGGCAGGAAAGC 58 
    R TTGGCTTGGGCAGAATCC   
TFRC Transferrin receptor protein 

1 
NM_205256 F GGAACTTGCCCGTGTGATC 58 

    R GTAGCACCCACAGCTCCGT   
YWHAZ 14-3-3 protein zeta/delta NM_001031343 F GTGGAGCAATCACAACAGGC 58 
    R GCGTGCGTCTTTGTATGACTC   
1 F: Forward, 2 R: Reverse, 3 Annealing temperature 
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3.3.8 Whole transcriptome analysis using mRNAseq 

Total RNA extracted from ileal tissue was adjusted to 100 ng RNA per µL by diluting in 

nucleic acid free water. Quality and integrity were assessed by Agilent 2100 Bioanalyzer (Agilent 

Technologies, Santa Clara, CA, USA) at National Research Council Canada (CNRC: Saskatoon, 

SK, Canada) prior to reverse transcription. Barcoded cDNA libraries were sequenced on a HiSeq® 

2500 Sequencing System (Illumina, Inc., San Diego, CA, USA). Sequencing was pair-ended 

providing 125 base pairs in read length and samples (8 samples per treatment) were arranged to 

give an expected read depth of 10.9 M reads per sample. Quality of the raw sequence results were 

examined by FastQC (Babraham Bioinformatics) and adaptors/poor quality sequences were 

trimmed with Trim Galore! (Babraham Bioinformatics). The trimmed reads were aligned to the 

Gallus gallus reference genome GRCg6a_v95 using HISAT2 v. 2.2.0 (Kim et al., 2015). The 

resultant bam files were imported into SeqMonk v1.47.2 (conditions: duplicate reads not removed, 

minimum mapping quality 20, primary alignments only, RNA-seq data, paired end), probes 

generated (RNASeq Quantitation Pipeline: transcript features mRNA, library type: non-strand 

specific, libraries are paired end, merge transcript isoforms), manual quantitation correction 0.05, 

and reads normalized against control samples.  

Pathway analysis of genes identified as changing ≥3 fold was conducted using PANTHER 

(www.pantherdb.org) Over Representation Test (Released 2020-07-28, Reactome version 65 

Released 2020-11-17) with FISHER test. Gene Ontology (GO) terms were identified with 

PANTHER and GO Ontology database DOI:  10.5281/zenodo.4081749 (Released 2020-10-09). 

Dot plots were generated using ggplot2 in R. 
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3.3.9 Statistical analysis 

All results were expressed as the mean ± standard error (S.E.). All data were analyzed with 

SAS for Windows version 9.4 (SAS Institute Inc., Cary, NC, USA) by using the Proc Mixed 

procedure with factorial arrangement using Bacillus subtilis C-3102 (BS), time of sampling (Age) 

and their interaction as sources of variation. The individual bird was the experimental unit. 

Age was considered a random effect, and BS a fixed effect. In the case where a significant 

interaction was observed, multiple comparisons were made using Tukey HSD after the main 

effects were combined as a single variable. For all tests, a level of 0.05 was used to determine 

statistical differences and a level of 0.10 ≥ P ≥ 0.05 was indicated as a trend. 

 

3.4 Results 

3.4.1 Bacterial colonization 

No growth was detected for aerobic or anaerobic culture of cecal contents harvested from 

GF eggs confirming germ-free status at both collection times. Uniform colonies characteristic of 

Bacillus subtilis C-3102 were observed for all cecal samples collected from chicks arising from 

eggs in the BS group and cultured aerobically, whether collected at hatch or at 24 hours of age. No 

growth was observed on anaerobic culture of cecal samples from chicks in the BS group indicating 

no contamination with anaerobic bacteria.  

 

3.4.2 Enumeration of Bacillus subtilis C-3102 

Bacillus subtilis C-3102 was enumerated in cecal and gizzard contents of the BS treatment 

group (Table 3.3). Bacillus subtilis counts were 6.74 log CFU/g in the gizzard at hatch, however, 

by 24 hours after hatch no contents could be recovered from the gizzard. Swabs taken from the 

gizzard mucosa confirmed presence of Bacillus spp. At both hatch and 24 hours after hatch, the 

majority of cultured colonies were heat resistant (77-88%) consist with inoculation of spores.  The 

number of B. subtilis C-3102 in the cecum was 7.11 log CFU/g contents at hatch and increased to 
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7.54 log CFU/g by 24 hours after hatch. Germination of B. subtilis C-3102 was confirmed in the 

cecum by the low abundance of heat resistant colonies indicative of spores (33-36% spores).  

 

3.4.3 Incubation time and percent hatchability.  

All experimental eggs resulted in viable chicks at hatch such that hatchability was 100%. 

The effect of treatment on incubation time to hatch is shown in Figure 3.1. Mean incubation time 

to hatch was not different for birds euthanized at hatch and at 24 hours post hatch, however, in ovo 

inoculation of B. subtilis significantly increased (P < 0.05) incubation time to hatch.  For GF 

groups euthanized at hatch and 24 hours post hatch, incubation time was 496.6 ± 1.7 h and 499.5 

± 1.4 h respectively. Mean incubation time for all GF birds was 498.0 ± 1.1 h. For BS groups 

euthanized at hatch and 24 h post hatch, incubation time was 505.4 ±3.0 h and 503.4 ± 3.4 h, 

respectively. Mean incubation time for all BS treated birds was 504.5 ± 2.2 h. 

 

3.4.4 Body weight, organ mass and length 

Body weight significantly decreased (P < 0.001) between hatch and 24 hours of age in both 

GF and Bacillus mono-inoculated birds (Table 3.4). A decrease in yolk sac weight was the primary 

contributor to the age-dependent reduction in body mass, however, the yolk sac-free body mass 

was also reduced in the 24 h period. B. subtilis inoculation tended to reduce (P < 0.10) body weight 

at both ages. Interestingly, this was associated with a significant (P < 0.05) increase of remaining 

yolk sac weight at both ages and a significant (P < 0.01) decrease in yolk sac-free body weight 

relative to the GF controls. 
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Table 3.3 Mean (±SE) number (log CFU/g) of Bacillus subtilis C-3102 in gizzard and cecum 
contents at hatch and 24 hours after hatch for birds in the BS treatment group. 

 Gizzard  Cecum 

  
Total 

Colonies 

Heat 
Resistant 
Colonies 

Percent 
spores 

 
Total 

Colonies 

Heat 
Resistant 
Colonies 

Percent 
spores 

  (log CFU/g) (log CFU/g) (%)  (log CFU/g) (log CFU/g) (%) 
At hatch 6.49 ± 0.10 6.34 ± 0.09 76.9  7.11 ± 0.19 5.96 ± 0.11 36.2 
24h post 
hatch Present1 Present1 87.8 

 
7.59 ± 0.39 6.84 ± 0.49 33.3 

 1 Gizzard were empty at 24 hours after the hatch and samples were collected by swab.   
 

 

 

Figure 3.1 Incubation time until hatch for germ-free (GF) and Bacillus-inoculated (BS) 
birds harvested at hatch (GF and BS) or 24 hours after hatch (GF24, BS24). 

 

0

1

2

3

4

5

6

7

8

9

10

488 490 492 494 496 498 500 502 504 506 508 510 512 514 516 518 520 522 524

N
um

be
r 

of
 h

at
ch

ed
 c

hi
ck

Incubation Time (hours)

GF GF24 BS BS24



 

  51  
 

 

Table 3.4 Mean (±SE) egg weight (EW) at the start of incubation (E0) and at day 17 of incubation 
(E17) and mean body weight (BW), yolk sac weight and yolk sac-free body weight for Germ-free 
(GF) and Bacillus inoculated (BS) birds at hatch and 24 hours after the hatch. 

Treatment 

   At sampling 

E0 EW E17 EW BW 
Yolk sac 
weight 

Yolk sac-
free body 

weight 
(g) (g) (g) (g) (g) 

Germ-free 61.8 ± 0.60 54.8 ± 0.59 44.8 ± 0.56 6.13 ± 0.33 38.7 ± 0.37 
Germ-free (24h) 61.8 ± 0.58 54.7 ± 0.47 41.3 ± 0.47 3.57 ± 0.34 37.7 ± 0.65 

Bacillus 61.8 ± 0.59 54.4 ± 0.62 43.8 ± 0.55 6.38 ± 0.24 37.2 ± 0.48 
Bacillus (24h) 61.7 ± 0.56 55.1 ± 0.53 40.8 ± 0.28 4.67 ± 0.39 36.2 ± 0.43 

Age 0.9538 0.5863 0.0001 0.0001 0.0578 
Bacillus 0.9064 0.9021 0.0905 0.0488 0.0044 

Bacillus x Age 0.9172 0.4874 0.4402 0.2085 0.9224 

Relative mass of the gizzard and bursa of Fabricius increased (P < 0.05) dramatically 

with age but were not affected by Bacillus inoculation (Table 3.5). Relative liver mass also 

increased dramatically with age. In ovo inoculation with Bacillus significantly increased (P < 

0.01) relative liver weight at both hatch and 24 hours of age.  

Table 3.5 Mean (±SE) relative weight (g/100g of BW) of gizzard, Bursa of Fabricius and liver in 
Germ-free (GF) and Bacillus inoculated (BS) birds at hatch and 24 hours after the hatch. 

Treatment 
Gizzard 

(g/100g BW) 
Bursa 

(g/100g BW) 
Liver 

(g/100g BW) 
Germ-free 3.13 ± 0.12 0.14 ± 0.02 1.90 ± 0.04 

Germ-free (24h) 4.78 ± 0.24 0.21 ± 0.02 2.57 ± 0.07 
Bacillus 3.10 ± 0.11 0.16 ± 0.02 2.18 ± 0.06 

Bacillus (24h) 4.45 ± 0.14 0.19 ± 0.03 2.69 ± 0.08 
Age 0.0001 0.0175 0.0001 

Bacillus 0.2722 0.8964 0.0036 
Bacillus x Age 0.3506 0.3133 0.2154 

Marked increases (P < 0.0001) were observed in the length of all small intestinal segments 

in the first 24 hours after the hatching (Table 3.6). Mean of relative length of total small intestine 

was 579 mm/100g BW at hatch in GF birds and elongated to 755 mm/100g BW at 24 hours of age 
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indicating an elongation rate of approx. 2.00 mm/100g BW of small intestinal length per hour. 

Bacillus inoculation significantly increased (P < 0.05) length of the duodenum, however no other 

segment length nor total small intestinal length were affected by Bacillus inoculation. 

Table 3.6 Mean (±SE) relative intestinal segment length (mm / 100g BW) in Germ-free (GF) 
and Bacillus inoculated (BS) birds at hatch and 24 hours after the hatch. 

 

3.4.5 Intestinal histology 

Villus height and thickness of the muscularis mucosa in duodenum, jejunum and ileum is 

given in Table 3.7. As crypts were rudimentary at hatch (Geyra et al., 2001) and not 

morphologically discernable, only villus length and muscularis mucosa were recorded (Figure 3.2). 

Villus height increased dramatically in the first 24 hours in all intestinal locations. The thickness 

of the muscularis mucosa decreased (P < 0.05) in all small intestinal regions with age.  

Bacillus inoculation decreased (P < 0.05) villus height in jejunum but increased (P < 0.05) 

villus height in the ileum. Regarding the thickness of the muscularis mucosa, Bacillus decreased 

(P < 0.05) thickness at hatch but not at 24 h of age in the duodenum. No effect of Bacillus on 

muscularis mucosa thickness was observed in jejunum, however, a significantly thinner (P < 0.05) 

muscularis mucosa was observed in the ileum of Bacillus treatment at both time points. 

  Duodenum Jejunum Ileum 

Length of 
total small 
intestine Cecum 

Treatment (mm / 100g of body weight) 
Germ-free 118 ± 4.2 231 ± 7.3 230 ± 8.4 579 ± 18.0 64 ± 1.2 

Germ-free (24h) 149 ± 3.1 310 ± 8.0  296 ± 13.0 755 ± 21.6 79 ± 2.2 
Bacillus 129 ± 5.4 246 ± 5.4 246 ± 5.5 620 ± 12.4 63 ± 1.3 

Bacillus (24h) 168 ± 8.7 300 ± 9.4 294 ± 8.2 763 ± 18.3 79 ± 2.4 
Age 0.0001 0.0001 0.0001 0.0001 0.0001 

Bacillus 0.0143 0.7365 0.4465 0.1797 0.9170 
Bacillus x Age 0.4850 0.1210 0.3436 0.3496 0.7475 
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At hatching At 24 hours after hatching 

 
Figure 3.2 Sample picture of crypt of duodenum at hatching (Panel A) and at 24 hours 
after the hatching (Panel B). 

 

3.4.6 Gene expression analysis using qPCR 

Several genes of interest were differentially expressed in the ileum tissue between GF and 

BS birds at hatch and 24 hours after hatch (Table 3.8). The biggest fold change was observed in 

IL-8 transcript abundance which was nearly 15-fold higher (P < 0.05) in BS birds at hatch.  

However, a significant IL-8 response to BS was no longer present by 24 hours post hatch.  Higher 

expression was also observed in BS birds for TLR 2 (P < 0.0001) and 4 (P < 0.01) at both ages.  

A significant interaction for MUC2 expression indicated Bacillus initially increased MUC2 

expression at hatch and deceased expression at 24 h post hatch. No altered response to B. subtilis 

C-3102 in ovo inoculation was shown for CDN1 and CDN5 at hatch and 24 hours after the hatch. 

Bacillus subtilis in ovo inoculation significantly decreased (P < 0.001) CDN4 abundance at both 

hatch and 24 hours of age compared with germ-free birds. Significant upregulation (P < 0.001) by 

age can be seen in the expression of IL-6, TLR-2, TLR-4, APN, SGLT-1, PepT-1, and cGH. 

Interestingly, PepT1 and APN gene expression tended (P < 0.10) to be higher with Bacillus 

inoculation. For PCNA, a significant interaction (P < 0.01) indicated B. subtilis C-3102 in ovo 

inoculation did not alter ileal expression at hatch but decreased expression 24 hours post hatch. 

A B 



 

    
 

Table 3.7 Mean (±SE) villus height and thickness of muscularis mucosa in duodenum, jejunum, and ileum in Germ-free 
(GF) and Bacillus-inoculated (BS) birds at hatch and 24 hours after hatch. 

  Duodenum   Jejunum   ileum   

Treatment 
Villus height 

Muscularis 
Mucosa   

Villus 
height 

Muscularis 
Mucosa   

Villus 
height 

Muscularis 
Mucosa   

   (µm)      
Germ-free 381 ± 17.5 57 ± 1.6a   264 ± 9.9 47 ± 2.3   217 ± 7.7c 56 ± 2.7   

Germ-free (24h) 598 ± 25.9 45 ± 1.8b   376 ± 19.5 40 ± 1.1   285 ± 11.3b 46 ± 3.4   

Bacillus 359 ± 16.0 45 ± 2.5b   248 ± 11.8 44 ± 2.3   218 ± 11.6c 44 ± 2.3   

Bacillus (24h) 631 ± 14.4 42 ± 1.8b   330 ± 9.4 40 ± 2.9   342 ± 18.1a 41 ± 3.3   
Age 0.0001 0.0009   0.0001 0.0346   0.0001 0.0348   

Bacillus 0.7654 0.0006   0.0268 0.5741   0.0345 0.0130   
Bacillus x Age 0.1574 0.0322   0.2896 0.6111   0.0449 0.2363   

ab Values in same column with different superscripts are significantly different (P < 0.05) 
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Table 3.8 Mean (±SE) fold change in expression of genes in the ileum for Germ-Free (GF) and Bacillus-inoculated (BS) 
birds at hatch and 24 hours after the hatch.     

  Hatch   24 h of age     P value   

Gene Germ-free Bacillus   Germ-free Bacillus   Age Bacillus 
Age x 

Bacillus 
IL-6 1.0 ± 0.37 0.7 ± 0.31   2.8 ± 0.70 3.3 ± 1.10   0.0038 0.8336 0.5645 
IL-8 1.0 ± 0.12b 14.7 ± 3.38a   0.8 ± 0.05b 4.4 ± 1.90b   0.0117 0.0001 0.0155 

TLR2 1.0 ± 0.05 2.4 ± 0.20   2.4 ± 0.37 3.8 ± 0.44   0.0001 0.0001 0.9431 
TLR4 1.0 ± 0.09 2.4 ± 0.22   4.1 ± 0.57 5.6 ± 0.63   0.0001 0.0027 0.8192 
APN 1.0 ± 0.03 1.3 ± 0.08   2.6 ± 0.18 3.2 ± 0.41   0.0001 0.0819 0.5120 

SGLT-1 1.0 ± 0.05 1.4 ± 0.13   2.4 ± 0.23 2.5 ± 0.21   0.0001 0.4151 0.7205 
PepT-1 1.0 ± 0.07 1.7 ± 0.31   4.5 ± 0.61 5.2 ± 0.26   0.0001 0.0698 0.9201 

cGH 1.0 ± 0.13 1.6 ± 0.30   2.6 ± 0.48 3.6 ± 0.70   0.0004 0.0933 0.6736 
IGF-I 1.0 ± 0.09 0.9 ± 0.09   1.3 ± 0.08 1.1 ± 0.10   0.0119 0.0565 0.3267 
CDN1 1.0 ± 0.08 0.9 ± 0.19   1.2 ± 0.20 0.9 ± 0.12   0.4997 0.2113 0.5680 
CDN4 1.0 ± 0.07 0.8 ± 0.04   1.1 ± 0.11 0.7 ± 0.10   0.7269 0.0009 0.1988 
CDN5 1.0 ± 0.08 1.2 ± 0.21   1.5 ± 0.21 1.0 ± 0.11   0.3138 0.4123 0.0609 
PCNA 1.0 ± 0.06b 1.1 ± 0.07ab   1.3 ± 0.08a 1.0 ± 0.05b   0.0920 0.2035 0.0078 
MUC2 1.0 ± 0.09 1.7 ± 0.29   3.0 ± 0.36 2.1 ± 0.26   0.0001 0.6689 0.0059 

abValues within a row with different superscripts are different. 
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3.4.7 Whole transcriptome analysis using mRNAseq 

A total of 129 genes were upregulated ≥3-fold in the ileum when comparing GF to BS at 

hatch, whereas at 24 h of age, 110 genes were upregulated. Of these, 52 genes were upregulated 

with the BS treatment at both hatch and 24 h of age. A total of 54 genes were ≥3-fold 

downregulated in BS compared to GF at hatch, whereas 31 genes were downregulated in BS at 24 

after hatch. Of these, 11 were downregulated at both hatch and 24 h after hatch (Figure 3.2). At 

hatch, pathway enrichment analysis indicated BS treatment enriched the chemokine pathway. The 

pathway is a subset of the other pathways identified in Figure 3.3 panel A, including according to 

decreasing level of specificity pathways identified as Peptide Ligand-Binding Receptors, Class 

A/1 (Rhodopsin-Like Receptors, and GPCR Ligand binding (Figure 3.3). At 24 h after hatch, the 

Chemokine Receptors Bind Chemokines pathway was also enriched in BS birds. Additionally, BS 

enriched the Digestion and Absorption pathway at 24 hours after hatch (Figure 3.4).
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Figure 3.3 Scatterplots comparing the expression of individual genes in the ileum for Germ-Free 
(GF) and Bacillus-inoculated (BS) birds at hatch (A) and 24 hours after the hatch (B). Overlap in 
genes changing expression ≥3-fold between at hatch and 24 hours after hatch, upregulated (C) or 
downregulated (D). 
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Figure 3.4 Identification of enriched pathways (A) and enriched gene ontology terms for 
biological processes (B) in the ileum of Germ-Free (GF) and Bacillus-inoculated (BS) birds at 
hatch. 

A 

B 
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Figure 3.5  Identification of enriched pathways (A) and enriched gene ontology terms for 
biological processes (B) in the ileum of Germ-Free (GF) and Bacillus-inoculated (BS) 
birds at 24 hour after hatch 

 



 

60 
 

3.5 Discussion 

A persistent question regarding the mode of action of Bacillus probiotics administered as 

spores, is whether germination of spores occurs during passage through the gastrointestinal tract 

(Cartman et al., 2008; Latorre et al., 2014).  Although spores or microbial products of sporulation 

remaining in the spore preparation may influence gut microbial composition or host response, 

germination to vegetative cells is required for proliferation and in situ bioactivity. In the present 

study, germination of Bacillus subtilis C-3102 in the gut of the chicken embryo was evidenced by 

the low proportion of spores recovered at all locations, particularly in the cecum, at time of hatch 

and at 24 hours of age.  Some germination of spores may have occurred in gizzard (Bernardeau et 

al., 2017) since greater than 10% of cells recovered from the gizzard were not heat resistant. 

Interestingly, Bacillus counts recovered in cecal contents increased by 0.6 log CFU/g as compared 

to the gizzard. Combined, these data suggest that at least a portion of administered spores, 

germinated and proliferated in the in ovo chicken gut.    

Others have also reported evidence of germination of Bacillus spores in the post-hatch 

chicken gastrointestinal tract. Vegetative cells of the Bacillus strain were detected throughout the 

GI tract of White Leghorn chicks at 20 hours post oral gavage of B. subtilis SC2362 spores at 1 

day of age. Indeed, 62% to 96% of the Bacillus detected in the ceca in that study were recorded as 

vegetative cells (Cartman et al., 2008). Similarly, Latorre et al. (2014) reported a 90% germination 

rate for B. subtilis PHL-NP122 when supplemented in feed of chicks from day of hatch based on 

comparison of spore numbers in crop and ileum contents. 

Interestingly, in both studies the number of spores recovered from the intestine declined over 

time when spores were administered as a single gavage indicating that if vegetative cells replicate 

in the gastrointestinal tract, the rate of replication is insufficient to compensate for the loss of cells 

through peristalsis (Cartman et al., 2008; Leser et al., 2008). Peristaltic washout in the in ovo model 

would be far less of a factor accounting for the higher recovery of Bacillus cells here 4-5 days 

following in ovo delivery of a single dose. Furthermore, Bacillus cell counts numerically increased 

from the time of hatch until 24 hours after hatch in the present study suggesting a “washout” effect 

had not yet occurred within this timeframe and further supportive of Bacillus cell proliferation. 

Finally, the high proportion of vegetative cells found in the cecum in the mono-associated in ovo 

model reported here, could reflect a limited rate of re-sporulation given the abundance of substrates, 
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compared to conventional chickens, where re-sporulation is hypothesized to occur in ceca 

(Bernardeau et al., 2017). 

The current work demonstrates that specific nutrients essential for germination, such as L-

alanine, L-valine, and L-asparagine for Bacillus spores in nature (Setlow, 2014) are present to 

support in ovo germination. In agreement with others, our observations suggest metabolic activities 

associated with vegetative cells, likely contribute to host responses to spore-based Bacillus 

probiotics (Bernardeau et al., 2017; Cartman et al., 2008; Latorre et al., 2014) 

The finding of vegetative cells here supports the potential of the in ovo model system for 

evaluation of the direct effect of Bacillus probiotics on intestinal development and function. 

Furthermore, modifications to the model to permit incubation and hatching of birds in individual 

HEPA-filtered and climate-controlled containers provided several major advantages. Firstly, the 

system minimized the impact of a potential microbial contamination event to an individual bird 

(although we had no occurrence of contamination in the present study). Secondly, the use of clear 

containers allowed the precise timing of hatch and permitted tissue collection precisely at hatch 

without contaminating the environment of remaining yet-to-hatch eggs. Finally, we were able to 

ensure that sample collection occurred at a precise time following hatch (24 hours) and we were 

able to maintain a sterile or mono-associated environment during that period. Future developments 

in the model will be the delivery of sterilized feed and water to evaluate development in a 

controlled environment over a longer post-hatch period.     

In ovo inoculation with BS at E17 did not affect hatchability but resulted in negative effects 

on chick growth and development including increased incubation time to hatch, reduced yolk sac-

free body weight at hatch and changes in intestinal morphology and gene expression associated 

with barrier function, growth and nutrient absorption. Pathway analysis applied to RNAseq data 

confirmed BS-activated chemokine and nutrient absorption pathways. Our findings of no effect on 

hatchability agrees with results from others investigating in ovo Bacillus probiotic inoculation 

(Arreguin-Nava et al., 2019; Majidi-Mosleh et al., 2017a; Majidi-Mosleh et al., 2017b). However, 

there have been reports of reduced hatchability following in ovo Bacillus inoculation (de Oliveira 

et al., 2014; Triplett et al., 2018). Further, our findings regarding detrimental effects on body and 

organ weight contrast an increase body weight at hatch following in ovo inoculation of Bacillus 

spp. reported by (Arreguin-Nava et al., 2019).  Yolk sac weight was not recorded by others and 



 

62 
 

contrasting changes in yolk sac weight and yolk sac-free body weight observed with BS 

inoculation here and described below may explain some of this variation. 

As expected, without access to water or feed, chicks lost body mass in the first 24 hours 

after hatch associated primarily with utilization (disappearance) of yolk sac mass (Incharoen et al., 

2015; Jacobs et al., 2016) but also loss of yolk sac-free body mass. However, Bacillus inoculation 

appeared to decrease utilization of the yolk sac, both pre and post hatch, as indicated by an 

increased yolk sac mass and decreased yolk sac free body weight relative to the germ-free control. 

A decrease in yolk sac utilization at hatch is somewhat surprising given the prolonged incubation 

time associated with in ovo Bacillus inoculation which presumably would require additional 

nutrients. The reduction in yolk sac-free body weight with Bacillus inoculation could reflect chick 

increased metabolic activities such as those associated with barrier function and possibly a pro-

inflammatory response (see below) in BS birds resulting in partitioning of nutrients away from 

muscle and skeletal growth. Nutrient repartitioning and inflammatory responses (Klasing, 2007) 

may also have reduced nutrient assimilation from the yolk increasing remaining mass.  

An alternative explanation of the increased mass of remaining yolk sac at hatch is that 

vegetative Bacillus cell metabolism or Bacillus-induced metabolic activities in the embryo may 

have utilized growth and development-limiting essential nutrients present in the albumen or in the 

yolk and leading to extended incubation time.  For example, the yolk is the major origin of essential 

minerals including Mn, P, Fe, Ca, Cu, and Zn (Yair et al., 2015; Yair and Uni, 2011), which may 

have been utilized by Bacillus cells. Further, changes in nutrient requirements associated with pro-

inflammatory and barrier responses in birds are well recognized (Klasing, 2007). 

A final explanation for increased yolk sac mass in BS-inoculated chicks could be fluid 

infiltration into the yolk sac associated with an inflammatory response. The yolk sac is heavily 

vascularized (Sheng, 2010) to support direct absorption of nutrients across the yolk sac epithelium 

(Bauer et al., 2013). The late stage embryo is capable of developing an inflammatory response 

(Schilling et al., 2018), and could lead to fluid accumulation in the yolk in response to microbial 

stimulation. Unfortunately, we did not examine the composition of the remaining yolk sac contents 

to differentiate these possibilities. 

Although local inflammation in the yolk sac could not be confirmed, a significant increase 

in relative liver weight, reduced villus height in jejunum and upregulation of IL-8, TLR2, and TLR4 
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expression in the ileum was observed in BS birds. Chemokine pathway enrichment was confirmed 

at both hatch and 24 hours of age by RNAseq analysis consistent with qPCR gene expression and 

suggests that Bacillus in ovo inoculation induced an intestinal and potentially systemic (based on 

liver weight) inflammatory response. This contrasts our previous findings showing no increase in 

inflammatory gene expression (including IL-8) in 14-d-old birds mono-associated with Bacillus 

subtilis C-3102 from the day of hatch (Hamaoka et al., 2011).  This contrast in results may reflect 

the limited development of intestinal barrier function in the chick embryo permitting easier 

bacterial translocation. 

The well-established success of in ovo immunization against several viral diseases (Steel 

et al., 2008) confirms the ability to prime an adaptive immune response in the embryo.  Also, 

others have recorded changes in lymphoid organ morphology at hatch following in ovo bacterial 

inoculation indicative of embryonic immune-responsiveness (Madej et al., 2015). On the other 

hand, a functionally mature adaptive immune system does not occur until around 1–2 weeks of 

age such that protection of the embryo and chick relies primarily on the innate immune system 

(Bavananthasivam et al., 2018; Schilling et al., 2018). Indeed, activation of innate immune 

responses in the embryo has been confirmed by a number in ovo injection experiments including 

glucose (Bhanja et al., 2015), selenium (Lee et al., 2014), Campylobacter antigens (Kobierecka et 

al., 2016), and Salmonella flagellin (Vaezirad et al., 2018). One hypothesis is that early immune 

stimulation by in ovo administration of bacterial antigens or live bacteria will advance 

development of innate protective systems providing increased protection following hatch. For 

example, upregulation of IL-4, IL-6, IFN-β, and IL-18 was observed after in ovo inoculation with 

Lactobacillus acidophilus and Streptococcus faecium (Slawinska et al., 2014). On the other hand, 

in ovo inoculation of L. salivarius and a Pediococcus sp. as a mixed inoculant decreased 

inflammatory status at hatch compared with conventional chicks (Wilson et al., 2019b). Similarly, 

down regulation of TLR2, TLR4, IL-4 and IL13 were reported with in ovo inoculation of a 

combination probiotic product consisting of L. acidophilus, L. casei, E. faecium, and 

Bifidobacterium bifidum (Pender et al., 2017). Whether a downregulation or upregulation of 

inflammatory responses in the embryo results in post hatch protection against infection requires 

further study.  
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Interestingly, a downregulation of CLDN4, a key tight junction protein which acts to 

regulate epithelial permeability (Wang et al., 2020), was observed here which could indicate loss 

of barrier function following Bacillus inoculation. There is little information regarding the effect 

of probiotic bacteria on expression of tight junction proteins in vivo; however, in a recent in vitro 

study using Caco-2 cells, a strengthening of barrier function was reported suggested by increased 

transepithelial electrical resistance and upregulated CLDN1 expression following B. subtilis 

Bs29784 (Rhayat et al., 2019). This upregulation of barrier function was observed in association 

with a limiting of inflammatory response to other stressors. 

The secreted mucin MUC2, is also a marker of barrier function. We observed upregulation 

of MUC2 expression in the first 24 h after hatch in agreement with Zhang et al. (2015). 

Interestingly, the increase in MUC2 occurred here in GF birds that were not exposed to post-hatch 

bacterial colonization or feed-origin stimulants. The expression of MUC2 at hatch was increased 

by Bacillus inoculation, but inoculation appeared to suppress the post-hatch increase in MUC2 

expression observed in GF birds. The pre-hatch increase in MUC2 is consistent with increased 

pre-hatch expression of other inflammatory mediators. It is not clear why Bacillus blunted the 

post-hatch increase in MUC2 expression compared with germ-free birds.  

Higher ileal MUC2 gene expression by in ovo inoculation with Bacillus was observed by 

Majidi-Mosleh et al. (2017b) at E21 and, in contrast to this study, 3 days post-hatch.  In the study 

by Majidi-Mosleh et al. (2017b), birds were provided feed in a conventional environment where 

MUC2 upregulation after the hatch is affected by feeding (Proszkowiec-Weglarz et al., 2020). The 

presence or absence of other inflammatory stressors in the in ovo and post-hatch environment may 

therefore influence the immune and barrier response to Bacillus inoculation.  

Upregulation of expression of SGLT-1 and PepT1 has been shown in the first 30 hours 

after hatching (Yalcin et al., 2016) consistent with observations here and consistent with rapid post 

hatch development of intestinal absorptive function (Jha et al., 2019).  Interestingly, in ovo Bacillus 

inoculation tended to increase expression of APN and PepTI, both at hatch and 24 hours after hatch. 

In agreement with mRNA expression results from qPCR, enrichment of Digestion and Absorption 

pathway was also shown by RNAseq analysis at 24 h post hatch. These data indicate that in ovo 

Bacillus may have accelerated digestive and absorptive maturation. As such, post birth microbial 

colonization is associated with maturation of the intestinal epithelium in pigs (Willing and Van 
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Kessel, 2010) and poultry (Cheled-Shoval et al., 2014; Schokker et al., 2015). Whether the 

response observed here is specific to B. subtilis C-3102 or a general response to microbial 

colonization needs further study. Nevertheless, the increase in expression of these genes in the 

germ-free control group indicate that post hatch maturation is in part programmed rather than a 

response to environmental stimulants such a bacterial colonization or feed components. 

   Interestingly, chicken GH was dramatically upregulated from hatch to 24 hours of age. 

Chicken GH has a critical role in controlling growth and metabolism (Nie et al., 2005) in the bird 

gastrointestinal tract and this increase is consistent with the dramatic increase in small intestinal 

length observed here in the first 24 hours and by others (Scanes et al., 1984). Bacillus inoculation 

tended to increase GH expression in the ileum although this was not associated with an increase 

in the ileum length.  In contrast, ileal IGF-1 expression, another important regulator of cell 

proliferation (Laron, 2001), tended to be reduced by BS inoculation. Whether these localized 

changes in intestinal expression of digestive enzymes, nutrient transporters and tissue growth 

regulators could be a direct mechanism contributing to body weight gain or FCR improvement by 

Bacillus probiotic supplementation (EFSA, 2006b; Fritts et al., 2000) requires confirmation.  

 

3.6 Conclusion 

We employed in ovo inoculation and developed a system for isolation of developing 

embryos in individual containers to study the direct effect of Bacillus spores on gut development. 

Individual climate-controlled containers reduced the risk of microbial contamination on 

experimental outcomes and allowed for maintenance and study of mono-association during the 

early postnatal period. In ovo administration of Bacillus spores resulted in germination and 

colonization of the chick gastrointestinal tract as assessed at hatch confirming previous work 

demonstrating germination in conventional birds. The mechanisms of action of Bacillus probiotics 

in the gut may therefore include metabolic activities associated with germination and vegetative 

metabolism. Bacillus subtilis C-3102 directly and differentially modified intestinal gene 

expression associated with immune response and nutrient assimilation. Although there was 

evidence of advanced maturity of digestive and absorptive function, the effect of in ovo Bacillus 

inoculation was largely unfavourable to bird development resulting in reduced body and organ 
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weights and elevated expression of pro-inflammatory genes. Although host response to microbial 

colonization may differ during embryonic development relative to post hatch, in ovo bacterial 

inoculation may be a simple and useful approach to clarify host response pathways directly 

modulated by probiotic administration. 
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4 EFFECT OF IN OVO MONO-ASSOCIATION WITH BACTERIAL ISOLATES 
REPRESENTING MAJOR GUT TAXA ON EMBRYONIC DEVELOPMENT IN 

CHICKEN.  

 

4.1 Abstract 

Bacterial strains representing major taxa found in chicken intestinal tract were isolated to 

investigate the effect on in ovo mono-associated colonization and development of a chicken 

embryo (White Leghorn, ISA Bovans White x Lohmann LSL-Lite).  Amniotic fluid was inoculated 

with sterile saline (Germ-Free; GF) or a bacterial isolate between day 17 and 21 of incubation (E-

17-E21) in a series of experiments. No contamination of intestinal contents with viable non-

inoculated bacteria was recorded at hatch including among GF control embryos. Colonization was 

confirmed in all embryos for Enterococcus faecalis ENT03, Lactobacillus salivarius LCT01 and 

Escherichia coli ECL01 and E. coli ECL02, whereas Bacteroides fragilis BCT06 was recovered 

from 5 of 8 birds and Clostridium butyricum CLS01 was recovered from 1 of 8 birds at hatch. 

Colonization density (cfu/g) was variable among strains and may have contributed to variation in 

response including expression of ileal genes associated with inflammation and barrier function. 

Hatchability, body and relative organ weight were unaffected by strain except for embryos 

inoculated with ECL01 or ECL02 where injection of live, but not heat killed, E. coli from E17 to 

E19, but not E20, was lethal (pipping without successful hatch). Among non-lethal inoculants, 

ENT03 induced the greatest inflammatory response in the ileum followed by BCT06. The LCT01 

strain induced expression of barrier-associated genes without induction of inflammatory genes. 

For ECL01 inoculated at E17, a marked ileal inflammatory response observed in the ileum when 

live embryos were harvested at the time of pipping. In conclusion, a sterile chick intestine at hatch 

was confirmed. Several commensal bacterial strains taken from adult chicken intestine were well 

tolerated following in ovo administration with L. fermentum LCT01 inducing enhanced barrier 

function markers without inflammation. Non-pathogenic E. coli was lethal when inoculated before 

E20, associated with marked ileal inflammation, and suggesting that day 20 incubation represents 

an acute time point for programmed maturation of gut immunity. 
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4.2 Introduction 

In avian species, the egg has multiple defenses against microbial infestation such as the 

cuticle cover (Gole et al., 2014) and albumen containing lysozymes and antibodies (Dearborn et 

al., 2017). These protections support the traditional consideration that embryos laid by healthy 

hens are microbiologically sterile (Furuse and Okumura, 1994). Nevertheless, although eggs can 

be hatched under sterile conditions to produce germ-free birds (Cheled-Shoval et al., 2014), there 

is current debate that gut microbial colonization may begin in ovo (Akinyemi et al., 2020; Roto et 

al., 2016)  

Regardless of origin, the post hatch development of gut microbiota begins with 

Enterobacteriaceae and Streptococci (Benno and Mitsuoka, 1986) whereas Lactobacillaceae 

become dominant around four days of age (Schokker et al., 2015) followed by increasing diversity 

leading to a highly complex microbiota. A number of studies have established the major taxonomic 

groups colonizing the chicken gastrointestinal tract using molecular tools (Dumonceaux et al., 

2006; Gong et al., 2007; Stanley et al., 2013b; Wei et al., 2013). At the family level, major taxa 

include Lactobacillaceae, Bacteroidaceae, Clostridiaceae, Enterococcaceae and 

Enterobacteriaceae (Lu et al., 2003).  

Implications of the intestinal microbiota for health and performance have been the subject 

of significant study. For example, Guardia et al. (2011) reported associations between stocking 

density and the cecal microbial profile suggesting a link between the microbiota and daily body 

weight gain in broilers. Similarly, Stanley et al. (2012) and Singh et al. (2014) have reported 

associations between cecal bacterial composition and feed conversion efficiency. The concept of 

functional interactions between members of the gut microbiota and host metabolism is now widely 

accepted (Pedroso and Lee, 2015; Tremaroli and Backhed, 2012). 

Despite accumulation of these studies, little progress has been made in understanding the 

role of the individual bacterial species or strains that contribute to beneficial or harmful metabolic 

outcomes. Only a few trials have examined the influence of a single gut bacterial species or strain, 

limited primarily to (zoonotic) pathogens, and probiotic candidate strains. This lack of knowledge 

is one of the obstacles to developing effective nutritional and management strategies designed to 

modify the gut microbiota to improve health and performance. Therefore, identifying how 

individual gut bacterial species or strains differentially modulate host metabolism could contribute 
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to establishing which members of the microbial community should be encouraged and which 

should be limited to effect positive outcomes.  

The opportunity to modulate embryonic development in the chick embryo to improve 

development, health and performance post hatch, has been well established in the case of in ovo 

vaccine (Sarma et al., 1995) and nutrient (Dong et al., 2013; Kadam et al., 2013; Yair et al., 2015) 

delivery. In ovo delivery of putatively probiotic bacteria has also been investigated as a mechanism 

to enhance body weight (Pender et al., 2017), gut development (Edens et al., 1997; Roto et al., 

2016), immune related gene expression (Pender et al., 2017), and barrier function (Edens et al., 

1997) in the hatched chick. However, there have been no systematic studies comparing the effect 

of in ovo delivery of members of the major taxonomic groups present in the intestine on embryonic 

and early post hatch gut development.   

Previously, we reported a method of inoculating the chick with bacteria in ovo, followed 

by hatching in individual small aseptic containers to preserve peri-hatch microbial status. In the 

current experiment, we took advantage of the combination of individual germ-free pre-hatch 

isolation and in ovo inoculation to study the effect of representatives of major taxa in the chicken 

gut. We hypothesized that different bacterial species will differentially affect development of the 

digestive tract and these differences will be informative in identifying beneficial microbial profiles. 

 

4.3 Materials and Methods 

4.3.1 Test Bacterial Strains 

Representatives of five major taxa present in chicken gastrointestinal tract including 

Lactobacillaceae, Bacteroidaceae, Clostridiaceae, Enterococcaceae and Enterobacteriaceae were 

isolated by culture of ileal and cecal contents of 14-d-old chickens (Ross308) using one of six 

selective conditions and agars including: DHL agar “Nissui” (NISSUI Pharmaceutical co., ltd. 

Tokyo, Japan) for Enterobacteriaceae and BDTM EnterococcoselTM Agar (E agar, Becton, 

Dickinson and Co. Sparks, MD, USA) for enterococci cultured at 37 °C for 24 hours in aerobic 

conditions, LBS agar (NISSUI Pharmaceutical co., ltd. Tokyo, Japan) for lactic acid bacteria, NN 

agar (Mitsuoka, 1971) without neomycin for clostridia, and BBE agar (Becton, Dickinson and Co. 

Sparks, MD, USA) for Bacteroides at 37 °C for 48 hours in anaerobic conditions (Anaeropack 

System, Mitsubishi Gas Chemical Company, INC., Tokyo, Japan). Approximately 100 colonies 
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from each culture were further isolated by subculture and identified by sequencing of the 16SrRNA 

gene after amplification with universal primers (H1476: 5’-GAGTTTGATCCTGGCTCAG-3’, 

H1478: 5’-GWATTACCGCGGCKGCTG-3’) (Dorsch and Stackebrandt, 1992). Sequence 

analysis including quality assessment, primer removal, alignment and taxonomic assignment were 

conducted using MEGA6 software (Tamura et al., 2013).  

A total of 6 bacterial strains were selected for study including, Enterococcus faecalis 

ENT03 (ENT03), Bacteroides fragilis BCT06 (BCT06), Clostridium butyricum CLS01 (CLS01), 

Lactobacillus salivarius LCT01 (LCT01), Escherichia coli ECL01 (ECL01), and Escherichia coli 

ECL02 (ECL02. Multiple aliquots of isolates were retained by overnight culture in Gifu Anaerobic 

Broth (GAM broth, HiMedia Laboratories Pvt. Ltd., LBS Marg, India), followed by mixing with 

30% glycerol and storage at -80 °C until usage. The E. coli, isolates ECL01 and ECL02, were 

further characterized for virulence determinants by Prairie Diagnostic Services Laboratory 

(Saskatoon, SK, Canada). The ECL01 isolate was characterized as non-hemolytic with a 08 O 

serotype and negative PCR test for pyelonephritis-associated pili (P. fimbriae), aerobactin, 

temperature-sensitive haemagglutinin and cytotoxic necrotizing factor. The ECL02 isolate was 

non-hemolytic with an 069 O serotype and positive for P. fimbriae only.    

 

4.3.2 Embryo Inoculation and Sample Collection 

All experiments were conducted with the approval of the University of Saskatchewan 

Animal Research Ethics Board (Protocol # 20150017) according to the guidelines of the Canadian 

Council on Animal Care. 

Fertilized eggs (White Leghorn, ISA Bovans White x Lohmann LSL-Lite) free of cracks 

and other defects were obtained from the University of Saskatchewan Poultry Centre (Saskatoon, 

SK, Canada) flock, sanitized for 30 min at 30 °C in 0.5% of sodium hypochlorite and transferred 

to a HEPA-filtered sterilized incubator at 37.8 °C.  Prior to in ovo inoculation, a small hole was 

made in the shell at the top of each air cell using a Dremel® rotary tool (Racine, WI, U.S.). 

Inoculations (100 µl) were made into amniotic fluid using a sterile pipette and the shell was sealed 

using a food industry grade 100% silicone sealant (Kitchen grade 100% silicone, DAP®, Canada). 

The eggs were then placed into sterile clear individual hatching jars, sealed and maintained at 38 

°C and 50% relative humidity by circulation of humidified air through a 0.45 µm filter (Nalgene 
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Syringe Filter 0.45µm SFCA, Thermo Scientific) using an air pump (Whisper® Aquarium Air 

Pump, Tetra, Blacksburg, VA, U.S.A.). In some experiments eggs were returned to a sterilized 

standard hatcher with HEPA filtered air supply as indicated below. 

For each experiment, an aliquot of frozen isolate was thawed on ice and approximately 10 

µL of contents were taken and streaked on non-selective agars including BL agar (Eiken Chemical 

Co., Ltd., Japan) for B. fragilis BCT06, L. salivarius LCT01 and C. butyricum CLS01, BBLTM 

TrypticacseTM soy broth with 2% agar (TS agar, Becton Dickinson and Co. Sparks, MD, USA) 

for E. faecalis ENT03, Escherichia coli ECL01, and Escherichia coli ECL02. The TS agar was 

incubated aerobically at 37 °C for 24 hours and the BL agar was incubated anaerobically at 37 °C 

for 48 hours (Anaeropack System, Mitsubishi Gas Chemical Company, INC., Tokyo, Japan). 

Fifteen minutes before in ovo inoculation, 10 typical colonies of each strain were harvested and 

dissolved in 10 mL sterile saline. Where experiments required assessment of inoculant dose, 10-

fold dilutions in sterile saline were prepared. The inoculants were warmed to 37 °C before in ovo 

inoculation to avoid giving cold shock to the embryo. Remaining inoculant was placed on ice 

immediately following inoculation. An aliquot of inoculant remaining after inoculation was 

applied to the appropriate selective agar for culture to confirm viability and for enumeration. 

 

4.3.3 Experiment 4-1 In ovo inoculation with B. fragilis BCT06, E. faecalis ENT03, or L. 

salivarius LCT01 

Embryos (n=40) at day 17 of incubation (E17) were randomly assigned to 4 treatment 

groups balanced for egg weight at E0 (10 eggs per group). At the end of day 17 of incubation, 

embryos in one treatment group were inoculated with 100µL of sterile saline by in ovo inoculation 

and designated as the germ-free (GF1) group. The embryos in remaining three groups were 

inoculated with 100 µL saline containing fresh isolated colonies of B. fragilis BCT06 (BCT06), E. 

faecalis ENT03 (ENT03) or L. salivarius LCT01 (LCT01) at 7.26, 7.11 and 5.35 log CFU/mL, 

respectively, as confirmed by culture of the remaining inoculant. Eggs were placed in clear 

sterilized individual hatching jars until hatch. At time of hatch, eight birds in each group were 

killed by cervical dislocation. Body weight, yolk sac weight, organ weight (gizzard, bursa and 

liver), and length of small intestinal segments were recorded. Cecum contents and gizzard contents 

were collected for culture and bacterial enumeration using agar and conditions as described in 



 

72 
 

section 4.3.1 above. Tissue samples were collected from ileum and snap frozen in liquid nitrogen 

followed by storage at -80 °C for gene expression analysis. 

 

4.3.4 Experiment 4-2 In ovo inoculation of C. butyricum CLS01 

A second experiment was conducted identical to experiment 4-1 to assess in ovo 

inoculation of C. butyricum CLS01. Embryos (n=20) at E17 were randomly assigned to 2 treatment 

groups balanced for egg weight at E0 (10 eggs per group). At the end of day 17 of incubation, 

embryos in one treatment group were inoculated with 100µL of sterile saline by in ovo inoculation 

and designated as the germ-free (GF2) group. The embryos in the remaining group were inoculated 

with 100µL of saline containing freshly harvested C. butyricum CLS01 cells at 5.16 log CFU/mL 

as confirmed by culture of remaining inoculant post injection. Incubation in sterile jars, euthanasia 

and sampling were performed as in Experiment 4-1. 

 

4.3.5 Experiment 4-3: In ovo inoculation of live and heat killed E. coli 

A preliminary experiment (results not shown) demonstrated that less than 5% of embryos 

inoculated with live ECL01 at E17 hatched. To further investigate this, fresh cultures of E. coli 

ECL01 and E. coli ECL02 were prepared for inoculation by method described in 4.3.2 above and 

stored on ice. An aliquot of E. coli ECL01 was heat treated at 80 °C for 30 min in water bath and 

confirmed non-viable by culture. The inoculants were warmed to 37 °C before in ovo inoculation 

to avoid giving cold shock to the embryo. A total of 76 chicken embryos at E17 were randomly 

assigned to one of four treatments balanced for weight at E0 (19 eggs per treatment). Sterile saline 

(100µl) was inoculated to Control (CON) group whereas the remaining groups were inoculated 

100µl of 1.1 x 108 CFU of live ECL01, heat killed ECL01 (hkECL01) or 1.2 x 108 CFU of live 

ECL02. After the inoculation, all eggs were incubated in HEPA-filtered sterilized hatcher until the 

end of 22 days of incubation. Body weight of hatched birds was measured.   
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4.3.6 Experiment 4-4: E. coli ECL01 inoculation dose 

A total of 70 chicken embryos at E17 were randomly assigned to five treatments balanced 

by weight at E0 (14 eggs per treatment). Sterile saline (100µl) was inoculated into the Control 

group (CON) amniotic fluid. The four remaining treatment groups were inoculated with 100µl 

saline containing E. coli ECL01 such that each embryo was inoculated with 1.0 x 102 (10E2), 1.0 

x 104 (10E4), 1.0 x 106 (10E6), or 1.0 x 108 (10E8) CFU. After the in ovo inoculation, all eggs 

were incubated in a HEPA-filtered sterilized hatcher until the end of 22 days of incubation. Body 

weight of hatched birds was measured at the end of 21 days of incubation and at the end of 22 days 

of incubation. 

 

4.3.7 Experiment 4-5: Timing of E. coli ECL01 in ovo inoculation 

A total of 70 chicken embryos at E17 were randomly assigned to seven treatments balanced 

by weight at E0 (10 eggs per treatment). All treatment groups were placed in HEPA filtered 

sterilized hatcher until in ovo inoculation was performed at E17, E18, E19 and E20. At each 

inoculation day, with the exception of E20, a control group (CON) was inoculated with sterile 

saline (100µl). Treatment embryos received 100µl of E. coli ECL01 (1.0 x 108 CFU per bird) at 

each incubation time point. After the inoculation, all eggs were immediately returned to the HEPA 

filtered hatcher until the end of 22 days of incubation. Body weight of hatched birds was measured 

at the end of 21 days of incubation and at the end of 22 days of incubation. 

 

4.3.8 Experiment 4-6: Effect of E. coli ECL01 in ovo inoculation at E17 on chick physiology 

at pipping. 

Chicken embryos (n=40) at E17 were randomly assigned to four experimental groups 

balanced by weight at E0 (10 eggs per treatment). Sterile saline (100 µL) was inoculated in ovo in 

two of four experimental groups at the end of day 17 of incubation whereas the other two groups 

received 1x102 CFU/bird of E. coli ECL01 at E17. After the inoculation, all eggs were placed in 

environmentally controlled individual HEPA-filtered sterile jars until start of pipping was 

confirmed by observation of a crack or small hole on the shell surface of egg. Time of pipping was 
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recorded for each egg and the embryo was killed by cervical dislocation. Euthanasia and sample 

collection was as in Experiment 4-1. 

 

4.3.9 Contamination check and bacterial enumeration 

To confirm the microbial status in intestine of pipping or newly-hatched chicks, 50 µL of 

fresh gizzard and cecal contents were directly spread on TS agar and incubated at 37 °C for 24 

hours under aerobic conditions and on BL agar incubated at 37 °C for 48 hours under anaerobic 

conditions (Anaeropack System, Mitsubishi Gas Chemical Company, INC., Tokyo, Japan). To 

enumerate inoculated strains, fresh contents were diluted (1:10 w/v) in 0.1% peptone water and 50 

µL spread on selective media and cultures as described at 4.3.1 followed by enumeration of 

colonies normalized for weight of contents applied to the plate. All cultures were incubated at 37 

ºC for 24-48 hours. 

 

4.3.10 RNA extraction from ileum tissue and quantitative PCR gene expression analysis 

Total RNA was extracted by RNAeasy Mini Kit (Qiagen, Mississauga, ON) from 30 mg 

of mixed frozen ileal tissue, ground by mortar and pestle under liquid nitrogen incorporating 

RNase-Free DNase (Qiagen, Mississauga, ON) to remove genomic DNA from the sample. After 

RNA concentration was quantified by NanoDrop spectrophotometer (Thermo Scientific, 

Wilmington DE) as described at Chapter 3, the total RNA (5 µg) was reverse transcribed with 

random primers using High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Inc., 

Foster City, CA, USA). Quantitative real-time PCR (qPCR) was conducted using CFX96 real-time 

PCR detection system on a C1000 thermal cycler (Bio-Rad Laboratories, Inc., California, U.S.A.). 

The reaction included 2.0 µL of a 1/100 dilution of cDNA mixed with 1.0 µL of 10 µM forward 

and reverse primer (Table 3.1), 10.0 µL of SsoFastTM EvaGreen® Supermix (Bio-Rad 

Laboratories, Inc., California, USA) and 6.0 µL of nuclease-free water. Reaction conditions were 

95 °C for 2 min followed by 40 cycles at 95 °C for 5 seconds and annealing at 53-61 °C for 5 

seconds (see Table 3.1). A melting curve analysis was conducted at the completion of 

amplification cycles by increasing temperature from 65 °C to 95 °C in 0.5° C increments for 5 

seconds each. To prepare standard curves, 1.0 µL of a 5-fold dilution series of pooled cDNA in 

triplicate was generated and assigned an arbitrary concentrations value consistent with the dilution. 
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All standard curves demonstrated a PCR efficiency between 98.8% and 117%. Samples were 

analyzed in duplicate and duplicates with greater than 10% coefficient of variation were repeated. 

Four housekeeping genes, GAPDH, RPL30, SDHA and TFRC (Table 3.2) were used to normalize 

expression of genes of interest for Experiment 4-1 and Experiment 4-6. In Experiment 4-2, 

GAPDH and PRL30 were used to normalize expression of genes of interest as abundance of SDHA 

and TFRC transcripts were significantly affected by CLS01 inoculation.  

 

4.3.11 Statistical analysis 

All results were expressed as the mean ± standard error. Statistical analysis was performed 

using SAS for Windows version 9.4 (SAS Institute Inc., Cary, NC, USA). Percent hatched, 

mortality and pipped data were compared with appropriate control group using Proc FREQ 

procedure with FISHER option. For all other continuous variables, the Proc Mixed procedure with 

treatment (inoculant) as the source of variation and using bird as the experimental unit.  

Where the effect of inoculant was significant, Dunnett’s post hoc means separation test 

was performed to differentiate means. Normal distribution of each data set was confirmed using 

Proc UNIVARIATE with NORMAL option prior for testing main effects. For all tests, a level of 

0.05 was used to determine statistical differences and a level of 0.10 ≥ P ≥ 0.05 was indicated as 

a trend. 

 

4.4 Results 

4.4.1 Experiment 4-1 and 4-2 (In ovo inoculation of B. fragilis BCT06, E. faecalis ENT03, 

L. salivarius LCT01, or C. butyricum CLS01) 

4.4.1.1 Bacterial colonization 

No bacterial growth was confirmed by culture under aerobic and anaerobic conditions, of 

contents from gizzard and cecum of GF chicks for both experiments. No aerobic bacterial growth 

was confirmed on culture of contents from chicks inoculated with BCT06, LCT01 and CLS01 and 

no anaerobic bacterial growth was observed in gut contents from ENT03 treatment. Where 

bacterial growth occurred, colony morphology was uniform and consistent with expected 

morphology on both non-selective and selective media.  Mean number of the inoculated strains in 
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gizzard and cecal contents at hatch are given in Table 4.1. Colonization of ENT03 and LCT01 

were confirmed in the cecum and gizzard of all birds with the highest counts observed in the 

cecum. For the BCT06 group, B. fragilis was cultured in gizzard and cecum of only 5 of 8 birds 

sampled.  Furthermore, the number of B. fragilis in contents from positive birds was highly 

variable.  Clostridium butyricum CLS01 was cultured from a single cecum obtained from one bird.  

 

 

Table 4.1 Mean (± SE) number (log CFU/g) of B. fragilis BCT06, E. faecalis ENT03, L. salivarius 
LCT01 and C. butyricum CLS01 in gizzard and cecum contents at hatch. 

      Gizzard   Cecum   
Treatment Detected strain   (log CFU/g)1   (log CFU/g)1   

BCT06 B. fragilis BCT06   5.52 ± 0.67 (5/8)   8.29 ± 1.32 (5/8)   
ENT03 E. faecalis ENT03   6.21 ± 0.32 (8/8)   9.79 ± 0.12 (8/8)   
LCT01 L. salivarius LCT01   5.40 ± 0.41 (8/8)   6.44 ± 0.46 (8/8)   
CLS01 C. butyricum CLS01   ND2 (0/8)   2.9 (1/8)   

1Mean ± S.E. (Number of samples: Detected / Tested), 
2 ND: Not Detected, Detection limit was 2.0 CFU log per gram of contents. 

 

4.4.1.2 Incubation time and percent hatchability 

Total hatchability was 93% in Experiment 4-1 and 100% in Experiment 4-2. Three eggs, 

one egg in each of GF1, ENT03 and BCT06 groups did not finish hatching by 525 hours of 

incubation (Figure 4.1, Figure 4.2). The unhatched egg in ENT03 treatment contained a fully 

developed embryo which likely died around E20. Remaining unhatched eggs in GF1 and BCT06 

contained fully developed live chicks without obvious defect that were still pipping at 525 hours 

of incubation. Mean incubation time (not shown) was not significantly different among the 

treatment groups although a numerical increase in mean time to hatch compared to GF1 was 

observed in E. faecalis ENT03, B. fragilis BCT06 and L. salivarius LCT01 groups. Indeed, the 

first birds in the ENT03 group started hatching 19 hours later than birds in the GF1 group. 
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Figure 4.1 Incubation time prior to hatch for germ-free (GF) embryos and embryos inoculated 
with E. faecalis ENT03 (ENT03), B. fragilis BCT06 (BCT06) or L. salivarius LCT01 (LCT01). 
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Figure 4.2 Incubation time prior to hatch for germ-free (GF) embryos and embryos inoculated 
with C. butyricum CLS01 (CLS01). 

 

4.4.1.3 Body weight, organ mass and length 

No significant effect of B. fragilis BCT06, E. faecalis ENT03, L. salivarius LCT01 and C. 

butyricum CLS01 in ovo inoculation was observed on body weight, yolk sac weight and yolk sac-

free body weight among treatment groups (Table 4.2).  Relative weight of gizzard, bursa and liver 

at hatch is shown in Table 4.3. In ovo inoculation of B. fragilis BCT06, E. faecalis ENT03, L. 

salivarius LCT01 and C. butyricum CLS01 did not affect relative organ weight. No differences 

were found in relative small intestinal length at hatch between germ-free (GF) birds and B. fragilis 

BCT06, E. faecalis ENT03, L. salivarius LCT01 and C. butyricum CLS01 inoculated birds (Table 

4.4). 

0

1

2

3

4

5

6

7

8

9

10

476 479 482 485 488 491 494 497 500 503 506 509 512 515 518

N
um

be
r 

of
 h

at
ch

ed
 c

hi
ck

Incubation Time (hours)

GF2 CLS01



 

 

Table 4.2 Mean (± SE) for egg weight (EW) at the start of incubation (E0) and at day 17 of incubation (E17) and 
mean body weight (BW), yolk sac weight and yolk sac-free body weight for Germ-free (GF) and B. fragilis BCT06, 
E. faecalis ENT03, L. salivarius LCT01 and C. butyricum CLS01 inoculated birds at hatch. 

Treatment 

    At sampling 

E0 EW E17 EW BW Yolk sac weight 
Yolk sac-free 
body weight 

(g) (g) (g) (g) (g) 
Experiment 4-1           

GF 1 60.5 ± 0.72 53.3 ± 0.77 42.7 ± 0.77 6.09 ± 0.26 36.6 ± 0.76 
ENT03 60.5 ± 0.70 52.7 ± 0.63 42.4 ± 0.52 5.89 ± 0.26 36.6 ± 0.39 
BCT06 60.6 ± 0.61 53.2 ± 0.62 43.3 ± 0.75 5.68 ± 0.30 37.6 ± 0.68 
LCT01 60.5 ± 0.73 52.7 ± 0.66 42.9 ± 0.55 5.70 ± 0.27 37.2 ± 0.55 
p value 0.9988 0.9007 0.8293 0.6972 0.5711 

Experiment 4-2           
GF 2 60.5 ± 0.37 55.0 ± 0.41 45.0 ± 0.68 6.57 ± 0.29 38.4 ± 0.75 

CLS01 60.5 ± 0.35 55.0 ± 0.34 45.3 ± 0.56 6.58 ± 0.25 38.7 ± 0.57 
p value 0.9251 0.9838 0.7218 0.9629 0.7526 
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Table 4.3 Mean (±SE) relative weight (g/100g of BW) of gizzard, bursa of Fabricius and liver in Germ-free and 
B. fragilis BCT06, E. faecalis ENT03, L. salivarius LCT01 and C. butyricum CLS01 inoculated birds at hatch. 

Treatment 
Gizzard 

(g/100g BW) 
Bursa 

(g/100g BW) 
Liver 

(g/100g BW) 
Experiment 4-1       

GF 1 3.05 ± 0.13 0.14 ± 0.01 2.08 ± 0.09 
ENT03 3.03 ± 0.08 0.16 ± 0.01 2.19 ± 0.06 
BCT06 2.95 ± 0.15 0.18 ± 0.02 2.15 ± 0.06 
LCT01 3.01 ± 0.08 0.15 ± 0.01 1.99 ± 0.04 
p value 0.9396 0.1979 0.1357 

Experiment 4-2       
GF 2 2.75 ± 0.10 0.14 ± 0.01 1.99 ± 0.06 

CLS01 2.80 ± 0.08 0.14 ± 0.01 2.00 ± 0.07 
p value 0.6803 0.8152 0.9362 
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Table 4.4 Mean (±SE) relative small intestinal segment length (mm / 100g BW) cum) in Germ-free and B. fragilis 
BCT06, E. faecalis ENT03, L. salivarius LCT01 and C. butyricum CLS01 inoculated birds at hatch. 

Treatment 
Duodenum 

(mm) 
Jejunum 

(mm) 
Ileum 
(mm) 

Length of total 
intestine 

(mm) 
Cecum 
(mm) 

Experiment 4-1           
GF 1 127 ± 4.4 262 ± 6.1 242 ± 4.2 631 ± 11.5 69 ± 2.2 

ENT03 133 ± 4.1 272 ± 9.3 249 ± 11.0 654 ± 18.3 68 ± 1.3 
BCT06 122 ± 2.9 254 ± 10.6 237 ± 8.9 613 ± 18.3 66 ± 2.4 
LCT01 120 ± 5.1 259 ± 9.9 264 ± 10.2 652 ± 23.6 67 ± 0.7 
p value 0.3657 0.5649 0.1850 0.3759 0.6733 

Experiment 4-2           
GF 2 112 ± 3.1 229 ± 10.1 249 ± 10.3 591 ± 20.7 67 ± 1.5 

CLS01 115 ± 1.8 237 ± 6.3 241 ± 5.9 593 ± 11.5 60 ± 1.5 
p value 0.4938 0.5474 0.4899 0.9493 0.7862 
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4.4.1.4 Ileal gene expression 

In contrast to gross parameters, bacterial inoculation modified specific transcript 

abundance in ileal tissue in a manner unique to each inoculated bacterial species (Table 4.5). 

Inoculation with E. faecalis ENT03 induced marked changes on gene expression in ileal tissue 

including increased (P < 0.05) transcript abundance of IL-8 and Toll-like receptors (TLR2 and 

TLR4). Further, ENT03 increased (P < 0.05) abundance of CDN1 in contrast to reducing (P < 0.05) 

CDN5 abundance and tended (P < 0.10) to increase MUC2 expression. Expression of PepT-1 in 

ENT03-inoculated birds was also significantly higher (P < 0.05) than in the GF treatment. Similar 

to ENT03, BCT06-inoculated birds demonstrated increased (P < 0.05) abundance of the 

proinflammatory cytokine IL-6 and TLR4. A numerical increase in IL-8 and TLR2 was observed 

in the ileum of BCT06 birds. As for ENT03, a lower (P < 0.05) abundance of CDN5 expression 

was observed following BCT06 treatment. Comparatively few changes in gene expression in the 

ileum were observed following inoculation with LCT01 saving increased CLDN4 and a trend (P 

< 0.10) for increased MUC2 expression. Only upregulation (P < 0.05) of CDN5 was found in 

CLS01 compared to downregulation of this transcript observed for ENT03 and BCT06. Although 

only one bird was confirmed to be colonized with CLS01 at hatch, a trend towards downregulation 

(P < 0.10) of IL-8 and upregulation (P < 0.01) of CDN5 was observed. 



 

 
 

Table 4.5 Mean (±SE) fold change in expression of genes in the ileum for Germ-Free (GF) and B. fragilis BCT06, E. faecalis ENT03, 
L. salivarius LCT01 and C. butyricum CLS01 inoculated birds at hatch. 

  Experiment 4-1   Experiment 4-2 
Treatment GF1 BCT06 ENT03 LCT01 P value   GF2 CLS01 P value 

IL-6 1.0 ± 0.21 5.8 ± 2.10**  1.5 ± 0.69 1.3 ± 0.30 0.0176   1.0 ± 0.38 1.9 ± 1.12 0.4720 
IL-8 1.0 ± 0.16 1.9 ± 0.53 11.6 ± 4.54** 1.4 ± 0.37 0.0091   1.0 ± 0.18 0.6 ± 0.12 0.0879 

TLR2 1.0 ± 0.19 2.1 ± 0.56 2.9 ± 0.63** 0.8 ± 0.29 0.0129   1.0 ± 0.18 0.9 ± 0.18 0.6963 
TLR4 1.0 ± 0.14 2.3 ± 0.60* 2.4 ± 0.37** 0.9 ± 0.14 0.0105   1.0 ± 0.14 1.0 ± 0.14 0.5210 
APN 1.0 ± 0.13 0.8 ± 0.08 1.1 ± 0.18 1.1 ± 0.10 0.2359   1.0 ± 0.13 1.1 ± 0.10 0.5680 

SGLT-1 1.0 ± 0.15 0.7 ± 0.11 1.3 ± 0.17 1.0 ± 0.21 0.1081   1.0 ± 0.12 1.3 ± 0.12 0.1182 
PepT-1 1.0 ± 0.15 0.6 ± 0.11 1.9 ± 0.23** 0.9 ± 0.11 0.0001   1.0 ± 0.15 1.3 ± 0.15 0.1738 

cGH 1.0 ± 0.09 1.6 ± 0.26 1.4 ± 0.20 1.4 ± 0.24 0.1873   1.0 ± 0.18 1.1 ± 0.15 0.5528 
IGF-I 1.0 ± 0.05 0.7 ± 0.10 0.8 ± 0.12 0.8 ± 0.16 0.3163   1.0 ± 0.07 1.0 ± 0.11 0.8257 
CDN1 1.0 ± 0.08 1.0 ± 0.13 1.8 ± 0.39** 1.0 ± 0.11 0.0441   1.0 ± 0.11 1.0 ± 0.12 0.7774 
CDN4 1.0 ± 0.04 0.8 ± 0.09 1.0 ± 0.15 1.5 ± 0.22** 0.0112   1.0 ± 0.08 0.9 ± 0.18 0.6541 
CDN5 1.0 ± 0.08 0.6 ± 0.07** 0.5 ± 0.09** 1.2 ± 0.12 0.0001   1.0 ± 0.07 1.5 ± 0.13 0.0035 
PCNA 1.0 ± 0.09 0.8 ± 0.10 1.5 ± 0.26** 1.1 ± 0.41 0.0028   1.0 ± 0.11 1.1 ± 0.10 0.7292 
MUC2 1.0 ± 0.11 0.9 ± 0.10 1.7 ± 0.26* 1.7 ± 0.41* 0.0482   1.0 ± 0.10 1.0 ± 0.07 0.9861 

** Significantly (P < 0.05) different from GF control by two-sided Dunnett's Multiple comparison.  
* Trend to differ (0.05 < P < 0.10) from GF control by two-sided Dunnett's Multiple comparison. 
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4.4.2 Experiment 4-3: Effect of live E. coli and heat killed E. coli in ovo inoculation on 
hatching ratio 

For control, saline-inoculated eggs no mortality was observed and 100% of the inoculated 

eggs were observed pipping and fully hatched by E22 (Figure 4.3). Inoculation at E17 with live 

ECL01 or ECL02 significantly reduced the percent of eggs pipping (P < 0.001). Only 16% of 

ECL01 inoculated eggs hatched and 0% of eggs inoculated with ECLO2 hatched.  At the end of 

E22, 21% of ECL01 birds, and 89% of ECL02 inoculated birds were dead. Pipping rate, hatch rate 

and mortality were unaffected when heat killed ECL01 was inoculated at E17.   

Mean body weight at hatch is shown in Table 4.6. Due to high mortality rates, BW for eggs 

inoculated with live ECL02 and ECL01 were excluded for analysis. Inoculation with heat killed 

ECL01 did not affect body weight at hatch.  

 

Figure 4.3 Percent of pipped eggs, hatched eggs and percent mortality following 22 d 
incubation when saline (Control), live E. coli ECL01 (ECL01), heat killed E. coli 
ECL01-(hkECL01) or live E. coli ECL02 (ECL02) were inoculated at E17 of 
incubation. 
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Table 4.6 Mean (± SE) egg weight (EW) at the start of incubation (E0) and at day 17 of 
incubation (E17),  plus mean (± SE)  body weight (BW) and number of birds alive at end of 22 
d incubation for embryos inoculated at E17 with saline (Control) , E. coli ECL01 (ECL01), heat 
killed E. coli ECL01 (hkECL01) or E. coli ECL02 (ECL02). 

Treatment 
E0 EW 

(g) 
E17 EW 

(g) 

BW  
at Hatch1 

(g) 
Mortality  

 (Alive/Total) 
Control 60.6 ± 0.61 53.6 ± 0.61 42.8 ± 0.52 (19/19) 
ECL01 60.6 ± 0.60 53.7 ± 0.57 39.9 ± 1.23 (3/19) 

hkECL01 60.6 ± 0.59 53.4 ± 0.57 41.9 ± 0.56 (19/19) 
ECL02 60.6 ± 0.58 53.5 ± 0.55 - (0/19) 
p value 0.9999 0.9908 0.1201   

*1 E. coli ECL01 and ECL02 groups were removed from statistical analysis due to 
limited sample numbers. 

 

4.4.3 Experiment 4-4: Effect of different dosage of E. coli ECL01 in ovo inoculation on 
hatching ratio 

A summary of the dose-response effect of E. coli ECL01 in ovo inoculation at E17 on 

hatching is given in Figure 4.4. All birds hatched in the Control group at the end of 22 days of 

incubation with 0% mortality. The proportion of pipped eggs in the E. coli ECL01-inoculated 

group ranged from 71-86%, however, no birds inoculated with E. coli ECL01 in ovo hatched 

excepting a single embryo (7%) given 100 CFU.  At the end of day 22, mortality rate was 0% for 

control birds and 7-21% (including hatched and birds yet to hatch) for birds given E. coli ECL01. 

The majority of E. coli-treated eggs started the hatching process (confirmed pipping), and although 

80% or more were alive at day 22, the inner shell membrane had already become dry and no further 

progress in hatching was expected.   
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**** P < 0.0001 Comparison with Control group. 

 

Figure 4.4 Percent of pipped eggs, hatched eggs and mortality after 22 d incubation for 
control (CON) bireds and birds given four different dosages of E. coli ECL01 inoculated 
embryo at E17. 
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embryos inoculated with saline or E. coli ECL01 was observed for any of the inoculation time 

points studied. All control birds successfully hatched at the end of 22 day of inoculation. However, 

an adverse effect of E. coli ECL01 in ovo inoculation on hatchability was confirmed for in ovo 

inoculation at E17 (P < 0.0001), E18 (P < 0.0001) and E19 (P < 0.0001).  In contrast, all embryos 

inoculated with E. coli ECL01 at E20 hatched. A significantly higher (P < 0.001) mortality (80-

100% mortality) was observed following E. coli inoculation between E17 and E19 compared to 

control birds (0% mortality). However, all birds inoculated at E20 with E. coli ECL01 survived. 
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*** P < 0.001, **** P < 0.0001 Comparison with Control group in each different inoculation day. 

 

Figure 4.5 Percent of pipped eggs, hatched eggs, and mortality at end of 22 day of 
incubation for Control birds (CON) and birds inoculated with E. coli ECL01 (ECL01) at 
E17, E18, E19 and E20. 
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eggs to 60%. Two (10%) of the E. coli ECL01-inoculated birds that failed to pip were dead after 

day 22 of incubation. 

Progress of pipping is shown at Figure 4.6. The first sign of pipping was confirmed at 475 

hours of incubation (19 days and 16 hours) in the E. coli ECL01-inoculated group and 476 hours 

in the germ-free group. The mean time (h:min) to start of pipping was earlier (P < 0.01) for the 12 

of 20 eggs in the E. coli group that started pipping (482:19) compared to birds in GF group (492:30)  

 
 

 

Figure 4.6  Incubation time (hours) to pipping for germ-free birds (GF) and E. coli ECL01 
inoculated birds (ECL01) at E17. 
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Body weight at the start of pipping was significantly decreased (P<0.0001) in E. coli 

ECL01-inoculated birds compared with GF birds (Table 4.7). E. coli ECL01 in ovo inoculation 
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Table 4.7 Mean (± SE) for egg weight (EW) at the start of incubation (E0) and at day 17 of 
incubation (E17) and mean body weight (BW), yolk sac weight and yolk sac-free body weight at 
the start of pipping for Germ-free birds and birds inoculated with E.coli ECL01 (ECL01) at E17. 

Treatment 

    At sampling 

E0 EW E17 EW BW 
Yolk sac 
weight 

Yolk sac-
free body 

weight 
(g) (g) (g) (g) (g) 

GF 60.7 ± 0.29 55.0 ± 0.28 44.2 ± 0.49 7.41 ± 0.344 37.0 ± 0.60 
ECL01 60.6 ± 0.26 55.0 ± 0.30 37.9 ± 0.39 9.05 ± 0.215 28.9 ± 0.46 
p value 0.9227 0.9118 0.0001 0.0004 0.0001 
 

 In ovo inoculation with E. coli ECL01 tended to decrease (P < 0.10) relative gizzard 

weight, significantly increased (P < 0.0001) relative liver weight at the start of pipping without 

affect relative weight of bursa of Fabricius (Table 4.8). 

 
Table 4.8 Mean (±SE) relative weight (g/100g of BW) of gizzard, Bursa of Fabricius and liver at 
the start of pipping in Germ-free (GF) and E. coli ECL01 (ECL01) birds inoculated at E17.   

Treatment 
Gizzard 

(g/100g BW) 
Bursa 

(g/100g BW) 
Liver 

(g/100g BW) 
GF 2.59 ± 0.074 0.11 ± 0.007 1.69 ± 0.018 

ECL01 2.40 ± 0.054 0.12 ± 0.007 2.13 ± 0.069 
p value 0.0689 0.2509 0.0001 

 

No effect of E. coli ECL01 in ovo inoculation was observed on relative small intestinal 

segment length, however, ECL01 reduced (P < 0.05) the length of the cecum (Table 4.9). 

Interestingly, development of mucosal edema was grossly observable in the ileum of E. coli 

ECL01- inoculated birds (Figure 4.7).  

 
Table 4.9 Mean (±SE) relative small intestinal segment length (mm / 100g BW) at pipping in 
Germ-free (GF) and E. coli ECL01 (ECL01) birds inoculated at E17. 

  Duodenum Jejunum Ileum 

Length of 
total small 
intestine Cecum 

Treatment (mm / 100g of body weight) 
GF 49 ± 1.2 96 ± 2.6 97 ± 2.8 243 ± 6.0 28 ± 0.7 

ECL01 50 ± 1.5 94 ± 1.6 93 ± 1.8 237 ± 3.6 26 ± 0.7 
p value 0.7098 0.4703 0.2734 0.4605 0.0355 
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Figure 4.7 Picture of ileum for germ-free (GF) bird and E. coli ECL01 inoculated bird. 

 

4.4.5.2 Gene expression analysis in the ileum 

A summary of mean fold change in expression of genes of interest in the ileum for GF 

birds and E. coli ECL01-inoculated birds is given in Table 4.10. A marked effect of E. coli ECL01 

in ovo inoculation was observed in abundance of pro-inflammatory cytokines. Significant 

upregulation (P < 0.0001) was observed for IL-1, IL-6 (P < 0.001) and IL-8 (P < 0.0001) gene 

expression in E. coli ECL01-inoculated bird compared with GF birds. Expression of TLR2 in 

ECl01 was also significantly higher (P < 0.001) than in the GF group, however no significant 

effect was observed in TLR4. Significantly higher (P < 0.05) expression of APN in ECL01-

inoculated birds was also observed. For tight junction proteins, significant upregulation (P < 0.001) 

in CDN1 and downregulation (P < 0.0001) in CDN5 transcripts was observed for the ECL01 group. 

Abundance of CDN4 transcripts in E. coli-inoculated birds also tended to be lower (P < 0.10) than 

in GF birds. Finally, downregulation (P < 0.0001) in IGF-I and PCNA for E. coli ECL01-

inoculated birds was also observed. 
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Table 4.10 Mean (± SE) fold change in expression of genes in the ileum at pipping for 
Germ-Free (GF) and E. coli ECL01 birds inoculated at E17. 

Treatment Germ-free E. coli ECL01 P value 
IL-1 1.0 ± 0.12 71.5 ± 15.01 0.0001 
IL-6 1.0 ± 0.13 3.1 ± 0.73 0.0028 
IL-8 1.0 ± 0.15 47.7 ± 5.98 0.0001 

TLR2 1.0 ± 0.09 2.0 ± 0.24 0.0002 
TLR4 1.0 ± 0.09 1.3 ± 0.23 0.2346 
APN 1.0 ± 0.07 1.3 ± 0.12 0.0272 

SGLT-1 1.0 ± 0.12 0.7 ± 0.08 0.1121 
PepT-1 1.0 ± 0.09 1.1 ± 0.27 0.6668 

cGH 1.0 ± 0.09 1.1 ± 0.14 0.5007 
IGF-I 1.0 ± 0.11 0.3 ± 0.02 0.0001 
CDN1 1.0 ± 0.08 2.4 ± 0.36 0.0002 
CDN4 1.0 ± 0.09 0.7 ± 0.11 0.0601 
CDN5 1.0 ± 0.05 0.6 ± 0.06 0.0001 
PCNA 1.0 ± 0.04 0.6 ± 0.05 0.0001 
MUC2 1.0 ± 0.11 1.0 ± 0.29 0.1619 

 

 

4.5 Discussion 

We utilized the in ovo inoculation model to assess and compare the independent impact on 

chick development, of five bacterial isolates representing major taxonomic families in the 

gastrointestinal tract of chickens. The approach identified markedly different colonization patterns 

for each species associated with variation in impact on incubation time, mortality, body weight, 

gross organ weights and expression of genes in the intestine associated with intestinal growth, 

barrier and digestive function. Importantly, when chicks were hatched in sterilized individual 

isolated containers, no evidence of pre-hatch microbial colonization was observed consistent with 

the previous work of our lab and others (Muramatsu et al., 1994). The confirmation of a germ-free 

intestine at hatch and the mono-association of this environment by in ovo inoculation of a single 

isolate, are important findings reaffirming the potential of the gnotobiotic animal model as recent 

reports present evidence that gut microbial colonization begins in the embryo (Akinyemi et al., 

2020; Lee et al., 2019). Clearly, bacteria identified using molecular tools in these studies do not 

normally contribute to gastrointestinal microbial colonization. 

An interesting finding reported here was the variation in colonization patterns observed 

among the five different bacterial isolates following in ovo inoculation. The E. faecalis (ENT03) 
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and E. coli (ECL01) isolates colonized all embryos reaching densities in mono-association at levels 

approaching that of complex communities observed in adult birds of 9-10 log CFU/g cecal contents 

at the time of hatch. The L. salivarius (LCT01) isolate also colonized all embryos but surprisingly 

only attained a colonization density in mono-association of about 6 log CFU/g. The B. fragilis 

(BCT06) isolate was recovered at hatch from only 5 of 8 birds and perhaps most surprising 

colonized to approximately 10 log CFU/g cecal contents in 3 of the 5 birds where BCT06 was 

recovered. The C. butyricum (CLS01) isolate was recovered in only a single bird at a relatively 

low (about 3 log CFU/g) colonization density.  

Variation in colonization success and/or density following bacterial inoculation in ex-

germ-free animals is not unexpected. For example, Phillips et al. (1962) reported Alcaligenes 

faecalis ATCC9220 failed to grow in the gut of germ-free chicks. Similarly, Bacteroides 

melaninogenicus was not recovered from ex-germ-free mice even after a secondary inoculation 60 

days after the first inoculation (Gibbons et al., 1964). Baba et al. (1991) reported that a Bacteroides 

sp. did not always colonize when inoculated in 2-day-old ex-germ-free chicks. Popoff et al. (1985) 

successfully mono-associated ex-germ-free chickens at 7 d of age with two C. butyricum strains 

that reached about 8.0 log CFU/g four weeks after the inoculation. Thus, C. butyricum seems to 

have the ability to colonize adult birds in mono-association. Variations in the colonization pattern 

observed here, despite the isolation of bacterial inoculants from the conventional chicken 

gastrointestinal tract, likely reflect the unique properties of the in ovo environment and the unique 

metabolic requirements of each bacterium.   

We do not believe the failed colonization observed for BCT06 and CLS01 represent 

technical errors as nearly 200 eggs inoculated with other isolates were successfully colonized. 

Furthermore, live microorganisms were confirmed in our inoculant preparations immediately 

following in ovo inoculation. Oxygen level in the embryonic gut may be one of the key factors 

contributing to uneven colonization results. In the case of BCT06 and CLS01, both isolates 

represent anaerobic species and were the only bacterial isolates that failed to colonize all chicks, 

indicating they may be sensitive to high oxygen levels present in the otherwise sterile gut of the 

chicken embryo as compared to a gut lumen largely devoid of oxygen in conventional adult birds 

(Albenberg et al., 2014). Low luminal gut oxygen levels in adult birds are mediated by utilization 

of oxygen diffusing from the host tissues by aerobic and facultatively anaerobic bacterial 

community members (Crank and Gupta, 1972).  Indeed, E.coli and Enterococcus spp., which 
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colonized in ovo to consistently high density in the current experiment, are known to have 

flexibility in their utilization of multiple electron acceptor systems to maximize a growth 

advantage in the environment (Espey, 2013). It is likely that for BCT06 and CLS01, were 

disadvantaged by the high oxygen environment initially encountered in the embryonic gut. It is 

likely that in some cases, immediately following inoculation when bacterial number were low, 

oxygen levels encountered had a sterilizing effect. However, it remains unclear why in some cases 

BCT06 was able to colonize to high density despite the oxygen levels encountered in a mono-

associated environment devoid of oxygen utilizers such as E. coli and Enterococcus species.   

Nutrient availability in the embryonic chicken gut may also have affected bacterial 

colonization success and density.  The avian egg is a closed system and sufficient or essential 

nutrient for bacterial growth may not be available without nutrients supplied through feed 

consumption.  In the case where Popoff et al. (1985) reported mono-association of two C. 

butyricum strains in ex-germ-free chickens, these birds were consuming a cereal-based diet 

formulated to meet the birds nutrient requirement and likely also providing unique nutrients 

unavailable in the embryonic gut and potentially supporting clostridial growth.  

Finally, the unique essential or limiting nutrient for some bacteria may be supplied by the 

metabolic activity of other bacteria in the complex conventional gut microbial ecosystem. 

Microbial cross-feeding is well recognized in complex systems (Canon et al., 2020; Das et al., 

2018), such as the use of lactate produced by Lactobacillus plantarum as a substrate for 

Acetobacter pomorum to produce and provide amino acids that are essential to Lactobacillus 

plantarum (Henriques et al., 2019). Most Lactobacillus spp. exhibit characteristic requirements 

for a number of amino acids (Morishita et al., 1981) unlike E.coli which can synthesize all 20 of 

the standard amino acids (Price et al., 2018). Indeed, a lack of availability of specific amino acids 

in the embryonic gut environment could explain the relatively low abundance of L. salivarius 

observed in the current study. Interestingly, C. butyricum was found to contain all the genes 

encoding  enzymes responsible for the biosynthesis of all 20 amino acids (Storari et al., 2016). 

However, the biotin biosynthesis pathway was incomplete for C. butyricum (Himmi et al., 1999). 

These functional differences in metabolic capacity among the inoculant strains also likely played 

a major role in colonization success.  

With the exception of E. coli, the remaining four representatives of the adult commensal 

microbiota, when administered in ovo, did not markedly affect chick hatchability and development 
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in terms of BW at hatch or any gross parameters. This is consistent with previous reports where 

Lactobacillus spp. (Alizadeh et al., 2020; Sivalingam et al., 2017; Triplett et al., 2018; Wilson et 

al., 2019a) and Enterococcus spp. (Beck et al., 2019; Castañeda et al., 2020; Castañeda et al., 2019) 

were inoculated. A lower yolk weight and longer intestine were reported with Enterococcus 

faecium in ovo inoculation (Castañeda et al., 2019) a result observed only as numerical differences 

here with ENT03. Majidi-Mosleh et al. (2017a) also reported that in ovo inoculation of 

Enterococcus faecium or Pediococcus acidilactici, a lactic acid bacterium in the same family as 

Lactobacillus spp., did not affect hatchability or body weight at 1 day of age. To our knowledge 

there are no previous reports on inoculation with Bacteroides and Clostridium spp.   

Differential effects of each of the remaining four bacterial species were observed on 

analysis of ileal gene expression. Enterococcus faecium ENT03 inoculation in ovo appeared to 

induce the greatest local gene expression responses associated with a proinflammatory response 

characterized by a more than 10-fold increase in IL-8 and significant increases in both TLR2 and 

TLR4. Enterococcus faecalis is one of the most common Enterococcus sp. in the chicken gut 

(Muhammad Attiq et al., 2018). However, it is known as an opportunistic species (Jørgensen et al., 

2017) and frequently associated with endocarditis in broiler chickens (Chahota et al., 2001; Prasath 

et al., 2017). E. faecalis is also known as a cause of urinary-tract infection in humans (Li et al., 

2020) and in chicken is considered as one of the sources of the disease (Poulsen et al., 2012). 

Upregulation of IL-8 by E. faecalis infection was also confirmed in human gastric cancer cell 

model (Strickertsson et al., 2013). Interestingly, in contrast to observations made here, Majidi-

Mosleh et al. (2017) reported no significant difference, compared to controls, in MUC2 expression 

in the ileum of 21 d-old chick embryos inoculated with E. faecium or P. acidilactici at day 17 of 

incubation. Majidi-Mosleh et al. (2017a) did not measure proinflammatory gene expression 

limiting further comparison. Nevertheless, the response to E. faecium is likely highly strain 

specific. 

Interestingly, we observed increased MUC2 and CDN4 expression in the ileum of L. 

fermentum-inoculated embryos without evidence of an inflammatory response. Assuming that 

increased expression of these genes contributes to enhanced barrier function, the ability to 

stimulate barrier function without a marked inflammatory response may support a probiotic role 

in birds.  
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Some evidence of a proinflammatory response to Bacteroides was also observed although 

to a far lesser extent than ENT03. The BCT06 response was characterized by an increase in IL-6 

and TLR2 without any evidence of impact on transcripts measured as markers of barrier function. 

As noted above BCT06 colonization density was variable and recovered in only 5 of 8 birds. 

Interestingly the numerically highest transcript abundance for these genes was observed for the 3 

birds colonized at 9 log CFU/g (data not shown) suggesting a relationship between response and 

colonization density. Indeed, BCT is a Gram-negative bacterium such that the inflammatory 

response could be associated with mucosal exposure to cell wall endotoxin although the apical 

orientation of TLR2 is likely tightly controlled (Yu and Gao, 2015).  

Down regulation of CDN5 lead to altered tight junction structure and pronounced barrier 

dysfunction (Zeissig et al., 2007). The pro-inflammatory responses noted for ENT03 and BCT06 

were associated with a decrease in transcript abundance for CDN5 and could signal lost barrier 

function in response to these bacterial strains. Whether a similar response to any of these strain 

would be observed in a post hatch gut may depended on the development of innate barrier 

mechanisms and the extent to which these organisms are able to penetrate the barrier to activate 

inflammation  (Martina et al., 2017).  

 Both commensal, nonpathogenic E. coli strains, ECL01 and ECL02, were confirmed lethal 

when inoculated as live isolates before E19 even at the lowest dose of 2 log CFU/embryo in 

agreement with a report by Graham et al. (2019). Lethality was only confirmed with E. coli strains 

among the 5 bacterial species tested here and numerous other strains reported elsewhere (Alizadeh 

et al., 2020; El-Moneim et al., 2020; Pender et al., 2017; Siwek et al., 2018). To rule out a toxigenic 

response to endotoxin present in E. coli Gram negative cell wall, heat killed E. coli ECL01 was 

inoculated. Results indicated that the dramatic effect on hatchability and ultimately lethality 

required the live organism. This finding agrees with Graham et al. (2019), where the in ovo 

inoculation of tetracycline also prevented the lethality of E. coli in ovo inoculation.  This lack of 

lethal effect of heat killed E. coli is also consistent with the tolerance of embryos to inoculation 

with Gram negative Bacteroides sp. in the present study.  

Most interestingly, the effect of live E. coli on hatchability was lost when inoculated at day 

20 of incubation or at the time of hatch (data not shown). Indeed E. coli is known as an early 

colonizing bacterium post hatch in the chick (Benno and Mitsuoka, 1986) without any known 

adverse effects. Response to live E. coli inoculation to 1 week old germ-free birds was not reported 
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as lethal and repeated oral immunization with the heat-killed E. coli 02 was not fatal and failed to 

stimulate serum or intestinal antibodies (Parry et al., 1977). Thus, we conclude that E20 most likely 

represents a significant and acute stage of maturation of gastrointestinal barrier function in the 

embryo.   

On the other hand, Escherichia coli is also recognized as a cause of a variety of disease 

syndromes in poultry, including yolk sac infection, omphalitis, respiratory tract infection, swollen 

head syndrome, septicemia, and cellulitis (Gomis et al., 2003). In this trial, approximately 104 

CFU/g of E. coli ECL01 was recovered from blood at the sampling (data not shown) indicating 

the bacterial translocation and sepsis was a likely cause of lethality.  Even so, the in ovo inoculation 

of non-pathogenic E. coli, did not result in immediate mortality, indeed, independent of the day of 

inoculation, embryos largely survived until day 21 of incubation and the majority initiated pipping 

although they were unsuccessful in completing the pipping process.   

Harvest of surviving chicks at the time of pipping not surprisingly found reduced yolk sac 

body weight, and evidence of a marked ileal inflammatory response as indicated by gross edema 

and marked elevation in transcript abundance of, particularly, IL-1 and IL-8.  Interestingly, we 

recorded a decline in CDN5 consistent with a possible loss of barrier function (Zeissig et al., 2007) 

but an increase in CDN1 which strongly connects intestinal absorbing epithelial cells as tight 

junction protein (Gharib-Naseri et al., 2020). Although our ECL01 strain did not present with 

markers of pathogenicity in avian species, clearly this organism interacted differently with the 

embryonic mucosa compared to the Gram negative BCT06, although at high colonization density 

this organism also induced significant inflammatory gene expression in the ileum.   

 

4.6 Conclusion 

A total of 5 bacterial strains were selected from 5 major taxa in the chicken gut and the 

effect of these bacterial species were evaluated in mono-associated embryos following in ovo 

inoculation. The lack of bacterial growth detected in the tract of control, non-inoculated embryos 

maintained under sterile and HEPA-filtered environmental conditions confirmed our ability to 

establish mono-associated embryos and supports the initiation of gut microbial colonization post 

hatch under conventional conditions. Colonization success and density was inoculant dependent 

and may have contributed to variation in ileal inflammatory and barrier function responses 
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observed. All inoculants were well tolerated by the embryo with the exception of E. coli which 

was lethal when inoculated between day 17 and 19 of incubation. Of the non-lethal inoculants E. 

faecalis induced the greatest inflammatory response in the ileum followed by B. butyricum. 

Lactobacillus fermentum was able to induce expression of barrier-associated genes without 

induction of inflammatory genes, a response which could support a probiotic role. E. coli lethality 

was associated with inoculation of the live organisms and a marked ileal inflammatory response 

observed at the time of pipping. Interestingly, a lethal response was not observed when E. coli was 

inoculated at day 20 incubation consistent with programmed events in maturation of gut immunity 

at this time.  
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5 THE EFFECT OF DIETARY SUPPLEMENTATION WITH BACILLUS SUBTILIS C-
3102 SPORES ON CHICKEN GASTROINTESTINAL TRACT DEVELOPMENT IN 

A GNOTOBIOTIC SIMPLIFIED GUT MICROBIOTA MODEL.  

5.1 Abstract 

Bacillus spp. are supplemented globally in broiler chicken diets although the mechanism(s) 

by which Bacillus probiotics provide health and/or performance benefits are not well understood. 

Since the complexity of the gut microbiota challenges assessment of mechanisms of probiotic 

action, germ-free chickens were inoculated with a simplified microbiota (SM) as a model to study 

of bacteria-bacteria and bacteria-host interactions. Fertilized eggs (Ross308) were sanitized and 

hatched in four sterile gnotobiotic isolators (16 birds/isolator). At 1 day of age, all chicks were 

given 0.5 mL of a SM, containing 108 CFU per mL of each of Bacteroides fragilis BCT06, 

Lactobacillus salivarius LCT01, Clostridium butyricum CLS01, Enterococcus faecalis ENT03 

and Escherichia coli ECL01. Birds in two isolators received feed supplemented with Bacillus 

subtilis C-3102 (BS) spores (3x105 CFU/g). Birds (8 birds/isolator) were killed at 7 and 14 d of 

age for measurement of body weight, organ size, ileal gene expression and microbial colonization. 

Culture and molecular analysis of contents identified all 5 bacterial species in all birds without 

evidence of contaminating species. BS reduced (P < 0.05) the number of E. coli and E. faecalis, 

relative weight of gizzard and liver and relative length of jejunum, ileum and cecum. Relative 

expression of toll-like receptor-4 were upregulated (P < 0.05) in BS group. Aminopeptidase N and 

peptide transporter-1 tended to be increased (P < 0.10) in BS group at d 7 and were significantly 

upregulated (P < 0.05) at d 14. Tight junction proteins claudin (CDN) 1 and CDN5 were reduced 

(P < 0.05) by BS at d 7 only. All species represented in the SM colonized the ex-germ-free chicken 

gastrointestinal tract and appeared to form a stable community. BS supplementation appeared to 

modify relative abundance of species represented in the simplified microbiota associated with 

changes in ileal gene expression that could mediate performance and health benefits. 

 

5.2 Introduction 

It is well recognized that the highly complex intestinal microbial community is a major 

mediator of the physiology, metabolism, and energy homeostasis of their host including the 

chicken (Kogut, 2013; Stanley et al., 2012; Stanley et al., 2013a).  Germ-free animal models have 
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been used extensively in many animal species including mice (Faith et al., 2014; Gibbons et al., 

1964), rats (Rachel et al., 2016), chickens (Cheled-Shoval et al., 2014; Drew et al., 2003; Reyniers 

et al., 1950), pigs (Holman et al., 1966; Kastel et al., 2007; Willing and Van Kessel, 2007; Willing 

and Van Kessel, 2009), guinea pigs (Cobb et al., 1991; Samuel et al., 1963), and zebrafish (Tan et 

al., 2019) to confirm the physiological roles of the intestinal microbiota and to elucidate the direct 

effect of community members on gastrointestinal tract development and function. A major 

advantage of the germ-free system is that differences between germ-free animals and mono or di-

associated animals can be wholly ascribable to the direct effects of the inoculated strain revealing 

the importance of the community member and pathways mediating the host response. While the 

approach can provide important insight into host:microbial interactions there are several 

disadvantages.  

Firstly, the microbial colonization of the gastrointestinal tract provides an important signal 

driving gastrointestinal development dramatically affecting innate and acquired immunity (Shi and 

Walker, 2004; Walker, 2017) as well as digestive and absorptive function (Willing and Van Kessel, 

2007). As a result, the underdeveloped tract of the germ-free animal may respond differently to an 

inoculated microorganism compared to a conventional animal. Furthermore, the lack of 

competitive environment in mono-associated tracts often leads to colonization of the inoculated 

organism at a high density (Schaedler  et al., 1965) and with potentially different metabolic activity 

relative to a complex conventional environment, again potentially altering the nature of the host 

response (Dieleman et al., 2000; Smith et al., 2007).   

Clearly, studies where inoculations are performed using conventional animals can 

overcome these limitations. However, conventional poultry studies are limited by a highly 

complex and dynamic microbial colonization pattern (Oakley et al., 2014; Shang et al., 2018) with 

considerable animal-to-animal variation even when performed under controlled conditions (Kers 

et al., 2018). Moreover, large differences in microbiota profiles have been shown between groups 

of birds from highly controlled replicate trials performed in the same lab (Stanley et al., 2013b). 

Therefore, conventional studies investigating microbial inoculants or other modifiers of microbial 

colonization often report variable outcomes (Franklin and Ericsson, 2017; Jin et al., 1997).  

Furthermore, conventional studies are challenged to demonstrate the mechanisms of action of gut 

modifiers given the considerable animal-to-animal variation in microbial colonization patterns, the 

difficulty of establishing whether consistent changes in community composition occurs and 
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whether changes in host physiology are mediated directly by the inoculant or indirectly due to 

changes in the relative abundance of other community members.  

To overcome the challenges associated with establishing mechanisms of action for 

probiotic bacteria and other gut microbiota modifiers, we developed a gnotobiotic model where 

birds are maintained with a minimal “simplified microbiota” comprised of bacterial species 

representing five major taxonomic families present in the chicken gastrointestinal tract including 

Lactobacillaceae, Bacteroidaceae, Clostridiaceae, Enterococcaceae (Lu et al., 2003). We 

hypothesized that this simplified microbiota model would provide a consistent environment more 

representative of the physiology of conventional birds. This model would permit elucidation of the 

mechanisms of action of probiotics and other gut modifiers including a differentiation of host 

response pathways activated directly by the probiotic or indirectly by inducing changes in relative 

abundance of other community members. In the present study, the simplified microbiota model 

was used to probe the mechanisms of action of a Bacillus probiotic (Bacillus subtilis C-3102) on 

gut development in broiler chickens. 

 

5.3 Materials and Methods 

5.3.1 Animals and experimental design 

All animal experiments were conducted with the approval of the University of 

Saskatchewan Animal Research Ethics Board (Protocol # 20120074) according to the guidelines 

of the Canadian Council on Animal Care. All test birds were hatched as germ-free birds and reared 

according to methods previously developed in our laboratory (Cheled-Shoval et al., 2014; Drew 

et al., 2003). A total 144 of Ross 308 fertilized eggs weighing 61.6 ± 2.4 g (ranging from 56.1-

65.4 g) at E0 were used. All eggs were sterilized by immersion in 0.5% of sodium hypochlorite at 

30 °C degrees for 12 minutes and incubated in HEPA filtered incubators (Robbins®, US) sanitized 

and sterilized using formaldehyde gas. At day 19 of incubation, all eggs were weighed and candled 

to permit removal of unfertilized eggs, dead embryos and eggs with a cracked shell. Furthermore, 

eggs which lost over 13% of E0 weight were removed.  

The remaining 120 embryos were assigned to one of 4 treatment groups (30 eggs per group) 

balanced for E0 weight such that mean E0 weight per treatment was 62.2 ± 0.5 g. Eggs in each 

treatment group were placed in one of four sterilized and HEPA filtered isolator units and re-
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sanitized by exposure to 2% of paracetic acid solution (35%, FMC Corporation, Philadelphia, CAS 

No. 79-21-0) for 12 min within the isolator entry port chamber. Isolator temperature and relative 

humidity (RH) were maintained between 33-36 °C and 40-70% RH, respectively, until hatch. 

Uniform hatchability was observed in all four isolators such that the hatching ratio ranged between 

77% and 87%. After the hatching, 8 healthy male and 8 healthy females were selected from hatched 

bird by feather sexing resulting in 16 birds per isolator. Non-selected birds were euthanized. At 1 

day of age, all chicks were given 0.5 ml of a cocktail of Simplified Microbiota (SM), containing 

1.0 x 108 CFU per ml of each of 5 bacterial strains as detailed below, by oral gavage.   

A corn and soybean meal-based starter diet sterilized using gamma irradiation (5 Mrads) 

and meeting nutrient requirements (NRC, 1994) was fed ad libitum during the trial. To account for 

radiation destruction, 0.2g per kg of vitamin A, D, and E premix (DSM, Ayr, Ontario, Canada) 

was supplemented to the feed in addition to standard vitamin requirements. Sterile filtered (0.22 

µM; Thermo Fisher Scientific, MA USA) water was also provided ad libitum. Birds in two 

isolators received feed inoculated with Bacillus subtilis C-3102 spores (provided by Calpis Co., 

Ltd.) by hand mixing 3x105 CFU/g of feed. 

 

5.3.2 Simplified microbiota preparation 

Bacteroides fragilis BCT06, Lactobacillus salivarius LCT01, Clostridium butyricum 

CLS01, Enterococcus faecalis ENT03 and Escherichia coli ECL01, isolated from ileal and cecal 

contents of 14-d-old chickens, were selected as relatively abundant colonizers within each of the 

5 major bacterial taxa present in the conventional chicken gastrointestinal tract for inclusion in the 

SM. Each bacterium was cultured using conditions described in Chapter 4. The combined SM 

inoculant was made by mixing each of the 5 bacterial solutions to produce a cocktail containing 

1.0 x108 CFU/mL in sterile saline. Freshly prepared SM cocktail was stored on ice until aseptically 

transferred into each isolator unit and used to inoculate birds by gavage 1 ml per bird of the cocktail 

with syringe within 1 hour. Culture of a retained subsample confirmed inoculant composition 

which ranged from a low of 8.2 to a high of 9.0 CFU/g of each bacterium.  
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5.3.3 Euthanasia and sample collection 

Birds (4 males and 4 females per treatment) were killed by cervical dislocation and 

removed from the isolator at 7 and 14 d of age. Chick body weight and length of the small intestinal 

segments, duodenum (duodenal loop), jejunum (proximal end of duodenal loop to Meckel’s 

diverticulum), and ileum (Meckel’s diverticulum to ileo-cecal junction) were measured and 

recorded. The wet weight of gizzard, liver, spleen and bursa of Fabricius was also recorded. 

Intestinal contents from crop, gizzard, ileum and cecum were aseptically collected from 6 birds 

and immediately processed for bacterial enumeration by culture-based methods. Intestinal tissue 

representing the medial region of ileum was placed in 10% formalin for histochemical analysis 

and snap frozen by liquid nitrogen for later storage at -80 °C to permit analysis of gene expression.  

 

5.3.4 Bacterial enumeration 

The SM inoculant cocktail or fresh contents from ileum and cecum of each bird were 

diluted (1:10 w/v) in 0.1% peptone water and 50 µL spread on both non-selective media and 

selective media. Colonies were enumerated on BL agar with 5% sheep blood (Eiken Chemical 

Co., Ltd., Tokyo, Japan) for total anaerobes, BBLTM TrypticaseTM soy broth with 2% agar (Becton, 

Dickinson and Co. Sparks, MD, USA) for total aerobes and B. subtilis C-3102, DHL agar “Nissui” 

(NISSUI Pharmaceutical co., ltd. Tokyo, Japan) for Enterobacteriaceae, LBS agar (NISSUI 

Pharmaceutical co., ltd. Tokyo, Japan) for L. salivarius, NN agar (Mitsuoka, 1971) without 

neomycin for C. butyricum, BBE agar (Becton, Dickinson and Co. Sparks, MD, USA) for B. 

fragilis and BDTM EnterococcoselTM Agar (E agar, Becton, Dickinson and Co. Sparks, MD, USA) 

for E. faecalis. Aerobic bacteria were enumerated following culture at 37 °C for 24 h and anaerobic 

bacteria were enumerated after culture in an anaerobic jar (GasPak anaerobic system, Becton 

Dickinson Franklin Lakes NJ) at 37 °C for 48 hours. For enumeration of B. subtilis C-3102 spores, 

the remaining diluted samples were heat treated at 65 °C for 30 min to kill vegetative cells prior 

to plating on selective agar, for culture and enumeration. 

 



 

103 
 

5.3.5 Molecular identification of cultured strains 

After the enumeration procedure, a total of 16 colonies were randomly selected from each 

selective media and re-streaked on appropriate selective media to ensure isolation. Bacterial cells 

were harvested from each isolated colony using a sterilized toothpick and eluted into 100 µL of 

Nuclease-Free Water (Ambion, USA). DNA extraction was performed by heating to 95 °C for 5 

min, followed immediately by 4.0 °C for 10 min., using a C1000 Touch PCR system (Bio-Rad 

Laboritories, Hercules, CA). The region corresponding to nucleotides 11 to 536 of the E. coli 16S 

rRNA gene were amplified using universal bacterial primers (H1476: 5’-

GAGTTTGATCCTGGCTCAG-3’and H1478: 5’-GWATTACCGCGGCKGCTG-3’) following a 

method previously described (Hill et al., 2010). A total of 10µl of each PCR product was purified 

and sequenced by Eurofins Canada (Toronto, Canada).  All sequencing results were trimmed of 

primer sequence, aligned by MEGA6 software (http://megasoftware.net/) and assigned a microbial 

identity using BLAST (https://blast.ncbi.nlm.nih.gov ) and the Ribosomal Database Project (RDP) 

Classifier provided by the RDP (http://rdp.cme.msu.edu). 

 

5.3.6 Histochemistry 

After formalin-fixation in 10% neutral buffered formalin at least for 24 hour, tissue samples 

were submitted to the Prairie Diagnostic Services Laboratory (Saskatoon, SK) for paraffin 

embedding, sectioning and staining with hematoxylin and eosin. As described in Chapter 3, the 

mean length of at least 10 villi and 10 crypts per cross section per bird were measured from at least 

four different cross sections by a blinded observer using a Axiostar plus light microscope (Carl 

Zeiss Canada Ltd., Toronto, ON) and AxioVision 4.1 measurement software (Carl Zeiss Canada 

Ltd.).   

 

5.3.7 RNA extraction from ileum tissue and quantitative PCR gene expression analysis 

Frozen ileal tissues were ground using a mortar and pestle under liquid nitrogen. Total 

RNA was extracted from 30 mg of ground tissue using an RNeasy Mini Kit (Qiagen, Mississauga, 

ON) incorporating RNase-Free DNase (Qiagen, Mississauga, ON). Optical density at 260 and 280 

nm was determined using a NanoDrop spectrophotometer (Thermo Scientific, Wilmington DE) 



 

104 
 

and only samples with a 260/280 ratio between 1.80 and 2.00 were retained for gene expression 

analysis. A High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Inc., Foster 

City, CA, USA) was used to transcribe total RNA (5 µg) by random hexamer and cDNA was 

stored at -80 °C until analysis. Specific transcript abundance was measured using quantitative real-

time PCR (qPCR) carried out using CFX96 real-time PCR detection system on a C1000 thermal 

cycler (Bio-Rad Laboratories, Inc., California, U.S.A.). Reactions (20 µL) contained 2.0 µL of a 

1/100 dilution of cDNA, 1.0 µL of 10 µM forward and reverse primer (Table 3.1 Chapter 3), 10.0 

µL of SsoFastTM EvaGreen® Supermix (Bio-Rad Laboratories, Inc., California, USA) and 6.0 µL 

of nuclease free water. Reaction conditions were 95 °C for 2 min followed by 40 cycles at 95 °C 

for 5 seconds and annealing at 53-61°C for 5 seconds (see Table 3.1). A melting curve analysis 

was conducted at the completion of amplification cycles by increasing temperature from 65 °C to 

95 °C in 0.5 °C increments for 5 seconds each. A 5-fold dilution series of pooled cDNA was used 

as a standard curve and PCR efficiency of standard curves ranged between 98.8% and 117%. Mean 

abundance of three housing keeping genes (see Table 3.2, Chapter 3 for primers), including 

Ribosomal protein L30 (RPL30), Succinate dehydrogenase complex subunit A (SDHA), and 

Transferrin receptor protein 1 (TFRC), was used to normalize expression of genes of interest.  The 

mean arbitrary value for each housekeeping gene, interpolated from the standard curve, was 

divided by the arbitrary value of the gene of interest to normalize expression values (Livak and 

Schmittgen, 2001). Fold change was calculated relative to the mean normalized arbitrary value for 

the control treatment at 7 d of age.  

 

5.3.8 Whole transcriptome analysis using mRNAseq 

Total RNA isolated from ileal tissues (n=24; 12 per treatment) was adjusted to 100 ng 

RNA/µL and assessed for quality using the Agilent 2100 Bioanalyzer (Agilent Technologies, 

Santa Clara, CA, USA). Total RNA was then reverse transcribed and barcoded cDNA libraries 

were sequenced on a HiSeq® 2500 Sequencing System (Illumina, Inc., San Diego, CA, USA) at 

the National Research Council Canada (NRC: Saskatoon, SK, Canada). As detailed in Chapter 3 

(Section 3.3.8), sequence results were examined for quality using FastQC (Babraham 

Bioinformatics) and Trim Galore! (Babraham Bioinformatics) was used to remove adapter 

sequences.  The trimmed reads were aligned to Gallus gallus reference genome GRCg6a_v95 
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using HISAT2 v. 2.2.0 (Kim et al., 2015). The resultant bam files were imported into SeqMonk 

v1.47.2 (conditions: duplicate reads not removed, minimum mapping quality 20, primary 

alignments only, RNA-seq data, paired end), probes generated (RNASeq Quantitation Pipeline: 

transcript features mRNA, library type: non-strand specific, libraries are paired end, merge 

transcript isoforms), manual quantitation correction 0.05, and reads normalized against control 

samples.  

Pathway analysis of genes identified as changing ≥3 fold was conducted using PANTHER 

(www.pantherdb.org) Overrepresentation Test (Released 2020-07-28, Reactome version 65 

Released 2020-11-17) with FISHER test. Gene Ontology (GO) terms were identified using 

PANTHER and GO Ontology database DOI:  10.5281/zenodo.4081749 (Released 2020-10-09). 

Dot plots were generated using ggplot2 in R 

 

5.3.9 Statistical analysis 

All data was analyzed with SAS for Windows version 9.4 (SAS Institute Inc., Cary, NC, 

USA) using Proc Mixed procedure. Isolator and gender were initially inserted in the model, 

identified as non-significant sources of variation and subsequently removed. The final statistical 

model was a factorial arrangement with BS treatment, age at sample collection and their interaction 

as sources of variation, the individual bird was the experimental unit. Where a significant 

interaction between Bacillus supplementation and age was observed, a One-way-ANOVA was 

performed and Tukey HSD selected for multiple comparison among treatment groups. For all tests, 

a level of 0.05 was used to determine statistical differences and a level of 0.10 ≥ P ≥ 0.05 was 

indicated as trend. 

 

5.4 Results 

5.4.1 Microbial status 

All inoculated bacterial strains were recovered from ileal and cecal contents at 7 and 14 d 

of age based on selective culture results (Figure 5.1). Further, based on colony growth and 

morphology observed on non-selective agars cultured under aerobic and anaerobic conditions 

(Figure 5.2), no evidence of contamination was observed. For example, consistent with the culture 
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characteristics of the 6 inoculated strains (5 SM strains plus B. subtilis) only three colony 

morphotypes were found on non-selective TS medium cultured aerobically and only three 

morphotypes were confirmed on non-selective BL medium cultured anaerobically. On isolation 

and 16S rRNA gene sequencing of random colonies representing all morphotypes selected from 

non-selective media, only the 5 inoculated strains in the SM cocktail were identified except in the 

case of contents taken from birds in isolators supplemented with B. subtilis, where the 

corresponding 16S rRNA gene sequence for this bacterium was also recovered. 

 

 

Figure 5.1 Image showing uniform colony morphology following culture on selective media of 
ileal contents taken at 14 d of age from birds inoculated with a SM and birds inoculated with SM 
supplemented with BS. Panel A, Bacteroides fragilis BCT06 colonies on BBE medium cultured 
anaerobically; Panel B, Lactobacillus salivarius LCT01 colonies on LBS medium cultured 
anaerobically; Panel C, Escherichia coli 08 ECL01 colonies on DHL medium cultured aerobically; 
Panel D, Clostridium butyricum CLS01 colonies on NN medium cultured anaerobically;  Panel E, 
Enterococcus faecalis ENT03 colonies on E medium cultured aerobically. 

 

  



 

107 
 

 

 

 

Figure 5.2 Image showing multiple colony morphologies following culture of ileal contents taken 
at 14 d of age from birds inoculated with a SM and birds inoculated with SM supplemented with 
BS. Panel A, colonies formed on aerobic culture of contents on TS medium; Panel B, colonies 
formed on anaerobic culture of contents using BL medium with 5% sheep blood. Colony 
morphologies consistent with inoculated and supplemented species are indicated. 

 



 

 
 

Table 5.1 Mean (±SE) number (log CFU/g) of five different bacteria species in the ileum contents of Simplified Microbiota (SM) 
birds and SM birds supplemented with B. subtilis (BS) at 7 and 14 day of age. 

Treatment 
Total 

Anaerobe 
Bacteroides  Clostridium1 

Enterobacteria
ceae  

Enterococcus Lactobacillus 

7 days old             
SM 7.5 ± 0.11 6.2 ± 0.26 3.5 ± 0.18b 6.9 ± 0.18 6.9 ± 0.10 6.9 ± 0.15 

      (6/12)2       
SM plus BS 7.5 ± 0.13 6.4 ± 0.28 4.0 ± 0.08ab 6.8 ± 0.12 6.7 ± 0.10 7.0 ± 0.11 

      (5/12)2       
14 days old             

SM 7.6 ± 0.15 6.4 ± 0.23 4.2 ± 0.14a 6.9 ± 0.16 7.3 ± 0.14 6.7 ± 0.24 
      (10/12)2       

SM plus BS 7.4 ± 0.13 5.9 ± 0.16 3.9 ± 0.19ab 6.3 ± 0.10 7.0 ± 0.12 7.0 ± 0.17 
      (7/12)2       

Bacillus 0.3566 0.3461 0.7694 0.0149 0.0136 0.2132 
Day 0.6977 0.4752 0.1091 0.0809 0.0026 0.7364 

Bacillus x Day 0.5414 0.1245 0.0232 0.0992 0.9442 0.7315 
1 Means of positive sample recorded. 
2 Detected / Total Samples 
ab Values in same column with different superscripts are significantly different (P < 0.05) 
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Table 5.1 provides results for selective culture-based enumeration of the 5 species in the SM 

cocktail for ileal contents collected at 7 and 14 d of age. Culture results indicated three inoculated 

species, namely E. coli ECL01, E. faecalis ENT03 and L. salivarius LCT01 colonized the ileum at 

similar densities around 7 log CFU/mL. The colonization density of B. fragilis BCT06 was 

somewhat lower at approximately 6 log CFU/mL. Ileal colonization with C. butyricum CLT01 was 

detected in 5 to10 of the 12 birds sampled at 3.5-4.2 log CFU/mL and markedly lower than the other 

inoculants. Age increased (P < 0.05) colonization by E. faecalis ENT03 whereas age tended (P < 

0.10) to decrease colonization by E. coli ECL01. Supplementation with B. subtilis C-3102 

significantly reduced (P < 0.05) the number of E. coli ECL01 and E. faecalis ENT03 in ileal contents 

although the effect on E. coli ECL01 was greater at 14 d of age as indicated by a trend (P < 0.10) 

for an Age x BS interaction. A significant (P < 0.05) Age by BS interaction was observed for C. 

butyricum CLT01 reflecting an increase in Clostridium spp. colonization between 7 and 14 d of age 

for control birds whereas BS appeared to have a positive effect on Clostridium colonization in 7-d-

old birds and a negative impact on 14-d-old birds such that no age effect was apparent for BS 

supplemented birds. Colonization of the SM strains in the cecum at day 7 and day 14 are shown in 

Table 5.2.  

Colonization density in the cecum was higher than in the ileum for all bacteria and again 

colonization density of E. coli ECL01, E. faecalis ENT03 and L. salivarius LCT01, based on 

selective culture, were similar at approximately 9 log CFU/mL. The colonization density of B. 

fragilis BCT06 increased dramatically compared to ileum reaching the highest colonization density 

compared to all other species at 10 log CFU/mL. Cecal colonization with C. butyricum CLT01 also 

increased relative to ileum ranging from 5.1-6.3 log CFU/mL but remained markedly lower than 

other members of the SM. C. butyricum CLT01 was not recovered from cecum of all birds at 7 d of 

age but was found in all birds at 14 d of age. Surprisingly, age decreased (P < 0.05) colonization by 

B. fragilis BCT06. Also, an Age by BS interaction (P < 0.01) indicated a decrease in Clostridium 

colonization in control birds positive for this genus between 7 and 14 d of age, however, all birds 

(12/12) were positive for Clostridium at 14 d of age. In contrast to ileum, BS did not affect 

Clostridium in the cecum at 7 days of age and increased Clostridium colonization at 14 d of age. An 

Age by BS interaction (P < 0.01) was also observed for E. coli ECL01 colonization such that B. 

subtilis C-3102 supplementation lowered E. coli ECL01 at 14 d of age only. 



 

 
 

Table 5.2 Mean (±SE) number (log CFU/g) of five different bacteria species in the cecum contents of Simplified Microbiota (SM) 
birds and SM birds supplemented with B. subtilis (BS) at 7 and 14 day of age. 

Treatment 
Total 

Anaerobe 
Bacteroides  Clostridium1 

Enterobacteria
ceae  

Enterococcus Lactobacillus 

7 days old             
SM 10.3 ± 0.04 10.1 ± 0.50 6.3 ± 0.19a 9.1 ± 0.11ab 9.1 ± 0.04 9.4 ± 0.08 

      (9/12)2       
SM plus BS 10.4 ± 0.08 10.2 ± 0.08 6.1 ± 0.39ab 9.2 ± 0.11ab 9.0 ± 0.09 9.4 ± 0.14 

      (3/12)2       
14 days old             

SM 10.3 ± 0.12 10.0 ± 0.17 5.13 ± 0.21b 9.5 ± 0.09a 9.2 ± 0.06 9.2 ± 0.08 
      (12/12)2       

SM plus BS 10.0 ± 0.13 9.6 ± 0.25 6.3 ± 0.12a 8.9 ± 0.15b 9.1 ± 0.07 9.3 ± 0.15 
      (12/12)2       

Bacillus 0.6462 0.4044 0.0431 0.0595 0.2154 0.3437 
Day 0.0390 0.0384 0.0483 0.7913 0.1066 0.1671 

Bacillus x Day 0.0716 0.1877 0.0084 0.0057 0.3985 0.4394 
1 Means of positive sample recorded. 
2 Detected / Total Samples 
ab Values in same column with different superscripts are significantly different (P<0.05) 
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5.4.2 Enumeration of B. subtilis C-3102 total viable cells and spores 

Culture-based enumeration of B. subtilis total viable cells and spores (Figure 5.3) in crop, 

gizzard, ileum and cecum contents at 7 and 14 d of age, for birds supplemented with this probiotic 

are given in Table 5.3. The number of viable B. subtilis C-3102 was significantly lower (P < 0.05) 

in gizzard compared with other regions at 7 and 14 d of age. From 40% to 50% of B. subtilis C-

3102 was germinated in the crop, gizzard and ileum. A significantly (P < 0.05) higher percent of 

spores were found in the cecum at both ages such that the proportion of vegetative cells was only 

10% to 20% in the cecum contents. Furthermore, a significantly lower number of total Bacillus 

spp. in contents was confirmed at 14 d of age in all four regions. No age effect was observed on 

spore percentage at any location. 

 

Table 5.3 Total number of B. subtilis C-3102 (log CFU/g); number of B. subtilis spores (log 
CFU/g) and percentage of spores in different gut regions at 7 and 14 d of age in gnotobiotic 
chickens colonized with a simplified microbiota (SM) plus B. subtilis (BS). 

  Crop1 Gizzard Ileum Cecum   
Region 
effect 

  (log CFU/g contents)   (P value) 
7 days old             

Total B. subtilis 5.9 ± 0.52a 4.6 ± 0.14b 5.4 ± 0.06a 5.5 ± 0.11a   0.0001 

B. subtilis spores 5.6 ± 0.44a 4.1 ± 0.23b 5.0 ± 0.11a 5.4 ± 0.11a   0.0001 

Spores (%) 54 ± 10.3ab 50 ± 8.6b 54 ± 9.4ab 83 ± 6.2a   0.0370 
14 days old             

Total B. subtilis 4.7 ± 0.09b 4.2 ± 0.04c 5.1 ± 0.04a 5.2 ± 0.07a   0.0001 

B. subtilis spores 4.4 ± 0.05c 4.0 ± 0.06d 4.8 ± 0.05b 5.2 ± 0.07a   0.0001 

Spores (%) 59 ± 8.8b 66 ± 4.8b 58 ± 6.5b 91 ± 2.3a   0.0008 
              
Age Effect             

Total B. subtilis 0.0039 0.0156 0.0016 0.0437     
B. subtilis spores 0.0007 0.4900 0.2438 0.1010     

Spores (%) 0.7291 0.1166 0.7874 0.2216     
1 Number of samples for crop was 8 except at 7 days of age when sample number equaled 4. 
abc Values in same row with different superscripts are significantly different (P < 0.05) 
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5.4.3 Body weight, organ mass and length 

Body weight gain over the 14 d period met the performance objective for commercially 

reared ROSS308 birds (Aviagen, 2014). Body weight was not significantly affected by B. subtilis 

C-3102 supplementation of SM birds (Table 5.4). The relative weight of gizzard and liver were 

significantly smaller (P < 0.01) and the bursa of Fabricius greater (P < 0.01) at 14 compared with 

7 d of age (Table 5.5). The relative weight of gizzard and liver were significantly decreased (P < 

0.05) by B. subtilis C-3102 supplementation whereas the relative weight of bursa and spleen 

were unaffected (Table 5.5).  

As anticipated, the relative length of each segment of the small intestine and the cecum were 

reduced between 7 and 14 d of age. Total intestinal length was significantly decreased (P < 0.01) 

by B. subtilis C-3102 supplementation primarily reflecting a significant reduction of jejunum (P 

< 0.001) and ileum (P < 0.05) length (Table 5.6). An Age by BS interaction for total length (P < 

0.10) and for jejunal length (P < 0.05) suggested this effect was more pronounced at 14 than at 7 

d of age. The relative length of the cecum was also reduced (P < 0.01) by B. subtilis C-3102 

supplementation.   

 

Table 5.4 Mean (± SE) of body weight for Simplified Microbiota birds (SM) and SM 
plus B.subtilis C-3102 inoculated bird at 7 days old and 14 days old. 

Treatment Body Weight (g) 
7 days old   

SM 173 ± 5.5 
SM plus BS 183 ± 4.4 

14 days old   
SM 485 ± 15.6 

SM plus BS 490 ± 12.9 
Bacillus 0.4649 

Age 0.0001 
Bacillus x Age 0.8469 

 

 

5.4.4 Small Intestinal Histology 

Mean villus height, crypt depth, villus height to crypt depth ratio (V:C) and thickness of 

muscularis mucosa in duodenum is given in Table 5.7. Increased villus height was observed from 

7 to 14 d of age (P < 0.01) and for BS-supplemented birds (P < 0.05). An interaction (P < 0.01) 
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for crypt depth indicated that BS increased crypt depth at 7 but not at 14 d of age. An interaction 

observed for the V:C ratio indicated BS decreased V:C at 7 and increased V:C at 14 d of age. 

However, means separation detected only a significant age effect where V:C increased from 7 to 

14 d of age. The thickness of the musuclaris mucosa was not affected by age or BS 

supplementation. In jejunum, villus height and V:C increased (P < 0.001), crypt depth decreased 

(P < 0.01) and the musuclaris mucosa thickness increased (P < 0.05) between 7 and 14 d of age 

(Table 5.8). Bacillus supplementation tended to decrease (P < 0.10) crypt depth and increased (P 

< 0.001) the V:C ratio but did not affect other parameters. In the ileum, age increased (P < 0.001)  

villus height and V:C ratio.  Bacillus supplemented birds demonstrated significantly (P < 0.001) 

deeper crypts and increased V:C ratio. An Age by BS interaction indicated Bacillus 

supplementation increased (P < 0.05) thickness of the muscularis mucosa at 14 days of age only 

(Table 5.9).  



 

 
 

Table 5.5 Mean (±SE) relative weight (g/100g of BW) of gizzard, bursa of Fabricius, liver and spleen in Simplified 
Microbiota bird (SM) and SM plus B.subtilis C-3102 supplemented bird at 7 and 14 days old. 

Treatment 
Gizzard 

(g/100g BW) 
Bursa 

(g/100g BW) 
Liver 

(g/100g BW) 
Spleen 

(g/100g BW) 
7 days old         

SM 3.62 ± 0.08 0.15 ± 0.01 3.94 ± 0.13 0.08 ± 0.00 
SM plus BS 3.36 ± 0.11 0.17 ± 0.01 3.67 ± 0.10 0.07 ± 0.00 

14 days old         
SM 2.25 ± 0.08 0.20 ± 0.01 2.94 ± 0.08 0.08 ± 0.00 

SM plus BS 2.15 ± 0.05 0.18 ± 0.01 2.77 ± 0.08 0.08 ± 0.00 
Bacillus 0.0374 0.8636 0.0381 0.5511 

Age 0.0001 0.0068 0.0001 0.4017 
Bacillus x Age 0.3643 0.1215 0.6494 0.7277 

Table 5.6 Mean (±SE) relative length (mm /100g of BW) of small intestinal segment and cecum in Simplified Microbiota bird 
(SM) and SM plus B. subtilis C-3102 supplemented bird at 7 and 14 days old. 

Treatment 
Duodenum Jejunum Ileum 

Total small 
intestine Cecum 

(mm / 100g BW) 
7 days old           

SM 91.1 ± 2.43 197.8 ± 6.78a 181.6 ± 6.89 470.5 ± 13.95 37.3 ± 1.15 
SM plus BS 84.6 ± 2.96 167.5 ± 7.10b 165.5 ± 6.01 417.6 ± 12.74 32.3 ± 2.57 

14 days old           
SM 41.6 ± 1.39 86.3 ± 4.73c 82.2 ± 5.10 210.1 ± 10.71 17.1 ± 0.75 

SM plus BS 40.9 ± 1.54 83.6 ± 2.94c 74.5 ± 2.55 199.0 ±   6.35 15.4 ± 0.68 
Bacillus 0.1016 0.0048 0.0309 0.0064 0.0274 

Age 0.0001 0.0001 0.0001 0.0001 0.0001 
Bacillus x Age 0.1828 0.0168 0.4436 0.0692 0.2673 

ab Values in same column with different superscripts are significantly different (P < 0.05) 
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Table 5.7 Mean (±SE) villus height, crypt depth, villus height to crypt depth ratio (V:C) and 
thickness of muscularis mucosa in duodenum for in Simplified Microbiota bird (SM) and SM plus 
B.subtilis C-3102 supplemented bird at 7 and 14 days old. 

Treatment 
Villus height 

  (µm) 
Crypt depth 

(µm) V:C 

Muscularis 
mucosa 

(µm) 
7 days old        

SM 1131 ± 22.5 105 ± 3.7b 10.9 ± 0.39b 110 ± 4.0 
SM plus BS 1201 ± 28.8 117 ± 5.7a 10.3 ± 0.28b 116 ± 4.7 

14 days old        
SM 1492 ± 37.5 117 ± 2.8a 12.8 ± 0.35a 114 ± 2.6 

SM plus BS 1546 ± 28.8 111 ± 1.6ab 13.9 ± 0.19a 120 ± 3.0 
Bacillus 0.0398 0.3381 0.3918 0.1202 

Age 0.0001 0.3359 0.0001 0.2916 
Bacillus x Age 0.7845 0.0037 0.0074 0.8558 

ab Values in same column with different superscripts are significantly different (P < 0.05) 
 
 
 
 

Table 5.8 Mean (±SE) villus height, crypt depth, villus to crypt ratio (V:C) and thickness of 
muscularis mucosa in jejunum for in Simplified Microbiota bird (SM) and SM plus B.subtilis C-
3102 supplemented bird at 7 and 14 days old. 

Treatment 
Villus height 

 (µm) 
Crypt depth 

(µm) V:C 

Muscularis 
mucosa 

(µm) 
7 days old         

SM 656 ± 33.2 77 ± 3.5 8.6 ± 0.38 84 ± 3.3 
SM plus BS 686 ± 36.9 73 ± 3.4 9.4 ± 0.33 88 ± 3.8 

14 days old     
 

  
SM 846 ± 43.7 69 ± 2.8 12.3 ± 0.57 93 ± 2.1 

SM plus BS 892 ± 36.8 62 ± 3.3 14.7 ± 0.47 93 ± 3.4 
Bacillus 0.3223 0.0826 0.0007 0.4383 

Age 0.0001 0.0045 0.0001 0.0345 
Bacillus x Age 0.8272 0.6181 0.0863 0.5674 
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Table 5.9 Mean (±SE) villus height, crypt depth, villus to crypt ratio (V:C) and thickness of 
muscularis mucosa in the ileum for in Simplified Microbiota bird (SM) and SM plus B. subtilis C-
3102 supplemented bird at 7 and 14 days old. 

Treatment 
Villus height 

 (µm) 
Crypt depth 

(µm) V:C 

Muscularis 
mucosa 

(µm) 
7 days old         

SM 370 ± 15.0 47 ± 1.3 7.8 ± 0.22 86 ± 2.8ab 
SM plus BS 366 ± 13.4 50 ± 1.1 7.3 ± 0.17 84 ± 3.5ab 

14 days old     
 

  
SM 448 ± 17.0 45 ± 1.4 10.0 ± 0.33 82 ± 3.1b 

SM plus BS 489 ± 20.0 52 ± 1.5 9.5 ± 0.30 93 ± 2.4a 
Bacillus 0.2799 0.0007 0.0467 0.1192 

Age 0.0001 0.7661 0.0001 0.2771 
Bacillus x Age 0.1915 0.1711 0.9690 0.0309 

ab Values in same column with different superscripts are significantly different (P < 0.05) 
 

5.4.5 Ileal gene expression 

Fold change in expression of selected genes relative to the SM control birds at 7 d of age, 

is given in Table 5.10. Pro-inflammatory IL-6 was not affected by age or treatment whereas as for 

IL-8, a trend (P < 0.10) for an interaction indicated BS increased expression at day 14 only. 

Expression of TLR4 increased (P < 0.05) with age. Among nutrient digestion and absorption-

related genes, PepT1 increased (P < 0.0001) with age and both APN (P < 0.01) and PepT1 (P < 

0.001) increased with BS supplementation.  The expression of the tissue growth promoting gene, 

IGF-1 increased with age (P < 0.001) and with BS supplementation (P < 0.01).  Among the tight 

junction and barrier function related genes, CDN1 was increased (P < 0.05) whereas, CDN4, and 

CDN5 decreased (P < 0.05) with age. Interestingly, BS supplementation reduced expression of 

CDN5 at 7 but not 14 days of age as indicated by an age by BS interaction (P < 0.01). An interaction 

(P < 0.05) for PCNA expression, indicated BS supplementation lowered expression of this gene at 

7 d of age only.   Mucin 2 expression (MUC2), tended to be increased (P < 0.10) by BS 

supplementation.



 

 
 

Table 5.10 Mean (±SE) fold change in expression of genes in the ileum for Simplified Microbiota bird (SM) and SM plus B. subtilis 
C-3102 supplemented bird at 7 and 14 days old. 

Treatment IL-6 IL-8 TLR2 TLR4 APN SGLT-1 PepT-1 
7 days old               

SM 1.00 ± 0.41 1.00 ± 0.33 1.00 ± 0.06 1.00 ± 0.09 1.00 ± 0.04 1.00 ± 0.06 1.00 ± 0.03 
SM plus BS 0.87 ± 0.24 0.95 ± 0.19 1.44 ± 0.12 1.10 ± 0.07 1.14 ± 0.03 1.18 ± 0.08 1.24 ± 0.08 

14 days old               
SM 0.94 ± 0.34 0.98 ± 0.15 1.67 ± 0.41 1.33 ± 0.29 1.03 ± 0.04 1.18 ± 0.04 1.27 ± 0.06 

SM plus BS 0.96 ± 0.42 1.85 ± 0.15 1.99 ± 0.40 2.19 ± 0.46 1.32 ± 0.09 1.26 ± 0.09 1.84 ± 0.11 
Bacillus 0.8458 0.0967 0.3595 0.1659 0.0080 0.1142 0.0004 

Age 0.9601 0.0764 0.1392 0.0403 0.1796 0.1337 0.0002 
Bacillus x Age 0.7964 0.0635 0.8782 0.2693 0.3283 0.5522 0.1290 

                
Treatment cGH IGF-I CDN1 CDN4 CDN5 PCNA MUC2 

7 days old               
SM 1.00 ± 0.10 1.00 ± 0.05 1.00 ± 0.07 1.00 ± 0.03 1.00 ± 0.10a 1.00 ± 0.26ab 1.00 ± 0.06 

SM plus BS 0.95 ± 0.07 1.38 ± 0.05 0.73 ± 0.07 1.05 ± 0.04 0.76 ± 0.08b 0.74 ± 0.11 c 1.14 ± 0.10 
14 days old               

SM 1.30 ± 0.32 1.46 ± 0.04 1.11 ± 0.25 0.94 ± 0.04 0.38 ± 0.03c 0.99 ± 0.05ab 0.93 ± 0.07 
SM plus BS 1.27 ± 0.30 1.58 ± 0.07 1.49 ± 0.41 0.88 ± 0.04 0.40 ± 0.04c 1.36 ± 0.14 a 1.17 ± 0.08 

Bacillus 0.8938 0.0055 0.8180 0.9419 0.0277 0.7115 0.0524 
Age 0.2674 0.0003 0.0470 0.0418 0.0001 0.0449 0.8382 

Bacillus x Age 0.9736 0.1236 0.1395 0.3264 0.0082 0.0414 0.5929 
abc Values in same column with different superscripts are significantly different (P<0.05)  
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5.4.6 Whole transcriptome analysis using mRNAseq 

Total 95 genes were found to be ≥3-fold different between SM and SMB, 50 genes were 

up-regulated, 45 down-regulated (Figure 5.4). Although PANTHER did not identify specifically 

enriched pathways, even after lowering the threshold for fold change to 1.5-fold  comparison of 

SM vs SM plus BS Gene Ontology terms indicate that regulated genes were predominately 

associated with innate and acquired immune response terms.  
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Figure 5.3 Scatterplots comparing the expression of individual genes (A) and showing 
enrichment of Gene Ontology terms for biological processes (B) in the ileum for Simplified 
Microbiota bird (SM) and SM plus B.subtilis C-3102 supplemented bird at 14 days old. 
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5.5 Discussion 

The composition of the chicken intestinal microbial community is highly diverse and 

influenced by a number of environmental factors (Rehman et al., 2007) contributing to 

observations of large variations in microbiota composition when comparing individuals from 

different populations and from different environments (Stanley et al., 2013b). In the present study, 

we established a highly simplified microbial population representing the major taxa identified in 

chicken gastrointestinal tract using a highly controlled environment. We aimed to minimize 

animal-to-animal variation and simplify the complex microbiome to better study mechanisms of 

action of gut-active products. A similar simplified microbiota approach to study the host microbial 

interface has been reported by others in rodents (Faith et al., 2014; Hansen et al., 2015a; Raibaud 

et al., 1980; Schaedler  et al., 1965), pigs (Miniats and Jol, 1978) and poultry (Morishita et al., 

1971; Watkins et al., 1982).    

All 5 bacterial species in the SM cocktail inoculated into germ-free isolator-reared birds 

on the day of hatch were recovered from intestinal contents at 7 and 14 days of age. The number 

of total anaerobes enumerated in the cecum of SM birds was higher than in the ileum and consistent 

with observations in conventional birds aged 7 to 23 d of age (Alzueta et al., 2003; Fukata et al., 

1999; Guo et al., 2004; Jin et al., 1998; Spring et al., 2000).  Furthermore, E. faecalis ENT03 and 

E. coli ECL01 were enumerated in the ileum and cecum of gnotobiotic SM birds at densities 

(CFU/g) similar to total Enterobacteriaceae, and Enterococcus spp., enumerated using selective 

culture methods, in conventional birds of similar age (Fukata et al., 1999; Guo et al., 2004; Jin et 

al., 1998; Spring et al., 2000).  

Enumeration of B. fragilis BCT06 in the ileum of SM birds indicated colonization density 

similar to that reported by Maruta et al. (1996) in conventional birds at 14 d of age using selective 

media. Interestingly, the colonization density of B. fragilis BCT06 in the cecum of gnotobiotic SM 

birds was markedly (2-3 log CFU/g) higher than previously observed for selective culture of 

Bacteroides in the cecum of birds of similar age (Fukata et al., 1999; Guo et al., 2004). This 

suggests the Bacteroides colonization in the cecum of conventional birds is limited by competition 

for resources by bacteria from a taxonomic group(s) not represented in the SM.  

Enumeration of L. salivarius LCT01 in SM birds indicated colonization densities in the 

cecum similar to observations in conventional birds. However, L. salivarius LCT01 colonization 

in the ileum of gnotobiotic SM birds was markedly (1-2 log CFU/g) less than observed by selective 
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culture of lactobacilli in conventional birds of similar age (Jin et al., 1998; Jin et al., 1996c; Maruta 

et al., 1996a). This probably reflects the imperfect selectivity of culture media for the Lactobacillus 

genus in conventional studies as well as the extreme diversity of this genus which comprises 261 

species (Zheng et al., 2020). Although L. salivarius LCT01 was selected as a dominant and 

representative bacterial strain for the Lactobacillaceae family, this single species may not possess 

the genetic and metabolic diversity to colonize the ileum at a density commonly reported for 

selective culture enumeration of lactobacilli.   

Colonization of gnotobiotic SM birds by C. butyricum CLS01 was confirmed in the cecum 

of all birds at 14 d of age, however, for cecum at 7 d of age and for ileum at both ages, C. butyricum 

CLS01 was not detected by culture in all birds. As expected, based on studies in conventional 

birds, colonization density was higher in the cecum compared with ileum, and although 

colonization density of positive birds did not markedly increase with age, the number of birds from 

which C. butyricum CLS01 could be cultured increased in both locations from 7 to 14 d of age. 

The colonization pattern of C. butyricum CLS01 in the cecum is in agreement with Clostridia 

colonization patterns reported in growing birds where Clostridia abundance increases around 10 

to 16 days of age (Jurburg et al., 2019; Schokker et al., 2015).  Also in agreement, we were unable 

to recover C. butyricum CLS01 from the chicken gut at hatch after in ovo inoculation at embryonic 

d 17 (Chapter 4). Clostridia may require essential nutrients or a highly reduced environment 

provided by active metabolism of other members of the gut microbial consortium. The simplified 

microbiota established here appeared to be able to support the growth of Clostridia in a manner 

similar to the conventional microbial succession pattern. 

In general, the colonization density of members of the SM, by location and with age, 

reflected a pattern consistent with the colonization pattern of the 5 major taxa these selected species 

represent. Further, the growth rate of gnotobiotic SM birds, met the performance objectives for the 

rapidly growing Ross 308 commercial broiler (Aviagen, 2014) indicating the SM birds reared in a 

gnotobiotic environment were not metabolically compromised. Gross measure of organ weights, 

histomorphology of the small intestine and gene expression patterns all support a model system 

reflective of the conventional bird. Finally, statistical analysis of culture-based enumeration of the 

5 members of the SM, indicated no significant effect of isolator suggesting uniformity in 

colonization pattern. We believe the current SM microbiota model therefore meets a number of 
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important criteria as a model facilitating the study of mechanisms of action of oral products 

functioning at the host:microbial interface.   

The SM model was used here to investigate the mechanism of action of a commercially 

available probiotic, Bacillus subtilis C-3102. Germination rate of inoculated spores in the intestine 

is an important consideration as germination to vegetative cells is required to generate 

metabolically active bacilli.  Bacillus spp. were traditionally considered obligate aerobes, and their 

germination in the gut unlikely. However, recent studies indicate Bacillus spp. are facultative 

anaerobes capable of reducing nitrate (Clements et al., 2002). Indeed, vegetative B. subtilis cells 

have been reported throughout the digestive tract of birds (Cartman et al., 2008; Latorre et al., 

2014) when given Bacillus spores in feed, consistent with our findings. The degree of germination, 

however, remains unclear, complicated by the potential for completion of a full life cycle 

(germination and re-sporulation) in the gut (Bernardeau et al., 2017). Latorre et al. (2014) reported 

90% germination rate based on the recovery of spores in crop compared to ileum followed by re-

sporulation in the cecum. In agreement, and although Bacillus spore counts were surprisingly low 

in crop at 14 d of age relative to feed content, we recorded the lowest spore counts in gizzard and 

ileum consistent with Latorre et al. (2014) and with germination and re-sporulation occurring in 

upper gut and ceca respectively (Bernardeau et al., 2017). Also in agreement, the ratio of total 

Bacillus counts to heat resistant spores reported here, suggested a high germination rate of 55-60% 

in upper intestine compared to 9-17% in ceca.  However, spores, as a percent of total bacillus 

counts reported here was much lower than our previous findings of 98% in commercial 

conventional birds (Hamaoka et al., 2010) and could reflect reduced nutrient composition and/or 

increase oxygen availability in the SM model. This interpretation would be consistent with our 

previous findings of a relatively low spore percent (high vegetative cell percent) in mono-

associated birds at 1-2 d of age (Chapter 3) and at 14 d of age (Hamaoka et al., 2010; Hamaoka et 

al., 2011). It is interesting, however, that E. coli represented in the simplified microbiota, did not 

appear to be markedly advantaged by an increased oxygen supply compared with conventional 

birds.  

In SM birds, Bacillus subtilis C-3102 supplementation significantly reduced E. coli 

colonization density compared with non-supplemented birds. This is consistent with a reduction 

in Enterobacteriaceae previously reported by several others in conventional birds supplemented 

with Bacillus spores (Fritts et al., 2000; Jin et al., 1996a; La Ragione et al., 2001; Maruta et al., 
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1996a).  A reduction of Enterobacteriaceae has previously been associated with improved bird 

performance (Johnson et al., 2018) and the reduction in Enterobacteriaceae observed here and by 

others in conventional birds may represent a major mechanisms of action of Bacillus probiotics. 

Although a number of mechanisms may account for the antagonism with Enterobacteriaceae, 

including secretion of antimicrobial compounds and competition for limited essential nutrients 

(Bernardeau et al., 2017), it is tempting to speculate that competition for oxygen between these 

two facultative anaerobes limits colonization.  

Bacillus spore supplementation also appeared to limit colonization by E. faecalis ENT03. 

To our knowledge, a reduction in Enterococcus spp, following Bacillus spore supplementation has 

not been reported in poultry. The antagonism between these two species could be more pronounced 

in the simplified microbiota environment maintained here relative to conventional birds. Again, 

the mechanisms contributing to antagonism could be diverse, but E. faecalis is also a facultative 

anaerobe and competition for oxygen could play a role. 

Bacillus supplementation in SM birds significantly reduced relative organ size for gizzard, 

liver, small intestine and cecum compared with non-supplemented SM birds. Reduced relative 

liver weight following Bacillus probiotic supplementation was also recorded by others (Khajeh 

Bami et al., 2019; Molnar et al., 2011).  Despite the reduction in relative organ size, and 

presumably reduction in maintenance energy requirements, no difference in body weight was 

observed. The number of birds in the present study is almost certainly too small to detect a change 

in body weight, however, reduced organ weight may have increased nutrient flow to body growth 

consistent with previous reports of increased carcass weight (Novak et al., 2011), improved feed 

conversion efficiency (Fritts et al., 2000; Jeong and Kim, 2014; Nunes et al., 2012) and  body 

weight gain (EFSA, 2006b; Fritts et al., 2000) following Bacillus supplementation in conventional 

birds.  

On the other hand, compared to germ-free birds we observed an increase in relative liver 

weight at 1 d of age when Bacillus subtilis was inoculated in chick embryos at E17 (Chapter 3) 

and at 14-d- of age when ex-germ-free birds were fed Bacillus spores beginning at 1 day of age 

(Hamaoka et al., 2011). We hypothesize that the liver weight increase in Bacillus mono-associated 

birds may reflect an immune reaction against Bacillus subtilis C-3102 compared to the naïve germ-

free state. In the present study, B. subtilis could have mitigated an increase in liver size and 

intestinal size associated with immuno-stimulation by the simplified microbiota either directly by 
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enhancing innate barriers (see below) or indirectly by limiting colonization by immuno-

stimulatory simplified microbiota members such as E. coli and E. faecalis.  

Bacillus spp. have been shown to promote immune response in pigs (Scharek-Tedin et al., 

2013) and induce increased expression of TLR2 and TLR4 in macrophages (Bernardeau et al., 

2017; Huang et al., 2008), a response consistent with the increase in TLR4 in ileal tissue observed 

here. An increase in innate barrier function mediated by B. subtilis is indicated by the significant 

increase in MUC2 expression in the ileum observed at 7 and 14 d of age. Others have observed an 

increase in MUC2 expression in chicks following in ovo administration of Bacillus spp. (Majidi-

Mosleh et al., 2017a) in support of observations here. Increased crypt depth and a lower ileal V:C 

at day 7 and 14 suggested BS increased epithelial turnover as a component of the innate barrier, 

however, PCNA expression, which could reflect either epithelial or myeloid cell proliferation in 

lamina propria was lower on day 7 and increased on day 14 for BS supplemented birds. Finally, 

B. subtilis supplementation also reduced expression of CLDN5 a tight junction protein, a response 

that is not consistent with an increased epithelial barrier.  

Mono-association of chicken embryos at day 17 of incubation with BS activated a number 

of genes associated wtih ontology biological processes related to immune function and specifically 

enriched a chemokine pathway in the ileum at both hatch and 24 hours after hatch (Chapter 3). In 

the present study we also observed enrichment of gene ontology terms associated with innate and 

acquired defense although the chemokine pathway was not specially enriched. It is noteworthy, 

that in the present study, BS demonstrated modulation of host immune-related genes in the 

presence of 5 other species of commensal organisms. The pathways identified here appear to be 

sensitive to BS and may not reflect a generalized response to bacterial colonization.  This could 

contribute to enhanced protection against bacterial challenge and improved growth performance 

in conventional birds supplemented with Bacillus spores (Knap et al., 2011; Oh et al., 2017; Park 

and Kim, 2014).  

Interestingly, analysis of gene expression identified an increase in abundance of transcripts 

encoding genes contributing to nutrient digestion (APN) and absorption (PepT-1) in Bacillus 

supplemented birds. This is consistent with previous similar observations in Bacillus mono-

associated birds at 0 and 1 day of age (Chapter 3) and may indicate a direct response to Bacillus 

supplementation. This upregulation in the nutrient transporters and the local expression of tissue 

growth promoting IGF-I may also contribute improvement of feed efficiency (Fritts et al., 2000; 
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Jeong and Kim, 2014; Nunes et al., 2012) or body weight gain (EFSA, 2006b; Fritts et al., 2000) 

reported for Bacillus supplementation in conventional birds.  

 

5.6 Conclusion 

Five bacterial species representing the major taxa colonizing the chicken gastrointestinal 

tract were introduced to germ-free birds on the day of hatch and reared under gnotobiotic 

conditions until 14 d of age.  All inoculated species colonized and produced a stable community 

with a similar succession profile and a relative colonization density to comparable taxonomic 

groups enumerated in conventional birds with high consistency among birds. This simplified 

microbiota model was used to investigate the mechanisms of action of a Bacillus probiotic that 

could contribute to positive health and performance outcomes. Observations indicate that Bacillus 

probiotic mechanisms of action may be indirect through inhibition of colonization by E. coli and 

E. faecalis.  This and evidence of Bacillus-induced activation of immune response genes may have 

contributed to lower organ weights and improved efficiency of nutrient use for growth. Finally, 

increased expression of nutrient transporters may be mediated directly by Bacillus spp. and also 

improve growth efficiency.  The Simplified Microbiota model could fill the gaps between a germ-

free environment and the conventional environment and would permit elucidation of the 

mechanisms of action of probiotics and other gut modifiers including a differentiation of host 

response pathways activated directly by the probiotic or indirectly by inducing changes in relative 

abundance of other community members. 
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6 GENERAL DISCUSSION AND CONCLUSION 

After the founding concept of probiotics was expressed by Metchnikoff (Metchnikoff, 

1907), no clear conclusion has been made for mode of action of probiotics. We hypothesized that 

two major pathways could contribute as the mechanisms of action of probiotics; a direct pathway 

mediated by the probiotic organism and an indirect pathway mediated via a modified host intestinal 

microbiota. However, specific experimental systems are needed to test these hypotheses because 

both effects simply appear without distinction in conventional experiments while the complexity, 

variability and dynamic nature of the conventional microbial environment challenges the 

assessment of changes in microbial composition. Our challenge in this series of trials was to 

develop a new gnotobiotic experimental system which allowed us to test the direct effect and 

indirect effect of probiotics separately. The advantages of gnotobiotic experiments is a highly 

controlled repeatable experimental design which reduces interindividual variation (Wang and 

Donovan, 2015). Our original idea was to detect direct effects in response to test bacteria in a 

mono-associated condition established in ex-germ-free test birds, and to test whether these specific 

direct effects would also be observed in a simplified gut microbiota model where the indirect 

effects of a probiotic mediated by changes in community composition could be easily observed. 

We expected the accumulation of repeatable results from these two gnotobiotic experimental 

systems may give us valuable knowledge on mode of action of the probiotics.  

 

6.1 Potential of chicken embryo as a model system 

To take advantage of the germ-free status of chicken embryo as simpler and cheaper germ-

free test animal compared with germ-free bird in traditional germ-free isolators, a first step was to 

establish a HEPA-filtered individual canister model. For example, the actual in ovo trial setting 

takes a net of five days from E17 to E22, and the trials can be repeated weekly by preparing the 

next batch of germ-free embryos while other tests are being conducted. The ease of repetition, 

amenability to relative high throughput could be a major advantage in probiotic evaluation.  

One of other benefits of the model developed here, is the high success ratio and the 

minimized impact of a potential microbial contamination event to an individual bird. A total of 

140 E17 germ-free embryos were used in this series of trials and monitored for microbial status at 
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the time of sampling. No unplanned contamination was recorded. This is a far greater success ratio 

than we have experienced in our germ-free chicken model which may also indicate that 

contamination in traditional germ-free chicken trials is acquired by bacteria present in the feed or 

water, as opposed to surviving exterior sterilization of eggshells or as recently suggested via 

vertical transmission in ovo. By using recent 16S rRNA sequencing technologies, it has been 

reported that complex microbiotas are already formed in the chicken gut during the embryonic 

stage in some cases (Ding et al., 2017; Lee et al., 2019). Our data show that a vertical contribution 

to the intestinal microbiome is at minimum, not a universal event occurring in all eggs. With 

respect to survival of contaminating bacteria on eggshells, it may be that our harvesting of chicks 

within 24 hours of birth was too earlier to detect such a contamination source. I believe that the 

gap between new discoveries and past knowledge must be bridged through a scientific approach. 

At least, the following three points should be considered: detection of bacteria by culture methods 

is incomplete and not all bacteria can be detected, bacterial detection by NGS does not necessarily 

mean the presence of live bacteria, and aseptic sampling requires skilled techniques. 

Another strength of the system is its robustness as a test system. Even if case contamination 

occurs in the system, it will not affect the entire trial design due to independence of individual 

containers unlike the traditional germ-free isolator model. The use of clear individual containers 

also allowed flexible trial design due to the possibility of individual sampling without 

contaminating the environment of yet to hatch eggs. In Chapter 3 and Chapter 4, sampling was 

performed exactly at the timing of hatching or the start of the pipping for each individual egg. 

Then, additional sampling 24 hours after the pipping was linked to those precise times on an 

individual basis. Flexible sampling is also possible with traditional germ-free isolator by using a 

transfer hatch, but there is always chance of introducing a contaminant, limiting this approach. On 

the other hand, several defects need to be recognized as the disadvantages of the system, such as 

required skills for in ovo inoculation to amniotic fluid, immature host organs and digestive system, 

and no flow of feed in the intestinal tract. In particular, in ovo injection into amniotic fluid requires 

skill, and performing trials with inexperienced in ovo techniques may lead to erroneous 

conclusions. 

In this trial, we hypothesized that amniotic fluid could be one of the best test bacterium 

delivery location to observe effect of inoculants on embryo’s intestinal development because it is 

well established that amniotic fluid is orally absorbed by the embryo during incubation period 
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(Guyot et al., 2016). We confirmed this by performing in ovo injection of a food dye into amniotic 

fluid using a plastic needle (Figure 6.1, Panel A) to avoid embryo damage. The dye was easily 

observable in the cecum and small intestine of chicks recovered from injected eggs (Figure 6.1, 

Panel B and C).  Also, when dye was administered in amniotic fluid chicks were recovered at hatch 

with green outer coloring; administration of the dye into the air sac did not result in colored birds 

or the observation of dye in the gastrointestinal tract (Figure 6.2, Panel A and B). In the worst case, 

the wrong injection location caused embryonic mortality occasionally with colored organs 

indicating direct injection into the embryo.  

In pre-test studies, 20% mortality was recorded in Enterococcus faecalis ENT03 injected 

embryos, whereas 0% mortality was recorded at the trial reported in Chapter 4 even with over 9.0 

log CFU/g of ENT03 colonization in the cecum. Therefore, the mortality in ENT03 group at the 

pre-trial is likely to be due to inadequacy of in ovo injection technique. For non-lethal bacteria 

other than E. coli in this series of trials, mortality after the in ovo treatment was 3.0 % in total. 

Basically, death cases from in ovo injection itself are unlikely to occur if the technique is properly 

mastered and the inoculant is delivered into the amniotic fluid of a healthy embryo.  

As mentioned above, another disadvantage of the in ovo model is bias in test results due to 

the immaturity of the host organ’s biological function. Development of intestinal epithelium begins 

around E8 from a flat surface and villi start to be formed at E16 (Huycke and Tabin, 2018). As 

shown in Chapter 3 in this thesis, villi development is still in progress after the hatch. From E17 

to the time of hatching the intestinal tract is still developing and is not considered to be fully mature. 

In addition, it is known that functionality of the chicken digestive tract is affected by diet 

and feeding system (Svihus, 2014). The absence of feed flow in the gut in this model may limit 

expression of the digestive or absorption function of the host. And it may also affect the 

colonization or proliferation results of the bacteria in the gut of chicken embryo because available 

nutrition in the egg is limited until hatch. Lower or uneven colonization results observed on LCT01, 

CLS01, and BCT06 at Chapter 4 may be supporting this hypothesis. In the future, an additional 

nutritional injection may be investigated to assess effect on stable colonization of the test bacteria 

in the gut and to better investigate host-bacteria interaction in detail.  

 

 



 

 
 

 

Figure 6.1 Photograph is showing in ovo injection of food dye to confirm injection into the amniotic fluid and flow into 
gastrointestinal tract. Plastic pipette tips were used to inject 100 µL of food dye into amniotic fluid (Panel A). The injected dye was 
readily observed in the intestinal tract of birds at hatch (Panel B and Panel C) confirming in ovo ingestion of amniotic fluid. 
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Figure 6.2 Photograph of chicks after hatching in pre-trial in ovo injection of a green food die. Panel A shows a chick after hatch 
following in ovo injection with 100 µL of food dye into the amniotic fluid at E17. Panel B shows a chick following injection of food 
dye into the air sac at E17. 
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The first innate immune system cells appear between E1 and E4, and development of 

immune system continues until 4 to 6 weeks of age (Alkie et al., 2019). Immune functions and 

barrier functions of E17 embryo are considered to be functionally immature. This is highlighted in 

our work as shown in E. coli-induced mortality when injection occurred before E19 (Chapter 4). 

Translocation of in ovo injected E. coli ECL01 and Lactobacillus reuteri R32 were indicated by 

recovery from the blood of test birds following in ovo injection before E19 (data not shown) in 

pre-trial pilot studies. Bacterial translocation shows immatureness of gut barrier functions and 

bacteria recovery from the blood may suggest that the antagonistic innate immune system in 

chicken embryo before E19 is still not strong enough to kill the invaders faster than they proliferate. 

Bacterial species tested in this series of trials are not commonly recovered from the blood of 

healthy chicken by culture-based method and therefore suggests that test commensal or putatively 

probiotic bacteria enter different immune compartments when exposure occurs in ovo and result 

in different immune responses compared to post hatch exposure. Therefore, it is natural to consider 

that not all results observed following in ovo embryonic exposure to test bacteria could be 

extrapolated to understand relationships between the host and test bacteria in a conventional 

environment.  

 

6.2 Benefits and limitations of the Simplified Microbiota Model  

The defined microbiota model, the gnotobiotic model, when made through inoculation with 

selected strains, can yield valuable knowledge on the impact of gut microbiota (Hansen et al., 

2015a). The reproducibility of the defined microbiota could be an advantage to have uniformity in 

the results particularly when involvement of gut microbiota balance is hypothesized, especially for 

trials seeking mode of action of probiotics like this thesis. One of the methodologies to have 

defined microbiota in a chicken trial is making conventionalized chicken from ex germ-free 

chickens. The idea is to eliminate differences in the microbiota balance/composition between trials 

by giving the same seed inoculation of microbiota, glycerol stock of fecal material collected from 

healthy chicken, via drinking water after the hatch of germ-free chicken (Drew et al., 2003). Since 

2010, conventionalized birds were made a total of four times at the University of Saskatchewan 

with the same fecal glycerol stock seeder and uniformity was recorded in microbial profiling 

results by culture-based method (Table 6.1). Among these four trials, similarity was confirmed 

between microbial profiling results and advantage of the conventionalized chicken method has 
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been demonstrated. However, the conventionalized bird method is still not free from three 

problems, including limits on the repeatable attempts due to seed fecal inoculant depletion, 

unknown and uncontrolled bacterial composition whose character has not been fully investigated, 

and complexity is still too high to clarify all connections among bacterial species. The simplified 

microbiota bird is meant to solve these defects.  

As a source of microbiota for our Simplified Microbiota, we chose intestinal microbiota samples 

taken from conventionalized isolator-reared birds which had been generated at the University of 

Saskatchewan in 2010. This microbial community had three desirable characters as a source of test 

microbiota. Firstly, it was already confirmed that the test conventionalized broiler chickens with 

this microbiota would grow in line with the performance objectives. Secondly, it was confirmed 

that the Bacillus probiotics supplementation causes changes in the bacterial balance in this 

conventional microbiota, such as a decrease in E. coli and a decrease in the total anaerobe 

population as has been reported as an effect of the probiotic (Maruta et al., 1996a). Thirdly, the 

population did not contain specific pathogens which causes disease or food poisonings as dominant 

bacteria, such as Salmonella spp. and Clostridium perfringens. Therefore, the Simplified 

Microbiota from this conventional microbiota could be utilized as a base microbiota when specific 

pathogen challenge is needed in the future. Representatives of the 5 major taxa present in chicken 

gastrointestinal tracts are Lactobacillaceae, Bacteroidaceae, Clostridiaceae, Enterococcaceae and 

Enterobacteriaceae (Lu et al., 2003). In 2014, total 627 bacterial strains in these 5 family taxa were 

isolated from 14 day old, conventionalized birds made from ex-germ-free birds.  Once the typical 

phenotype of the target bacterial family was confirmed on selective media, described in Chapter 

4, and a Gram stain confirmed cell wall type, the isolated colony was dissolved into 0.1% peptone 

water with 30% glycerol and stored at -80 ºC for 2 months to check freezing storage resistance. 

The DNA was extracted from recovered bacterial strains for DNA sequencing of the region 

corresponding to nucleotides 11 to 536 of the Escherichia coli 16S rRNA gene (Hill et al., 2010). 

Results of DNA sequencing were put into analysis software (MEGA6) and then molecular 

phylogenetic trees were made by the Neighbor Joining method (Tamura et al., 2013). The 

evolutionary distance were computed by the Maximum Composite Likelihood method (Tamura et 

al., 2004) and each cluster was considered one bacterial strain and the phenotype of all strains were 

compared again on non-selective medium to confirm uniformity. Then, a total 6 strains of 

Enterobacteriaceae, 7 strains of Lactobacillus, 5 strains of Enterococcus, 5 strains of Bacteroides 
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and 6 strains of Clostridium were harvested. Compatibility between strains was examined using a 

“round-robin” exclusion zone method. Strains showing good compatibility were frequently 

observed among cultured isolates and those strains representing dominant taxa based on 16S rRNA 

profiling studies in birds (Lu et al., 2003) were selected for the Simplified Microbiota cocktail. 

Our objectives in developing a Simplified Microbiota model were primarily two-fold. Firstly, we 

wanted to design an artificial microbiota consortia with a limited number of bacterial species where 

all members were capable of colonizing the gastrointestinal tract and formed a stable community 

with relative abundance consistent with a conventional environment. Conventional microbiota of 

chickens fed with corn-soybean based diet measured by culture-based method in the past reports 

were summarized in Table 6.1 for ileum and Table 6.2 for cecum. Since all these results were not 

analyzed with the same analytical method, direct comparison among trial results were difficult. 

However, the data indicated that typical dynamics and balance of gut microbiota in conventional 

birds were also observed in the ileum and cecum of SM birds. The number of total anaerobes were 

observed around 8 log CFU/g in the ileum and 10 log CFU/g in the cecum. Abundance of 

Enterobacteriaceae and Enterococcus are confirmed to be around 6 to 7 log CFU/g in the ileum 

and 8 to 9 log CFU/g in the cecum. Similarity was also observed in Lactobacillus levels between 

SM birds and conventional birds. Gaps observed in Bacteroides and Lactobacillus levels in the 

SM and original microbiota shows rooms for improvement on the selection of the constituent 

bacterial species for SM.  However, it is considered that a stable bacterial community was 

established in the gut of SM birds at day 7 and the balance was kept until day 14 as we hypothesized.  



 

 
 

Table 6.1 Mean number (log CFU/g) of five different bacteria species in small intestine contents in Simplified microbiota bird and 
conventional control birds enumerated by the culture-based method in the past studies with corn-soybean based diet. 

Reference 
Age 

(Days) 
Total 

anaerobes 
Bacteroides  Clostridium 

Enterobacteri
aceae  

Enterococcus Lactobacillus 

Simplified Microbiota 7  7.51 6.20 3.50 6.90 6.90 6.90 

Simplified Microbiota 14  7.64 6.40 4.20 6.90 7.30 6.70 

Conventionalized 
chicken 2011A*1 

14 7.86 NT NT 5.58 NT 7.77 

Conventionalized 
chicken 2011B*2 

14 7.69 NT NT 5.48 NT 7.40 

Conventionalized 
chicken 2012*3 

14 8.00 NT NT 5.78 NT 7.31 

Conventionalized 
chicken 2014*4 

14 7.94 4.71 NT 5.73 6.34 7.69 

Maruta et al. (1996a) 14 NT 6.97 NT 7.89 NT 8.79 

Jin et al. (1996b) 14 7.75 NT NT 7.28 NT 7.61 

Jin et al. (1998) 20 8.30 NT NT 6.81 NT 8.66 

Alzueta et al. (2003) 23 NT NT NT 8.08 7.50 6.23 

Xu et al. (2003) 49 8.47 NT NT 7.03 NT 7.46 

Xia et al. (2004) 49 8.92 NT 5.95 6.94 NT 7.52 

NT:Not tested in the original report. ND: Not Detected  
*1 Hamaoka et al. (2011), *2 Unpublished, *3 Hamaoka et al (2012), *4 Unpublished – Origin of Simplified Microbiota 
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Table 6.2 Mean number (log CFU/g) of five different bacteria species in the cecum contents in Simplified microbiota bird and 
conventional control birds enumerated by the culture-based method in the past studies with corn-soybean based diet. 

Reference 
Age 

(Days) 
Total 

anaerobes 
Bacteroides  Clostridium 

Enterobacteri
aceae  

Enterococcus Lactobacillus 

Simplified Microbiota 7  10.30 10.10 6.30 9.10 9.10 9.40 

Simplified Microbiota 14  10.27 10.00 5.13 9.50 9.20 9.20 

Conventionalized 
chicken 2014*2 

14 10.34 7.04 NT 7.92 7.22 8.74 

 Impey et al. (1982)*1 1 10.57 ND 7.58 8.20 9.40 4.36 

 Baba et al. (1991) 2 9.97 < 3.0 NT 9.87 NT 3.60 

Barnes (1979)*1 3 NT NT 7.66 9.06 9.10 9.38 

Fukata et al. (1999) 7 10.6 7.42 NT 8.86 NT 9.94 

 Spring et al. (2000) 10 9.26 NT NT 8.71 8.13 ND 

Jin et al. (1998) 20 10.80 NT NT 8.60 NT 9.48 

Fukata et al. (1999) 21 10.64 8.79 NT 9.10 NT 9.82 

Guo et al. (2004) 21 9.52 6.70 NT 6.93 7.36 7.54 

Alzueta et al. (2003) 23 NT NT NT 9.27 8.48 7.30 

Xu et al. (2003) 49 9.55 NT NT 7.03 NT 7.46 

Xia et al. (2004) 49 9.71 NT 6.62 7.54 NT 8.40 

NT:Not tested in the original report. ND: Not Detected 
*1 Means calculated from results from control groups shown in the paper. 
*2 Unpublished – Origin of Simplified Microbiota 
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Secondly, we wanted a simplified consortia capable of mimicking specific functions of the 

original microbiota including competitive exclusion and stimulation of intestinal development and 

mucosal immunity. Although we did not perform a pathogen challenge study using the Simplified 

Microbiota model we did observe evidence of competitive exclusion properties similar to a 

conventional environment. In Chapter 5, the simplified microbiota was observed to suppress the 

activation of Bacillus spores and proliferation of vegetative cells in a manner consistent with what 

is normally observed in the conventional chicken gut. Indeed, when inoculated in mono association, 

the Bacillus spore to vegetative cell ratio was 59.2% and the level of colonization was 7.16 log 

CFU/g (Hamaoka et al., 2010), markedly different from the conventional environment and SM. 

Furthermore, Bacillus supplementation was confirmed to affect a significant reduction of 

Enterobacteriaceae and Enterocccus in SM birds similar to observations in conventional birds 

(Hamaoka et al., 2011).  

We have not completed a direct comparative study investigating the impact of our 

Simplified Microbiota on intestinal functional development (digestion and absorption/immunity) 

compared with germ-free or conventional birds it remains as our future challenge. The five 

bacterial strains utilized to make the Simplified Microbiota may be insufficient to fully reproduce 

the function of the original microbiota. In the future, it may be possible to select bacteria strains to 

add functionality rather than bacterial species they belong to.   

 
6.3 Approach to the direct effect and indirect effect of the Bacillus probiotics 

The finding of vegetative cells of the inoculated Bacillus subtilis strain here supports the 

potential of the in ovo model system for evaluation of the direct effect of Bacillus probiotics on 

intestinal development and function. In Chapter 3, a longer incubation time to hatch, increased 

yolk sac weight and relative liver weight, reduction of yolk sac free body weight at hatch and 24 

hours after hatch, and several changes in gene expression were shown as possible direct effects of 

the Bacillus probiotic. Some of these effects may be indicative of the mode of action of Bacillus 

probiotics. As discussed above, it is also considered that there are some caveats to evaluate the 

effect of a single bacteria strain in a mono-associated condition due to a lack of bacterial 

competition and immatureness of the gut, other internal organs and metabolic systems in chicken 

embryos (Hamburger and Hamilton, 1992; Hincke et al., 2019). Interestingly, almost all effects of 

mono-association shown in Chapter 3 and 4 are considered as negative impact for the host embryo. 
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The significant weight loss shown in E. coli mono-associated embryo and Bacillus mono-

associated embryos would be the best example. However, E. coli is known as one of the dominant 

bacteria in the gut and no drastic changes on the body weight is observed with E. coli colonized 

conventional birds (Parry et al., 1977).  Body weight reduction with Bacillus in ovo injection is 

also contrary to formerly reported weight gain results reported as the effect of Bacillus 

supplementation (Fritts et al., 2000; Sen et al., 2012a) or Bacillus subtilis in ovo inoculation 

(Castañeda et al., 2021). The upregulation of pro-inflammatory genes and delay of hatching may 

not be the preferred response to probiotic usage in this context. Thus, it is questionable whether all 

results observed in the mono-associated environment are expressed with equal intensity in 

complex gut system with conventional microbiota. The test bacteria may be showing only one side 

of their characters. 

As an example, in Chapter 3, a significant increase of relative liver weight was observed 

in Bacillus mono-associated embryos in contrast to a significant reduction of relative liver weight 

in the Bacillus supplemented group in the Simplified Microbiota study. Clearly, relative liver 

weight increase at mono-association in the embryonic study is considered as results of direct effect 

of the Bacillus strain to the host embryo. While we cannot rule out other causes, the increase in 

liver weight likely reflects sequelae in response to a systemic inflammatory response (Dapito et 

al., 2012; Iseri and Klasing, 2013).  On the other hand, liver weight reduction in Bacillus 

supplemented Simplified Microbiota birds could suggest a reduced systemic inflammatory 

response. This opposite response to the embryonic mono-association model may be mediated by 

reduction in E. coli abundance observed in the Bacillus group. Indeed, E. coli increased liver and 

spleen weight (Iseri and Klasing, 2013) and a liver weight increase was also confirmed with E. 

coli ECL01 inoculated embryos in Chapter 4. If E. coli ECL01 in the Simplified Microbiota 

contributed to increased relative liver weight, reduction of ECL01 by the Bacillus treatment may 

have resulted in liver weight reduction. This combination of E. coli reduction and liver weight 

reduction was also confirmed in Bacillus supplemented conventional birds whereas liver weight 

gain was observed in Bacillus mono-association birds at 14 day (Hamaoka et al., 2010).  

Thus, there is a possibility that liver weight reduction in Bacillus supplemented birds may 

be an indirect effect mediated via E. coli reduction. Indirect effects expressed through other 

bacterial species/strains are likely to be influenced by composition of the background microbiota. 

For example, E. coli counts in chicken ileum have been reported to vary widely, from 2.0 log 
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CFU/g to 8.1 log CFU/g (Rehman et al., 2007). It is possible that the liver weight reduction and 

potential systemic inflammatory response reduction effect by Bacillus is more likely to be 

observed in E. coli rich environment, and less likely with low level E. coli in the gut.  

Johnson et al. (2018) reported an inverse relationship between relative percent abundance 

of Escherichia in the gut and body weight of broiler chicken. Thus, less Escherichia abundance 

was observed in heavier birds. Effect of Bacillus supplementation appears as reduction of 

Enterobacteriacea in the SM birds in agreement with original conventional birds and it is also 

reported by several scientist as summarized at Table 1.2 in the literature review of this thesis. Body 

weight gain reported as an effect of Bacillus probiotics may also be an indirect effect in result of 

E. coli reduction in the gut. If this hypothesis is correct, then the expression of the weight gain 

effect by Bacillus probiotic would depend on the number of E. coli in the gut, and the strength of 

the effect would also depend on the number of E. coli in the test environment. The negative effects 

of E. coli on body weight gain is also supported by results at Chapter 4 and may be explained as 

result of increased energy cost to immunity. 

 

6.4 Future study 

The ultimate goal of our work was to elucidate the mode of action of Bacillus probiotics in 

poultry production. We hypothesize two different types of mode of action, a direct pathway and 

an indirect pathway via complex gut microbiota, and we are challenged to separately observe the 

direct effect and indirect effect by controlling gut microbiota using a germ-free environment. 

Therefore, creating a simple and effective experimental system that maintains a germ-free 

environment without contamination is a key outcome of this thesis. The disadvantage of the current 

individual container system is that quantities of water and feed supply cannot be easily provided 

without breaking the gnotobiotic environment. It is inferred that feed/water intake is an important 

factor in the bacterial colonization in the gut. By developing current individual container system 

to enable feeding and watering on an individual basis for at least several days after hatching, other 

gross parameters such as body weight gain, intestinal organ development, and immune functions 

may also be observed. To investigate more about the mode of action of Bacillus probiotics on 

poultry production, longer term trials will be required. If it is possible to establish an aseptic chick 

transferring method from the individual container to traditional germ-free isolators capable of 

accommodating a number of birds, it will allow us to have longer term trials after the sterility of 
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the hatched test chicks are confirmed. Contamination has always been the biggest issue of the 

germ-free chicken model and the main sources of the contaminant are the environment, water, feed, 

and the embryo or egg shell. If the shell and embryo are key sources of contaminating bacteria, 

then using chicks hatched in our individual containers and confirmed germ-free at 2-3 days of age 

as a source of chicks for post-hatch trials in larger isolators equipped with sterile feed and water 

could reduce the risk of contamination in these studies  

In this series of trials, the test eggs were carefully selected from fresh laid eggs by weight, 

candling and physical observation. In most trials, a total of 200 to 300 eggs were needed to select 

40 uniform test eggs/embryos without any defect. The quality of the parent birds is thought to be 

deeply involved in the contamination of the eggs. Therefore, this process of selection may need to 

be extended to controlling the quality of parent birds to have less variation in the results of germ-

free chickens. 

For further understanding on relationships between complex gut microbiota and Bacillus 

probiotics, more investigation about the gut microbiota itself is necessary. The studies of six 

different bacterial strains in this thesis are insufficient to understand the entire gut microbiota 

functionality and too small in number compared to the estimated number of the gut microbial 

species/strains. Thus, an accumulation of more knowledge through further mono-association 

studies using different bacterial species is clearly needed. However, it is unrealistic to investigate 

all bacterial strains in the gut by mono-association studies. Therefore, an effective selection 

process for the test organisms would be a key factor of future trial strategies. A computational 

approach has already been tested by Faith et al. (2014) to identify effector strains from their 

bacterial libraries. Since, predominant bacterial species in the gut may not always be a strong 

influencer of target host phenotypes, systematic computational and experimental approaches will 

be important for further probiotic mode of action studies. In this series of studies, we made a quick 

leap from mono-associated study to SM bird study with a combination of 5 different bacterial 

strains. However, further accumulation of knowledge on the symbiotic relationship between 

bacterial species/strains can be expected by conducting combination of two or three species step 

by step. In particular, combination studies would provide new insights into the colonization 

process of bacterial species which could not establish stable colonization in mono-associated 

condition, such as Bacteroides fragilis BCT06, Clostridium butyricum CLS01, and Lactobacillus 

salivarius LCT01. 
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Ultimately, these combination studies could be developed into Simplified Microbiota 

formation in young chickens and it could be developed into a simple pathogen challenge model in 

the future. The symbiotic ability of gut microbiota to inhibit pathogen colonization in the gut is 

considered to be the results of direct killing, nutritional competition, and enhance immune 

development and response (Pickard et al., 2017). By changing the specific bacterial species in the 

Simplified Microbiota, direct killing process or nutritional competition processes will be revealed 

more clearly and simply in the challenge model. This challenge model can be used to examine not 

only the mechanisms of disease manifestation, but also the countermeasures against it, such as 

probiotics, prebiotics, essential oils, or combinations of them. For both purposes, there will be a 

high demand for this repeatable and simple short term challenge models. 

In addition to these future improvements on the trial system, further validation is necessary 

for the results obtained in this series of study. Firstly, the direct effect of Bacillus probiotics 

confirmed in this study needs to be carefully re-confirmed by comparison of mono-associated 

studies and conventional (SM) studies. The direct effects observed here in mono-association, may 

not occur in the presence of other bacteria, or it could be a general reaction of the host against any 

bacterium.  Alternatively, other direct effects could be expressed only in symbiotic relationships 

with other bacteria. If the direct effect is confirmed in the conventional environment and mono-

associated environment both in same direction, the effect can be considered as part of the Bacillus 

probiotic mode of action pathway.  

As discussed at former sections, germination and sporulation processes are likely to play 

an important role in the direct and indirect mode of action of Bacillus probiotics both. Germination 

of Bacillus occurs in the gut of chicken embryos even without water and feed. Simple germination 

studies could be conducted in the gut of the embryo to investigate the effect of germination on the 

host or metabolisms of other bacterial species by controlling the specific bacterial species present. 

Knocking out specific functions of the Bacillus probiotic strain will also be effective to drive the 

results.  

The results of this study also suggested the existence of an indirect effect of Bacillus 

probiotics on liver weight and further research around liver function would be beneficial. The liver 

is known as a key frontline immune tissue (Kubes and Jenne, 2018) and a beneficial role of the 

microbiota in maintaining liver homeostasis is starting to be recognized (Mazagova et al., 2015). 

The opposite observation on liver weight changes in Bacillus treatment in mono-association and 
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in conventional microbiomes may also appear in immune system related indices with a similar 

trend. The increase of liver weight in Bacillus mono-association was the results of immune 

activities against the Bacillus, and the decrease of the liver weight in Bacillus supplemented SM 

birds appears via E. coli reduction by Bacillus strain. This hypothesis may be reinforced or rejected 

by conducting further exploratory research into this indirect effect. Of course, additional 

experiments should be conducted with SM birds in terms of reproducibility and clarity of 

understanding of the results. From this point of view, efforts to improve the Simplified Microbiota 

composition are also required to select the best constituent bacterial species for adding suitable 

complexity in accordance with the objectives as discussed above. 

Although it is not the original purpose of this study, it would be desirable to investigate the 

mechanism and countermeasures for the lethality of E. coli infection before E19, which was 

confirmed in this study. The analysis of the defense mechanism of the chicken embryo around E19 

would be an interesting topic separate from the mode of action of Bacillus probiotics. It may give 

us suggestions for the best timing of bacterial inoculation or stimulating the immune system of 

chickens for better productivity. Further investigation is expected on the egg yolk enlargement 

confirmed with E. coli in ovo inoculation. Removing the yolk at hatch has been shown to cause 

growth retardation (Noy and Sklan, 1997). In other words, the residual yolk at hatching contributes 

to subsequent growth, and the health of the embryo during incubation may affect subsequent 

growth through the quality of the residual yolk. The first step would be nutritional comparison of 

residual egg yolk between healthy neonatal chicks and E. coli infected chicks. 

Lastly, future developments in analytical methods will allow us to investigate mode detail 

of current samples or current data sets. RNAseq will allow pathway analysis beyond the qPCR 

mRNA expression we performed in this series of trials. Even for microbiological assay, the latest 

molecular technology may bring changes to the current traditional germ-free model. The germ-

free status has been confirmed by culture-based methods and current studies focusing on live 

bacteria in the trial system. Technically, the current germ-free system is not free from the effect of 

dead bacteria in the environment or sterile feed or water. Remaining cell wall or DNA fragments 

in the system may have a role or may cause unexpected variation in the results. Beyond that, there 

might be new pathways which connect parents and eggs we have overlooked using culture-based 

methods. The latest or future molecular technologies may reveal new aspects of the germ-free 

environment models.  
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6.5 Conclusions 

There are many unknowns about the effects and mechanisms of action of Bacillus 

probiotics. One of the major reasons for this is the instability and low reproducibility of the results. 

Especially, instability of the trial results has made it difficult to reach a clear conclusion on both 

efficacy and mechanism of action. To answer this question, we hypothesized that two different 

mechanisms of actions might be available for the Bacillus probiotics, such as the direct effect of 

the probiotic on the biological function and physiology of the host animal, and the indirect effect 

via shifted microbiota by the probiotic supplementation. According to this hypothesis, the strength 

of the indirect effect will be influenced by the balance and composition of the intestinal microbiota 

of the test animals. Thus, test animals with different microbiota balances are expected to respond 

differently to the same probiotics, which may explain the instability of probiotic efficacy test 

results that has long troubled scientists. However, in the conventional environment, it is not 

possible to observe the direct and indirect effects separately. Therefore, we planned to construct a 

test system that could verify the two kinds of effects by taking advantage of a germ-free 

environment and mono-association status with the newly developed HEPA filtered individual 

canister model. In addition, we tried to simplify and speed up the trial by using not only ex germ 

free chickens but also germ-free embryos as test animals. 

Through this series of study, I think the usefulness of the concept of using a germ-free 

environment to access the direct and indirect effects of Bacillus probiotics on development of 

chicken, which was the main objective of this paper, was demonstrated. Multiple effects were 

observed as a direct effect in Bacillus mono-associated embryo, such as significant increase of 

incubation time to hatch, yolk sac weight at hatch, and decrease of yolk sac free body weight. 

Modification of ileal gene expression was also confirmed with Bacillus mono-association and it 

may be suggesting the involvement of Bacillus supplementation in host immune response and 

nutrient transporters. It is still unclear that direct effects identified in mono-associated environment 

are occurring in a conventional environment. It is thought that some effects may only appear when 

other bacteria are not present, and others may appear even in the presence of a complex community. 

However, by using mono-associated status, the direct effect of Bacillus probiotics is clearly and 

separately shown.  



 

143 
 

In addition, comparison of the effect of Bacillus in a mono-associated condition with the 

effect in Simplified Microbiota trial suggested the existence of an indirect effect of Bacillus 

probiotic based on changes of liver weight. Bacillus supplementation significantly increased liver 

weight in mono-association but decreased liver weight under the Simplified Microbiota. This 

contradictory result could be explained by the effect of Bacillus probiotics on E. coli reduction 

confirmed in SM birds and liver weight increase in E. coli mono-associated birds. Thus, Bacillus 

probiotics itself increase liver weight, but also decrease liver weight by reducing another factor 

that increased liver weight, then Bacillus appears to reduction of liver weight in conventional 

environment. This hypothesis can be derived only by conducting trials in mono-association and 

conventional environments simultaneously, so this is also supporting usefulness of our concept in 

this series of study. 

 The clear mechanism of action of Bacillus probiotics has not been elucidated. The 

intestinal environment is very complex, and the mode of action of Bacillus probiotics may not be 

a single pathway but is highly likely to be expressed by a combination of direct and indirect 

pathways. Therefore, further difficulties are expected in fully understanding the mode of action of 

Bacillus probiotics in chicken production. However, with the development of these trial models in 

the germ-free environment and new analytical methods in the future, it must be possible to 

accumulate knowledge regarding the mode of action of Bacillus probiotics.
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8 APPENDIX 

8.1 Trial egg (embryo) selection 

 

Figure 8.1 At the beginning of the trials, all fresh fertilized eggs were visually checked 
before candling and weighing. Photograph is showing example of eggs unsuitable for germ-
free trials. Uneven surface (Panel A), cracking (Panel B), or eggs with fecal contamination 
(Panel C). 
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Figure 8.2 After visual checking, all eggs were candled to remove eggs with 
defect. Photograph is showing example of candling results of E0 eggs for germ-
free trials. Healthy egg (Panel A), cracked (Panel B), spotted (Panel C), and 
damaged (Panel D). 
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Figure 8.3 At the end of day 17 (E17), all incubated eggs were candled again to discard eggs 
containing undeveloped chicken embryos and with weight lose greater than the mean weight 
loss for all incubated eggs plus 1 standard deviation. Photograph is showing example of E17 
eggs candling results, healthy E17 egg (Panel A), unfertilized or early dead (Panel B), abnormal 
air cell (Panel C and D), rotten due to in egg contamination (Panel E), and bad air cell location 
(Panel F).   
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8.2 Germ-free isolator (Chapter 5) 

 

Figure 8.4 Photograph is showing germ-free isolator utilized for Simplified 
Microbiota trial at Chapter 5, inflated germ-free isolators from entry port side 
(Panel A), isolator from bottom side (Panel B).   
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Figure 8.5 Photograph is showing items in the germ-free isolator utilized for 
Simplified Microbiota trial at Chapter 5. 
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Figure 8.6 At day 19 of incubation, test eggs were transferred to HEPA filtered 
isolator from entry port. Eggs were re-sanitized by exposure to 2% of paracetic 
acid solution for 12 min within the isolator entry port chamber before 
introducing to inside (Panel A and Panel B). 
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Figure 8.7 For Simplified Microbiota trial, 8 healthy male and 8 healthy 
females were selected from healthy hatched birds by feather sexing resulting 
in 16 birds per isolator. 
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Figure 8.8 At 7 d of age, birds (4 male and 4 female per treatment) were 
removed from entry port for the were sterilized again after the sampling and 
the entry port was kept closed until next sampling at 14 d of age.
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8.3 Sterile individual hatching jars (Chapter 3 and 4) 

 

Figure 8.9 Photograph is showing sterile individual hatching jar system utilized for in ovo 
injection mono-association trials at Chapter 3 and 4.  Sterile humidified air was provided from air 
pumps in sterile incubator (Panel A). All jars were floated in hot tub (Jacuzzi) (Pane B). All jars 
were connected to the system before introducing sterilized eggs (Panel C)   
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Figure 8.10 Photograph is showing sterile individual hatching jar for in ovo injection mono-
association trials at Chapter 3 and 4. Several prototype were made (Panel A). In the final form, 
sterile humidified air is introduced from bottom silicone tube on the side wall and air goes out 
from top after filtration (Panel B)  
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Figure 8.11 The sterile individual hatching jar system was firstly tested in traditional hatcher 
(Panel A and Panel B). No defect was confirmed on hatchability and germ-free status of all hatched 
birds were confirmed (Panel C).   
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Figure 8.12 To improve flexibility on observation and sampling, the sterile individual hatching 
jar system was run with water bath instead of hatcher (Panel A and Panel B). In ovo inoculation 
was also tested with sterilized food dye and no defect was confirmed on both hatchability and 
sterility of test chicks (Panel C). 
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Figure 8.13 To increase capacity of the sterile individual hatching jar system, hot tub (Jacuzzi) 
was introduced to the lab (Panel A and Panel B). With the hot tub, the system can carry total 40 
individual jars at a same time. 
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Figure 8.14 All piece of the sterile individual hatching jar system were re-assembled after 
careful cleaning. Once it’s assembled, all system were fumigated to sterile inside and outside 
both (Panel A, B, C) 
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Figure 8.15 At day 17 of incubation, the eggs were placed into the sterilize individual hatching 
jars from top side of each jar (Panel A and Panel B). 
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Figure 8.16 Clear floating jar brought flexibilities on observations and sampling. Start of pipping 
could be observed and recorded bird by bird (Panel A) and sampling could be performed at exact 
hatching time (Panel B). 
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Figure 8.17 Simple diagram of the sterile individual hatching jars used 
in Chapter 3 and Chapter 4. 
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