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Abstract

This thesis presents a geographical agent-based model to investigate different interventions that may

be used to combat the spread of devil facial tumour disease (DFTD). DFTD is a clonally transmissible

cancer that spreads as an allograft through bite wounds between Tasmanian devils [15]. The population of

Tasmanian devils has been reduced by up to 90% since the first documented case of DFTD in 1996, and

continued spread of DFTD threatens the survival of the species. The agent-based model presented here

uses geographic data to simulate the devil maturation and mating, both spread and progress of DFTD, but

also external pressures such as road kill, rodenticide, dog attacks, and generally lower survival in urban

settings. Capturing these external pressures addresses a critical gap in current research which can highlight

the importance of necessary interventions to preserve the species. Multiple interventions were investigated,

including translocation of devils from a disease-free external population, translocation of devils from within

Tasmania, use of an injection vaccine, and use of an oral bait vaccine. The injection vaccine increased the

devil days lived (DDL) from the baseline of 6.81 × 108 to 7.76 × 108 and decreased the mean daily incidence

of DFTD from the baseline of 52.43 to 39.27. Similarly, the oral bait vaccine intervention increased the DDL

from 6.81 × 108 to 8.34 × 108, and decreased the mean daily incidence rate from 52.43 to 24.91, using the

most aggressive distribution campaign. This oral bait vaccine campaign resulted in eradication of DFTD

in the model. As the injection vaccine assumes an intensive trapping effort across the island, which can be

very resource intensive, the more promising intervention is the oral bait vaccine due to its significantly lower

resource investment and potential for disease eradication.
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1 Introduction

Devil Facial Tumour Disease (DFTD) is a clonally transmissible Schwann-cell cancer found in Tasmanian

devils. DFTD was first discovered in the Mt. William area of Tasmania in 1996. Since then, it has spread

across the majority of the main island of Tasmania. DFTD has caused an 80% reduction in the total

Tasmanian devil population, and up to a 95% reduction in some local populations. Since the 1936 extinction

of the Thylacine, the Tasmanian devil has been the largest carnivorous marsupial in the world. Preservation of

the species is important as Tasmanian devils, a scavenger and predator, play a critical role in the ecosystem.

Additionally, the Tasmanian devil is a local symbol of Tasmania. For many reasons, preservation of the

species is of utmost importance.

1.1 DFTD

Devil Facial Tumour Disease is transmitted via an allograft — transplantation of cells or tissue to a genetically

different recipient — through bite wounds inflicted during regular social interactions between Tasmanian

devils. When devils interact during feeding or mating, they can become aggressive towards other devils.

During most interactions, the devils will growl and snap at each other, but not cause physical injuries.

During a subset of interactions, however, they will bite each other, mainly on the muzzle, neck, and tail.

These bites can lead to puncture wounds which then allow the DFTD cells from the biting devil to enter

the body of the bitten devil. These cells then start growing as tumours in the bite wound. A devil can be

afflicted by multiple tumours from different interactions. Once the tumours within a devil grow too large, it

will lead to death, usually by inhibiting that devil’s ability to eat, causing starvation.

There are currently several interventions being used in Tasmania to help preserve the species. One

of the most potentially promising interventions is the translocation of devils from an external insurance

population, such as that on Maria Island. These devils are captured on Maria Island, administered a vaccine

via injection, and then released at pre-determined sites on the main island of Tasmania. These interventions

are labour intensive and require the maintenance of large external populations from which to pull devils.

Other more novel interventions are currently being studied, including the use of an oral bait vaccine. Oral

bait vaccines have the potential to provide similar protection from DFTD to that from an injection vaccine,

but are administered orally rather than hypodermically. Similar oral vaccination approaches have been used

to successfully combat the rabies virus in North America and Europe. Use of oral bait vaccines would allow

for easy dispersal of vaccine across the landscape, leading to more wide-ranging vaccination of the devil

1



population.

1.2 The Potential of Simulation Modeling of DTFD

Evaluating multiple different interventions and their impact on the Tasmanian devil population is highly

challenging and in some cases not possible in the real world. Agent-based modeling allows a system to be

simulated over time, which enables predictions to be made about the current system, as well as potential

impacts of interventions. Agent-based models focus on the interaction of individual situated agents, in

this case individual Tasmanian devils. Representing individual devils allows the model to readily capture

heterogeneity amongst Tasmanian devils, such as sex, age, and their history of infection. Using such a detailed

representation of the system allows for targeted interventions to be examined, which can result in better

output and predictive capabilities. Agent-based models allow for a rich representation of disease transmission

between agents, by characterizing contact between individual agents, as well as exposure to disease via

different pathways, such as via water contamination, depending on the disease being studied. Agent-based

models are also typically stochastic, which means that they are inherently random. This stochasticity can

be utilized to inform uncertain characteristics, such as how often an animal seeks food per day, or how long

a vaccine will provide immunity; it can also aid in interpretation of variability in empirical data. Due to

this uncertainty integral to the model, many realizations need to be run, in order to ensure confidence in the

results. Agent-based models can also be used to simulate geographic features, such as landscape, vegetation,

or points of interest to the agent. In this model, geographic data is used to inform mortality rates which are

specific to certain geographic areas, such as due to roadkill in areas of high road density, or threat due to

humans and dogs in high housing density areas. Combining the geospatial and temporal features of agent-

based models allows a highly detailed description of the system. Once built, these agent-based models can

then be used to investigate different interventions, such as current interventions that are in use, or proposed

interventions that have not yet been tested. These experiments are termed in silico experiments because

they are run using computers. In silico experiments allow for fast iteration to support learning, and can

easily be adapted to new scenarios or settings. The additional benefits of using in silico experiments

opposed to in situ experiments are the drastically lower capital and operational costs and human effort

required, and low risk extending from the fact that no actual animals and ecosystems are affected. Using

such models, it is possible to simulate different types and combinations of interventions, in order to secure a

deeper understanding of the issue at hand. This approach poses no direct risk to the system but can provide

invaluable insights, that, if used to inform action, can have a profoundly positive impact.

1.3 Goal

This thesis seeks to use agent-based simulation modeling to investigate the behaviour of Tasmanian devils,

the spread of DFTD through the population of devils, and to evaluate potential interventions to counteract

2



the spread of DFTD.

The agent-based model designed, constructed and evaluated here is being used to simulate individual

animals to account for difference between sex, age, and geographic factors. Four main intervention types

are being investigated: Off-island translocation, on-island translocation, injection vaccine, and oral bait

vaccine. These interventions have been selected with the help of the research team in Tasmania, notably,

Dr. David Pemberton (Tasmania Parks and Wildlife Service), Dr. Samantha Fox (Tasmania Department

of Primary Industries, Parks, Water and Environment), and Dr. Billie Lazenby (Tasmania Department of

Primary Industries, Parks, Water and Environment). Such stakeholders and scientist Dr. Carmel Witte of

the San Diego Zoo Wildlife Alliance provided feedback on the scope, design and results from this model.

Using agent-based modelling, geographic data, and additional mortality risk factors, the thesis investigates

the potential for interventions to increase the Tasmanian devil population without increasing the incidence

rate of DFTD.

1.4 Contributions

The main contributions of this thesis are as follows:

• Agent-based model simulating Tasmanian devils affected by Devil Facial Tumour Disease

in a geographic setting

I implemented an agent-based model to simulate Tasmanian devils in their natural setting of Tasmania,

and the impact of DFTD on the population. This model was built using geographic data to inform

further mortality rates that impact the Tasmanian devil population, such as roadkill, dog attacks, or

poisoning.

• Developing a geographic grid system to incorporate geographic data into an agent-based

model while improving runtime performance

The geographic system that was implemented utilized a two dimensional grid of squares to encode

the geographic data in an efficient manner. This grid was then used to place all the devil agents in

a geographic setting, and inform their movement and contact. Accessing geographic data and search-

ing for contacts in the devil population was both possible in constant time, which allowed for large

improvements in runtime performance.

• Investigation and evaluation of an oral bait vaccine as an intervention to combat and

potentially eradicate DFTD

A novel intervention that was investigated using this model is the use of an oral bait vaccine. Oral bait

vaccines are distributed in the landscape to be taken up by Tasmanian devils naturally, as opposed

to through labour-intensive injection of individual animals. Oral bait vaccines are currently in use in

North America and Europe to combat Rabies, and such a vaccine is currently being developed to target
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DFTD. Characterizing this intervention using this model allowed for the simulation of multiple oral

bait vaccine distribution techniques and has the potential to inform potential strategies. In the best

distribution configuration, the model predicts that eradication of DFTD is possible using such an oral

bait vaccine.

• Performance optimization

Utilizing bit encoding to store agent data during runtime allows for high density storage of data, which

then also allowed for flexible on-demand plotting of model output during runtime. This on-demand

plotting and data storage has not previously been used with DFTD models, and is a novel way to

improve the Stakeholder user experience.

• Implementing a graphical user interface to control model setup and execution

To allow for stakeholder interaction with the model, a GUI was implemented to support the user

in performing parameter manipulation before model execution, and then for on-demand plotting of

model output during runtime. The implementation of a GUI for an agent-based model is not a novel

contribution, but is valuable to stakeholders on account of facilitating interaction with the model.

• Graphing geographical data produced by the model during runtime

To utilize the geographic data produced during model execution and to visualize geographic patterns,

a Julia program was implemented which receives data from the model. This data is then processed and

individual frames created for each time interval. At the end of model execution, all individual frames are

then combined into an animation to show geographic behaviour over time. Multiple different animations

are created, each showing a different output from the data stream. For example, these animations show

number of infectious devils per cell at a given time, or the amount of oral bait that is present in a cell

to monitor intervention rollout and bait decay.

1.5 Thesis Organization

The remaining chapters of this thesis are structured as follows. Chapter 2 provides background on Tasmanian

Devil biology, behaviour, and reproduction. Chapter 2 also includes background about DFTD, as well as basic

information on agent-based modeling and geographic information systems (GIS). Chapter 3 characterises

the agent-based model itself, including a detailed description of the Tasmanian devil agent, the different

interventions that were implemented, and all parameters that are used in the model. Chapter 3 also describes

how the data are captured in the model during runtime, and how such data are processed and analysed.

Chapter 4 reports on findings from model execution. First, the runtime performance for time and memory

consumption is presented. The chapter then goes on to characterize outcomes from the different interventions

on the Tasmanian devil population. Chapter 5 concludes the thesis by discussing model results, as well as

limitations present in the model and potential for future work.
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2 Background

2.1 Tasmanian Devils

The Tasmanian devil (Sarcophilus harrisii [4]) is a carnivorous marsupial, endemic to Tasmania, Australia.

Tasmanian Devils are currently listed as an endangered species on the International Union for Conservation

of Nature (IUCN) Red List of Threatened Species [11] with an estimated overall population decline of 80%

[29]. Tasmanian devils are the largest living carnivorous marsupials in the world. Evidence has been found

to show that Tasmanian devils used to live on mainland Australia, but they died out about 3000 years

ago, likely due to the introduction and proliferation of the Dingo, climate change, or human intensification

[31, 5, 18]. Human intensification in this context refers to the increase in human activity, usually economic in

character, which impacts the Tasmanian devil population. Small insurance populations of Tasmanian devils

have been established in multiple locations, most notably on Maria Island, and in New South Wales [32, 3].

Tasmanian devils are mainly scavengers, looking for carcasses of animals, but are also known to hunt smaller

prey [2]. Due to their nature of being scavengers, devils are susceptible to being killed by cars and other

vehicles as they will feed on roadkill carcasses [2]. Tasmanian devils are also nocturnal, which compounds

the issue of roadkill, since they may be hard to spot in the dark due to their mostly black fur, and small

build. Tasmanian devils have also been persecuted by humans, especially farmers, due to the belief that they

kill lifestock such as sheep [23]. This belief is not true as devils do not hunt animals of this size, but they

will feed on the carcasses of deceased lifestock. During the early days of the DFTD outbreak, reduced devil

density was noted by farmers due to the fact that carcasses of lifestock would lay in the paddocks instead of

being eaten by devils [23]. Tasmanian devils usually live up to six years in the wild, but due to the impacts

of DFTD, the mean life span has been shortened to three years [16].

2.1.1 Reproduction

A female Tasmanian devil can have up to three estrous cycles per mating season [14]. The mating season

can last from late February to late July, when considering all three cycles [14]. Around 90% female devils

get pregnant in the first estrous cycle, and give birth in late March, but some female devils become pregnant

later. Female devils will develop a retained fluid roll on their neck in order to endure physical attacks from

males [13]. When a female devil is willing to reproduce with a male she will indicate this by being willing to

be dragged or escorted to a den by her neck fat, this state has also been described as "Limp-Doggo" (David

Pemberton, personal communication, May 21, 2019). Once in the den, the male will copulate with the female
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several times [13]. The male will also guard the female to prevent her from leaving, and other males from

entering the den [27]. This guarding behaviour can last up to 15 days [27], during which the male devil will

sometimes use his body to physically block the entrance of the den. As reported by Owen and Pemberton,

the female devil will essentially be kept prisoner in the den. This guarding behaviour can even go so far

as the male dragging the female to a water source, and back to the den, to keep her under control [23]. A

female devil commonly gives birth to between 30 and 40 young, but only up to four will survive because a

female devil only has four teats [23]. The number of pouch young follows a bimodal distribution favouring

either zero or 4 pouch young [25]. As is common for marsupials, young are born very early, around 21 days

of age, and need to finish development in the pouch, where they attach to a teat until they are matured [25].

Pouch young will permanently exit the pouch around 130 days after the median birth date, and will be fully

weaned around 278 days [25].

2.1.2 Social Behaviour

Tasmanian devils are usually solitary animals, but they interact when scavenging for food and looking for

mating partners. These interactions usually involve vocalization and posturing to ward off another devil, but

only some of these interactions result in extensive physical injuries [25]. The most common form of wounds

found on devils are puncture wounds to either the muzzle and neck area, or the rump and tail [25]. Even

though devils avoid each other in normal circumstances, up to five devils have been shown to feed on a carcass

at the same time while tolerating each other [25]. The mating behaviour described above is likely one of the

large contributors to the bite wounds incurred by devils as mating involves the most intense interactions.

2.2 DFTD

Devil Facial Tumour Disease (DFTD) is a clonally transmissible schwann-cell cancer, spread through bite

wounds as an allograft [22, 24]. DFTD was first detected in 1996 in Mount William National Park [12].

After the discovery, DFTD quickly spread amongst the local population and across large parts of the island,

reaching 80% of the main island of Tasmania by 2017 [17]. DFTD cells are a clone from the original female

devil which likely started the spread through a genetic mutation in the tumour [6]. Two types of DFTD

have been detected which are distinct genetic lines from each other, DFTD1 is the first, detected in 1996,

and DFTD2 is the second, first detected in 2014 [26]. While DFTD1 has quickly spread across large parts of

Tasmania, DFTD2 has so far been mostly contained to the Channel region of southeast Tasmania. DFTD2

has been traced back to a male devil since it carries a Y chromosome [26]. Since DFTD is transmitted via live

cell grafts, it should be detected by the immune system of the host devil; however, this is not the case. DFTD

is able to hide, resulting in no immune response being mounted by the infected devil. The mechanism of the

immune avoidance is not completely understood yet, but it is likely due to low or no expression of the major

histocompatibility complex class I (MHC-I) on the DFTD cells [30]. One way the immune system recognizes
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foreign cells is through identification of peptides bound by the MHC-I molecule on the cell membrane. The

peptides bound by the MHC-I molecule are most commonly produced by degradation of proteins within the

cell, and therefore characterizes which proteins are produced within the cell. Once a cell has been identified

through the MHC-I molecule as producing foreign proteins, the cell will be destroyed. Due to this low or

non-existent expression of MHC-I by the DFTD cells, such cells do not cause an immune reactions and are

therefore largely invisible to the immune system of the host devil [7].

2.2.1 Disease Progression

When cancer cells are implanted into the host animal, they start growing into tumours. One devil can, and

usually does, have multiple tumours simultaneously, stemming from interactions with different devils. The

most common areas are the muzzle, neck and rump, as these are most likely to be targets during aggressive

interactions [25]. DFTD is almost always fatal and usually leads to death within one year [9]. Few cases

have been documented to show natural regression of DFTD in devils, but these only account for fewer then

20 instances in over 10,000 cases [19]. This natural regression of tumours has lead some to believe that

Tasmanian devils are building a natural immunity to DFTD [20]. If Tasmanian devils are developing a

natural immunity to DFTD then it does not appear to occur in high enough density to slow or stop the

spread of DFTD [7]. The discovery of DFTD2 also shows that other cancers can develop which may contain

other immune evasive strategies.

2.2.2 Disease Impact

The impact on the Tasmanian Devil population from DFTD has been extensive. The estimated overall

population across the island has exhibited a decline by 80%, and some local populations have declined over

90% [29]. DFTD progression in the population has caused the age structure to collapse, leaving mostly devils

up to three years old [16]. An increase in precocial breeding has been observed, but the exact cause is still

to be determined, but the leading hypothesis is that higher food availability has led to devils growing faster

and reaching the critical mass to reach fertility [16]. The increase in precocial breeding is theorized to have

prevented an extinction of Tasmanian devils at this point by boosting the population in low density areas

[17]. The lowered density of Tasmanian devils also leaves the population more vulnerable to other population

pressures such as roadkill on a local level, or death through wild fires on a large scale. These extra pressures

can result in local or regional extinction of Tasmanian devils, increasing the need for human intervention to

restore the Tasmanian devil population while decreasing the incidence of DFTD.

2.3 Agent-Based Modeling

Computational models are used in many disciplines, and have many different definitions. In this thesis, I use

an agent-based model. An agent-based model uses individual agents, which can interact in an environment
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with other agents. Agents do not have to represent living mobile individuals such as humans, but can be

used to model other entities that have defined behaviour, such as hospitals and factories. Agents can contain

smaller sub-models, such as System Dynamics or discrete event simulation models. These models can be

used to represent flowcharts or complex processes inside an agent. In this thesis, each Tasmanian devil is

represented using one Agent. All devil agents live within the main agent, which is used to contain all model

data, functions, and the GIS map. Agents can either live in an abstract space, or in a GIS map if geographic

data is used for the model. Due to the complexity of simulating each individual agent, and their entire

environment, agent-based models require vast computational resources, and exhibit runtimes that grow with

the size of the population of agents. Large agent-based models with a large population (>50,000 agents) or

very complex agent behaviour, can easily have a runtime of multiple days unless further optimized. Agent-

based models are inherently stochastic because most often rates and probability distributions are used to

define an agent and the transition between states. Due to the stochasticity of the model, it needs to be run

many times using a Monte-Carlo experiment. This experiment type will run many realizations of the model to

capture the different parameter values in the possible parameter space the model operates in. This ensemble

of model runs are necessary to account for statistical fluctuations and to be confident in the output that

is produced by the model. The more variability that is present in the model output, the more realizations

should be run, but usually several hundred to thousand realizations should be used to inform the model

output.

2.3.1 Agents

An Agent describes one individual entity in the model. Each agent can contain one or more statecharts, as

well as other components such as parameters, variables, and functions. Each statechart is comprised of at

least one, but usually multiple states, with each state represents a discrete situation such as being hungry

or not. A statechart is the core mechanism of an agent-based model. Statecharts are used to control agent

behaviour, trigger certain events, and indicate a status of an agent. Statecharts can consist of three different

types of states: simple state, compound state, and final state. A statechart must at least have one simple

state to be valid. Compound states group several states together and show a higher level status of the agent.

For example the simple states Juvenile and Adult can be grouped together by a compound state Alive.

An agent can be in either the Juvenile or Adult state, but in both cases they will also be contained within

the Alive state. Final states can only be entered and never exited. In this example, a final state could

be Natural Death. This final state would be entered by an agent when it has died, and would therefore

not be encompassed by the compound state Alive. A final state is usually used to remove an agent from

the simulation or terminate the execution of a particular statechart. An agent can also connect to one or

multiple connections. These connections can either be unidirectional, meaning the source agent can use the

connection to contact the destination agent, but not reversed, or it can be bidirectional, in which case both

agents can use the connection. Separate connections can be setup for different connection networks, such
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as general distance based connections, special short duration connections during breeding and more. Using

connections allows for quick and easy interaction between agents.

2.3.2 GIS

A Geographic Information System (GIS) is used to capture geographic data. Geographic data includes

locations of buildings to calculate housing density, and road lines to calculate road density. Using GIS in

an agent-based model provides an easy way of capturing geographic data and make the agent aware of the

necessary data in its environment. The use of GIS in agent-based models can enable a richer expressions of

results to stakeholders by grounding the model in the physical world. Showing agent behaviour on a map

that people can understand — as opposed to an abstract space — can enable more detailed and nuanced

discussions as well as a deeper understanding of the model. This visual depiction enables a more in-depth

understanding of results and processes which can lead to more substantive discussions and further insights.

GIS is a powerful tool for agent-based models, but it needs to be chosen carefully as it can easily lead to

large performance penalty if not handled correctly.
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3 Methods

3.1 Model

The agent-based model that I developed for this project uses two types of agents. The main agent is used to

control all interactions and simulate the environment, and the devil agent simulates each individual devil in

the environment. The main agent contains a GIS map to enable the use of geographic data. To circumvent

performance issues associated with using the Anylogic GIS map with a large number of agents, I implemented

a two-dimensional (2D) grid of cells that is used for all data processing and agent interactions. The GIS

map is then only used for visual representations of the devil agents and locations of interest such as trap and

release locations.

3.1.1 Collaborative Model Building

The agent-based model was built using a collaborative process with various stakeholders. Initial discussions

were used to determine the scope of the model. Determining the scope of the model and which parts of the

system to exclude was an important first step, and helped to determine what modeling techniques would be

the most effective. During the initial phase of the project, Dr. Witte and I traveled to Tasmania to meet with

Dr. Pemberton, Dr. Fox, and Dr. Lazenby. During this five day trip, we were first shown a trapping area

near Mount Bethune to learn about how Tasmanian devils are trapped for research, what data is captured,

and how it is recorded. This excursion was used to learn about the background of the Tasmanian devil, and

its habitat. Following that one day excursion, several meetings were held at the Tasmania Department of

Primary Industries, Parks, Water and Environment offices. During these meetings, the example model was

presented which was then followed by user requirements gathering to ensure the model built matched the

expectations of the stakeholders. These meetings were also used to deepen the modeler’s understanding of

both the current state of DFTD in Tasmania and nuances of devil biology, so as to further understand their

behaviour and necessary components of the model. The GIS component was discussed in great detail to

ensure stakeholder understanding of the benefits and drawbacks by using such a system in the model. The

GIS map was seen as essential to the model and its value despite its adverse impact on model runtime as well

as development time. The meetings in Tasmania were also used to brainstorm an initial set of interventions

to investigate with the model. These initial meetings were attended by the following contributors:

• Dr. Carmel Witte: Principle investigator, San Diego Zoo Wildlife Alliance
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• Dr. David Pemberton: Stakeholder, Tasmania Parks and Wildlife Service

• Dr. Samantha Fox: Stakeholder, Tasmania Department of Primary Industries, Parks, Water and

Environment

• Dr. Billie Lazenby: Stakeholder, Tasmania Department of Primary Industries, Parks, Water and

Environment

Multiple meetings occurred during the model building phase and were used to further discuss implemen-

tation decisions and refine mechanism in the model. At a later date the team was expanded to include

Dr. Andrew Flies to help with the oral bait vaccine implementation, and parameter review. Meetings

employing Zoom teleconferencing software were used to present progress on the model, and to discuss further

work. Some exchange and parameter verification occurred via email. Parameter review occurred using a pre-

pared list of parameters with best estimate values already present. These parameters and associated assumed

values were then sent to all stakeholders. Feedback from stakeholder included improved parameter estimates

and further explanation of systems informing the parameters. All discussions with stakeholders were recorded

using electronic notes, and assumptions regarding parameter values were recorded in the parameter Excel

file that is utilized in the model.

3.1.2 Parameter Import

To make the model more portable, and easier to use for the stakeholders, I implemented a parameter import

system. This system allows for each parameter to be defined in an Excel file prior to being imported into the

model on startup. This avoids the needs for stakeholders to open Anylogic to change parameters, or to run

the experiment with a GUI when doing so is not needed. Since some parameters are set using probability

distributions, these need to be captured in the Excel file properly, and then imported correctly. To allow for

the import of distributions, I implemented a custom parameter structure in Anylogic using the Java class

element. This class stores parameters using the ParameterValue class. This class can store parameters either

as an atomic value (String, Boolean, Double), as a Normal Distribution, a Truncated Normal Distribution,

or a Triangular Distribution. Each ParameterValue is then stored in a HashTable using the parameter name

as the key. These parameters are used on model startup to initialize all agents in the model. Using this

parameter import structure allows for quick iteration of experiments and improves model accessibility for

stakeholders by simplifying and streamlining their interactions with the model.

3.1.3 Main Agent

The Main agent is the top-level agent of each experiment. It contains the GIS map, and all other elements that

are not specific to an individual devil agent. The main agent handles the mating season control for all devils.

The mating season is checked each day and controlled by two parameters. The first parameter determines
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the beginning date of the mating season in days relative to the first day of the current year. The second

parameter gives the duration of the mating season. These parameters have been chosen this way opposed to

static dates, to allow for the capture of density dependent shifts in mating season start and duration. By

checking the mating season daily and sending out messages of the current season to all devils, it allows for

devils to reach the age of sexual maturity during a mating season, and then be able to reproduce in the same

mating season, without having to wait an extra year. The main agent also controls all interventions, as well

as all data output during and after the experiment run.

3.1.4 Tasmanian Devil Agent

The Tasmanian devil agent consists of three statecharts, as well as parameters, variables, and functions.

The statecharts define the state of a devil agent with respect to disease, life stage, and reproduction. Each

Tasmanian devil agent has a set of parameters which further define the agent and differentiate it from others.

Those parameters are sex, birthDate, and homeCell. The sex parameter defines if an agent is Male or

Female, which is used in deciding contact between agents and also governs reproductive behaviour. The

birthDate parameters tracks at which time, relative to the model start, the devil was born. The birthDate

is then used to calculate the age of the devil and further classify them into an age class. The age classes

are defined in table 3.1, and help more easily categorize the devil populations. Since devils are wild animals,

an exact age cannot be determined in empirical practice; the use of age brackets is therefore common. The

homeCell parameter tracks the ID of the cell in which the devil lives, and is used to look up geographic data

for mortality pressures, as well as to determine contact between devils.

Table 3.1: Age Class definition for Tasmanian Devil agent. Age range is inclusive for the minimum
age and exclusive for the maximum age.

Age Class minimum age (years) maximum age (years)

Age Class 1 0 1

Age Class 2 1 2

Age Class 3 2 3

Age Class 4 3 4

Age Class 5 4 5

Age Class 6 5 -

Lifestage Statechart

The Lifestage Statechart has four states: Two simple, one complex and one final. Devil agents can only

exist in either a simple state or the final state. The Alive state is a composite state which indicates that a

devil is alive and has not yet died of either DFTD or natural causes. The Juvenile state is a simple state

and indicates that a devil is juvenile, from zero to a maximum of 1.5 years of age. Devils in the Juvenile
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Figure 3.1: Lifestage Statechart

state cannot reproduce. Once a devil becomes sexually mature, they transition to the Adult state, where

they can reproduce and contact other nearby devils freely. All devils have a monthly chance of death due to

three types of non-disease causes: Roadkill, other human threats such as dogs or poison, and other natural

causes. These death rates vary by age, and with the geographical location they inhabit, due to changes in

housing and road density. If a devil dies of non-DFTD causes, it receives a message, and transitions from

the Alive state to the NonDFTDDeath final state. This final state is used to ensure a devil will be removed

from the model gracefully, specifically removing it from the cell it inhabited, removing all connections, and

then removing it from the model, which will deregister any outstanding events for this agent.

Disease Statechart

The DiseaseStatechart consists of six total states: Five simple states, and one final state. All devil agents

initially start in the Susceptible state. The Susceptible state indicates that it is currently possible for this

agent to be infected with DFTD. Once a devil does get infected by another infectious devil, it will transition

to the Exposed state. In the Exposed state, a devil is infected with DFTD, but the tumours have not yet

grown large enough to allow for infection of other devils. After a variable time duration between three to

12 months and with a mean of six months, the agent will transition to the Infectious state. Once a devil

has reached the Infectious state, it can infect other devils during contact. Transmission of infection given

exposure of a susceptible devil to an infected devil is subject to a transmission probability, because not every

interaction between devils leads to bite wounds and transmission of DFTD cells. A small number of devils

were recorded to have tumours that were cleared via regression; the post-recovery state of such devils are

captured by the Recovered state, which a devil can enter from either the Exposed or Infectious state. A

devil in this Recovered state is treated as persistently immune to further infection. Recovered devils can

return back to susceptibility according to a process of waning immunity, governed by a hazard rate. The
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Figure 3.2: Disease Statechart

vaccine interventions are captured through the Immunized state. That state can be entered from any other

simple state in this statechart, as any devil has the potential to receive the vaccine. Due to the potential

of the oral bait vaccine to be used in immunotherapy [7], the transitions from Exposed and Infectious to

the Immunized state are captured. The probability for devils moving from either Susceptible, Exposed,

and Infectious to Immunized can be controlled separately. Once a devil enters the Immunized state, they

cannot be infected by others and, can also not infect others. Devils return to the Susceptible state from

the Immunized state based on the waning immunity of the vaccine that they were given. Once an agent is in

the Infectious state for a variable time between three to 12 months, with a mean of six months, they will

transition to the DeathByDFTD final state. Once the final state is reached, devils will be deregistered from

the geographic cell of their residence, and then removed from the model.

Reproduction Statechart

Figure 3.3: Reproduction Statechart
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The Reproduction statechart is used to characterize the reproductive cycle of devil agents. All devils

start in the NonMating state. In this state, no reproduction can occur. Once mating season starts, all devils

receive a message to trigger the transition to their respective mating states. This transition is guarded to

prevent any currently pregnant or juvenile devils from entering the mating states. Adult devils will reach a

branch after taken the transition where they will be split by sex. Male devils will enter the MaleMating state,

and female devils will enter the FemaleMating state. Once devils reach the mating states and interact with

another devil of the opposite sex, there is a chance for reproduction and pregnancy. When a female devil

becomes pregnant, it will immediately take the transition back to the NonMating state, in addition, an event

will be scheduled for 227 days in the future. When this event triggers, conditional on the fact that the devil

has not died, a predetermined number of juvenile devils will be added to the model at the location of the

mother. The maximum number of pups is four, since Tasmanian devils only have four teats, and therefore

only four pups can survive per litter. The lowest number of pups is zero, as it is possible that the pregnancy

is not successful. The probability distribution specifying the count of pups to be born can be controlled

using the Parameter spreadsheet, but currently follows a bimodal distribution, with zero and four being the

most likely outcomes. During the pregnancy, the female devil may not enter the FemaleMating state. All

remaining devils will return to the NonMating state once the mating season concludes. If a devil reaches

sexual maturity, as indicated by transitioning to the Adult state, during an active mating season, they will

enter the mating state consistent with their sex.

Contact between Tasmanian Devil Agents

Tasmanian devil agents can contact other devil agents located within a given geographical radius. The

likelihood of a cell being chosen by a given devil to search for contact devils depends on the distance from

the devil to the cell. The closer the cell – including the home cell of the searching devil – the more likely it is

to be chosen. This probability follows an exponential distribution with respect to distance. The exponential

distribution is used to capture the fact that a devil is much more likely to contact devils within its immediate

surrounding, as opposed to devils 20km away. Once a cell for contact is chosen, a suitable devil is selected

based on sex and age. If a devil is found, it is returned, and a contact is initiated. If no devil is found,

then no contact occurs. The sex and age is determined by the contact rates stored using a Java class in

Anylogic, but can be changed using the parameter spreadsheet described in section 3.1.2. Originally, the

database functionality in Anylogic was used to store the contact data, but the implementation was altered

to instead use a custom Java class due to performance issues with high frequency data requests from the

database. Currently all age groups are contacted at the same rate, but contact rates vary by sex and season.

Contact rates are given as a mean and SD, and which is then used in a normal distribution to obtain the

number of actual contacts per day. These contact rates are used to determine the number of devils that will

be contacted in a given day by sex. For each devil being contacted, a new random cell is chosen given the

distance from the originating cell. Each contact has the chance of transmitting DFTD if one of the devils
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is in the Infectious state. Each contact can also lead to reproduction if the contact occurs during mating

season.

3.1.5 Sensitivity Analysis

To validate the model and investigate the relative impact of parameters on the model output, a sensitivity

analysis is critical to perform. One-way sensitivity analysis experiments vary one parameter through a given

range, with the output then being examined for relative change against a baseline. Sensitivity analyses

differ from Monte Carlo experiments by not only running multiple realizations with the same parameter

set, but also by varying the parameter between iterations, while still running multiple replications of each

iterations to secure the necessary confidence in the output. In this thesis, the sensitivity analysis will use a

baseline parameter ±50%. Using a ±50% change against the baseline value, the relative change of the output

can be examined for a large change in the parameter value. The parameters were chosen on the basis of

their uncertainty. Certain parameters can be well informed from existing data, or from publications. Other

parameters, however, can only be estimated. These estimated parameters are informed by expert opinion

and publication, but a sensitivity analysis can show which parameters bear closer examination. For a given

change in parameter value, some parameters have a larger impact on the model output than others. For

example, a 10% change in the distanceProbabilityLambda might show a 20% change in the overall output,

or a 2% change. If the change in output is large, then the parameter represents a priority candidate for

more careful estimation using calibration or collection of further data points. If the parameter only results

in a small change in output, then a larger uncertainty may be acceptable. The parameters listed below were

selected to inform best parameter values to use and to investigate their relative impact on the model. Some

parameters were not able to be informed by existing data or publication and were included in the sensitivity

analysis to inform to what degree of certainty the parameters would have to be estimated for model results

to be accurate.

3.1.6 Model Calibration

To calibrate the agent-based model, I used manual calibration by using published values and estimates as

starting points. These parameters were then refined by matching the model output to estimated real world

data. The biggest issue with wildlife disease is that exact data is typically very difficult to obtain. With the

lack of precise and high frequency data, it is often easier to manually calibrate an agent-based model.

First, a baseline without DFTD was calibrated to obtain a stable population over the entire runtime. This

ensures that there aren’t underlying population issues in the model which will impact the experiment results.

Once the disease free baseline was calibrated, then I calibrated the baseline DFTD simulation to match the

expected population drop across the island. This also included matching the speed of disease spread over the

geographic setting.

Distance Probability Lambda was varied manually from a minimum of 0.05 to 0.8, based on the average

16



Table 3.2: Parameters for Sensitivity Analysis

Parameter Name -50% Baseline +50%

Distance Probability Lambda 0.15 0.3 0.45

Housing Death Adjustment Factor 0.15 0.3 0.45

Mating Season Duration 20.0 40.0 60.0

Minimum Age For DFTD Infection 0.25 0.5 0.75

Probability Of Moving Away From Home Cell 0.4 0.8 1.2

Road Death Adjustment Factor 0.15 0.3 0.45

Vaccine Probability Of Immunity Per Bait Unit Exposed 0.1 0.2 0.3

Vaccine Probability Of Immunity Per Bait Unit Infectious 0.025 0.05 0.075

Vaccine Probability Of Immunity Per Bait Unit Susceptible 0.25 0.5 0.75

Vaccine Probability Of Immunity Per Injection Exposed 0.1 0.2 0.3

Vaccine Probability Of Immunity Per Injection Infectious 0.025 0.05 0.075

Vaccine Probability Of Immunity Per Injection Susceptible 0.4 0.8 1.2

Table 3.3: Parameters for Model Calibration

Parameter Name min max unit

Distance Probability Lambda 0.05 0.8 -

Housing Death Adjustment Factor 0.01 0.5 -

Road Death Adjustment Factor 0.01 0.5 -

Natural Death Adjustment Factor 0.2 1.5 -

Exposed To Recovered Rate 0.0001 0.1 month−1

Infectious To Recovered Rate 0.0001 0.1 month−1
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speed of DFTD spread from 7km ∗ y−1 to 51km ∗ y−1[21]. Housing Death Adjustment Factor and Road

Death Adjustment Factor were varied between 0.01 and 0.5, based on their estimated contribution to the

Non-DFTD deaths. Natural Death Adjustment Factor was varied between 0.2 and 1.5, and was calibrated to

produce a stable population over time in conjunction with the other non-DFTD death adjustment factors.

Exposed To Recovered Rate and Infectious To Recovered Rate were varied from a minimum of 0.001 to a

maximum of 0.1, being calibrated so as to accord with a published natural recovery rate of 20 recoveries per

10000 cases [19].

3.2 Interventions

3.2.1 Off-Island Translocation

One intervention currently being utilized in Tasmania is the use of off-island translocation. Off-island translo-

cation uses a separate uninfected population of Tasmanian devils that does not live on the main island. One

such populations lives on Maria Island. 28 DFTD-free Tasmanian Devils were released in 2013 to build up an

insurance population in case of devil extinction on the main island [32]. This population has grown to a size

were it is now possible to take healthy devils from Maria Island, and translocate them to an area on the main

island. In total 12 individual release locations, across six separate sites, have been utilized too date to release

devils (Dr. Samantha Fox, personal communication, 29 October, 2020). All devils chosen for translocation

have to fit certain criteria. They all need to be healthy and between two to three years of age. When female

devils are translocated, it is preferable to select females with pouch young, to ensure even greater impact

and introduction of disease free devils.

3.2.2 On-Island Translocation

On-Island translocation is similar to off-island translocation, but devils are taken from areas of the main

island as opposed to being brought in from external populations. These devils have to fulfil the same criteria

as the off-island devils, namely, devils must be healthy, between 2-3 years of age, and if female, it is preferable

that they have pouch young. On-island translocation currently uses eight separate trap sites to trap devils

for translocation (Dr. Billie Lazenby, personal communication, 16 December, 2020). These sites have been

imported into the agent-based model, and are used to trap devils. On-island translocation uses the same

12 release sites as off-island translocation. On-island translocation can be used to combat local extinction

and also to increase genetic diversity. As the genetic diversity of Tasmanian devils is very low, this is a very

important factor to keep in mind, as increased genetic diversity can help guard against future development

of transmissible cancers.
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3.2.3 Injection Vaccine

One of the vaccine interventions that is being investigated using this model is the use of an injection based

vaccine. An injection vaccine can either be given to devils that are being translocated, or traps can be setup

specifically for the purpose of vaccinating devils. An injection vaccine would ideally be limited to a single

injection, as recapture of specific animals can be challenging. Injection vaccines are more easily accepted by

the general public, but they require vast amounts of resources to administer to the whole population in high

enough percentages to result in a decrease in DFTD prevalence and increase the devil population. Trapping

devils for vaccination is accompanied by the additional challenge of setting traps in remote locations that

might not be easily reached by car. Another issue is that traps need to be checked once daily, and therefore a

team of at least two qualified people needs to be stationed nearby and can only cover a small area per day. A

large vaccination effort would either require a large number of people and traps, or a very long time period,

over which devils vaccinated early on might lose their resulting immunity, decreasing the effectiveness of the

vaccine efforts overall.

3.2.4 Oral Vaccine

One novel intervention that this thesis examines is the use of oral bait vaccines. An oral bait vaccine

is currently being developed by Andy Flies [7]. These vaccines are packaged as bait to promote animal

uptake and to allow for distribution across a large area without the need for trapping individual animals.

Bait vaccines require fewer distribution resources as compared to injection vaccines. This includes both

financial and personnel requirements. Oral bait vaccines can be distributed during the day and taken up

by devils during the night while they are scavenging for food. The distribution possibilities are also more

varied as compared to trapping devils, since bait vaccines can be distributed via airplane or helicopter in

remote areas. One notable drawback with oral bait vaccine is the decay of the bait. The bait can decay

through two means, the first being decay through natural processes such as rain, rotting, or loss of potency.

The second decay factor is the uptake of the bait by non-target species such as Quolls, which are another

carnivorous marsupial similar to the Tasmanian devil. I investigated three main parameters when examining

the use of oral bait vaccine. The first is the density of distribution. Since the agent-based model uses a

GIS map to capture geographic data, it allows the placement of bait at different distances and examine the

effectiveness of uptake and overall vaccination rate. The second parameter varied the distribution amount.

This parameter determines the amount of bait that is dropped at each location. The third parameter is the

distribution frequency, which controls the number of months between bait vaccine drops. The effect of three

different average distances is shown in Figure 3.4. Using these three parameters allowed me to investigate

different distribution strategies and assess their impact on the overall Tasmanian devil population as well as

on incidence rate of DFTD.
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(a) 25 km2 Grid without Cell selections (b) Cell selection based on 10 km average distance

(c) Cell selection based on 15 km average distance (d) Cell selection based on 20 km average distance

Figure 3.4: Effect of varying average distance between bait drop locations on cell selections made
during runtime. (a) shows the empty grid for reference. (b), (c), and (d) show the selected cells in
yellow based on the average distance given.
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3.3 2D Data Grid

The 2D data grid that I implemented consists of squares that cover the entire main island of Tasmania. The

size of these squares can be varied by generating grids of different sizes in QGIS, and then exporting the

data including connections. The grid size that was used in the model was 5km by 5km. This grid size was

chosen to allow for detailed geographic data to be captured, without excessive computational overhead. All

geographic cell data is imported using a CSV file at the beginning of the model. Each cell consists of an ID, a

centroid point to define its center, and geographic data such as housing density, road density, and Tasmanian

devil density pre-DFTD. The cell objects are defined using a custom Java class in Anylogic (see A.1). A

new cell is instantiated for each row in the cell data CSV file. The newly created cells are then added to a

hashmap indexed by the cell ID. Use of a hashmap allows for retrieval of the cell object in constant time.

The use of a hashmap also allows each devil to store only the ID of the cell they are currently in. Each cell

object can store any number of attributes, and it will automatically store all data that is contained within

the cell data CSV file that is being loaded in. Each attribute can then be accessed by using the column

name of that attribute. This data structure makes the data grid easily expandable to capture more data

as necessary. The choice to replace the GIS map with a 2D cell grid to handle all geographic computation

allowed for more flexibility in capturing geographic data, and also afforded a large performance improvement

making it possible to simulate the entire devil population of the main island.

Coordinate Conversion

Most data that I received from the research group in Tasmania uses the UTM coordinate system. The UTM

coordinate system divides the world into a grid, in which each zone is designated by a number and a letter.

The number designates the zone, running north to south, and the letter divides the zone into latitude bands.

Tasmania is in zone 55G. The coordinates within a given zone is then represented as a Northing and Easting

in meters. The conversion from UTM to longitude/latitude can be very complex, and error prone. To avoid

any issues with this conversion, I utilize the CoordinateConversion library published by IBM [28]. This

library allows for easy conversion from UTM to latitude/longitude and back.

Runtime Cell Data Capture

To enable data output per cell over time I added string output functionality to each cell. Using the

summarizeCell function, each cell was programmed to return a string representation of its ID and statistics

regarding devil population in the cell, such as the total number of susceptible, and infectious devils in the cell.

This output could then be stored in either a TXT or CSV file for later processing, or sent to the graphing

server (see Section 3.10.1).
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3.4 Devil Agent Data Capture

A data capturing system was also implemented for devil agent data. At first the Anylogic provided DataSets

were used, but later replaced with a custom system to allow for highly detailed data capture and on the

fly analysis and graphing. Anylogic DataSets can be a source of vast memory consumption if used exces-

sively, and does not allow for easy on the fly analysis as required. Due to this, each data output needs

to be predetermined and a separate dataset needs to be created and updated. The DevilDataContainer

implemented here allows high density storage to minimize the memory footprint, while retaining the data

resolution necessary to recreate temporal and geospatial data and effects. The addition of the experiment

GUI (see Section 3.5) and on demand data aggregation necessitated a custom solution to handling the large

amounts of data being generated by the model. Each day data was gathered from each devil agent and stored

in the custom Java class DevilDataContainer (see A.2). This container stores data for a single time point in

the private class SingleTimeContainer. The organization of data by timestamp makes it easier to analyse

data. Each SingleTimeContainer stores all devil data using an array of short. Each short encodes the

devils disease state, ageclass, sex, and lifestage (Juvenile or Adult). The data is compressed into a short by

using a bitmask for each data point. The bitmask was defined as follows:

Table 3.4: Bitmask used for devil agent data capture

Name Bit Number Value

SUSCEPTIBLE 0 1

EXPOSED 1 2

INFECTIOUS 2 4

RECOVERED 3 8

IMMUNIZED 4 16

AGECLASS1 5 32

AGECLASS2 6 64

AGECLASS3 7 128

AGECLASS4 8 256

AGECLASS5 9 512

AGECLASS6 10 1024

MALE 11 2048

FEMALE 12 4096

JUVENILE 13 8192

ADULT 14 16384

Using a bitmask approach to storing data enables highly compressed data storage, as it only needs one

short for the complete state of each devil agent. This data can then easily be aggregated by a combination
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of devil states by constructing the appropriate bitmask. For example, to obtain the number of devils that

are Exposed, AgeClass2, and Female, the following bitmask can be constructed 001000001000010, and then

a bitwise AND is performed. If the result of the AND and the mask are the same, then the devil matches all

given criteria, and a counter is incremented to represent the sum of devils in those states.

An array of integers is also stored in parallel to the devil data array. The integer array contains the cell

ID of each devils home cell. The two arrays are kept synchronous through simultaneous insertion, and by not

allowing removal of data. The data stored at the same index in both arrays belongs to the same devil agent

at that time point. Consistency between time points is not guaranteed because of the population changes

in the model. This data container alone allows for an accurate reconstruction of the model results, not only

population dynamics, but also spatial effects, since the cell ID of each devil’s home cell is stored.

3.5 Experiment GUI

A custom experiment control GUI was implemented using the Anylogic provided GUI builder. This GUI

was necessary because the main experiments were implemented using custom experiments, which have no

GUI attached. Implementing the experiment without a GUI allows the experiments to be run on headless

servers without the need for a persistent X11 connection. When the GUI is opened a higher level overview

is presented. This overview allows the user to decide if they want to run a Monte Carlo experiment, or a

Sensitivity Analysis. Next it allows for different intervention types to be enabled or disabled. Each checkbox

for intervention and experiment type is accompanied by a button to take the user to a more detailed parameter

input view. Each parameter view is unique to the intervention or experiment type that was selected. The

high level overview also contains the experiment control section, which allows an experiment to be started,

paused, and stopped. It also contains the graphing server control, which starts or stops the Julia graphing

server described in section 3.10.1. The high level view also contains controls which allows for saving and

loading of parameter preset values. The user can load their previously saved parameters, or parameters

from files that were provided to them. When a parameter preset is loaded, and parameters are subsequently

changed, a warning will appear which tells the user that the parameters have been changed. This parameter

preset loading and saving allows users to easily share a specific parameter set with others in the form of a

TXT file. These functionalities make it easy to exchange specific settings without needing to send the entire

model. The last button in the high level view is the Navigation section. This section contains a button to

take the user to the plot view, where they can view results during runtime.

The Plot view consists of two plots, the first for experiment data, and the second for experiment progress.

Six list boxes are presented which allow the user to select a specific iteration, and replication, or even multiple

to view at once. The other four list boxes allow the data to be aggregated by disease type, age class, sex,

and lifestage. Three checkboxes further control the plot behaviour. The first checkbox enables a moving

average which smooths the data over a one year time frame. The second checkbox button shows all data as
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a percentage of the entire population. The third checkbox sets the Y axis scaling to be fixed at 0 instead

of automatic scaling. For example, if the user selects Susceptible for disease type, Age Class 2 for age class,

Female for sex, and Juvenile for lifestage, then the total number of devils that match all those states will be

aggregated and displayed.

Plotting data with this level of control allows the user to investigate the data as it is generated and see

trends that might not be apparent using more rigid data capture and plotting methods.

Figure 3.5: High Level Model Control GUI
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Figure 3.6: Plot View GUI and Example Data Aggregation during runtime

3.6 Scenarios

3.6.1 Experiment Control

All experiments were implemented using the custom experiment in Anylogic. The custom experiment does

not generate a GUI and allows full control over all aspects of experiment execution through code. Running the

experiments without a GUI allowed me to run them on a research server at the University of Saskatchewan

as well as the Compute Canada facilities, without having a persistent connection with a GUI output. If

an Anylogic experiment with a GUI loses connection during runtime, then the experiment crashes and all

data that is not written to files is lost. Encountering connection issues using X11 over SSH was frequent

enough during the multiple day run time, that it was unfeasible. For this reason, I implemented the custom

experiments. In addition to not needing a GUI to run, it also gave me more granular control over how many

cores to use when running parallel experiments. Each core, or thread in the case of hyperthreading, can

run one realization, but at an overall performance penalty. Each experiment keeps track of the status of all

realizations as either Ready, Running, or Finished. Each experiment type described below was run with 200

realizations.

3.6.2 Baseline

The baseline experiment examines the behaviour of the Tasmanian devil population in the absence of any

interventions. There are two separate runs of the baseline experiment, one is with DFTD, and one is without
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DFTD. The non-DFTD experiment was used to examine the model behaviour in the absence of the disease in

order to validate the population stability and other death factors. The DFTD baseline experiment was used

to ensure the model displays the same characteristics seen in the field and that the disease behaves correctly.

The baseline experiment with DFTD was then used as a comparison point for all intervention experiments,

providing a metric against which intervention effectiveness could be judged. Each experiment was started

in 1985 and stopped in 2035. 1985 was chosen as the start time to provide sufficient time for the model to

stabilize the population after start-up and reach a pre-DFDT equilibrium before the introduction of DFTD.

3.6.3 Translocation

The translocation experiments consisted of three separate experiment runs. The first utilized the off-island

translocation described in Section 3.2.1. The second experiment used the on-island translocation described

in Section 3.2.2. The last experiment type used both off-island translocation and an injection vaccine. In all

three experiments, 100 devils were translocated biannually. These devils were released at 12 separate release

locations, and in the case of on-island translocation, they were trapped in eight different locations on the

main island. All other parameters were kept constant. All interventions were introduced in 2020.

3.6.4 Vaccination

Vaccination intervention experiments used two types of vaccines. The first was an injection vaccine given

to trapped devils, and the second was an oral bait vaccine dispersed in the environment (see Section 3.2.4).

First an experiment was run using the injection vaccine and trapping devils across the landscape. Then 18

different experiments were run using the oral bait vaccine. Each of the oral bait vaccine experiments varied

three parameters to investigate different distribution techniques for the bait vaccine. The first is the average

distance between distribution sites, the second is the amount of bait dropped per distribution site, and the

last is the number of months between bait drops. These three parameters are used to gain an insight into the

optimal parameter space for the oral bait vaccine distribution. The oral bait vaccine experiment also uses a

time delayed roll out strategy for distribution of bait. At the beginning of a bait distribution session the cells

for bait drops are selected. Then each day a number of cells, in this case 6, receive the bait vaccine. This

simulates a real world distribution of vaccine utilizing methods such as airplanes, helicopters and manual

distribution. This time delay shows if there are any potential issues with waning immunity and distribution

speed, and it can also help to better simulate the real world situation, therefore giving a better insight into

potential strategies. All interventions were introduced in 2020.

3.6.5 Inputs

Certain inputs to the model were loaded in from files to setup the model environment. These are:

• 5K_Data.csv.gz - This file contains all cell specific data. Each row defines one cell and all data
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associated with it. This file is compressed using gzip to allow for easier and quicker transfer to remote

servers.

• 5K_Distance.csv.gz - This file contains all the connections between different cells that are available

and the distance between each connected cell. This file is compressed using gzip to allow for easier and

quicker transfer to remote servers.

• ReleaseLocations.csv - This file contains all release locations that can be used when translocation is

enabled. These release locations will be setup as GIS regions in the model.

• TrapLocations.csv - This file contains all the trap locations that can be used when on-island translo-

cation is enabled. Devils can be trapped here to be moved to a different part of the island.

• Parameters.xlsx - This file contains all the parameters that are used in the model. Each parameter

will be loaded in from this file and set during startup, unless modified in the experiment GUI described

in Section 3.5.

• SensitivityParameters.xlsx This file contains all parameters that can be toggled for sensitivity

analysis. This file is only used when the Sensitivity Analysis experiment is enabled in the experiment

GUI described in Section 3.5.

3.6.6 Parameters

Tables 3.5, 3.6, 3.7, 3.8, 3.9, and 3.10 define most parameters used in the model, whether user-defined through

the Parameters excel file, internally defined within the model. Beyond the specification of parameter names

and values in Table 3.6, user-defined epidemiological parameters are described below. All parameters were

discussed with all stakeholders, who also provided estimates for unknown parameters. Where distributions

were used for parameters, the following notation will be used:

• Normal Distribution - normal(sd, mean)

• Truncated Normal Distribution - normal(min, max, mean, sd)

• Triangular Distribution - triangular(min, max, mean)

User-Defined Epidemiological Parameters

• initialPopulationSize - This parameter controls the count of Tasmanian devil agents at model startup.

This value is used to calculate the number of devils per cell based on the density in each cell.

• beginMatingSeason - This parameter controls on which day within the year on which the mating

season starts, counted from the first day of each year, which in Anylogic is defined as 1.
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• matingSeasonDuration - This parameter controls how long the mating season lasts. This parameter

is specified in days.

• distanceProbabilityLambda - This parameter controls the probability that a devil will choose a

given cell based on the distance from the devil to that cell. The probability is calculated using an

exponential distribution, and this parameter controls the rate of decay of probability with distance in

km.

• housingDeathAdjustmentFactor - This parameter controls the scaling of the impact of housing

density on devil mortality. Housing density mortality is scaled using the relative density of each cell,

with the highest housing density resulting in a mortality rate of 1.0 per month, and with the result

then being multiplied by this parameter.

• roadDeathAdjustmentFactor - This parameter controls the scaling of the impact of road density on

devil mortality. Road density mortality is scaled using the relative density of each cell, with the highest

road density resulting in a mortality rate of 1.0 per month, and with the result then being multiplied

by this parameter.

• translocationSiteRadius - This parameter controls the size of each translocation site. For each

translocation event, a random point is selected within the site. The cell containing that location is then

identified for release of the devil.

• likelihoodFemale - This parameter controls the probability that a devil added to the model will be

female. The probabilty of being male is 1.0−likelihoodFemale

• ageOfSexualMaturity - This parameter controls at which age devils are first able to reproduce.

• exposedToInfectiousTime - This parameter specifies how many months a devil will remain in the

Exposed state before moving to the Infectious state. This parameter uses a truncated normal distri-

bution to capture the uncertainty in this parameter.

• infectiousToDeathTime - This parameter specifies how many months a devil will remain in the

Infectious state before dying of DFTD. This parameter uses a truncated normal distribution to

capture the uncertainty in this parameter.

• infectiousProbability - This parameter controls the probability that a susceptible devil agent will be

infected with DFTD given a contact with another infectious devil.

• exposedToRecoveredRate - This parameter controls the rate per month at which devils will naturally

recover from DFTD given that they are in the Exposed state.

• infectiousToRecoveryRate - This parameter controls the rate per month at which a devil will nat-

urally recover from DFTD given that they are in the Infectious state.
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• recoveredToSusceptibleRate - This parameter controls the rate per month at which a devil will lose

natural immunity against DFTD after naturally recovering from DFTD.

• probabilityPregnant - This parameter controls the probability that a female devil will become preg-

nant as a result of a mating contact with a male devil.

• probabilityOfMovingAwayFromHomeCell - This parameter controls the probability that a devil,

which has been newly added to the model, will move away from the home cell of its mother.

• timeUntilPupsAreIndependant - This parameter controls the count of days until a litter of pups is

independent. The value of this counter is dependent on when the female devil became pregnant. Devils

will be added to the model once independent.

• minimumAgeForDFTDInfection - This parameter controls the minimum age at which a devil can

be infected with DFTD; a devil below this age cannot be infected. This parameter uses a truncated

normal distribution to capture the uncertainty in this parameter.

• waningImmunityRate - This parameter controls the rate at which a devil agent will lose immunity

from being vaccinated.

Age Distribution For Initial Devil Generation

The age distribution for initial devil generation — shown in Table 3.7 — is used to assign devil agents to

different age classes on model start. These values were generated using the model by running the model until

a steady state was reached in all age groups, and then logging the percentage of the population in each age

group.

Contact rate parameters

The contact rate parameters, shown in Table 3.9, control the number of contacts each devil has per day for

each sex of the devils to be contacted and given the mating season. These values were calculated using the

raw devil contact data provided by Hamilton et al.[10]. The data was aggregated by age due to the small

sample size in each age group. These contact parameters are used in the model to construct a truncated

normal distribution given the avg andsd values, with a minimum of 0 and a maximum of 60 contacts per

day and per sex. The number of devils to contact for each sex in a given day is then calculated by drawing

from the distribution; determining the count of contacts on each successive day is achieved by independently

draws from that distribution.
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Table 3.5: User-Defined Non-Epidemiological Parameters

Parameter Value Description

enableDFTD TRUE This parameter controls whether DFTD is

enabled or not. If it is not enabled, no devils

get infected

enableCellDataOutput TRUE This parameter controls whether individual

cell data is output during the experiment

run.

Table 3.6: User-Defined Epidemiological Parameters

Parameter Value Unit Source

initialPopulationSize 90000 devil -

beginMatingSeason 50 day [25]

matingSeasonDuration 40 day [25]

distanceProbabilityLambda 0.4 - Calibration

housingDeathAdjustmentFactor 0.3 - Calibration

roadDeathAdjustmentFactor 0.3 - Calibration

translocationSiteRadius 500 meters Arbitrary

likelihoodFemale 0.5 - [25]

ageOfSexualMaturity triangular(1.2, 2, 1.7) year [32]

exposedToInfectiousTime normal(3, 12, 6, 2) month [8]

infectiousToDeathTime normal(3, 12, 6, 2) month [9]

infectiousProbability 0.05 - Calibration

exposedToRecoveredRate 0.001 month-1 Arbitrary

infectiousToRecoveryRate 0.001 month-1 Arbitrary

recoveredToSusceptibleRate 0.1 month-1 Arbitrary

probabilityPregnant 0.743 - [25]

probabilityOfMovingAwayFromHomeCell 0.8 - Arbitrary

timeUntilPupsAreIndependant 227 day [25]

minimumAgeForDFTDInfection normal(0.5, 2, 0.5, 0.3) year Arbitrary

waningImmunityRate 0.05 month-1 Arbitrary
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Table 3.7: Age Distribution for Initial Devil Generation

Age Probability

0-1 0.1299

1-2 0.3102

2-3 0.2295

3-4 0.1641

4-5 0.1227

5+ 0.0436

Table 3.8: Number of Pups born per Pregnancy [25]

Number of Pups Frequency of Occurrence %

0 27

1 12

2 13

3 23

4 34

Table 3.9: Contact rate parameters

Season Sex Type Male Female

Mating

Male
AVG 0.267 12.586

SD 0.255 14.004

Female
AVG 10.298 1.491

SD 7.305 2.845

Non-Mating

Male
AVG 0.387 1.765

SD 0.337 3.359

Female
AVG 1.471 0.554

SD 3.045 0.971
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Table 3.10: Model Parameters

Parameter Value Unit Description

numberOfDevilsInitialInfection 10 devil The number of devils that are initially in-

fected when DFTD is introduced

devilDensityPerKm2 2 devil*km-2 The number of devils per km2, this will be

adjusted to match the initialPopulationSize

set by the user

lowDensityToRegularDensity 0.25 - The multiplication factor to determine the

devil density for the low density regions

DevilDensityToCarryCapactyMultiplier 1 - The multiplication factor to determine the

carrying capacity of each cell based on its

devil density

timeInBetweenCellDataWrites 30 day The number of days between a full data cap-

ture of each GIS cell is performed

3.7 Model execution environment

The agent-based model was executed as a standalone java application using the provided Anylogic export

functionality. Exporting the model allows it to be executed on other computers without the need for Anylogic

to be installed. Due to the large computational requirement, Compute Canada, a national supercomputing

service, was selected to run the model. Compute Canada offers four separate clusters, Cedar, Graham,

Béluga, and Niagara. I selected Cedar to run my experiments as it was the most available cluster at the

time. Each cluster consists of nodes and each node offers a set of compute cores and memory that are located

on the same physical machine within the cluster. Due to the constraints imposed by Anylogic, and for ease

of implementation, one experiment could only run on a single node. For this reason, an experiment with

more iterations then available cores on a single node were split into smaller blocks and run separately. The

experiments consisted of 200 realizations each, and were split into 10 nodes per experiment type. Even though

certain nodes can provide up to 40 cores, the amount of memory needed per core is not supported when using

40. Due to this constraint, each node was limited to 20 realizations at once, with a total requested memory

use of 180 GB. Each experiment also requested four extra overhead cores to allow for parallel background

processing without impacting the 20 running realizations. A script was created to control the scheduling

and running of the experiments. This script would schedule each subexperiment and then setup and monitor

execution once the node was available.

Earlier model experiments were also run using the research server Skorpio at the University of Saskatchewan.

Due to the limited amount of parallel processing power in comparison to the requirement, this was only used

for testing purposes and not to generate result data.
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Both servers used a headless terminal based system for scheduling and running the experiments. Using a

headless approach avoided the X11 and SSH connection instabilities mentioned in section 3.6.1.

3.8 Performance Evaluation

To evaluate the total runtime and memory usage of the agent-based models at different population sizes, and

if disease is enabled, a simple time and memory recorder was implemented. Runtime was recorded using the

System.nanotime() functionality native to Java. This functionality records the time, in nanoseconds, that

has passed since a fixed but arbitrary time point. As this time point can be arbitrary, in either the past or the

future, it is important that System.nanotime() is only used to calculate elapsed time using the difference of

two System.nanotime() measurements [1]. The maximum memory usage was recorded using the Runtime

API native to the Java Virtual Machine. It was not possible to measure the memory consumption of each

realization, therefore the maximum memory usage of the entire experiment was measured. Memory usage is

evaluated approximately every 30 seconds. To record the runtime for each replication of the model a simple

class was implemented. This class captured the ID of the replication, the start time, and stop time. This

data was output to a CSV file once the model execution had finished. The start time of a replication was

recorded before engine.run() was invoked to start the execution of the realization but after initializing the

model engines. The stop time of each realization was recorded after the engine has indicated that it had

either finished or an error had occurred. The status of each realization was checked approximately every 30

seconds, which lead to an uncertainty of 30 seconds in the stop time. This uncertainty, however, is a minor

discrepancy when the multiple hour runtime of the model is taken into consideration. I decided to measure

the runtime of each realization instead of the whole model execution because if the number of realizations

is set higher then the number of cores available, some realizations have to be run in series, leading to a

dramatically increased runtime. The initial setup of the model engine was consistent across all realizations

regardless of population size or if DFTD is enabled. The Tasmanian devil population and the geographic

grid data are only initialized once engine.run() is invoked.

3.9 Statistical Analysis

To analyse the large amount of data produced by each experiment (scenario), multiple Julia scripts were

implemented to process the data, test them for statistical significance, and to plot the results. The core script

processes the raw data produced by the model. Each realization outputs a CSV file of model data over time.

This CSV file is then used to calculate a single DDL and mean daily incidence value for each realization. Mean

daily incidence is calculated using the daily incidence output from each model realization. Each new case of

DFTD is counted in the model, with the DFTD incidence counter in the model being reset each day. A mean

of all daily incidence values is then calculated over all days for each realization. This value is then stored as the

mean daily incidence for that realization. Devil Days Lived (DDL) represents the sum of the total population
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of Tasmanian devils on each day of the model. DDL was used to capture all variation in populations even if

they were only temporary. The count of agents at the end of the model execution is sometimes used to measure

effectiveness of interventions, but this does not capture fluctuations in population earlier in the model. For

this reason, DDL was chosen as the Tasmanian Devil population outcome measure to judge intervention

effectiveness. The results of all realizations belonging to a single experiment are then collected and written to

a single CSV file. This intermediate storage allows for the time consuming data processing of all realizations

to occur only once. The processed results for each experiment are then read into another script which uses

the DDL and mean daily incidence values of each realization to check for statistical significance against

the baseline experiment. In these results, each experiment produced 200 data points – one for each of 200

realizations – each for DDL and mean daily incidence. The null hypothesis assumed that the intervention

used produced no significant difference against the baseline, which utilized no interventions. To test the

statistical significance between the baseline and other experiments, two tests were used: The Kolmogorov-

Smirnov test, and two-sided Mann-Whitney U test. These tests used the implementation provided by the

HypothesisTests library for Julia, using the ApproximateTwoSampleKSTest and MannWhitneyUTest. Since

the tests are two tailed, a difference is accepted as significant even if the intervention results in a worsening

of DDL or mean daily incidence. Statistical significance was only accepted when the Kolmogorov-Smirnov

test and the Mann-Whitney U test both produced a p-value of less then P < 0.005. P < 0.005 is used as the

cutoff for significance, as opposed to the commonly used P < 0.05, the marked variability results that can

be exhibited between realizations due to stochastics.

3.10 Result Graphing

3.10.1 Graphing output for each cell over time

To capture model output during runtime for each individual cell, I created a Julia program which runs in

parallel to the model. This program receives a data stream from each experiment iteration containing data

for each cell. The data is formated as a JSON structure to ensure that the data is associated with the

appropriate label. This data is then converted into a single frame, shading each cell based on its given value.

Once the experiment finishes, it issues a command to the server to indicate that it is done. The server then

creates an animation from the individual frames using ffmpeg. Each animation has a fixed length of 30

seconds. Once the animation is created, the individual frames are deleted to free disk space.
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Figure 3.7: Sample output of the total population of Tasmanian devils per cell
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4 Results

4.1 Runtime Results

The performance evaluation conducted on the model showed a linear growth in runtime with respect to the

number of Tasmanian devil agents, as shown by Figure 4.1. For the experiments where DFTD was disabled,

the runtime increased by an average of 54 minutes for every 10,000 devil agents. When DFTD was enabled,

the runtime increased by an average of 24 minutes for every 10,000 devil agents. A linear regression produced

an R2 score of 0.9978 when DFTD was disabled, and a R2 score of 0.9985 when DFTD was enabled.

Figure 4.1: Runtime vs. Tasmanian Devil Agent Population
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4.2 Memory Results

Maximum memory consumption grew linearly with respect to the number of Tasmanian devil agents, growing

by an average of 8.3GB for every 10,000 initial devil agents. The experiments for which DFTD was disabled

also showed a linear trend with an average increase of 2.1GB for every 10,000 initial devil agents. Since the

slope was very shallow, the linear regression only produced an R2 score of 0.5844. It is notable that the

maximum memory require scales far steeper with the initial population for those model runs positing Devil

Facial Tumour Disease; this reflects the greater expansion of that population over the course of the simulation

compared to runs in which mortality from DFTD reduces the size of that population.

Figure 4.2: Maximum Memory (GB) vs. Tasmanian Devil Agent Population

4.3 Sensitivity Analysis

The sensitivity analysis demonstrated the two parameters with the largest change to impact ratio to be

Distance Probability Lambda and Road Death Adjustment Factor. Distance Probability Lambda is used to

determine that a cell will be chosen for devil contact given its distance from the current cell of the devil

initiating the contact. Road Death Adjustment Factor is a multiplier used to determine the probability a

devil will die due to roadkill given the road density in the current cell. The impact of these parameters was
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assessed against two outcomes: Devil days lived (DDL) shown in Tables 4.1 & 4.2 and mean daily incidence

shown in Tables 4.3 & 4.4.

In terms of DDL outcomes, Distance Probability Lambda produced a change in DDL of −20.7% given

a −50% change in the parameter value, and a 30.5% change in DDL for a 50% change over the baseline

parameter value. Road Death Adjustment Factor produced a 41.4% change in DDL for a −50% change in

parameter value, and a −22.9% change in DDL for a 50% change over the baseline parameter value. With

respect to mean daily incidence outcomes, Distance Probability Lambda exerted a 29.0% change in mean

daily incidence given a −50% change over the baseline parameter value, and a −62.4% change in mean daily

incidence given a 50% change in the parameter value. Road Death Adjustment Factor produced a 19.8%

change in mean daily incidence given a −50% change over baseline parameter value, and a −22.7% change in

mean daily incidence given a 50% change in the baseline parameter value. All other parameter values showed

a less then 10% change for a ±50% change over the baseline parameter value.

Table 4.1: Devil days lived (DDL) for each Sensitivity Analysis experiment given the baseline pa-
rameter and ±50%. Values highlighted in Bold represent statistically significant difference compared
to the baseline (P<.005)

Parameter Name -50% Baseline +50%

Distance Probability Lambda 1.27 × 109 1.60 × 109 2.09 × 109

Housing Death Adjustment Factor 1.62 × 109 1.61 × 109 1.59 × 109

Mating Season Duration 1.69 × 109 1.60 × 109 1.55 × 109

Minimum Age For DFTD Infection 1.60 × 109 1.60 × 109 1.61 × 109

Probability Of Moving Away From Home Cell 1.61 × 109 1.60 × 109 1.61 × 109

Road Death Adjustment Factor 2.27 × 109 1.61 × 109 1.24 × 109

Vaccine Probability Of Immunity Per Bait Unit Exposed 1.69 × 109 1.71 × 109 1.71 × 109

Vaccine Probability Of Immunity Per Bait Unit Infectious 1.70 × 109 1.71 × 109 1.72 × 109

Vaccine Probability Of Immunity Per Bait Unit Susceptible 1.68 × 109 1.70 × 109 1.72 × 109

Vaccine Probability Of Immunity Per Injection Exposed 1.60 × 109 1.62 × 109 1.61 × 109

Vaccine Probability Of Immunity Per Injection Infectious 1.62 × 109 1.61 × 109 1.62 × 109

Vaccine Probability Of Immunity Per Injection Susceptible 1.61 × 109 1.62 × 109 1.62 × 109
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Table 4.2: Devil days lived (DDL) for each Sensitivity Analysis experiment given the baseline pa-
rameter and ±50% represented as percent change. Values highlighted in Bold represent statistically
significant difference compared to the baseline (P<.005)

Parameter Name -50% Baseline +50%

Distance Probability Lambda -20.7% - 30.5%

Housing Death Adjustment Factor 0.8% - -1.1%

Mating Season Duration 5.5% - -3.2%

Minimum Age For DFTD Infection 0.0% - 0.4%

Probability Of Moving Away From Home Cell 0.4% - 0.5%

Road Death Adjustment Factor 41.4% - -22.9%

Vaccine Probability Of Immunity Per Bait Unit Exposed -1.2% - 0.3%

Vaccine Probability Of Immunity Per Bait Unit Infectious -0.6% - 0.5%

Vaccine Probability Of Immunity Per Bait Unit Susceptible -1.3% - 1.1%

Vaccine Probability Of Immunity Per Injection Exposed -0.9% - -0.2%

Vaccine Probability Of Immunity Per Injection Infectious 0.3% - 0.4%

Vaccine Probability Of Immunity Per Injection Susceptible -0.1% - 0.2%

Table 4.3: Mean daily incidence for each Sensitivity Analysis experiment given the baseline parameter
and ±50%. Values highlighted in Bold represent statistically significant difference compared to the
baseline (P<.005)

Parameter Name -50% Baseline +50%

Distance Probability Lambda 49.75 38.58 14.51

Housing Death Adjustment Factor 38.81 38.58 38.38

Mating Season Duration 35.81 38.52 39.88

Minimum Age For DFTD Infection 38.71 38.55 38.41

Probability Of Moving Away From Home Cell 38.49 38.83 38.44

Road Death Adjustment Factor 46.2 38.55 29.8

Vaccine Probability Of Immunity Per Bait Unit Exposed 33.94 33.26 32.58

Vaccine Probability Of Immunity Per Bait Unit Infectious 33.5 33.04 33.1

Vaccine Probability Of Immunity Per Bait Unit Susceptible 36.33 33.54 31.27

Vaccine Probability Of Immunity Per Injection Exposed 39.42 38.99 39.09

Vaccine Probability Of Immunity Per Injection Infectious 38.93 39.13 39.02

Vaccine Probability Of Immunity Per Injection Susceptible 39.11 39.09 38.99
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Table 4.4: Mean daily incidence for each Sensitivity Analysis experiment given the baseline parameter
and ±50% represented as percent change. Values highlighted in bold represent statistically significant
difference compared to the baseline (P<.005)

Parameter Name -50% Baseline +50%

Distance Probability Lambda 29.0% - -62.4%

Housing Death Adjustment Factor 0.6% - -0.5%

Mating Season Duration -7.1% - 3.5%

Minimum Age For DFTD Infection 0.4% - -0.4%

Probability Of Moving Away From Home Cell -0.9% - -1.0%

Road Death Adjustment Factor 19.8% - -22.7%

Vaccine Probability Of Immunity Per Bait Unit Exposed 2.0% - -2.1%

Vaccine Probability Of Immunity Per Bait Unit Infectious 1.4% - 0.2%

Vaccine Probability Of Immunity Per Bait Unit Susceptible 8.3% - -6.8%

Vaccine Probability Of Immunity Per Injection Exposed 1.1% - 0.3%

Vaccine Probability Of Immunity Per Injection Infectious -0.5% - -0.3%

Vaccine Probability Of Immunity Per Injection Susceptible 0.0% - -0.2%

4.4 Agent-Based Model Results

A total of 23 experiments were run to evaluate different interventions. To serve as a point of reference for

comparison, a baseline experiment containing no interventions was initially run. The baseline experiment

produced a mean devil days lived (DDL) of 6.81 × 108, and a mean daily incidence rate of 52.43 for all

baseline realizations as described in Section 3.9; here and below, the reader should be reminded that this

quantity is calculated as the average across incident rates applying on the different days of the study. The first

type of intervention was the translocation intervention. This type includes off-island translocation, on-island

translocation, and vaccinated off-island translocation. As shown by Tables 4.5 & 4.6 no translocation inter-

vention produced a statistical (P<.005) different result from the baseline. The Injection Vaccine produced

a mean DDL of 7.76 × 108 and a mean daily incidence of 39.27. This intervention significantly reduced the

burden of DFTD on the population and allowed for the population to recover over time. All oral bait vaccine

intervention significantly improved both mean DDL and mean daily incidence over the baseline. The smallest

improvement was produced using 20km average distance, 100 bait units per location, and 12 months between

bait drops. This combination resulted in a mean DDL of 6.97 × 108 and a mean daily incidence of 51.42.

The largest improvement over the baseline resulted from using a 10km average distance, 1000 bait units per

location, and six months between bait drops. This parameter set resulted in a mean DDL of 8.34 × 108 and

a mean daily incidence of 24.91. Two oral bait vaccine interventions produced a mean prevalence of 0% at

the end of the model execution, representing eradication of DFTD as shown in Figure 4.6. Mean prevalence
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was calculated as the mean of each realization per day. When the mean prevalence equals 0% exactly, then

all realizations show eradication of DFTD; given model assumptions, once eradication is achieved, it will

be maintained from that point forward. The parameter combination that produced the quickest eradication

used 10km average distance between adjacent bait drops, 1000 bait units per location, and six months be-

tween bait drops. This scenario required 2.5 years to reach eradication. The other parameter combination

used 10km average distance, 500 bait units per location, and six months between bait drops, requiring 4.5

years to eradication. Figure 4.5 shows the same average distance and bait amount per location, but using

twelve months between bait drops. This combination does not results in eradication, but using 1000 bait

units per location reduced the prevalence to below 0.1% 1.2 years after introduction of the Intervention, with

prevalence remaining below 0.1% until the end of model execution.

Figure 4.3: Violin and Box plot showing the distribution of DDL for each intervention type. The
Oral bait vaccine (OBV) intervention type follows the following notation: X-Y-Z. X denotes distance
between drops in kilometers, Y denotes the number of baits per drop, and Z denotes the number of
months between drops. (a) No Intervention, (b) Off Island Translocation, (c) On Island Translocaiton,
(d) Vaccinated Off-Island Translocation, (e) Injection Vaccine, (f) OBV 10-100-12, (g) OBV 10-500-12,
(h) OBV 10-1000-12, (i) OBV 10-100-6, (j) OBV 10-500-6, (k) OBV 10-1000-6, (l) OBV 15-100-12,
(m) OBV 15-500-12, (n) OBV 15-1000-12, (o) OBV 15-100-6, (p) OBV 15-500-6, (q) OBV 15-1000-6,
(r) OBV 20-100-12, (s) OBV 20-500-12, (t) OBV 20-1000-12, (u) OBV 20-100-6, (v) OBV 20-500-6,
(w) OBV 20-1000-6
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Figure 4.4: Mean DDL vs. mean daily incidence of DFTD of each intervention type. Highlighted in
bold are the data points overlapped in the top-left. The Oral bait vaccine (OBV) intervention type
follows the following notation: X-Y-Z. X denotes distance between drops in kilometers, Y denotes the
number of baits per drop, and Z denotes the number of months between drops. (a) No Intervention,
(b) Off Island Translocation, (c) On Island Translocaiton, (d) Vaccinated Off-Island Translocation,
(e) Injection Vaccine, (f) OBV 10-100-12, (g) OBV 10-500-12, (h) OBV 10-1000-12, (i) OBV 10-
100-6, (j) OBV 10-500-6, (k) OBV 10-1000-6, (l) OBV 15-100-12, (m) OBV 15-500-12, (n) OBV
15-1000-12, (o) OBV 15-100-6, (p) OBV 15-500-6, (q) OBV 15-1000-6, (r) OBV 20-100-12, (s) OBV
20-500-12, (t) OBV 20-1000-12, (u) OBV 20-100-6, (v) OBV 20-500-6, (w) OBV 20-1000-6
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Table 4.5: Mean DDL for each experiment type. Oral Bait Vaccine intervention (OBV) follows the
following notation: X-Y-Z. X denotes distance between drops in kilometers, Y denotes the number of
baits per drop, and Z denotes the number of months between drops. Bold values denote significance
(P<.005) compared to the no intervention baseline

Experiment type mean DDL mean DDL SD

No Intervention 6.81 × 108 8.03 × 106

Off-Island Translocation 6.83 × 108 7.02 × 106

On-Island Translocation 6.82 × 108 7.25 × 106

Off-Island + Injection Vaccine 6.82 × 108 7.57 × 106

Injection Vaccine 7.76 × 108 1.00 × 107

OBV 10-100-12 7.43 × 108 7.30 × 106

OBV 10-500-12 8.28 × 108 9.08 × 106

OBV 10-1000-12 8.33 × 108 7.54 × 106

OBV 10-100-6 7.79 × 108 9.38 × 106

OBV 10-500-6 8.33 × 108 7.59 × 106

OBV 10-1000-6 8.34 × 108 7.69 × 106

OBV 15-100-12 7.12 × 108 7.34 × 106

OBV 15-500-12 7.84 × 108 8.36 × 106

OBV 15-1000-12 8.25 × 108 9.29 × 106

OBV 15-100-6 7.33 × 108 7.92 × 106

OBV 15-500-6 8.25 × 108 8.94 × 106

OBV 15-1000-6 8.33 × 108 7.85 × 106

OBV 20-100-12 6.97 × 108 8.20 × 106

OBV 20-500-12 7.37 × 108 8.39 × 106

OBV 20-1000-12 7.74 × 108 8.04 × 106

OBV 20-100-6 7.08 × 108 7.77 × 106

OBV 20-500-6 7.71 × 108 8.23 × 106

OBV 20-1000-6 8.13 × 108 9.06 × 106
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Table 4.6: Mean daily incidence rate for each experiment type. Oral Bait Vaccine intervention (OBV)
follows the following notation: X-Y-Z. X denotes distance between drops in kilometers, Y denotes the
number of baits per drop, and Z denotes the number of months between drops. Bold values denote
significance (P<.005) compared to the no intervention baseline

Experiment type mean daily incidence mean daily incidence SD

No Intervention 52.43 0.72

Off-Island Translocation 52.89 0.63

On-Island Translocation 52.38 0.62

Off-Island + Injection Vaccine 52.73 0.69

Injection Vaccine 39.27 2.46

OBV 10-100-12 46.82 0.95

OBV 10-500-12 26.95 1.85

OBV 10-1000-12 24.99 0.61

OBV 10-100-6 39.60 1.83

OBV 10-500-6 24.92 0.62

OBV 10-1000-6 24.91 0.56

OBV 15-100-12 50.29 0.68

OBV 15-500-12 38.75 1.83

OBV 15-1000-12 27.62 2.25

OBV 15-100-6 48.27 0.82

OBV 15-500-6 27.031 1.94

OBV 15-1000-6 24.77 0.60

OBV 20-100-12 51.42 0.71

OBV 20-500-12 47.60 0.87

OBV 20-1000-12 41.16 1.82

OBV 20-100-6 50.73 0.694

OBV 20-500-6 42.07 1.31

OBV 20-1000-6 31.14 2.01
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Intervention Start

Figure 4.5: Prevalence of DFTD for the Oral Bait Vaccine Intervention with 10km average distance,
a varying amount of bait being dropped per location, and distribution every 12 months

Intervention Start

Figure 4.6: Prevalence of DFTD for the Oral Bait Vaccine Intervention with 10km average distance,
a varying amount of bait being dropped per location, and distribution every 6 months
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5 Conclusion

5.1 Motivation

Devil Facial Tumour Disease has decimated the Tasmanian devil population since its discovery in 1996. When

combined with other mortality risks, it is feared that DFTD may lead to extinction of the species, which

would be a tragedy for Tasmania, and the ecosystem. To evaluate different interventions, a geospatial agent-

based model was constructed to simulate interactions of individual Tasmanian devils. This allows targeted

interventions to be evaluated, such as those involving translocation of devils, and different vaccine types. As

a novel intervention to combat and potentially eradicate DFTD, a set of scenarios involving use of an oral

bait vaccine were also assessed.

5.2 Chapter Summary

Chapter 1 introduced the research that was conducted in this thesis. In this chapter, Devil facial tumour

disease and its history was introduced to understand the impact it had on the Tasmanian devil population.

Additionally, agent-based modeling was introduced and its benefits described in the setting of epidemiological

modeling. Lastly, the goals, scientific contributions and a thesis organization was also presented.

Chapter 2 offered further background on Tasmanian devils, including their behaviour and reproduction,

as well as on DFTD and agent-based modeling.

Chapter 3 discussed the model implementation, and specific characteristics of the Tasmanian devil agent.

The devil agent description also included discussion of the statecharts utilized within the agent. Chapter 3

additionally presented all parameters used in the model, and the sensitivity analysis and calibration process.

The chapter further discussed the different interventions that were implemented in the model and how they

were utilized. Lastly, data capture, output, and processing was also described.

Chapter 4 reported the results of the runtime and memory analysis performed, which showed a strong

linear trend in both runtime and memory consumption with the count of agents. Sensitivity analysis results

were also presented, showing the impact of certain parameters on the output of the model, and highlighting

the importance of the parameters impacting death rates, contact rates, and vaccine efficacy. Finally, chapter

4 presented the intervention results in comparison to the baseline. The intervention results highlighted the

effectiveness of vaccination, especially using oral bait. The oral bait vaccine was shown to be the most

effective, with some configurations even resulting in eradication of DFTD in the agent-based model.
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5.3 Deliverables

This project offers three primary deliverables. The first is the geospatial agent-based model with interventions

implemented. The second is to set up the model to be runnable on appropriate infrastructure as well as

training of all stakeholders on how to run the model and where results are stored. The third is a journal

publications regarding the intervention results, aimed at assisting in Tasmanian devil conservation efforts on

the island of Tasmania.

5.4 Agent-Based Model Performance

The runtime and maximum memory results presented in sections 4.1 and 4.2 reveal that the model scales

linearly in both runtime and maximum memory consumption with the count of agents. This linear — as

opposed to super-linear — increase was achieved through extensive optimization of the model. Optimization

efforts were especially focused on the contact made between devil agents. The Anylogic implementation of

searching for devils within a given distance searches through all agents in the population and calculates a

distance. It then keeps a list of all agents within the given distance. This implementation results in a time

complexity of O(n2) since each devil agent will search the entire population for each contact attempt. Given

this time complexity, it is infeasible to use this implementation for an agent-based model, with a population

of 100,000 or more agents. To achieve a time complexity of O(n) — a linear growth in runtime — the contact

search needed to be optimized. This was achieved by tessellating the space into square cells, and storing each

devil in a cell. This list of all devils in a cell was then separated by age class and sex. When an index devil

searches for another devil, first a cell is selected given its associated probability determined by its distance

from the index devil’s home cell. Then, given an age class and a sex, a random index is produced for the

list of devils in that cell with the given age class and sex. If the list is empty, then no suitable devil was

found for contact. Given the ranges of practical population size of devils, this implementation allows for the

contact search to occur in essentially constant time for a single devil agent. Given this, a practical linear

time complexity is achieved. When running a single realization of an agent-based model on a single core

using Anylogic, the best possible time complexity is linear, since each new agent adds to the list of events

that need to be processed.

5.5 DFTD Agent-Based Model

The agent-based model was successfully used to assess the viability of several different interventions in

increasing the Tasmanian devil population while decreasing the incidence of DFTD. The vaccine interventions

demonstrate the best results over the baseline. The oral bait vaccine is the most promising for implementation

due to its outstanding performance in decreasing the burden of DFTD and restoring the Tasmanian devil
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population, and also due to its comparatively simple — if logistically involved — real world implementation.

The use of geospatial data in the agent-based model provided a more in depth understanding of external

pressures on the Tasmanian devil population. Incorporation of the geospatial components of the model also

enabled the simulation of the entire devil population, including the density distribution of devils across the

island.

The off-island translocation was first proposed as the main intervention to investigate because it is cur-

rently in use. The results presented here show that it will not have an impact on the devil population

due to the low number of devils being translocated per year, even when that rate is increased from current

levels. Model results also suggest that it is likely that with enough increased translocation to impact the

overall population, incidence of DFTD would increase as well, which would exacerbate the burden of DFTD.

Vaccinated off-island translocation did not differ from unvaccinated translocation due to the rapid waning

of vaccine-induced immunity — waning that occurs at a rate of 0.1 per month. Translocation can provide

relief to local populations, and can be a viable option for preventing local extinction, however, it is unlikely

to have a positive impact on the entire Tasmanian devil population.

The injection vaccine intervention showed a promising result by statistically improving mean devil days

lived, as well as lowering mean daily incidence of DFTD. However, achieving such benefits requires investment

of a large amount of resources and human effort. Traps need to be set out every 10 km across the entire

island, even in remote areas. Then, each trap needs to be visited daily to check, vaccinate, and release

captured animals, disinfect the trap and reset them. Multiple recaptures of the same animal, or capture

of non-target species, is an unavoidable hindrance which would increase the amount of resources required.

In the model, this trapping effort occurred for 30 days simultaneously across the entire island every 12

months. The intervention ran for 15 years before the model execution was stopped, but if the intervention is

stopped, DFTD prevalence and population levels would likely return to pre-intervention levels. The amount

of resources needed, particularly human labour, makes this intervention infeasible. If this intervention were

to be implemented in the field, logistical challenges would require it to be modified, specifically, increasing

the distance between trap sites and using a time delayed rollout across the island. However, as was seen with

the oral bait vaccine, this would drastically lower the effectiveness of the intervention.

The oral bait vaccine intervention was the most impactful and feasible intervention that was tested. Oral

bait vaccine is much easier to distribute to Tasmanian devils than injection vaccine, since it does not need to

be injected into each devil, but can be dropped into the landscape to be taken up by the devils themselves.

Bait vaccines have been shown to be effective at combating communicable diseases amongst wild animals

through extensive use in North America and Europe. An oral bait vaccine is currently being used in Europe

to combat Rabies, and approximately 665 million units of bait were distributed across 2.5 million km2 from

1978 to 2014. Rabies bait vaccine efforts in Ontario, Canada, use airplanes and helicopters to distribute

bait over large areas over a short time. In urban areas, a hand distribution technique was utilized to more

precisely target bait distribution and placement. When considering implementation of a bait vaccine for
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DFTD, due to the low density of devils in urban areas, manual distribution of bait would likely be limited to

fewer instances then were required when combating rabies in Ontario. In large areas of Tasmania, an aerial

distribution technique can be utilized to quickly distribute bait over large uninhabited or sparsely inhabited

areas. As seen in Section 4.4, the model suggests that the most aggressive distribution strategies for oral

bait in Tasmania may lead to the eradication of DFTD in a few years, allowing the population to rebound to

pre-DFTD levels. While the real world outcome may not occur as quickly, or achieve complete eradication

of DFTD, it would result in a large reduction of DFTD prevalence in Tasmanian devils. This reduction

would allow for a more targeted approach — such as through use of injection vaccine — in local areas as

needed, providing a path to eradication. For those intervention experiments where prevalence was merely

reduced but DFTD was not eradicated, accruing sustained benefits to the Tasmanian devil population would

require a sustained oral bait vaccine campaign. Due to the assumed waning of the oral bait vaccine, over time

most devils would lose their immunity and DFTD would again very likely spread amongst the population,

reducing it to pre-intervention levels. For the interventions in which DFTD is eradicated, interventions can

cease, allowing the Tasmanian devil population to naturally recover to pre-DFDT levels. In the case of

eradication, discontinuation of interventions would also offer large savings in resources and costs related to

the intervention. All oral bait vaccine interventions that lead to eradication of DFTD used a large amount of

bait in a short amount of time, leading to a high percentage of devils being immunized. Once a critical fraction

of the devil population achieves immunity, the population achieves herd immunity, making it infeasible for

DFTD to effectively spread amongst devils. In the interventions in which prevalence was greatly reduced

but eradication did not occur, a critical percentage of immunized devils was not achieved. This then leads

to an increase in the Tasmanian devil population, which results in increased transmission due to the limited

number of vaccines not being sufficient for that enlarged population to reach herd immunity. This temporary

relief then results in increasing prevalence, reaching a new equilibrium supported by the oral bait vaccine –

an requiring the costs and logistical effort required to sustain it.

The evaluation of interventions on a geographic level provides invaluable insight into potential intervention

implementation strategies and effective prioritization of certain interventions. The time-based roll out of the

oral bait vaccine opposed to an instantaneous deployment shows that even when bait is distributed across

the island over months rather than simultaneously, the effect is still robust.

The agent based model was successfully implemented to capture geographic data from the island of

Tasmania, and to simulate the entire Tasmanian devil population. A GIS map was used in Anylogic to

represent the geographic environment being simulated. QGIS was used to compile all geographic data, create

the 2D grid, and associate all data with the appropriate cells. The 2D grid was successfully implemented

in Anylogic using the Cell class shown in A.1. The baseline model was then built up with the feedback

from the research group in Tasmania and Dr. Carmel Witte. Interventions were then implemented and

the entire model was manually calibrated to match empirical data. All experiment runs can either be

controlled through a custom designed GUI implemented using Anylogic, or all parameters can be set through
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an Excel spreadsheet and the experiment run without a GUI for improved performance. The agent-based

model successfully demonstrated the viability of the vaccine interventions to stabilize the Tasmanian devil

population as well as to reduce the prevalence of DFTD. The best intervention to increase Tasmanian devil

population without increasing DFTD incidence that can be recommended based on this agent-based model is

the oral bait vaccine intervention with an aggressive deployment of bait that offers the potential to eradicate

DFTD.

5.6 Limitations

• Further calibration with more detailed empirical data should be undertaken to better estimate model in-

trinsic parameters. Supporting data, however, can be difficult to obtain at the level of quality necessary

to calibrate the model successfully.

• A further analysis focused on localized populations should be undertaken to better evaluate the translo-

cation interventions and their impact on the local populations.

• The translocation interventions were limited to the currently used trap and release locations. There

are currently no plans to expand to more locations, but these could be simulated to evaluate locations

of greater impact for future expansion.

• The injection vaccine intervention should be expanded to simulate different rollout strategies and im-

pacts on intervention effectiveness through trapping of non-target species

• Precocial breeding of a devil within the model does not depend on the food availability or devil density

of the area enclosing that devil.

5.7 Scientific Contributions

• The first GIS agent-based model to investigate and evaluate the effectiveness of a DFTD oral bait

vaccine as an intervention to combat and potentially eradicate DFTD

• Successful design, construction, refinement, and description of an agent-based model simulating the

dynamics of DFTD in Tasmanian devils in a geographic setting

• Findings confirming the high potential effectiveness of DFTD oral bait vaccine in combating and po-

tentially eradicate DFTD

• Findings confirming that such oral bait vaccine exerts high effectiveness even in the context of multi-

year vaccine roll-out (e.g., 6 months between bait drops) and at modest geographic densities (bait

distributed in a grid with an inter-bait spacing of 20 km)
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5.8 Engineering Contributions

• Implementation of the model noted above

• Developing a geographic grid system to incorporate geographic data into an agent-based model while

improving runtime performance

• Using bit encoding to store agent data during runtime so as to enhance model efficiency

• Implementing a graphical user interface to control model setup and execution

• Graphing geographical data produced by the model during runtime

5.9 Future Work

Beyond addressing some of the needs suggested in the course of noting the limitations above, great benefits

could be secured through use of the model in the context of the Sequential Monte Carlo method of particle

filtering. Particle filtering would provide the capability to continually update and reground the model with

data as it is gathered. This can lead to more accurate, ongoing and always current short term prediction

and would be an important tool once interventions are rolled out to greatly reduce the burden of DFTD,

or eradicate DFTD entirely. The use of particle filtering can keep the model current with an up-to-date

estimate with the latest data regarding the progress of the intervention and measured evolving estimates of

the prevalence of DFTD.

To use particle filtering, the model would need to be implemented in using a custom general modelling

framework similar to Anylogic, but one that provides the capability to readily utilize particle filtering with

agent-based models. The other option would be to implement the model in an efficient general purpose

programming language and to have a model-specific implementation of particle filtering. The latter option

would result in a quicker implementation of the particle filter and speedier availability of results.

A general modelling framework which can support hybrid modelling as well as advanced techniques such

as particle filtering or PMCMC is needed to advance wildlife models into the realm of real-time decision

making. Given the complexity of gathering sufficient data on wild animals, a particle filter or PMCMC

model can be utilized to estimate underlying states of the system over time in the context of arriving data,

and to use that empirically-informed model to better estimate the current and evolution of the future state of

the population. The incorporation of real time data, machine learning, and geospatial agent-based modelling

can produce very powerful models to help understand the complex systems involved wildlife diseases and to

support insight informed by the latest observed empirical data as to how to best combat such diseases over

time.

Further additions to the model could involve characterization of resources and costs associated with each

intervention. Such an economic and resource component could inform the implementation of each intervention
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and highlight both their respective resource costs over time and the potential for savings accrued by pursuing

more aggressive strategies to potentially eradicate DFTD. Adding these components would elevate this model

by complementing existing epidemiological outcomes with those relevant to implementation science.
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Appendix A

Code Listings

A.1 Cell

1 /**
2 * Cell
3 */
4 public class Cell implements Serializable , Comparable <Cell > {
5
6 int id;
7 HashMap <String , Double > cellData ;
8 List <Integer > neighbourCells ;
9 HashMap <Integer , Double > neighbourDistance ;

10 HashMap <Integer , Double > neighbourRelativeProbability ;
11 double carryingCapacity ;
12 boolean isDFTDInArea ;
13 double totalNeighbourProbability ;
14 double baitVaccineAmount ;
15 boolean isBaitAllowed ;
16 boolean isInjectionVaccineTrapAllowed ;
17 List <Trap > traps ;
18 CustomDistribution neighbourDistribution ;
19
20 List <Devil >[][] devils ;
21
22 /**
23 * Default constructor
24 */
25 public Cell(int id) {
26 this .id = id;
27 this . cellData = new HashMap <String , Double >();
28 this . neighbourCells = new ArrayList < >();
29 this . neighbourDistance = new HashMap <Integer , Double >();
30 this . neighbourRelativeProbability = new HashMap <Integer , Double >();
31 this . carryingCapacity = 2.0;
32 this . isDFTDInArea = false ;
33 this . totalNeighbourProbability = 0.0;
34 this . baitVaccineAmount = 0.0;
35 this . isBaitAllowed = false ;
36 this . isInjectionVaccineTrapAllowed = false ;
37 this . traps = new ArrayList < >();
38 this . neighbourDistribution = null ;
39 this . devils = new ArrayList [ SexList . values (). length ][6];
40 for(int i = 0; i < SexList . values (). length ; i++) {
41 for(int j = 0; j < 6; j++) {
42 this . devils [i][j] = new ArrayList < >();
43 }
44 }
45 }
46
47 public Cell(int id , double carryingCapacity ) {
48 this .id = id;
49 this . cellData = new HashMap <String , Double >();
50 this . neighbourCells = new ArrayList < >();
51 this . neighbourDistance = new HashMap <Integer , Double >();
52 this . neighbourRelativeProbability = new HashMap <Integer , Double >();
53 this . carryingCapacity = carryingCapacity ;
54 this . isDFTDInArea = false ;
55 this . totalNeighbourProbability = 0.0;
56 this . baitVaccineAmount = 0.0;
57 this . isBaitAllowed = false ;
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58 this . isInjectionVaccineTrapAllowed = false ;
59 this . traps = new ArrayList < >();
60 this . neighbourDistribution = null ;
61 this . devils = new ArrayList [ SexList . values (). length ][6];
62 for(int i = 0; i < SexList . values (). length ; i++) {
63 for(int j = 0; j < 6; j++) {
64 this . devils [i][j] = new ArrayList < >();
65 }
66 }
67 }
68
69
70 /**
71 * Get ID of the cell
72 * @return cell ID
73 */
74 public int getID ()
75 {
76 return this .id;
77 }
78
79
80 /*
81 * Set of functions to control the amount of bait vaccines in a Grid Cell
82 *
83 */
84 public void setBaitAllowed ( boolean baitState ) {
85 this . isBaitAllowed = baitState ;
86 }
87 public boolean isBaitAllowed () {
88 return this . isBaitAllowed ;
89 }
90 public void setBaitVaccineAmount ( double amount ) {
91 this . baitVaccineAmount = max (0.0 , amount );
92 }
93 public void addBaitVaccineAmount ( double amount ) {
94 this . baitVaccineAmount += amount ;
95 }
96 public void subtractBaitVaccineAmount ( double amount ) {
97 this . baitVaccineAmount = max (0.0 , this . baitVaccineAmount - amount );
98 }
99 public double getBaitVaccineAmount () {

100 return this . baitVaccineAmount ;
101 }
102 public void updateBaitVaccineAmount ( double decayRatePerDay ) {
103 this . baitVaccineAmount = max (0.0 , this . baitVaccineAmount - decayRatePerDay );
104 }
105
106
107 /*
108 * Set of functions to control Traps used for Injection Vaccine
109 */
110 public void setTrapAllowed ( boolean trapState ) {
111 this . isInjectionVaccineTrapAllowed = trapState ;
112 }
113 public boolean isTrapAllowed () {
114 return this . isInjectionVaccineTrapAllowed ;
115 }
116 public void setTraps (int numberOfTraps ) {
117 for(int i = 0; i < numberOfTraps ; i++) {
118 Trap trap = new Trap( this .id);
119 this . traps .add(trap);
120 }
121 }
122 public void removeTraps () {
123 for(Trap trap : this . traps ) {
124 trap. releaseDevil ();
125 }
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126 this . traps . clear ();
127 }
128 public List <Trap > getTraps () {
129 return this . traps ;
130 }
131 public boolean trapDevilIfTrapFree ( Devil devil ) {
132 boolean trapSuccessful = false ;
133
134 for(Trap trap : this . traps ) {
135 if(trap. isTrapFree ()) {
136 trap. trapDevil ( devil );
137 trapSuccessful = true ;
138 break ;
139 }
140 }
141
142 return trapSuccessful ;
143 }
144
145 /**
146 * Stores a new key and value pair in the cell . If the key already exists then the value

is overwritten by the new value .
147 * @param key the key to enter , or if it exists the key whichs value should be

overwritten
148 * @param value the value to associate with the key
149 */
150 public void setValue ( String key , Double value )
151 {
152 this . cellData .put(key , value );
153 }
154
155
156 public void addNeighbour (int id)
157 {
158 this . neighbourCells .add(id);
159 }
160
161 public void addNeighbourDistance (int id , double distance )
162 {
163 this . neighbourDistance .put(id , distance );
164 }
165
166 public void addDevil ( Devil devil )
167 {
168 int ageClass = (int) devil . getAgeClass ( devil . getAge ());
169 this . devils [ devil .sex. ordinal () ][ ageClass -1]. add( devil );
170 }
171
172 public void removeDevil ( Devil devil ) {
173 this . devils [ devil .sex. ordinal () ][( int) devil . getAgeClass ( devil . getAge ()) -1]. remove (

devil );
174 }
175
176 public List <Devil > getDevils () {
177 List <Devil > devilList = new ArrayList < >();
178
179 for(int i = 0; i < this . devils . length ; i++) {
180 for(int j = 0; j < this . devils [i]. length ; j++) {
181 devilList . addAll ( this . devils [i][j]);
182 }
183 }
184
185 return devilList ;
186 }
187
188 public void setCarryingCapacity ( double capacity )
189 {
190 this . carryingCapacity = capacity ;
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191 }
192 public void setIsDFTDInArea ( boolean newValue )
193 {
194 this . isDFTDInArea = newValue ;
195 }
196
197
198
199
200 /**
201 * Return the value for the key entered , if the key does not exists returns NULL
202 * @param key they key whichs value should be retrieved
203 * @return returns the value for the key , or NULL if non - existent
204 */
205 public Double getValue ( String key)
206 {
207 return this . cellData .get(key);
208 }
209
210
211 public List <Integer > getNeighbourCells ()
212 {
213 return this . neighbourCells ;
214 }
215
216 public double getNeighbourDistance (int id)
217 {
218 return this . neighbourDistance .get(id);
219 }
220
221 public double getCarryingCapacity ()
222 {
223 return this . carryingCapacity ;
224 }
225
226 public boolean isDFTDInArea ()
227 {
228 return this . isDFTDInArea ;
229 }
230
231 public double getDensity ()
232 {
233 double numDevils = this . getNumberOfDevilsInCell ();
234
235 return zidz(numDevils , this . carryingCapacity );
236 }
237
238 public int getNumberOfDevilsInCell () {
239 int numDevils = 0;
240 for(int i = 0; i < this . devils . length ; i++) {
241 for(int j = 0; j < this . devils [i]. length ; j++) {
242 numDevils += this . devils [i][j]. size ();
243 }
244 }
245 return numDevils ;
246 }
247
248
249
250
251 public boolean equals (Cell compare )
252 {
253 return ( this .id == compare .id
254 && this . cellData == compare . cellData
255 && this . neighbourCells == compare . neighbourCells
256 && this . neighbourDistance == compare . neighbourDistance
257 && this . carryingCapacity == compare . carryingCapacity
258 && this . isDFTDInArea == compare . isDFTDInArea );
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259 }
260
261 @Override
262 public String toString () {
263 return "ID: " + String . valueOf ( this .id) + "\n"
264 + "\t" + " CellData : " + this . cellData . toString () + "\n"
265 + "\t" + " Neighbours : " + this . neighbourCells . toString () + "\n"
266 + "\t" + " Neighbour Distances : " + this . neighbourDistance . toString () + "\n"
267 + "\t" + " Carryin Capacity : " + String . valueOf ( this . carryingCapacity ) + "\n"
268 + "\t" + "Is DFTD In Area: " + String . valueOf ( this . isDFTDInArea ) + "\n"
269 + "\t" + "Bait Vaccine Amount : " + String . valueOf ( this . baitVaccineAmount ) + "\n";
270 }
271
272 public String summarizeCell () {
273 return "ID:" + String . valueOf ( this .id) + ";"
274 + " DFTDInArea :" + String . valueOf ( this . isDFTDInArea ) + ";"
275 + " TotalDevilPopulation :" + String . valueOf ( this . getNumberOfDevilsInCell ()) + ";"
276 + " TotalDevilsSusceptible :" + String . valueOf ( this . devilsSus ()) + ";"
277 + " TotalDevilsExposed :" + String . valueOf ( this . devilsExp ()) + ";"
278 + " TotalDevilsInfectious :" + String . valueOf ( this . devilsInf ()) + ";"
279 + " TotalDevilsRecovered :" + String . valueOf ( this . devilsRec ()) + ";"
280 + " TotalDevilsImmunized :" + String . valueOf ( this . devilsImm ()) + ";"
281 + " BaitVaccineAmount :" + String . valueOf ( this . baitVaccineAmount ) + "|"
282 ;
283 }
284
285 public SingleTimeCellRecord createCellRecord ( double time)
286 {
287 double cellPop = this . getNumberOfDevilsInCell ();
288 double cellSus = this . devilsSus ();
289 double cellExp = this . devilsExp ();
290 double cellInf = this . devilsInf ();
291 double cellRec = this . devilsRec ();
292 double cellImm = this . devilsImm ();
293 boolean isDFTDInArea = this . isDFTDInArea ;
294
295 SingleTimeCellRecord cellRecord = new SingleTimeCellRecord (time , cellPop , cellSus ,

cellExp , cellInf , cellRec , cellImm , isDFTDInArea , this . baitVaccineAmount );
296
297 return cellRecord ;
298 }
299
300 private int devilsSus () {
301 int total = 0;
302 for(int i = 0; i < this . devils . length ; i++) {
303 for(int j = 0; j < this . devils [i]. length ; j++) {
304 for( Devil d : this . devils [i][j]) {
305 if(d. inState ( Devil . Susceptible ))
306 {
307 total ++;
308 }
309 }
310 }
311
312 }
313 return total ;
314 }
315
316 private int devilsExp () {
317 int total = 0;
318 for(int i = 0; i < this . devils . length ; i++) {
319 for(int j = 0; j < this . devils [i]. length ; j++) {
320 for( Devil d : this . devils [i][j]) {
321 if(d. inState ( Devil . Exposed ))
322 {
323 total ++;
324 }
325 }
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326 }
327
328 }
329 return total ;
330 }
331
332 private int devilsInf () {
333 int total = 0;
334 for(int i = 0; i < this . devils . length ; i++) {
335 for(int j = 0; j < this . devils [i]. length ; j++) {
336 for( Devil d : this . devils [i][j]) {
337 if(d. inState ( Devil . Infectious ))
338 {
339 total ++;
340 }
341 }
342 }
343
344 }
345 return total ;
346 }
347
348 private int devilsRec () {
349 int total = 0;
350 for(int i = 0; i < this . devils . length ; i++) {
351 for(int j = 0; j < this . devils [i]. length ; j++) {
352 for( Devil d : this . devils [i][j]) {
353 if(d. inState ( Devil . Recovered ))
354 {
355 total ++;
356 }
357 }
358 }
359
360 }
361 return total ;
362 }
363
364 private int devilsImm () {
365 int total = 0;
366 for(int i = 0; i < this . devils . length ; i++) {
367 for(int j = 0; j < this . devils [i]. length ; j++) {
368 for( Devil d : this . devils [i][j]) {
369 if(d. inState ( Devil . Immunized ))
370 {
371 total ++;
372 }
373 }
374 }
375
376 }
377 return total ;
378 }
379
380 @Override
381 public int compareTo (Cell compareCell ) {
382 return this .id - compareCell .id;
383 }
384
385 /**
386 * This number is here for model snapshot storing purpose <br >
387 * It needs to be changed when this class gets changed
388 */
389 private static final long serialVersionUID = 1000001 L;
390 }
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A.2 Devil Data Container

1 /**
2 * DevilDataContainer
3 */
4 public class DevilDataContainer implements Serializable {
5 /**
6 * This number is here for model snapshot storing purpose <br >
7 * It needs to be changed when this class gets changed
8 */
9 private static final long serialVersionUID = 2L;

10
11 final static short SUSCEPTIBLE = (1 << 0); // 1
12 final static short EXPOSED = (1 << 1); // 2
13 final static short INFECTIOUS = (1 << 2); // 4
14 final static short RECOVERED = (1 << 3); // 8
15 final static short IMMUNIZED = (1 << 4); // 16
16 final static short AGECLASS1 = (1 << 5); // 32
17 final static short AGECLASS2 = (1 << 6); // 64
18 final static short AGECLASS3 = (1 << 7); // 128
19 final static short AGECLASS4 = (1 << 8); // 256
20 final static short AGECLASS5 = (1 << 9); // 512
21 final static short AGECLASS6 = (1 << 10); // 1024
22 final static short MALE = (1 << 11); // 2048
23 final static short FEMALE = (1 << 12); // 4096
24 final static short JUVENILE = (1 << 13); // 8192
25 final static short ADULT = (1 << 14); // 16384
26
27
28 enum diseasePredicateEnum {
29 SUSCEPTIBLE ,
30 EXPOSED ,
31 INFECTIOUS ,
32 RECOVERED ,
33 IMMUNIZED ,
34 ALLDISEASE ,
35 ALLNONDISEASE ,
36 NONE
37 }
38 enum ageClassPredicateEnum {
39 AGECLASS1 ,
40 AGECLASS2 ,
41 AGECLASS3 ,
42 AGECLASS4 ,
43 AGECLASS5 ,
44 AGECLASS6 ,
45 NONE
46 }
47 enum sexPredicateEnum {
48 MALE ,
49 FEMALE ,
50 NONE
51 }
52
53 enum lifestagePredicateEnum {
54 JUVENILE ,
55 ADULT ,
56 NONE
57 }
58
59
60 protected List < SingleTimeContainer > allData ;
61
62 /**
63 * Default constructor
64 */
65 public DevilDataContainer () {
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66 this . allData = new ArrayList < >();
67 }
68 public DevilDataContainer (List < SingleTimeContainer > allData ) {
69 this . allData = allData ;
70 }
71
72
73 public void addData ( double time , Main. _devils_Population devils ) {
74 this . allData .add(new SingleTimeContainer (time , devils ));
75 }
76
77 public void fillNewData ( DevilDataContainer data) {
78 double lastTime = 0.0;
79
80 if( this . allData .size () > 0) {
81 lastTime = this . allData .get( this . allData .size () -1).time;
82 }
83
84 for( SingleTimeContainer d : data. allData ) {
85 if(d.time > lastTime ) {
86 this . allData .add(d);
87 }
88 }
89 }
90
91 public void fillAllData ( DevilDataContainer data) {
92 this . allData . addAll (data. allData );
93 }
94
95 public List <Pair <Double , Double >> getDataRaw ( diseasePredicateEnum disease ,

ageClassPredicateEnum age , sexPredicateEnum sex , lifestagePredicateEnum lifestage ) {
96 List <Pair <Double , Double >> returnData = new ArrayList < >();
97
98 for( SingleTimeContainer singleData : this . allData ) {
99 double count = this . processSingleTimeData ( singleData , disease , age , sex , lifestage );

100 returnData .add(new Pair( singleData .time , count ));
101 }
102
103 return returnData ;
104 }
105
106 public List <Pair <Double ,Double >> getDataPopulationPercentage ( diseasePredicateEnum

disease , ageClassPredicateEnum age , sexPredicateEnum sex , lifestagePredicateEnum
lifestage ) {

107 List <Pair <Double , Double >> returnData = new ArrayList < >();
108
109 for( SingleTimeContainer singleData : this . allData ) {
110 int count = this . processSingleTimeData ( singleData , disease , age , sex , lifestage );
111 double percentage = zidz(count , singleData . devilData . length );
112 returnData .add(new Pair( singleData .time , percentage ));
113 }
114
115 return returnData ;
116 }
117
118 public double getDataForTime ( double time , diseasePredicateEnum disease ,

ageClassPredicateEnum age , sexPredicateEnum sex , lifestagePredicateEnum lifestage ) {
119 for( SingleTimeContainer singleData : this . allData ) {
120 if( singleData .time == time) {
121 return this . processSingleTimeData ( singleData , disease , age , sex , lifestage );
122 }
123 }
124 return 0.0;
125 }
126
127 public double getPercentDataForTime ( double time , diseasePredicateEnum disease ,

ageClassPredicateEnum age , sexPredicateEnum sex , lifestagePredicateEnum lifestage ) {
128 for( SingleTimeContainer singleData : this . allData ) {
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129 if( singleData .time == time) {
130 double count = this . processSingleTimeData ( singleData , disease , age , sex , lifestage

);
131 double percentage = zidz(count , singleData . devilData . length );
132 return percentage ;
133 }
134 }
135 return 0.0;
136 }
137
138
139 private int processSingleTimeData ( SingleTimeContainer singleData , diseasePredicateEnum

disease , ageClassPredicateEnum age , sexPredicateEnum sex , lifestagePredicateEnum
lifestage ) {

140 int count = 0;
141 if( disease . equals ( diseasePredicateEnum . ALLDISEASE )) {
142 count += this . processSingleTimeData ( singleData , diseasePredicateEnum .EXPOSED , age ,

sex , lifestage );
143 count += this . processSingleTimeData ( singleData , diseasePredicateEnum . INFECTIOUS , age

, sex , lifestage );
144 }
145 else if( disease . equals ( diseasePredicateEnum . ALLNONDISEASE )) {
146 count += this . processSingleTimeData ( singleData , diseasePredicateEnum . SUSCEPTIBLE ,

age , sex , lifestage );
147 count += this . processSingleTimeData ( singleData , diseasePredicateEnum .RECOVERED , age ,

sex , lifestage );
148 count += this . processSingleTimeData ( singleData , diseasePredicateEnum .IMMUNIZED , age ,

sex , lifestage );
149 }
150 else {
151 short mask = getMask (disease , age , sex , lifestage );
152
153 for(int i = 0; i < singleData . devilData . length ; i++) {
154 if (( singleData . devilData [i] & mask) == mask) {
155 count ++;
156 }
157 }
158 }
159
160
161 return count ;
162 }
163
164
165 private short getMask ( diseasePredicateEnum disease , ageClassPredicateEnum age ,

sexPredicateEnum sex , lifestagePredicateEnum lifestage ) {
166 short mask = 0;
167
168 switch ( disease ) {
169 case SUSCEPTIBLE :
170 mask |= SUSCEPTIBLE ;
171 break ;
172 case EXPOSED :
173 mask |= EXPOSED ;
174 break ;
175 case INFECTIOUS :
176 mask |= INFECTIOUS ;
177 break ;
178 case RECOVERED :
179 mask |= RECOVERED ;
180 break ;
181 case IMMUNIZED :
182 mask |= IMMUNIZED ;
183 break ;
184 default :
185 break ;
186 }
187 switch (age) {
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188 case AGECLASS1 :
189 mask |= AGECLASS1 ;
190 break ;
191 case AGECLASS2 :
192 mask |= AGECLASS2 ;
193 break ;
194 case AGECLASS3 :
195 mask |= AGECLASS3 ;
196 break ;
197 case AGECLASS4 :
198 mask |= AGECLASS4 ;
199 break ;
200 case AGECLASS5 :
201 mask |= AGECLASS5 ;
202 break ;
203 case AGECLASS6 :
204 mask |= AGECLASS6 ;
205 break ;
206 default :
207 break ;
208 }
209 switch (sex) {
210 case MALE:
211 mask |= MALE;
212 break ;
213 case FEMALE :
214 mask |= FEMALE ;
215 break ;
216 default :
217 break ;
218 }
219 switch ( lifestage ) {
220 case JUVENILE :
221 mask |= JUVENILE ;
222 break ;
223 case ADULT :
224 mask |= ADULT ;
225 break ;
226 default :
227 break ;
228 }
229
230 return mask;
231 }
232
233 public List <String > toCSV () {
234 List <String > outputList = new ArrayList < >();
235
236 for( SingleTimeContainer record : this . allData ) {
237 outputList .add( record . toCSV ());
238 }
239
240 return outputList ;
241 }
242
243 @Override
244 public String toString () {
245 String returnStr = "";
246
247 for( SingleTimeContainer data : this . allData ) {
248 returnStr += data. toString ();
249 returnStr += "\n";
250 }
251
252 return returnStr ;
253 }
254
255
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256 public boolean equals ( DevilDataContainer compare ) {
257 if( this . allData .size () != compare . allData .size ()) {
258 traceln (" DevilDataContainer equals : sizes different !");
259 return false ;
260 }
261
262 Iterator < SingleTimeContainer > iter1 = this . allData . iterator ();
263 Iterator < SingleTimeContainer > iter2 = compare . allData . iterator ();
264
265 while ( iter1 . hasNext () && iter2 . hasNext ()) {
266 if (!( iter1 .next (). equals ( iter2 .next ()))) {
267 traceln (" DevilDataContainer equals : two elements not equals ");
268 return false ;
269 }
270 }
271
272 return true ;
273 }
274
275
276
277 /*
278 * SingleTimeContainer captures all data for a single timepoint , including all devil data
279 */
280 private class SingleTimeContainer implements Serializable {
281 /**
282 * This number is here for model snapshot storing purpose <br >
283 * It needs to be changed when this class gets changed
284 */
285 private static final long serialVersionUID = 3L;
286
287 double time;
288 short [] devilData ;
289 int [] devilCellIDs ;
290
291 private SingleTimeContainer () {
292 this .time = 0.0;
293 this . devilData = new short [0];
294 this . devilCellIDs = new int [0];
295 }
296
297 private SingleTimeContainer ( double time , Main. _devils_Population devils ) {
298 this .time = time;
299 this . devilData = new short [ devils .size () ];
300 this . devilCellIDs = new int[ devils .size () ];
301
302 int idx = 0;
303 for( Devil devil : devils ) {
304 this . devilData [idx] = setData ( devil );
305 this . devilCellIDs [idx] = devil . homeCell ;
306 idx ++;
307 }
308 }
309
310 private SingleTimeContainer ( double time , short [] data , int [] cellIDs ) {
311 this .time = time;
312 this . devilData = data;
313 this . devilCellIDs = cellIDs ;
314 }
315
316 private short setData ( Devil devil ) {
317 short data = 0;
318
319 switch ( devil . DiseaseStateChart . getActiveSimpleState ()) {
320 case Susceptible :
321 data |= SUSCEPTIBLE ;
322 break ;
323 case Exposed :
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324 data |= EXPOSED ;
325 break ;
326 case Infectious :
327 data |= INFECTIOUS ;
328 break ;
329 case Recovered :
330 data |= RECOVERED ;
331 break ;
332 case Immunized :
333 data |= IMMUNIZED ;
334 break ;
335 default :
336 break ;
337 }
338
339 switch (( int)Math. round ( devil . getAgeClass ( devil . getAge ()))) {
340 case 1:
341 data |= AGECLASS1 ;
342 break ;
343 case 2:
344 data |= AGECLASS2 ;
345 break ;
346 case 3:
347 data |= AGECLASS3 ;
348 break ;
349 case 4:
350 data |= AGECLASS4 ;
351 break ;
352 case 5:
353 data |= AGECLASS5 ;
354 break ;
355 case 6:
356 data |= AGECLASS6 ;
357 break ;
358 }
359
360 if( devil .sex. equals ( SexList . FEMALE )) {
361 data |= FEMALE ;
362 }
363 else {
364 data |= MALE;
365 }
366
367 if( devil . LifestageStatechart . isStateActive ( devil . Juvenile )) {
368 data |= JUVENILE ;
369 }
370 else {
371 data |= ADULT ;
372 }
373
374 return data;
375 }
376
377
378 public String toCSV () {
379 String output = "";
380
381 output += this .time;
382 output += ",";
383
384 for(int i = 0; i < this . devilData . length ; i++) {
385 output += this . shortToCSV ( this . devilData [i]);
386 output += this . devilCellIDs [i];
387
388 if(i < this . devilData .length -1) {
389 output += "|";
390 }
391 }
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392
393 return output ;
394 }
395
396 private String shortToCSV ( short data) {
397 String str = "";
398
399 // Decode disease state from bit flag
400 if (( data & SUSCEPTIBLE ) > 0) {
401 str += " Susceptible ;";
402 }
403 else if (( data & EXPOSED ) > 0) {
404 str += " Exposed ;";
405 }
406 else if (( data & INFECTIOUS ) > 0) {
407 str += " Infectious ;";
408 }
409 else if (( data & RECOVERED ) > 0) {
410 str += " Recovered ;";
411 }
412 else if (( data & IMMUNIZED ) > 0) {
413 str += " Immunized ;";
414 }
415
416 // Decode AgeClass from bit flag
417 if (( data & AGECLASS1 ) > 0) {
418 str += " AgeClass1 ;";
419 }
420 else if (( data & AGECLASS2 ) > 0) {
421 str += " AgeClass2 ;";
422 }
423 else if (( data & AGECLASS3 ) > 0) {
424 str += " AgeClass3 ;";
425 }
426 else if (( data & AGECLASS4 ) > 0) {
427 str += " AgeClass4 ;";
428 }
429 else if (( data & AGECLASS5 ) > 0) {
430 str += " AgeClass5 ;";
431 }
432 else if (( data & AGECLASS6 ) > 0) {
433 str += " AgeClass6 ;";
434 }
435
436 // Decode sex from bit flag
437 if (( data & MALE) > 0) {
438 str += "Male;";
439 }
440 else if (( data & FEMALE ) > 0) {
441 str += " Female ;";
442 }
443
444 // Decode Lifestage from bit flag
445 if (( data & JUVENILE ) > 0) {
446 str += " Juvenile ;";
447 }
448 else if (( data & ADULT ) > 0) {
449 str += " Adult ;";
450 }
451
452 return str;
453 }
454
455
456 @Override
457 public String toString () {
458 String returnStr = "";
459
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460 returnStr += String . valueOf ( this .time) + ", [" ;
461
462 for(int i = 0; i < this . devilData . length ; i++) {
463 returnStr += String . valueOf ( this . devilData [i]);
464 returnStr += ", ";
465 }
466
467 returnStr += "]";
468
469 returnStr += ", [";
470
471 for(int i = 0; i < this . devilCellIDs . length ; i++) {
472 returnStr += String . valueOf ( this . devilCellIDs [i]);
473 returnStr += ", ";
474 }
475 returnStr += "]";
476
477 return returnStr ;
478 }
479
480 public boolean equals ( SingleTimeContainer compare ) {
481 if( this .time == compare .time) {
482 }
483 else {
484 traceln (" SingleTimeContainer equals : times different !");
485 return false ;
486 }
487
488 if( Arrays . equals ( this .devilData , compare . devilData ) && Arrays . equals ( this . devilCellIDs

, compare . devilCellIDs )) {
489
490 }
491 else {
492 traceln (" SingleTimeContainer equals : arrays are different !");
493 return false ;
494 }
495
496 return true ;
497 }
498 }
499 }
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A.3 Server Connector

1 /**
2 * GrapherServerConnection
3 */
4 public class GrapherServerConnection implements Serializable {
5 String socketname ;
6 UUID experimentID ;
7 AtomicInteger numWriters ;
8 int framenum ;
9

10 /**
11 * Default constructor
12 */
13 public GrapherServerConnection ( String socketname , UUID experimentID ) {
14 this . socketname = socketname ;
15 this . experimentID = experimentID ;
16 this . numWriters = new AtomicInteger ();
17 this . framenum = 0;
18 }
19
20 public GrapherServerConnection ( String socketname ) {
21 this . socketname = socketname ;
22 this . experimentID = UUID. randomUUID ();
23 this . numWriters = new AtomicInteger ();
24 this . framenum = 0;
25 }
26
27
28 public void shutdownServer () {
29 try ( AFUNIXSocket socket = AFUNIXSocket . newInstance ()) {
30 try {
31 socket . connect (new AFUNIXSocketAddress (new File( this . socketname )));
32 }
33 catch ( SocketException e) {
34 System .out. println (" Cannot connect to Graphing Server !");
35 }
36
37
38 OutputStream output = socket . getOutputStream ();
39 PrintWriter writer = new PrintWriter (output , true );
40
41 writer . println ( GraphingServerCommands . shutdown . toString ());
42
43
44 } catch ( UnknownHostException ex) {
45 return ;
46 } catch ( IOException ex) {
47 return ;
48 }
49
50 // Connect twice to ensure shutdown of server
51 try ( AFUNIXSocket socket = AFUNIXSocket . newInstance ()) {
52 try {
53 socket . connect (new AFUNIXSocketAddress (new File( this . socketname )));
54 }
55 catch ( SocketException e) {
56 System .out. println (" Cannot connect to Graphing Server !");
57 }
58
59 OutputStream output = socket . getOutputStream ();
60 PrintWriter writer = new PrintWriter (output , true );
61
62 writer . println ( GraphingServerCommands . shutdown . toString ());
63
64 } catch ( UnknownHostException ex) {
65 return ;
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66 } catch ( IOException ex) {
67 return ;
68 }
69 }
70
71
72 public boolean createAnimationOnServer ( String experimentResultDir ) {
73 while ( this . numWriters .get () > 0) {
74 try {
75 Thread . sleep (10);
76 }
77 catch ( InterruptedException e) {
78 traceln ("Can ’t sleep thread while waiting for all data to be written to server !

Creating animation now , some frames might be missing ");
79 break ;
80 }
81 }
82
83 try ( AFUNIXSocket socket = AFUNIXSocket . newInstance ()) {
84 try {
85 socket . connect (new AFUNIXSocketAddress (new File( this . socketname )));
86 }
87 catch ( SocketException e) {
88 System .out. println (" Cannot connect to Graphing Server !");
89 }
90
91 OutputStream output = socket . getOutputStream ();
92 PrintWriter writer = new PrintWriter (output , true );
93
94 // send the ’ createAnimation ’ command to process all frames into a single animation
95 // this deletes all individual frames
96 writer . println ( GraphingServerCommands . createAnimations . toString ());
97 writer . println ( this . experimentID . toString ());
98 writer . println ( experimentResultDir );
99

100 } catch ( UnknownHostException ex) {
101 return false ;
102 } catch ( IOException ex) {
103 return false ;
104 }
105 return true ;
106 }
107
108 public void writeDataToServer ( String data) {
109 new WriteThread (this , this . socketname , data , this . framenum ). start ();
110 this . framenum ++;
111 }
112
113 public boolean isServerAvailable () {
114 try ( AFUNIXSocket socket = AFUNIXSocket . newInstance ()) {
115 try {
116 socket . connect (new AFUNIXSocketAddress (new File( this . socketname )));
117 }
118 catch ( SocketException e) {
119 return false ;
120 }
121
122 OutputStream output = socket . getOutputStream ();
123 PrintWriter writer = new PrintWriter (output , true );
124
125 // send the ’test server ’ command to check if the server is still alive
126 // server will send ’server available ’ back if available
127 writer . println ( GraphingServerCommands . testServer . toString ());
128
129 InputStream input = socket . getInputStream ();
130
131 BufferedReader reader = new BufferedReader (new InputStreamReader ( input ));
132
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133 String line = reader . readLine ();
134
135 if(line. equals (" server available "))
136 {
137 return true ;
138 }
139
140 } catch ( UnknownHostException ex) {
141 return false ;
142 } catch ( IOException ex) {
143 return false ;
144 }
145 return false ;
146 }
147
148
149
150 @Override
151 public String toString () {
152 return super . toString ();
153 }
154
155 /**
156 * This number is here for model snapshot storing purpose <br >
157 * It needs to be changed when this class gets changed
158 */
159 private static final long serialVersionUID = 1L;
160
161
162
163 private class WriteThread extends Thread {
164 private String data;
165 private String socketname ;
166 GrapherServerConnection server ;
167 int framenum ;
168
169 public WriteThread ( GrapherServerConnection server , String socketname , String data , int

framenum ) {
170 this . server = server ;
171 this . socketname = socketname ;
172 this .data = data;
173 this . framenum = framenum ;
174 }
175
176 @Override
177 public void run () {
178 this . server . numWriters . incrementAndGet ();
179 try ( AFUNIXSocket socket = AFUNIXSocket . newInstance ()) {
180 try {
181 socket . connect (new AFUNIXSocketAddress (new File( this . socketname )));
182 }
183 catch ( SocketException e) {
184 System .out. println (" Cannot connect to Graphing Server !");
185 }
186
187 OutputStream output = socket . getOutputStream ();
188 PrintWriter writer = new PrintWriter (output , true );
189
190 // send the ’ processCellData ’ command to enable data processing for this connection
191 writer . println ( GraphingServerCommands . processCellData . toString ());
192 writer . println ( this . framenum );
193 writer . println ( this .data);
194
195 } catch ( UnknownHostException ex) {
196 System .out. println (" Server not found : " + ex. getMessage ());
197 } catch ( IOException ex) {
198 System .out. println ("IO excetption : " + ex. getMessage ());
199 }
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200 this . server . numWriters . decrementAndGet ();
201 }
202 }
203 }
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