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Abstract

Source-code summarization aims to generate natural-language summaries for software artifacts (e.g.,

method and class). Various research works showed the use of text-retrieval-based techniques, heuristic-based

techniques, and data-driven techniques for source-code summarization. In data-driven techniques, researchers

used a sequence of source-code tokens and other representations of source code (e.g., application programming

interface (API) sequences and abstract syntax tree (AST)) as an input to source-code summarization models.

According to the current published literature in source-code summarization, researchers have not explored the

use of a sequence extracted from control-flow graph that shows a contextual relationship between program

instructions based on control-flow relationships for source-code summarization models. In this work, we

employ control-flow graph representations to increase the prediction accuracy of a bi-directional long-short

term memory (LSTM) source-code summarization model in terms of describing the functionality of Java

methods. We use an attention-based bi-directional LSTM sequence-to-sequence model to show the use of

linearized control-flow graph sequences alongside a sequence of source-code tokens. We compared our model

with the current state-of-the-art and with or without a linearized control-flow graph. We created a source-code

summarization dataset to train and evaluate our approach and conducted expert and automatic evaluations.

In the expert evaluation, the participants gave rating for summaries generated by each model in terms of

correctly describing the functionality of a Java method. Our models outperformed the state-of-the-art in

terms of the mean average-rating. Also, the expert evaluation showed us the model benefit from the structural

information. In the automatic evaluation, we found that the use of control-flow graphs does not increase the

prediction accuracy of a bi-directional LSTM model in terms of BLEU score compared to a bi-directional

LSTM model that does not use control-flow graphs. However, we found our source-code summarization

approach that uses a control-flow graph as an additional representation better than encoding AST in graph

neural networks. Overall, we improved the state-of-the-art for method summarization with our models that

take sequence of method tokens with and without a control-flow graph.
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1 Introduction

Internal documentation (source code and comments) is useful for understanding programs when mak-

ing software changes [67]. The purpose of these changes can be to add new functionalities, adapt to new

environments, and correct programming errors. In making a software change, programmers spend half

of the allocated time on program understanding tasks [61], including gathering information from internal

documentation (source code and comments), from user documentation, and from specification documents

(e.g. Software Requirement Specification and Software Design Specification documents) [18]. The availability

and adequacy of external documentation for program understanding depends on allocated resources and the

software development methodology used (e.g. extreme programming) for a project [10]. For this reason, it is

common to rely on internal documentation for program understanding tasks.

Fluri et al [20] conducted an empirical study on three open-source systems (ArgoUML, Azureus, and

JDT Core) to analyze the practice of updating comments as changes made on the source code. They reported

that the comment coverage for method declarations is less than 20% for all subject systems used in the study.

This implies a need for an automated alternative to generate summaries that covers all the methods in a project.

Also, Kajko-Mattson [36] conducted a survey to analyze documentation practices when correcting bugs

across 18 companies based in Sweden. He collected data from individual interviewees who were willing to give

information about the corrective maintenance culture of their organization. He defined 19 documentation

requirements and assessed each company based on the requirements. The requirements expect the documenta-

tion to be done at different artifact levels (e.g., method, class, and packages). Also, the documentation is

expected to be correct, complete, and consistent. In general, the requirements enumerate conditions that

must be satisfied by the documentation to aid corrective maintenance tasks. One of the key requirements was

having company-wide guidelines for internal documentation to ensure the readability and maintainability of

source code. According to the collected information, more than one-third of the participant companies do not

have guidelines for internal documentation. Since developers have different writing styles, having no internal

documentation guidelines may introduce inconsistencies in the internal documentation.

Source-code summarization systems generate summaries that can be used as internal documentation. The

summaries are generated automatically and are current since new summaries can be generated as the source

code changes. Also, the summaries can be generated for every method in a project, resulting in complete

1



Figure 1.1: Caption summary example

comment coverage. Due to this, we will focus on generating caption summaries for source-code method. Figure

1.1 shows an example method with a caption summary on the top of the method. Our approach generated

the string: “returns path url as string” for the method shown in the figure.

Source-code summarization systems are designed to generate natural-language summaries for a given source-

code artifact (block, method, class, and packages) [22]. Researchers have shown different approaches to

summarize source code. These approaches can be grouped into three categories: text-retrieval, heuristic,

and data-driven-based source-code summarization. Text-retrieval-based approaches use information-retrieval

techniques to select and output tokens that can represent a given source-code artifact. Heuristic-based

approaches use a combination of program analysis and natural-language-processing techniques to summarize

source code. Data-driven-based approaches use deep learning to generate summaries for a given source-code

artifact. We discuss the details of each summarization approach in Chapter 2 (Background) and Chapter 3

(Experimental Design).

There is a disadvantage associated with text-retrieval and heuristic-based approaches: the quality of

summaries generated by these approaches depends on the name of identifiers and method names used in the

subject source-code artifact. They require expressive names that provide meaning by themselves or make

sense when fit into a pre-defined template. For this reason, data-driven approaches are becoming dominant in

the area of source-code summarization.

Data-driven summarization approaches differ based on the selected input representation and model ar-

chitectures used to implement the model. Mainly, researchers use models that are sequence-to-sequence

models. These models are designed to transform an input source-code artifact represented as a sequence of

tokens into an output sequence like a summary. In a source-code summarization context, they transform a

sequence created from tokenized methods and/or other selected input representation to a source-code summary.
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Recent work in data-driven source-code summarization explore the benefit of encoding structural infor-

mation such as AST (abstract syntax tree) in the source-code summarization models [4, 28, 41]. These

representations have been used as input in addition to method token sequences and by themselves. The

results show source-code summarization models benefit from structural information. We discuss these studies

in Sections 3.1 (Input Representation) and 3.2 (Model Architecture).

The success of AST in source-code summarization models indicates a more detailed structural representation

would seem likely to support the generation of more accurate descriptive summaries for methods.

Following this, we select a more detailed structural representation that captures the control-flow relations

between blocks of instructions inside a method. This representation is called control-flow graph. We construct

this graph from single-static-assignment (SSA) form of a program, which is an intermediate representation in

which a variable has only one definition. This allows us to easily connect the definition and use of variable in

constructing the control-flow graph.

In this work, we employ control-flow graph representations to increase the prediction accuracy of a bi-

directional long-short term memory (LSTM) source-code summarization model for describing the functionality

of Java methods.

We represent a Java method in two ways: as a linearized control-flow graph and as sequence of method tokens.

First, we transform the SSA form of a program into a linearized control-flow graph. Second, we tokenize the

method into a sequence of method tokens. The sequence of method tokens is created by removing punctuation

and separating keywords and identifiers by white space and delimiters. We add this representation to encode

identifier names replaced with generic names in transforming a program to an SSA form.

We adapt a multi-encoder sequence-to-sequence architecture to encode our representations from LeClair

et al. [41]. We use two bi-directional LSTM encoders to encode method tokens and control-flow graphs.

Bi-directional LSTM reads the input both from beginning to end and from end to beginning. On the other

hand, uni-directional LSTM reads the input from beginning to end or from end to beginning. For the

summaries, we use a uni-directional LSTM decoder. To assist the decoder in focusing on relevant tokens, we

use a simple and effective attention mechanism by Luong et al. [48]. We call this model method_cfg. We

discuss details in Section 2.2 (Sequence-to-Sequence models).

To demonstrate our success at increasing accuracy, we compare our model with two models using an

expert evaluation and an automatic evaluation. We implemented the first model, a bi-directional LSTM

3



model that only has one encoder that takes a sequence of method tokens as input. We call this model the

method_only model. The second model is the current state-of-the-art by LeClair et al. [40]. We call this

model codeGNN. In this way, we can appraise the improvement available from control-flow graph encoding

and recognise the improvement over the current best result.

Each evaluation serves a different purpose. The automatic evaluation is an accepted form of evaluation and is

used in related work [28, 31, 40, 41]. We used BLEU score [54] as an evaluation metric. BLEU measures the

n-gram precision of the predicted summaries according to the ground truth. Even though the BLEU score is a

popular evaluation technique in source-code summarization, it has potential flaws. BLEU score is sensitive to

the quality of a dataset and doesn’t handle paraphrases. By “the quality of the dataset”, we mean a dataset

with multiple and verified reference translations. This kind of dataset is difficult to create, especially in deep

learning approaches that require large datasets. The expert evaluation is included as a sanity check for the

automatic evaluation. Also, it helps us evaluate the generated summaries based on purpose, which is correctly

describing the functionality of a given method. Papieneni et al. showed that BLEU correlates with human

judgement; with this, a higher BLEU score expected a higher value expected to receive a higher evaluation

score from human evaluators.

As a preview of our results, in the expert evaluation, 26 students: 19 undergraduate, 3 M.Sc., and 4

P.h.D candidates judged summaries generated by our model and the two baselines. Our results show that

method_cfg received a higher mean average-rating compared to the two baselines, with a mean average-rating

of 3.44 out of 5. The method_only model received 3.42, and LeClair et al.’s model received 1.46. Based

on our review, summaries generated by our models are not accurate enough to completely replace human

involvement in writing summaries for source-code methods. But, they can be used in a setting where humans

validate the generated summaries for correctness.

In the automatic evaluation, we conduct 10-fold cross-validation on a dataset split at the project level

to produce training, tesitng, and validation sets. A project-level split helps us evaluate the models with a test

set constructed from projects not seen by the model during training. In the evaluation, the method_only

model outperformed our model in eight out of 10 folds. In turn, method_cfg outperformed the state-of-the-art

in seven out of 10 folds. Also, on a dataset by LeClair et al method_only got 17.53 while codeGNN got 19.93.

Our evaluations show that our approaches improved the current state-of-the-art over our dataset. Overall, the

model that does not use control-flow graphs outperformed the model with control-flow graphs.
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1.1 Contribution of the work

This study has the following contributions:

• We constructed a source-code summarization dataset by extracting high-quality projects from Martins

et al. [49] dataset and provide method token sequences annotated with summary, control-flow graphs,

and ASTs in XML. Others can use this dataset for future work. You can access the dataset using this

link.

• We improved the state-of-the-art (codeGNN) method summarization on our dataset with (method_cfg)

and without (method_only) control-flow graphs. Also, our method_only model got marginally inferior

compared to the state-of-the-art (codeGNN) result on a dataset by LeClair et al.

• We sanity-checked the automatic BLEU score evaluations using humans experts.

1.2 Overview

We organise the remaining part of this thesis as following:

• Chapter 2: Background: provides a background to the reader in order to understand the design,

implementation and evaluation of our experiments.

• Chapter 3: Experimental Design: presents details of our dataset, representation, model architecture,

and evaluation with respect to other related works.

• Chapter 4: Implementation: explains the implementation details of our approach.

• Chapter 5: Evaluation: discusses the results of our experiments.

• Chapter 6: Summary : provides summary of this thesis document.
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2 Background

This chapter provides a brief introduction to topics in order that the reader knows the specific variations

and details, we rely on for the rest of the document. Section 2.1 briefly describes source-code summarization

systems and discusses approaches used to design and implement the systems. We discuss the family of models

we chose to implement our system called sequence-to-sequence models in Section 2.2. Next, we describe our

automatic-evaluation approach in Section 2.3. Finally, we explain the representation we used to train our

models in Section 2.4

2.1 Source-code Summarization

Automatic summarization systems aim to select (extract) and/or generalize (abstract) a concise output text

from a given source document [35]. The output of these systems (summary) is expected to capture relevant

information in the source document. Also, the output summaries must accurately describe or represent the

original document.

Based on the content of the output generated by summarization systems, there are two types of automatic-

summarization approaches: extractive summarization and abstractive summarization. An extractive-summarization

system creates a summary by selecting relevant terms from the source document [23]. An abstractive-

summarization system outputs a summary that provides a high-level description of the source document.

The difference between the two approaches is most visible in their output. An output of an abstractive-

summarization system may include terms that do not exist in the source document. On the other hand, an

output of an extractive-summarization system does not contain terms that do not exist in the original document.

Source-code summarization resembles text summarization, and so similar techniques apply.

Source-code summarization systems aim to generate summaries for source code in different artifact lev-

els (block, method, class, and package). Haiduc et al. [22] describes summaries generated by automatic

source-code summarization systems as textual descriptions of source-code artifacts that help developers

understand source code and capture precisely. According to the requirements stated by Haiduc et al., the

generated summaries are expected to be concise and reflect the intent of developers. In other words, source-code

summarization systems are expected to produce a short summary that correctly describes a given source-code
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artifact.

Researchers studying source-code summarization approaches employ techniques that can be grouped into

three categories: text-retrieval-based techniques, heuristic-based techniques, and data-driven techniques. Here,

we discuss text-retrieval- and heuristic-based work covered by the literature survey of Zhu and Pan [72].

We further filtered the list of work by selecting research that studied method-level automatic source-code

summarization. Our work also comes under method-level automatic source-code summarization.

Extractive techniques have been explored and show some potential. We start by detailing text-retrieval

techniques. Text-retrieval techniques are extractive. But, summaries generated by latent semantic indexing

(LSI) and topic modeling approaches may include terms from the text corpus that are not inside the source

document. Eddy et al. [17]called this light-weight abstractive.

Text-retrieval-based source-code summarization systems adopt information-retrieval techniques to extract

relevant tokens (keywords and identifiers) that represent a source-code artifact [33]. In the literature, we

found four text-retrieval methods used by researchers to summarize source code. These are lead, vector-space

model (VSM) [60], latent semantic indexing (LSI) [14], and hierarchial pachinko allocation model (HPAM)

[52].

Lead-summarization technique assumes the initial terms of a source document captures the context of

the document. This is parameterized N, a positive integer selected by the user [23]. Lead summaries are

created by extracting the first N terms from the source document. For example, the lead summary of a

method can be tokenized signature of the given method.

VSM and LSI start with creating a term-document matrix from a text corpus but differ in their use of

the matrix.

The columns of a term-document matrix represent documents (e.g., methods and sentences) inside the

corpus, and the rows represent terms in the corpus. Each cell of the matrix contains a weight that shows the

relevance of the term to the document and the corpus depending on the selected weighting scheme. In natural

language summarization, log, tf-idf (term frequency-inverse document frequency) [34], and binary-entropy

perform best for both LSI and VSM [23]. We look at each weighting scheme separately.

• Log scales the frequency of terms inside a document logarithmically.

• Tf-idf determines the relevance of the term in both the document and the corpus. The equation to

compute tf-idf is shown in Equation 2.1. Term-frequency (tf) is the frequency of term t in a document.
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Inverse document frequency (idf) is the inverse of the document frequency, which the log of n (the

number of documents in the corpus) divided by df the number of documents containing term t. The

product of term frequency and inverse document frequency gives the final tf-idf weight of the term. The

idf factor makes the tf-idf value for rare words high since the documents containing the term t (df) are

small; on the contrary, it makes the tf-idf value of frequently-occurring words low since the df value is

high [59].

tf − idf(t) = tf (t) · idf(t), idf(t) = log
(
n

df
+ 1

)
(2.1)

Gi = 1−
∑
j

pij log(pij)
log(n)

, pij =
tij
gi

(2.2)

• Binary entropy is a product of a local binary weight and a global entropy weight [64]. The local weight

is zero if the term does not exist in the document and one if it exists. The equation for the global weight

Gi is shown in Equation 2.2. In the equation, tij is the frequency of the term i in the document j, gi is

the frequency of the term in the corpus, and n is the number of documents in the corpus. The Gi value

for frequently occurring terms is small compared to rare terms, and this makes the weighting scheme

give higher relevance to rare words that determine the meaning of a document.

Haiduc et al. [23] conducted a participant study that compared the weighting schemes (log, tf-idf, and

binary entropy) for source-code summarization using VSM, LSI, and the combination of lead and VSM.

The participants gave the highest score to the term-document matrix weighted using tf-idf in LSI and the

combination of Lead+VSM text-retrieval approaches. The binary entropy weighting scheme got the highest

score in VSM text-retrieval approach.

Now, we describe individual text-retrieval techniques.

VSM creates a summary by selecting the first N terms from a document in a term-document matrix

with terms sorted based on weight. N is a positive integer set by the user.

In contrast to that simple approach, LSI uses singular value decomposition to derive a matrix that

shows the hidden relationship between terms and documents of a term-document matrix. LSI creates a

low-rank approximation of the original term-document matrix: It factorizes the term-document matrix using

singular value decomposition, as shown in Equation 2.3. The singular value decomposition decomposes

the original matrix into three matrices U , S, and V . First, The low-eigenvalues entries in the diagonal
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A = USV (2.3)

matrix S will be removed, and we take the rank (R) of the left-over matrix. Second, the first R columns

will be taken from the first matrix U . Also, the first R rows of matrix V will be taken. Then, we multiply

the resulting low-rank matrices U , S, and V . Finally, we index N terms of a document from the resulting

term-document matrix that is similar to the document being summarized. N is a positive integer set by the user.

Last, topic models are a set of algorithms designed to discover hidden thematic structures (topics) in

unstructured text [8]. HPAM is a topic-modeling approach built upon the latent Dirichlet allocation (LDA

model. LDA models a document as a probability distribution of topics and each topic as a probability

distribution of words. HPAM models a text corpus into a hierarchy of topics and words. The hierarchy is a

directed acyclic graph created from word-subtopic probability distributions, subtopic-super topic probability

distributions, and super topic-document probability distributions. In the graph, each node is connected

to lower-level nodes in the hierarchy, which is the document is connected to super-topics, super-topics are

connected to sub-topics, and sub-topics are connected to words. Also, each super-topic and subtopic has a

probability distribution over words in the document. During retrieval, HPAM selects the most likely subtopic

for a given document. The selected sub-topic has it is own word distribution over the vocabulary. Then, the

top N terms in the word distribution of the sub-topic are selected from the sub-topic to create a summary. N

is a positive integer set by the user.

Researchers employed these methodologies to create summaries for source code.

First, Haiduc et al. [23] conducted a study that compares the quality of extractive-summary generated by lead,

VSM, and LSI for Java methods and classes. They used human evaluation to compare summaries generated

by each technique. Among these techniques, the study participants gave the highest score for summaries

generated by the lead summarization technique. They also showed the union of lead and VSM summarization

techniques a better summary than summaries generated using only lead summarization.

Second, Eddy et al. [17] extended and replicated the work of Haiduc et al. [23] by conducting a user

study that compared summaries generated by lead, VSM, and HPAM. They also compared the combination

of lead and VSM with the combination of lead and HPAM. Their result supported Haiduc et al., where the

lead summarization technique received the highest score. Among the combined techniques, lead, and VSM a

higher rating than lead and HPAM.

Both, Haiduc et al. and Eddy et al. asked the study participants to judge the quality of summaries
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generated by the text-retrieval approaches we discussed above. Overall, among text-retrieval summarization

approaches, the union of VSM and lead summarization techniques yield a better term-based extractive

summary of classes and methods compared to lead, VSM, LSI, and HPAM. Both studies used two subject

systems (atunes - a media player and arts of illusion - a graphics software) to evaluate their approach. To the

best of our knowledge, there were no follow up studies conducted to both to replicate and extend the results

of Haiduc et al. and Eddy et al. We recommend extending and replicating their work in a more diverse set of

project types to generalize their result.

Next, we discuss heuristic-based summarization techniques. Like text-retrieval-based techniques, heuristic-

based techniques are effective.

Heuristic-based summarization techniques are a rule-based transformations of source-code artifacts to natural-

language summaries. They combine program analysis and natural-language-processing techniques to summarize

source-code artifacts. Most work under this category operate by extraction of terms from the given source-code

artifact and place the extracted terms in a pre-defined template. Heuristic-based summarization techniques

used for method-level source-code summarization comes under software-word-usage-model-based [25], method-

stereotype-based [16], and nano-pattern-based [62] source-code summarization techniques. Studies discussed

under heuristic-based summarization were evaluated in a qualitative way; but user-studies have shown them

to be effective.

The software-word-usage model (SWUM) was introduced for query reformulation. SWUM is a method

that generates noun phrases (e.g, key pressed), prepositional phrases (e,g, to byte array), and verb phrases (e.g,

get item) from method and field signatures (method calls) for query reformulation to locate features in source

code. In source-code summarization, SWUM is used to extract and identify parts of speech from a given

method or field signature (e.g., for saveImage(), save is the verb, and image is the object). Then, extracted

tokens will be placed in a predefined template to create sentences out of a statement (e.g., saveImage() gets

transformed into “this method saves an image”). Finally, the output summary will be created by concatenating

sentences formed from the important statements. We discuss individual approaches of statement selection

later in this section.

Method stereotypes are high-level descriptions of the responsibility of a method inside a class [16] (e.g.,

accessor (getters), mutators (setters), and creational (constructors)). Method-stereotype identification tools

use static analysis to extract information from methods. Then, a set of heuristics are applied to determine

method-stereotypes from the extracted -information. Method stereotypes are used in source-code summariza-

tion to select a pre-defined template to include the extracted information into a summary [1].
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Nano-patterns [62] are similar to method-stereotypes, except they do not give us the responsibility of methods

in a class. They capture properties exhibited by source-code methods, including the way they are called (e.g.,

no-params: a method that takes no arguments and no-return: a method that mutates state or logs results but

does not return a value), by the way they interact with objects. (e.g., object creator: constructs new object and

field reader: read values from object fields), by control flow inside the method (e.g., straight-line: no branches

in method body and looping: performs repetitive tasks), and by data flow inside the method (e.g., local-reader:

read values from local variables and local-writer: write values of local variables). Static analysis, including

control-flow and data-flow analysis, is used to determine a nano-pattern for a given method [57]. In source-code

summarization, nano-patterns are used to select a template to embed the extracted information from a method.

Next, we discuss how these techniques are applied for source-code summarization.

Sridhara et al. [63] used SWUM to extract and identify parts of speech from source-code statements

that are selected to represent a given method. The statements are selected by applying heuristics that refer to

their location in source code (return statements), control-flow dependence (control statements such as if and

while statements), and relation with other statements (statements that execute similar action). Next, their

approach selects the right template and converts each statement to a sentence by placing the extracted tokens

into a pre-defined template. McBurney and McMillan [51] improved the work of Sridhara et al. by including

method contexts in addition to sentences converted from method signature and body using SWUM. The

method context is method calls within the method and methods that called the method being summarized.

They used the page-rank algorithm [53] to rank method contexts. Then, they placed the extracted tokens and

method contexts in a pre-defined template.

Abid et al. [1] showed the application of method stereotypes for source-code summarization. In their

approach, method stereotypes are used to describe the role of a method inside a class. In addition, method

stereotypes are used to determine the contents of the final summary. To generate summaries, they placed

tokens extracted using static analysis into a pre-defined template selected based on method stereotypes.

Rai et al. [57] explored the use of nano-patterns for source-code summarization. They used static analysis to

determine nano-patterns of methods. After identifying the nano-patterns, they place tokens extracted from

methods into a pre-defined template prepared for each nano-pattern. In the case of multiple nano-patterns,

they concatenate summaries generated for each nano-patterns of the subject method. This approach is similar

to Abid et al., but they used nano-patterns instead of method stereotypes.

McBurney and McMillan compared their approach with Sridhara et al. by conducting a user study. The

user study had 12 participants: nine computer science and engineering graduate students at the University
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of Notre Dame and three programmers. They sampled 20 methods from six projects. They showed their

approach generates a better summary than the approach by Sridhara et al. The evaluation metrics were

accuracy, conciseness, and generation of summaries with contextual information that helps programmers

better understand the generated summaries.

Similarly, Rai et al. compared their approach with Sridhara et al., and McBurney and McMillan with

a user study. The user study had 40 participants: 36 undergraduate and four graduate students of the

Department of Computer Science and Engineering at PDPM Indian Institute of Information Technology,

Design and Manufacturing. For the evaluation, they sampled 15 summaries from six projects. The evaluation

criteria were correctness, completeness, non-redundancy, and conciseness of summaries generated by each ap-

proach. Completeness is a subjective evaluation that measures if a summary had all potentially required facts.

Their results show that their approach is better in generating correct, non-redundant, and complete summaries.

Abid et al. conducted an initial manual evaluation using undergraduate students, but the evaluation

details such as the number of participants, qualifications of participants, and the quantitative result of the

evaluation were not discussed in the paper. Also, they did not compare their approach to other related works.

We included the details of our expert evaluation that covers participant detail, quantitative result, sampling

strategy, and model details in Section 3.4.2 and Section 5.1.

Text-retrieval- and heuristic-based summarization approaches also have some disadvantages. Text-retrieval-

and SWUM-based techniques rely on the quality of identifiers and method names [1]. Method-stereotype-based

and nano-pattern-based summarization approaches do not generate a concise summary that describes the

functionality of the method; instead, they give a generalized description of a method based on method

stereotype.

Works under data-driven summarization approaches use deep learning to generate natural-language summaries

for source-code artifacts. As these resemble our effort, we defer the discussion of these works on the next

chapter (experimental design) in Section 3.1 (input representation) and Section 3.2 (model architecture).

2.2 Sequence-to-Sequence Models

Sequence-to-sequence models are a family of deep-learning models that transform an input organized as

a sequence (such as a sequence of tokens) to an expected output sequence [66] such as a code summary.

These models are applied in neural machine translation, video captioning, text summarization, source-code

summarization, and other related tasks.
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As a deep learning model, sequence to sequence models do two types of computations: forward propa-

gation and backpropagation. Forward propagation computes the model output by transforming the input

using consecutive layers processing units (hidden layers). On the other hand, backpropagation iteratively

updates the training parameters to minimize the prediction error of the model [58].

A sequence-to-sequence model aims to minimize the loss of the cost function (categorical cross-entropy).

Categorical cross-entropy computes the difference between two probability distributions: the ground truth and

the predicted distribution. Equation 2.4 shows the categorical cross-entropy equation. When we generalize it,

the goal is minimizing the cross-entropy c by decreasing the difference between the target one-hot encoding

vector y and the predicted distribution vector x with a size of target vocabulary (number of classes) v. In

machine learning, categorical cross-entropy is used to compute the loss of multi-class classification. In this

case, the final layer of a sequence-to-sequence function predicts a probability distribution over the vocabulary

of the output sequence based on the context vector and output of the previous time-step.

c = −
v∑
i

yilog(xi) (2.4)

Objective function

In this work, we use sparse categorical cross-entropy. In sparse categorical entropy, the true labels are

represented as an integer rather than one-hot encoding [39]. One hot encoding is a mechanism of representing

data in a bit vector the size of categories (in our case, the size of vocabulary), where all bits are 0 except

one bit is 1. For example, for two categories, we will have “10” for the first category and “01” for the second

category. In integer representation, it will be 1 for the first category and 2 for the second category. When we

use one-hot encoding to represent our labels, we use categorical cross-entropy.

Table 2.1: Operation done by each sequence processing model cell type

Model Cell Output

RNN Equation 2.5 Equation 2.5

LSTM Equation 2.6 - 2.11 Equation 2.10 and

Equation 2.11

GRU Equation 2.14 - 2.17 Equation 2.17

Sequence-to-sequence models have two components: an encoder and a decoder. The encoder converts an

input sequence to a context vector, and the decoder learns to predict an output sequence from the context
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Figure 2.1: Bi-directional sequence-to-sequence model

vector [12]. Figure 2.1 shows a sequence-to-sequence model with encoder-decoder architecture. As shown in

the figure, the encoder has cells that accept and process an input and a hidden state from the previous cell.

The decoder also contains cells that predict output based on the context vector and the state of the previous cell.

Here we discuss three types of sequence models (models that process sequential data) based on cell type:

Recurrent neural network (RNN) [70], Long short-term memory(LSTM) [27], and GRU [12]. Each of the

three types fit into the structure in Figure 2.1. They differ computations done in the cells and the type of

information carried by arrows that connect each cell. We colour coded the arrows based on operations. The

black arrows carry the input and output of the cells. The green arrows carry information from cell to cell.

The orange arrows show the transfer of the last hidden state computed in each direction to concatenation

layer that stacks the hidden states horizontally. The purple arrows show the creation of the context vector

after concatenating the hidden states from each direction. Also, in the figure, we see an embedding layer

that transforms the input into real-valued vectors that capture the semantic of the input in relation to its

neighboring contexts. We summarize the operations done by each cell type in Table 2.1. The table contains
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the list of equations associated with each sequence model cell type.

RNN is a type of neural network designed to process sequential data [65]. We can see the application

of RNN in speech recognition, music generation, text generation, and similar problem domains. As shown in

the figure, each cell is a time step to process an input and a hidden state from the previous time step. In the

encoder-decoder architecture, the RNN encoder predicts an output at the final time step, and the decoder

uses the prediction to predict an output on each time step. The equation to compute a hidden state in a

single RNN cell is shown in Equation 2.5. In the equation, hidden state ht is computed by adding bias (bh) to

the sum of the product of the weight matrix Wh and the previous hidden state ht−1, and the product of Wh

and the current input xt.

ht = σ(Whht−1 +Wxxt + bh) (2.5)

Computation inside a single RNN cell

ot = σ(Wohht−1 +Woxxt + bo) (2.6)

it = σ(Wihht−1 +Wixxt + bi) (2.7)

ft = σ(Wfhht−1 +Wf xxt + bf ) (2.8)

c′t = tanh(Wchht−1 +Wcxxt + bc) (2.9)

ct = it ⊗ c′t + ft ⊗ ct−1 (2.10)

ht = ot ⊗ tanh(ct) (2.11)

σ(z) =
1

1 + exp(−z)
(2.12)

tanh(z) =
exp(z)− exp(−z)
exp(z) + exp(−z)

(2.13)

Computations in a single LSTM cell

The problem with RNN is that during training, the gradients being backpropagated through time to

update parameters may vanish [27]. Especially, these problems tend to persist in processing longer sequences

[56]. This makes it hard for the model to learn long-term relationships between inputs in distant time steps.

LSTM and GRU are designed to solve to these problems.

LSTM is designed to capture long-term dependency within an input sequence. Long-term dependency
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is maintained by transferring a cell state in addition to a hidden state. Each LSTM cell has three gates to

process an input and states received from the previous time step. These gates are input (update) gate, forget

gate, and output gate. The input gate processes an input of the current timestep. The forget gate decides

whether to keep or discard a cell state received from the previous time step. The output gate computes the

hidden state (prediction) at the current time step.

Equations 2.6 to 2.13 show computations inside an LSTM cell. In equations 2.6 to 2.8, we can see that the

gates that control the output of the timestep both cell state and hidden state use the sigmoid function. The

sigmoid function outputs numbers between 0 and 1. The element-wise multiplication between the output of

the gates and cell states (previous and candidate) decides whether to replace or keep the previous cell state.

Also, it decides the output hidden state that will be passed to the next hidden state.

• ot is the output gate. It is a sigmoid function of a computation done by adding a bias (bo) to the product

of a weight matrix (Woh) and the previous hidden state (ht−1) to the product of a weight matrix (WoX)

and the current input (xt).

• it is the input gate. It is a sigmoid function of a computation done by adding a bias (bi) to the product

of a weight matrix (Wih) and the previous hidden state (ht−1) to the product of a weight matrix (WiX)

and the current input (xt).

• ft is the forget gate. It is a sigmoid function of a computation done by adding a bias (bf ) to the product

of a weight matrix (Wf h) and the previous hidden state (ht−1) to the product of a weight matrix (WfX)

and the current input (xt).

• c′t is the candidate cell state to update the previous cell state (ct−1). It is a hyperbolic tangent (tanh)

function of a computation done by adding a bias (bc) to the product of a weight matrix (Wch) and the

previous hidden state (ht−1) to the product of a weight matrix (WcX) and the current input (xt).

• ct is the current cell state that will be forwarded to the next time step. It is computed by adding element

wise product of the input gate output (it) and candidate cell state (ct−1) to the element wise product of

forget gate output (ft) and the previous cell state (ct−1).

• ht is the current hidden state. It is the element-wise product of output of the output gate and tanh

function of the current cell state.

Gated recurrent unit (GRU) is also designed to capture long term dependencies. To capture long-term depen-

dence GRU also have a mechanism to keep or discard a cell state based on relevance. Unlike LSTM, GRU has an

input (update) gate and a forget (reset) gate. This makes it computationally efficient. In addition, GRU does

not transfer cell state in addition to hidden state, it only controls the value of the hidden state using the update
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ut = σ(Wuhht−1 +Wuxxt + bu) (2.14)

rt = σ(Wrhht−1 +Wrxxt + br) (2.15)

h′t = tanh(Wh(rt ⊗ ht−1) +Whxt + bh) (2.16)

ht = (1− ut)⊗ ht−1 + ut ⊗ h′t (2.17)

Computations in a single GRU cell

and forget gate. Equations 2.14-2.17 show operations computed by a GRU cell. ut is the update gate computed

from previous hidden state ht−1 and current input xt. The reset gate rt is also computed form ht−1 and xt.

The candidate hidden state h′t is tanh function of the sum of element-wise product of rt and ht−1 multiplied

by weight matrix Wh, and product of Wh and xt plus the bias bh. Finally, the output hidden state ht is com-

puted using the output of the update gate ut, the previous hidden state ht−1 and the candidate hidden state h′t.

In standard sequence-to-sequence models, the encoder predicts the context vector at the final time step, and

the decoder learns to predict an output sequence based on the context vector. This approach raises a problem

in encoding large sequences into a fixed-length context vector [6]. Bahdanau et al. introduced a mechanism

commonly known as attention that informs the decoder to align (focus) to an encoder state at a time while

predicting an output on each time step.

Equations from 2.18 to 2.20 show how a context vector is computed using the attention mechanism by

Bahdanau et al.

• eij is the alignment score. It is computed by passing previous decoder state si−1 and encoder state hj

to a feed-forward neural network a with tanh activation function.

• α is the alignment weight computed by passing the alignment score eij to a softmax layer. This converts

the alignment score to a probability distribution which informs the decoder to align to a specific encoder

state hj with respect to the previous decoder hidden state si−1 to predict the current output si.

• ci is the context vector. It is the summation of the product of the alignment weight α with each encoder

hidden state (h1, ..., hT x) where Tx is the length of the input sequence.

In our study, we used another attention mechanism introduced by Luong et al. (Luong-attention) [48]. We

have three reasons for choosing Luong-attention. First, we adapted the multiple encoder architecture of

LeClair et al. [41] which also used Luong-attention. Also, we compared our final work with their work

that used Luong-attention. Second, Luong-attention is introduced as a simple and effective alternative to

incorporate attention in neural-machine translation-models. With this attention mechanism, it is simple and
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eij = a(si−1, hj) (2.18)

α = softmax(eij) (2.19)

ci =

Tx∑
j=1

αijhj (2.20)

softmax(eij) =
eij∑Tx

k=1 exp(eik)
(2.21)

Attention by Bahdanau et al.

intuitive to create a context vector created from the output of the decoder and multiple encoders.

eij = sTi .h (2.22)

α = softmax(eij) (2.23)

ci = α.h (2.24)

Attention mechanism by Luong et al.

Equations 2.22 to 2.24 shows the mechanism to compute the context vector ci using Luong-attention

mechanism. The difference between Bahdanau et al. is the mechanism used to compute the alignment score

eij and context vector ci. The vector eij is the product of the transpose of the current decoder hidden state

si and the encoder hidden states h. The context vector is the product of the alignment weight α and the

encoder hidden states h.

In this study, we used a bi-directional LSTM with an attention mechanism by Luong et al. Bi-directional

LSTM uses two LSTM layers to encode an input. The first layer is a forward LSTM which reads the sequence

from start to end. The second LSTM reads the sequence in a reverse order from end to start. Then, the

output of both LSTM layers will be concatenated and passed to the attention layer and the decoder.

2.3 BLEU Score

BLEU score is a neural machine translation evaluation metric [55]. BLEU measures the n-gram precision of

the predicted output with respect to the ground truth. It computes a weighted average of variable length

phrase matches against reference translation. We can measure precision by dividing the number of terms in

the prediction that exists in the reference translation by the number of predicted terms.
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Consider the following example:
Prediction: like like programming
Reference: i like programming

The uni-gram precision of the predicted output in this example is 3/3, which is 1. But, if we see the output,

the model predicted the term “like” twice. To counter this problem, BLEU measures modified n-gram precision

of the predicted output. The modification is BLEU sets the count of a matched term or phrase to the number

of occurrences of the term or phrase in the reference translation. In our example, the term “like” only occurs

once in the reference translation, so the modified uni-gram precision becomes 1/3, and it gives the term

“programming” 1/3, which makes the total unigram precision 2/3. For bi-gram precision, we have two bi-grams

“like like” and “like programming”. Since, we have “like programming” in the reference, the bi-gram precision

becomes 1/2. The tri-gram and tetra-gram precision is zero.

BLEU outputs a single number between zero and one after computing the n-gram precision for various

n-gram sizes (usually 1-4). N-gram is an ordered sequence of n tokens in a sequence (e.g, sentence). In

our results, we scaled the BLEU score to 100 for clarity. The number is a weighted average of the mod-

ified n-gram precision. Also, if the model prediction is shorter than the reference text, BLEU multiples

the weighted n-gram precision by a constant called brevity penalty. The brevity penalty ensures that a

model doesn’t get an inflated precision score by predicting short outputs. A brevity penalty is computed

by the equation shown in Equation 2.25, and BLEU score is computed using the formula shown in Equation 2.26.

In Equation 2.25, we compute r by summing the length of reference sentences that best match the predicted

output, in case we have multiple reference sentences for each output. Otherwise, r is the sum of the reference

sentences length in the test corpus, and c is the sum of the length of the predicted sentences. In Equation

2.26, n is the n-gram value ranging from 1 to N . The weight given to each n-gram is wn, and the modified

precision value for each n-gram is pn.

Table 2.2 shows an interpretation of the BLEU score. We adopted the interpretation from documenta-

tion published by Google [9]. Still, this interpretation can be biased by the quality of the dataset, but we

present a rough interpretation in the table to assist readers.

BP = exp
(
1− r

c

)
, if c ≤ r (2.25)

BLEU = BP.exp

(
N∑

n=1

wnlog(pn)

)
(2.26)

BLEU score
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Table 2.2: BLEU score interpretation

BLEU score Interpretation

<10 Almost useless

10-19 Hard to get the gist

20-29 The gist is clear, but has significant grammatical errors

30-40 Understandable to good translation

40-50 High quality translations

50-60 Very high quality, adequate, and fluent translations

>60 Quality often better than human

2.4 Control-flow Graph

Our representation will rely on control-flow graphs, so we briefly describe them here. A control-flow graph is

a directed graph in which edges connect basic blocks of instructions inside a procedure [13]. A basic block of

instruction is a linear sequence of program instructions having one entry point and one exit point [3]. These

blocks of instructions are connected based on control-flow dependence. Figure 2.2 shows the control-flow

graph of a simple program that adds or subtracts one from an input based on the input value. As we can

see in the figure, we can trace possible execution paths by following the edges that connect the blocks of

instructions from the entry point to the exit point of a program. One component of this analysis is tracing

the definition- and use-site of variables [3]. Such a type of analysis becomes simpler when each variable has a

single definition [5]. To do this, we create a single-static-assignment form of a program.

A single-static-assignment (SSA) form of a program is an intermediate representation in which each variable

has only one definition. Figure 2.3 shows SSA form of the program displayed in Figure 2.2. As shown in

the Figure 2.3, each variable has only one definition. This enables us to easily trace the use site of each

variable. In the figure, we can also see that two control-flow paths merge into a block. The execution of

each control-flow path depends on the initial value, so we can’t determine which variable carried the value to

the block. In this case, we need a function that will assign a variable based on the control-flow path used

to reach the block. We call this function a phi function. Phi-functions are positions in the SSA form of a

program where two or more control-flow paths merge. In creating the SSA form, every variable will be set to

have one definition, and phi-functions will be inserted in a position where two or more control-flow paths merge.

Transformation of a program to SSA starts with inserting phi-functions for each variable in control-flow graph

nodes with two or more incoming control-flow edges. Then, we rename each variable V in a control-flow

graph by adding subscript i (for i = 1, 2, 3, . . . , n), where n is the number times variable V is defined in the

20



control-flow graph, including assignments for phi-functions.

The above approach creates unnecessary phi-functions, which conceals information during optimization

and analysis, so we need to create minimal SSA. A program is said to be in minimal SSA form if the num-

ber of phi-functions is as small as possible. To do this, we discuss an approach introduced by Cytron et al. [13].

To use this approach first, we compute the dominance frontiers of every node in a control-flow graph. We say

node x dominates node y if node x appears in every path that leads to node y. We say node x strictly dominates

node y if node x dominates node y and node x is different from node y. Dominance frontiers of node x is set of

nodes s where node x dominates predecessors (nodes that appear after node x and before elements of node s)

of nodes in set s but does not strictly dominate elements of set s. After computing dominance frontiers for each

node, we insert a phi-function in node y for a variable v in node x, if node y is in the dominance frontier node x.

In this work, we used breadth-first search to create a linearized representation of a control-flow graph

from the SSA form of a program. SSA made it easier for us to extract contextually-related blocks of instruc-

tions by referring to control-flow jumps and phi functions. We explain the procedure used to transform SSA

to a linearized control-flow graph in the next chapter in Section 3.1 (input representation).

Figure 2.2: Control-flow graph Figure 2.3: Single static assignment form
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2.5 Summary

Source-code summarization systems aim to transform source-code artifacts into a natural-language summary.

Source-code summarization systems use text-retrieval-based-, heuristic-based- or data-driven-source-code

summarization approaches to generate natural language summary for source-code.

We used a data-driven approach that uses control-flow graphs as an additional input representation in

this work. Control-flow graphs connect blocks of instructions based on control-flow dependence. We encoded

a linearized version of control-flow graphs to sequence models that transform an input sequence to the desired

output sequence.

There are different sequence-to-sequence model architectures. Our study used an architecture designed

to learn long-term dependency within the input sequence named LSTM. We used a bi-directional LSTM

architecture, which goes through the input sequence from start to end (forward pass) and end to start

(backward pass). Also, we applied an attention mechanism that helps the decoder focus on a specific encoder

state while generating an output sequence. We evaluated our approach using the BLEU score and expert

evaluation. The BLEU score measures the n-gram precision of the predicted output compared to a reference

text.
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3 Experimental Design

In this chapter, we describe our experimental methodology in reference to other related works. We discuss

design decisions taken to complete the project in four sections:

• Input representation (Section 3.1): discusses representation used by related works and presents the

representation we used to train our model.

• Model architecture (Section 3.2): presents model architecture used by other researchers and explains

the model architecture used to accommodate our representation.

• Dataset description (Section 3.3): explains the data collection and cleaning procedures applied to create

the final dataset used to train our model.

• Evaluation (Section 3.4): explains the evaluation procedures and metrics used to compare and contrast

to related work.

Figure 3.1 illustrates the input and output of the core components of the project. As shown in the

figure, we give a raw dataset containing parsed Javadoc comments of a method, SSA form of a method, and

the method itself to the data processor. Then, we train the model using the output of the data processor

component. Finally, we evaluate the trained model, which predicts a summary given a tokenized control-flow

graph and tokenized method.

3.1 Input Representation

This section discusses data representations explored by researchers for data-driven source-code summarization.

We extend our discussion from Section 2.4 to assist readers to clearly see the difference between existing

approaches and our selected representation. LeClair et al. [40] divided work that come under data-driven

source-code summarization into two based on the use of AST as an additional input. The first category

includes works that used a sequence of source-code tokens [32, 46] and API sequences [29, 47] to represent

source code. API sequences are created by extracting and sequencing API calls inside a method. The second

category [4, 19, 28, 41, 43] used AST as an additional input beside source-code as a sequence of tokens. Table

3.1 provides a summary of model performances in BLEU evaluated on a dataset by LeClair et al. The results

shown in the table are collected from evaluations conducted by LeClair et al.
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Figure 3.1: Project Workflow

Work that used a sequence of source-code tokens as a sole input explored the application of different

types of sequence-to-sequence modeling architectures in a source-code summarization setting. We will discuss

these architectures in Section 3.2. The use of a sequence of source-code tokens to encode program properties

was motivated by the work of Hindle et al. [26]. In their work, they showed that it is possible to model

source-code using statistical language models. This motivated work that use data-driven approaches to encode

source-code properties into machine learning models.

Also, researchers including Lu et al. [47] explored the use of API-sequences for source-code summarization.

They proposed a summarization model that outputs comments given API-sequences. Hu et al. [29] did a

similar study, but their model takes both API-sequences and a sequence of source-code tokens as an input.

Both works used a different dataset, but Hu et al. compared their model against two baseline models: a

model that takes only a sequence of source-code tokens and a model that takes only API sequences. The

reported result shows that encoding a sequence of source-code tokens and API sequence is better in precision

and recall than a model that takes either a sequence of source-code tokens or API-sequences as an input.

Two works extracted a representation from parse trees. First, Fernandes et al. [19] used combination

of a sequence model and a graph neural-network to encode source code into a summarization model. A graph

neural network aggregates and outputs information encoded in a graph by learning the relationship between

nodes of graphs [71]. They constructed the graph by connecting tokens separated based on underscores. Also,

they connected subsequent tokens. In addition, they joined tokens that have a data-flow relationship and
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tokens connected on a parse tree. Second, Liang and Zhu [43] designed a source-code summarization model

that takes parse tree as an input. Both works used Rouge-n [44] to evaluate the generated summaries by the

models. Rouge-n measures n-gram recall between the predicted summary and a set of reference summaries.

The result of Fernandes et al. the addition of structural information using graph neural networks increased

the Rouge-2 (measures bi-gram recall) score from 15.3 to 20.8. The model of Lhu and Zhu also outperformed

the sequence-to-sequence model that only takes method-token sequences in seven of nine projects used to

evaluate the models. The result of both works show addition of structural information of programs help better

capture program properties in machine learning models.

Also, the use of intermediate representations, particularly AST, to encode syntactic relation with program

tokens along with a sequence of tokens was explored by researchers. Under this category, we reviewed two types

of AST representations used by researchers. First, the use of linearized AST for source-code summarization

was studied by Hu et al. [28] and LeClair et al [41]. Second, Alon et al. [4] studied the benefit of encoding

AST paths between randomly selected terminal nodes for source-code summarization. Both approaches have

been shown to be effective and got superlative results with a C# dataset published by Iyer et al. [32] and Java

dataset by LeClair et al. [42]. Based on a comparison conducted by LeClair et al. [40], encoding AST into a

graph neural-network along with a sequence of source-code tokens outperformed other encoding schemes on the

task of source-code summarization. BLEU score was used to compare results. We show the results in Table 3.1.

The related work discussed above show positive results regarding encoding structural information in source-

code summarization models. Further, we would like to extend this notion with a lower-level and more

detailed intermediate representation that captures relations between blocks of program instructions based on

control-flow dependence.

Table 3.1: Model performance in BLEU on a dataset by LeClair et al.

Model (Author) BLEU score

ast-attendgru (LeClair et al. [41]) 18.69

code2seq (Alon et al. [4]) 18.84

codeGNN (LeClair et al. [40]) 19.93

codeNN (Iyer et al. [32]) 9.95

SBT (Hu et al. [28]) 14.00

In our work, we used the SSA form of a program to create a linearized control-flow graph to represent

source code along with a sequence of source-code tokens. Ben-Nun et al. [7] explored the use of control-flow

graph to encode program properties to neural models. They introduced a term called contextual-call graph, a
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graph built by connecting nodes based on control-flow relationship. They adopted the notion of semantic

similarity based on the contextual relationship from the distributional hypothesis [24]. The distributional

hypothesis states that words that occur in the same context tend to have similar meanings. To apply this idea

for programming languages, they defined context as statements whose execution paths depend on each other.

Then they stated, statements that occur in the same context tend to have similar meanings.

public String even_or_odd(int) {

EvenOdd this;

int num, temp$0;

String result, temp$1, temp$2, result_1, result_2,

result_3;

result = "";

temp$0 = num % 2;

if temp$0 = = 0 goto label1;

goto label2;

label1:

temp$1 = "even";

result_2 = temp$1;

goto label3;

label2:

temp$2 = "odd";

result_1 = temp$2;

label3:

result_3 = Phi(result_2, result_1);

return result_3;

}

Listing 3.1: SSA form of even or odd method

We adopted Ben-Nun et al.’s [7] distributional hypothesis for programming language statements to

encode program properties for source-code summarization. We used breadth-first search to transform

the SSA form of a program method to create a linearized control-flow graph. After setting the context

distance to one, we created the linearized control-flow graph by connecting any two blocks on the

control-flow graph based on the following conditions: First, blocks with a direct control-flow relationship

are connected by referring to go-to statements and phi-functions. Second, if a block doesn’t have a

control-flow parent node, we connected it to the previous node unless it is the root node, and in case

the previous block only contains a single go-to statement, the block with no control-flow parent will be

connected to the parent of the previous block. Listing 3.1, Figure 3.2, Figure 3.3, and Figure 3.4 show

the input, intermediate representations, and output of our data representation approach. The first step is

converting the source-code shown in Figure 3.2 to the SSA form shown in listing 3.1. Then, we create a
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linearized version of the control-flow graph shown in Figure 3.3 by creating a block sequence shown in Figure 3.4.

Overall, source-code summarization models benefit from encoding the structural information of a

program. We extended this idea with a representation that shows contextual relations between program

instructions based on execution flow. Following this, we constructed a linearized version of the control-flow

graph that shows contextual relation between blocks of instruction based on contro-flow dependence. We

turned this representation into a sequence and used it as an input in a source-code summarization model.

Figure 3.2: Example Java method that
determines if a number is even or odd

Figure 3.3: Control-flow graph of the
even or odd method

Figure 3.4: Block sequence generated for
the even or method from the SSA form

3.2 Model Architecture

This section discusses model architectures proposed and evaluated by researchers to summarize source code.

Like Section 3.1, we extend this discussion from Section 2.2 to clearly identify existing approaches and the

selected model architecture. Source-code summarization is a machine translation task, similar to translating a

text from one natural language to another (e.g. English to French). For the task of automated source-code

summarization, researchers used neural networks such as GRU [12] and LSTM [27] with Bahdanau- [6] and

Luong-attention [48]. All models discussed in this section were evaluated using the BLEU score [55], and

some works used METOR score [15] and Rouge-N [44]. METOR score like ROUGE-N is a recall-oriented
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score that measures uni-gram overlap between the predicted and the output sequence.

Iyer et al. [32] and Lu et al. [47] used LSTM based sequence to sequence model for source-code

summarization. First, Iyer et al. trained an attention-based LSTM model named Code-NN to summarize

C# and SQL code. Their model takes a sequence of tokens as an input. Second, Lu et al. proposed

and evaluated an attention-based LSTM model that takes API sequences to generate a summary. The

difference between the two models is that Iyer et al. used the Luong-attention, and Lu et al. used

Bahdanau-attention. Iyer et al. compared their approach with an information-retrieval-based summarization

system, statistical machine translation system, and a sequence-to-sequence model with no attention

mechanism. They used both intrinsic evaluation and extrinsic evaluation. They used BLEU and

METEOR scores for the intrinsic evaluation. The extrinsic evaluation was an expert evaluation where the

participants rated the generated summaries for naturalness and informativeness. The naturalness measures

grammatical fluency, and the informativeness measures the amount of information captured by the summary

regardless of fluency. Their model got superlative results in both evaluations. Lu et al. evaluated their

approach using the BLEU score. They evaluated their model in different settings, and their result shows

the attention-based sequence-to-sequence model is better than a sequence-to-sequence model with no attention.

Hu et al. [28] trained an LSTM model for summarizing source-code. Alon et al. [4] used a GRU

sequence-to-sequence model to summarize methods. Hu et al. encoded a linearized AST to a GRU model

that uses Bahdanau-attention. Alon et al. also used a GRU model with Luong-attention to encode randomly

selected AST paths between two terminal nodes and generate a summary for the method. On evaluation

conducted by Hu et al., their model outperformed the model proposed by Iyer et al. On comparison made by

Alon et al, the model proposed by Alon et al. outperformed models proposed by Iyer et al. and Hu et al.

Both evaluations used BLEU score. We can also see the performance difference between the models in Table

3.1, where models by Alon et al., Hu et al., and Iyer et al. got 18.84, 14.00, and 9.95, respectively.

Hu et al. [29] and LeClair et al. [41] trained a multiple encoder GRU model for source code sum-

marization. Hu et al. trained a model that encodes API sequences in addition to a sequence of source-code

tokens. They used Bahdanau-attention on the output of each encoder to create a context vector. Then,

they took the sum of the context vectors to create one context vector used by the decoder. LeClair et al.

proposed and evaluated a model that takes tokenized AST beside a sequence of source-code tokens. They

used Luong-attention. They concatenated the context vector from both encoders and fed it to the decoder to

generate a summary. LeClair et al. compared their model with Hu et al.’s model [28], and the reported result

shows that LeClair et al.’s model outperformed the model proposed by Hu et al. The evaluation metric used

for comparison was BLEU score. The model by Hu et al. got 14.00, and the model by LeClair et al. got 19.6.
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Also, LeClair et al. [40] proposed and evaluated a model that used a graph neural network to en-

code AST along with a GRU encoder for a sequence of source-code tokens. This model is the current state of

the art in source code summarization. This work also reported that the model by Alon et al. [4] outperformed

LeClair et al.’s model [41]. The graph neural network-based model outperforms both models. The result of

the evaluation is shown on Table 3.1.

In this work, we adopted architecture proposed by LeClair et al. [41] with small modifications.

The model is designed to encode multiple input representations. First, we changed the RNN cell type from

LSTM to GRU. Britz et al. [11] showed LSTM consistently outperforms GRU in neural machine translation

tasks. Second, we used a bi-directional encoder instead of a uni-directional encoder after referring to the

result published by Britz et al., which showed that bi-directional encoders yield a better result in terms of

precision than uni-directional encoders in neural-machine translation tasks. Also, we considered that the

control-flow graph encoder would be benefited by looking at the given sequence from beginning to the end

and end to the beginning of the sequence since we set a maximum sequence length of 289 for the control-flow

graph representation. Also, we have a second model that only takes a sequence of method tokens. The

architecture is similar to method_cfg model, but it does not have the control-flow graph encoder and the

subsequent attention mechanism to align the control-flow graph input to the output of the decoder.

Figure 3.5: Architecture of method_cfg model
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Figure 3.5 shows the structure of the model used to demonstrate our approach. As shown in the figure,

the model has two encoders and one decoder. On top of the encoders, there are two attention layers that

apply a global attention mechanism by Luong et al. on the output of each encoder. The model concatenates

outputs from the two attention layers and the decoder on the merge layer. Finally, the concatenated

matrix through a dense layer and the output of the dense layer will be passed to the final softmax layer.

Further modifications were also made while tuning the model. We will discuss them the implementation chapter.

Overall, multiple architectures with different input representations have been shown to be effective

for source-code summarization. The evaluation results show source-code summarization models benefit from

the inclusion of structural information besides method-token sequence. To encode the structural information,

we adapted a multi-encoder architecture proven to be effective in encoding AST beside the method-token

sequence.

3.3 Dataset Description

This section presents the source of our dataset and the approaches used to process the dataset. For this study,

we decided to create our own dataset since we had to compile projects to extract the control-flow graph from

the SSA form of the program.

There are two ways to split a source-code summarization into training, testing, and validation sets.

First, we can split a dataset at the function (method) level. This type of split divides the dataset

using method-summary pair as a reference point. In a dataset split using this mechanism, we can find

method-summary pairs in both the training and testing sets of the dataset. A study done by LeClair et al.

[42] shows this type of split inflates the evaluation score of a model under study. Second, we can split a

dataset at the project level. In this type of split, method-summary pairs from a project will not end up in

both the training and testing sets of the dataset. This type of split creates a scenario that the model under

study gets to be evaluated by the project it has not seen before.

Our review to conduct this study found two existing method-level datasets for data-driven source-

code summarization for the Java programming language. First, Hu et al. [29] created a source-code

summarization dataset from Java projects on Github [21] with a minimum of 20 stars created between 2015

and 2016. The dataset contains 69,708 data points and has been used by other related work [2, 69]. Hu et al.

did not mention project-level dataset splits when creating their training and testing sets. This indicated a

function-level splitting strategy was used for dividing their dataset into training and testing sets for their study.

Second, LeClair et al. [42] published a source-code summarization dataset with 2.1 million data
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points (method-summary pairs). The dataset is extracted from the Sourcerer project published by Lopes et

al. [45]. The published dataset is already split into training, validation, and testing sets at the project level

and released to promote reproducibility among models that take methods as a sequence of tokens and output

a summary of the input.

Our work involved an additional input, which is a control-flow graph extracted from the SSA form

of a program along side the method as a sequence of tokens. To generate this input, we were required to

collect compilable projects with all required dependencies made available and pass it to the framework

used to compute the SSA form of the program. This led us to collect compilable projects and create a new

dataset with a control-flow graph as an additional field. In creating the dataset, we adopted guidelines

forwarded by LeClair et al. We discuss the guidelines as we go through our data processing steps in Section 3.3.2.

In the following subsections, we discuss the dataset collection method and data processing steps

taken to create the final dataset used to train our models.

3.3.1 Dataset Collection

For this study, we started with a dataset provided by Martins et al [49]. They published 50,000 compilable

Java projects available on Github. We used three components of the dataset: an archive of compiled projects

as bytecode, an archive of Jar files required to build the projects, and a text file containing a list of Github

URLs for compilable projects.

We cloned the projects from Github by reading the project URL listed on the text file. Next, we

parsed the project files to create our raw dataset, which maps methods to their leading preceding statements.

Out of the 50,000 projects, we were able to clone 42,640 projects. The rest of the projects could

not be found with the given project URL. From this, 22,780 projects contained at least a method with a

preceding Javadoc statement. The raw dataset constructed from these projects collectively contains 790,580

data points, and on average, there are 34.7 documented methods per project.

Next, we explain the steps taken to process the raw dataset to create the final dataset.

3.3.2 Data Processing

After creating the raw dataset, we filtered and matched the comment-method pairs in the raw dataset to the

control-flow graph we created from the SSA form of the projects. We used the steps enumerated below to

clean up the raw dataset.
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Step 1: Cleaning Javadoc Statements and removing noise from the dataset

1. We split Javadoc statements using a period as a delimiter and took the first sentence as a summary for

methods.

2. We used a library named langdetect [38] to filter out non-English summaries.

3. We filtered out comments that do not provide information about the method by indexing Javadoc tags

(e.g., @author,@version, and @since).

4. We removed unit-test methods with a summary that gives a vague description of the method (e.g., the

phrase “test case for” followed by the name of the method and similar summaries such as “create the test

case”). We applied a heuristic that removed data points with a comment containing the “test” token.

This step removed 3.01% of the dataset.

5. We filtered out empty methods with leading Javadoc statements. This step removed 6.38% of the

dataset.

Steps 1 and 2 of this cleaning step are adopted from LeClair et al. [41]. Collectively, the processing steps

described above removed 38.4% of the comment-method pairs and reduced the dataset size to 487,036.

Step 2: Cleaning Java methods

1. We removed block- and inline-comments from the methods. Then, we replaced constants with their

type name identifiers (e.g., num and str).

2. We removed punctuation from the methods and filtered out empty methods created when we remove

punctuation.

3. We converted the methods to AST in XML format. This representation was used as an input for the

data processor of codeGNN model.

This processing step removed 7.2% of the filtered dataset from the previous step, and the size of the dataset

became 451,962. At this point, we filtered out 33.06% of the projects in the raw dataset, which resulted in

15,250 unique projects.

Step 3: Creating and cleaning control-flow graphs

1. We copied the bytecode of the projects in the dataset to a directory from the archive of built projects

released with the dataset. We managed to transform 59.89% of the remaining projects into SSA form,

and we ended up with 9,133 projects in the dataset. We lost 40.11% of the projects due to compilation

errors that occurred while transforming Java bytecode to SSA.
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2. We kept the data points with corresponding SSA form by filtering based on class and project name,

and this removed 47.6% of the filtered dataset created by the previous filtering step, and 236,827 data

points remained in the dataset.

3. We constructed, parsed, and cleaned the control-flow graph from the SSA form of projects.

4. We matched control-flow graphs to their corresponding method-comment pairs in the dataset based on

method- and class-name. This step removed 42.34% of the filtered dataset and reduced the dataset size

to 136,547 data points with 7172 unique projects.

Step 4: Final Cleaning Steps

1. We performed a final filtering step based on summary- and control-flow graph sequence length. We

used interquartile range (IQR) [30] outlier detection to get the upper bound of the sequence length for

the summary and control-flow graph. Equations 2.1 to 2.3 show the formulas to get upper and lower

bound of a distribution. Using this approach, we set the upper bound of the summary sequence length

to 16. We set the lower bound of summary sequence-length to 3 following LeClair et al. [41] . For the

control-flow graph, we removed data points with control-flow graph sequence-length greater than 289.

We also set the maximum AST node-list length to 100 following LeClair et al. [40]. The list of AST

nodes is one of the inputs for the state-of-the-art model. Setting the maximum AST node-list length to

100 made the maximum method sequence length to 58.

2. We removed data points with the same method, summary, and control-flow graph. This filtering step

removed 28.89% of the filtered dataset from the previous step, and the dataset size was reduced to

97,917 data points.

3. Finally, we tokenized each input and make it ready to be used to train the models.

Table 3.2 provides a statistical summary of our final dataset. It presents information based on each

representation’s sequence length and the number of tokens in each representation. The sequence length

column each representation’s average sequence length, median sequence length, and percentage of data points

below the average sequence length. In the number of tokens column, we presented the number of tokens and

the number of unique tokens for each representation.

As shown in the Table 3.2, 65.65% of the final dataset has a method-tokens sequence length less

than 13.13. The mean sequence-length for this representation, 13.13 by itself, is small. We checked if

this happened when we filtered and matched summary-method pairs to their corresponding control-flow

graph. We found that the mean and median after cleaning the summary and method are 27.67 and

15.0, respectively. The percentage of data points below the mean is 74.56%. Figure 3.7 also shows

the final dataset distribution for method-tokens sequence length, and we can see that the distribution
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IQR = Q3 −Q1 (3.1)

lower_bound = Q1 − 1.5IQR (3.2)

upper_bound = Q3 + 1.5IQR (3.3)

Outlier Detection

Table 3.2: Dataset Statistics

Sequence Length Number of Tokens

Max Mean Median <Mean All Tokens Unique Tokens

Method 58 13.13 11.00 65.65% 1,285,225 12,674

Control-flow graph 289 67.08 52.00 67.32% 6,568,509 24,174

Summary 16 9.38 9.00 68.3% 918,309 26,904

has a heavy tail to the right. When we come to the control-flow graph representation, Figure 3.6

shows the sequence-length distribution has a long right tail and is highly skewed to the left. The mean

and median sequence length of this representation is 67.08 and 52.00, respectively. Figure 3.8 shows

the distribution of the final dataset with respect to summary length. We can see that it is a normal distribution.

In Table 3.2, we can also see the number of unique tokens (vocabulary) for each representation.

Compared to LeClair et al. [42] and Hu et al. [29], both the input and output vocabulary are relatively small.

Because of this, we did not use an out-of-vocabulary token to replace tokens with a low-frequency value for

each representation in the dataset.

Overall, we have created a source-code summarization dataset that maps method-token sequences

with summary, control-flow graph, and AST. We started with cleaning method and summaries. Then,

we compiled projects to extract control-flow graphs. Finally, we matched the control-flow graphs with

method-summary pairs and tokenized the dataset.

3.4 Evaluation

We evaluated our approach with two experiments. For the first experiment, we use BLEU score to compare

three models. In the second experiment, we employ human judges to rate candidate translation from three

models.
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Figure 3.6: Control-flow graph sequence
length distribution

Figure 3.7: Method-token sequence length
distribution

Figure 3.8: Comment sequence length distri-
bution
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3.4.1 Automatic Evaluation

In this experiment, we evaluate the performance improvement achieved by encoding an control-flow graph

alongside a sequence of source-code tokens for summarization models according to n-gram precision. We call

the proposed model method_cfg.

For this experiment, we compare the method_cfg model with two other models. We implemented

the first model that encodes a method as a sequence of tokens to output a summary. We call this

model method_only. The architecture of the model is a single input encoder-decoder architecture with a

global-attention mechanism. The model parameters are also the same as the sequence of source-code tokens

encoder and decoder of the proposed models. The second model is the state-of-the-art model by LeClair et al.

[40]. We call this model codeGNN. We used code+gnn+BiLSTM model, which is the top performing model

according to results showed by LeClair et al.

In addition, we trained and evaluated the method_only on a dataset by LeClair et al. [42] to com-

pare the model with other works.

3.4.2 Expert Evaluation

In this experiment, we conducted an expert evaluation to compare summaries generated by method_cfg,

method_only, and codeGNN. We employed 26 computer science students: 19 undergraduate students, 3

MSc students and 4 Ph.D. students. Participants rated summaries generated by the candidate models for 20

methods with respect to describing the functionality of the sampled methods correctly. We used a 5-point

Likert scale to rate each summary, with one being the lowest and five being the highest.

3.4.3 Data Sampling

We randomly sampled 20 methods and their corresponding summaries generated by each model on the testing

set. We accounted for two criteria for sampling the candidate method-summary pairs. First, we filtered

out short methods (such as getters and setters) that are easy to predict by the candidate models. Second,

the number of method-summary pairs in the dataset contributed by each project differs significantly. Many

projects contributed a small number of method-summary pairs (1 to 10 method-summary pairs per project),

while few projects contributed a large number of projects. We can see this by the log-log project-frequency

distribution in Figure 3.9. Considering this, we selected candidate method-summary pairs both from projects

with a small and large contribution to the dataset. This enabled us to avoid the candidate methods and their

corresponding summaries being sampled from a small group of projects.

We first use the method sequence-length frequency distribution shown in Figure 3.7 to filter out
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Figure 3.9: Log-log project-frequency distri-
bution

short methods. We applied this filtering step twice. First, we removed data points with method

sequence-length below the median sequence length. For this filter, the median is 11.0. Second, we removed

short methods below the median length from the output of the first filter. For this filter, the median is 16.0.

Then, we used the project-frequency distribution to group projects sorted based on frequency into four

categories. With this, we grouped the projects into four based on their contribution to the dataset. From

each group, we sampled five methods and their corresponding summaries generated by each model.

All in all, we sampled the candidate methods and the predicted summaries by each model by filter-

ing based on method sequence-length frequency and grouping based on project frequency.

3.4.4 User Interface

The expert evaluation form can be accessed by clicking this link. The first page is an introduction page. It ex-

plains the content of the form and prompts users to submit their educational background, general programming

experience, and Java programming experience. For educational backgrounds, we asked the user to choose one of

the following categories: undergraduate student, MSc student, Ph.D. candidate, faculty, and other specified by

the participant. We use a text field as a prompt for programming experience and Java programming experience.

The remaining pages contain the evaluation form for each method. A page contains a method,

three summaries generated by the candidate models for the method. The users were asked to rate each

summary with respect to correctly describing the functionality of the method. We used a radio button to

collect ratings for each summary on a scale of 1 to 5. The qualitative descriptors of the scale are 1 — strongly

disagree, 2 — disagree, 3 — neutral, 4 — agree, and 5 — strongly agree. At the end of the page, there is an

optional text field to submit their own summary.
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3.4.5 Model Selection

We trained all models for 20 iterations (epochs) and saved the model weight at each epoch. It took 1 hour

and 50 minutes to train the method_cfg model. For method_only model, it took 55 minutes to train

the model. The number of epochs is one of the training parameters we selected to train all models. We

selected method_cfg and method_only model by first evaluating their performance measured by BLEU

scores on the test set. For this evaluation, the method_cfg predicted the summaries given encoder inputs

(method-token sequence and control-flow graph) for and decoder inputs (summaries). Also, the method_only

model predicted summaries given method-token sequence and summaries. The result of this evaluation is not

the final evaluation result because the models were given the summaries beside the encoder inputs, but it can

be used as an intermediate result that shows the performance of the model on the test set. This is similar to

validation, but we used BLEU score performance on the test set rather than using accuracy or loss over

validation set during training. The reason behind this is the validation during training does not measure

the n-gram precision, rather it is the average of prediction accuracy of the model on each output timestep.

For both method_cfg and method_only models, we selected the model that scored the highest BLEU score

among the models saved at each epoch. We then used an inference model to predict the summaries given the

encoder inputs. The inference model predicts the output summary given only encoder inputs.

We also trained the codeGNN model for 20 epochs. It took 98 minutes to train the model. Then,

we adopted the model selection approach LeClair et al. [40] used in their study. They selected the model that

scored the highest validation accuracy. During training their model, six models scored the highest validation

accuracy. Then, we used their inference model to predict summaries given method, and AST nodes and edges.

We then measured the BLEU score of each model and selected the prediction of the model that scored the

highest BLEU score.

3.5 Summary

In this chapter, we covered the data collection and cleaning procedure and the architecture of our model,

including the input representation. Related works showed that source-code summarization models benefit

from encoding the structural information of a program. With this, we chose a representation that shows

the flow of execution and captures the control-flow relation between blocks of instruction. To use this new

representation, we chose a multi-encoder architecture that concatenates the encoded information and uses it

to predict a code summary. To evaluate our work, we used both an automatic and expert evaluation.
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4 Implementation

This chapter describes implementation details of components used in the research project. We presented

the description in four sections. The first three sections, dataset collection and processing (Section 4.1),

linearized control-flow graph (Section 4.2), and model implementation (Section 4.3), discuss the approach used

to implement components of the project. In training details (Section 4.4), we describe model configurations

used to train the proposed model and baseline models.

4.1 Dataset Collection and Processing

This section discusses the approach used to collect, clean, and filter the raw data to construct the training

dataset.

We implemented a Java program to parse project files and collect methods with leading Javadoc com-

ments from projects we cloned from dataset provided by Martins et al.[50]. This program uses Eclipse’s AST

parser version 3.7.1 to extract method and Javadoc pair from streamed Java files. This filters out the methods

without leading Javadoc comments and abstract methods. This program’s output is our raw dataset used to

create the final dataset used to train our models.

After generating the raw dataset, we started filtering the dataset based on conditions set to collect cleaned

summary. The following filter conditions are applied to prepare the final summary used to train our models.

• We split the Javadoc statement using a period as a delimiter and selected the first element of the list. If

a Javadoc statement does not have a period, we used “@param” and “return” tags to split the statement.

• We removed Javadoc formatting tags such as “@link” and “<code>” from the summary and kept the

remaining comment tokens.

• We used a library called langdetect 1.0.8 to filter out non-English comments.

• Finally, we removed punctuation and digit from the remaining summaries.

After we prepared the summary, we filtered the dataset based on conditions set to clean method tokens.

• We removed inline and block comments from the method.
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• We replaced constants with type identifiers “str” for Strings, “num” for integers, and floating-point

numbers.

• We filtered methods that do not have a body and methods that became empty when we remove

comments.

• Finally, we removed punctuation from the remaining methods.

The next step of filtering involved removing method-comment pairs that do not have corresponding control-flow

graphs. We will discuss the approach used to create the control-flow graph in the following section.

Finally, we tokenized each input and applied a final filter based on sequence length, as discussed in Section

3.3.2. The output of this step is the dataset used to train and test the models.

4.2 Linearized Control-Flow Graph

In this section, we explain the approach used to transform a Java program to SSA form. Then, we discuss

the method to create a linearized control-flow graph from the SSA form of a program. Finally, we list data

cleaning steps applied to the generated control-flow graphs.

To transform the Java programs into SSA form, we used a compiler framework called Soot 4.2.1 [68].

This framework transforms a Java program to a representation called Shimple, an SSA form of another

representation that can be generated by the framework called Jimple. Jimple is a three-address representation

of Java bytecode [68].

As we discussed in Section 3.3.1, the dataset used to create the training dataset has three components

an archive of compiled projects as bytecode, an archive of Jar files required to build the projects, and a

text file containing a list of Github URLs for compilable projects. To convert the bytecode of projects with

method-comment pairs in the filtered dataset to SSA, we first parsed the JSON file we found in each project

directory that contains the build information of projects to categorize the projects into two groups: projects

that do not require additional Jar files to compile and projects that require additional Jar files to compile.

Next, we copied the bytecode of each project into a directory in the project folder. For the projects that do

not have a dependency, we copied the jar format of the soot framework into the project folder. Then, we

passed the directory that contains the project bytecode as an argument for the soot command-line application.

For the projects that required Jar files, we wrote an additional script that copies and extracts the required

Jar files in the project directory. Then, we used the same script we used for the projects that do not require

additional jar files, which copies the soot jar file and passes the project directory as an argument for the soot

command-line application. The whole process was done automatically. Even though the program helped us
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speed up the data generation process, the program could not transform 40% of the projects in the filtered

dataset. This occurred due to the following reasons:

• Some projects required dependencies not available in the Jar-file directory of the dataset.

• A compilation error was raised by the compiler framework while transforming the bytecode of some

projects to SSA.

After transforming projects to SSA form, we selected the SSA form of class files of the projects that remained

in the filtered dataset and copied them into a directory. Next, we parsed the files to create a data frame that

indexes the SSA form of a method using class and method name. Then, we passed the data frame to the

program that creates a linearized control-flow graph from the SSA form of a method.

Algorithm 4.1 shows the pseudo-code of the technique we used to transform SSA into a linearized control-

flow call graph. The input for the procedure is the SSA form of a method, and it outputs a sequence of

contextually related blocks. The first step of the process is creating dictionaries that associate blocks with

a list of the block statements. Then, we create two dictionaries that associate the start and destination of

control-flow relationships. This relationship is captured with goto statements and phi-functions. Finally, we

iterate through a list of blocks from the block dictionary and connect each block based on the control-flow

relationship by referring to goto and phi-functions. In our heuristic, we found a special case that the control-

flow parent of the “catch” block of an exception cannot be found in phi and goto dictionaries. To handle

this issue, we connect such types of blocks to the parent of the previous block or the block before the “try” block.

We now have a linearized control-flow graph constructed from SSA form of a program. Finally, we to-

kenized the control-flow graph and matched it with method-summary pairs using project name, class name

and method name.

4.3 Model Implementation

To evaluate our approach, we implemented a model with TensorFlow Keras 2.4.0 API [37]. We trained the

model to output a summary given a sequence of source-code tokens and a control-flow call graph.

The model has two BiLSTM encoders and one LSTM decoder. The architecture of the model is shown in

Figure 3.5. One encoder takes a method-tokens sequence, and the second one takes a control-flow graph as

an input. During training, the decoder takes the summary as an input. Both the encoders and the decoder

have an embedding layer that learns the representation of input tokens during training. After encoding the

inputs, we use the global attention mechanism introduced by Luong et al. [48]. We compute two context

vectors using output from each encoder. We use a dot product between the output of an encoder and the
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Algorithm 4.1: Linearized control-flow graph creator
Result: path

1 blockCounter ← 0;

2 path← [];

3 blockDictionary ← createBlockDictionary(SSA);

4 phiDictionary ← createPhiDictionary(SSA);

5 gotoDictionary ← createGotoDictionary;

6 blockList← blockDictionary.keys();

7 gotoDestinationList← createGotoDestinationList(gotoDictionary);

8 while blockCounter < sizeOf(blockDictionary) do

9 block ← blockList[blockCounter];

10 if blockCounter >= 2 then

11 previousBlock ← blockList[blockCounter − 1];

12 secondPreviousBlock ← blockList[blockCounter − 2];

13 end

14 if block in gotoDictionary.keys() then

15 path← addSequence(path,block,gotoDictionary[block]);

16 end

17 if block in phiDictionary.keys() then

18 temporaryPath← [block, phiDictionary[block]];

19 if checkRepition(temporaryPath) == False then

20 path← addSequence(path,block,phiDictionary[block]);

21 end

22 end

23 if (block not in gotoDestinationList) and (previousBlock in gotoDictionary.keys()) then

24 if sizeOf(previousBlock) == 1 then

25 path← addSequence(path,secondPreviousBlock,block);

26 end

27 end

28 increment(blockCounter);

29 end
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decoder to compute the alignment score. After computing the context vectors, we adopted a technique by

LeClair et al. to merge the context vector from each encoder with the output of the decoder. The technique

concatenates the context vector from the sequence of source-code tokens encoder, the output of the decoder,

and the context vector from the control-flow graph encoder. It passes the resulting matrix to a layer with a

tanh activation function. Finally, we give the output of the tanh layer to a layer with a softmax activation

function to output one summary token at a time based on the provided information.

4.4 Training Details

For training the model, we used the settings shown in Table 4.1. The model was sensitive to LSTM cell size,

embedding dimension, batch size, and the dimension of the tanh layer that comes after merging contexts from

both encoders with the output of the decoder.

A rough interpretation of BLEU is outlined in table 2.2. All scores mentioned in this section are av-

erage scores where the translation gets the gist but contains grammatical errors. Since BLEU correlates

with human evaluation, here we interpret a marginally higher score as a marginally better summary translation.

We explored different configurations for LSTM cell size, embedding dimensions the dimension of the dense

layer, and batch size.

First, we found parameters for each encoder by training them separately as an individual model to output

summary given a control-flow graph or a sequence of source-code tokens. Both models gave a superior

performance with LSTM cell size 256 and with the rest of the parameters configured as the final model

parameter shown in Table 4.1. Then, we connected trained both encoders with a single decoder as one model.

In this case, setting the LSTM size to 512 improved the performance of the model in BLEU score but the

training time increased by 60%. We selected a random fold to show the performance difference between LSTM

cell size 256 and 512. On the evaluation the 256 model got a BLEU score of 25.02 while the 512 model got 29.44.

For embedding dimensions, we first trained both encoders with training size 128. The encoder that takes a

sequence of source-code tokens has acceptable performance with 128, but the performance improved when we

set it to 256. On the other hand, the control-flow graph encoder with embedding size 256 did not show a

stable performance across folds of the dataset. On the evaluation set we used above the model we selected got

a BLEU score of 29.44, while the model with method-token-encoder embedding size 128 got 26.71.

We trained the model on 256, 512, 768, and 1024 sizes for the dense layer dimension. Out of these pa-

rameters, 512 showed a consistent performance across different folds of the dataset. On same evaluation set
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the 512 model got 29.44, the 256 model got 29.42, the 768 model got 26.52 and the 1024 model got 29.73. On

this evaluation set the 1024 model outperformed the model we selected, but on another evaluation set the

1024 model got 18.63 while our model gets 25.03. We used BLEU score as an evaluation metric.

We observed performance fluctuations during training due to a change in the batch size of the training

set. Batch size is the number of training examples the model is seeing at a time to compute an error gradient.

A change in training set size caused the performance fluctuations during 10-fold cross validation. We used a

batch size of 128 to train the model.

Table 4.1: Model Configuration for Training

Parameter Setting

LSTM cell size 512

Embedding dimension 256

Embedding dimension for Control-flow graph 128

Dense layer for the context vector 512

Dense layer activation tanh

Loss function Sparse categorical cross-entropy
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5 Evaluation

In this chapter, we present the result of our experiments. Section 5.1 discusses the expert evaluation result.

In Section 5.2, we present the automatic evaluation result. Section 5.3 explain the limitations of our approach.

5.1 Expert Evaluation

In this study, we conducted an expert evaluation to compare summaries generated by three models: the

proposed model (method_cfg), the model that only takes method token sequence as an input (method_only),

and the current state-of-the-art model (codeGNN).

Table 5.2 shows example summaries generated by method_cfg and method_only model. The first ex-

ample shows method_cfg predicting a summary translation that describes the method but is not similar to

the reference translation. In this case, BLEU doesn’t consider paraphrase, so the translation won’t be given a

correct translation score. In the second example, the method_cfg did not predict the correct summary. In

this example, the method_only model predicts a similar summary to reference text.

We collected evaluations from 26 computer science students: 19 undergraduate students, 3 MSc students, and

4 Ph.D. candidates. On average, the participants reported 5.29 years of programming experience and 2.48

years of Java programming experience.

Table 5.1: Model performance in BLEU

Model BLEU score

method_only 11.61

method_cfg 9.94

codeGNN 3.21

Table 5.1 shows the performance of models used for the study in BLEU score over the test set used to

sample the candidate methods and their corresponding summaries generated by each model. The BLEU score

of the candidate models: method_only, method_cfg, and codeGNN is 11.61, 9.94, and 3.21, respectively. As

shown in the table, the method_only model outperformed the method_cfg and codeGNN model in terms of
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BLEU score over the test set used in the expert evaluation. The method_only model score a BLEU score

16.80% higher than the method_cfg model. Both method_only and method_cfg models outperformed the

codeGNN by 8.40 and 6.73 BLEU score points, respectively. Based on table 2.2 that discusses the qualitative

interpretation of BLEU scores, the method_only model falls into the second category where it is hard to

get the gist of the summary. The method_cfg and codeGNN models fall into the first category where the

generated summaries are almost useless.

Table 5.3 shows the statistical summary of the average rating given to the model by the study partici-

pants. The table shows the mean average-rating, median average rating, minimum average rating, maximum

average rating, and the standard deviation of the average rating. The minimum value for the average rating

is zero, which indicates all participants strongly disagree with the given summary for the method. The

maximum possible value for the average rating is five, which shows all participants strongly agree with

the given summary for the method. Graphically, we show the distribution of the average rating in Figure

5.1. The blue box plot show distribution of the average rating given to codeGNN model. The orange and

green box plots show the distribution of the average rating given to method_only and method_cfg, respectively.

Figures 5.1 and 5.2 show that the average rating given to each model is normally distributed. Hence,

we used the mean average-rating to compare the performance of each model based on the expert evaluation.

Even though the method_only model scored 16.80% higher BLEU score than the method_cfg model, the

method_cfg model received 0.58% higher mean average-rating than the method_only model. On the other

hand, compared to codeGNN, both method_only and method_cfg models respectively received 1.96 and

1.98 higher mean average-ratings than codeGNN model. The results are mixed: our new technique clearly

outperforms the state-of-the-art, but BLEU scores are not reliable in a setting where we only have one

reference for each predicted output.

We conducted a statistical significance test on three hypotheses. We used an independent t-test since

the result is normally distributed. The statistical significance test tested the following hypotheses:

• H1null: there is a significant difference between the average-rating distribution of the method_cfg and

method_only models.

• H2null: there is a significant difference between the average-rating distribution of the method_cfg and

codeGNN models.

• H3null: there is a significant difference between the average-rating distribution of the method_only

and codeGNN models.

Table 5.4 the result of the significance test. The table shows the p-value, t-static, the decision boundary

(α), and the decision made based on p-value.We rejected h1 since the p-value is greater than 0.05, but we
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Table 5.2: Example summaries generated by method_cfg

public void DisplayEntireMessage(){
for (int j=0; j < finalMessage.length; j++) {

finalMessage[j]=String.valueOf(splitMessage[j]);
}
amtOfTextShown=message.length();

}

Reference: displays the entire message

method_cfg: displays the content of the message as an instance of text

method_only : display the current text in the screen

public JSONObject optJSONObject(int index){
Object o=opt(index);
return o instanceof JSONObject ? (JSONObject)o : null;

}

Reference: get the optional jsonobject associated with an index

method_cfg: overrided by a jsonobject

method_only: get an optional jsonobject associated with a given index

Table 5.3: Summary of average rating for each model

Model Mean Median min max Standard

Deviation

method_only 3.42 3.53 2.19 4.50 0.63

method_cfg 3.44 3.44 2.15 4.50 0.65

codeGNN 1.46 1.42 1.23 1.77 0.14

accepted h2 and h3. From this, we can infer that there is no significant difference between the average-rating

distribution of the method_cfg and method_only models. On the other hand, there is a significant difference

between the average-rating distribution of the method_cfg and codeGNN models. Also, there is a significant

difference between the average-rating distribution of the method_only and codeGNN models.

Overall, the result shows method_cfg outperformed the method_only and codeGNN models by the mean

average-rating given by experts. Our significance test showed the margin in mean average-rating between

method_only and method_cfg models is not statistically significant. On the other hand, both method_cfg and

method_only models outperformed codeGNN model by a statistically significant margin of mean average-rating.

We conclude method_cfg and method_only are superior.
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Figure 5.1: Average rating distribution for each model

Figure 5.2: Average rating distribution for
method_only and method_cfg

Figure 5.3: Average rating distribution for
codeGNN

Table 5.4: Result of statistical significance test

Hypothesis p-value t-static α Decision

h1 0.92 0.09 0.05 Reject

h2 < 1e−3 13.16 0.05 Accept

h3 < 1e−3 13.38 0.05 Accept
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5.2 Automatic Evaluation

In this study, we compared method_cfg, method_only, and codeGNN model using BLEU score. BLEU

measures the n-gram precision of the predicted summaries. In addition, we trained and evaluated the

method_only model on a dataset released by LeClair et al. [42].

We used 10-fold cross-validation to evaluate the performance of the models. We divided the dataset into

training, validation, and testing set on project-level, and this resulted in different training and testing set

sizes across different folds. Table 5.5 summarizes the size of training, testing, and validation set on each fold.

In addition, Table 5.5 also contains the mean and median sequence length of methods in the test set of each fold.

Table 5.6 shows the 10-fold cross-validation result. We used bold font to highlight the highest BLEU

score in each fold. In most of the folds, we found the results of method_cfg and method_only model close

to each other while codeGNN is the distant third. The method_only model outperformed method_cfg

and codeGNN models in eight out of ten folds. In the remaining two folds (fold three and fold five), the

method_cfg model outperformed method_only and codeGNN models. In all except fold one, seven and nine,

the method_cfg model outperformed the codeGNN model.

The result of the automatic evaluation shows that encoding linearized control-flow graphs along its method

tokens does not improve the prediction accuracy of source-code summarization models in terms of BLEU

score. Also, the result shows linearized control-flow graphs are a better alternative than encoding AST using

a graph neural network in source-code summarization models.

Also, we trained and evaluated our model (method_only) on the dataset released by LeClair et al.[42].

On the dataset, our model scored a BLEU score of 17.53. The performance of the model is inferior to models

proposed by Alon et al. (code2seq) [4], LeClair et al. (AST-attendgru) [41], and LeClair et al. (codeGNN) [40]

on the dataset. AST-attendgru and codeGNN use AST along with a sequence of method tokens to represent

source code, while code2seq uses randomly selected paths between terminal nodes of AST to represent source

code. On the other hand, our model got a superior result compared to a model by Iyer et al. (codeNN) [32]

that uses a sequence of method tokens to represent source code. The summary of the result is shown in Table

5.7. The results of the models shown in the table were taken from an evaluation published by LeClair et al. [40].

We attribute the conflict in result to the dataset size used to train the models. Compared to our model,

codeGNN is a very large model with 129,180,022 training parameters, while our method_only and method_cfg

has 27,083,543 and 39,228,183. Bigger models do not generalize well on small datasets such as ours. Compared

to LeClair’s dataset with 2.1 million points, our dataset is small, and we expect large models optimized for
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Table 5.5: Statistical summary of cross-validation folds

Size Method sequence length

fold training set test set mean median

1 91,553 5,877 13.38 11

2 89,331 8,278 14.37 12

3 90,176 6,465 13.68 12

4 89,660 6,775 13.76 12

5 87,892 8,754 12.71 11

6 91,031 6,255 13.16 11

7 87,759 9,462 13.29 11

8 86,587 10,768 13.08 12

9 75,878 22,706 12.72 11

10 84,915 12,577 12.46 11

large dataset size to perform poorly in small dataset settings. But this does not imply, our dataset size is

below the required standard. There is a dataset by Hu et al. [29] with 69,708 while ours is 97,917.

Table 5.6: Cross-validation result

fold method_only method_cfg codeGNN

1 15.42 12.97 15.35

2 10.23 10.12 5.65

3 14.55 14.91 8.20

4 14.03 12.78 5.14

5 21.49 21.85 16.67

6 11.81 11.36 5.51

7 19.26 13.61 14.48

8 24.52 20.17 17.24

9 39.41 26.16 38.72

10 39.92 35.21 33.42

5.3 Limitations

There are limitations to this work. The first limitation of this work is the dataset used to train and evaluate

the models. We were required to use a dataset with compilable projects, so we used a dataset published by
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Martins et al. [50] to extract the training, validation, and testing set. Because of this, we did not get to set

selection criteria for the type of projects included in the dataset. We kept the project containing Javadoc

statements that we we were able compile and match their processed methods and summaries with control-flow

graphs, everything else is excluded. The project distribution is a power-law distribution, as shown in figure

3.9, where a lot of projects contributed a small number of data points ranging from 1-10. The final dataset

and its description can be found using this link.

Second, in creating the dataset, we have applied heuristics to clean and process the dataset. But, we

expect noise in both the training and testing set. Also, due to time limitations, we did not verify each data

point for correctness, so we acknowledge this as a potential source of error.

Third, we used a 10-fold cross-validation split on the project level to evaluate our results. Due to this,

our model (method_cfg) was sensitive to change in data in training and testing across different folds. We

chose the hyper-parameters based on the performance on a fold and used the same parameter across 10-folds.

Due to this, our result shows the performance of the model on the selected hyper-parameter configuration and

data used during training and testing.

Fourth, in the expert evaluation, the participants submitted their evaluation anonymously. Due to this, we

couldn’t collect data that would enable us to extract trends and behaviors of the human judges both as a

group and individually.

Finally, we acknowledge that our approach was not evaluated in other programming languages other than

Java. But, the approach we took was general and can be scaled to different programming languages with the

availability of data.

Table 5.7: Model performance in BLEU on dataset by LeClair et al.

Model BLEU score

method_only 17.53

ast-attendgru 18.69

code2seq 18.84

codeGNN 19.93

codeNN 9.95
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5.4 Summary

We showed the result of our automatic and expert evaluation conducted to assess the performance of our

model compared to the current state-of-the-art and a baseline that does not use the proposed representation.

Our expert evaluation showed as our model (method_cfg) generates better summaries that describe the

functionality of a method compared to method_only and codeGNN.

In our automatic evaluation, we saw that our model performance was inferior to method_only a model that

does not use the proposed represenation. But, our approach that uses a control-flow graph as a source of

structural information performed better from a model that uses AST.
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6 Summary

Source-code summarization is a transformation of source code into a natural-language summary. Source-

code summarization approaches use information retrieval and natural language processing techniques to

generate summaries for source-code artifacts. Based on the type of technique employed, source-code summariza-

tion approaches are categorized into three groups: text-retrieval-based, heuristic-based, and data-driven-based

source-code summarization. This work comes under data-driven-based source-code summarization.

Data-driven source-code summarization approaches use deep-learning approaches to construct source-code.

Approaches under this category differ from one another based on the input representation and model ar-

chitecture used to design and implement the source-code summarization system. Researchers explored the

use of method tokens, parse trees, and AST as input representation. Also, they examined different model

architectures that mainly come under sequence-to-sequence models that fit the selected input representation.

This work uses of control-flow graph extracted from the SSA form of a program in source-code summarization

models. The control-flow graph is extracted to capture the contextual relationship between blocks of instruction

in the SSA form of a program. We encoded the control-flow graph along with method tokens using two

bi-directional LSTM encoders and used an LSTM decoder for the summary.

To train and evaluate the model, we created a source-code summarization dataset from a compilable projects

dataset by Martins et al. [49]. We used a set of heuristics described in chapter 4 (implementations) to process,

clean, and tokenize the dataset.

For the experiment, we implemented two models and compared them with the state-of-the-art codeGNN. The

first model (method_cfg) is the model that uses control-flow graphs and a sequence of method tokens as an

input. The second model (method_only) is the model that only takes a sequence of method tokens as an

input. We used a second baseline, the state-of-the-art model (codeGNN) by LeClair et al. [40].

We conducted two evaluations: an expert evaluation and an automatic evaluation. In the expert eval-

uation, we used human judges to rate summaries generated by the three models. In the intrinsic evaluation,

we used the BLEU score as a metric to measure the performance of each model on a test set.
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In the expert evaluation, the participants of the study gave the highest mean average-rating to the method_cfg

model. The second higher mean average-rating was given to the method_only model. The codeGNN model

received the least average rating. In a statistical significance test, the difference in mean average-rating

between method_cfg and method_only model was not significant. On the other hand, the difference in mean

average-rating between both models and codeGNN was significant. Therefore, both of our models significantly

outperformed codeGNN.

In the automatic evaluation, we conducted 10-fold cross-validation on a dataset split on the project level. In

this evaluation, we used the BLEU score to measure the performance of models. The method_only model

outperformed the method_cfg and codeGNN models in 8 out of 10 folds. In the remaining two folds, the

method_cfg model got the superior result. In seven out of 10 folds, the method_cfg model outperformed the

codeGNN model.

We also trained the method_only model on a dataset published by LeClair et al. [42]. We used the

same hyperparameter configuration used to train the model in our dataset. The model scored a BLEU score

of 17.53 on the dataset. The model did not outperform the state-of-the-art in the dataset, but we got a

comparable result. On the dataset, the highest recorded result is a BLEU score of 20.9, and codeGNN model

scored a BLEU score of 19.93. The positive side of the method_only model is that it is smaller in size and

takes almost half the time required to train the codeGNN model.

In this work, we explored the use of a control-flow graph in a source-code summarization model. Our

results show that encoding control-flow graphs along with method tokens does not increase the accuracy

of source-code summarization in terms of BLEU score compared to a model that does not use control-flow

graphs. In addition, there was no significant difference between the method_cfg and method_only models on

the mean average-rating given by the participants of the expert evaluation. On the other hand, we found

encoding control-flow graphs along with method tokens is a better alternative in source-code summarization

models compared to encoding AST in graph neural nets along with a sequence of method tokens.

Overall, we improved the state-of-the-art in method summarization on our dataset with two models: with and

without control-flow graphs. This work also gives an insight into the relation of the BLEU score to human

expert evaluations. Also, we constructed a source-code summarization dataset annotated with ASTs and

control-flow graphs.

54



6.1 Future Work

Following this work, we would like to address the limitations of this work. Compared to other datasets, the

dataset we used to evaluate our work is medium-sized. We want to evaluate this approach in a larger dataset.

In addition, we would like to work on creating a source-code summarization dataset validated for correctness

by human judges. Also, we would like to explore other sequence-to-sequence model architectures that can

improve the performance of our model. Additionally, we want to work on a larger scale expert evaluation to

explore further the BLEU score’s interpretation on source-code summarization models. This will give us an

insight on the interpretation of the BLEU score in source-code summarization context. Based on the insight,

we can further explore evaluation metrics that can be used to evaluate summaries generated for software

artifacts. We also would like to include the measure of agreement between our human judges who participated

in the evaluation.

6.2 Summary

This work explored the use of structural information extracted from control-flow graphs in a source-code

summarization model. To evaluate this approach, we created a source-code summarization dataset annotated

with a linearized control-flow graph and ASTs. We conducted human and automatic evaluations. In both

evaluations, we did not see a significant improvement due to the use of control-flow graphs in the source-code

summarization model compared to a model that does not use a control-flow graph. We improved the state-of-

the-art for method-level source-code summarization on our dataset.

Our approaches can be deployed on existing integrated development environments (IDE) either by inte-

grating an inference model that predicts a summary given an input representation or a prediction model

that predicts a summary given an input representation and an existing summary. The former can be used to

create new summaries for methods, and the latter can be used to update summaries following a code change.

But, we expect the model to be trained on large datasets that cover a diverse set of codebases to aid software

development and maintenance effectively.
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Appendix A

Appendix

A.1 Generated Summaries

In this section, we show example methods and summaries predicted by our models and the current state-of-
the-art.

public Vector2D mul (double a) {
this.x *= a;
this.y *= a;
return this;

}

Reference: multiply this vector by the given scalar
method_only: in place in this vector by a scalar
method_cfg: multiplies the vector with the given scalar
codeGNN: returns the value of the

public int getDepth(boolean inclusive){
int depth;
if (inclusive) depth=1;
else depth=0;
if (parent != null) return depth + parent.getDepth(true);
else return depth;

}

Reference: get the length of the path from this node to the root
method_only:returns the depth of the operand in this stack
method_cfg: returns the depth of the node in the search report
codeGNN: returns the the of the

private static String getCurrentTimeStamp(){
Calendar cal = Calendar.getInstance();
SimpleDateFormat sdfDate = new SimpleDateFormat("yyyyMMdd_HHmmss");
String date = sdfDate.format(cal.getTime());
return date;}

Reference: get the current time stamp from the running computer
method_only:gets the current time stamp
method_cfg: returns the current time in the format in the format
codeGNN: returns the the of the

private Date getRandomDate(){
return new Date(System.currentTimeMillis() + (long)86400000 * random.nextInt(DATE_SPAN_YEARS *

365));
}

Reference: picks random date from date span years interval
method_only:returns a random date in the given date
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method_cfg: returns a random date in the time and returns it
codeGNN: returns the the of the
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A.2 Expert Evaluation Results

In this section, we show the raw data of the user study in table 1.1. The table contains the evaluation of
20methods used in the study. We show the 5-level Likert scale result of all models along with the total and
average score of each model. To compute the total score, we the number of ratings by the corresponding rating
score. For example, we multiply the number of users who strongly disagreed with the summary by 1, the
number of users who disagreed with the summary by 2, and so on. Then, we add the numbers to compute the
total value. Finally, we divide the total with the number of participants, 26, to compute the average rating.

Table A.1: Expert evaluation raw data

Method Model Strongly disagree Disagree Neutral Agree Strongly agree Total Average
Method 1 codeGNN 14 8 4 0 0 42 1.615384615

method_only 1 6 5 10 4 88 3.384615385
method_cfg 0 7 8 9 2 84 3.230769231

Method 2 codeGNN 15 8 3 0 0 40 1.538461538
method_only 2 5 7 10 2 83 3.192307692
method_cfg 2 8 8 7 1 75 2.884615385

Method 3 codeGNN 20 2 4 0 0 36 1.384615385
method_only 2 2 2 10 10 102 3.923076923
method_cfg 4 2 2 10 8 94 3.615384615

Method 4 codeGNN 19 4 3 0 0 36 1.384615385
method_only 0 0 0 13 13 117 4.5
method_cfg 0 0 0 14 12 116 4.461538462

Method 5 codeGNN 13 10 3 0 0 42 1.615384615
method_only 0 1 4 18 3 101 3.884615385
method_cfg 5 12 5 3 1 61 2.346153846

Method 6 codeGNN 18 7 1 0 0 35 1.346153846
method_only 0 1 2 13 10 110 4.230769231
method_cfg 0 2 1 12 11 110 4.230769231

Method 7 codeGNN 19 5 2 0 0 35 1.346153846
method_only 1 8 4 10 3 84 3.230769231
method_cfg 0 6 5 12 3 90 3.461538462

Method 8 codeGNN 15 7 3 1 0 42 1.615384615
method_only 1 2 5 14 4 96 3.692307692
method_cfg 3 1 5 11 6 94 3.615384615

Method 9 codeGNN 19 5 2 0 0 35 1.346153846
method_only 5 4 10 7 0 71 2.730769231
method_cfg 1 11 7 6 1 73 2.807692308

Method 10 codeGNN 16 8 1 1 0 39 1.5
method_only 1 5 5 11 4 90 3.461538462
method_cfg 0 6 13 4 3 82 3.153846154

Method 11 codeGNN 15 8 2 1 0 41 1.576923077
method_only 0 1 7 14 4 99 3.807692308
method_cfg 2 8 7 7 2 77 2.961538462

Method 12 codeGNN 17 7 2 0 0 37 1.423076923
method_only 0 2 3 12 9 106 4.076923077
method_cfg 1 1 13 8 3 89 3.423076923

Method 13 codeGNN 18 5 3 0 0 37 1.423076923
method_only 1 1 9 11 4 94 3.615384615
method_cfg 1 2 8 11 4 93 3.576923077

Method 14 codeGNN 19 5 2 0 0 35 1.346153846
method_only 1 3 3 9 10 102 3.923076923
method_cfg 1 2 2 12 9 104 4
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Method 15 codeGNN 13 10 3 0 0 42 1.615384615
method_only 2 4 12 5 3 81 3.115384615
method_cfg 1 0 0 18 7 108 4.153846154

Method 16 codeGNN 19 5 2 0 0 35 1.346153846
method_only 0 1 8 15 2 96 3.692307692
method_cfg 0 0 2 9 15 117 4.5

Method 17 codeGNN 21 4 1 0 0 32 1.230769231
method_only 2 8 14 1 1 69 2.653846154
method_cfg 0 2 3 13 8 105 4.038461538

Method 18 codeGNN 18 7 1 0 0 35 1.346153846
method_only 1 9 10 4 2 75 2.884615385
method_cfg 1 7 6 11 1 82 3.153846154

Method 19 codeGNN 10 12 4 0 0 46 1.769230769
method_only 5 12 8 1 0 57 2.192307692
method_cfg 4 6 3 11 2 79 3.038461538

Method 20 codeGNN 14 11 1 0 0 39 1.5
method_only 7 10 5 4 0 58 2.230769231
method_cfg 8 10 4 4 0 56 2.153846154
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A.3 Expert Evaluation User Interface

In this section, we present two figures that show the user interface used in the expert evaluation. The two
figures show the evaluation page of the expert-evaluation user interface. Figure A.1 show the method and
summaries generated by each model. Figure A.2 show the radio buttons used to select rating for each summary.
Also, in figure A.2 we can also see an optional field to submit a summary for the given method.

Figure A.1: Expert evaluation user interface 1
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Figure A.2: Expert evaluation user interface 2
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