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ABSTRACT

Traditionally, two kinds of methods are applied in trajectory analysis: 1) hierarchical

modeling based on a multilevel structure, or 2) latent growth curve modeling (LGCM) based

on a covariance structure (Raudenbush & Bryk, 2002; Bollen & Curran, 2006). However, this

thesis used a third trajectory analysis method: group-based trajectory modeling (GBTM).

GBTM was an extension of the finite mixture modeling (FMM) method that has been widely

used in various fields of trajectory analysis in the last 25 years (Nagin & Odgers, 2010).

GBTM was able to detect unobserved subgroups based on the multinomial logit function

(Nagin, 1999). As an extended form of FMM, GBTM parameters could be estimated using

maximum likelihood estimation (MLE) procedures. Since FMMs had no closed-form solution

to the maximum likelihood, the Expectation-Maximization (EM) algorithm would often be

applied to find maximized likelihood (Schlattmann, 2009). However, GBTM used a different

optimization method called the Quasi-Newton procedure to perform the maximization.

This thesis studied both GBTM with a single outcome and trajectory modeling with

multiple outcomes. Nagin constructed two extended trajectory models that can involve mul-

tiple outcomes. Group-based dual trajectory modeling (GBDTM) deals with two outcomes

combined with comorbidity or heterotypic continuity, while group-based multi-trajectory

modeling (GBMTM) could include more than two outcomes in one model with the same

subgroup weights among the outcomes (Nagin, 2005; Nagin, Jones, Passos, & Tremblay,

2018; Nagin & Tremblay, 2001).

The methodology was applied to the Korea Health Panel Survey (KHPS) data, which

included 3983 individuals who were 65 years old or older at the baseline. GBTM, GBDTM,

and GBMTM were three approaches performed with two binary longitudinal outcomes - de-

pression and anxiety. GBDTM was selected as the best model with this data set because it is

more flexible than GBMTM when handling group membership, and unlike GBTM, GMDTM

addressed the interrelationship between the outcomes based on conditional probability. Four
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depression trajectories were identified across eight years of follow-up: “low-flat” (n = 3641;

87.0%), “low-to-middle” (n = 205; 8.8%), “low-to-high” (n = 33; 1.3%) and “high-curve”

(n = 104; 2.8%). Also, four anxiety trajectories were identified with: “low-flat” (n =3785;

92.5%), “low-to-middle” (n = 96; 4.7%), “high-to-low” (n =89; 2.2%) and “high-curve” (n

= 13; 0.6%) trajectory groups. Female sex, the presence of more than three chronic diseases,

and income-generating activity were significant risk factors for depression trajectory groups.

Anxiety trajectory groups had the same risk factors except for the presence of more than

three chronic diseases.

To further study the GBTM, GBDTM and GBMTM approach, the simulation study was

also performed based on two correlated repeatedly measured binary outcomes. Compared

based on these two outcomes with different correlation levels (ρ = 0.1, 0.2, 0.4, 0.6). GB-

DTM was always a better model than GBTM when we were interested in the association

between the two outcomes. GBMTM could be used instead of GBDTM when the correlation

coefficients between two longitudinal outcomes were high.
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Chapter 1 INTRODUCTION

1.1 Rationale

A trajectory is defined as: “The curved path that an object follows after it has been

thrown or shot in the air” (Cambridge Dictionary, 2018). However, in statistics, a trajectory

specifically refers to evaluating one or more outcomes over age or time, as in a repeat mea-

surement from a longitudinal study (Nagin, 2005). Hierarchical modeling and latent growth

curve modeling (LGCM) are two methods applied in trajectory analysis (Raudenbush &

Bryk, 2002; Bollen & Curran, 2006). Hierarchical modeling focuses on individual varia-

tions with random effects, which are called growth curves. LGCM uses covariance structure

modeling to generate trajectories (Jones, Nagin, & Roeder, 2001).

Hierarchical modeling and LGCM were used to study trajectory average estimation or us-

ing covariates to explain the mean variability. However, another trajectory analysis method,

called Group-based trajectory modeling (GBTM) used unobserved latent class variables to

identify the underlying subgroup trajectories from the population (Nagin, 2005). GBTM as-

sumes that the population contains a mixture of unobserved groups with unique development

trajectories (Nagin & Odgers, 2010). GBTM identifies the distinct groups with correlated

physical or biological characteristics (Nagin & Odgers, 2010). GBTM was developed to in-

vestigate the number of criminal offenses (count outcomes) an individual had committed

and apply this to the study of criminal careers (Nagin & Land, 1993). This criminology

study included more than 400 ten-year-old boys who were followed biannually until they

were 32-years-old and involved in up to 11 criminal offense measurements. This criminal of-

fense study identified four subgroups in the studied population (Nagin & Land, 1993). Also,

GBTM was extended to combine both a Poisson model and a multinomial logic function

as a mixture model at the individual level, which is useful for revealing heterogeneity in a

population of interest (Nagin & Land, 1993).

GBTM is a semi-parametric model since it lies between parametric and non-parametric
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models (Nagin, 1999). GBTM allows us to estimate the trajectory of the population’s

prototypical development and can clearly reveal the uncertainty of latent group membership

based on multiple risk factors that may influence decision-making about group membership

(Roeder, Lynch, & Nagin, 1999). Three types of repeat measurement outcomes can be

applied in the model: (i) continuous data, following a normal distribution; (ii) count data,

following a Poisson distribution or a zero-inflated Poisson distribution; or (iii) binary data,

following a binary distribution (Nagin, 2005). GBTM has three main strengths. First,

the population is assumed to be constituted of distinct groups, each with a different latent

tendency. Second, GBTM estimation affects the covariates not only for trajectory shape,

but also for group membership. Time-independent covariates impact the trajectory of group

portions. Time-dependent covariates explain variations in trajectory shapes. Third, besides

the time variables, the trajectory groups can be identified by GBTM without any other

covariates. Fourth, GBTM handles non-monotonic trajectories and irregular trajectories in

the population (Jones et al., 2001).

GBTM can only handle a single outcome with multiple measurement times for each in-

dividual. What if there are two or more related outcomes that interest us? One type of

correlation between several outcomes is called “comorbidity”. Here, “comorbidity” means

that undesirable conditions such as anxiety and depression occurred contemporaneously more

than once (Kessler et al., 1994). Another type of correlation is called “heterotypic continu-

ity”, which recognizes that two outcomes may be linked in an individual but do not co-occur

(Caspi & Roberts, 2001), for example, being physically aggressive during adulthood and

committing crimes as adults. Nagin developed two kinds of trajectory modeling methods

that are able to deal with two or more outcomes with “comorbidity” or “heterotypic conti-

nuity” correlations. First, group-based dual trajectory modeling (GBDTM) was adopted as

an extension of the group-based trajectory modeling using joint probability to link two out-

comes into one model (Nagin & Tremblay, 2001). Another recently introduced model called

group-based multi-trajectory modeling (GBMTM) combines trajectory modeling with two
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or more outcomes into one model. However, GBMTM assumes that every outcome should

have the same number of trajectory groups, and that each trajectory group includes the

same group memberships among the outcomes (Nagin et al., 2018).

Compared to a single outcome GBTM, GBDTM or GBMTM offers multivariate analysis

to study correlated outcomes. For example, in psychiatric studies, using a single outcome is

insufficient to characterize a disease’s complexity (Teixeira-Pinto, Siddique, Gibbons, & Nor-

mand, 2009). Therefore, GBDTM and GBMTM are necessary for multiple outcomes, such

as those on the depression and anxiety scales. Teixeira-Pinto and his colleagues (2009) did

a psychiatric study with three outcomes to compare the difference between single outcome

regression and the mixture model using a latent variable to link the three outcomes together

as a multivariate model. He showed that multivariate mixture modeling has several advan-

tages compared to single outcome modeling. (i) It is clear that, if only a single outcome is

considered in each model, the relationship between the outcomes is effectively omitted com-

pared to the multivariate model. This could trigger a lack of efficiency in the analysis and a

failure to identify covariates’ effects; (ii) if there are missing values in the outcomes, single

outcome analyses may produce biased covariate estimations, especially when these values are

not missing at random; and (iii) multivariate mixture modeling provides covariates’ overall

effect while single regression modeling does not (Teixeira-Pinto et al., 2009).

Nagin’s study includes two varieties of multiple outcomes trajectory modeling: GBDTM

and GBMTM. These two varieties are mostly applied to criminology (Nagin, 2005). In

psychiatric and mental health studies, on the other hand, multiple published papers use

single group-based trajectory modeling. Especially in the years immediately following their

development, GBDTM and GBMTM were rarely used. For example, in Mustillo’s study

of obesity and psychiatric disorders, they studied only a single outcome (obesity) and used

psychiatric disorders as time-dependent covariates (Mustillo et al., 2003). More recent stud-

ies suggest that for outcomes with “comorbidity” or “heterotypic continuity”, it would be

better to use GBDTM (Nagin & Tremblay, 2001). Thus, GBDTM has been more frequently
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applied in psychiatric and mental health studies. For example, one study uses GBDTM to

demonstrate the causal relationship between substance use during adolescence and obesity

in young adulthood (Huang et al., 2013). Another study applied GBDTM to study trajecto-

ries and the relationship between co-occurring delinquency and depressive symptoms among

male and female adolescents separately (Wiesner & Kim, 2006).

Trajectory analysis of depression and anxiety were usually developed with GBDTM based

on youth and adolescence (Côté et al., 2009; Feng, Shaw, & Silk, 2008; McLaughlin & King,

2015; Olino, Klein, Lewinsohn, Rohde, & Seeley, 2010). To study the trajectory classes in

older adults, researchers often focused on only depression using GBTM (Liang, Xu, Quiñones,

Bennett, & Ye, 2011; Kuo, Lin, Chen, Chuang, & Chen, 2011; Byers et al., 2012; Hsu, 2012;

Montagnier et al., 2014; Kuchibhatla, Fillenbaum, Hybels, & Blazer, 2012). However, de-

pression and anxiety trajectories have been rarely studied simultaneously. Three studies were

found with the development of depression and anxiety trajectories in older adults (Holmes

et al., 2018; Rzewuska, Mallen, Strauss, Belcher, & Peat, 2015; Spinhoven, van der Veen,

Voshaar, & Comijs, 2017). Holmes et al. and Spinhoven et al. used latent growth mixture

modeling to identify different course trajectories, where latent growth mixture modeling

assumes that there are unique and different subgroups under the population (Frankfurt,

Frazier, Syed, & Jung, 2016). Rzewuska et al. used latent class analysis to find depression

and anxiety trajectories separately. None of them used GBDTM or GBMTM to study de-

pression and anxiety simultaneously in older adults. Therefore, I am encouraged to use all

three group-based trajectory models to study depression and anxiety in older adults.

Moreover, there are no studies that systematically explain if GBDTM developed for

two distinct, but correlated outcomes (Nagin & Tremblay, 2001) or GBMTM developed for

similar outcomes (Nagin et al., 2018) should be used instead of GBTM. If the correlation is

too low, can we still use GBDTM? How can we demonstrate that the outcomes are similar?

To compare these three trajectory modeling methods and answer these questions, this thesis

uses real data analysis to evaluate depression and anxiety outcomes within the Korea Health
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Panel Study (KHPS). A simulation study was conducted to identify the most useful model

when different correlation levels between two longitudinal outcomes were present.

1.2 Research objectives

My thesis has three study objectives:

Objective 1: To model the trajectories using group-based trajectory modeling (GBTM),

group-based dual trajectory modeling (GBDTM), and group-based multi-trajectory

modeling (GBMTM) approaches using Korea Health Panel Survey (KHPS) data. Com-

pare the trajectory shape and membership differences from those three approaches, and

determine the best modeling method for depression and anxiety outcomes.

Objective 2: Based on the best modeling method, identify relevant risk factors that

may influence the trajectory groups for depression and anxiety outcomes in the KHPS

dataset.

Objective 3: To determine in what kind of situations we should use GBDTM or

GBMTM rather than separate single GBTM and to also provide strategies to sim-

ulate various scenarios.

This thesis is organized as follows. The literature review is featured in Chapter 2, while

statistical methods are discussed in Chapter 3. I describe different trajectory analysis meth-

ods and depression and anxiety among older people in Chapter 2. The theory of finite

mixture models is introduced in Section 3.2. GBTM, GBDTM and GBMTM are presented

in Section 3.3, Section 3.4 and Section 3.5, respectively. The aforementioned trajectory

methods are applied to real KHPS data in Chapter 4. The results from simulation studies

are presented in Chapter 5. The discussion is presented in Chapter 6, and the conclusion is

in Chapter 7.
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Chapter 2 LITERATURE REVIEW

2.1 Review of trajectory models

The key methods of trajectory analysis will be reviewed in this section. They are growth

curve modeling (GCM), hierarchical modeling, latent growth curve modeling (LGCM), and

group-based trajectory modeling (GBTM).

2.1.1 Growth curve modeling

Trajectory analysis has a long history in statistics. In the early nineteenth century,

trajectory analysis was focused on changes in whole groups or collectivities rather than

individuals. The method predicted continuous mortality rate over time for a sample of

individuals by estimating a single trajectory (Gompertz, 1833). Later, multiple logistic

curves were applied to examine human development based on different characteristics, such as

national food consumption, influenza, etc. (Robertson, 1908). The ANOVA model predicting

the rate of growth from characteristics such as experimental conditions and sex was the first

attempt to analyze both the trajectory of a group of individuals and to set up an individual’s

trajectories varied at random (Wishart, 1938). Subsequently, ANCOVA and MANOVA

were applied in trajectory analysis to calculate the individual trajectories. The difference in

averages from the group membership was examined later (Gilriches, 1957).

More recently, growth curve modeling (GCM) has been implemented in trajectory anal-

ysis. GCM can estimate the difference among different individuals based on the variation

between them (Bollen & Curran, 2006). Usually, the variation within individuals, called

latent trajectories, relates to time trends. These time trends can be polymorphic between

different individuals as a result of each person’s characteristics, such as age, etc. The GCM

could contain both fixed and random effects. The fixed effect provides a population’s over-

all average trajectory. The random effect is the variation in the individual trajectories in

relation to the overall mean (Gardiner, Luo, & Roman, 2009). We need to consider random
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effects because random effects are a way to measure trajectory parameters. Small random

effects mean that trajectories are similar among individuals. On the contrary, large random

effects indicate a large difference in trajectories between individuals (Verbeke, Molenberghs,

& Rizopoulos, 2010). These fixed and random effects allow us to determine growth char-

acteristics for the whole group and for individuals within the group (Curran, Obeidat, &

Losardo, 2010). Compared to the conditional longitudinal method, and based on current ap-

proaches, GCM is “more flexible to deal with partially missing data, unequally spaced time

points, non-normally distributed or discretely scaled repeated measures, complex nonlinear

or compound-shaped trajectories, time-variant covariates (TVCs), and multivariate growth

processes” (Curran et al., 2010).

There are two commonly used approaches for GCM: (i) hierarchical modeling structure,

also called multilevel modeling for the growth curve, which is fitted using a multilevel mod-

eling framework (Bryk & Raudenbush, 1987), and (ii) structural equation modeling (SEM)

framework, which is a method using observed repeated measurements to indicate unobserved

time trends that rely on one or more latent factors (Bollen & Curran, 2006). Compared to

these two approaches, the multilevel modeling framework is better at estimating higher lev-

els of nesting characteristics. Nevertheless, the SEM framework is specialized in evaluating

latent variables and shrinks down the error of measures from both the outcome variable and

covariates (Bollen & Curran, 2006).

Defining the sample size for GCM estimation is also critical. The required sample size

for GCM may be different for different studies. For most studies, the sample size should not

be fewer than 100 (Bollen & Curran, 2006). However, Huttenlocher et al. did a trajectory

analysis of children’s early vocabulary growth with a small sample size n=22 (Huttenlocher,

Haight, Bryk, Seltzer, & Lyons, 1991). On account of the relationship between the subject

numbers and the number of repeat measurements for each individual, the total observations

from the longitudinal data must be considered for model estimation and statistical power.

The number of repeat measurements for each individual may also influence model estimation.
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Each individual should have at least three measurement points during the study. However,

most studies are not able to reach this goal because of the missing values from dropping

off. Most studies consider that at least 80%-90% of the data should have more than three

measurements (Curran et al., 2010). The repeated measurements should be continuous and

follow a normal distribution from the initial GCM. Researchers often use the maximum

likelihood estimation (MLE) method for estimations. Nevertheless, in the case of continuous

data that is not normally distributed or discrete, or ordinal, alternative approaches such

as three-level hierarchical modeling, can estimate the model (Satorra, 1990; P. D. Mehta,

Neale, & Flay, 2004). Discrete data can be managed by exponential family trajectories, while

piecewise linear modeling is often implemented for nonlinear functions (Cudeck & Harring,

2007; Bollen & Curran, 2006). In general, selecting a reasonable sample size and applying

the right model that relies on the appropriate data format is vital for model fitting.

There are two approaches to dealing with missing data in GCM. The first option is to

use the MLE method directly (Arbuckle, 1996). In the MLE method, the data points can be

weighted for estimations. The second approach is the imputation approach. In this method,

missing data is replaced based on observed data, after which data analysis is carried out on

the imputed dataset (Schafer, 1999). Both approaches can be used under the assumption

that data are missing completely at random or missing at random. However, for data that is

missing not at random, neither the MLE approach nor the imputation approach is suitable.

2.1.2 Hierarchical modeling

Hierarchical modeling is used in various studies, though it has different names in different

fields. Sociologists define this model as the “multilevel linear model” (Goldstein, 1991), while

“mixed-effects model” and “random-effects model” are often applied in biometric research

(Elston & Grizzle, 1962). In statistics, this model is also called the “covariance components

model” (Dempster, Rubin, & Tsutakawa, 1981). “Hierarchical modeling”, however, is the

most commonly used name because it highlights the importance of the data structure. This
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model can be applied not only in longitudinal studies to generate an individual’s growth

trajectory, but also in organizational studies to investigate workplace characteristics or in

cross-national studies to generate the difference in characteristics from demographers such

as temperature and elevation, etc. (McCoach, 2010). Hierarchical modeling was first un-

derstood as a portion of the Bayesian estimation of linear models (Lindley & Smith, 1972).

Lindley and Smith developed a basic framework for the complex error structure for nested

data. However, this model is too weak to handle the estimation of covariance components

from unbalanced data (Lindley & Smith, 1972). Therefore, no estimation method was proved

to be useful until the expectation-maximization (EM) algorithm was developed (Dempster,

Laird, & Rubin, 1977). Dempster suggests that the EM algorithm is suitable for estimating

the covariance structure from hierarchical modeling (Dempster et al., 1981). After Strenio

used hierarchical modeling in longitudinal trajectory for the first time (Strenio, Weisberg, &

Bryk, 1983), two methods for covariance component estimation were proposed: reweighted

generalized least squares (Goldstein, 1986) and a Fisher score algorithm (Longford, 1987).

In general, hierarchical modeling contains two stages. The first stage provides a function

to measure an individual’s growth with their random error, which is called a within-subjects

model. The second stage defines the different subjects based on personal characteristics

that influence individual growth parameters, such as sex, race, and so on (Lunn, Barrett,

Sweeting, & Thompson, 2013). Thus, for trajectory analysis, hierarchical models are used

because: (i) they focus on individual growth and estimate the trending trajectories’ proper-

ties; (ii) individual development could be impacted by different factors that are particular to

each individual, which is a way to find changing correlates; (iii) it allows hypothesis tests for

effects from experimental treatments on repeat measurements to be implemented (Bryk &

Raudenbush, 1987). The hierarchical model assumes normality for growth parameters (Bryk

& Raudenbush, 1987). However, when the sample size is too small, variance and covariance

based on the normality assumption may not be applicable. Suppose the normality criterion

is not met or the sample size is too small. In that case, the correlation between baseline
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status, the rate of follow-up changing, and the growth parameters’ reliability could be less

(Bryk & Raudenbush, 1987).

When it was initially developed, hierarchical models could only be applied with contin-

uous data with a normal distribution. However, this model is not easy to deal with discrete

outcomes such as binary outcomes, count data, or ordered categorical outcomes. For these

outcomes, it is impossible to assume linear models and normality at level one. To deal

with this problem, software was developed to access discrete outcomes based on two-level or

three-level hierarchical modeling (Goldstein, 1991). However, software approximations could

be inaccurate in certain conditions (Gelman, Carlin, Stern, & Rubin, 1995). Therefore, two

improved approximations for the maximum likelihood for the two-level model were devel-

oped based on the Gauss-Hermite quadrature and the high-order Laplace transform method

(Pinheiro & Bates, 1995; Raudenbush, Yang, & Yosef, 2000).

Researchers can use the logit of hierarchical models to deal with discrete outcomes be-

cause of statistical and computational developments. For example, a longitudinal study was

done with a binary outcome as high-rate offenders related to the changes in life circum-

stances (Horney, Osgood, & Marshall, 1995). In this study, the logistic regression model

for individual change was defined in level 1; in level 2, researchers defined the variation of

the individual parameter change. In another example, a longitudinal study was used to

check the relationship between violent crime and neighborhood. In this study, the count

outcomes (defined as the number of homicides) were applied to the two-level hierarchical

model (Sampson, Raudenbush, & Earls, 1997). These models, called hierarchical general-

ized models, are widely used to deal with discrete structure outcomes. The two-level model

is a nested model structure; for example, individuals (level 1) nested within households (level

2). Three steps need to be implemented in level 1: sampling model, finding link function,

and variable prediction through structure model (McCoach, 2010).

Two other methodological developments in hierarchical models are commonly used: la-

tent variable hierarchical modeling and Bayesian inference. Latent variable hierarchical
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models deal with unbalanced data. This approach uses observed, incomplete data to ap-

proximate the correlation among the latent variables (Robins, Rotnitzky, & Zhao, 1995).

Another approach, the Bayesian inference, provides a more realistic standard error, creates

various graphs and summary results, and compares with the MLE method. The Monte

Carlo approximation, which contains data augmentation, and Gibbs sampling are often

implemented to approximate the posterior for Bayesian inference (Tanner & Wong, 1987;

Gelfand & Smith, 1990). Overall, hierarchical models can be used for trajectory analysis

and rely on the multilevel modeling framework.

2.1.3 Latent growth curve modeling

Latent growth curve modeling (LGCM) is a covariance structure modeling for trajectory

analysis. Baker used latent variables to deal with trajectory modeling in the factor analytic

framework by introducing loadings based on a factor pattern matrix with differential stages

of growth (Baker et al., 1954). Baker found that using factor analysis to reduce complicated

repeat measurements to fewer relevant latent factors could help us better comprehend vari-

ations from the pattern. Baker’s study is based on an unrestricted factor analytic model

because he only selected four factors with 20 repeated measures. Unrestricted factor analy-

sis, also called exploratory factor analysis, is a method for examining the internal reliability

of a measure. Unrestricted factor analysis can reproduce correlations between observed

variables based on the loading factors (Fabrigar, Wegener, MacCallum, & Strahan, 1999).

Loading factors represent the correlation coefficient between the factor and variable (Shevlin

& Miles, 1998). The formal function of identifying variation with respect to time was de-

veloped using latent variable factor analysis for individual estimations. However, estimating

particular functional types of growth is based on the parametrization of factors (Tucker &

Lewis, 1973). With time, the confirmatory latent variable framework developed to embed

trajectory modeling and the trajectory modeling framework. These new frameworks have

the same power as structural equation models (SEMs) to estimate and test the variation
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of latent curved models (Meredith & Tisak, 1990). Instead of focusing on observed factors’

interest, unobserved latent factors were also considered to promote the relationship between

observed factors.

The LGCM can measure not only linear trajectories but also nonlinear trajectories. Based

on the higher power of time measurements, such as quadratic and cubic polynomials, poly-

nomial functions are usually used to deal with the nonlinear trajectory from LGCM (Cohen,

1978). LGCM can generally be divided into two kinds of modeling: the unconditional la-

tent growth curve model and the conditional latent growth curve model. The unconditional

latent growth curve model involves none of the covariates that may affect the trajectory.

LGCM comes from the SEM perspective that uses the latent variables to determine the tra-

jectories (Meredith & Tisak, 1990). On the other hand, the conditional latent growth curve

model includes covariates or explanatory variables as a way to directly influence the random

intercepts and slopes. Thus, individual trajectories would change when different covariates

are included (Bollen & Curran, 2006). Two kinds of predictors can also be incorporated

into the model: time-invariant covariates (TICs), which do not change over time, and time-

variant covariates (TVCs), which do change over time. TICs should be independent of time,

which means the TICs are consistent at each time point measurement (Curran, Bauer, &

Willoughby, 2004). Nevertheless, TVCs are also easily expanded into the growth model.

Unlike TICs, which directly predict group factors, TVCs indicate repeated measurements to

control the effect of growth factors (Singer et al., 2003). The TVC model can include not

only the interaction between time and TVCs, but also the interaction between TICs and

TVCs. In other words, TICs are used to evaluate between-person effects, but TVCs assess

within-person effects (Bollen & Curran, 2006).

Several extensions of the LGCM have developed since it was first used. The multivariate

latent curve model estimates growth curves using two outcomes of repeat measurements

in one model (McArdle, 2014). However, the multivariate latent curve model can only

include TICs. If TVCs are included in the multivariate latent curve model, the relationship
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of time-specific structural should be generated among the repeated measures. To combine

elements for both TVCs and the multivariate latent curve model, the autoregressive latent

trajectory (ALT) model was developed (Curran & Bollen, 2001). The ALT model is suitable

for modeling time-specific and random curve components at the same time. Moreover,

except for handling continuous repeat measurements, the ALT model can also apply to

other formats of the response data. The auxiliary threshold model is a way to estimate

ordinal or dichotomous variables with polychoric moment structures based on the maximum

likelihood estimation method (Olsson, 1979). The polychoric moment structure is an MLE

method for the polychoric correlation between a pair of ordinal variables. Additionally,

polychoric correlation is a technique that uses two observed ordinal variables to estimate

the correlation between two theoretically normally distributed continuous latent variables

(Ekström, 2011). The models for nominal or count variables are designed with the SEM

approach but have some limitations such as over-dispersion (Rabe-Hesketh & Skrondal,

2004). However, alternative methods have been developed later, such as LGCM to handle

Zero-Inflated Count Data (Liu, 2007; Yoon, Brown, Bowers, Sharkey, & Horn, 2015).

2.1.4 Group-based trajectory modeling

Group-based trajectory modeling (GBTM) is a trajectory analysis method that applies

finite mixture modeling (FMM). Unlike other trajectory modelings such as hierarchical mod-

eling and LGCM, parameters from GBTM are not estimated by cluster analysis. Instead,

they are estimated by maximum likelihood estimation (MLE) (Nagin, 1999). As well, GBTM

uses a multinomial modeling strategy, while hierarchical and latent growth curve modeling

employs multilevel models and covariance structure models (Jones et al., 2001). GBTM

using sandwich estimator is not influenced by covariance structure, random components are

not permitted at any level of latent factors (Nagin & Tremblay, 2001). Though both hierar-

chical modeling and LGCM are focused on finding trajectories within the overall population

or within individuals, GBTM is inclined to find sub-group trajectories based on defined
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unknown latent variables (Nagin, 1999).

As mentioned in Section 1.1, GBTM was first used in criminal offense studies (Nagin

& Land, 1993) and has since been applied in more than 80 criminology studies (Piquero,

2008). Yet many studies outside of criminology also use this model (Bushway & Weisburd,

2006). Trajectory models are often built to study the relationship between etiology and

mental health-related disorders. For example, a trajectory analysis of depressive symptoms

during childhood and adolescence related to sex and depression outcomes when individuals

become adults (Dekker et al., 2007). In another example, GBTM was used to investigate

post-traumatic stress in veterans after the Gulf War (Orcutt, Erickson, & Wolfe, 2004). Fur-

thermore, GBTM is frequently used in randomized clinical trials to discover heterogeneity in

responses to treatment. It has also been used to handle causal inference from epidemiological

observation studies when the outcomes are not randomized (Nagin et al., 2018)

In recent years, some model extensions have been incorporated into GBTM. Nagin in-

troduced a way to include time-dependent covariance to influence within-subject effects and

group-based dual trajectory modeling (GBDTM) to deal with a trajectory model containing

two correlated outcomes (Nagin, 2005). Group-based multi-trajectory modeling (GBMTM)

can include more than two associated outcomes, but the number of trajectory groups for

each outcome must be the same (Nagin et al., 2018). Nagin wrote that, “By segmenting the

data into trajectory groups, the group-based approach to studying development, provides an

empirical means of summarizing large amounts of data in an easily comprehensible fashion

and for testing long standing developmental theories with a taxonomic dimension” (Nagin

& Odgers, 2010).
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2.2 Review of depression and anxiety

2.2.1 Introduction to depression and anxiety

Mental health disorders, or mental illness, are defined as the various mental health condi-

tions that may influence individuals’ thoughts, perceptions, emotions, behavior, and relation-

ships with others (WHO, 2020b). Compared to mood fluctuations and emotional responses

to the challenges in daily life, depression and anxiety are more severe health conditions that

may influence our work, studies, and relationships with our families (WHO, 2020a). Further-

more, depression and anxiety may lead to disability, or in extreme cases, suicide (Isometsä

et al., 1994; Bruce, 2001). By WHO 2018 report, the number of people who have suffered

from depression and anxiety at some point in their lives grew from 416 million to 615 million

between 1990 and 2013, an increase of around 50%. Thus, almost 10% of the world’s popula-

tion has suffered from depression or anxiety (WHO, 2018). Globally, in 2015, the estimated

prevalence was 4.4% for depression and 3.6% for anxiety (WHO, 2017).

The symptoms of depression include deep sadness and depressed mood; loss of interest

in activities; appetite change; sleeping too little or too much; a lack of energy and increased

fatigue; doing more in purposeless physical activities; speaking and moving more slowly;

feeling worthless or guilty; having difficulty thinking, concentrating and decision making;

and a willingness to die or commit suicide (WHO, 2017; Comstock & Helsing, 1977). The

symptoms of anxiety include persistent and excessive worry, rapid breathing, feeling weak

or tired, sleeping troubles, muscle tension, sweating, trembling, trouble concentrating, and

being easily fatigued (Juson, 2018; Kawachi, Sparrow, Vokonas, & Weiss, 1994; Himmelfarb

& Murrell, 1984). There is some overlap among symptoms in depression and anxiety, such as

trouble concentrating or sleeping disorder and being more fatigued (Smith, 2018). However,

two factors can help distinguish depression from anxiety. First, patients with depression usu-

ally move slowly, which means their reactions are listless or dull (Zigmond & Snaith, 1983).

In contrast, patients with anxiety feel more keyed up to manage their random thoughts.
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Second, patients with anxiety tend to be deeply worried about the future, while depressed

patients tend to be listless and hopeless and do not much care about the events of the future

(Kendall & Watson, 1989).

2.2.2 Depression and anxiety in South Korea

Depression and anxiety are increasing worldwide. Compared to most other areas, South-

east Asia has higher rates of depression and anxiety. In 2015, 85.76 million in South-east

Asia were suffering from depression, while 60.05 million were suffering from anxiety (WHO,

2017). These accounts were made up for 27% and 21% of the global depression and anxiety

cases, respectively (WHO, 2017). In South Korea, the prevalence of depression disorders

have consistently increased since 2001 (4% in 2001; 5.6% in 2006; 6.7% in 2011) (Cho & Lee,

2005; Cho et al., 2015). Similarly, the prevalence of anxiety disorders increased from 5% in

2006 to 6.8% in 2011, which is higher than any other East Asian countries (2.7% in China

and 4.8% in Japan) (Cho et al., 2010, 2015; Shen et al., 2006). Korea has the highest suicide

mortality rate (24.6 per 100000 individuals) among Organization for Economic Co-operation

and Development (OECD) countries (OECD-data, 2019). Koo points to the country’s high-

speed economic growth and changing social values over the last 50 years as responsible for

the increase in mental health problems among South Koreans (Koo, 2018).

The patterning of depression and depression by age is complex and highly affected by

different cultural (Kirmayer et al., 2001; Lenze & Wetherell, 2011). Usually, depression and

anxiety have less prevalence in older adults than young adults (Fiske, Wetherell, & Gatz,

2009; Lenze & Wetherell, 2011; Sutin et al., 2013). However, one study shows the prevalence

of depression and anxiety among older people is higher than the overall population in South

Korea (Cho, Lee, Kim, Lee, & Sohn, 2011). One study reported that 10% to 20% of the older

people suffer from depression disorder; additionally, 9.1% to 33% of the older adults have

clinically significant depressive symptoms (Cho et al., 2011). A prospective community-based

study shows that the prevalence of anxiety symptoms among older adults is 38.1% (Kang
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et al., 2016). Another study of 1204 older individuals found that 10.2% suffered depression

and 15.3% suffered anxiety. Moreover, 22.8% were identified with comorbid anxiety and

depression (Kang et al., 2017). Given that South Korea’s population is aging, the older

people’s tendency to underestimate or underreport mental illness will become problematic

(Watkins, 2018). Some research suggests that older Korean adults may be less likely to

admit to being depressed or anxious because most (78%) see depression or anxiety as a

sign of weakness. In contrast, only 6% of older American people have the same perspective

(Watkins, 2018). Therefore, it is necessary to pay more attention to depression and anxiety

in the older population.

2.2.3 Comorbidity of depression and anxiety in older adults

Depression and anxiety are two frequently concurrent mental health problems in the older

population (Lenze et al., 2001). Comorbid depression and anxiety is defined as patients

with both depression and anxiety disorders (Lenze et al., 2001). An increasing number of

researchers focus on studying the comorbidity of depression and anxiety in older adults.

There are a few reasons why this is so. The first reason is that, in almost every country in

the world, the population is aging. In South Korea, this is a more serious issue than in other

developed countries (Isabella, 2017). People aged 65 or older in South Korea made up 3.8%

of the population in 1980; this rose to 14.2% in 2020, a number that is more than double the

number of people aged 14 or younger (Cho et al., 2011). Another reason why this topic has

received increased scientific attention is that comorbid depression and anxiety in the older

population involves different risk factors, presentation, comorbidity, and the course of the

illness compared with youth. For example, older people who suffer from one or more chronic

diseases have a greater chance of developing late-onset depression and/or anxiety (Manela,

Katona, & Livingston, 1996; Krishnan, Hays, & Blazer, 1997).

In the 1990s, the comorbidity between depression and anxiety was less in older adults

compared to young adults (Flint, 1994). However, as time goes by, a number of studies
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have found that the prevalence of comorbid depression and anxiety in geriatric populations

is similar to the young adult population (Beekman et al., 1998). Furthermore, a study

demonstrated that 47.5% of age 65 or older people who suffer depression also had comorbid

anxiety disorders (Beekman et al., 2000). In South Korea, one study discovered that 69.3%

of the older people with depression also have anxiety disorders, and 59.9% of older people

with anxiety also have depression disorders (Kang et al., 2017). This significant change

in prevalence can be explained both by the fact that anxiety is more common and by the

fact that diagnostic instruments among older adults have improved (Lenze et al., 2001). In

psychopathology, older patients suffering both depression and anxiety are regarded as more

severe cases compared to the patients with only one disorder (Lenze et al., 2001). A study

shows that depression patients with anxiety symptoms have more severe somatic symptoms

compared to the patients with just depression (Flint & Rifat, 1997b). Gould et al. also

found that compared with elevated depressive symptoms, anxiety is associated with greater

multimorbidity in older adults in Health and Retirement Study (Gould, O’Hara, Goldstein,

& Beaudreau, 2016). Moreover, lower social function and higher suicide rates persisted

in comorbid depression and anxiety patients compared to patients with only depression or

anxiety (Lenze et al., 2000; Allgulander & Lavori, 1993).

2.2.4 Risk factors for depression and anxiety in older adults

Being female, unmarried, and having a lower income are demographic risk factors that

commonly relate to depression and/or anxiety (Blazer, Burchett, Service, & George, 1991;

Heun, Papassotiropoulos, & Ptok, 2000). Depression has a higher prevalence in older people,

especially ages 55-74, but anxiety does not change substantially according to age (WHO,

2017). Indeed, the WHO (2017) found that older people are slightly less anxious than younger

segments of the population. Another study found that symptoms of depression declined with

age for both males and females and that symptoms of anxiety had a significant decrease

as women aged but not men (Henderson et al., 1998). However, anxiety disorders may
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be underdiagnosed later in life because of complications of medical comorbidity, cognitive

decline and different symptoms compared to young adults (Wolitzky-Taylor, Castriotta,

Lenze, Stanley, & Craske, 2010).

Common risk factors for both depression and anxiety in older adults have been divided

into three categories: biological, social and psychological. These include physical illness, dis-

ability, bereavement, chronic disease, etc. (Vink, Aartsen, & Schoevers, 2008). Nevertheless,

in longitudinal studies, risk factors for depression differ from those for anxiety among older

people. For biological risk factors, cognitive functional impairment and visual defects are risk

factors for depression but not anxiety, whereas hypertension is only a risk factor in anxiety

(Beekman et al., 2000; Acierno et al., 2002; De Beurs et al., 2001; Forsell, 2000; Paterniti

et al., 1999; R. A. Schoevers, Deeg, Van Tilburg, & Beekman, 2005; R. Schoevers, Beek-

man, Deeg, Jonker, & Tilburg, 2003). However, depression and anxiety are associated with

cognitive functional impairments in other studies. Multiple studies showed that depressive

disorder was associated with cognitive functional impairments such as deficits in verbal and

nonverbal learning, memory, attention, visual and auditory processing, everyday problem-

solving ability directly and indirectly, executive function, processing speed, and reasoning

(Weisenbach, Boore, & Kales, 2012; Zuckerman et al., 2018; Yen, Rebok, Gallo, Jones, &

Tennstedt, 2011). Anxious subjects did not differ significantly from depressed subjects in any

measure of cognitive function (Mantella et al., 2007). However, anxiety was more likely as-

sociated with short-term and delayed memory, blackouts/memory loss, complex visuospatial

performance and visual learning, poorer performance on verbal working memory, poor global

cognitive functioning, working memory, inhibition, information processing speed, problem-

solving including concept formation and mental flexibility (Mantella et al., 2007; Butters et

al., 2011). For social risk factors, marital status and network size were only correlated with

depression, while risk factors related to anxiety but not depression include being childless,

traumatic life events and having a low income (Beekman et al., 2000; Acierno et al., 2002;

De Beurs et al., 2001; Forsell, 2000; R. A. Schoevers et al., 2005; R. Schoevers et al., 2003;
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Heun et al., 2000; Russo, Vitaliano, Brewer, Katon, & Becker, 1995). Social risk factors

are any risks related to social support or social ties/isolation, such as the size or density of

one’s social network and frequency of contact with relatives and friends (Pirlich et al., 2005).

For psychological risk factors, such as organizational culture and psychological and social

support, are identical for both depression and anxiety (Beekman et al., 2000; De Beurs et

al., 2001; R. Schoevers et al., 2003).

2.2.5 Treatments for depression and anxiety in the older adults

Treatments for depression and anxiety involve a pharmacological aspect and a psychoso-

cial aspect (Diefenbach & Goethe, 2006). For pharmacological treatments, the medica-

tions used to treat depression and anxiety in general adults can also be applied in the aged

(Doraiswamy, 2001). Usually, antidepressants widely available on the market may also be

effective for treating one or more anxiety disorders. For example, Paroxetine as a selective

serotonin reuptake inhibitors (SSRIs) is effective for major depressive disorder (MMD), gen-

eralized anxiety disorder (GAD), panic disorder, etc. (Diefenbach & Goethe, 2006). As seen

in the literature, SSRIs and dual serotonin and norepinephrine reuptake inhibitors (SNRIs)

are more suitable for treating comorbid depression and anxiety in older adults compared to

the antianxiety agents, (i.e., benzodiazepines or tricyclic antidepressants (TCAs) and the

monoamine oxidase inhibitors (MAOIs)) (Diefenbach & Goethe, 2006; Doraiswamy, 2001).

Despite the availability of effective medication, treatment for comorbid depression and anx-

iety remains challenging (Diefenbach & Goethe, 2006). For example, some studies showed

that nortriptyline as a TCAs used in depressed older individuals with anxiety symptoms

had a lower response rate, a higher drop-off rate and delayed response compared to the

older people who only have depression (Flint & Rifat, 1997a; Dew et al., 1997). However,

a study found no significant difference in drop-off rate, treatment response, and side effect

change between older depressive patients with anxiety symptoms or not (Lenze et al., 2003).

Venlafaxine XR, an SNRI, was shown to be an appropriate treatment for older patients with
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depression and/or anxiety because it is effective for both depression and anxiety, has few

side effects, and minimal risk of drug interactions (Doraiswamy, 2001).

Psychosocial interventions are another type of treatment to treat depression and anx-

iety. They can treat depression and anxiety alone or in combination with pharmacologi-

cal intervention (Lebowitz et al., 1997). Cognitive-behavioral therapy (CBT), as a short-

term, problem-focused treatment, focuses on teaching and/or strengthening coping skills

(Diefenbach & Goethe, 2006). CBT is effective and widely used to treat both depression and

anxiety (Areán & Cook, 2002; Stanley et al., 2003). Interpersonal therapy (IPT), another

therapy, focuses on patients’ interpersonal problem solving and ability to process emotional

distress (Diefenbach & Goethe, 2006). IPT combined with pharmacological interventions

will have superior treatment results compared to IPT alone (Areán & Cook, 2002). There is

no specific psychosocial intervention developed for comorbid depression and anxiety in older

patients (Diefenbach & Goethe, 2006). Since CBT has the ability to treat depression or

anxiety, it can be used to treat older patients with comorbid depression and anxiety as well

(Wetherell, Sorrell, Thorp, & Patterson, 2005).
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Chapter 3 STATISTICAL METHODS

3.1 Introduction

Group-based trajectory modeling is different from other traditional longitudinal modeling

methods for trajectory analysis. The finite mixture model, the basic theory for group-based

trajectory modeling, will be introduced in Section 3.2 in details. Group-based trajectory

modeling with model structures for different types of outcome data and model selection

methods will be discussed in Section 3.3. In Section 3.4, an extension of group-based trajec-

tory modeling, multivariate group-based modeling based on conditional probabilities will be

presented.

3.2 Finite mixture modeling

3.2.1 Introduction

The finite mixture model (FMM) is a statistical model widely applied in biology, ge-

netics, psychiatry, and marketing, among other disciplines (Geoffrey & Peel, 2000). Many

researchers use FMM as a tool for analysis because of the model’s flexibility. Not only can

FMM be applied in different areas of study, but it can also be used for different kinds of

statistical analysis, including cluster analysis, image analysis, latent class analysis, and even

survival analysis (Geoffrey & Peel, 2000). Medical image analysis increasingly uses FMM to

model pixel values to combine the various mixed portions of different populations (Frosio,

Ferrigno, & Borghese, 2006). For example, a study of retinal image analysis used mixture

models to find hard exudates (Sánchez, Garćıa, Mayo, López, & Hornero, 2009). FMM aims

to generate the heterogeneity that characterizes unobserved clusters from the overall popula-

tion. Furthermore, it provides a convenient semiparametric framework for solving unknown

distribution shapes instead of the variance or covariance structure (Geoffrey & Peel, 2000).

FMMs have a relatively long history of applications in statistics. The first time this
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model was applied was more than 120 years ago when Pearson used the mixture model for

sub-normal distributions (Pearson, 1894). In the last fifty years, the method of maximum

likelihood was recognized for fitting FMMs. Wolfe was the first to apply the MLE method

to fit FMMs (Wolfe, 1967). The first time the EM algorithm was used to simulate an FMM

was ten years later (Dempster et al., 1977).

3.2.2 Definition of a finite mixture model

If Y1, Y2, ..., Yn are defined as a random sample of size n, so T-dimensional random vector

Yi follows the probability density function f(yi) on Rt. Yi denotes the i′s individual including

random variables amounting to t measurements. If > is defined as the vector transpose,

Y = (Y >1 , Y
>

2 , ..., Y
>
n )>, where Y is defined as an n-tuple of points in Rt, represents the

sample of interest. y = (y>1 , y
>
2 , ..., y

>
n )> is defined as an observed random sample, where yi

is the observed value of the random vector for person i.

f(yi) can be viewed as a density where Yi is discrete by adopting counting measurements,

even though the feature of vector Yi is a continuous random vector. The form of density

f(yi) of Yi can be written as (Geoffrey & Peel, 2000):

f(yi) =
J∑
j=1

πjfj(yi), (3.1)

where

0 ≤ πj ≤ 1

and
J∑
j=1

πj = 1.

π1, π2, ..., πJ are defined for mixing weights (proportions) and stand for the number of distri-

butional sub-populations. J is the size of mixture components or weights. fj(yi) denotes the

jth component densities of the mixture j = 1, . . . , J . Since a finite mixture of distributions
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is focused on in most situations, we consider FMMs instead of just mixture models.

The size of the components J is fixed in equation (3.1). However, J is unknown and

will depend on the real data, together with the mixing weights and the component density

parameters from the specified forms. The number of mixture components can be increasing

when the sample size is large enough. This model is called a Gaussian mixture sieve (Geman

& Hwang, 1982).

3.2.3 Finite mixture model with parameters

If we assume fj(yi) as the component density belongs to the specific parametric family,

then, fj(yi) can be written as fj(yi; Θj). Θj is denoted as a vector of unknown parameters

from the form of the jth component density assumed within the mixture. Instead of f(yi),

the finite mixture model will be changed to:

f(yi; Ψ) = Pr(yi) =
J∑
j=1

πjfj(yi; Θj), (3.2)

where Ψ means the vector involving all the unknown parameters from the mixture model.

Ψ is defined as:

Ψ = (π1, . . . , πJ−1, ξ
>)>.

ξ = (Θ1, . . . ,ΘJ) is defined as a vector that obtains all the parameters of the density in

different components. > is the vector transpose. The prior numbers of these vectors are

given to distinguish them from one another. We define Ω as the specified parameter space

for Ψ and allow

π = (π1, . . . , πJ)>

as the vector for every mixture proportion. πJ is redundant because the sum of all the

proportions πj from the mixture model is equal to 1. Therefore, πJ is not included in the

vector Ψ.
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Usually, each of the component density of fj(yi; Θj) should belong to the same parametric

family in the finite mixture model. Therefore, equation (3.2) can be reducible to

f(yi; Ψ) = Pr(yi) =
J∑
j=1

πjf(yi; Θj), (3.3)

3.2.4 Likelihood of a finite mixture model

If we define Ψ as the maximum likelihood function to estimate the parameters from a

mixture distribution, then a sample is given as:

yi
iid∼ f(y|Ψ), i = 1, ..., n. (3.4)

What we are interested in is generating the maximum likelihood estimation (MLE) of Ψ,

where Ψ̂ should be equal to (Schlattmann, 2009):

Ψ̂ = argmax
Ψ

L(Ψ).

argmax is defined as arguments of the maxima, which means the set of inputs y from the

domain D that achieves the highest function value

L(Ψ) =
n∏
i=1

J∑
j=1

f(yi; Θj)πj, (3.5)

The alternative method is usually used to find estimates of Ψ, which is a log-likelihood

function:

`(Ψ) = logL(Ψ) =
n∑
i=1

log

J∑
j=1

f(yi; Θj)πj. (3.6)

To estimate Ψ, we can assume:

S(y; Ψ) =
∂`(Ψ)

∂Ψ
= 0, (3.7)
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S(y; Ψ) is the first derivative of the log-likelihood function defined as the score function, but

there is no closed-form to find its solution in most cases. Therefore, several other alternative

methods, such as EM algorithm, quasi-likelihood, etc., to estimate the likelihood of the finite

mixture modeling were developed.

The expected Fisher information matrix for the vector of parameters Ψ is given by:

I(Ψ) = EΨ{S(y; Ψ)S>(y; Ψ)} (3.8)

where S(y; Ψ) is the score function with observed data y and EΨ{S(y; Ψ)S>(y; Ψ)} is the

expectation of S(y; Ψ)S>(y; Ψ). Usually, I(Ψ) can be also written as:

I(Ψ) = EΨI(Ψ;Y ), (3.9)

where

I(Ψ;Y ) = −∂
2logL(Ψ)

∂Ψ∂Ψ>
, (3.10)

which is the negative of the Hessian matrix. Therefore, the observed Fisher information

matrix is expressed as I(Ψ̂;Y ) (Geoffrey & Peel, 2000).

The asymptotic covariance matrix of the MLE Ψ̂ is the inverse of the expected Fisher

information matrix I(Ψ) and the approximation is I(Ψ̂). In common practice, the observed

Fisher information matrix I(Ψ̂; y) is used to estimate the covariance matrix of the MLE

instead of the expected Fisher information matrix because it is easier to use without expec-

tations when Ψ = Ψ̂. Therefore, the standard error can be approximated as:

SE(Ψ̂r) ≈ (I−1(Ψ̂; y))1/2
rr r = 1, . . . , d, (3.11)

where rr the rows and columns from the covariance matrix and d is the number of parameters

from the matrix (Geoffrey & Peel, 2000).
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3.2.5 Estimation of a finite mixture model

If the number of components is defined as support size, the estimation of a finite mixture

model contains two cases (Schlattmann, 2009):

Case 1: Support size is flexible, which means there is no assumption of how many

components J is determined.

Case 2: Support size is fixed, which means the number of components J is assumed to

be known. Therefore, the unknown parameter should be the mixing proportions of πj

and parameters Θj from the sub-population.

In the flexible support size case, the algorithms require knowledge from convex geometry,

and optimization (Boyd & Vandenberghe, 2004). Convex sets and functions provided the

necessary background from which to derive the theory of semiparametric finite mixture

models. Based on convex geometry, numerous converging algorithms were developed to

solve the problem of directional derivatives for the flexible support size case (Böhning, 1995;

Lindsay & Lesperance, 1995). Usually, two methods are used for the flexible support size

case: the vertex direction method and the vertex exchange method (Schlattmann, 2009).

These two methods will not be introduced in detail here since this thesis focuses on the fixed

support size case.

3.2.5.1 Newton-Raphson for fixed support size

The Newton–Raphson (NR) method is one method that can be used for a maximum

likelihood estimation when there is no closed-form available for the solution in equation

(3.6). NR can be used to solve the likelihood equation (3.6) using a Taylor series expansion

to approximate Ψ by the current fit Ψ(l) at the lth procedure. The approach based on the

Taylor series provides:

S(y; Ψ) ≈ S(y; Ψ(l)) + I(y; Ψ(l))(Ψ−Ψ(l)), (3.12)

27



where I(y; Ψ) is the information matrix. If we need to find a new fit Ψ(l+1), the right part

of equation (3.12) needs to be assumed to be zero, and Ψ(l+1) is solved as:

Ψ(l+1) = Ψ(l) − I−1(y; Ψ(l))S(y; Ψ(l)) (3.13)

where I−1(.) is the inverse of the information matrix I(.).

The benefit of the NR algorithm for approximation is that the convergence speed is the

fastest compared to other algorithms (Everitt, 1984). However, there are two major issues

in applying the NR method. First, the Fisher information matrix I(y; Ψ(l)) is a d×d matrix,

and when d is large, the computation of this matrix is complicated. The other problem is

that this method may not converge to the maximum when the prior of Ψ is not guessed

correctly (Titterington, Smith, & Makov, 1985).

3.2.6 EM algorithm

The expectation-maximization (EM) algorithm is another method for estimating maxi-

mum likelihood, especially for a model with unobserved latent variables (Pilla & Lindsay,

2001; Vlassis & Likas, 2002). In general, the particular model structure needed for the

EM algorithm and data augmentation is the most important point of the EM algorithm

(Schlattmann, 2009). The general description of the EM algorithm is defined as a model

with parameters Ψ not only for the observed data y but also the missing data z. If we

decide on maximizing only the observed data y, defined as Ly(Ψ), it is not easy to maximize

the likelihood, especially from the mixture cases (Geoffrey & Peel, 2000). On the other

hand, if the unobserved data z is assumed to be known, maximizing the complete likelihood

Lc(Ψ) = Ly,z(Ψ) would be much easier for finding the maximization. The “missing data”

may be completely imaginary and should have the same marginal distribution with variable

y (McLachlan & Krishnan, 2008).

If we assume the current parameter value is Ψ(0) and wish to find Q(Ψ,Ψ(0)), which
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means the conditional expectation of the complete data logLc(Ψ) when the observed data is

provided, then, the E-step of the EM algorithm is (Dempster et al., 1977):

Q(Ψ,Ψ(0)) = EΨ(0) [(Ψ|y)] . (3.14)

To maximize Q(Ψ,Ψ(0)) with respect to Ψ based on the parameter space Ω, the M-step

means selecting Ψ(1) for

Q(Ψ(1),Ψ(0)) ≥ Q(Ψ,Ψ(0)), ∀Ψ ∈ Ω. (3.15)

Then, the E-step and M-step will keep going with Ψ(1) instead of Ψ(0). The E-step and

M-step for the (l + 1)th iteration can be denoted as:

E-step:

Q(Ψ,Ψ(l)) = EΨ(l) [(Ψ|y)] . (3.16)

M-step:

Q(Ψ(l+1),Ψ(l)) ≥ Q(Ψ,Ψ(l)), ∀Ψ ∈ Ω. (3.17)

More detailed theories for EM algorithms can be found in several books or articles (Dempster

et al., 1977; McLachlan & Krishnan, 2008). I will not introduce it any further since it has

been fully developed and widely used for a number of applications. Instead, I am only

interested in the mechanism of how the EM algorithm works in estimating finite mixture

models.
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3.2.7 Latent variables in finite mixture modeling

Models involving latent variables are regarded as a probability model with unobserved

certain variables (Bartholomew, Knott, & Moustaki, 2011). As a by-product of the analysis,

the EM algorithm is able to estimate parameters and latent variables (Sammel, Ryan, &

Legler, 1997). Recalling equation (3.3), let us define zi which is a J-dimensional binary

random variable, as the latent variable with only one element zij = 1 and the rest of elements

are 0. Therefore, the values of zij meet the conditions of zij ∈ {0, 1},
∑

j(zij) = 1 and J

possible states for zi = zi1, zi2, . . . ziJ . If person belong to jth group, then, zij = 1, otherwise,

zij = 0. The joint distribution is denoted as Pr(yi, zi) = Pr(zi)Pr(yi|zi) with marginal

distribution Pr(zi) and conditional distribution Pr(yi|zi). The marginal distribution can be

written as:

Pr(zij = 1) = πj.

Since 1-of-J presentation is used for zi, the marginal distribution can also be given as:

Pr(zi) =
J∏
j=1

π
zij
j . (3.18)

With the same method, the conditional distribution can be presented as:

Pr(yi|zij = 1) = f(yi; Θj),

or

Pr(yi|zi) =
J∏
j=1

f(yi; Θj)
zij . (3.19)

Therefore, the margin distribution can be observed by the sum of zi:

Pr(yi) =
∑
zi

Pr(yi, zi) =
∑
zi

Pr(zi)Pr(yi|zi) =
J∑
j=1

πjf(yi; Θj). (3.20)
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This means that each observed data point yi corresponds with a latent variable zi. Latent

variables are essential for using the EM algorithm to find the closed form of the parameters

of the mixture model (Geoffrey & Peel, 2000).

3.2.8 EM algorithm of one-dimensional two-Gaussian mixture model

Let us start with the simplest common case, a one-dimensional two-Gaussian mixture

model, to estimate the FMM with the EM algorithm. In this model, the dimensional T = 1,

the proportions are assumed to be J = 2 and f(yi; Θj) should follow normal distribution

N (yi|µj, σ2
j ). Then, the likelihood is presented as:

L(µ, σ; y) =
n∏
i=1

(1− π)N (yi|µ1, σ
2
1) + πN (yi|µ2, σ

2
2).

The log-likelihood can be derived as:

`(µ, σ; y) =
n∑
i=1

log[(1− π)N (yi|µ1, σ
2
1) + πN (yi|µ2, σ

2
2)]. (3.21)

Since the sum inside the logarithm is hard to calculate from the marginal likelihood based

on the observed data, the completed likelihood containing latent variables will be applied

for estimation:

`(µ, σ; y, z) =
n∑
i=1

[(1− zi)logN (yi|µ1, σ
2
1) + zilogN (yi|µ2, σ

2
2) + (1− zi)logπ + zilog(1− π)],

(3.22)

where zi is the unobserved latent variable for subject i with values 0 or 1. If zi = 1, yi is

from the second Gaussian model, otherwise, yi is from the first Gaussian model (Friedman,

Hastie, & Tibshirani, 2001).

If the initial values of parameters (π̂, µ̂1, µ̂2, σ̂
2
1, σ̂

2
2) is given, then for E step, the unknown

latent variable zi will be substituted with the expected value γ(zi) based on Bayes’ rule,
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defined as:

γ(zi) = E(zi|yi) = Pr(zi = 1|yi)

=
Pr(zi = 1)Pr(yi|zi = 1)

Pr(zi = 0)Pr(yi|zi = 0) + Pr(zi = 1)Pr(yi|zi = 1)

=
π̂N (yi|µ̂2, σ̂

2
2)

(1− π̂)N (yi|µ̂1, σ̂2
1) + π̂N (yi|µ̂2, σ̂2

2)
,

(3.23)

where i = 1, 2, . . . , n is the number of observations. The expected complete likelihood will

then be developed with the expected value of γ(zi). The M-step updates the parameters

based on the expected complete likelihood maximization (Friedman et al., 2001). The pa-

rameters are estimated as:

µ̂1 =

∑n
i=1(1− γ(zi))yi∑n
i=1(1− γ(zi))

µ̂2 =

∑n
i=1 γ(zi)yi∑n
i=1 γ(zi)

σ̂2
1 =

∑n
i=1(1− γ(zi))(yi − µ̂1)2∑n

i=1(1− γ(zi))

σ̂2
2 =

∑n
i=1 γ(zi)(yi − µ̂2)2∑n

i=1 γ(zi)

π̂ =

∑n
i=1 γ(zi)

n

(3.24)

The E and M step will be iterated until convergence.

3.2.9 EM algorithm for Gaussian mixture models

For finite mixture modeling, if we assume component membership as the missing data

part, the vector of observed data is defined as

y = (y>1 , y
>
2 , . . . , y

>
n )>,
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which is incomplete because the component-label vectors are not involved. Therefore, un-

known indicator variables should be defined as z, which correspond to y. zi from z is a

J-dimensional vector with zij = (zi)j ∈ {0, 1}, relate to if yi belong to jth component of the

mixture (j = 1, . . . , J ; i = 1, . . . , n). Here again, J is the number of mixture components

and n is the study sample size. Thus, the complete data vector can be denoted as

yc = (yT , zT )T , (3.25)

where

z = (zT1 , z
T
2 , . . . ,z

T
n )T . (3.26)

The likelihood for (yi, zi1, zi2, . . . , ziJ)T of the ith person observation is declared as (Schlattmann,

2009):

Pr(Yi = yi, Zi1 = zi1, . . . , ZiJ = ziJ)

= Pr(Yi = yi|Zi1 = zi1, . . . , ZiJ = ziJ)Pr(Zi1 = zi1, . . . , ZiJ = ziJ)

=
J∏
j=1

π
zij
j f(yi,Θj)

zij ,

(3.27)

where zij = 0 if yi is not observed and zij = 1 if yi is observed. Θj is a vector of unknown

parameters from the postulated form for the jth component density in the mixture model.

Additionally, the complete likelihood with all subjects is written as:

Lc(Ψ) =
n∏
i=1

J∏
j=1

π
zij
j f(yi,Θj)

zij , (3.28)

and the complete log-likelihood is given by:

`c(Ψ) =
n∑
i=1

J∑
j=1

zijlogπj +
n∑
i=1

J∑
j=1

zijlogf(yi,Θj). (3.29)
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Depending on the complete log-likelihood, the E-step calculates the current conditional ex-

pectation of zij based on the observed y (Geoffrey & Peel, 2000).

For the univariate mixture Gaussian model in a single dimension (D = 1), the proportions

are assumed to be J and f(yi; Θj) should follow normal distribution N (yi|µj, σ2
j ). Using

Bayes rule, we can get:

Pr(Zij = 1|Yi = yi) =
Pr(Yi = yi|Zij = 1)Pr(Zij = 1)∑J

m=1 Pr(Yi = yi|Zim = 1)Pr(Zim = 1)

=

∑
zij
zij[πjN (yi|µj, σ2

j )]
zij∑

zim
[πmN (yi|µm, σ2

m)]zim

=
πj(yi|µj, σ2

j )∑J
m=1 πm(yi|µm, σ2

m)
= γ(zij),

(3.30)

where γ(zij) stands for the posterior probability. Thus, using γ(zij) instead of zij, the E-step

of the mixture model is:

Q(Ψ,Ψ(l)) = EΨ(l)(logLc(Ψ))

=
n∑
i=1

J∑
j=1

γ(zij)logπj +
n∑
i=1

J∑
j=1

γ(zij)logN (yi|µj, σ2
j ).

(3.31)

With the M-step, we need to maximize the likelihood of equation (3.31). For this likelihood,

the left and right part can be considered separately for maximization (Geoffrey & Peel, 2000).

If we assume:

nj =
n∑
i=1

γ(zij) (3.32)

π
(l+1)
j could be maximized when the left part is equal to 0:

π
(l+1)
j =

nj
n

=

∑n
i=1 γ(zij)

n
=

n∑
i=1

πj(yi|µj, σ2
j )

n
∑J

m=1 πm(yi|µm, σ2
m)
. (3.33)

The right part of (3.33) is implemented for maximizing the unknown parameters. For the
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one-dimensional Gaussian case, µ
(l+1)
j is equal to

µ
(l+1)
j =

∑n
i=1 γ(zij)yi∑n
i=1 γ(zij)

=

∑n
i=1 γ(zij)yi
nj

. (3.34)

Consider f(y;µj, σ
2) as normal density:

f(y;µj, σ
2) =

1√
2πσ2

exp(−(y − µj)2

2σ2
), (3.35)

where σ2 is the common variance for all weights to simplify the likelihood of component-

specific variance σ2
j . To maximize σ2, we need to fit equations (3.33), (3.34), and (3.35) into

equation (3.31) and obtain

n∑
i=1

J∑
j=1

γ(zij)(yi − λj)2

σ4
+

n∑
i=1

J∑
j=1

γ(zij)

σ2
= 0. (3.36)

By calculation, the maximized σ2 should be equal to

σ2
l+1 =

1

n

n∑
i=1

J∑
j=1

γ(zij)(yi − µj)2, (3.37)

If we use the EM algorithm to maximize the variance of each component, we need to follow

the method developed by Böhning (Böhning, 1995). The benefit of using the EM algorithm

for estimations is that it will undoubtedly converge. However, it can only converge to a local

maximum, and the speed of convergence might be slow for some cases (Geoffrey & Peel,

2000).

For multivariate Gaussian mixture models, the EM algorithm to handle the MLE is simi-

lar to the Gaussian mixture model with only one variable. The difference is the multivariate

Gaussian mixture models involve the D multidimensional dataset now, which means the

data can be presented as an n ∗ D matrix. Therefore, µj is a vector of means and Σj is

the covariance matrix from the jth component (Bishop, 2006). The complete likelihood for
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multivariate Gaussian mixture models is presented as:

Lc(Ψ) =
n∏
i=1

J∏
j=1

π
zij
j N (yi|µj,Σj)

zij , (3.38)

With a logarithm, we can get:

`c(Ψ) = logLc(Ψ) =
n∑
i=1

J∑
j=1

zijlogπj +
n∑
i=1

J∑
j=1

zijlogN (yi|µj,Σj). (3.39)

Based on the current parameter, the responsibilities are able to be evaluated with E-step:

γ(zij) =
πj(yi|µj,Σj)∑J

m=1 πm(yi|µm,Σm)
(3.40)

Then, using the current responsibilities, the parameters are re-estimated with M-step:

µ
(l+1)
j =

∑n
i=1 γ(zij)yi
nj

.

Σl+1
j =

1

nj

n∑
i=1

J∑
j=1

γ(zij)(yi − µ(l+1)
j )(yi − µ(l+1)

j )>,

π
(l+1)
j =

nj
n

(3.41)

where nj = γ(zij). The EM algorithm with the mixture binary dataset, called latent class

analysis, is described by Bernoulli distributions (Geoffrey & Peel, 2000). The EM algorithm

progress is similar to the Gaussian mixture models. Therefore, it will not be introduced in

detail here.
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3.2.10 EM algorithm for a generalized mixture model

3.2.10.1 Generalized linear model

Before adding covariates into the mixture models, we will first introduce generalized

linear models (GLMs). GLMs assume the response yi is from the exponential distribution

family, meaning the response may not only be continuous (Wedderburn, 1974). The general

density function of distribution for exponential family is written as (Nelder & Wedderburn,

1972):

f(yi; θi, φ) = exp(
yiθi − b(θi)
ai(φ)

+ c(yi, φ)), (3.42)

where θ represents the natural or canonical parameter, φ represents the dispersion parameter

and a(.), b(.) & c(.) are known special forms of functions, ai(φ) is the form of

ai(φ) =
φ

τi
, (3.43)

where τi stands for the prior weight usually equal to one, the log-likelihood function can be

denoted as:

logf(yi; θi, φ) = `(yi, θi, φ) =
yiθi − b(θi)
ai(φ)

+ c(yi, φ). (3.44)

The mean and variance of random variable Yi are given by:

E(Yi) = µi = b′(θi), (3.45)

and

var(Yi) = −b′′(θi)ai(φ). (3.46)

The b′(.) and b′′(.) are the first and second derivative of b(θi).

To provide the relationship between linear predictors and means in GLMs, we need

to use link functions, to calculate the mean using a one-to-one continuous differentiable
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transformation, denoted as (Schlattmann, 2009):

ηi = g(µi). (3.47)

The transformed mean should follow a linear relationship as:

ηi = xiβ, (3.48)

where ηi is the estimated linear predictor, xi = (xi1, . . . , xim) is the vector of covariates,

m is the number of covariates that affect ηi and β is the unknown vector of parameters

(Schlattmann, 2009). The inverse function can be generated since it is a one-to-one trans-

formation

µi = g−1(xiβ). (3.49)

The maximum likelihood function estimation of GLMs is provided as

`(y; θi, φ) =
n∑
i=1

yiθi − b(θi)
ai(φ)

+
n∑
i=1

c(yi, φ). (3.50)

Therefore, the estimate of β should be written as (McCullagh & Nelder, 1989):

∂`

∂βj
=

n∑
i=1

wi
yi − µi
ai(φ)

dηi
dµi

xij = 0, (3.51)

wj is the weight function declared as:

wi = τ/

[
b′′(θi)(

dηi
dµi

)2

]
, (3.52)

where τ is the weight from ai(φ) shown in equation (3.43).

The Fisher’s score method could be used for solving the likelihood from equation (3.51)

(Nelder & Baker, 2004). With an estimated η̂i = xiβ and µ̂i = g−1(µi), on the next iteration,

38



the adjusted response variable ŷi is calculated as

ŷi = η̂i + (yi − µ̂i)
dηi
dµi

. (3.53)

We can then recalculate the weight wi based on the new response ŷi. Finally, the renewed

estimation of β can be obtained from a matrix notation:

β̂ = (XTWX)−1XTWy, (3.54)

where X represents the design matrix, W is the diagonal matrix entered by wi, and y is

the response vector with entries ŷi from equation (3.53), y = (y1, y2, . . . , yn) (Schlattmann,

2009).

3.2.10.2 Maximum likelihood estimation of a finite mixture GLM using EM al-

gorithm

The GLM mixture model specifies that we replace the Gaussian density function to the

GLMs, which is changed by (Jansen, 1993):

f(yi; Ψ) =
J∑
j=1

πjf(yi, θi, φj), j = 1, . . . , J, (3.55)

where the log density of the jth component is defined as

`(yi; θij, φj) =
yiθij − b(θij)

ai(φj)
+ c(yi, φj). (3.56)

For the jth component GLMs, µij is the mean of Yi and the link function provides ηj =

g(µij) = xTi βj as a linear predictor. Therefore, GLMs with a different linear covariate

describes each weight. The semiparametric mixture distribution can be denoted with the
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mixture kernel:

Ψ ≡

µ1 . . . µJ

π1 . . . πJ

 (3.57)

where the components π1, . . . , πJ are offered to parameters µ1, . . . , µJ based on distributions

from the exponential family. Nevertheless, µ1 . . . µJ will change from scalar quantities to

vectors, such as (Schlattmann, 2009):

µ1 = (β01, β11, . . . , βh1), (3.58)

where h represents the number of covariates in the model. Except for the β parameters, we

may also imply covariates for the mixture weights πj, if we assume the covariate vector as

xi, then:

πij = πj(xi;α) =
exp(w>j xi)

1 +
∑J−1

m=1 exp(w
>
mxi)

j = 1, . . . , J, (3.59)

and

α = (w>1 , . . . , w
>
J−1)>, (3.60)

provides the multinomial logit regression coefficients, note that wJ = 0. Therefore, the

unknown vector of parameters is described as:

(α>, β>)>. (3.61)

The detailed method for including the covariates into the finite mixture model is introduced

by Wang (Wang, 1994).

The complete log-likelihood for finite mixture GLMs is written as

logLc(Ψ) =
n∑
i=1

J∑
j=1

zijlogπij +
n∑
i=1

J∑
j=1

zijlogf(yi, θij, φj). (3.62)
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The development of the E-step is applied using the same method. The expected value of zij

is equal to

γ(zij) =
πijf(yi; θij, φj)∑J
l=1 πilf(yi; θij, φj)

. (3.63)

The M-step of (l + 1)th iteration is provided for α denoted by (Geoffrey & Peel, 2000):

n∑
i=1

J∑
j=1

γ(zij)
∂logπij
∂α

= 0, (3.64)

and the M-step of (l + 1)th iteration is provided for β is

n∑
i=1

J∑
j=1

γ(zij)
∂logf(yi, θij, φj)

∂β
= 0. (3.65)

Commonly, α and β are defined as a prior without any elements. The parameters from

GBTM with the continuous and binary dataset can be estimated by the EM algorithm from

the exponential family. However, this would not be tenable if the density of the component

is defined as a zero-inflated Poisson (ZIF) model (Lambert, 1992). The EM algorithm with

zero-inflated data in GBTM is explained in Roeder’s paper (Roeder et al., 1999). Since this

thesis does not focus on count outcomes, this issue will not be explored in deep.

3.3 Group-based trajectory modeling

3.3.1 Introduction

Group-based trajectory modeling is an extension of finite mixture models involving time

or age variables in polynomial functions (Nagin & Tremblay, 2001). This model identifies

subgroup trajectories as time-varying within the population using the correct mixture prob-

ability distributions (Nagin, 1999). Three types of datasets can be fitted with this model:
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continuous outcomes following a normal distribution, binary outcomes following the logistic

distribution, and count outcomes following the Poisson or zero-inflated Poisson distribution

(Jones et al., 2001).

3.3.2 Unconditional group-based trajectory modeling

Let Yi be discrete random variables for the ith subject with measurements t, t = 1, 2, . . . , T .

Then, Yi = {yi1, yi2, yi3 . . . , yiT} are the repeat measurements from individual i over the mea-

surement of T . P (Yi) represents the probability of Yi. If there is a mixture of J groups of

trajectories from the population, the unconditional group-based trajectory modeling could

be written as (Nagin, 1999, 2005; Jones et al., 2001):

P (Yi) = f(Yi)

=
J∑
j=1

Pr(Y = Yi, C = j)

=
J∑
j=1

Pr(C = j)Pr(Y = Yi|C = j)

=
J∑
j=1

πjf(Yi,Θj)

=
J∑
j=1

πjP
j(Yi),

(3.66)

where j = 1, 2, 3, . . . , J are the unobserved trajectory groups, C is latent class, f(Yi) is the

marginal probability mass function of individual Yi, and πj stands for the probability of the

ith subject belonging to group j based on a multinomial logit function for j = 1, 2, 3, . . . , J .

Θj is a vector of parameters for the density of component j. The sum of πj is equal to one.

P j(Yi) is the probability of Yi given the ith person in trajectory group j.

The overall likelihood function should be described as (Nagin, 2005):

L =
n∏
i=1

P (Yi), (3.67)
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where n is the sample size.

3.3.3 Multinomial logit function for components

Multinomial logit models usually use fitting discrete outcome models for classification

(So & Kuhfeld, 1995). The probability πj from a multinomial logit function is:

πj = P (C = j) =
eϑj∑J
j=1 e

ϑj
. (3.68)

ϑj is a scalar, and ϑ1 is normalized to zero. C is defined as the unobserved discrete variable

indicating the latent class of the ith individual (Nagin, 1999). From this multinomial logit

model, the risk factors have the same meaning as the time-invariant covariates (TICs) from

latent growth curved modeling (Roeder et al., 1999). If we include risk factors into the

multinomial logit function, then the model can be expanded as:

πj = P (C = j|X = x) =
exp(ϑj + w′jx)∑J
j=1 exp(ϑj + w′jx)

(3.69)

where X = {x1, x2, ......, xr} is a vector of covariates for risk factors and their interactions.

wj is a vector of parameters representing the coefficients of risk factor x; to define the

reference group of risk factors, w1 should be identified as zero. These risk factors are the

characteristics of each individual from the baseline, and have the ability to vary group

membership probabilities (Roeder et al., 1999).

3.3.4 Group-based trajectory modeling for continuous outcomes

yit is the random variables for the ith person at the measurement t. yit should be indepen-

dent: P j(Yi) =
∏T

t=1 p
jt(yit), where T is the maximum number of measures t = 1, 2, . . . , T .

Let pjt(yit) be the probability density function of yit given the ith subject in the group j at

time t, which is selected to conform to the type of outcome under analysis (Jones & Nagin,

2007). For continuous outcomes, we consider that all yit follow normal distributions, so
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P j(Yi) is denoted as (Jones et al., 2001):

Pr(Y = Yi|C = j, V = vi) =
∏
yit

1

σ
φ

[
(yit − µitj)

σ

]
. (3.70)

In equation (3.70), φ is the probability density function for standard normal distribution

and is scaled by
1

σ
to make sure the integral is still equal to 1. µitj and σ are parameters

representing the mean and standard error, respectively, for the ith subject in the group j at

time t in normal distribution. C = 1, 2, . . . , J is defined as the unobserved latent variable.

V = vi1, vi2, . . . , viT are the time-dependent variables. These are the same as time-variant

covariates from the latent growth curve modeling and can influence within-subject effects

shown in Section 2.1.3. Nagin (1999) used a truncated normal distribution bound to the

random variable with a minimum and a maximum number, such as a psychometric scale.

For the corresponding link function of the normal distribution, µitj, defined as the mean

of trajectory over age, will be:

µitj = β0j + (ageit)β1j + (ageit)
2β2j + ...+ vitδj + εit. (3.71)

µitj is the mean of the ith subject in the group j at time t. In most research, trajectories are

defined by age. However, sometimes, age will be replaced by elapsed time (Nagin, 1999). For

example, in clinical trials, the age will be changed to days, months, or years. ε is the error

with the normal distribution assumption with mean zero and constant standard deviation

of σ. β′s are the parameters of age or time. δj = (δ1, δ2, . . . , δJ) is a vector of parameters

representing the coefficients of time-dependent variables vit. β
′s and δ′ can control the shapes

of the polynomial function.

3.3.5 Group-based trajectory modeling for binary outcomes

Binary outcome data is also quite often derived from longitudinal studies. For example,

we may be interested in if each individual has depression or not. Thus, the outcome of
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interest will be yes or no. In this case, yit will be assumed to be a binary outcome, P j(Yi)

follows Bernoulli distribution (Jones et al., 2001):

Pr(Y = Yi|C = j, V = vi) =
∏
yit=1

ρitj
∏
yit=0

(1− ρitj) (3.72)

where ρitj denotes the probability when yit = 1 provided ith subject in group j at time t, ρitj

follows the probit function (Ziegel, 2004). The link function for ρitj can be written as:

ρitj =
exp (β0j + (ageit)β1j + (ageit)

2β2j + ...+ vitδj)

1 + exp (β0j + (ageit)β1j + (ageit)2β2j + ...+ vitδj)
(3.73)

3.3.6 Group-based trajectory modeling for count outcomes

Count data is another kind of outcome often used in epidemiology studies, such as the

number of questions on which patients report feeling satisfied with the treatment on satis-

faction questionnaires. Usually, P j(Yi) should be defined by the Poisson distribution:

Pr(Y = Yi|C = j, V = vi) =
exp(−λitj) ∗ −λyititj

yit!
(3.74)

From equation (3.74), λitj is a parameter measuring the mean rate of events that occurred

for the ith subject in the group j at time t. As λitj increases, the Poisson model approaches

the shape of normal distribution. When λitj is large enough, the analysis results based on

Poisson and normal distribution will be quite similar. yit! is the factorial function defined as

yit! = yi1yi2 . . . yit.

The Poisson distribution can be adapted to deal with most cases of count data. However,

sometimes, using the Poisson distribution for count data with many zeros will underestimate

the probability of the zero part. A zero-inflated Poisson distribution (ZIP) is one of the

methods that can solve this kind of problem. Thus, for these cases, P j(Yi) should be denoted
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by a ZIP distribution (Jones et al., 2001):

Pr(Y = Yi|C = j, V = vi) =∏
yit=0

[ρitj + (1− ρitj) exp(−λitj)]
∏
yit>0

exp(−λitj) ∗ −λyititj
yit!

(3.75)

where ρitj represents the probability when the outcome count is zero and (1− ρitj) stands

for the probability when the outcome count is larger than zero. λitj is the parameter with

the same meaning as the Poisson distribution.

A link function for connecting the trajectory with time relying on both equation (3.74)

and (3.75) are provided as:

ln(λitj) = β0j + (ageit)β1j + (ageit)
2β2j + ...+ vitδj (3.76)

The reason behind using ln(λitj) instead of λitj is that maximum likelihood estimates of β

may be negative values. In such cases, the estimation process will fail.

As a general method to estimate the covariance matrix of parameter estimates, the sand-

wich estimator, also named the robust covariance matrix estimator, could keep the covariance

matrix estimates asymptotically and consistently. Based on the sandwich estimator, there

was no requirement for the assumption of the covariance matrix structure, and even the

assumed covariance structure was wrong (Carroll, Wang, Simpson, Stromberg, & Ruppert,

1998). Thus, the structure of the covariance matrix of the parameter estimates in GBTM

was not a concern for us because the sandwich estimator was used to weight the likelihood

function in the group-based trajectory modeling methods (Jones & Nagin, 2007, 2011). Fig-

ure 3.1 displays the overall structure of GBTM. From Figure 3.1, we see that the observed

trajectory depends on group membership and on the time-dependent covariates. Group

membership also depends on the time-invariant covariates (Jones et al., 2001).
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Figure 3.1: Group-based trajectory modeling framework

3.4 Maximizing likelihood for GBTM

The EM algorithm is a suitable method to use to maximize the likelihood of GBTM

because GBTM is extended from FMM. In Section 3.2.10, we derived the EM algorithm

to find the maximum likelihood estimator for the generalized mixture models. Since most

of the GBTMs belong to generalized mixture models, this method can be used to find the

maximization from them. The only particular case is the GBTM with the ZIP model,

which was not involved in the exponential family. However, in Roeder’s paper, using the

EM algorithm to maximize this model’s likelihood was introduced with detailed information

(Roeder et al., 1999).

The Quasi-Newton method is considered an alternative to the Newton method for iden-

tifying functions’ local maxima. Instead of calculating the Hessian matrix directly as in the

Newton method, the Quasi-Newton method uses the successfully analyzed gradient vectors

to update the Hessian matrix (Gower & Richtárik, 2017). The general procedure for the

Quasi-Newton method is as follows (Cericola, 2015):

1. Select the starting points of the parameters;
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2. Use gradient to approximate the parameters’ inverse Hessian matrix;

3. Calculate changes to the parameters;

4. Determine the new parameters;

5. Determine if parameters converged;

6. If converged stop, otherwise, repeat from step 2.

Victor (2014) implemented a simulation study to compare the EM algorithm and Quasi-

Newton procedure to maximize the GBTM. Compared to the EM algorithm, the Quasi-

Newton procedure has a higher demand for the parameters’ starting values. On the other

hand, the Quasi-Newton procedure requires fewer iterations than the EM algorithm to get

the values of the maximum likelihood (Victor, 2014). The Proc Traj package running in

SAS 9.4 for identifying group-based trajectory models applies Quasi-Newton procedure to

maximize the estimators (Jones & Nagin, 2007). Since we applied the Proc Traj package

directly in the application and simulation in this thesis, the Quasi-Newton procedure will

be used for maximizing the likelihood. Therefore, defining correct initial starting values is a

crucial step.

Note that the maximum likelihood estimations provided parameter estimates that are

asymptotically unbiased under the assumption of “data are missing at random (MAR)”.

When data are MAR, information from the dataset can be used to impute missing data

prior to input into the trajectory model (Nagin & Odgers, 2010). SAS programming 9.4

and Proc Traj package was used to fit trajectory modeling, which employs an imputation

technique to assign values for missing data.

3.5 Group-based trajectory model selection

There are usually two parts to select group-based trajectory models: choosing the right

number of groups and determining the correct order of the polynomial equation to describe
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the proper shape of the trajectories (Nagin, 1999). The χ2 goodness of fit test is one of the

most popular and widely used methods for model selection in a longitudinal study (Erdfelder,

1990). However, this method cannot be used in the finite mixture model with J number of

components (Ghosh & Sen, 1984). Therefore, we used another criterion for a model selection

called the Bayesian Information Criterion (BIC) (Raftery, 1995). The model with maximum

BIC will often be selected when prior information for the right model is limited (Kass &

Raftery, 1995). This method can be applied to extensive statistics model selections that

involve group-based trajectory modeling with a fixed number of component groups (Nagin,

1999). The way to select the model based on BIC is to find the model with the largest BIC

value. The formula to calculate the BIC score from a provided model is written as:

BIC = log(L)− 0.5klog(N), (3.77)

where L is defined as the maximized likelihood of the model and k denotes the number of

parameters in the model. N is the sample size, which is slightly different since our data is

longitudinal. Thus, in longitudinal data, N should be the number of individuals times the

number of measurements (D’Unger, Land, & Nagin, 1998). Model selection requires selecting

the best models from all possible models. However, it is impossible to try all models, so it is

necessary to reduce the scope of the models by the sample size N to determine the largest

number of trajectories J that can be considered. After this, model selection has two stages.

The first stage is to make a decision about how many groups of the model will be selected,

which means to screen the number of groups from one to a preset maximum. We must define

the preset rule for the order of polynomials for each group’s trajectory (Keribin, 2000). For

example, assuming all trajectories are linear, we will find the groups of the model with

the largest BIC value. The second stage is to find out the preferred order of polynomials

from each trajectory based on the number of J groups from the first stage. Selecting the

right order means not only relying on BIC scores and significance level α, but also on the
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mechanism of each trajectory’s subgroup population. The reason we consider the group

number of trajectories first is that selecting the group number is more critical compared to

the order of trajectories (D’Unger et al., 1998).

To interpret BIC, we usually consider using the Bayes factors (Bij), which means the

different odds ratio for the probability of the model i is the right model compared to the

probability of model j being the right model, i < j. The Bayes factors are evaluated by

Jeffreys’s scale, as shown in Table 3.1 (Wasserman, 2000).

Table 3.1: Jeffreys’s scale of evidence for Bayes factors

Bayes factor Interpretation

Bij <
1

10
Strong evidence with model j

1

10
< Bij <

1

3
Moderate evidence with model j

1

3
< Bij < 1 Weak evidence with model j

1 < Bij < 3 Weak evidence with model i

3 < Bij < 10 Moderate evidence with model i

Bij > 10 Strong evidence with model i

However, the Bayes factor is difficult and sometimes not possible to calculate (Schwarz

et al., 1978). Thus, eBICi−BICj is an excellent method to approximate the Bayes factor

Bij ≈ eBICi−BICj , where i is the lower group number, and j is the upper group number

(Kass & Wasserman, 1995). If the value is smaller than one, the j number group model is

preferred. On the other side, if the value is larger than one, the i number group model is

preferred. An alternative approach to interpreting BIC is computing the probability that a

model with j groups is the right model from a number of J other models defined as pj. This

could be approximated by

pj =
eBICj−BICmax∑J
j=1 e

BICj−BICmax
, (3.78)

where BICmax is the largest BIC score from J models, and the model with the largest pj will

be the correct model (Kass & Wasserman, 1995). The Akaike information criterion (AIC)

selection method can also be applied, but it is quite similar to the BIC model. The only
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difference between these two methods is that sample size changes will not influence the AIC

method. For exceptional cases, the BIC value will keep increasing when we keep adding

trajectory groups. To solve this problem, we only need the model with enough groups to

reach the distinct features of the data (Nagin, 2005).

3.6 Multivariate group-based trajectory modeling

3.6.1 Group-based dual trajectory models

Group-based dual trajectory modeling (GBDTM) is extended from group-based trajec-

tory modeling (GBTM) and includes two distinct, but correlated outcomes (Nagin & Trem-

blay, 2001). GBDTM provides the probability link functions that will link two related

outcomes together. Compared with single outcome GBTM, this model offers a way to han-

dle two prominent outcomes simultaneously. The constrained model and general model are

two conceptual models used to link two correlated trajectory outcomes in GBDTM (Nagin

& Tremblay, 2001). In the constrained model, the number of trajectory groups is assumed to

be the same J to combine the outcomes Y 1
i and Y 2

i . i = 1, 2, . . . , n, Y 1
i is the first outcome,

and Y 2
i is the second outcome. Y 1

i and Y 2
i should be independently distributed (Nagin,

2005). Therefore, the joint probability for the constrained model weighted by πj is given by:

P (Y 1
i , Y

2
i ) =

J∑
j=1

πjp
j(Y 1

i ) ∗ pj(Y 2
i ), (3.79)

where j = 1, 2, . . . , J is the number of trajectory groups of both Y 1
i and Y 2

i . πj represent

the shared proportion of both Y 1
i and Y 2

i .

The other model is the general model, which has different numbers of groups for the two

outcomes. Here we assume there are J group of trajectories for Y 1
i with probability link to

L group of trajectories for Y 2
i (Nagin & Tremblay, 2001). Therefore, the likelihood function
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weighted by πjl is updated to

P (Y 1
i , Y

2
i ) =

J∑
j=1

L∑
l=1

πjlp
j(Y 1

i ) ∗ pl(Y 2
i ) =

J∑
j=1

L∑
l=1

πjπl|jp
j(Y 1

i ) ∗ pl(Y 2
i )

=
J∑
j=1

πjp
j(Y 1

i )
L∑
l=1

πl|jp
l(Y 2

i )

(3.80)

where j = 1, 2, . . . , J is the number of trajectory groups of Y 1
i and l = 1, 2, . . . , L is the

number of trajectory groups of Y 2
i . πjl is the joint probability for both outcomes Y 1

i and Y 2
i .

πl|j is the conditional probability to link group j of Y 1
i to group of l of Y 2

i .

In GBDTM, having risk factors in the model will only influence the proportions of the

first outcome πj, but not the conditional probability πl|j (Nagin, 2005). In this way, the

effects of the risk factors are able to be calculated based on the same formula from equation

(3.69).

3.6.2 Group-based multi-trajectory models

We may also be interested in two or more outcomes, called multiple correlated outcomes.

For example, a study will contain multiple biomarkers from a disease or multiple mental

health disorders in order to generalize the overall population’s mental health situation. In

these cases, if we still consider using the general GBDTM, the work will be complicated

because every two outcomes need to combine and build a GBDTM (Jones & Nagin, 2007).

Group-based multi-trajectory modeling (GBMTM) was developed to discover the latent

clusters of individuals who follow similar trajectories based on multiple outcomes of interest

(Nagin et al., 2018). GBMTM is a new method that can be used to describe the inter-

relationship of multiple outcomes (Nagin et al., 2018). This model is an extension of the

constrained dual trajectory model (see Section 3.6.1). It includes more than two outcomes

but is weighted by the same probability πj. Therefore, this model requires a high similarity
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of group memberships for the individuals with each outcome. In the GBMTM, let Y k
i de-

note ith individual with the kth outcome, k = 1, 2, . . . , K. As in dual trajectory modeling,

Y k
i are independently distributed with P j(Y 1

i , Y
2
i , . . . , Y

K
i ) = P j

1 (Y 1
i )P j

2 (Y 2
i ), . . . , P j

K(Y K
i ),

where P j(Y k
i ) =

∏T (k)

t=1 (ykit). Therefore, the likelihood for group j is developed by (Nagin et

al., 2018):

P (Y 1
i , Y

2
i , . . . , Y

K
i ) =

J∑
j=1

πjP
j(Y 1

i , Y
2
i , . . . , Y

K
i ) =

J∑
j=1

πj

K∏
k=1

P j(Y k
i ) (3.81)

T (k) means the kth outcome with the T th measurement. Nagin mentioned that multi-

outcomes must have the same number of groups of trajectories j with the same probabilities

in GBMTM (Nagin et al., 2018).
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3.7 Summary of trajectory models

Table 3.2 shows summary of the of each trajectory modeling and their property differ-

ences.

Table 3.2: Comparison of group-based trajectory models

Model Group-based trajec-
tory modeling

Group-based dual
modeling

Group-based multi-
trajectory modeling

Outcomes Single Two Two or more
Statistical
Method

Conditional likelihood dis-
tribution weighted by sin-
gle probability

Conditional likelihood
distribution weighted by
joint probability

Conditional likelihood dis-
tribution weighted by sin-
gle probability

Difference Number of trajectories are
independent

Number of trajectories
will be different for differ-
ent outcomes

Number of trajectories
will be remain the same
for different outcomes

Group
member-
ship

Independent Remains different Remains the same

Trajectory
shape

Independent Different for different out-
comes

Similar for different out-
comes

Example Depression only or anxiety
only

Depression and anxiety, 2
outcomes together to cre-
ate trajectories with dif-
ferent group membership
for each outcome

Depression and anxiety,
use 2 outcomes to cre-
ate trajectories with com-
mon group membership
for each outcome
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Chapter 4 APPLICATION FOR DEPRESSION AND

ANXIETY

4.1 Introduction

In this Chapter, the three trajectory models discussed in Chapter 3 were applied using a

real dataset on depression and anxiety outcomes. The data set was described in Section 4.2.

Two group-based trajectory modeling (GBTM) were independently fitted by depression and

anxiety outcomes separately, described in Section 4.3. Group-based dual trajectory modeling

(GBDTM) and group-based multi-trajectory modeling (GBMTM) were implemented with

joint depression and anxiety outcomes, as discussed in Sections 4.4 and 4.5.

All the analyses were performed using SAS 9.4. Trajectory models were developed with

PROC TRAJ, a package running under SAS 9.4 (Jones, 2020). Figures were redesigned

based on the SAS outputs with Excel. For this thesis, α = 0.05 was set as the significance

level. This study data set of the analysis was approved by the Behavioural Research Ethics

Board, University of Saskatchewan (ID: 1759).

4.2 Data structure and study population

This study utilized a subset of an eight-year longitudinal survey called the Korea Health

Panel Study (KHPS). The KHPS collected by the Korean Institute for Health and Social

Affairs, in conjunction with the National Health Insurance Service, used a stratified sampling

frame taken from the Korean Population and Housing Census in 2000 (KHPS, 2020). Based

on this dataset, sample weights for the KHPS were calculated after going through the process

of adjusting for unequal selection probabilities and non-responses and making a population

distribution disclosure via post-stratification corresponding to the sample distribution (Lim,

Cheng, Kabir, & Thorpe, 2020). KHPS aims to improve the national health system’s re-

sponsiveness and accessibility and provide necessary information regarding the efficiency of
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policy implementation by identifying factors that directly or indirectly affect healthcare ser-

vices, spend on financial resources, and continuously observe the trends (KHPS, 2020). The

KHPS began in 2008 and incorporated a total of 24616 participants from 7387 households.

In 2014, KHPS was expanded to mitigate attrition with the additional 2520 families. Us-

ing computer-assisted personal interviews, trained staff collected data with three aspects:

household, individual, and case-based sections. Comprehensive assessments on the use of

healthcare services, healthcare costs, and other potentially influential factors have been con-

ducted annually since 2008. The survey’s core questions involved 13 essential sectors and

10 other sectors, including household items data, household member items data, health

insurance data, chronic disease data, drug use data, long-term care data for adult house-

hold members, and emergency medical use data. For medical data, the annual data disease

(diagnosis) code and the Korean standard disease classifications were used.

For data collection, investigators visited the target households and used a computer

(CAPI) to investigate. Baseline covariates were measured in 2008. They involved sex, age,

education, marital status, residential area, number of household members, household com-

position type, housing type, current chronic disease status, health insurance type, household

income quantile, and household expenses. Age was categorized as 65 - 69, 70 - 74, 75 - 79,

and 80 years and older. Sex was coded with 0 = male and 1 = female. Education was coded

as 0 = no education, 1 = Grade 1 - 6, and 2 = Grade 7 or higher. Residential area was

categorized into two areas: metro-city was coded as 0, and not-metro-city was coded as 1.

Household composition type was categorized as 1 = living alone, 2 = living with a spouse,

and 3 = other mixed arrangements. Housing type was categorized as 1 = detached house, 2

= apartment, and 3 = other types.

Exercise and walking were evaluated based on responses to the following question: “Dur-

ing the past week, how many days did you do intensive/moderate physical activity, or walk

more than 10 minutes a day”. Responses were evaluated on an 8-point Likert scale ranging

from 0 to 7 (none = 0, once a week = 1, two days a week = 2, three days a week = 3, four
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days a week = 4, five days a week = 5, six days a week = 6, seven days a week = 7). Alcohol

consumption was also scored on an 8-point Likert scale in response to the question, “Over the

past year, how often did you drink?” (never = 0; recently non-drink = 1, less than once per

month = 2, once per month = 3, 2 - 3 times per month = 4; once per week = 4; 2 - 3 times

a week = 6; almost daily = 7). In our study, exercise and walking variables were categorized

as “none”, “less or equal to 3 days/week”, and “more than 3 days/week”. Drinking variable

was categorized as “none”, “less than twice/week”, “2 - 4 times/week” and “almost daily”.

The main outcomes for depression and anxiety were identified in the medical data by the

disease diagnosis code: 0 = no depression/anxiety and 1 = depression/anxiety. The main

dichotomous binary outcomes of depression and anxiety in each year were collected from

medical expenses, including prescription drug receipts or medical institutions/pharmacies,

potentially leading to inadequate recognition of our sample outcomes. Diagnostic criteria

for depression and anxiety disorder was based on DSM-5 (The Diagnostic and Statistical

Manual of Mental Disorders, Fifth Edition) (Lim et al., 2020).

For this thesis, baseline responses from individuals aged 65 or older in the initial 2008

households and in the additional 2014 households were examined, as were their responses

for each subsequent wave, if depression or anxiety answers were provided. A total of 3983

individuals met our study criteria. Demographic and other data were extracted at each time

point over eight years from 2008 to 2015. Figure 4.1 described the structure of depression

and anxiety. The dataset had two parts. The first part was the original 2946 individuals

aged 65 or older from 2008, for whom all the measurements over eight years were available.

The retention rates were 96.7%, 90.1%, 85.7%, 81.2%, 76.4%, 72.1%, 67.6% and 62.8% from

2008 to 2015, respectively. The second part involved the additional 1137 individuals from

2014 to 2015. These were moved to the baseline (the year 2008) and second measurement

(the year 2009), and considered the rest as missing measurements. The retention rates of

the additional participants were 99.7% in 2014 and 85.5% in 2015. A total of 1785 (44.8%)

individuals had complete data measurements for depression and anxiety.
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Figure 4.1: Study flow diagram
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Table 4.1 provided the baseline characteristics for 3983 participants aged 65 or older in

the study between 2008 and 2015. 57% of the participants were female, and the average age

of their baseline measurement was 72.4 years (SD ± 6). Of these participants, 62.9% had

never received any education or had only finished elementary school; 65.1% lived with their

spouse, while 1.6% lived alone; the majority (83%) reported their income level was lower

than the median income level; and 36.7% were still attending income-generating activities.

Only 38.2% lived in metro-cities, 57.4% lived in a detached house, and 23.6% rented their

home. 27.5% of the participants currently smoked, and 15.4% drank two times or more

per week. 31.4% could not walk more than three days per week, and only 33% engaged in

physical activities. Moreover, most of them (88%) had more than three chronic diseases,

and 19.9% were suffering from physical or mental disabilities. From the baseline outcomes

of depression and anxiety, 107 (2.8%) of participants were diagnosed with depression, and

73 (1.9 %) had anxiety.

Table 4.1: Baseline characteristics of participants (N=3983)

Variable name Number (%) 

Sex 

Male 

Female 

 

1714 (43) 

2269 (57) 

Age (Continuous) 

    Mean ± SD 

    Median (IQR) 

 

72.4 ± 6.0 

71 (68 - 76) 

Age 

    65-69 

    70-74 

    75-79 

    ≥ 80 

 

1534 (38.5) 

1215 (30.5) 

740 (18.6) 

494 (12.4) 

Marriage status 

   Married 

   Single/divorce/widower 

   Missing 

 

2592 (65.1) 

1390 (34.9) 

1 

Education    

    None 

    Elementary 

    Middle/High 

    University 

 

799 (20.1) 

1705 (42.8) 

1181 (29.7) 

298 (7.5) 
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Variable name Number (%) 

Smoking    

    No 

    Previous 

Current 

    Missing 

 

2218 (59.9) 

467 (12.6) 

1017 (27.5) 

281 

Drinking     

    No 

     < 2 days/week 

     2-4 days/week 

     Almost daily 

     Missing 

 

1495 (40.4) 

1640 (44.3) 

278 (7.5) 

291 (7.9) 

279 

Residential area  

    No Metro-city 

    Metro-city 

 

2463 (61.8) 

1520 (38.2) 

Housing   

     Detached House 

     Apartment 

     Others   

 

2286 (57.4) 

556 (14.0) 

1141 (28.6) 

Home ownership 

     Own 

     Lease 

 

3042 (76.4) 

941 (23.6) 

Living    

    Alone 

    Couple only 

    Others 

 

62 (1.6) 

2466 (61.9) 

1455 (36.5) 

Disability 

 No 

    Yes 

 

3191 (80.1) 

792 (19.9) 

Walking 

     None 

     ≤ 3days/week 

     >3 days/week 

    Missing 

 

690 (18.6)  

473 (12.8)  

2541 (68.6) 

279 

Medium/Intensive Physical activity 

     none              

     ≤ 3days/week        

     >3 days/week 

     Missing 

 

2482 (67.0)  

357 (9.6)  

865 (23.4) 

279 

More than 3 chronic diseases 

     Yes 

     No 

 

3507 (88)  

476 (12) 

Economic Activity 

     Yes   

     No 

 

1461 (36.7)  

2522 (63.3) 
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Variable name Number (%) 

Income quantile        

     < 20        

     20 - 40           

     40 - 60        

     60 - 80        

     80 - 100 

 

1309 (44.8)  

666 (22.8)  

471 (16.1)  

260 (8.9)  

216 (7.4) 

Baseline depression diagnosed 

Yes 

No 

Missing 

 

107 (2.8) 

3778 (97.2) 

98 

Baseline anxiety diagnosed 

Yes 

    No 

    Missing  

 

73 (1.9) 

3812 (98.1) 

98 
 

The diagnosed proportions of depression and anxiety in each year were presented in

Figure 4.2. More participants were diagnosed with depression than with anxiety. The

participants with depression increased until 2014, after which fewer proportion of individuals

were diagnosed with depression. The anxiety patients had a higher rate in the first two years,

and then decreased in the third year. However, after 2010, the proportion of anxiety increased

every year.

Figure 4.2: Proportions of diagnosed depression and anxiety during the study period
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4.3 Selection of trajectory groups

Before building the trajectory models, we need to determine the best fitness number

of trajectories for depression and anxiety outcomes. From the literature, depression and

anxiety trajectories usually followed linear or quadratic shapes from polynomial functions

(Hybels et al., 2016; Chui, Gerstorf, Hoppmann, & Luszcz, 2015; Hsu, 2012; Andreescu,

Chang, Mulsant, & Ganguli, 2008; Holmes et al., 2018; Rzewuska et al., 2015; Spinhoven et

al., 2017; Wiesner & Kim, 2006). Particularly in binary outcomes, trajectories are generated

as linear most of the time (Huang et al., 2013).

I first tried GBTM with no starting points, with the number of trajectories from two to

five. All trajectories from the models were assumed to be linear. The goodness-of-fit tests

to select the right number of trajectories for depression and anxiety were described in Table

4.2. The number of groups with large BIC, AIC and posterior probability close to 1.0 will

be better fit (Nagin, 2005). For depression, four-trajectory model had the largest BIC =

-2363.7, AIC= -2354.7 and highest posterior probability 0.83. Similarly, a four-trajectory

model with the largest BIC= -1476.3, AIC= -1467.2, and the posterior probability close to 1

were found with anxiety. Therefore, four groups of trajectories were assumed to be the best

fit for both depression and anxiety.

Table 4.2: Goodness of model fit to select the optimal number of trajectory group for depression
and anxiety

Number of 

trajectories 

Depression Anxiety 

BIC AIC PP BIC AIC PP 

2 -2534.8 -2530.7 0 -1525.8 -1521.7 0 

3 -2403.8 -2397.2 0 -1484.2 -1477.6 0 

4 -2363.7 -2354.7 0.83 -1476.3 -1467.2 1 

5 -2365.3 -2353.8 0.17 -1489.8 -1478.3 0 

BIC = Bayesian information criterion, AIC =Akaike information criterion, PP = 

Posterior probability 
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4.4 Analysis of group-based trajectory modeling (GBTM)

4.4.1 GBTM for depression

4.4.1.1 Development of GBTM

Based on the GBTM for binary outcomes from Section 3.3.5, GBTM for a depression out-

come was developed with four trajectory groups: “low-flat” (TD1), “low-to-middle” (TD2),

“low-to-high” (TD3) and “high-curve” (TD4). One flat trajectory, two linear trajectories,

and one quadratic trajectory are presented in Figure 4.3. The solid lines represent each

trajectory group means, and the dashed lines showed predictions.

Figure 4.3: Depression trajectories for GBTM. The solid line indicates observed depression; the
dashed line indicates predicted depression.

The first trajectory, TD1 (n=3636; 86.6%), was low-flat, showing the probability was close

to zero. It indicated that most participants were not diagnosed with depression over time.

The second trajectory, TD2 (n=214; 9.2%), was low-to-middle, meaning the probability of

depression started low but increased slowly over time. The third trajectory, TD3 (n=31;

1.3%), started with the low depression but rapidly increased over time. In the last two
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years, depression probability was close to one for this TD3 group. The fourth trajectory, TD4

(n=102; 2.9%), was high-curve; remaining a high level of depression probability throughout

the study period. Overall, TD1 contained the majority of participants (86.6%). TD3 had

the lowest proportion (1.3%).

As we discussed in Section 3.3.5, each trajectory group had a probability that followed

the logistic regression with time variables. The logit function was defined as:

logit(ρitj) = log(
ρitj

1− ρitj
) = β0j + timeitβ1j + time2

itβ2j + ...+ εit, (4.1)

where ρitj was the probability of yit belonging to group j equal to 1. The parameters for

trajectory shapes and group memberships were identified in Table 4.3. Table 4.3 showed that

the p-value was significant (p-value < 0.05) with logistic polynomial regression in the TD1 -

TD3. In TD4, the intercept and linear predictor were not significant (p-value = 0.1077 and

0.0502). However, the quadratic predictor was significant (p-value = 0.0262).

Table 4.3: Parameter estimates for trajectory shapes in depression GBTM

Group Parameter Estimate Standard Error p-value 

Low-flat (TD1) Intercept -6.35359 0.56599 <0.0001 

Low-to-middle (TD2) Intercept 

Linear 

-3.53362 

0.39656 

0.27639 

0.05537 

<0.0001 

<0.0001 

Low-to-high (TD3) Intercept 

Linear 

-7.32440 

1.95051 

1.89800 

0.52360 

0.0001 

0.0002 

High-curve (TD4) Intercept 

Linear 

Quadratic 

0.88200 

0.55127 

-0.06694 

0.54823 

0.28149 

0.03011 

0.1077 

0.0502 

0.0262 

 

Proportions were generated from the multinomial function based on equation (3.68).

All the p-values from the group memberships were significant (Table 4.4). Based on the

parameters of polynomial functions, we could predict four depression trajectories with logit

functions.
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Table 4.4: Estimates of group membership proportions in depression GBTM

Group membership proportions 

Group Estimate Proportion (%) Standard Error p-value* 

Low-flat (TD1) 86.62274 1.42353 <0.0001 

Low-middle (TD2) 9.16961 1.33216 <0.0001 

Low-high (TD3) 1.32148 0.30925 <0.0001 

High-curve (TD4) 2.88617       0.33508            <0.0001 
*H0: Proportion = 0 vs Ha:  Proportion ≠ 0 

4.4.1.2 Characteristics of trajectory groups

Baseline characteristics across the four trajectory groups were described and compared.

The data showed that there were no differences among the four depression trajectory groups

in levels of education, residential area, housing type, marriage status, living alone or not,

physical activity or walking, disability, and income-quantiles.

On the other hand, sex (p-value < 0.0001), age levels (p-value = 0.004), smoking (p-

value = 0.001), alcohol consumption (p-value = 0.001), homeownership (p-value = 0.045),

more than three chronic diseases (p-value < 0.0001) and current economic activities (p-

value = 0.001) were significantly different among the groups from the overall chi-square

test. Compared to other trajectory groups, the “low-flat” depression trajectory group (TD1)

had the lowest proportion of females, non-smokers, non-drinkers, not mentally or physically

disabled, involved in income-generating activities, with more than three chronic diseases.

This trajectory also included the highest percentage of individuals who are 80 years old or

older. On the other hand, the “high-curve” depression trajectory group (TD4) was found to

contain the highest proportion of females aged 65 - 69, non-smokers, non-drinkers, living in

a rental home, and with more than three chronic diseases. More detailed information could

be found in Table 4.5.

65



Table 4.5: Distribution of baseline characteristics by GBTM depression trajectory groups (N, %)

 Trajectory groups 

 Low-flat (TD1) 

N=3636 

Low-middle 

(TD2) N=214 

Low-high 

(TD3) N=31 

High-curve 

(TD4) N=102 

p-value 

Sex 

Male 

    Female 

 

1620 (44.6) 

2016 (55.5) 

 

60 (28.0) 

154 (72.0) 

 

8 (25.8) 

23 (74.2) 

 

26 (25.5) 

76 (74.5) 

 

<0.0001 

Age 

    65-69 

    70-74 

    75-79 

    ≥ 80 

 

1400 (38.5) 

1098 (30.2) 

666 (18.3) 

472 (13.0) 

 

93 (43.5) 

74 (34.6) 

39 (18.2) 

8 (3.7) 

 

11 (35.5) 

10 (32.3) 

8 (25.8) 

2 (6.5) 

 

30 (29.4) 

33 (32.4) 

27 (26.5) 

12 (11.8) 

 

0.004 

Marriage status 

   Married 

   Single/divorce/widower 

 

2363 (65.0) 

1272 (35.0) 

 

143 (66.8) 

71 (33.2) 

 

20 (64.5) 

11 (35.5) 

 

66 (64.7) 

36 (35.3) 

 

0.962 

Education    

    None 

    Elementary 

    Middle/High 

    University 

 

727 (20) 

1547 (42.6) 

1078 (29.7) 

284 (7.8) 

 

40 (18.7) 

105 (49.1) 

60 (28.0) 

9 (4.2) 

 

6 (19.4) 

13 (41.9) 

10 (32.3) 

2 (6.5) 

 

26 (25.5) 

40 (39.2) 

33 (32.4) 

3 (2.9) 

 

0.275 

 

Smoking    

    No 

    Previous 

    Current 

 

1975 (58.7) 

441 (13.1) 

947 (28.2) 

 

152 (71.0) 

15 (7.0) 

47 (22.0) 

 

21 (67.7) 

2 (6.5) 

8 (28.8) 

 

70 (74.5) 

9 (9.6) 

15 (16) 

 

0.001 

Drinking     

    No 

     < 2 days/week 

     2-4 days/week 

     Almost daily 

 

1322 (39.3) 

1502 (44.6) 

267 (7.9) 

274 (8.1) 

 

103 (48.1) 

90 (42.1) 

10 (4.7) 

11 (5.1) 

 

17 (54.8) 

12 (38.7) 

0 (0) 

2 (6.5) 

 

53 (56.4) 

36 (38.3) 

1 (1.1) 

4 (4.3) 

 

0.001 

Residential area  

    No Metro-city 

    Metro-city 

 

2247 (61.8) 

1389 (38.2) 

 

135 (63.1) 

79 (36.9) 

 

18 (58.1) 

13 (41.9) 

 

63 (61.8) 

39 (38.2) 

 

0.950 

Housing   

     Detached House 

     Apartment 

    Others   

 

2091 (57.5) 

512 (14.1) 

1033 (28.4) 

 

124 (57.9) 

23 (10.8) 

67 (32.3) 

 

16 (51.6) 

5 (16.1) 

10 (32.3) 

 

55 (53.9) 

16 (15.7) 

31 (30.4) 

 

0.786 

Home ownership 

     Own 

     Lease 

 

2783 (76.5) 

853 (23.5) 

 

168 (78.5) 

46 (21.5) 

 

25 (80.6) 

6 (19.4) 

 

66 (64.7) 

36 (35.3) 

 

0.045 

Living    

    Alone 

    Couple only 

    Others 

 

59 (1.6) 

2229 (61.3) 

1348 (37.1) 

 

1 (0.5) 

150 (70.1) 

63 (29.4) 

 

0 (0) 

21 (67.7) 

10 (32.3) 

 

2 (2.0) 

66 (64.7) 

34 (33.3) 

 

0.183 

Disability 

 No 

     Yes 

 

2929 (80.6) 

707 (19.4) 

 

166 (77.6) 

48 (22.4) 

 

24 (77.4) 

7 (22.6) 

 

72 (70.6) 

30 (29.4) 

 

0.066 

Walking 

     None 

     ≤ 3days/week 

     >3 days/week 

 

624 (18.5) 

416 (12.4) 

2325 (69.1) 

 

35 (16.4) 

36 (16.8) 

143 (66.8) 

 

5 (16.1) 

6 (19.4) 

20 (64.5) 

 

26 (27.7) 

15 (16.0) 

53 (56.4) 

 

0.059 

Medium/Intensive Physical 

activity 

     none              

     ≤ 3days/week        

     >3 days/week 

 

 

2246 (66.8) 

325 (9.7) 

794 (23.6) 

 

 

137 (64.0) 

22 (10.3) 

55 (25.7) 

 

 

25 (80.7) 

3 (9.7) 

3 (9.7) 

 

 

74 (78.7) 

7 (7.5) 

13 (13.8) 

 

 

0.109 
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 Trajectory groups 

 Low-flat (TD1) 

N=3636 

Low-middle 

(TD2) N=214 

Low-high 

(TD3) N=31 

High-curve 

(TD4) N=102 

p-value 

More than 3 chronic diseases 

     No 

     Yes 

 

466 (12.8) 

3170 (87.2) 

 

7 (3.3) 

207 (96.7) 

 

1 (3.2) 

30 (96.8) 

 

2 (2.0) 

100 (98.0) 

 

<0.0001 

Economic Activity 

     No 

     Yes 

 

2275 (62.6) 

1361 (37.4) 

 

142 (66.4) 

72 (33.6) 

 

25 (80.7) 

6 (19.4) 

 

80 (78.4) 

22 (21.6) 

 

0.001 

Income quantile        

     < 20        

     20 - 40           

     40 - 60        

     60 - 80        

     80 - 100 

 

1162 (44.1) 

603 (22.9) 

424 (16.1) 

238 (9.0) 

209 (7.9) 

 

93 (50.8) 

39 (21.3)  

33 (18.0) 

12 (6.6) 

6 (3.3) 

 

14 (45.2) 

8 (25.8) 

6 (19.4) 

3 (9.7) 

0 (0) 

 

40 (55.6) 

16 (22.2) 

8 (11.1) 

7 (9.7) 

1 (1.4) 

 

0.117 

 

Logistic regression was applied to compare each of the three depression trajectory groups

(TD2 - TD4) to the “low-flat” depression trajectory group (TD1). Univariate logistic re-

gression models were developed with TD1 as the reference trajectory. The odds ratios with

95% CI and p-value were shown in Table 4.6. The multivariate logistic analysis was then

facilitated by including all the variables with a p-value smaller than 0.1. Multicollinearity

was checked based on the variance inflation factor (VIF). If the VIF score exceeded 10, the

variable would be excluded from the model. The backward selection method excluded the

variables that were not significant from the multivariate logistic regression.

From the univariate logistic analysis with TD1 as the reference group, females, aged

80 or more, smoking now or in the past, drinking two or more days per week, and with

more than three chronic diseases were significant in the “low-to-middle” depression trajec-

tory group (TD2) (Table 4.6). Compared to the “low-to-high” depression trajectory group

(TD3), females and not involved in income-generating activity had significantly higher odds.

Significant predictors for the “high-curve” depression trajectory group (TD4) (Table 4.6) are

the female sex, aged 75 - 79, having a university degree, currently smoking, drinking less

than daily, staying in a rental house, having physical or mental disabilities, walking at least

10 minutes for more than three days per week, doing physical activities more than three days

per week, having more than three chronic diseases, and not taking economic activities.
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Table 4.6: Univariate Logistic Regression Analysis. Estimation of odds ratio (OR) and 95% confi-
dence interval (C.I). Low-flat depression as the reference group.

Variable Low-to-Middle (n=214) Low-to-High (n=31) High-Curve (n=102) 

O.R (95% C.I) p-value O.R (95% C.I) p-value O.R (95% C.I) p-value 

Sex 

Male 

    Female 

 

- 

2.06 (1.52-2.80) 

 

- 

<0.0001 

 

- 

2.31 (1.03-5.18) 

 

- 

0.042 

 

- 

2.35 (1.50-3.68) 

 

- 

<0.0001 

Age 

    65-69 

    70-74 

    75-79 

    ≥ 80 

 

- 

1.01 (0.74-1.39) 

0.88 (0.60-1.30) 

0.26 (0.12-0.53) 

 

- 

0.929 

0.521 

<0.0001 

 

- 

1.16 (0.49-2.74) 

1.53 (0.61-3.82) 

0.54 (0.12-2.44) 

 

- 

0.737 

0.363 

0.423 

 

- 

1.40 (0.85-2.31) 

1.89 (1.12-3.21) 

1.19 (0.60-2.34) 

 

- 

0.185 

0.018 

0.621 

Marriage status 

   Married 

Single/divorce/widower 

 

- 

0.92 (0.69-1.24) 

 

- 

0.588 

 

- 

1.02 (0.49-2.14) 

 

- 

0.954 

 

- 

1.01 (0.67-1.53) 

 

- 

0.950 

Education    

    None 

    Elementary 

    Middle/High 

    University 

 

- 

1.23 (0.85,1.79) 

1.01 (0.67-1.53) 

0.58 (0.28-1.20) 

 

- 

0.272 

0.956 

0.142 

 

- 

1.02 (0.39-2.69) 

1.12 (0.41-3.11) 

0.85 (0.17-4.25) 

 

- 

0.971 

0.822 

0.847 

 

- 

0.72 (0.44-1.19) 

0.86 (0.51-1.44) 

0.30 (0.09-0.98) 

 

- 

0.205 

0.560 

0.047 

Smoking    

    No 

    Previous 

    Current 

 

- 

0.44 (0.26-0.76) 

0.65 (0.46-0.90) 

 

- 

0.003 

0.011 

 

- 

0.43 (0.10-1.83) 

0.79 (0.35-1.80) 

 

- 

0.251 

0.582 

 

- 

0.58 (0.29-1.16) 

0.45 (0.26-0.79) 

 

- 

0.123 

0.005 

Drinking     

    No 

     < 2 days/week 

     2-4 days/week 

     Almost daily 

 

- 

0.77 (0.57-1.03) 

0.48 (0.25-0.93) 

0.52 (0.27-0.97) 

 

- 

0.078 

0.030 

0.041 

 

- 

0.62 (0.30-1.31) 

0.31 (0.04-2.34) 

0.57 (0.13-2.47) 

 

- 

0.209 

0.975 

0.451 

 

- 

0.60 (0.39-0.92) 

0.09 (0.01-0.68) 

0.36 (0.13-1.01) 

 

- 

0.019 

0.019 

0.053 

Residential area  

    No Metro-city 

    Metro-city 

 

- 

0.95 (0.71-1.26) 

 

- 

0.707 

 

- 

1.17 (0.57-2.39) 

 

- 

0.670 

 

- 

1.00 (0.67-1.50) 

 

- 

0.994 

Housing   

     Detached House 

     Apartment 

    Others   

 

- 

0.76 (0.48-1.19) 

1.09 (0.81-1.49) 

 

- 

0.232 

0.567 

 

- 

1.28 (0.47-3.50) 

1.27 (0.57-2.80) 

 

- 

0.636 

0.561 

 

- 

1.19 (0.68-2.09) 

1.14 (0.73-1.78) 

 

- 

0.550 

0.563 

Home ownership 

     Own 

     Lease 

 

- 

0.89 (0.64-1.25) 

 

- 

0.509 

 

- 

0.78 (0.32-1.91) 

 

- 

0.592 

 

- 

1.78 (1.18-2.69) 

 

- 

0.006 

Living    

    Alone 

    Couple only 

    Others 

 

- 

0.25 (0.04-1.83) 

0.69 (0.51-0.94) 

 

- 

0.173 

0.018 

 

- 

1.89 (0.25-14.31) 

0.79 (0.37-1.68) 

 

- 

0.962 

0.536 

 

- 

1.14 (0.27-4.79) 

0.85 (0.56-1.29) 

 

- 

0.853 

0.454 

Disability 

 No 

     Yes 

 

- 

1.20 (0.86-1.67) 

 

- 

0.286 

 

- 

1.21 (0.52-2.82) 

 

- 

0.661 

 

- 

1.73 (1.12-2.66) 

 

- 

0.014 

Walking 

     None 

     ≤ 3days/week 

     >3 days/week 

 

- 

1.54 (0.95-2.50) 

1.10 (0.75-1.60) 

 

- 

0.078 

0.635 

 

- 

1.80 (0.55-5.94) 

1.07 (0.40-2.87) 

 

- 

0.334 

0.888 

 

- 

0.87 (1.43-1.65) 

0.55 (0.34-0.88) 

 

- 

0.662 

0.013 

Medium/Intensive 

Physical activity 

     none              

     ≤ 3days/week        

     >3 days/week 

 

 

- 

1.11 (0.70-1.77) 

1.14 (0.82-1.57) 

 

 

- 

0.661 

0.441 

 

 

- 

0.83 (0.25-2.76) 

0.34 (0.10-1.13) 

 

 

- 

0.760 

0.078 

 

 

- 

0.65 (0.30-1.43) 

0.50 (0.27-0.90) 

 

 

- 

0.288 

0.021 
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Variable Low-to-Middle (n=214) Low-to- High (n=31) High-Curve (n=102) 

O.R (95% C.I) p-value O.R (95% C.I) p-value O.R (95% C.I) p-value 

More than 3 chronic 

diseases 

     No 

     Yes 

 

 

- 

4.35 (2.03-9.29) 

 

 

- 

<0.001 

 

 

- 

4.41 (0.60-32.41) 

 

 

- 

0.145 

 

 

- 

7.35 (1.81-29.9) 

 

 

- 

0.005 

Economic Activity 

     Yes 

     No 

 

- 

1.18 (0.88-1.58) 

 

- 

0.266 

 

- 

2.49 (1.02-6.09) 

 

- 

0.045 

 

- 

2.18 (1.35-3.50) 

 

- 

0.001 

Income quantile        

     < 20        

     20 - 40           

     40 - 60        

     60 - 80        

     80 - 100 

 

- 

0.81 (0.55-1.19) 

0.97 (0.64-1.47) 

0.63 (0.34-1.17) 

0.36 (0.16-0.83) 

 

- 

0.280 

0.894 

0.142 

0.017 

 

- 

1.10 (0.46-2.64) 

1.18 (0.45-3.08) 

1.05 (0.30-3.67) 

0.43 (0.06-3.29) 

 

- 

0.829 

0.743 

0.944 

0.976 

 

- 

0.77 (0.43-1.39) 

0.55 (0.25-1.18) 

0.85 (0.38-1.93) 

0.14 (0.02-1.02) 

 

- 

0.386 

0.125 

0.705 

0.052 

 

In multivariate logistic regression analysis (Table 4.7), compared to the “low-flat” de-

pression trajectory group (TD1), the members from “low-to-middle” depression trajectory

group (TD2) were more likely to be females (OR = 1.82, 95% CI: 1.31 - 2.53, p-value <

0.0001) and to have more than three chronic diseases (OR = 4.15, 95% CI: 1.93 - 8.93,

p-value < 0.0001), with age 80 or more (OR = 0.33, 95% CI: 0.15 - 0.73, p-value = 0.006)

as an adjusted covariate. Being female was the only significant factor for comparing the

“low-to-high” depression trajectory group (TD3) to TD1 (OR = 2.31, 95% CI: 1.03 - 5.18,

p-value = 0.042). Individuals from the “high-curve” depression trajectory group (TD4) were

more likely to be females (OR = 2.02, 95% CI: 1.16 - 3.54, p-value = 0.014), to have more

Table 4.7: Multivariate Logistic Regression Analysis. Estimation of odds ratio (OR) and 95%
confidence interval (C.I). Low-flat depression as the reference group

Variable Low-to-Middle (n=214) Low-to-High (n=31) High-Curve (n=102) 

O.R (95% C.I) p-value O.R (95% C.I) p-value O.R (95% C.I) p-value 

Sex 

Male 

    Female 

 

- 

1.82 (1.31-2.53) 

 

- 

<0.0001 

 

- 

2.31 (1.03-5.18) 

 

- 

0.042 

 

- 

2.02 (1.16-3.54) 

 

- 

0.014 

Age 

    65-69 

    70-74 

75-79 

≥ 80 

 

- 

1.05 (0.74-1.49) 

0.96 (0.63-1.47) 

0.33 (0.15-0.73) 

 

- 

0.782 

0.865 

0.006 

    

More than 3 chronic 

diseases 

     No 

     Yes 

 

 

- 

4.15 (1.93-8.93) 

 

 

- 

<0.0001 

   

 

- 

5.18 (1.26-21.3) 

 

 

- 

0.023 

Home ownership 

     Own 

     Lease 

     

- 

2.06 (1.25-3.40) 

 

- 

0.005 
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than three chronic diseases (OR = 5.18, 95% CI: 1.26 - 21.29, p-value = 0.023) and to live

in a rental home (OR = 2.06, 95% CI: 1.25 - 3.40, p-value = 0.005).

4.4.1.3 Risk factors for depression using GBTM

As we mentioned in Section 3.3.3, adding risk factors to group memberships would vary

the probabilities of trajectory groups, but rarely change the trajectory proportion from the

overall population and trajectory shapes. In our study, all variables from multivariate logistic

regression analysis (Table 4.7) were considered risk factors for depression trajectory groups.

After adding all the risk factors (female sex, age 65-69, having more than three chronic

diseases, and living in a rental house), each group’s trajectory shapes (Figure 4.4) had tiny

changes compared to Figure 4.3. In Figure 4.4, the proportion of “low-flat” (TD1), “low-

Figure 4.4: Depression trajectories with four risk factors for GBTM. The solid line indicates ob-
served depression; the dashed line indicates predicted depression.

to-middle” (TD2), and “low-to-high” (TD3) depression trajectory groups had a very small

percentage change. For example, the “low-flat” depression trajectory group (TD1) moved

1.8% to the “low-to-middle” depression trajectory group (TD2) and 0.2% to the “low-to-
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high” depression trajectory group (TD3). The “high-curve” depression trajectory group

(TD4) remained the same.

Table 4.8 showed the parameters that allowed the trajectory groups’ probabilities to vary

as a function of the four risk factors mentioned above in Table 4.7. The p-values of constants

were all significant in TD2 - TD4. Being female and having more than three chronic diseases

were influential in TD2 and TD4 with TD1 as the reference group. Age 65-69 was significant

in TD2. Living in a rental house was only significant in TD4 (Table 4.8).

Table 4.8: Parameter estimates for risk factors by depression trajectory group

Group Parameter Estimate Standard Error p-value 

Low-flat (TD1) Baseline 0 - - 

Low-middle (TD2) Constant 

Female 

Age 65-69 

> 3 chronic disease 

Living in a rental house 

-4.64259 

0.64925 

0.91592 

1.50048 

-0.10234 

0.57568 

0.17733 

0.42111 

0.39844 

0.19675 

<0.0001 

0.0003 

0.0296 

0.0002 

0.6030 

Low-high (TD3) Constant 

Female 

Age 65-69 

> 3 chronic disease 

Living in a rental house 

-6.07875 

0.71159 

0.24331 

1.60264 

-0.43588 

1.45121 

0.44158 

0.82911 

1.21514            

0.52016 

<0.0001 

0.1071 

0.7692 

0.1872 

0.4021 

High-curve (TD4) Constant 

Female 

Age 65-69 

> 3 chronic disease 

Living in a rental house 

-6.55316 

0.92573 

0.46373 

2.09969 

0.54051 

0.98470 

0.24877 

0.34837 

0.90960 

0.21838 

<0.0001 

0.0002 

0.1832 

0.0210 

0.0133 
 

Based on the parameters from Table 4.8, the probability of group membership with the

influence of the risk factors can be calculated. Table 4.9 listed situations for estimating group

membership probabilities (No risk factors, female only, age 65-69 only, chronic disease only,

living in a rental house only, and all risk factors).

As seen in Table 4.9, the percentage of probabilities increased with significant risk factors

in depression trajectory groups TD2 - TD4. For instance, the individuals with no risk factors

had a probability percentage of 98.683% in TD1, 0.951% in TD2, 0.226% in TD3, and 0.143%

in TD4, respectively. If we considered the individuals with more than three chronic diseases,
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the probability of TD1 would decline to 93.791% from 98.683%; additionally, the probability

in TD2, TD3, and TD4 rose to 4.051%, 1.067%, and 1.092%, respectively.

Table 4.9: Percentage of group membership probability with risk factors

 Trajectory groups (%) 

Risk factors Low-Flat (TD1) Low-to-middle (TD2) Low-to-high (TD3) High-curve (TD4) 

No risk factors 98.683 0.951 0.226 0.143 

Female only 97.399 1.796 0.455 0.35 

Age 65-69 only 96.993 1.788 0.283 0.27 

Chronic disease only 93.791 4.051 1.067 1.092 

Living in a rental house 98.876 0.859 0.148 0.245 

All factors 77.773 14.505 1.4869 6.236 

 

An alternative way to check group membership probability with different risk factors

could be seen in Figure 4.5. The bar plot in Figure 4.5 showed that individuals with only one

risk factor (female only, age 65-69 only, chronic disease only, living in a rental house only) had

only a small proportion change compared to individuals with no risk factors. Nevertheless,

individuals with all risk factors had prodigious probability variation in each trajectory group.

Compared to the individuals having no risk factors, the probability proportion for individuals

with all risk factors in TD1 decreased 20.9% and increased 13.5% in TD2, 1.3% in TD3, and

6.1% in TD4.

Figure 4.5: Bar plot for percentage of depression group membership in GBTM
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4.4.2 GBTM for anxiety

4.4.2.1 Development of GBTM

Using the same procedures as GBTM with depression outcomes, GBTM with anxiety out-

comes also identified with four trajectory groups: “low-flat” (TA1), “low-to-middle” (TA2),

“high-to-low” (TA3) and “high-curve” (TA4). The four trajectory groups were constituted

with one flat trajectory, two linear trajectories, and one curve shape trajectory (Table 4.10).

Figure 4.6 showed the four trajectory groups, represented by solid lines for the accurate

averages and dashed lines for predicted values.

Figure 4.6: Anxiety trajectories for GBTM. The solid line indicates observed depression; the dashed
line indicates predicted depression.

The “low-flat” anxiety trajectory group, TA1 (n=3843, 94.4%), had a low-flat probability

of anxiety close to zero. This group included most of the study participants. The “low-to-

middle” anxiety trajectory group, TA2 (n=59, 3.2%), started with low anxiety probability

(around 0.05) in 2008 and increased to more than 0.4 in 2015. The “high-to-low” anxiety

trajectory group, TA3 (n=68, 1.8%), began with an anxiety probability of around 0.7 but

fell to zero in 2013. The “high-curve” trajectory group, TA4 (n=13, 0.6%), began with a
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likelihood of more than 0.35 in 2008. This rose to nearly 1.0 in 2012, then declined to 0.65 in

2015. Table 4.10 presented the parameter estimates of anxiety trajectory shapes in GBTM.

All the p-values were significant at α = 0.05.

Table 4.10: Parameter estimates for trajectory shapes in anxiety GBTM

Group Parameter Estimate Standard Error p-value 

Low-flat (TA1) Intercept -5.80093 0.30180 <0.0001 

Low-to-middle (TA2) Intercept 

Linear 

-3.83411 

0.49000 

0.52631 

0.09159 

<0.0001 

<0.0001 

High-to-low (TA3) Intercept 

Linear 

2.35013 

-1.21053 

0.83613 

0.27995 

0.0049 

<0.0001 

High-curve (TA4) Intercept 

Linear 

Quadratic 

-2.14626 

1.71445 

-0.16987 

0.92160 

0.51304 

0.05674 

0.0199 

0.0008 

0.0028 
 

Table 4.11 showed the estimated group membership proportions. All the proportions

were highly significant.

Table 4.11: Estimates of group membership proportions in anxiety GBTM

Group membership proportions 

Group Estimate Proportion (%) Standard Error p-value* 

Low-flat (TA1) 94.37189 0.98638 <0.0001 

Low-middle (TA2) 3.23915 0.75668 <0.0001 

High-low (TA3) 1.82509 0.47193 0.0001 

High-curve (TA4) 0.56386 0.17349 0.0012 
*H0: Proportion = 0 vs Ha:  Proportion ≠ 0 

 
4.4.2.2 Characteristics of trajectory groups

Baseline characteristics were compared using chi-square tests (Table 4.12). Females pre-

sented the lowest percentage in the “low-flat” anxiety trajectory group (TA1), but highest

in the “high-to-low” anxiety trajectory group (TA3). TA1 had the lowest proportion of non-

smokers, while TA3 included the highest percentage of current smokers. No overall difference

was shown among age groups, marriage status, level of education, drinking habits, residential

area, housing type, homeownership, living alone or not, mental or physical disability status,

daily walking, involvement in physical activities, having more than three chronic diseases,

taking income-generating activities and different income quantile.
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Table 4.12: Distribution of baseline characteristics by anxiety trajectory groups from GBTM (N,
%)

 Trajectory groups 

 Low-flat (TA1) 

N=3843 

Low-middle 

(TA2) N=59 

High-low 

(TA3) N=68 

High-curve 

(TA4) N=13 

p-value 

Sex 

Male 

    Female 

 

1677 (43.6) 

2166 (56.4) 

 

19 (32.2) 

40 (67.8) 

 

14 (20.6) 

54 (79.4) 

 

4 (30.8) 

9 (69.2) 

 

<0.0001 

Age 

    65-69 

    70-74 

    75-79 

    ≥ 80 

 

1481 (38.5) 

1169 (30.4) 

713 (18.6) 

480 (12.5) 

 

24 (40.7) 

20 (33.9) 

11 (18.6) 

4 (6.8) 

 

25 (36.8) 

22 (32.4) 

13 (19.1) 

8 (11.8) 

 

4 (30.8) 

4 (30.8) 

3 (23.1) 

2 (15.4) 

 

0.983 

Marriage status 

   Married 

   Single/divorce/widower 

 

2506 (65.2) 

1336 (34.8) 

 

39 (66.1) 

20 (33.9) 

 

38 (55.9) 

30 (44.1) 

 

9 (69.2) 

4 (30.8) 

 

0.441 

Education    

    None 

    Elementary 

    Middle/High 

    University 

 

768 (20.0) 

1637 (42.6) 

1148 (29.9) 

290 (7.6) 

 

10 (16.7) 

32 (54.2) 

13 (22.0) 

4 (6.8) 

 

19 (27.9) 

27 (39.7) 

19 (27.9) 

3 (4.4) 

 

2 (15.4) 

9 (69.2) 

1 (7.7) 

1 (7.7) 

 

0.278 

Smoking    

    No 

    Previous 

    Current 

 

2122 (59.5) 

458 (12.8) 

986 (27.7) 

 

38 (65.5) 

3 (5.2) 

17 (29.3) 

 

50 (76.9) 

6 (9.2) 

9 (13.9) 

 

8 (61.5) 

0 (0.0) 

5 (38.5) 

 

0.035 

Drinking     

    No 

     < 2 days/week 

     2-4 days/week 

     Almost daily 

 

1435 (40.2) 

1577 (44.2) 

272 (7.6) 

284 (8.0) 

 

20 (34.5) 

29 (50.0) 

4 (6.9) 

5 (8.6) 

 

34 (52.3) 

28 (43.1) 

1 (1.5) 

2 (3.1) 

 

6 (46.2) 

6 (46.2) 

1 (7.7) 

0 (0.0) 

 

0.387 

Residential area  

    No Metro-city 

    Metro-city 

 

2376 (61.8) 

1467 (38.2) 

 

35 (59.3) 

24 (40.7) 

 

44 (64.7) 

24 (35.3) 

 

8 (61.5) 

5 (38.5) 

 

0.941 

Housing   

     Detached House 

     Apartment 

    Others   

 

2204 (57.4) 

537 (14.0) 

1102 (28.7) 

 

38 (64.4) 

7 (11.9) 

14 (23.7) 

 

37 (54.4) 

11 (16.2) 

20 (29.4) 

 

7 (53.9) 

1 (7.7) 

5 (38.5) 

 

0.881 

Home ownership 

     Own 

     Lease 

 

2937 (76.4) 

906 (23.6) 

 

49 (83.1) 

10 (16.9) 

 

49 (72.1) 

19 (27.9) 

 

7 (53.9) 

6 (46.1) 

 

0.121 

Living    

    Alone 

    Couple only 

    Others 

 

61 (1.6) 

2379 (61.9) 

1403 (36.5) 

 

1 (1.7) 

39 (66.1) 

19 (32.2) 

 

0 (0) 

40 (58.8) 

28 (41.2) 

 

0 (0.0) 

8 (61.5) 

5 (38.5) 

 

0.892 

Disability 

 No 

     Yes 

 

3076 (80.0) 

767 (20.0) 

 

50 (84.8) 

9 (15.2) 

 

52 (76.5) 

16 (23.5) 

 

13 (100) 

0 (0) 

 

0.204 

Walking 

     None 

     ≤ 3days/week 

     >3 days/week 

 

662 (18.6) 

458 (12.8) 

2448 (68.6) 

 

7 (12.1) 

8 (13.8) 

43 (74.1) 

 

18 (27.7) 

5 (7.7) 

42 (64.6) 

 

3 (23.1) 

2 (15.4) 

8 (61.5) 

 

0.390 

Medium/Intensive Physical 

activity 

     none              

     ≤ 3days/week        

     >3 days/week 

 

 

2390 (67.0) 

344 (9.6) 

834 (23.4) 

 

 

32 (55.2) 

6 (10.3) 

20 (34.5) 

 

 

49 (75.4) 

7 (10.8) 

9 (13.9) 

 

 

11 (84.6) 

0 (0.0) 

2 (15.4) 

 

 

0.133 
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 Trajectory groups 

 Low-flat (TA1) 

N=3843 

Low-middle 

(TA2) N=59 

High-low 

(TA3) N=68 

High-curve 

(TA4) N=13 

p-value 

More than 3 chronic diseases 

     No 

     Yes 

 

466 (12.1) 

3377 (87.9) 

 

8 (13.6) 

51 (86.4) 

 

2 (2.9) 

66 (97.1) 

 

0 (0.0) 

13 (100) 

 

0.064 

Economic Activity 

     No 

     Yes 

 

2425 (63.1) 

1418 (36.9) 

 

37 (62.7) 

22 (37.3) 

 

51 (75.0) 

17 (25.0) 

 

9 (69.3) 

4 (30.7) 

 

0.233 

Income quantile        

     < 20        

     20 - 40           

     40 - 60        

     60 - 80        

     80 - 100 

 

1249 (44.6) 

636 (22.7) 

452 (16.2) 

252 (9.0) 

210 (7.5) 

 

28 (47.5) 

15 (25.4) 

7 (11.9) 

6 (10.2) 

3 (5.1) 

 

22 (43.1) 

14 (27.5) 

11 (21.6) 

2 (3.9) 

2 (3.9) 

 

10 (76.9) 

1 (7.7) 

1 (7.7) 

0 (0.0) 

1 (7.7) 

 

0.503 

 

The univariate logistic regression analysis showed that doing physical activity more than

three days per week was the only significant variable for comparing the “low-to-middle”

anxiety trajectory group (TA2) to the “low-flat” anxiety trajectory group (TA1). Compared

to TA1, the female sex, current smoking, having more than three chronic diseases, and

doing income-generating activities were significant in the “high-to-low” anxiety trajectory

group (TA3) in the univariate analysis (Table 4.13). Comparing the “high-curve” anxiety

trajectory group (TA4) to TA1, none of the variables were significant because the sample

size is too small in TA4 (n=13).

Table 4.13: Univariate Logistic Regression Analysis. Estimation of odds ratio (OR) and 95%
confidence interval (C.I). Low-flat anxiety as the reference group.

Variable Low-to-Middle (n=59) High-to-Low (n=68) High-Curve (n=13) 

O.R (95% C.I) p-value O.R (95% C.I) p-value O.R (95% C.I) p-value 

Sex 

Male 

    Female 

 

- 

1.63 (0.94-2.83) 

 

- 

0.082 

 

- 

2.99 (1.65-5.39) 

 

- 

<0.0001 

 

- 

1.74 (0.54-5.67) 

 

- 

0.356 

Age 

    65-69 

    70-74 

    75-79 

    ≥ 80 

 

- 

1.06 (0.58-1.92) 

0.95 (0.46-1.95) 

0.51 (0.18-1.49) 

 

- 

0.859 

0.893 

0.220 

 

- 

1.12 (0.63-1.99) 

1.08 (0.55-2.12) 

0.99 (0.44-2.20) 

 

- 

0.712 

0.823 

0.975 

 

- 

1.27 (0.32-5.08) 

1.56 (0.35-6.98) 

1.54 (0.28-8.45) 

 

- 

0.739 

0.562 

0.617 

Marriage status 

   Married 

Single/divorce/widower 

 

- 

0.96 (0.56-1.66) 

 

- 

0.889 

 

- 

1.48 (0.91-2.40) 

 

- 

0.111 

 

- 

0.83 (0.26-2.71) 

 

- 

0.763 

Education    

    None 

    Elementary 

    Middle/High 

    University 

 

- 

1.50 (0.73-3.07) 

0.87 (0.38-1.99) 

1.06 (0.33-3.40) 

 

- 

0.266 

0.742 

0.923 

 

- 

0.67  (0.37-1.21) 

0.67 (0.35-1.27) 

0.42 (0.12-1.42) 

 

- 

0.180 

0.220 

0.163 

 

- 

2.11 (0.46-9.79) 

0.34 (0.03-3.70) 

1.32 (0.12-14.6) 

 

- 

0.340 

0.372 

0.819 
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Variable Low-to-Middle (n=59) High-to-Low (n=68) High-Curve (n=13) 

O.R (95% C.I) p-value O.R (95% C.I) p-value O.R (95% C.I) p-value 

Smoking    

    No 

    Previous 

    Current 

 

- 

0.37 (0.11-1.19) 

0.96 (0.54-1.71) 

 

- 

0.095 

0.898 

 

- 

0.56 (0.24-1.30) 

0.39 (0.19-0.79) 

 

- 

0.177 

0.001 

 

- 

0.01 (0.01-999) 

1.35 (0.44-4.12) 

 

- 

0.969 

0.604 

Drinking     

    No 

     < 2 days/week 

     2-4 days/week 

     Almost daily 

 

- 

1.32 (0.74-2.43) 

1.06 (0.36-3.11) 

1.26 (0.47-3.39) 

 

- 

0.344 

0.923 

0.643 

 

- 

0.75 (0.45-1.24) 

0.16 (0.02-1.14) 

0.30 (0.07-1.24) 

 

- 

0.263 

0.067 

0.097 

 

- 

0.91 (0.29-2.83) 

0.88 (0.11-7.33) 

0.01 (0.01-999) 

 

- 

0.870 

0.905 

0.976 

Residential area  

    No Metro-city 

    Metro-city 

 

- 

1.11 (0.66-1.88) 

 

- 

0.695 

 

- 

0.88 (0.54-1.46) 

 

- 

0.628 

 

- 

1.01 (0.33-3.10) 

 

- 

0.983 

Housing   

     Detached House 

     Apartment 

    Others   

 

- 

0.76 (0.34-1.70) 

0.74 (0.40-1.37) 

 

- 

0.500 

0.332 

 

- 

1.22 (0.62-2.41) 

1.08 (0.63-1.87) 

 

- 

0.566 

0.781 

 

- 

0.59 (0.07-4.78) 

1.43 (0.45-4.51) 

 

- 

0.618 

0.543 

Home ownership 

     Own 

     Lease 

 

- 

0.66 (0.33-1.31) 

 

- 

0.237 

 

- 

1.26 (0.74-2.15) 

 

- 

0.402 

 

- 

2.78 (0.93-8.29) 

 

- 

0.067 

Disability 

 No 

     Yes 

 

- 

0.72 (0.35-1.48) 

 

- 

0.372 

 

- 

1.23 (0.70-2.17) 

 

- 

0.466 

 

- 

0.01 (0.01-999) 

 

- 

0.961 

Walking 

     None 

     ≤ 3days/week 

     >3 days/week 

 

- 

1.65 (0.60-4.59) 

1.66 (0.74-3.71) 

 

- 

0.336 

0.216 

 

- 

0.40 (0.15-1.09) 

0.63 (0.36-1.10) 

 

- 

0.073 

0.106 

 

- 

0.96 (0.16-5.79) 

0.72 (0.19-2.73) 

 

- 

0.968 

0.630 

Medium/Intensive 

Physical activity 

     none              

     ≤ 3days/week        

     >3 days/week 

 

 

- 

1.30 (0.54-3.14) 

1.79 (1.02-3.15) 

 

 

- 

0.661 

0.043 

 

 

- 

0.99 (0.45-2.21) 

0.53 (0.26-1.08) 

 

 

- 

0.985 

0.079 

 

 

- 

0.01 (0.01-999) 

0.52 (0.12-2.36) 

 

 

- 

0.973 

0.397 

More than 3 chronic 

diseases 

     No 

     Yes 

 

 

- 

0.88 (0.42-1.87) 

 

 

- 

0.738 

 

 

- 

4.55 (1.11-18.65) 

 

 

- 

0.035 

 

 

- 

999 (0.01-999) 

 

 

- 

0.970 

Economic Activity 

     Yes 

     No 

 

- 

0.98 (0.58-1.67) 

 

- 

0.951 

 

- 

1.75 (1.01-3.05) 

 

- 

0.046 

 

- 

1.32 (0.40-4.28) 

 

- 

0.649 

Income quantile        

     < 20        

     20 - 40           

     40 - 60        

     60 - 80        

     80 - 100 

 

- 

1.05 (0.56-1.98) 

0.69 (0.30-1.59) 

1.06 (0.44-2.59) 

0.64 (0.19-2.12) 

 

- 

0.875 

0.385 

0.895 

0.462 

 

- 

1.25 (0.64-2.46) 

1.38 (0.67-2.87) 

0.45 (0.11-1.93) 

0.54 (0.13-2.32) 

 

- 

0.519 

0.387 

0.283 

0.408 

 

- 

0.20 (0.03-1.54) 

0.28 (0.04-2.17) 

0.01 (0.01-999) 

0.60 (0.08-4.67) 

 

- 

0.121 

0.221 

0.973 

0.621 

 

In the multivariate logistic analysis (Table 4.14), compared to the “low-flat” anxiety

trajectory group (TA1), the female sex was the only significant variable in “high-to-low”

anxiety trajectory group (TA3) (OR = 2.99, 95% CI: 1.65 - 5.39, p-value < 0.0001).
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Table 4.14: Multivariate Logistic Regression Analysis. Estimation of odds ratio (OR) and 95%
confidence interval (C.I). Low-flat anxiety as the reference group

Variable Low-to-Middle (n=59) High-to-Low (n=68) High-Curve (n=13) 

O.R (95% C.I) p-value O.R (95% C.I) p-value O.R (95% C.I) p-value 

Sex 

Male 

    Female 

 

 

 

 

 

- 

2.99 (1.65-5.39) 

 

- 

<0.0001 

 

 

 

 

 

4.4.2.3 Risk factors for anxiety using GBTM

Since the female sex was the only significant variable found from the multivariate logistic

analysis, it was considered a risk factor for anxiety in GBTM. After it was added to the model,

each group’s trajectory shape rarely changed, but the overall proportion of each trajectory

group changed (Figure 4.7). The “low-flat” anxiety trajectory group (TA1) decreased by

1.1%. The “low-to-middle” (TA2), “high-to-low” (TA3), and “high-curve” (TA4) anxiety

trajectory groups increased by 0.6%, 0.5%, and 0.1%, respectively.

Figure 4.7: Anxiety trajectories with female as a risk factor for GBTM. The solid line indicates
observed depression; the dashed line indicates predicted depression.

With TA1 as the reference trajectory group, the p-values of the intercept were all signif-

icant in TA1, TA2 and TA3. The p-values were significant for the female sex in TA2 and
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TA3, but not in TA4 (Table 4.15).

Table 4.15: Parameter estimates for risk factors by anxiety trajectory group

Group Parameter Estimate Standard Error p-value 

Low-flat (TA1) Baseline 0 - - 

Low-middle (TA2) Constant 

Female 

-4.58415 

0.84928 

0.64830 

0.33019 

<0.0001 

0.0101 

High-low (TA3) Constant 

Female 

-6.38908 

1.53314 

0.95954 

0.47305 

<0.0001 

0.0012 

High-curve (TA4) Constant 

Female 

-5.58501 

0.33610 

1.05165 

0.60032 

<0.0001 

0.5756 
 

The proportion difference between males and females in each trajectory group was pre-

sented in Figure 4.8. Males were 2.0% more in TA1 compared to females. On the other

hand, females were 1.3%, 0.5%, and 0.2% more in TA2 - TA4 than males.

Figure 4.8: Bar plot for percentage of group membership in males and females

4.5 Analysis of group-based dual trajectory modeling (GBDTM)

4.5.1 Development of GBDTM

Since depression and anxiety were the two outcomes we were interested in, group-based

dual trajectory modeling (GBDTM) was used to develop the trajectories of depression and
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anxiety jointly. The GBDTM diagram of this study between depression and anxiety was

shown in Figure 4.9.

Figure 4.9: Diagram of GBDTM with depression and anxiety from 2008-2015. I1, I2 and S1, S2
are the latent intercepts and slopes for depression and anxiety. C1 and C2 are the depression and
anxiety trajectory groups associated each other (Huang et al., 2013).

Group-based dual trajectory modeling (GBDTM) provided four trajectories of both de-

pression and anxiety (Figure 4.10 and Figure 4.11). The shapes of the depression and anxiety

trajectories were very similar to the trajectories from GBTM. However, group memberships

for each trajectory group were changed. Compared to the depression trajectories of GBTM,

Figure 4.10: Depression trajectories for GBDTM. The solid line indicates observed depression; the
dashed line indicates predicted depression.
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the “low-flat” trajectory group (DD1) in GBTDM slightly increased with members N=3641

(87%) (Figure 4.10). The “low-to-middle” trajectory group (DD2) was reduced with mem-

bers N=205 (8.8%). The “low-to-high” trajectory group (DD3) increased with members

N=33. Still, the percentage stayed the same at 1.3%. The “high-curve” trajectory group

(DD4) grew with members N=104 but decreased with a rate of 2.8% .

In anxiety trajectories of GBDTM (Figure 4.11), the “low-flat” trajectory group (DA1)

was reduced with members N=3785 (92.5%). The “low-to-middle” trajectory group (DA2)

grew with members N=96 (4.7%). The “high-to-low” trajectory group (DA3) increased with

members N=89 (2.2%). The “high-curve” trajectory group (DA4) remained unchanged with

members N=13 (0.6%).

Figure 4.11: Anxiety trajectories for GBDTM. The solid line indicates observed anxiety; the dashed
line indicates predicted anxiety.

Table 4.16 showed the parameters of depression trajectory shapes from GBDTM. DD1,

DD2, and DD3 all had significant intercept and linear polynomial functions. The intercept

and linear function were not significant with DD4, but the quadratic function was significant.

Compared to the standard error of estimates in GBTM (Table 4.3), the standard errors of
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the estimates in GBDTM for depression were decreased in the intercept of DD1, the linear

function of DD2, and the intercept and linear function of DD3, but the rest of the standard

errors were increased (Table 4.16).

Table 4.16: Parameter estimates for trajectory shapes in depression GBDTM

Group Parameter Estimate Standard 

Error* 

SE Difference 

vs GBTM$ 

p-value 

Low-flat (DD1) Intercept -6.22889 0.42701 -0.13898 <0.0001 

Low-middle (DD2) Intercept 

Linear 

-3.57016 

0.40901 

0.28545 

0.05255 

0.00906 

-0.00312 

<0.0001 

<0.0001 

Low-high (DD3) Intercept 

Linear 

-7.05625 

1.91196 

1.81855 

0.50078 

-0.07945 

-0.02282 

0.0001 

0.0001 

High-curve (DD4) Intercept 

Linear 

Quadratic 

1.06733 

0.46861 

-0.06008 

0.55398 

0.28271 

0.03029 

0.00575 

0.00122 

0.00018 

0.0540 

0.0974 

0.0473 
* Standard Error of GBDTM with depression 

$ Standard Error difference between GBDTM and GBTM with depression 

 

Table 4.17 showed the estimates of depression trajectory group membership proportions

in GBDTM. All the p-values were significant. Compared to the depression proportions in

GBTM (Table 4.4), the standard errors of the depression proportions for GBDTM were

decreased in DD1 and DD2, but increased in DD3 and DD4 (Table 4.17).

Table 4.17: Estimates of group membership proportions in depression GBDTM

Group membership proportions 

Group Estimate  

Proportion (%) 

Standard  

Error* 

SE Difference 

vs GBTM$ 

p-value# 

Low-flat (DD1) 86.95774 1.22352 -0.20001 <0.0001 

Low-middle (DD2) 8.84487 1.15473 -0.17743 <0.0001 

Low-high (DD3) 1.34794 0.30174 0.00751 <0.0001 

High-curve (DD4) 2.84945 0.32924 0.00584 <0.0001 
* Standard Error of GBDTM with depression 

$ Standard Error difference between GBDTM and GBTM with depression 

# H0: Proportion = 0 vs Ha:  Proportion ≠ 0 

 

Table 4.18 showed the parameters of anxiety trajectory shapes from GBDTM. All the p-

values were significant. Compared to the standard error of estimates in GBTM (Table 4.10),
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the standard errors of the estimates in GBDTM for anxiety were increased in the intercept

of DA1, and linear and quadratic function of DA, but the rest of the standard errors were

decreased (Table 4.18).

Table 4.18: Parameter estimates for trajectory shapes in anxiety GBDTM

Group Parameter Estimate Standard 

Error* 

SE Difference 

vs GBTM$ 

P-value 

Low-flat (DA1) Intercept -6.53934 0.53068 0.22888 <0.0001 

Low-middle (DA2) Intercept 

Linear 

-3.81124 

0.42936 

0.40827 

0.07375 

-0.11804 

-0.01784 

<0.0001 

<0.0001 

High-low (DA3) Intercept 

Linear 

1.98190 

-1.15063 

0.68186 

0.23592 

-0.15427 

-0.04403 

0.0037 

<0.0001 

High-curve (DA4) Intercept 

Linear 

Quadratic 

-2.19597 

1.71044 

-0.16671 

0.90875 

0.51611 

0.05781     

-0.01285 

0.00307 

0.00107 

0.0157 

0.0009 

0.0039 
* Standard Error of GBDTM with anxiety 

$ Standard Error difference between GBDTM and GBTM with anxiety 

 

Table 4.19 showed the estimates of anxiety trajectory group membership proportions in

GBDTM. All the p-values were significant. Compared to the anxiety proportions in GBTM

(Table 4.11), the standard errors of the anxiety proportions for GBDTM were decreased in

DA1 and DA4, but increased in DA2 and DA3 (Table 4.19).

Table 4.19: Estimates of group membership proportions anxiety GBDTM

Group membership proportions 

Group Estimate 

Proportion (%) 

Standard 

Error* 

SE Difference 

vs GBTM$ 

p-value# 

Low-flat (DA1) 92.47600 0.91558 -0.0708 <0.0001 

Low-middle (DA2) 4.72011 1.09933 0.34265 <0.0001 

High-low (DA3) 2.22835 0.49703 0.02510 <0.0001 

High-curve (DA4) 0.57554 0.17263 -0.00086 0.0009 

* Standard Error of GBDTM with anxiety 

$ Standard Error difference between GBDTM and GBTM with anxiety 

# H0: Proportion = 0 vs Ha:  Proportion ≠ 0 
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4.5.2 Conditional probability using GBDTM

For this study, GBDTM linked trajectory groups for depression and anxiety based on

conditional probabilities. These probabilities can be calculated with the Bayes rule (Nagin,

2005). Since depression and anxiety are diagnosed as co-current events in our study, the

conditional probability both for depression given anxiety and anxiety given depression should

be considered (Wiesner & Kim, 2006). The conditional probability represented the likelihood

of a person having depression if they had already been diagnosed with anxiety or vice versa

(Nagin, 2005). Thus, conditional probabilities from GBDTM provided a clear view of the

association between depression and anxiety.

Based on the conditional probability of anxiety given depression (Figure 4.12A), the older

adults in the “low-flat” depression trajectory (DD1) were more likely to belong to the “low-

flat” anxiety trajectory (DA1) compared to the older adults in the “high-curve” depression

trajectory (DD4) (95.7% vs. 68.5%). Also, the older adults in the “low-to-middle” depression

trajectory (DD2) were more likely to belong to the “low-to-middle” anxiety trajectory (DA2)

than the “low-flat” depression trajectory (DD1) (22.9% vs. 2.7%). Furthermore, the older

people in the “high-curve” depression trajectory (DD4) had a greater chance of belonging to

the “high-to-low” anxiety trajectory (DA3) (21.1% vs. 1.5%) compared to the older adults

in the “low-flat” depression trajectory (DD1).

Based on the conditional probability of depression given anxiety (Figure 4.12B), the

older people in the “low-flat” anxiety trajectory (DA1) were more likely to belong to the

“low-flat” depression trajectory (DD1) compared to the older people in the “high-curve”

anxiety trajectory (DA4) (90.0% vs. 23.9%). The older adults belonging to the “low-to-

middle” and “high-curve” anxiety trajectory (DA2 and DA4) were more likely to belong

to the “low-to-middle” depression trajectory (DD2) than the older people in the “low-flat”

anxiety trajectory (DA1) (43.0%, 59.5% vs. 6.7%). Moreover, the older adults in “high-to-

low” and “high-curve” anxiety trajectories (DA3 and DA4) were more likely to belong to

the “high-curve” depression trajectory (DD4) than the older adults in the “low-flat” anxiety
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trajectory (DA1) (27.0%, 16.6% vs. 6.7%).

Figure 4.12: Conditional probability of anxiety given depression (A). Conditional probability of
depression given anxiety (B).

4.5.3 Characteristics of Trajectory groups

Baseline characteristics and chi-square test were checked for both depression trajectory

groups and anxiety groups in GBDTM. From Table 4.20, anxiety was significantly associated

with depression. Compared to other anxiety trajectory groups, “low-flat” anxiety trajectory
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group (DA1) has the highest percentage of the subjects (96.7%) belong to “low-flat” de-

pression trajectory group (DD1); the “low-to-middle” anxiety trajectory group (DA2) had

the highest rate (14.2%) of “low-to-middle” depression trajectory group (DD2); the “high-to-

low” anxiety group (DA3) had the highest percentage (22.1%) of the “high-curve” depression

trajectory group (DD4). Sex, age group, smoking status, alcohol consumption, homeowner-

ship, frequency walking, with more than three chronic diseases and involvement in income-

generating activity were also found to have a significant association with the depression

trajectory groups (Table 4.20).

Table 4.20: Distribution of baseline characteristics by depression trajectory groups from GBDTM
(N, %)

 Trajectory groups 

 Low-flat 

(DD1) N=3641 

Low-middle 

(DD2) N=205 

Low-high 

(DD3) N=33 

High-curve 

(DD4) N=104 

p-value 

Anxiety 

    Low-flat (DA1) 

    Low-middle (DA2) 

    High-low (DA3) 

    High-curve (DA4) 

 

3519 (96.7) 

61 (1.7) 

57 (1.6) 

4 (0.11) 

 

162 (79.0) 

29 (14.2) 

7 (3.4) 

7 (3.4) 

 

28 (84.9) 

3 (9.1) 

2 (6.1) 

0 (0.0) 

 

76 (73.1) 

3 (2.9) 

23 (22.1) 

2 (1.9) 

 

<0.0001 

Sex 

Male 

    Female 

 

1619 (44.5) 

2022 (55.5) 

 

59 (28.8) 

146 (71.2) 

 

9 (27.3) 

24 (72.7) 

 

27 (26.0) 

77 (74.0) 

 

<0.0001 

Age 

    65-69 

    70-74 

    75-79 

    ≥ 80 

 

1405 (38.6) 

1099 (30.2) 

666 (18.3) 

471 (12.9) 

 

86 (42.0) 

73 (35.6) 

37 (18.1) 

9 (4.4) 

 

11 (33.3) 

11 (33.3) 

8 (24.2) 

3 (9.1) 

 

32 (30.8) 

32 (30.8) 

29 (27.9) 

11 (10.6) 

 

0.009 

Marriage status 

   Married 

   Single/divorce/widower 

 

1272 (35.0) 

2368 (65.0) 

 

70 (34.2) 

135 (65.8) 

 

12 (36.4) 

21 (63.6) 

 

36 (34.6) 

68 (65.4) 

 

0.993 

Education    

    None 

    Elementary 

    Middle/High 

    University 

 

728 (20.0) 

1551 (42.6) 

1079 (29.6) 

283 (7.8) 

 

39 (19.0) 

101 (49.3) 

55 (26.8) 

10 (4.9) 

 

8 (24.2) 

13 (39.4) 

10 (30.3) 

2 (6.1) 

 

24 (23.1) 

40 (38.5) 

37 (35.6) 

3 (2.9) 

 

0.308 

 

Smoking    

    No 

    Previous 

    Current 

 

1982 (58.9) 

442 (13.1) 

944 (28.0) 

 

143 (69.8) 

12 (5.9) 

50 (24.4) 

 

22 (66.7) 

2 (6.1) 

9 (27.3) 

 

71 (74.0) 

11 (11.5) 

14 (14.6) 

 

<0.0001 

Drinking     

    No 

     < 2 days/week 

     2-4 days/week 

     Almost daily 

 

1323 (39.3) 

1507 (44.7) 

266 (7.9) 

274 (8.1) 

 

101 (49.3) 

84 (41.0) 

10 (4.9) 

10 (4.9) 

 

19 (57.6) 

12 (36.4) 

0 (0.0) 

2 (6.1) 

 

52 (54.2) 

37 (38.5) 

2 (2.1) 

5 (5.2) 

 

0.002 

Residential area  

    No Metro-city 

    Metro-city 

 

2249 (61.8) 

1392 (38.2) 

 

130 (63.4)  

75 (36.6) 

 

19 (57.6) 

14 (42.4) 

 

65 (62.5) 

39 (37.5) 

 

0.920 
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 Trajectory groups 

 Low-flat 

(DD1) N=3641 

Low-middle 

(DD2) N=205 

Low-high 

(DD3) N=33 

High-curve 

(DD4) N=104 

p-value 

Housing   

     Detached House 

     Apartment 

    Others   

 

2094 (57.5) 

512 (14.1) 

1035 (28.4) 

 

119 (58.1) 

22 (10.7) 

64 (31.2) 

 

17 (51.5) 

5 (15.2) 

11 (33.3) 

 

56 (53.9) 

17 (16.4) 

31 (29.8) 

 

0.770 

Home ownership 

     Own 

     Lease 

 

2790 (76.6) 

851 (23.4) 

 

159 (77.6) 

46 (22.4) 

 

27 (81.8) 

6 (18.2) 

 

66 (63.5) 

38 (36.5) 

 

0.015 

Living    

    Alone 

    Couple only 

    Others 

 

59 (1.48) 

2231 (61.3) 

1351 (37.1) 

 

1 (0.5) 

145 (70.7) 

59 (28.8) 

 

0 (0.0) 

21 (63.6) 

12 (36.4) 

 

2 (1.9) 

69 (66.4) 

33 (31.7) 

 

0.137 

Disability 

 No 

     Yes 

 

2931 (80.5) 

710 (19.5) 

 

161 (78.5) 

44 (21.5) 

 

26 (79.8) 

7 (21.2) 

 

73 (70.2) 

31 (29.8) 

 

0.068 

Walking 

     None 

     ≤ 3days/week 

     >3 days/week 

 

625 (18.6) 

417 (12.4) 

2328 (69.1) 

 

33 (16.1) 

34 (16.6) 

138 (67.3) 

 

5 (15.2) 

6 (18.2) 

22 (66.7) 

 

27 (28.1) 

16 (16.7) 

53 (55.2) 

 

0.044 

Medium/Intensive Physical 

activity 

     none              

     ≤ 3days/week        

     >3 days/week 

 

 

2247 (66.7) 

326 (9.7) 

797 (23.7) 

 

 

134 (65.4) 

21 (10.2) 

50 (24.4) 

 

 

27 (81.8) 

3 (9.1) 

3 (9.1) 

 

 

74 (77.1) 

7 (7.3) 

15 (15.6) 

 

 

0.181 

More than 3 chronic diseases 

     No 

     Yes 

 

466 (12.8) 

3175 (87.2) 

 

7 (3.4) 

198 (96.6) 

 

1 (3.0) 

32 (97.0) 

 

2 (1.9) 

102 (98.1) 

 

<0.0001 

Economic Activity 

     No 

     Yes 

 

2278(62.6) 

1363 (37.4) 

 

135 (65.9) 

70 (34.1) 

 

27 (81.8) 

6 (18.2) 

 

82 (78.9) 

22 (21.1) 

 

<0.0001 

Income quantile        

     < 20        

     20 - 40           

     40 - 60        

     60 - 80        

     80 - 100 

 

1164 (44.1) 

603 (22.8) 

425 (16.1) 

238 (9.0) 

210 (8.0) 

 

91 (50.8) 

39 (21.8) 

32 (17.9) 

12 (6.7) 

5 (2.8) 

 

15 (45.5) 

9 (27.3) 

6 (18.2) 

3 (9.1) 

0 (0.0) 

 

39 (55.7) 

15 (21.4) 

8 (11.4) 

7 (10.0) 

1 (1.4) 

 

0.100 

 

On the other hand, only sex, smoking status, homeownership, having more than three

chronic diseases and involvement in economic activities had a significant association with

the anxiety trajectory groups (Table 4.21).
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Table 4.21: Distribution of baseline characteristics by anxiety trajectory groups from GBDTM (N,
%)

 Trajectory groups 

 Low-flat (DA1) 

N=3785 

Low-middle 

(DA2) N=96 

High-low  

(DA3) N=89 

High-curve 

(DA4) N=13 

p-value 

Depression 

    Low-flat (DD1) 

    Low-middle (DD2) 

    Low-high (DD3) 

    High-curve (DD4) 

 

3519 (93.0) 

162 (4.3) 

28 (0.7) 

76 (2.0) 

 

61 (63.5) 

29 (30.2) 

3 (3.1) 

3 (3.1) 

 

57 (64.0) 

7 (7.9) 

2 (2.2) 

23 (25.8) 

 

4 (30.8) 

6 (46.2) 

0 (0.0) 

2 (15.4) 

 

<0.0001 

Sex 

Male 

    Female 

 

1664 (44.0) 

2121 (56.0) 

 

26 (27.1) 

70 (72.9) 

 

20 (22.5) 

69 (77.5) 

 

4 (30.8) 

9 (69.2) 

 

<0.0001 

Age 

    65-69 

    70-74 

    75-79 

    ≥ 80 

 

1454 (38.4) 

1156 (30.5) 

702 (18.6) 

473 (12.5) 

 

39 (40.6) 

29 (30.2) 

19 (19.8) 

9 (9.4) 

 

37 (41.6) 

26 (29.2) 

16 (18.0) 

10 (11.2) 

 

4 (30.8) 

4 (30.8) 

3 (23.1) 

2 (15.4) 

 

0.995 

Marriage status 

   Married 

   Single/divorce/widower 

 

2475 (65.4) 

1309 (34.6) 

 

59 (61.5) 

37 (38.5) 

 

49 (55.1) 

40 (44.9) 

 

9 (69.2) 

4 (30.8) 

 

0.190 

Education    

    None 

    Elementary 

    Middle/High 

    University 

 

753 (19.9) 

1611 (42.6) 

1133 (29.9) 

288 (7.6) 

 

20 (20.8) 

50 (52.1) 

22 (22.9) 

4 (4.2) 

 

24 (27.0) 

35 (39.3) 

25 (28.1) 

5 (5.6) 

 

2 (15.4) 

9 (69.2) 

1 (7.7) 

1 (7.7) 

 

0.194 

Smoking    

    No 

    Previous 

    Current 

 

2083 (59.4) 

451 (12.9) 

974 (27.8) 

 

65 (68.4) 

6 (6.3) 

24 (25.3) 

 

62 (72.1) 

10 (11.6) 

14 (16.3) 

 

8 (61.5) 

0 (0) 

5 (38.5) 

 

0.042 

Drinking     

    No 

     < 2 days/week 

     2-4 days/week 

     Almost daily 

 

1408 (40.1) 

1554 (44.3) 

269 (7.7) 

279 (8.0) 

 

37 (39.0) 

45 (47.4) 

4 (4.2) 

9 (9.5) 

 

44 (51.2) 

35 (40.7) 

4 (4.7) 

3 (3.5) 

 

6 (46.2) 

6 (46.2) 

1 (7.7) 

0 (0.0) 

 

0.433 

Residential area  

    No Metro-city 

    Metro-city 

 

2338 (61.8) 

1447 (38.2) 

 

60 (62.5) 

36 (37.5) 

 

57 (64.0) 

32 (36.0) 

 

8 (61.5) 

5 (38.5) 

 

0.976 

Housing   

     Detached House 

     Apartment 

    Others   

 

2173 (57.4) 

528 (14.0) 

1084 (28.6) 

 

59 (61.5) 

11 (11.5) 

26 (27.1) 

 

47 (52.8) 

16 (18.0) 

26 (29.2) 

 

7 (53.9) 

1 (7.7) 

5 (38.5) 

 

0.811 

Home ownership 

     Own 

     Lease 

 

2898 (76.6) 

887 (23.4) 

 

78 (81.2) 

18 (18.8) 

 

59 (66.3) 

30 (33.7) 

 

7 (53.9) 

6 (46.1) 

 

0.019 

Living    

    Alone 

    Couple only 

    Others 

 

61 (1.6) 

2336 (61.7) 

1388 (36.7) 

 

1 (1.0) 

67 (69.8) 

28 (29.2) 

 

0 (0) 

55 (61.8) 

34 (38.2) 

 

0 (0) 

8 (61.5) 

5 (38.5) 

 

0.631 

Disability 

 No 

     Yes 

 

3034 (80.2) 

751 (19.8) 

 

79 (82.3) 

17 (17.7) 

 

65 (73.0) 

24 (27.0) 

 

13 (100.0) 

0 (0.0) 

 

0.097 

Walking 

     None 

     ≤ 3days/week 

     >3 days/week 

 

650 (18.5) 

453 (12.9) 

2407 (68.6) 

 

15 (15.8) 

11 (11.6) 

69 (72.6) 

 

22 (25.6) 

7 (8.1) 

57 (66.3) 

 

3 (23.1) 

2 (15.4) 

8 (61.5) 

 

0.562 
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 Trajectory groups 

 Low-flat (DA1) 

N=3785 

Low-middle 

(DA2) N=96 

High-low  

(DA3) N=89 

High-curve 

(DA4) N=13 

p-value 

Medium/Intensive Physical 

activity 

     none              

     ≤ 3days/week        

     >3 days/week 

 

 

2349 (66.9) 

340 (9.7) 

821 (23.4) 

 

 

59 (62.1) 

9 (27) 

27 (28.4) 

 

 

63 (73.3) 

8 (9.3) 

15 (17.4) 

 

 

11 (84.6) 

0 (0.0) 

2 (15.4) 

 

 

0.493 

More than 3 chronic diseases 

     No 

     Yes 

 

466 (12.3) 

3319 (87.7) 

 

8 (8.3) 

88 (91.7) 

 

2 (2.3) 

87 (97.7) 

 

0 (0.0) 

13 (100) 

 

0.001 

Economic Activity 

     No 

     Yes 

 

2382 (62.9) 

1403 (37.1) 

 

61 (63.5) 

35 (36.5) 

 

70 (78.7) 

19 (21.4) 

 

9 (69.3) 

4 (30.7) 

 

0.204 

Income quantile        

     < 20        

     20 - 40           

     40 - 60        

     60 - 80        

     80 - 100 

 

1224 (44.4) 

628 (22.8) 

446 (16.2) 

246 (8.9) 

210 (7.6) 

 

44 (51.2) 

19 (22.1) 

11 (12.8) 

9 (10.5) 

3 (3.5) 

 

31 (44.9) 

18 (26.1) 

13 (18.8) 

5 (7.3) 

2 (2.9) 

 

31 (44.9) 

18 (26.1) 

13 (18.8) 

5 (7.3) 

2 (2.9) 

 

0.410 

 

Table 4.22 showed the univariate logistic regression for depression in GBDTM. With “low-

flat” depression trajectory (DD1) as the reference group,“low-to-middle” anxiety trajectory

(DA2),“high-curve” anxiety trajectory (DA4), females, 80 years old or older, smoking, drink-

ing, living with two or three generations in the household, and being in the 80 - 100 income

quartile were significant predictors for “low-to-middle” depression trajectory (DD2); “low-to-

middle” anxiety trajectory (DA2), “high-to-low” anxiety trajectory (DA3) and involving in

income-generating activities were significant predictors for “low-to-high” depression trajec-

tory (DD3); “high-to-low” anxiety trajectory (DA3), “high-curve” anxiety trajectory group

(DA4), females, being between 75 and 79 years old, smoking, drinking, living in a rental

house, having disability, walking more than 10 minutes per day, having more than three

chronic diseases and involving in income-generating activities were significant predictors for

“high-curve” depression trajectory (DD4).

Table 4.22: Univariate Logistic Regression Analysis of Depression GBDTM. Estimation of odds
ratio (OR) and 95% confidence interval (C.I). Low-flat anxiety as the reference group.

Variable Low-to-Middle (n=205) Low-to-High (n=33) High-Curve (n=104) 

O.R (95% C.I) p-value O.R (95% C.I) p-value O.R (95% C.I) p-value 

Anxiety             

    Low-flat (DA1) 

    Low-middle (DA2) 

    High-low (DA3) 

    High-curve (DA4) 

 

- 

10.3 (6.46-16.5) 

2.67 (1.20-5.94) 

38.0 (11.0-131) 

 

- 

<0.0001 

0.016 

<0.0001 

 

- 

6.18 (1.83-20.9) 

4.41 (1.03-19.0) 

0.01 (0.01-999) 

 

- 

0.003 

0.046 

0.991 

 

- 

2.28 (0.70-7.42) 

18.7 (10.9-31.9) 

23.2 (4.18-128.) 

 

- 

0.172 

<0.0001 

<0.0001 
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Variable Low-to-Middle (n=205) Low-to- High (n=33) High-Curve (n=104) 

O.R (95% C.I) p-value O.R (95% C.I) p-value O.R (95% C.I) p-value 

Sex 

Male 

    Female 

 

- 

1.98 (1.45-2.70) 

 

- 

<0.0001 

 

- 

2.14 (0.99-4.61) 

 

- 

0.053 

 

- 

2.28 (1.47-3.56) 

 

- 

<0.0001 

Age 

    65-69 

    70-74 

    75-79 

    ≥ 80 

 

- 

1.09 (0.79-1.50) 

0.91 (0.61-1.35) 

0.31 (0.16-0.63) 

 

- 

0.619 

0.632 

0.001 

 

- 

1.28 (0.55-2.96) 

1.53 (0.61-3.83) 

0.81 (0.23-2.93) 

 

- 

0.566 

0.359 

0.752 

 

- 

1.28 (0.78-2.10) 

1.91 (1.15-3.19) 

1.03 (0.51-2.05) 

 

- 

0.332 

0.013 

0.943 

Marriage status 

   Married 

Single/divorce/widower 

 

- 

0.97 (0.72-1.30) 

 

- 

0.816 

 

- 

1.06 (0.52-2.17) 

 

- 

0.865 

 

- 

0.99 (0.65-1.49) 

 

- 

0.945 

Education    

    None 

    Elementary 

    Middle/High 

    University 

 

- 

1.22 (0.83-1.78) 

0.95 (0.63-1.45) 

0.66 (0.33-1.34) 

 

- 

0.314 

0.817 

0.250 

 

- 

0.76 (0.32-1.85) 

0.84 (0.33-2.15) 

0.64 (0.14-3.05) 

 

- 

0.548 

0.721 

0.578 

 

- 

0.78 (0.47-1.31) 

1.04 (0.62-1.75) 

0.32 (0.10-1.08) 

 

- 

0.349 

0.883 

0.066 

Smoking    

    No 

    Previous 

    Current 

 

- 

0.38 (0.21-0.68) 

0.73 (0.53-1.02) 

 

- 

0.001 

0.067 

 

- 

0.41 (0.10-1.74) 

0.86 (0.39-1.87) 

 

- 

0.226 

0.702 

 

-  

0.70 (0.37-1.32) 

0.41 (0.23-0.74) 

 

- 

0.267 

0.003 

Drinking     

    No 

     < 2 days/week 

     2-4 days/week 

     Almost daily 

 

- 

0.73 (0.54-0.98) 

0.49 (0.25-0.96) 

0.48 (0.25-0.93) 

 

- 

0.039 

0.036 

0.029 

 

- 

0.55 (0.27-1.15) 

0.28 (0.04-2.08) 

0.51 (0.12-2.20) 

 

- 

0.112 

0.974 

0.365 

 

- 

0.63 (0.41-0.96) 

0.19 (0.05-0.79) 

0.46 (0.18-1.17) 

 

- 

0.031 

0.022 

0.105 

Residential area  

    No Metro-city 

    Metro-city 

 

- 

0.93 (0.70-1.25) 

 

- 

0.637 

 

- 

1.19 (0.60-2.38) 

 

- 

0.622 

 

- 

0.97 (0.65-1.45) 

 

- 

0.880 

Housing   

     Detached House 

     Apartment 

    Others   

 

- 

0.76 (0.48-1.20) 

1.09 (0.80-1.49) 

 

- 

0.239 

0.597 

 

- 

1.20 (0.44-3.28) 

1.31 (0.61-2.81) 

 

- 

0.718 

0.488 

 

- 

1.24 (0.72-2.16) 

1.12 (0.72-1.75) 

 

- 

0.442 

0.618 

Home ownership 

     Own 

     Lease 

 

- 

0.95 (0.68-1.33) 

 

- 

0.758 

 

- 

0.73 (0.30-1.77) 

 

- 

0.485 

 

- 

1.89 (1.26-2.83) 

 

- 

0.002 

Living    

    Alone 

    Couple only 

    Others 

 

- 

0.26 (0.04-1.90) 

0.67 (0.49-0.92) 

 

- 

0.184 

0.012 

 

- 

1.89 (0.25-14.32) 

0.94 (0.46-1.92) 

 

- 

0.989 

0.873 

 

- 

1.10 (0.26-4.58) 

0.79 (0.52-1.20) 

 

- 

0.900 

0.271 

Disability 

 No 

     Yes 

 

- 

1.13 (0.80-1.59) 

 

- 

0.491 

 

- 

1.11 (0.48-2.57) 

 

- 

0.805 

 

- 

1.75 (1.14-2.69) 

 

- 

0.010 

Walking 

     None 

     ≤ 3days/week 

     >3 days/week 

 

- 

1.54 (0.94-2.53) 

1.12 (0.76-1.66) 

 

- 

0.085 

0.561 

 

- 

1.80 (0.55-5.93) 

1.18 (0.45-3.13) 

 

- 

0.335 

0.738 

 

- 

0.89 (0.47-1.67) 

0.53 (0.33-0.85) 

 

- 

0.713 

0.008 

Medium/Intensive 

Physical activity 

     none              

     ≤ 3days/week        

     >3 days/week 

 

 

- 

1.08 (0.67-1.74) 

1.05 (0.75-1.47) 

 

 

- 

0.750 

0.767 

 

 

- 

0.77 (0.23-2.54) 

0.31 (0.10-1.04) 

 

 

- 

0.663 

0.057 

 

 

- 

0.65 (0.30-1.43) 

0.57 (0.33-1.00) 

 

 

- 

0.285 

0.051 
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Variable Low-to-Middle (n=205) Low-to- High (n=33) High-Curve (n=104) 

O.R (95% C.I) p-value O.R (95% C.I) p-value O.R (95% C.I) p-value 

More than 3 chronic 

diseases 

     No 

     Yes 

 

 

- 

4.15 (1.94-8.88) 

 

 

- 

<0.0001 

 

 

- 

4.70 (0.64-34.45) 

 

 

- 

0.128 

 

 

- 

7.49 (1.84-30.4) 

 

 

- 

0.005 

Economic Activity 

     Yes 

     No 

 

- 

1.15 (0.86-1.55) 

 

- 

0.344 

 

- 

2.69 (1.11-6.54) 

 

- 

0.029 

 

- 

2.23 (1.39-3.59) 

 

- 

0.001 

Income quantile        

     < 20        

     20 - 40           

     40 - 60        

     60 - 80        

     80 - 100 

 

- 

0.83 (0.56-1.22) 

0.96 (0.63-1.46) 

0.65 (0.35-1.20) 

0.31 (0.12-0.76) 

 

- 

0.338 

0.860 

0.164 

0.011 

 

- 

1.16 (0.50-2.66) 

1.10 (0.42-2.84) 

0.98 (0.28-3.41) 

0.40 (0.05-3.03) 

 

- 

0.729 

0.851 

0.972 

0.975 

 

- 

0.74 (0.41-1.36) 

0.56 (0.26-1.21) 

0.88 (0.39-1.99) 

0.14 (0.02-1.04) 

 

- 

0.334 

0.142 

0.754 

0.055 

 

Table 4.23 showed the multivariate logistic regression for depression in GBDTM. Com-

pared “low-to-high” depression trajectory (DD3) to the “low-flat” depression trajectory

(DD1), the Individuals were less likely to be involved in income-generating activity (OR =

2.79, 95% CI: 1.15 – 6.80, p-value = 0.024), with anxiety adjusted. Compared to the “low-

flat” depression group (DD1), after controlling for anxiety, individuals in the “low-to-middle”

depression group (DD2) had a higher chance of being females (OR = 1.51, 95% CI: 1.07 –

2.12, p-value = 0.018) and having more than three chronic diseases (OR = 3.96, 95% CI: 1.83

– 8.59, p-value = 0.0005). Compared to the “low-flat” depression group (DD1),“high-curve”

depression group (DD4) indicated greater chance of being female (OR = 1.87, 95% CI: 1.02

Table 4.23: Multivariate Logistic Regression Analysis of Depression GBDTM. Estimation of odds
ratio (OR) and 95% confidence interval (C.I). Low-flat depression as the reference group

Variable Low-to-Middle (n=205) Low-to-High (n=33) High-Curve (n=104) 

O.R (95% C.I) p-value O.R (95% C.I) p-value O.R (95% C.I) p-value 

Anxiety             

    Low-flat 

    Low-middle 

    High-low 

    High-curve 

 

- 

9.26 (5.63-15.2) 

2.19 (0.96-4.98) 

25.9 (7.45-90.1) 

 

- 

<0.0001 

0.061 

<0.0001 

 

- 

5.80 (1.71-19.7) 

3.64 (0.84-15.7) 

0.01 (0.01-999) 

 

- 

0.005 

0.084 

0.992 

 

- 

2.67 (0.80-8.95) 

10.7 (5.30-21.4) 

17.3 (3.04-98.7) 

 

- 

0.111 

<0.0001 

<0.0001 

Sex 

Male 

    Female 

 

- 

1.51 (1.07-2.12) 

 

- 

0.018 

 

 

 

 

 

- 

1.87 (1.02-3.41) 

 

- 

0.042 

More than 3 chronic 

diseases 

     No 

     Yes 

 

 

- 

4.15 (1.93-8.93) 

 

 

- 

<0.0001 

 

 

 

 

 

 

- 

5.18 (1.26-21.3) 

 

 

- 

0.023 

Economic Activity 

     Yes 

     No 

   

- 

2.79 (1.15-6.80) 

 

- 

0.024 

 

- 

1.91 (1.02-3.59) 

 

- 

0.044 
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– 3.14, p-value = 0.042), having more than three chronic diseases (OR = 4.18, 95% CI: 1.01 –

17.31, p-value = 0.049) and being less likely to be involved in an income-generating activity

(OR = 1.91, 95% CI: 1.02 – 3.59, p-value = 0.044), with anxiety adjusted.

In the univariate logistic regression analysis for anxiety trajectory groups in GBDTM

(Table 4.24), “low-to-middle” depression trajectory group (DD2), “low-to-high” depression

trajectory group (DD3), female sex and smoking were significant for the “low-to-middle” anx-

iety trajectory group (DA2) compared to the “low-flat” anxiety trajectory group (DA1). The

“high-to-low” anxiety trajectory group (DA3) compared to the “low-flat” anxiety trajectory

group (DA1), “low-to-middle” depression trajectory group (DD2), “low-to-high” depres-

sion trajectory group (DD3), “high-curve” depression trajectory group (DD4), female sex,

marriage status, homeownership, having more than three chronic diseases and involving in

income-generating activities were significant variables. As GBTM with an anxiety outcome,

except depression trajectory groups, no other significant factors were found when comparing

the “high-curve” anxiety trajectory group (DA4) to the “low-flat” anxiety trajectory group

(DA1).

Table 4.24: Univariate Logistic Regression Analysis of Anxiety GBDTM. Estimation of odds ratio
(OR) and 95% confidence interval (C.I). Low-flat anxiety as the reference group.

Variable Low-to-Middle (n=96) High-to-Low (n=89) High-Curve (n=13) 

O.R (95% C.I) p-value O.R (95% C.I) p-value O.R (95% C.I) p-value 

Depression        

Low-flat (DD1) 

Low-middle (DD2) 

    Low-high (DD3) 

    High-curve (DD4) 

 

- 

10.3 (6.46-16.5) 

6.18 (1.83-20.9) 

2.28 (0.70-7.42) 

 

- 

<0.0001 

0.003 

0.172 

 

- 

2.67 (1.20-5.94) 

4.41 (1.03-19.0) 

18.7 (10.9-31.90) 

 

- 

0.016 

0.046 

<0.0001 

 

- 

38.0 (11.0-131) 

0.01 (0.01-999) 

23.2 (4.18-128) 

 

- 

0.001 

0.991 

0.001 

Sex 

Male 

    Female 

 

- 

2.11 (1.34-3.33) 

 

- 

0.001 

 

- 

2.71 (1.64-4.47) 

 

- 

<0.0001 

 

- 

1.77 (0.54-5.74) 

 

- 

0.345 

Age 

    65-69 

    70-74 

    75-79 

    ≥ 80 

 

- 

0.94 (0.58-1.52) 

1.01 (0.58-1.76) 

0.71 (0.34-1.48) 

 

- 

0.788 

0.975 

0.359 

 

- 

0.88 (0.53-1.47) 

0.90 (0.50-1.62) 

0.83 (0.41-1.68) 

 

- 

0.634 

0.716 

0.607 

 

- 

1.26 (0.31-5.04) 

1.55 (0.35-6.96) 

1.54 (0.28-8.42) 

 

- 

0.746 

0.565 

0.620 

Marriage status 

   Married 

Single/divorce/widower 

 

- 

1.19 (0.78-1.80) 

 

- 

0.423 

 

- 

1.54 (1.01-2.36) 

 

- 

0.044 

 

- 

0.84 (0.26-2.73) 

 

- 

0.773 
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Variable Low-to-Middle (n=96) High-to-Low (n=89) High-Curve (n=13) 

O.R (95% C.I) p-value O.R (95% C.I) p-value O.R (95% C.I) p-value 

Education    

    None 

    Elementary 

    Middle/High 

    University 

 

- 

1.17 (0.69-1.98) 

0.73 (0.40-1.35) 

0.52 (0.18-1.54) 

 

- 

0.562 

0.316 

0.240 

 

- 

0.68 (0.40-1.15) 

0.69 (0.39-1.22) 

0.55 (0.21-1.44) 

 

- 

0.154 

0.204 

0.221 

 

- 

2.10 (0.45-9.76) 

0.33 (0.03-3.67) 

1.31 (0.12-14.5) 

 

- 

0.342 

0.369 

0.827 

Smoking    

    No 

    Previous 

    Current 

 

- 

0.43 (0.18-0.99) 

0.79 (0.49-1.27) 

 

- 

0.047 

0.329 

 

- 

0.75 (0.38-1.46) 

0.48 (0.27-0.87) 

 

- 

0.393 

0.015 

 

- 

0.01 (0.01-999) 

1.34 (0.44-4.10) 

 

- 

0.969 

0.612 

Drinking     

    No 

     < 2 days/week 

     2-4 days/week 

     Almost daily 

 

- 

1.10 (0.71-1.71) 

0.57 (0.20-1.60) 

1.23 (0.59-2.57) 

 

- 

0.666 

0.283 

0.587 

 

- 

0.72 (0.46-1.13) 

0.48 (0.17-1.34) 

0.34 (0.11-1.12) 

 

- 

0.154 

0.158 

0.076 

 

- 

0.91 (0.29-2.82) 

0.87 (0.11-7.28) 

0.01 (0.01-999) 

 

- 

0.865 

0.900 

0.976 

Residential area  

    No Metro-city 

    Metro-city 

 

- 

0.97 (0.64-1.47) 

 

- 

0.885 

 

- 

0.91 (0.59-1.41) 

 

- 

0.663 

 

- 

1.01 (0.33-3.09) 

 

- 

0.986 

Housing   

     Detached House 

     Apartment 

    Others   

 

- 

0.77 (0.40-1.47) 

0.88 (0.55-1.41) 

 

- 

0.425 

0.603 

 

- 

1.40 (0.79-2.49) 

1.10 (0.68-1.80) 

 

- 

0.250 

0.676 

 

- 

0.59 (0.07-4.79) 

1.43 (0.45-4.52) 

 

- 

0.620 

0.541 

Home ownership 

     Own 

     Lease 

 

- 

0.75 (0.45-1.27) 

 

- 

0.286 

 

- 

1.66 (1.06-2.60) 

 

- 

0.026 

 

- 

2.80 (0.94-8.35) 

 

- 

0.065 

Living    

    Alone 

    Couple only 

    Others 

 

- 

0.57 (0.08-4.19) 

0.70 (0.45-1.10) 

 

- 

0.582 

0.122 

 

- 

0.01 (0.01-999) 

1.04 (0.68-1.60) 

 

- 

0.982 

0.858 

 

- 

0.01 (0.01-999) 

1.05 (0.34-3.22) 

 

- 

0.989 

0.929 

Disability 

 No 

     Yes 

 

- 

0.87 (0.51-1.48) 

 

- 

0.605 

 

- 

1.49 (0.93-2.40) 

 

- 

0.099 

 

- 

0.01 (0.01-999) 

 

- 

0.970 

Walking 

     None 

     ≤ 3days/week 

     >3 days/week 

 

- 

1.05 (0.48-2.31) 

1.24 (0.71-2.19) 

 

- 

0.899 

0.452 

 

- 

0.46 (0.19-1.08) 

0.70 (0.43-1.15) 

 

- 

0.074 

0.161 

 

- 

0.96 (0.16-5.75) 

0.72 (0.19-2.72) 

 

- 

0.961 

0.628 

Medium/Intensive 

Physical activity 

     none              

     ≤ 3days/week        

     >3 days/week 

 

 

- 

1.05 (0.52-2.15) 

1.31 (0.83-2.09) 

 

 

- 

0.885 

0.253 

 

 

- 

0.88 (0.42-1.85) 

0.68 (0.39-1.20) 

 

 

- 

0.730 

0.186 

 

 

- 

0.01 (0.01-999) 

0.52 (0.12-2.35) 

 

 

- 

0.973 

0.396 

More than 3 chronic 

diseases 

     No 

     Yes 

 

 

- 

1.54 (0.74-3.21) 

 

 

- 

0.243 

 

 

- 

6.10 (1.50-24.87) 

 

 

- 

0.012 

 

 

- 

999 (0.01-999) 

 

 

- 

0.970 

Economic Activity 

     Yes 

     No 

 

- 

1.03 (0.67-1.56) 

 

- 

0.903 

 

- 

2.17 (1.30-3.62) 

 

- 

0.003 

 

- 

1.33 (0.41-4.31) 

 

- 

0.640 

Income quantile        

     < 20        

     20 - 40           

     40 - 60        

     60 - 80        

     80 - 100 

 

- 

0.84 (0.49-1.45) 

0.69 (0.35-1.34) 

1.02 (0.49-2.11) 

0.40 (0.12-1.29) 

 

- 

0.545 

0.274 

0.961 

0.135 

 

- 

1.13 (0.63-2.04) 

1.15 (0.60-2.22) 

0.80 (0.31-2.08) 

0.38 (0.09-1.58) 

 

- 

0.680 

0.675 

0.651 

0.183 

 

- 

0.20 (0.03-1.53) 

0.27 (0.04-2.15) 

0.01 (0.01-999) 

0.58 (0.07-4.58) 

 

- 

0.119 

0.218 

0.973 

0.607 
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In the multivariate logistic regression analysis for anxiety trajectory in GBDTM (Table

4.25), adjusted by depression, sex was a significant predictor in the “low-to-middle” anxiety

trajectory group (DA2) (OR = 1.73, 95% CI: 1.09 – 2.76, p-value = 0.021) and the “high-to-

low” anxiety group (DA3) (OR = 2.17, 95% CI: 1.28 – 3.69, p-value = 0.025); involvement in

income-generating activity was another predictor in the “high-to-low” (DA3) anxiety group

(OR=2.17, 95% CI: 1.28 – 3.69, p-value=0.025) with “low-flat” anxiety trajectory group

(DA1) as reference group.

Table 4.25: Multivariate Logistic Regression Analysis of Anxiety GBDTM. Estimation of odds ratio
(OR) and 95% confidence interval (C.I). Low-flat anxiety as the reference group

Variable Low-to-Middle (n=96) High-to-Low (n=89) High-Curve (n=13) 

O.R (95% C.I) p-value O.R (95% C.I) p-value O.R (95% C.I) p-value 

Depression        

Low-flat 

Low-middle 

    Low-high 

    High-curve 

 

- 

8.98 (5.59-14.4) 

5.38 (1.59-18.3) 

2.10 (0.64-6.89) 

 

- 

<0.0001 

0.007 

0.220 

 

- 

2.21 (0.99-4.94) 

3.43 (0.79-14.9) 

14.8 (8.45-26.0) 

 

- 

0.054 

0.100 

<0.0001 

 

- 

38.0 (11.0-131) 

0.01 (0.01-999) 

23.2 (4.18-128) 

 

- 

0.001 

0.991 

0.001 

Sex 

Male 

    Female 

 

- 

1.73 (1.09-2.76) 

 

- 

0.021 

 

- 

2.17 (1.28-3.69) 

 

- 

0.025 

 

 

 

 

Economic Activity 

     Yes 

     No 

   

- 

1.86 (1.08-3.18) 

 

- 

0.025 

  

 

4.5.4 Risk factors for depression and anxiety using GBDTM

Before adding risk factors into GBDTM, we checked the feature of the GBDTM without

any risk factors. I switched the position of depression or anxiety as the first outcome,

and the parameter estimates were unchanged in the trajectory polynomial functions and

trajectory group memberships for depression and anxiety outcomes. Since the risk factors

only influenced the first outcome’s proportions in GBDTM, I built the GBDTM twice to

add the risk factors for depression and anxiety in turn.
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4.5.4.1 GBDTM with depression as the first outcome and anxiety as the second

outcome

The significant covariates from the multivariate logistic regression analysis in Table 4.23

were considered risk factors for depression: female sex, involved in income-generating activ-

ities and having more than three chronic diseases. Similar to the trajectories adjusted by

risk factors in the GBTMs, the polynomial trajectory shapes remained unchanged, but the

group memberships showed some variation (Figure 4.13). Compared the depression trajec-

tory group memberships of GBDTM without risk factors (Figure 4.10), the model with risk

factors decreased 3.1% in the “low-flat” depression trajectory group (DD1) but increased

2.9% and 0.3% in the “low-to-middle” depression trajectory (DD2) and the “low-to-high”

depression trajectory (DD3), respectively. The “high-curve” depression trajectory (DD4)

did not have any variation.

Figure 4.13: Depression trajectories adjusted by risk factors in GBDTM. The solid line indicates
observed averages; the dashed line indicates predictions.

Table 4.26 showed the estimated parameters for risk factors influencing the depression

trajectory memberships of GBDTM. Using DD1 as the reference group, intercepts were all
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significant in DD2 - DD4. Being female was a significant risk factor in DD2 and DD4. Not

being involved in income-generating activity affected DD4. Having more than three chronic

diseases was significant in DD2 and DD4.

Table 4.26: Parameter estimates for risk factors by depression trajectory groups in GBDTM

Group Parameter Estimate Standard Error p-value 

Low-flat (DD1) Baseline 0 - - 

Low-to-middle (DD2) Constant 

Female 

No economy activity 

> 3 chronic disease 

-4.57194 

0.64408 

0.17202 

1.55354 

0.47620 

0.17465 

0.16732 

0.39780 

<0.0001 

0.0002 

0.3039 

0.0001 

Low-to-high (DD3) Constant 

Female 

No economy activity 

> 3 chronic disease 

-6.95896 

0.70036 

0.78273 

1.40041 

1.29033 

0.43210 

0.46199 

1.06897 

<0.0001 

0.1051 

0.0902 

0.1902 

High-curve (DD4) Constant 

Female 

No economy activity 

> 3 chronic disease 

-7.37688 

0.83829 

0.68433 

2.21581 

1.09993 

0.25005 

0.26056 

1.00571 

<0.0001 

0.0008 

0.0086 

0.0276 
 

Figure 4.14 showed the effect of the risk factors for five situations (no risk factors, female

only, Without income-generating activities only, more than three chronic diseases only, and

all risk factors together). The risk factors can affect the proportion of depression in GBDTM.

Figure 4.14: Bar plot of risk factor effects on depression group membership in GBDTM

Comparing the subjects without any risk factors, the percentage for subjects with all risk
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factors in TD1 decreased 12.1% and increased 8.6% in DD2, 1.4% in DD3 and 2.2% in DD4.

4.5.4.2 GBDTM with anxiety as the first outcome and depression as the second

outcome

This time, GBDTM was developed with the variables of the multivariate logistic regres-

sion in Table 4.25 as risk factors that influence only anxiety parameters. After adding the risk

factors into the anxiety proportions, the GBDTM was observed in Figure 4.15. Compared

to the original GBDTM (Figure 4.11), the “low-flat” anxiety trajectory group (DA1) moved

1.1% and 0.7% to the “low-to-middle” anxiety trajectory group (DA2) and the “high-to-low”

anxiety trajectory group (DA3). No noticeable variation was found among the ”high-curve”

trajectory group (DA4)and the polynomial trajectory shapes.

Figure 4.15: Anxiety trajectories adjusted by risk factors in GBDTM. The solid line indicates
observed averages; the dashed line indicates predictions.

Being female and not being involved in income-generating activities were obtained as risk

factors. Estimations of the parameters were presented in Table 4.27. Based on the baseline

DA1, all the intercepts were significant for DA2 - DA4. Being female had substantial effects

on DA2 and DA3. Not being involved in income-generating activities had a significant impact
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on DA3.

Table 4.27: Parameter estimates for risk factors by anxiety trajectory groups in GBDTM

Group Parameter Estimate Standard Error p-value 

Low-flat (DA1) Baseline 0 - - 

Low-to-middle (DA2) Constant 

Female 

No economy activity 

-4.36378 

0.93107 

0.11121 

0.56637 

0.28311 

0.25923 

<0.0001 

0.0010 

0.6679 

High-to-low (DA3) Constant 

Female 

No economy activity 

-6.18236 

1.29700 

0.72090 

0.77332 

0.37606 

0.32192 

<0.0001 

0.0006 

0.0251 

High-curve (DA4) Constant 

Female 

No economy activity 

-5.44936 

0.28646 

0.05996 

1.00924 

0.60292 

0.05996 

<0.0001 

0.6347 

0.9227 
 

Figure 4.16 presented four distinct situations in which risk factors affected the propor-

tion of the anxiety trajectory groups (no risk factors, female only, not involved in income-

generating activities only, and both risk factors combined). When comparing the trajectory

proportions for no risk factors to all risk factors, the “low-flat” anxiety trajectory group

(DA1) declined 4.6%. However, the “low-to-middle” (DA2), “high-to-low” (DA3), and “high-

curve” (DA4) anxiety trajectory group increased 2.4%, 1.3%, and 0.2%, respectively.

Figure 4.16: Bar plot of risk factor effects on anxiety group membership in GBDTM
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4.6 Analysis of group-based multi-trajectory modeling (GBMTM)

As discussed in Section 3.5.2, group-based multi-trajectory modeling (GBMTM) could

include two or more outcomes in the model simultaneously. However, the restriction for

GBMTM was that the outcomes shared the same proportion of the group memberships.

To make it more convenient to compare GBTMs and GBDTM, GBMTM was developed

by including only two outcomes (i.e., depression and anxiety), which was the same as the

constrained model of GBDTM in Equation (3.79). After the GBMTM developed, trajectory

shape, group membership, and their relationship to the outcomes of depression (Figure 4.17)

and anxiety (Figure 4.18) were identified. The “low-flat” depression trajectory group (MD1)

and “low-flat” anxiety trajectory group (MA1) shared the same trajectory proportion with

86.9%. The “low-to-middle” depression trajectory group (MD2) and “low-to-middle” anxiety

trajectory group (MA2) had the same trajectory proportion with 7.9%. The “low-mild”

depression trajectory group (MD3) and the “high-to-low” anxiety trajectory group (MA3)

Figure 4.17: Depression trajectories for GBMTM. The solid line indicates the observed averages;
the dot line the dashed line indicates the predictions.
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Figure 4.18: Anxiety trajectories for GBMTM. The solid line indicates the observed averages; the
dot line the dashed line indicates the predictions.

shared the same trajectory proportion with 0.9%. The “high-curve” depression trajectory

group (MD4) and the “low-mild” anxiety trajectory group (MA4) shared the same trajectory

proportion with 4.2%.

The result indicated that individuals with a high probability of depression in MD4 had

a “low-mild” possibility of anxiety over time (MA4). Individuals with a high probability

of anxiety at the beginning that declined over time in DA3 had a “low-mild” depression

probability. The “low-mild” trajectory group in depression (MD3) and anxiety (MA4) were

close to the “low-flat” trajectories (MD1 and MA1), which could be replaceable. Compared

the trajectory shapes to GBTMs or GBDTM, the “low-to-high” depression trajectory and

“high-curve” anxiety trajectory disappeared in GBMTM. In general, GBMTM was applied

to outcomes that shared similar proportions. For example, individuals with a high probabil-

ity of depression should generally have high anxiety levels. However, this was not consistent

with our analysis of GBMTM. There were two possible reasons for this. One was that the

correlation between the two outcomes in each time measurement was too low. In the KHPS
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data, the correlations between depression and anxiety in older people at the time measure-

ments were between 0.05 to 0.16 (correlations: 0.162, 0.154, 0.081, 0.053, 0.061, 0.104, 0.087

and 0.136 from 2008 to 2015, respectively). Another reason was that the distributed clusters

of the two outcomes were different, which meant that the polynomial trajectory shape was

different for outcomes sharing the same proportion. Because of these problems, GBMTM

was not able to identify the “low-to-high” depression trajectory and “high-curve” anxiety

trajectory. The “low-to-high” depression trajectory and “high-curve” anxiety trajectory rep-

resented the highest probability of having depression and anxiety, were vitally important,

even though they only involved a small portion of the individuals from the overall population.
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Chapter 5 SIMULATION STUDY

5.1 Introduction

The simulation study was performed to accomplish Study Objective 3. This objective

was to examine the characteristics of three group-based trajectory models and to select the

best one based on repeated measurements of two binary outcomes. These two outcomes were

assumed to be associated with one another. The level of association between two outcomes

Figure 5.1: Flow Chart of Simulation

102



was defined using selected correlation coefficient levels. In this simulation study, we generated

Outcome 1 based on assigned trajectory group memberships and their trajectory shapes.

Then, Outcome 2 was generated based on Outcome 1 with various correlation coefficients.

After that, GBTM, GBDTM, and GBMTM were fitted from these simulated datasets. The

levels of correlation coefficient between Outcome 1 and Outcome 2 were chosen to be ρ =

0.1, 0.2, 0.4, and 0.6. The sample sizes N = 500, 2000, and 4000 were used in each scenario.

A total of 500 simulations were performed for each scenario. The flow chart (Figure 5.1)

showed the procedure used for data generation and analysis in this simulation.

5.2 Data-generation for Simulation Study

5.2.1 Generation of Outcome 1

Repeated measurements of continuous outcomes were generated based on polynomial

trajectory group characteristics from GBTM (Haviland, Jones, & Nagin, 2011). In our

simulation, the process of generating repeated measurement Outcome 1 was similar to Havi-

land’s study (Haviland et al., 2011). The first step in generating Outcome 1 was to determine

the number of trajectory groups. To mimic the real data shown in Chapter 4, the GBTM

included four groups for depression and anxiety, so we assigned four trajectory groups for

Outcome 1. The second step was to decide the proportion of each trajectory group. In

the real data analysis of Chapter 4, the portions of event groups for depression and anxiety

might be too small. For example, the anxiety trajectory group (TA4) in GBTM only in-

cluded individuals with 0.6% (n=13) shown in Section 4.5.1 (High-curve anxiety trajectory

group (DA2)). Our simulation study also used a smaller sample size with N=500. If the

group proportion was arranged too low, it was possible that no individuals would be iden-

tified from the event trajectories. Therefore, the proportions of Group 1, 2, 3, and 4 were

assigned with π1 = 60%, π2 = 20%, π3 = 10%, and π4 = 10%, respectively. After that, Out-

come 1’s trajectory shape in each group was generated based on the polynomial trajectory

group characteristics from GBTM. In the real data shown in Section 4.5.1 (Development of
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GBDTM), each trajectory group followed a polynomial regression with binary outcomes for

depression and anxiety. The logit link function ηitj followed by polynomial regression was

denoted as:

ηitj = ln
pitj

1− pitj
(5.1)

where pitj is the probability of Outcome 1 equal to one as the event (for example, depression);

i = 1 . . . N is the number of study subjects; t = 1 . . . T is the number of repeated

measurements; and j = 1 . . . J is the number of trajectory groups. Four groups’ logit

link functions were applied to determine the shape of the trajectories from Outcome 1 with

equations:

Group 1 : ηit1 = −4.5; π1 = 0.6

Group 2 : ηit2 = −4 + t; π2 = 0.2

Group 3 : ηit3 = 3.5− t; π3 = 0.1

Group 4 : ηit4 = 4; π4 = 0.1

t = 1, 2, . . . , 5

(5.2)

where ηitj (j = 1, 2, 3, 4) were the simulated value of the polynomial link functions with

individual i at time t for Group 1 to Group 4, respectively. πj stood for the probability of

group membership in Group j. The property of trajectory shapes in each group was:

Group 1: Constant polynomial logit function assigned with negative constant, which rep-

resented the constant non-event trajectory group.

Group 2: An increased linear polynomial logit function presented an increased probability

of event trajectory group.

Group 3: A linear polynomial logit function that declined over time stood for the decreased

probability of event trajectory group.

Group 4: Constant polynomial logit function assigned with positive constant, which rep-
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resented the constant high-event trajectory group.

Then, using the logistic transformation of ηit, which was also called the transformation

of inverse logit function in each group, the probability pitj could be generated as:

pitj =
eηitj

1 + eηitj
(5.3)

where pitj was the probability of the outcome yitj with the Bernoulli random variable taking

the value, P (yitj = 1). Finally, the variable of repeated measurement of Outcome 1 could be

generated using logistic regression as a Bernoulli variable, yitj ∼ Bernoulli(pitj) (Wicklin,

2013).

5.2.2 Generation of Outcome 2

Outcome 2 was generated based on Outcome 1 obtained in Section 5.2.1. It was gener-

ated with different levels of correlations between the two outcomes. To simulate one binary

outcome relevant to another with correlation coefficient (ρ), the logistic regression method

was used (le Cessie & Van Houwelingen, 1994; Ocram, 2014; Touloumis, 2016). The correla-

tion level of the two outcomes was selected with ρ = 0.1, 0.2, 0.4, and 0.6, respectively. The

structure of generating Outcome 2 was described in Figure 5.2, where Yt was Outcome 1 at

Figure 5.2: Structure of generating Outcome 2 (ρ = 0.1, 0.2, 0.4, 0.6)

time t (t = 1, 2, 3, 4, 5) and Zt was Outcome 2 at time t (t = 1, 2, 3, 4, 5). i.e.; Zt (Outcome 2)
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was generated based on Yt (Outcome 1) with the correlation coefficient closed to the assumed

ρ (Figure 5.2). Based on the logistic regression, Zt was assumed to be a response variable

with Yt as a covariate:

log
P (Zt = 1)

1− P (Zt = 1)
= β0 + β1 ∗ Yt (5.4)

Yt was known as Outcome 1, but the parameters β0 and β1 were unknown (equation (5.4)).

To make sure Outcome 1 (Yt) and Outcome 2 (Zt) have a certain correlation ρ in each

simulation, we needed to try different values for β0 and β1. For example, we wanted to find

the value of β0 and β1 to ensure the correlation between Outcome 1 (Yt) and Outcome 2

(Zt) was close to ρ = 0.1. To make sure Yt and Zt had the correlation close to an assumed

ρ = 0.1, we first generated five preliminary simulated datasets for Yt with sample size N =

4000. Then, using these preliminary simulated datasets of Yt as a covariate, we tried different

values of β0 and β1 in equation (5.4) to simulate a corresponding Zt. When each measure

of the preliminary simulated Zt had a similar correlation ρ = 0.1 to each measure of Yt, we

stopped trying β0 and β1. Thus, the last-tried values of β0 and β1 were used in all 500 full

simulations to guarantee the simulated Yt and Zt had a correlation level of ρ = 0.1. The

same method was applied with a correlation level of ρ = 0.2, 0.4, and 0.6 between Yt and Zt.

Note that our data simulation methods were is an adaptation of Haviland (2011), Ceossi &

Houwelingen (1994), Ocram, (2014) and Touloumis (2016). With this method, we also got

four groups of five preliminary simulated datasets of Zt that had a close correlation level to

Yt. These simulated data were also used as test datasets to define the number of trajectory

groups and parameters’ initial values for Zt in the simulation of GBTM and GBDTM.

5.2.3 Determining trajectory groups and initial values of parameters

After generating two outcomes, the next step was to determine the number of trajectory

groups and the initial values of parameters for the two outcomes for all 500 simulation

datasets.

For Outcome 1 (Yt), the data were generated with four trajectory groups from the poly-
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nomial logistic regression with two constant and two linear. The total numbers of trajectory

groups were four (equation (5.2)). The initial value of parameters was from the assigned

values of the polynomial functions and the proportion of the memberships into all trajectory

models (GBTM, GBDTM, and GBMTM) in the simulation.

For Outcome 2 (Zt), we selected the number of trajectory groups and the starting values

of parameters based on the test datasets (five preliminary simulated datasets of both Yt

and Zt) in Section 5.2.2. Initial values of the parameters were set to 0 with Outcome 2 in

GBTM. The proportion parameters were equally distributed. i.e., when Zt had two trajectory

groups, the proportions were assumed to be 0.5 and 0.5, respectively. To select the number

of trajectory groups for Zt, GBTM and GBDTM were based on the largest BIC in the test

datasets. The initial values of parameters for Zt were also defined by using the test dataset

from GBTM and GBDTM. In GBMTM, Zt was forced with four trajectory groups because

it must have the same number of trajectory groups between two outcomes. The initial values

of the polynomial parameters were all assigned as 0 in Zt in GBMTM.

5.2.4 Analysis of simulations

After the number of trajectories and initial values had been determined, the data sets

were generated for Yt and Zt in each correlation level (ρ) with sample sizes N = 500, 2000,

and 4000. Using these simulated datasets, GBTM, GBDTM and GBMTM modeling were

developed as follows:

(i) GBTM was first fitted for Yt and Zt. Since Yt was generated based on polynomial

trajectory group characteristics, the simulation result would only be influenced by

sample size, but not by correlation level.

(ii) Zt was generated based on a different level of correlation (ρ) from Yt; the GBTM with

Zt had a different result for each sample size and correlation level.

(iii) GBDTM and GBMTM were fitted.
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(iv) The results for Yt and Zt in GBDTM and GBMTM were different depending on the

different correlation and sample size. This was because Zt was impacted by Yt in these

two models.

For each case of correlation and sample size, a total of 500 simulations were performed.

The process of the simulation is referenced by the SAS code in Appendix B.

5.3 Results of Simulations

5.3.1 Correlation between two outcomes

After simulating two longitudinal binary outcomes, the average correlation between the

Yt and Zt at each measurement time was calculated, as seen in Table 5.1. The first two

Table 5.1: Average correlation between two outcomes at each time measurement based on 500
simulated datasets

  Time of measurement (t) 

Correlation (ρ) Sample Size (N) 1 2 3 4 5 

0.1 500 0.1033558 0.100965 0.095602 0.097801 0.101853 

2000 0.10077 0.094226 0.097238 0.102331 0.102057 

4000 0.1016155 0.096502 0.094763 0.100588 0.103589 

0.2 500 0.1956968 0.200326 0.196183 0.206194 0.208386 

2000 0.1931838 0.200822 0.20011 0.202665 0.212142 

4000 0.1918279 0.201174 0.20077 0.203193 0.212975 

0.4 500 0.3979156 0.395982 0.39863 0.408899 0.413967 

2000 0.3966869 0.396343 0.400705 0.405932 0.416253 

4000 0.3978632 0.399391 0.401439 0.405484 0.414918 

0.6 500 0.6033358 0.589772 0.577329 0.60474 0.594062 

2000 0.604765 0.591468 0.580312 0.604033 0.596811 

4000 0.6045834 0.591625 0.579853 0.604802 0.597901 

 

columns presented the assumed true correlation and sample size. The other five columns

presented the average correlation for each measurement from the 500 simulations. The mean

of correlation was close to the assumed correlation value in the first column. For example,

when Yt and Zt with ρ =0.1, N = 2000, and measurement time t = 2, we have the average
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correlation = 0.094226. This was close to the assumed correlation ρ =0.1. Different sample

sizes rarely affected the value of the mean correlation.

5.3.2 Estimates of parameters for Outcome 1 using GBTM

Three trajectory models were fitted for each simulation for two outcomes: (i) Group-based

trajectory modeling (GBTM) of each outcome; (ii) Group-based dual trajectory modeling

(GBDTM) with both outcomes; (iii) Group-based multi-trajectory modeling (GBMTM) with

both outcomes.

Using different correlation coefficients had no effect on Yt in GBTM. The average parame-

ter estimates from each polynomial trajectory were presented in three situations with varying

sample sizes in Table 5.2. In GBTM, each trajectory followed a polynomial function. Since

Table 5.2: Estimation of parameters of Outcome 1 on each polynomial trajectory in group-based
trajectory modeling (GBTM) based on 500 simulated datasets

N Parameters True parameter 

value 

Mean 

estimates 

Mean SE* Bias p-value 

500 Intercept1 -4.5 -5.22295 141.6547 -0.72295 0.971  
Intercept2 -4 -4.12479 0.593149 -0.12479 <0.0001  

linear2 1 1.028998 0.170404 0.028998 <0.0001  
Intercept3 3.5 3.729137 0.859459 0.229137 <0.0001  

linear3 -1 -1.07216 0.249433 -0.07216 <0.0001  
Intercept4 4 7.144587 1193.6 3.144587 0.995 

2000 Intercept1 -4.5 -4.51585 0.266121 -0.01585 <0.0001 

 Intercept2 -4 -4.03443 0.287699 -0.03443 <0.0001 

 linear2 1 1.010456 0.082816 0.010456 <0.0001 

 Intercept3 3.5 3.517332 0.395721 0.017332 <0.0001 

 linear3 -1 -1.00306 0.114991 -0.00306 <0.0001 

 Intercept4 4 4.645703 55.4216 0.645703 0.933 

4000 Intercept1 -4.5 -4.51383 0.183494 -0.01383 <0.0001 

 Intercept2 -4 -4.01492 0.200848 -0.01492 <0.0001 

 linear2 1 1.004075 0.057852 0.004075 <0.0001 

 Intercept3 3.5 3.520556 0.278816 0.020556 <0.0001 

 linear3 -1 -1.00488 0.081164 -0.00488 <0.0001 

 Intercept4 4 4.067581 0.444766 0.067581 <0.0001 

 
* SE = Standard Error
Note: p-values are calculated based on the average mean and SE

Yt was assumed to be a longitudinal binary outcome in the simulation, each path followed
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a logistic regression with time as the covariate. When the data sample size was small, and

there was a rarity of events or no events in the dataset, the maximum likelihood estimation of

the logistic model was commonly biased (King & Zeng, 2001). This is called quasi-complete

separation. Even if quasi-complete separation did not occur, separation might be nearly

complete, so the standard error for a parameter estimate can become very large (Vassiliadis,

Spyroglou, Rigas, Rosenberg, & Lindsay, 2019). Therefore, the biased estimate and large

standard error of GBTM from sample sizes 500 and 2000 was caused by the small sample size

and rare event or no event cases in the subgroup of the trajectories. Thus, the size of biases

and influence of the trajectory shape were limited. Figures 5.3 presented the trajectory of

Yt in GBTM with N = 4000.

Figure 5.3: Simulation trajectory shape of Outcome 1 in GBTM with N = 4000

Table 5.2 presented the mean estimates and standard error of the parameters from the

polynomial functions with Yt in GBTM. The bias was calculated based on the difference

between the actual parameter values and the mean estimates. Therefore, only the sample

size (N) showed the impact of variation among parameters. The p-values were used to check
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whether the average parameter estimates from the polynomial functions were significant or

not. The key findings included:

� The biases of most estimates for the parameters was small. However, three rows of

parameters had large bias values because of quasi-complete separation problems.

� Beside the three p-values with quasi-complete separation problems, the p-value of the

polynomial functions’ parameters were all highly significant (p-value < 0.0001) because

Outcome 1 was defined from the assumed polynomial functions.

� The average standard error got smaller for corresponding parameters as the sample

size increased. The large standard errors from quasi-complete separation problems

improved as the sample size increased.

5.3.3 Estimates of parameters for Outcome 1 using GBDTM and GBMTM

GBDTM and GBMTM were constructed with two outcomes jointly. Thus, Yt and Zt

affected by one another. Table 5.3 presented the estimates and standard error (SE) of

parameters of Yt from GBDTM and GBMTM. The estimated value of the parameters was

generated separately for Outcome 1 based on four different correlation levels (ρ = 0.1, 0.2,

0.4, 0.6) between the two outcomes with N = 4000 (The results for N = 500 and 2000 are

shown in Appendix A).

Three key findings should be emphasized:

� The standard errors were small; additionally, the p-values of parameter estimates for

the polynomial function were highly significant in both GBDTM and GBMTM.

� When the correlation between the two outcomes was ρ = 0.1, the estimates of the

parameters in Yt were very close to the real parameter value with a small bias in

GBDTM and GBMTM.
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Table 5.3: Estimation of parameters for Outcome 1 on each polynomial trajectory in group-based
dual trajectory modeling (GBDTM) and group-based multi-trajectory modeling (GBMTM) with
sample size N = 4000 based on 500 simulated datasets

   GBDTM$ GBMTM& 

ρ** Parameter TPV# Mean 

Estimates 

 Mean 

SE* 

Bias p-value Mean 

Estimates 

Mean 

SE* 

Bias p-value 

0.1 Intercept1 -4.5 -4.49916 0.17950 0.00084 <0.0001 -4.49260 0.17772 0.00740 <0.0001 

Intercept2 -4 -4.02252 0.20104 -0.02252 <0.0001 -4.03660 0.20026 -0.03660 <0.0001 

Linear2 1 1.00682 0.05786 0.00682 <0.0001 1.01131 0.05757 0.01131 <0.0001 

Intercept3 3.5 3.52204 0.27861 0.02204 <0.0001 3.49891 0.27550 -0.00109 <0.0001 

Linear3 -1 -1.00633 0.08112 -0.00633 <0.0001 -1.00143 0.08013 -0.00143 <0.0001 

Intercept4 4 4.05449 0.46618 0.05449 <0.0001 4.01563 0.43527 0.01563 <0.0001 

0.2 Intercept1 -4.5 -4.44575 0.16741 0.05425 <0.0001 -4.44841 0.16518 0.05159 <0.0001 

Intercept2 -4 -4.04900 0.20156 -0.04900 <0.0001 -4.09129 0.19894 -0.09129 <0.0001 

Linear2 1 1.01709 0.05782 0.01709 <0.0001 1.02911 0.05687 0.02911 <0.0001 

Intercept3 3.5 3.53672 0.27877 0.03672 <0.0001 3.45118 0.26781 -0.04882 <0.0001 

Linear3 -1 -1.01317 0.08134 -0.01317 <0.0001 -0.99661 0.07772 0.00339 <0.0001 

Intercept4 4 3.92532 0.37097 -0.07468 <0.0001 3.84505 0.32837 -0.15495 <0.0001 

0.4 Intercept1 -4.5 -3.85544 0.10352 0.64456 <0.0001 -4.38056 0.14284 0.11944 <0.0001 

Intercept2 -4 -3.71962 0.20129 0.28038 <0.0001 -4.24662 0.19535 -0.24662 <0.0001 

Linear2 1 0.96062 0.05697 -0.03938 <0.0001 1.07920 0.05506 0.07920 <0.0001 

Intercept3 3.5 2.68244 0.24338 -0.81756 <0.0001 3.28533 0.24357 -0.21467 <0.0001 

Linear3 -1 -0.77011 0.07275 0.22989 <0.0001 -0.97131 0.07091 0.02869 <0.0001 

Intercept4 4 3.57913 0.34763 -0.42087 <0.0001 3.56211 0.24116 -0.43789 <0.0001 

0.6 Intercept1 -4.5 -4.21744 0.11093 0.28256 <0.0001 -4.42373 0.13315 0.07627 <0.0001 

Intercept2 -4 -4.39089 0.19340 -0.39089 <0.0001 -4.39257 0.18775 -0.39257 <0.0001 

Linear2 1 1.13255 0.05393 0.13255 <0.0001 1.12288 0.05225 0.12288 <0.0001 

Intercept3 3.5 3.31580 0.23117 -0.18420 <0.0001 3.22811 0.22473 -0.27189 <0.0001 

Linear3 -1 -0.93409 0.07015 0.06591 <0.0001 -0.97784 0.06558 0.02216 <0.0001 

Intercept4 4 4.08380 0.53486 0.08380 <0.0001 3.37417 0.19821 -0.62583 <0.0001 

 * SE = Standard Error
** ρ = Correlation Level between Yt and Zt
# TPV = True Parameter Value
$ GBDTM = Group-based dual trajectory modeling
& GBMTM = Group-based multi-trajectory modeling
Note: p-values are calculated based on the average mean and SE

� As the correlation level increased, the bias between the estimate and true parameter

value increased. i.e. as the correlation level increased, Yt were increasingly adjusted

by Zt.

Figures 5.4 showed the corresponding figures for Table 5.3 for Yt in GBDTM and GBMTM

with ρ = 0.1, 0.2, 0.4, and 0.6, respectively.
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Figure 5.4: Simulation trajectory shapes of Outcome 1 in GBDTM and GBMTM with N = 4000
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5.3.4 Estimates of parameters for Outcome 2 using GBTM, GBDTM and GBMTM

In the simulation, GBTM, GBDTM, and GBMTM were also developed for Outcome 2

(Zt) using different correlation levels (ρ = 0.1, 0.2, 0.4, 0.6). Table 5.4 showed a comparison

of parameter estimates in Zt from GBTM, GBDTM, and GBMTM with N = 4000 (The

results of N = 500 and 2000 can be seen in the Appendix A). In Table 5.4, the trajectory

shapes for the models with different correlation levels were described as follows:

Table 5.4: Estimation of parameters for Outcome 2 on each polynomial trajectory in group-based
trajectory modeling (GBTM), group-based dual trajectory modeling (GBDTM) and group-based
multi-trajectory modeling (GBMTM) with sample size N = 4000 based on 500 simulated datasets

  GBTM GBDTM GBMTM 

ρ** Parameter Mean 

Estimates 

Mean 

SE* 

p-value Mean 

Estimates 

Mean 

SE* 

p-value Mean 

Estimates 

Mean 

SE* 

p-value 

0.1 Intercept1 -9.01866 4.94689 0.068 -2.09866 0.08823 <0.0001 -2.01967 0.07186 <0.0001 
 

Linear1 -3.62862 1.04587 0.0005 -0.02449 0.02450 0.318 -0.05009 0.02223 0.024 
 

Intercept2 -0.69828 0.63490 0.272 -1.39155 0.13996 <0.0001 -2.25843 0.13285 <0.0001 
 

Linear2 -0.63494 0.24823 0.011 -0.04071 0.03828 0.288 0.12150 0.03808 0.0014 
 

Intercept3 
      

-1.14361 0.15484 <0.0001 
 

Linear3 
      

-0.20948 0.05159 <0.0001 
 

Intercept4 
      

-1.41353 0.14154 <0.0001 
 

Linear4 
      

-0.02817 0.04308 0.513 

0.2 Intercept1 -8.45494 1.63698 <0.0001 -2.30075 0.07640 <0.0001 -2.17546 0.07526 <0.0001 

 Linear1 1.17997 0.40459 0.004 0.02148 0.02368 0.364 -0.02809 0.02317 0.982 

 Intercept2 -1.16258 0.53378 0.029 -1.16281 0.10609 <0.0001 -2.61595 0.13715 <0.0001 

 Linear2 -0.03085 0.11648 0.792 0.00978 0.02998 0.744 0.29513 0.03740 <0.0001 

 Intercept3       -0.61977 0.14099 <0.0001 

 Linear3       -0.29408 0.04868 <0.0001 

 Intercept4       -1.07252 0.12449 <0.0001 

 Linear4       0.01604 0.03736 0.668 

0.4 Intercept1 -0.86235 0.69347 0.214 -2.11837 0.07681 <0.0001 -2.19457 0.07619 <0.0001 

 Linear1 -0.65634 0.38263 0.086 -0.04994 0.02428 0.04 -0.03252 0.02376 0.171 

 Intercept2 -5.24975 1.41676 0.0002 -2.86950 0.15421 <0.0001 -2.92318 0.13771 <0.0001 

 Linear2 0.98014 0.38436 0.011 0.53070 0.04128 <0.0001 0.52949 0.03687 <0.0001 

 Intercept3 -0.16206 0.34009 0.634 0.20459 0.10674 0.055 0.49538 0.12861 0.0001 

 Linear3 -0.08007 0.09012 0.375 -0.18278 0.03105 <0.0001 -0.47442 0.04517 <0.0001 

 Intercept4       -0.18304 0.10772 0.089 

 Linear4       0.01887 0.03259 0.563 
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  GBTM GBDTM GBMTM 

ρ** Parameter Mean 

Estimates 

Mean 

SE* 

p-value Mean 

Estimates 

Mean 

SE* 

p-value Mean 

Estimates 

Mean 

SE* 

p-value 

0.6 Intercept1 -1.31898 0.27013 <0.0001 -1.92158 0.07173 <0.0001 -1.98290 0.07299 <0.0001 
 

Linear1 -0.34132 0.15871 0.032 -0.09727 0.02315 <0.0001 -0.08416 0.02345 0.0003 
 

Intercept2 -3.42048 0.55303 <0.0001 -2.97224 0.13622 <0.0001 -2.97177 0.13260 <0.0001 
 

Linear2 0.63677 0.16861 0.0002 0.68696 0.03746 <0.0001 0.68247 0.03653 <0.0001 
 

Intercept3 0.91688 0.17816 <0.0001 1.37535 0.08851 <0.0001 1.79018 0.14149 <0.0001 
 

Linear3 -0.19289 0.04298 <0.0001 -0.32841 0.02512 <0.0001 -0.70864 0.04691 <0.0001 
 

Intercept4 
      

1.01726 0.11710 <0.0001 
 

Linear4 
      

-0.05593 0.03532 0.113 

* SE = Standard Error
** ρ = Correlation Level between Yt and Zt
# GBTM = Group-based trajectory modeling
$ GBDTM = Group-based dual trajectory modeling
& GBMTM = Group-based multi-trajectory modeling
Note: p-values are calculated based on the average mean and SE

ρ = 0.1: Two linear polynomial trajectories were generated using GBTM for Zt. The p-

value of parameter estimates was significant for Linear 1 and Linear 2. In GBDTM,

there were two constant trajectories generated because the parameters from Linear 1

and Linear 2 were not significant. In GBMTM, the first three groups followed a linear

polynomial trajectory, and one consistent trajectory was found in Group 4. Figure 5.5

Figure 5.5: Simulation trajectory shapes of Outcome 2 in GBTM GBDTM and GBMTM with N
= 4000 and ρ = 0.1
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was the corresponding trajectories to Table 5.3 with ρ = 0.1.

ρ = 0.2: Two trajectory groups were found using GBTM and GBDTM. The trajectories

from Group 1 and Group 2 were linear and constant in GBTM. Two constant trajec-

tories were identified in GBDTM. In GBMTM, the paths from Group 1 & Group 4

were consistent, and the trajectories from Group 2 & Group 3 were linear. Figure 5.6

were the corresponding trajectories to Table 5.3 with ρ = 0.2.

Figure 5.6: Simulation trajectory shapes of Outcome 2 in GBTM GBDTM and GBMTM with N
= 4000 and ρ = 0.2

ρ = 0.4: Three trajectory groups were generated. The trajectory of Group 2 in GBTM

was linear. Parameters of intercept and linear of the time variable were not significant

in Group 1 and Group 3 from GBTM, which were defined as unknown polynomial

trajectory shapes. In GBDTM, three linear trajectories were observed. In GBMTM,

the path from Group 1 was constant; the trajectories from Group 2 & Group 3 were

linear, and the trajectory from Group 4 had an unknown polynomial trajectory shape.

Figure 5.7 were the corresponding trajectories to Table 5.3 with ρ = 0.4.
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Figure 5.7: Simulation trajectory shapes of Outcome 2 in GBTM GBDTM and GBMTM with N
= 4000 and ρ = 0.4

ρ = 0.6: Three linear paths were found in both GBTM and GBDTM. In GBMTM, tra-

jectories in Group 1 to Group 3 were linear, and trajectory in Group 4 was constant.

Figure 5.8 were the corresponding trajectories to Table 5.3 with ρ = 0.6.

Figure 5.8: Simulation trajectory shapes of Outcome 2 in GBTM GBDTM and GBMTM with N
= 4000 and ρ = 0.6
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Another key finding was that we could compare the standard error variation for Zt

among different models or correlation levels. A comparison of the standard error from

three trajectory models with the same correlation level revealed that GBTM had a larger

standard error than GBDTM and GBMTM. Therefore, the standard error of trajectory

parameter estimates was reduced in GBDTM and GBMTM in Zt adjusted by Yt. Moreover,

the standard error of Zt was declined with the correlation level (ρ) of the two outcomes

getting larger in each kind of model.

5.3.5 Summary of simulation study based on trajectory models

Trajectories of GBTM, GBDTM, and GBMTM in two outcomes (Yt, Zt) with different

correlation coefficients (ρ = 0.1, 0.2, 0.4, 0.6) were presented in Figures 5.9 - 5.12. Each

Figure’s A and D were related to Yt and Zt in GBTMs; each Figure’s B and E were related

to Yt and Zt in GBDTMs; each Figure’s C and F were related to Yt and Zt in GBMTMs.

Outcome 1 Key Findings:

� Since Yt was generated from the trajectory properties and the GBTM of Yt was not

influenced by Zt, trajectory group membership and trajectory shapes were the same

in each Figure’s A.

� The trajectory shapes in each model with different levels of correlation were barely

changed compared to the trajectories of Yt in GBTM, GBDTM, and GBMTM. This

was because the trajectory shape of Yt was highly adjusted during data-generating, so

the effect of Yt from Zt was limited in GBDTM and GBMTM.

� The variety of proportions from Yt in the Figures increased as the correlation level

increased.

Outcome 2 Key Findings:

� In GBTM and GBDTM, two trajectories were found with correlation level ρ =0.1
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and 0.2, three trajectories were identified with correlation levels ρ =0.4 and 0.6. In

GBMTM, four trajectories were found in each level of correlation.

� The distribution interval of probability for the mean paths increased as the correlation

level increased. With correlation ρ = 0.1, the probability range of the average trajec-

tories was around 0.1 to 0.2. However, when the correlation coefficient rising to 0.6,

the range of probability was from 0.05 to 0.7.

� Compared to GBTM, trajectory shape and proportion had obviously changed in GB-

DTM. The trajectory shape and group members from Zt were highly adjusted by Yt

in GBDTM.

� In GBMTM, the tendency of the trajectories in Zt was similar to Yt. For instance, the

trajectory in Group 1 with a low probability in Yt also had a relatively low probability

in Zt.

� The probability region was constringent as the correlation level decreased. With a

correlation level of ρ = 0.1, the four trajectories were gathered in the tiny probability

interval between 0.1 and 0.2.

Summary graphs of the simulation study result can be seen together and compared side

by side in Figure 5.9 - 5.12.
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Chapter 6 DISCUSSION

6.1 Introduction

In this thesis, I applied group-based trajectory modeling (GBTM), group-based dual

trajectory modeling (GBDTM), and group-based multi-trajectory modeling (GBMTM) to

identify the trajectory trends over time with two associated longitudinal binary outcomes -

depression and anxiety. Trajectory groups and the shape of the trajectories were selected

based on BIC and AIC values and on posterior probability (Nagin, 2005). Risk factors for

both outcomes were identified in both GBTMs and GBDTM. Moreover, I simulated two

repeated measured outcomes with different association levels to further study the above tra-

jectory models based on polynomial trajectory parameters, trajectory shapes, and trajectory

tendencies.

6.2 Discussion of the application

Three trajectory models (GBTM, GBDTM, and GBMTM) were applied and devel-

oped with depression and anxiety outcomes from the KHPS dataset. In GBMTM, trajec-

tory shapes varied significantly when compared to GBTM and GBDTM. This was because

GBMTM must share the same proportion in each outcome, which restricted the flexibility

of the model.

When trajectories were identified for both GBTM and GBDTM, the trends from dif-

ferent trajectory groups should involve variations (Nagin, 2005; Nagin & Tremblay, 2001).

In this study, compared to GBTM, the shape of each depression and anxiety trajectory

group remained similar to GBDTM. One reason for this finding was that the membership

proportion variations from GBTM to GBDTM were small, but still not small enough to

be ignored for both depression and anxiety. Another reason was that the portion of vari-

ation from GBTM to GBDTM might include many missing values that failed to influence
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the trajectory pathways. The study result showed that the membership proportion derived

some changes from GBTM to GBDTM for both depression and anxiety. When the GB-

DTM depression trajectory groups were compared to that of GBTM, the members in the

“low-flat”, “low-to-high” and “high-curved” depression trajectory increased, but decreased

in “low-to-middle” depression trajectory group. Meanwhile, comparing anxiety trajectories

in GBDTM to GBTM, the members in the “low-flat” anxiety group decreased, but increased

in the “low-to-middle” and “high-to-low” anxiety trajectory group; the “high-curve” anxiety

trajectory groups remained unchanged.

Compared to the single outcome mixture models, the mixture model with multiple out-

comes often had smaller standard errors for estimates when there were many missing values

(Teixeira-Pinto et al., 2009). However, this was not observed in our analysis. The standard

error of parameter estimates from GBTM to GBDTM in depression and anxiety trajectories

was half decreased and half increased. The reason could be that missing outcomes depended

on the subjects who failure to complete the survey. In our real dataset, if the individuals were

missing in depression outcome measures, they would also be missing anxiety measures. The

multi-outcome mixture model analysis involved more significant variables compared to the

separate analysis (Teixeira-Pinto et al., 2009; Mayo-Wilson et al., 2017). In our application,

the multivariate analysis for depression using GBDTM involved a total of six risk factors, one

fewer than GBTM for depression. On the other hand, the multivariate analysis for anxiety

using GBDTM involved a total of three risk factors, two more variables than GBTM for

anxiety. De Oliveira showed that increased physical activity reduced anxiety probability in

older people (de Oliveira, Souza, Rodrigues, Fett, & Piva, 2019). However, our study did not

show this finding in GBTM and GBDTM with anxiety. Overall, the number of significant

risk factors in GBDTM was more than separate GBTMs with depression and anxiety.

In GBDTM, among the four groups recognized as having different probabilities of being

diagnosed with depression, a majority showed no depression and were generally unlikely to

experience anxiety concomitantly. However, about 10% did experience depression during the
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follow-up period, most of whom showed a gradual increase in the probability of depression.

Among individuals along this trajectory, 20% also experienced a moderate rise in anxiety

risk over time. As for anxiety, diagnosis of which followed four different trajectories, the

majority of respondents did not experience this condition and were also free of depression.

However, 5% showed a slow increase trend for anxiety over time. This was accompanied by

an increasing tendency to suffer from depression in just under half the cases. In general,

being female, not involved in an income-generating activity in the older population, and

membership in a trajectory suggesting risks for the alternate condition independently pre-

dicted a more vulnerable risk trajectory than the “low-flat” trajectory group for depression

and anxiety.

Among the four depression trajectory groups, the constantly decreasing trajectory was

not found for depression. The “high-curve” depression group was thought to have less

likelihood of recovery among the older adults as they were more likely to experience reduced

life satisfaction, income, quality of life, and poor health conditions (Dew et al., 2007; You et

al., 2009; Jang, Small, & Haley, 2001). The “low-to-high” depression group had an intense

increase in the occurrence of depression from 2009 to 2013 with a very small proportion

(only 31 subjects). The markedly increased probability might have been precipitated by

sudden and serious events, such as losing a spouse, physical incapacity, etc. However, among

anxiety trajectories, a declining trajectory and a curved shape trajectory showed evidence of

decreasing risk. A possible explanation for this observed decline is that individuals adapt or

cope with their anxious feelings and no longer seek treatment. A second explanation might be

that other, more pressing medical conditions emerge, eclipsing anxiety management. Thus,

anxiety might still have been present but not identified (AAPG, 2019).

The association between depression and anxiety was identified from the trajectories’

conditional probabilities and the logistic regression odds ratios. The study found that the

“low-to-high” and “low-to-middle” depression groups also had a risk of being in the “low-

to-middle” anxiety group. This suggested that older adults with an increasing likelihood
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of suffering from depression also have a greater chance of suffering from anxiety. This

is consistent with other studies (Wetherell, Gatz, & Craske, 2003; Bassil, Ghandour, &

Grossberg, 2011). Moreover, individuals in the “low-to-middle” depression group made up a

high proportion of the “high-curve” anxiety trajectory group, suggesting that older patients

who had severe anxiety may also suffer mild depression. The “high-curve” depression group

members were more likely to have anxiety following the “high-to-low” and, less frequently,

the “high-curved” anxiety trajectory; individuals in this particular overlap had severe mental

health conditions and required more attention (Lenze, 2003). The inverse of these findings

also supported the association between depression and anxiety; individuals in this study who

did not have one of the study conditions (depression or anxiety) also tended not to have the

other.

Our evaluation of demographic risk factors coincides to varying degrees with the liter-

ature. In the majority of depression and anxiety studies, sex did have an association with

these conditions, suggesting older females generally were more at greater risk for depression

and anxiety (McLean, Asnaani, Litz, & Hofmann, 2011; Girgus, Yang, & Ferri, 2017). Our

study findings were consistent with results from other trajectory studies (Holmes et al., 2018;

Montagnier et al., 2014; Kuchibhatla et al., 2012; El-Gilany, Elkhawaga, & Sarraf, 2018).

However, some studies had found no sex-specific differences when investigating depression

and anxiety (Spinhoven et al., 2017; Taylor & Lynch, 2004). This inconsistency might be re-

lated to different economic circumstances, social-cultural factors, psychosocial gender roles,

or other population differences. In our study, age was a significant univariate influence for

depression only, consistent with Holmes et al. (2018). Education level was not a significant

predictor of either outcome. This result was consistent with some studies (Holmes et al.,

2018; Norris & Murrell, 1988; Hong, Hasche, & Bowland, 2009), but not others (Spinhoven

et al., 2017; Liang et al., 2011; Kuo et al., 2011; Byers et al., 2012; Hsu, 2012; Montagnier

et al., 2014; Kuchibhatla et al., 2012; Andreescu et al., 2008). This lack of relationship our

study revealed might be attributable to our study participants’ relatively low education level
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overall.

Social factors were also known to influence various mental health problems, including

depression and anxiety. Some studies suggested that older adults who lived alone or those

without a partner, who live within an isolated social environment had a higher risk of depres-

sion or anxiety (El-Gilany et al., 2018; Kang et al., 2016; Chong et al., 2001; K. M. Mehta

et al., 2003; Brown et al., 2002; Won & Choi, 2013). However, living alone and marital

status did not relate to depression and anxiety in our study, which was consistent with

other studies (Byers et al., 2012; Hsu, 2012; Montagnier et al., 2014; Rzewuska et al., 2015).

Studies have also pointed to smoking or excessive drinking possibly also increasing the risk

of depression and anxiety (Kuo et al., 2011; Byers et al., 2012; K. M. Mehta et al., 2003;

Kirchner et al., 2007). Nevertheless, this association was not observed in our study, nor

was it in others’ work (Kuchibhatla et al., 2012; Kang et al., 2016). Some studies showed

that homeownership reduces the risk of depression and anxiety (Kang et al., 2016; Chiao,

Weng, & Botticello, 2011), but this association did not emerge in our multivariate analysis.

However, income-generating activity was relevant in predicting both depression and anxiety,

suggesting that people who still work and earn money later in life may have better mental

health. Moreover, the older adults might have to work longer or delay their retirement to

continue their financial circumstances (Lin, Dean, & Ensel, 2013; Newby & Moulds, 2011;

Flint & Rifat, 1997a). Another possible reason is that the individuals at an older age are

higher functioning overall in their ability to continue working (Hersen & Van Hasselt, 1992).

Chronic diseases (heart disease, stroke, diabetes, asthma, cancer, arthritis, osteoporosis,

etc.) posed understandable challenges for older people and may impact mental health.

In studying the relationship among depression, anxiety, and chronic disease, Clarke and

Kay reviewed 159 papers published between 1995 and 2007 and found that depression was

correlated with nearly all chronic diseases (Clarke & Currie, 2009). However, anxiety was

only associated with heart disease, stroke, and diabetes mellitus. In our study, older adults

with more than three chronic conditions, such as heart disease, stroke, cancer, and arthritis,
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etc., were more likely to develop depression. However, in anxiety trajectory groups, chronic

disease was only significant in the “high-to-low” group from the univariate analysis, but

not in the multivariate analysis. Studies had shown that in older adults, physical illness

or disability is usually positively correlated with depression and anxiety (Kang et al., 2016;

Knight, Nordhus, & Satre, 2003; Brenes et al., 2008; Hermans & Evenhuis, 2013). However,

based on our multivariate analysis, physical/mental disability did not predict these outcomes.

6.3 Discussion of the simulations

In the simulations, I generated two relevant longitudinal outcomes and then developed

and compared GBTM, GBDTM, and GBMTM with these two associated longitudinal out-

comes. The data from repeated measurement Outcome 1 (Yt) was generated with four

clusters and defined trajectory pathways for each group (Haviland et al., 2011). The data

from repeated measurement Outcome 2 (Zt) was developed based on different levels of corre-

lation coefficients with each measure of Yt using logistic regression (Ocram, 2014; Touloumis,

2016). The correlation levels for each measure between two outcomes were ρ = 0.1, 0.2, 0.4,

and 0.6. Each simulation was performed with sample size N = 500, 2000, and 4000 subjects.

Five hundred replicated simulations were run in each scenario.

From the simulations, parameter estimates’ bias with the trajectories from the models in

Yt could be large when the sample size was small (N = 500, 2000). Large bias was caused

by the property of logistic regression to deal with the rare event or non-event (King & Zeng,

2001). As the sample size increased to N = 4000, parameter estimates moved closer to the

real parameter value when used to generate Yt. The parameters of Yt were adjusted by Zt in

GBDTM and GBMTM. Studies showed that the outcomes could vary from one another in

multi-outcome models with small standard errors compared to developments in the single-

outcome models (Teixeira-Pinto et al., 2009; Mayo-Wilson et al., 2017). Our simulation

study had the same findings in GBDTM and GBMTM compared to GBTM. In GBDTM

and GBMTM, parameter estimates for Zt had a smaller standard error than GBTM because
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of the adjustment by Yt. Furthermore, as the two outcomes’ correlation coefficient increased,

the standard error decreased in Zt in each of the three models. This was because the clusters

of Zt became much easier to be identified as the correlation increased with Yt. Yt was less

influenced by Zt in GBDTM and GBMTM because it was highly adjusted during data

generation. On the other hand, Zt was more influenced by Yt in GBDTM and GBMTM,

mostly when the two outcomes’ correlation coefficient was low. Moreover, GBDTM included

conditional probability when identifying the interrelationship between depression and anxiety

directly. Therefore, if a significant association between two outcomes exists, and researchers

are interested in studying their interrelationship, GBDTM should be preferred over GBTM.

In the simulation study, the proportion of the trajectory shape of Yt in GBDTM and

GBMTM was similar to GBTM. In our real data analysis, similar results were also discov-

ered in both depression and anxiety outcomes. However, Zt’s average trajectories changed

from GBTM to GBDTM due to Yt’s adjustment in the simulation study. In the GBMTM

simulation results, four constructed groups were consistently identified for both outcomes.

Although with low correlations, Zt’s four trajectories tended to diverge into two overall pat-

terns with trajectories that overlapped within the patterns. As the correlation increased, the

trajectory relationships became more distinct from one another and more similar between

methods. Therefore, GBMTM and GBDTM are interchangeable with a high correlation (ρ

= 0.8, 0.9).

Overall, different pathways for depression and anxiety were generated from the statis-

tical approach, GBDTM. GBDTM included two outcomes simultaneously. Unlike GBTM,

GBDTM involved the correlation between two outcomes when compared to GBTM and iden-

tified more risk factors. Therefore, GBDTM was better for modeling two correlated outcomes

compared to GBTM. As Nagin explained, GBMTM was used to identify latent clusters of

individuals following likely paths over time in multiple outcomes (Nagin et al., 2018). In

this study, depression and anxiety do not share a similar trajectory shape in depression and

anxiety outcome subgroups. Thus, GBMTM was not considered a better model than the
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other two models. Overall, GBDTM was more flexible in handling the different clusters of

structures compared to GBMTM.

Strength and weakness

This study had limitations. First, the low prevalence of anxiety across the survey period

limited predictor evaluation, particularly in the very small populated trajectories such as the

“high-curved” anxiety trajectory group. Second, although the current study employed data

from a sizeable subsample of the KHPS dataset, around 35% of the outcome measurements

were missing, which might result in bias, even though I used two common methods to handle

the missing data by maximum likelihood estimation (MLE) method and GBDTM. Third,

the variables included in this study did not contain other potentially important health and

psychosocial aspects that may be associated with depression and anxiety, such as stressful

life events and social/family support information. Fourth, the specific cultural context of the

Korean older adults in which this study was conducted may not be generalizable to other

contexts.

The current study had many strengths. The KHPS dataset provided measures of out-

comes annually for eight years, meaning that sufficient measurement time points could be

used to develop depression and anxiety trajectories. Additionally, instead of self-reported

signs, symptoms, or questionnaires, as in other studies, depression and anxiety outcomes

in the KHPS dataset were collected from medical expenses, including prescription drug re-

ceipts or medical institutions/pharmacies, potentially leading to inadequate recognition of

our sample outcomes. This is particularly true in the context of other chronic disease con-

ditions (Manela et al., 1996). Therefore, the outcomes were more clinically valid. In this

study, depression and anxiety were considered binary, which was different from most other

studies using continuous scale outcomes. Furthermore, anxiety trajectories had barely been

studied in older adults, so our research can be act as a guideline for future studies.
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Chapter 7 CONCLUSION AND FUTURE RESEARCH

7.1 Conclusion

GBTM, GBDTM, and GBMTM were compared in both real data analysis and simulation.

In the simulation study, GBDTM had less uncertainty in parameter estimation and so was

always better than GBTM. A simulation study was conducted and showed that GBMTM

could be instead of GBDTM when the correlation between two outcomes is high, or the data

structure between two outcomes is similar. In this thesis, using the data from KHPS, GBTM,

GBDTM, and GBMTM were applied to examine the tendency to suffer from depression

and anxiety simultaneously. Since the correlation coefficients were between depression and

anxiety significant but low, and group clusters for depression compared to anxiety were

different, GBDTM was a better model than GBTM and GBMTM for the KHPS data.

Four trajectory groups of both depression and anxiety were generated for the KHPS

dataset of older Koreans. The majority of older adults belong to the “low-flat” trajec-

tory groups for depression and anxiety. This suggests that most older adults did not have

depression and anxiety. Being female, having more than three chronic diseases, and not

being involved in income-generating activities were significant predictors for the depres-

sion trajectory groups. Being female and not being involved in income-generating activities

were significant predictors for the anxiety trajectory groups. Our findings were based on a

large sample size, which guaranteed reliable differentiated trajectory groups and supported

previous results found in the literature. Our findings can be used to assist health policy

decision-makers in identifying individuals at risk for comorbid depression and anxiety and

aid in devising supports for older individuals at risk of deteriorating mental health.
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Main contributions

In this thesis, I applied GBTM, GBDTM, and GBMTM using the longitudinal binary

depression and anxiety outcomes from the KHPS dataset, performed a simulation study, and

compared the three trajectory models. GBDTM was selected as the best model. Conditional

probabilities from GBDTM directly described the interrelationship between the depression

and anxiety outcomes. Risk factors relevant to depression and anxiety outcomes were also

identified with multivariate logistic regression analysis. South Korea is expected to become

a “super-aged society” with over 20% of its population aged 65 years and older in 2026 and

38% in 2050. Our study used a general population sample, not enriched for a specific group.

We think our findings may help health policy maker to develop appropriate depression and

anxiety prevention programs.

We simulated GBTM, GBDTM, and GBMTM using two binary longitudinal outcomes

with different correlation coefficient levels in each measurement. The characteristics of the

three trajectory models were studied further in the simulation study. The simulation study

also showed that GBDTM was always a better model than GBTM. GBMTM could be used

instead of GBDTM if the correlation coefficient between two longitudinal outcomes was

significantly high or with the similar data structures.

7.2 Future study

In this thesis, we studied GBTM, GBDTM, and GBMTM using two longitudinal binary

outcomes. However, in some clinical studies, we might have longitudinal count outcomes.

For instance, the trajectories from the patients with disabilities were measured by the num-

ber of basic activities they performed, called activities of daily living. In a mental health

study, we might also be interested in the number of emergency visits or number of days an

individual stayed in a hospital for depression and anxiety. Therefore, instead of the logis-

tic polynomial function, we could consider using the zero-inflated Poisson (ZIP) model to
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identify the trajectories’ paths with count data, including a lot of zeros. In the future, for

GBDTM and GBMTM, we could also investigate the models’ performance, including the

mixed with continuous, binary and count outcomes.

We used co-current depression and anxiety outcomes in the older people from the KHPS

dataset. However, GBDTM could also handle two linked effects that did not necessarily

co-occur. The National Longitudinal Survey of Children and Youth (NLSCY) data was

a longitudinal dataset from Statistics Canada (NLSCY, 2010). NLSCY data contained

numerous factors correlated to a child’s social, emotional, and behavioral development at

multiple time measures. When the children were youth, their mental health was measured

using an anxiety scale. However, as they grew into adolescence, mental health was measured

using a depression scale. Therefore, GBDTM can be applied to find anxiety trajectories

in youth and then depression trajectories as they became adolescents and young adults.

Conditional probabilities could be used to study how anxiety in early childhood influences

depression in adolescents and young adults.

GBDTM can only include two outcome variables at the same time. For more than two

outcomes, another technique called the parallel process growth mixture model might be a

suitable method to identify associations among multiple outcomes simultaneously (Wu et

al., 2010).

In the application study, the risk factors were considered as time-independent covariates.

However, GBTM, GBDTM, GBMTM can obtain time-dependent covariates as well. For

example, an important event (such as the loss of a partner) may affect mental health during

the measurement year. In these three trajectory models, risk factors mainly affect the

proportion variation, but time-dependent variables could change trajectory shapes.

In our simulation study, Outcome 1 was simulated based on the trajectories’ parameters.

Outcome 2 was simulated based on the correlation coefficient from each measure of Outcome

1. Our study’s simulation did not consider the missing data’s influence, especially for data

missing not at random. In the future, we would also study how the data missing not at

134



random would influence GBDTM and GBMTM.
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Liang, J., Xu, X., Quiñones, A. R., Bennett, J. M., & Ye, W. (2011). Multiple trajectories

of depressive symptoms in middle and late life: racial/ethnic variations. Psychology

147



and aging , 26 (4), 761.

Lim, H. J., Cheng, Y., Kabir, R., & Thorpe, L. (2020). Trajectories of depression and

their predictors in a population-based study of korean older adults. The International

Journal of Aging and Human Development , 0091415020944405.

Lin, N., Dean, A., & Ensel, W. M. (2013). Social support, life events, and depression.

Academic Press.

Lindley, D. V., & Smith, A. F. (1972). Bayes estimates for the linear model. Journal of the

Royal Statistical Society. Series B (Methodological), 1–41.

Lindsay, B. G., & Lesperance, M. L. (1995). A review of semiparametric mixture models.

Journal of statistical planning and inference, 47 (1-2), 29–39.

Liu, H. (2007). Growth curve models for zero-inflated count data: An application to smoking

behavior. Structural Equation Modeling: A Multidisciplinary Journal , 14 (2), 247–279.

Longford, N. T. (1987). A fast scoring algorithm for maximum likelihood estimation in

unbalanced mixed models with nested random effects. Biometrika, 74 (4), 817–827.

Lunn, D., Barrett, J., Sweeting, M., & Thompson, S. (2013). Fully bayesian hierarchi-

cal modelling in two stages, with application to meta-analysis. Journal of the Royal

Statistical Society: Series C (Applied Statistics), 62 (4), 551–572.

Manela, M., Katona, C., & Livingston, G. (1996). How common are the anxiety disorders

in old age? International Journal of Geriatric Psychiatry , 11 (1), 65–70.

Mantella, R. C., Butters, M. A., Dew, M. A., Mulsant, B. H., Begley, A. E., Tracey, B., . . .

Lenze, E. J. (2007). Cognitive impairment in late-life generalized anxiety disorder.

The American Journal of Geriatric Psychiatry , 15 (8), 673–679.

Mayo-Wilson, E., Fusco, N., Li, T., Hong, H., Canner, J. K., Dickersin, K., et al. (2017).

Multiple outcomes and analyses in clinical trials create challenges for interpretation

and research synthesis. Journal of clinical epidemiology , 86 , 39–50.

McArdle, J. J. (2014). A structural modeling experiment with multiple growth functions.

In Abilities, motivation and methodology (pp. 93–140). Routledge.

148



McCoach, D. B. (2010). Hierarchical linear modeling. The reviewer’s guide to quantitative

methods in the social sciences , 123–140.

McCullagh, P., & Nelder, J. A. (1989). Generalized linear models (Vol. 37). Boca Raton,

FL: CRC press.

McLachlan, G., & Krishnan, T. (2008). The em algorithm and extensions. whiley series

in probability and statistics. John Wiley & Sons, New York, USA, second edition.

Moon, TK (1996). The expectation-maximization algorithm. IEEE Signal Processing

Magazine, 13 (6), 47–60.

McLaughlin, K. A., & King, K. (2015). Developmental trajectories of anxiety and depression

in early adolescence. Journal of abnormal child psychology , 43 (2), 311–323.

McLean, C. P., Asnaani, A., Litz, B. T., & Hofmann, S. G. (2011). Gender differences

in anxiety disorders: prevalence, course of illness, comorbidity and burden of illness.

Journal of psychiatric research, 45 (8), 1027–1035.

Mehta, K. M., Simonsick, E. M., Penninx, B. W., Schulz, R., Rubin, S. M., Satterfield, S.,

& Yaffe, K. (2003). Prevalence and correlates of anxiety symptoms in well-functioning

older adults: findings from the health aging and body composition study. Journal of

the American Geriatrics Society , 51 (4), 499–504.

Mehta, P. D., Neale, M. C., & Flay, B. R. (2004). Squeezing interval change from ordinal

panel data: Latent growth curves with ordinal outcomes. Psychological methods , 9 (3),

301.

Meredith, W., & Tisak, J. (1990). Latent curve analysis. Psychometrika, 55 (1), 107–122.

Montagnier, D., Dartigues, J.-F., Rouillon, F., Pérès, K., Falissard, B., & Onen, F. (2014).

Ageing and trajectories of depressive symptoms in community-dwelling men and

women. International journal of geriatric psychiatry , 29 (7), 720–729.

Mustillo, S., Worthman, C., Erkanli, A., Keeler, G., Angold, A., & Costello, E. J. (2003).

Obesity and psychiatric disorder: developmental trajectories. Pediatrics , 111 (4), 851–

859.

149



Nagin, D. S. (1999). Analyzing developmental trajectories: a semiparametric, group-based

approach. Psychological methods , 4 (2), 139.

Nagin, D. S. (2005). Group-based modeling of development. Cambridge, Massaachusetts:

Harvard University Press.

Nagin, D. S., Jones, B. L., Passos, V. L., & Tremblay, R. E. (2018). Group-based multi-

trajectory modeling. Statistical methods in medical research, 27 (7), 2015–2023.

Nagin, D. S., & Land, K. C. (1993). Age, criminal careers, and population heterogeneity:

Specification and estimation of a nonparametric, mixed poisson model. Criminology ,

31 (3), 327–362.

Nagin, D. S., & Odgers, C. L. (2010). Group-based trajectory modeling (nearly) two decades

later. Journal of quantitative criminology , 26 (4), 445–453.

Nagin, D. S., & Tremblay, R. E. (2001). Analyzing developmental trajectories of distinct

but related behaviors: a group-based method. Psychological methods , 6 (1), 18.

Nelder, J. A., & Baker, R. J. (2004). Generalized linear models. Encyclopedia of statistical

sciences , 4 .

Nelder, J. A., & Wedderburn, R. W. (1972). Generalized linear models. Journal of the Royal

Statistical Society: Series A (General), 135 (3), 370–384.

Newby, J. M., & Moulds, M. L. (2011). Intrusive memories of negative events in depression:

Is the centrality of the event important? Journal of behavior therapy and experimental

psychiatry , 42 (3), 277–283.

NLSCY. (2010). National longitudinal survey of children and youth. https://www23

.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey\&SDDS=4450.

Norris, F. H., & Murrell, S. A. (1988). Prior experience as a moderator of disaster impact

on anxiety symptoms in older adults. American Journal of Community Psychology ,

16 (5), 665–683.

Ocram. (2014). Generate random correlated data between a binary and a continuous vari-

able. Cross Validated. Retrieved from https://stats.stackexchange.com/q/12858

150



(URL:https://stats.stackexchange.com/q/12858 (version: 2014-12-24))

OECD-data. (2019). Suicide rates. https://data.oecd.org/healthstat/suicide-rates

.htm.

Olino, T. M., Klein, D. N., Lewinsohn, P. M., Rohde, P., & Seeley, J. R. (2010). Latent

trajectory classes of depressive and anxiety disorders from adolescence to adulthood:

descriptions of classes and associations with risk factors. Comprehensive psychiatry ,

51 (3), 224–235.

Olsson, U. (1979). Maximum likelihood estimation of the polychoric correlation coefficient.

Psychometrika, 44 (4), 443–460.

Orcutt, H. K., Erickson, D. J., & Wolfe, J. (2004). The course of ptsd symptoms among

gulf war veterans: a growth mixture modeling approach. Journal of Traumatic Stress:

Official Publication of The International Society for Traumatic Stress Studies , 17 (3),

195–202.

Paterniti, S., Alperovitch, A., Ducimetiere, P., Dealberto, M.-J., Lepine, J.-P., & Bisserbe,

J.-C. (1999). Anxiety but not depression is associated with elevated blood pressure in

a community group of french elderly. Psychosomatic medicine, 61 (1), 77–83.

Pearson, K. (1894). Contributions to the mathematical theory of evolution. Philosophical

Transactions of the Royal Society of London. A, 185 , 71–110.

Pilla, R. S., & Lindsay, B. G. (2001). Alternative em methods for nonparametric finite

mixture models. Biometrika, 88 (2), 535–550.

Pinheiro, J. C., & Bates, D. M. (1995). Approximations to the log-likelihood function in

the nonlinear mixed-effects model. Journal of computational and Graphical Statistics ,

4 (1), 12–35.

Piquero, A. R. (2008). Taking stock of developmental trajectories of criminal activity over

the life course. In The long view of crime: A synthesis of longitudinal research (pp.

23–78). Springer.

Pirlich, M., Schütz, T., Kemps, M., Luhman, N., Minko, N., Lübke, H. J., . . . Lochs, H.

151



(2005). Social risk factors for hospital malnutrition. Nutrition, 21 (3), 295–300.

Rabe-Hesketh, S., & Skrondal, A. (2004). Generalized latent variable modeling: Multilevel,

longitudinal, and structural equation models. New York, NY: Chapman and Hall/CRC.

Raftery, A. E. (1995). Bayesian model selection in social research. Sociological methodology ,

111–163.

Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: Applications and data

analysis methods (Vol. 1). Thousand Oaks, California: Sage.

Raudenbush, S. W., Yang, M.-L., & Yosef, M. (2000). Maximum likelihood for generalized

linear models with nested random effects via high-order, multivariate laplace approxi-

mation. Journal of computational and Graphical Statistics , 9 (1), 141–157.

Robertson, T. B. (1908). On the normal rate of growth of an individual, and its biochemical

significance. Archiv für Entwicklungsmechanik der Organismen, 25 (4), 581–614.

Robins, J. M., Rotnitzky, A., & Zhao, L. P. (1995). Analysis of semiparametric regression

models for repeated outcomes in the presence of missing data. Journal of the american

statistical association, 90 (429), 106–121.

Roeder, K., Lynch, K. G., & Nagin, D. S. (1999). Modeling uncertainty in latent class mem-

bership: A case study in criminology. Journal of the American Statistical Association,

94 (447), 766–776.

Russo, J., Vitaliano, P. P., Brewer, D. D., Katon, W., & Becker, J. (1995). Psychiatric

disorders in spouse caregivers of care recipients with alzheimer’s disease and matched

controls: A diathesis-stress model of psychopathology. Journal of abnormal psychology ,

104 (1), 197.

Rzewuska, M., Mallen, C. D., Strauss, V. Y., Belcher, J., & Peat, G. (2015). One-year

trajectories of depression and anxiety symptoms in older patients presenting in gen-

eral practice with musculoskeletal pain: A latent class growth analysis. Journal of

psychosomatic research, 79 (3), 195–201.

Sammel, M. D., Ryan, L. M., & Legler, J. M. (1997). Latent variable models for mixed

152



discrete and continuous outcomes. Journal of the Royal Statistical Society: Series B

(Statistical Methodology), 59 (3), 667–678.

Sampson, R. J., Raudenbush, S. W., & Earls, F. (1997). Neighborhoods and violent crime:

A multilevel study of collective efficacy. Science, 277 (5328), 918–924.
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Appendix A SIMULATION RESULTS

A.1 Tables and figures of simulation results with two continuous longitudinal

outcomes

Table A.1: Estimation in parameters of Outcome 1 on each polynomial trajectory in GBTM based
on 500 simulated data sets

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N Parameters True 

parameter value 

Mean 

estimates 

Mean SE* Bias P-value 

500 Intercept1 5 5.000112 0.025847 0.000112 <0.0001 

Intercept2 20 20.00246 0.104992 0.002463 <0.0001 

linear2 -2 -2.00094 0.031656 -0.000943 <0.0001 

Intercept3 5 5.008564 0.148481 0.008564 <0.0001 

linear3 1.5 1.498366 0.044769 -0.001634 <0.0001 

Intercept4 28 28.00017 0.063312 0.000168 <0.0001 

Sigma 1 0.999254 0.014157 -0.000746 <0.0001 

2000 Intercept1 5 5.000303 0.012916 0.000303 <0.0001 

Intercept2 20 19.99874 0.052464 -0.001257 <0.0001 

linear2 -2 -1.99967 0.015819 0.000334 <0.0001 

Intercept3 5 4.997734 0.074195 -0.002266 <0.0001 

linear3 1.5 1.500927 0.022371 0.000927 <0.0001 

Intercept4 28 27.9993 0.031637 -0.000702 <0.0001 

Sigma 1 0.999999 0.007074 -0.000001 <0.0001 

4000 Intercept1 5 4.999974 0.009133 -0.000026 <0.0001 

Intercept2 20 19.99721 0.0371 -0.002788 <0.0001 

linear2 -2 -1.9994 0.011186 0.000604 <0.0001 

Intercept3 5 5.000508 0.052467 0.000508 <0.0001 

linear3 1.5 1.499828 0.015819 -0.000172 <0.0001 

Intercept4 28 28.00044 0.022372 0.000439 <0.0001 

Sigma 1 1.000276 0.005003 0.000276 <0.0001 

* SE = Standard Error
Note: p-values are calculated based on the average mean and SE
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Table A.2: Estimation of parameters for Outcome 1 on each polynomial trajectory in GBDTM and
GBMTM with sample size N = 500 based on 500 simulated data sets

 
  

GBDTM GBMTM 

ρ** Parameter TPV# Mean 

Estimates 

 Mean 

SE* 

Bias P-value Mean 

Estimates 

Mean 

SE* 

Bias P-value 

0.1 Intercept1 5 5.0001 0.0258 5.0001 <0.0001 5.0001 0.0258 5.0001 <0.0001 

Intercept2 20 20.0025 0.1050 20.0025 <0.0001 20.0025 0.1050 20.0025 <0.0001 

Linear2 -2 -2.0009 0.0316 -2.0009 <0.0001 -2.0009 0.0316 -2.0009 <0.0001 

Intercept3 5 5.0086 0.1484 5.0086 <0.0001 5.0086 0.1485 5.0086 <0.0001 

Linear3 1.5 1.4984 0.0448 1.4984 <0.0001 1.4984 0.0448 1.4984 <0.0001 

Intercept4 28 28.0002 0.0633 28.0002 <0.0001 28.0002 0.0633 28.0002 <0.0001 

Sigma 1 0.9993 0.0142 0.9993 <0.0001 0.9993 0.0142 0.9993 <0.0001 

0.2 Intercept1 5 5.0001 0.0258 5.0001 <0.0001 5.0001 0.0258 5.0001 <0.0001 

Intercept2 20 20.0025 0.1050 20.0025 <0.0001 20.0024 0.1050 20.0024 <0.0001 

Linear2 -2 -2.0009 0.0317 -2.0009 <0.0001 -2.0010 0.0317 -2.0010 <0.0001 

Intercept3 5 5.0086 0.1485 5.0086 <0.0001 5.0088 0.1485 5.0088 <0.0001 

Linear3 1.5 1.4984 0.0448 1.4984 <0.0001 1.4983 0.0448 1.4983 <0.0001 

Intercept4 28 28.0002 0.0633 28.0002 <0.0001 28.0001 0.0633 28.0001 <0.0001 

Sigma 1 0.9993 0.0140 0.9993 <0.0001 0.9993 0.0142 0.9993 <0.0001 

0.4 Intercept1 5 5.0001 0.0258 5.0001 <0.0001 5.0000 0.0258 5.0000 <0.0001 

Intercept2 20 20.0025 0.1049 20.0025 <0.0001 20.0023 0.1050 20.0023 <0.0001 

Linear2 -2 -2.0009 0.0316 -2.0009 <0.0001 -2.0009 0.0317 -2.0009 <0.0001 

Intercept3 5 5.0086 0.1484 5.0086 <0.0001 5.0089 0.1485 5.0089 <0.0001 

Linear3 1.5 1.4984 0.0447 1.4984 <0.0001 1.4983 0.0448 1.4983 <0.0001 

Intercept4 28 28.0002 0.0633 28.0002 <0.0001 28.0002 0.0633 28.0002 <0.0001 

Sigma 1 0.9993 0.0141 0.9993 <0.0001 0.9992 0.0142 0.9992 <0.0001 

0.6 Intercept1 5 5.0001 0.0259 5.0001 <0.0001 5.0001 0.0258 5.0001 <0.0001 

Intercept2 20 20.0025 0.1051 20.0025 <0.0001 20.0024 0.1050 20.0024 <0.0001 

Linear2 -2 -2.0009 0.0317 -2.0009 <0.0001 -2.0010 0.0317 -2.0010 <0.0001 

Intercept3 5 5.0086 0.1486 5.0086 <0.0001 5.0082 0.1485 5.0082 <0.0001 

Linear3 1.5 1.4984 0.0448 1.4984 <0.0001 1.4984 0.0448 1.4984 <0.0001 

Intercept4 28 28.0002 0.0634 28.0002 <0.0001 28.0001 0.0633 28.0001 <0.0001 

Sigma 1 0.9993 0.0138 0.9993 <0.0001 0.9993 0.0142 0.9993 <0.0001 

 * SE = Standard Error
** ρ = Correlation Level
# TPV = True Parameter Value
Note: p-values are calculated based on the average mean and SE
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Table A.3: Estimation of parameters for Outcome 1 on each polynomial trajectory in GBDTM and
GBMTM with sample size N = 2000 based on 500 simulated data sets

 
  

GBDTM GBMTM 

ρ** Parameter TPV# Mean 

Estimates 

Mean 

SE* 

Bias P-value Mean 

Estimates 

Mean 

SE* 

Bias P-value 

0.1 Intercept1 5 5.0003 0.0129 0.0003 <0.0001 5.0003 0.0129 0.0003 <0.0001 

Intercept2 20 19.9987 0.0525 -0.0013 <0.0001 19.9987 0.0525 -0.0013 <0.0001 

Linear2 -2 -1.9997 0.0158 0.0003 <0.0001 -1.9997 0.0158 0.0003 <0.0001 

Intercept3 5 4.9977 0.0742 -0.0023 <0.0001 4.9977 0.0742 -0.0023 <0.0001 

Linear3 1.5 1.5009 0.0224 0.0009 <0.0001 1.5009 0.0224 0.0009 <0.0001 

Intercept4 28 27.9993 0.0316 -0.0007 <0.0001 27.9993 0.0316 -0.0007 <0.0001 

Sigma 1 1.0000 0.0071 0.0000 <0.0001 1.0000 0.0071 0.0000 <0.0001 

0.2 Intercept1 5 5.0003 0.0129 0.0003 <0.0001 5.0003 0.0129 0.0003 <0.0001 

Intercept2 20 19.9987 0.0525 -0.0013 <0.0001 19.9988 0.0525 -0.0012 <0.0001 

Linear2 -2 -1.9997 0.0158 0.0003 <0.0001 -1.9997 0.0158 0.0003 <0.0001 

Intercept3 5 4.9977 0.0742 -0.0023 <0.0001 4.9986 0.0742 -0.0014 <0.0001 

Linear3 1.5 1.5009 0.0224 0.0009 <0.0001 1.5007 0.0224 0.0007 <0.0001 

Intercept4 28 27.9993 0.0316 -0.0007 <0.0001 27.9993 0.0316 -0.0007 <0.0001 

Sigma 1 1.0000 0.0071 0.0000 <0.0001 1.0000 0.0071 0.0000 <0.0001 

0.4 Intercept1 5 5.0003 0.0129 0.0003 <0.0001 5.0004 0.0129 0.0004 <0.0001 

Intercept2 20 19.9987 0.0525 -0.0013 <0.0001 19.9987 0.0525 -0.0013 <0.0001 

Linear2 -2 -1.9997 0.0158 0.0003 <0.0001 -1.9997 0.0158 0.0003 <0.0001 

Intercept3 5 4.9977 0.0742 -0.0023 <0.0001 4.9978 0.0742 -0.0022 <0.0001 

Linear3 1.5 1.5009 0.0224 0.0009 <0.0001 1.5009 0.0224 0.0009 <0.0001 

Intercept4 28 27.9993 0.0316 -0.0007 <0.0001 27.9994 0.0316 -0.0006 <0.0001 

Sigma 1 1.0000 0.0071 0.0000 <0.0001 1.0000 0.0071 0.0000 <0.0001 

0.6 Intercept1 5 5.0003 0.0129 0.0003 <0.0001 5.0003 0.0129 0.0003 <0.0001 

Intercept2 20 19.9987 0.0525 -0.0013 <0.0001 19.9988 0.0525 -0.0012 <0.0001 

Linear2 -2 -1.9997 0.0158 0.0003 <0.0001 -1.9997 0.0158 0.0003 <0.0001 

Intercept3 5 4.9977 0.0742 -0.0023 <0.0001 4.9981 0.0742 -0.0019 <0.0001 

Linear3 1.5 1.5009 0.0224 0.0009 <0.0001 1.5009 0.0224 0.0009 <0.0001 

Intercept4 28 27.9993 0.0316 -0.0007 <0.0001 27.9992 0.0316 -0.0008 <0.0001 

Sigma 1 1.0000 0.0071 0.0000 <0.0001 1.0000 0.0071 0.0000 <0.0001 

 * SE = Standard Error
** ρ = Correlation Level
# TPV = True Parameter Value
Note: p-values are calculated based on the average mean and SE
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Table A.4: Estimation of parameters for Outcome 1 on each polynomial trajectory in GBDTM and
GBMTM with sample size N = 4000 based on 500 simulated data sets
   

GBDTM GBMTM 

ρ** Parameter TPV# Mean 

Estimates 

 Mean 

SE* 

Bias P-value Mean 

Estimates 

Mean 

SE* 

Bias P-value 

0.1 Intercept1 5 5.0000 0.0091 0.0000 <0.0001 5.0000 0.0091 0.0000 <0.0001 

Intercept2 20 19.9972 0.0371 -0.0028 <0.0001 19.9972 0.0371 -0.0028 <0.0001 

Linear2 -2 -1.9994 0.0112 0.0006 <0.0001 -1.9994 0.0112 0.0006 <0.0001 

Intercept3 5 5.0005 0.0525 0.0005 <0.0001 5.0005 0.0525 0.0005 <0.0001 

Linear3 1.5 1.4998 0.0158 -0.0002 <0.0001 1.4998 0.0158 -0.0002 <0.0001 

Intercept4 28 28.0004 0.0224 0.0004 <0.0001 28.0004 0.0224 0.0004 <0.0001 

Sigma 1 1.0003 0.0050 0.0003 <0.0001 1.0003 0.0050 0.0003 <0.0001 

0.2 Intercept1 5 5.0000 0.0091 0.0000 <0.0001 5.0000 0.0091 0.0000 <0.0001 

Intercept2 20 19.9972 0.0371 -0.0028 <0.0001 19.9972 0.0371 -0.0028 <0.0001 

Linear2 -2 -1.9994 0.0112 0.0006 <0.0001 -1.9994 0.0112 0.0006 <0.0001 

Intercept3 5 5.0005 0.0525 0.0005 <0.0001 5.0005 0.0525 0.0005 <0.0001 

Linear3 1.5 1.4998 0.0158 -0.0002 <0.0001 1.4998 0.0158 -0.0002 <0.0001 

Intercept4 28 28.0004 0.0224 0.0004 <0.0001 28.0004 0.0224 0.0004 <0.0001 

Sigma 1 1.0003 0.0050 0.0003 <0.0001 1.0003 0.0050 0.0003 <0.0001 

0.4 Intercept1 5 5.0000 0.0091 0.0000 <0.0001 5.0000 0.0091 0.0000 <0.0001 

Intercept2 20 19.9972 0.0371 -0.0028 <0.0001 19.9970 0.0371 -0.0030 <0.0001 

Linear2 -2 -1.9994 0.0112 0.0006 <0.0001 -1.9994 0.0112 0.0006 <0.0001 

Intercept3 5 5.0005 0.0525 0.0005 <0.0001 5.0002 0.0525 0.0002 <0.0001 

Linear3 1.5 1.4998 0.0158 -0.0002 <0.0001 1.4999 0.0158 -0.0001 <0.0001 

Intercept4 28 28.0004 0.0224 0.0004 <0.0001 28.0005 0.0224 0.0005 <0.0001 

Sigma 1 1.0003 0.0050 0.0003 <0.0001 1.0002 0.0050 0.0002 <0.0001 

0.6 Intercept1 5 5.0000 0.0091 0.0000 <0.0001 4.9999 0.0091 -0.0001 <0.0001 

Intercept2 20 19.9972 0.0371 -0.0028 <0.0001 19.9967 0.0371 -0.0033 <0.0001 

Linear2 -2 -1.9994 0.0112 0.0006 <0.0001 -1.9993 0.0112 0.0007 <0.0001 

Intercept3 5 5.0005 0.0525 0.0005 <0.0001 5.0005 0.0525 0.0005 <0.0001 

Linear3 1.5 1.4998 0.0158 -0.0002 <0.0001 1.4998 0.0158 -0.0002 <0.0001 

Intercept4 28 28.0004 0.0224 0.0004 <0.0001 28.0003 0.0224 0.0003 <0.0001 

Sigma 1 1.0003 0.0050 0.0003 <0.0001 1.0002 0.0050 0.0002 <0.0001 

 * SE = Standard Error
** ρ = Correlation Level
# TPV = True Parameter Value
Note: p-values are calculated based on the average mean and SE
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Table A.5: Estimation of parameters for Outcome 2 on each polynomial trajectory in GBTM,
GBDTM and GBMTM with sample size N = 500 based on 500 simulated data sets

 
 

GBTM GBDTM GBMTM 

ρ** Parameter Mean 

Estimates 

Mean 

SE* 

P-value Mean 

Estimates 

Mean 

SE* 

P-value Mean 

Estimates 

Mean 

SE* 

P-value 

0.1 Intercept1 11.14243 0.24347 <0.0001 10.94462 0.25599 <0.0001 12.15902 0.38271 <0.0001 

Linear1 
      

-0.30787 0.11539 0.008 

Intercept2 19.32823 2.37897 <0.0001 17.32663 1.65447 <0.0001 13.30223 0.66287 <0.0001 

Linear2 -1.88081 0.62391 0.002 -1.27227 0.42461 0.003 -0.46967 0.19986 0.019 

Intercept3 
      

11.55518 0.39973 <0.0001 

Linear3 
         

Intercept4 
      

12.99391 0.39973 <0.0001 

Linear4 
         

Sigma 6.20376 0.09513 <0.0001 6.20886 0.09464 <0.0001 6.31010 0.08938 <0.0001 

0.2 Intercept1 12.17200 0.56509 <0.0001 12.32673 0.39984 <0.0001 12.36543 0.38530 <0.0001 

Linear1 -0.16283 0.13988 0.244 -0.28154 0.11024 0.011 -0.30739 0.11617 0.008 

Intercept2 20.41423 2.57990 <0.0001 16.91359 0.96551 <0.0001 14.69860 0.66735 <0.0001 

Linear2 -1.49169 0.67564 0.027 -0.56576 0.27440 0.039 -0.61272 0.20121 0.002 

Intercept3 
      

12.27933 0.94378 <0.0001 

Linear3 
      

-0.05431 0.28456 0.845 

Intercept4 
      

16.16347 0.94378 <0.0001 

Linear4 
      

-0.28768 0.28456 0.312 

Sigma 6.30194 0.09766 <0.0001 6.30149 0.09375 <0.0001 6.35149 0.08999 <0.0001 

0.4 Intercept1 12.13528 0.65973 <0.0001 12.03961 0.44114 <0.0001 12.38994 0.37358 <0.0001 

Linear1 -0.11481 0.16237 0.48 -0.17428 0.12052 0.148 -0.28427 0.11264 0.012 

Intercept2 21.51765 2.57710 <0.0001 17.69697 0.91788 <0.0001 17.57014 0.64706 <0.0001 

Linear2 -1.86187 0.66558 0.005 -0.97365 0.24322 <0.0001 -0.97685 0.19509 <0.0001 

Intercept3 20.64094 1.83014 <0.0001 20.74687 0.93524 <0.0001 12.28144 0.91508 <0.0001 

Linear3 -0.02337 0.55957 0.967 -0.21692 0.28162 0.441 0.25704 0.27591 0.352 

Intercept4 
      

20.66413 0.91508 <0.0001 

Linear4 
      

-0.22318 0.27591 0.419 

Sigma 6.09891 0.09650 <0.0001 6.11187 0.09170 <0.0001 6.15833 0.08725 <0.0001 

0.6 Intercept1 11.55588 0.45808 <0.0001 11.59849 0.33427 <0.0001 11.82820 0.33677 <0.0001 

Linear1 -0.06943 0.11638 0.551 -0.12069 0.09931 0.224 -0.23851 0.10154 0.019 

Intercept2 20.55217 1.13663 <0.0001 19.61730 0.64650 <0.0001 20.19467 0.58331 <0.0001 

Linear2 -1.43899 0.27719 <0.0001 -1.18401 0.18571 <0.0001 -1.36438 0.17587 <0.0001 

Intercept3 25.22917 0.91249 <0.0001 25.08799 0.82094 <0.0001 11.73829 0.82492 <0.0001 

Linear3 -0.22610 0.27274 0.407 -0.19719 0.24614 0.423 0.61195 0.24872 0.014 

Intercept4 
      

25.06169 0.82492 <0.0001 

Linear4 
      

-0.19545 0.24872 0.432 

Sigma 5.55654 0.08497 <0.0001 5.55254 0.08064 <0.0001 5.55161 0.07865 <0.0001 

 * SE = Standard Error
** ρ = Correlation Level
Note: p-values are calculated based on the average mean and SE
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Table A.6: Estimation of parameters for Outcome 2 on each polynomial trajectory in GBTM,
GBDTM and GBMTM with sample size N = 2000 based on 500 simulated data sets

 
 

GBTM GBDTM GBMTM 

ρ** Parameter Mean 

Estimates 

Mean 

SE* 

P-value Mean 

Estimates 

Mean 

SE* 

P-value Mean 

Estimates 

Mean 

SE* 

P-value 

0.1 Intercept1 11.17759 0.10708 <0.0001 10.88372 0.14262 <0.0001 12.16308 0.19119 <0.0001 

Linear1 
      

-0.31206 0.05765 <0.0001 

Intercept2 18.99432 1.16338 <0.0001 16.34449 0.91462 <0.0001 13.25117 0.33116 <0.0001 

Linear2 -1.80098 0.30809 <0.0001 -1.01763 0.21836 <0.0001 -0.45190 0.09985 <0.0001 

Intercept3 
      

12.22020 0.46833 <0.0001 

Linear3 
      

-0.21008 0.14121 0.137 

Intercept4 
      

13.91059 0.46833 <0.0001 

Linear4 
      

-0.29711 0.14121 0.035 

Sigma 6.20861 0.04744 <0.0001 6.21970 0.04809 <0.0001 6.31207 0.04465 <0.0001 

0.2 Intercept1 12.18309 0.28510 <0.0001 12.38086 0.19466 <0.0001 12.35084 0.19257 <0.0001 

Linear1 -0.16546 0.06970 0.018 -0.29234 0.05379 <0.0001 -0.30426 0.05806 <0.0001 

Intercept2 20.29445 1.19166 <0.0001 16.74554 0.46051 <0.0001 14.71712 0.33354 <0.0001 

Linear2 -1.55305 0.29962 <0.0001 -0.54493 0.13075 <0.0001 -0.61858 0.10057 <0.0001 

Intercept3 
      

12.35811 0.47170 <0.0001 

Linear3 
      

-0.07451 0.14222 0.6 

Intercept4 
      

16.11928 0.47170 <0.0001 

Linear4 
      

-0.27637 0.14222 0.052 

Sigma 6.30714 0.04900 <0.0001 6.31508 0.04670 <0.0001 6.35749 0.04497 <0.0001 

0.4 Intercept1 12.23223 0.32197 <0.0001 12.10871 0.22043 <0.0001 12.38289 0.18670 <0.0001 

Linear1 -0.12883 0.07847 0.101 -0.18764 0.05937 0.002 -0.28311 0.05629 <0.0001 

Intercept2 21.35967 1.43695 <0.0001 17.56298 0.45888 <0.0001 17.56650 0.32337 <0.0001 

Linear2 -1.87544 0.36436 <0.0001 -0.93231 0.11794 <0.0001 -0.97791 0.09750 <0.0001 

Intercept3 20.64149 0.81366 <0.0001 20.78496 0.46653 <0.0001 12.32452 0.45732 <0.0001 

Linear3 -0.12518 0.26098 0.631 -0.23803 0.13963 0.088 0.24023 0.13789 0.081 

Intercept4 
      

20.70349 0.45732 <0.0001 

Linear4 
      

-0.23676 0.13789 0.086 

Sigma 6.11275 0.04847 <0.0001 6.13197 0.04617 <0.0001 6.16366 0.04360 <0.0001 

0.6 Intercept1 11.58802 0.22373 <0.0001 11.60353 0.16577 <0.0001 11.81382 0.16825 <0.0001 

Linear1 -0.07306 0.05699 0.2 -0.11946 0.04935 0.015 -0.23565 0.05073 <0.0001 

Intercept2 20.62778 0.56167 <0.0001 19.61711 0.32462 <0.0001 20.20968 0.29141 <0.0001 

Linear2 -1.45285 0.13690 <0.0001 -1.18474 0.09293 <0.0001 -1.36882 0.08786 <0.0001 

Intercept3 25.19402 0.45427 <0.0001 25.05570 0.41244 <0.0001 11.73262 0.41212 <0.0001 

Linear3 -0.22736 0.13579 0.094 -0.20294 0.12412 0.102 0.60953 0.12426 <0.0001 

Intercept4 
      

25.04092 0.41212 <0.0001 

Linear4 
      

-0.20163 0.12426 0.105 

Sigma 5.55925 0.04243 <0.0001 5.56059 0.04030 <0.0001 5.55454 0.03929 <0.0001 

 * SE = Standard Error
** ρ = Correlation Level
Note: p-values are calculated based on the average mean and SE
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Table A.7: Estimation of parameters for Outcome 2 on each polynomial trajectory in GBTM,
GBDTM and GBMTM with sample size N = 4000 based on 500 simulated data sets

 
 

GBTM GBDTM GBMTM 

ρ** Parameter Mean 

Estimates 

Mean 

SE* 

P-value Mean 

Estimates 

Mean 

SE* 

P-value Mean 

Estimates 

Mean 

SE* 

P-value 

0.1 Intercept1 11.17556 0.07371 <0.0001 10.89472 0.10117 <0.0001 12.15828 0.13523 <0.0001 

Linear1 
      

-0.31162 0.04077 <0.0001 

Intercept2 19.10711 0.81196 <0.0001 16.41428 0.71249 <0.0001 13.26844 0.23422 <0.0001 

Linear2 -1.82617 0.21558 <0.0001 -1.03054 0.16800 <0.0001 -0.45440 0.07062 <0.0001 

Intercept3 
      

12.16496 0.33124 <0.0001 

Linear3 
      

-0.20393 0.09987 0.042 

Intercept4 
      

13.94418 0.33124 <0.0001 

Linear4 
      

-0.30954 0.09987 0.002 

Sigma 6.20839 0.03341 <0.0001 6.21986 0.03429 <0.0001 6.31507 0.03158 <0.0001 

0.2 Intercept1 12.18907 0.19897 <0.0001 12.38891 0.13609 <0.0001 12.33911 0.13609 <0.0001 

Linear1 -0.16744 0.04856 0.001 -0.29394 0.03767 <0.0001 -0.30224 0.04103 <0.0001 

Intercept2 20.22717 0.83359 <0.0001 16.68416 0.31771 <0.0001 14.72557 0.23572 <0.0001 

Linear2 -1.53699 0.20708 <0.0001 -0.53351 0.09098 <0.0001 -0.62218 0.07107 <0.0001 

Intercept3 
      

12.32339 0.33336 <0.0001 

Linear3 
      

-0.06129 0.10051 0.542 

Intercept4 
      

16.12047 0.33336 <0.0001 

Linear4 
      

-0.27343 0.10051 0.007 

Sigma 6.30650 0.03463 <0.0001 6.31608 0.03299 <0.0001 6.35549 0.03178 <0.0001 

0.4 Intercept1 12.23950 0.22218 <0.0001 12.08674 0.16921 <0.0001 12.36293 0.13209 <0.0001 

Linear1 -0.12945 0.05407 0.017 -0.18110 0.04391 0.0003 -0.27808 0.03983 <0.0001 

Intercept2 21.37750 1.00479 <0.0001 17.60055 0.34655 <0.0001 17.58927 0.22878 <0.0001 

Linear2 -1.88774 0.24978 <0.0001 -0.94148 0.08706 <0.0001 -0.98733 0.06898 <0.0001 

Intercept3 20.61455 0.54429 <0.0001 20.71627 0.33119 <0.0001 12.29097 0.32355 <0.0001 

Linear3 -0.11541 0.17886 0.519 -0.22189 0.09905 0.025 0.25117 0.09755 0.01 

Intercept4 
      

20.64587 0.32355 <0.0001 

Linear4 
      

-0.22366 0.09755 0.022 

Sigma 6.11703 0.03430 <0.0001 6.13767 0.03405 <0.0001 6.16844 0.03085 <0.0001 

0.6 Intercept1 11.59743 0.15800 <0.0001 11.61647 0.11702 <0.0001 11.81541 0.11898 <0.0001 

Linear1 -0.07681 0.04024 0.056 -0.12282 0.03483 0.0004 -0.23672 0.03587 <0.0001 

Intercept2 20.64707 0.39625 <0.0001 19.65308 0.23037 <0.0001 20.24129 0.20608 <0.0001 

Linear2 -1.46007 0.09631 <0.0001 -1.19587 0.06580 <0.0001 -1.37900 0.06213 <0.0001 

Intercept3 25.19054 0.32071 <0.0001 25.04292 0.29247 <0.0001 11.72714 0.29144 <0.0001 

Linear3 -0.22606 0.09600 0.019 -0.19856 0.08813 0.024 0.60669 0.08787 <0.0001 

Intercept4 
      

25.02482 0.29144 <0.0001 

Linear4 
      

-0.19842 0.08787 0.024 

Sigma 5.56182 0.03001 <0.0001 5.56479 0.02851 <0.0001 5.55621 0.02779 <0.0001 

 
* SE = Standard Error
** ρ = Correlation Level
Note: p-values are calculated based on the average mean and SE
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A.2 Tables and figures of simulation results with one continuous and one binary

longitudinal outcome

Table A.8: Estimation of parameters of Outcome 1 on each polynomial trajectory in GBTM based
on 500 simulated data sets

N Parameters True parameter 

value 

Mean 

estimates 

Mean SE* Bias P-value 

500 Intercept1 5 5.000112 0.025847 0.000112 <0.0001 

Intercept2 20 20.00246 0.104992 0.002463 <0.0001 

linear2 -2 -2.00094 0.031656 -0.000943 <0.0001 

Intercept3 5 5.008564 0.148481 0.008564 <0.0001 

linear3 1.5 1.498366 0.044769 -0.001634 <0.0001 

Intercept4 28 28.00017 0.063312 0.000168 <0.0001 

Sigma 1 0.999254 0.014157 -0.000746 <0.0001 

2000 Intercept1 5 5.000303 0.012916 0.000303 <0.0001 

Intercept2 20 19.99874 0.052464 -0.001257 <0.0001 

linear2 -2 -1.99967 0.015819 0.000334 <0.0001 

Intercept3 5 4.997734 0.074195 -0.002266 <0.0001 

linear3 1.5 1.500927 0.022371 0.000927 <0.0001 

Intercept4 28 27.9993 0.031637 -0.000702 <0.0001 

Sigma 1 0.999999 0.007074 -0.000001 <0.0001 

4000 Intercept1 5 4.999974 0.009133 -0.000026 <0.0001 

Intercept2 20 19.99721 0.0371 -0.002788 <0.0001 

linear2 -2 -1.9994 0.011186 0.000604 <0.0001 

Intercept3 5 5.000508 0.052467 0.000508 <0.0001 

linear3 1.5 1.499828 0.015819 -0.000172 <0.0001 

Intercept4 28 28.00044 0.022372 0.000439 <0.0001 

Sigma 1 1.000276 0.005003 0.000276 <0.0001 

 
* SE = Standard Error
Note: p-values are calculated based on the average mean and SE
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Table A.9: Estimation of parameters for Outcome 1 on each polynomial trajectory in GBDTM and
GBMTM with sample size N = 500 based on 500 simulated data sets
   

GBDTM GBMTM 
   

ρ** Parameter TPV# Mean 

Estimates 

 Mean 

SE* 

Bias P-value Mean 

Estimates 

Mean 

SE* 

Bias P-value 

0.1 Intercept1 5 5.0001 0.0258 0.0001 <0.0001 5.0001 0.0258 0.0001 <0.0001 

Intercept2 20 20.0025 0.1050 0.0025 <0.0001 20.0025 0.1050 0.0025 <0.0001 

Linear2 -2 -2.0009 0.0317 -0.0009 <0.0001 -2.0009 0.0317 -0.0009 <0.0001 

Intercept3 5 5.0086 0.1485 0.0086 <0.0001 5.0086 0.1485 0.0086 <0.0001 

Linear3 1.5 1.4984 0.0448 -0.0016 <0.0001 1.4984 0.0448 -0.0016 <0.0001 

Intercept4 28 28.0002 0.0633 0.0002 <0.0001 28.0002 0.0633 0.0002 <0.0001 

Sigma 1 0.9993 0.0141 -0.0007 <0.0001 0.9993 0.0142 -0.0007 <0.0001 

0.2 Intercept1 5 5.0001 0.0258 0.0001 <0.0001 5.0001 0.0258 0.0001 <0.0001 

Intercept2 20 20.0025 0.1050 0.0025 <0.0001 20.0025 0.1050 0.0025 <0.0001 

Linear2 -2 -2.0009 0.0317 -0.0009 <0.0001 -2.0009 0.0317 -0.0009 <0.0001 

Intercept3 5 5.0086 0.1485 0.0086 <0.0001 5.0086 0.1485 0.0086 <0.0001 

Linear3 1.5 1.4984 0.0448 -0.0016 <0.0001 1.4984 0.0448 -0.0016 <0.0001 

Intercept4 28 28.0002 0.0633 0.0002 <0.0001 28.0002 0.0633 0.0002 <0.0001 

Sigma 1 0.9993 0.0142 -0.0007 <0.0001 0.9993 0.0142 -0.0007 <0.0001 

0.4 Intercept1 5 5.0001 0.0259 0.0001 <0.0001 5.0001 0.0258 0.0001 <0.0001 

Intercept2 20 20.0025 0.1050 0.0025 <0.0001 20.0025 0.1050 0.0025 <0.0001 

Linear2 -2 -2.0009 0.0317 -0.0009 <0.0001 -2.0009 0.0317 -0.0009 <0.0001 

Intercept3 5 5.0086 0.1486 0.0086 <0.0001 5.0086 0.1485 0.0086 <0.0001 

Linear3 1.5 1.4984 0.0448 -0.0016 <0.0001 1.4984 0.0448 -0.0016 <0.0001 

Intercept4 28 28.0002 0.0633 0.0002 <0.0001 28.0002 0.0633 0.0002 <0.0001 

Sigma 1 0.9993 0.0140 -0.0007 <0.0001 0.9993 0.0142 -0.0007 <0.0001 

0.6 Intercept1 5 5.0001 0.0259 0.0001 <0.0001 5.0001 0.0258 0.0001 <0.0001 

Intercept2 20 20.0025 0.1051 0.0025 <0.0001 20.0025 0.1050 0.0025 <0.0001 

Linear2 -2 -2.0009 0.0317 -0.0009 <0.0001 -2.0009 0.0317 -0.0009 <0.0001 

Intercept3 5 5.0086 0.1486 0.0086 <0.0001 5.0086 0.1485 0.0086 <0.0001 

Linear3 1.5 1.4984 0.0448 -0.0016 <0.0001 1.4984 0.0448 -0.0016 <0.0001 

Intercept4 28 28.0002 0.0634 0.0002 <0.0001 28.0002 0.0633 0.0002 <0.0001 

Sigma 1 0.9993 0.0139 -0.0007 <0.0001 0.9993 0.0142 -0.0007 <0.0001 

 * SE = Standard Error
** ρ = Correlation Level
# TPV = True Parameter Value
Note: p-values are calculated based on the average mean and SE
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Table A.10: Estimation of parameters for Outcome 1 on each polynomial trajectory in GBDTM
and GBMTM with sample size N = 2000 based on 500 simulated data sets

 
  

GBDTM GBMTM 

ρ** Parameter TPV# Mean 

Estimates 

 Mean 

SE* 

Bias P-value Mean 

Estimates 

Mean 

SE* 

Bias P-value 

0.1 Intercept1 5 5.0003 0.0129 0.0003 <0.0001 5.0003 0.0129 0.0003 <0.0001 

Intercept2 20 19.9987 0.0525 -0.0013 <0.0001 19.9987 0.0525 -0.0013 <0.0001 

Linear2 -2 -1.9997 0.0158 0.0003 <0.0001 -1.9997 0.0158 0.0003 <0.0001 

Intercept3 5 4.9977 0.0742 -0.0023 <0.0001 4.9977 0.0742 -0.0023 <0.0001 

Linear3 1.5 1.5009 0.0224 0.0009 <0.0001 1.5009 0.0224 0.0009 <0.0001 

Intercept4 28 27.9993 0.0316 -0.0007 <0.0001 27.9993 0.0316 -0.0007 <0.0001 

Sigma 1 1.0000 0.0071 0.0000 <0.0001 1.0000 0.0071 0.0000 <0.0001 

0.2 Intercept1 5 5.0003 0.0129 0.0003 <0.0001 5.0003 0.0129 0.0003 <0.0001 

Intercept2 20 19.9987 0.0525 -0.0013 <0.0001 19.9987 0.0525 -0.0013 <0.0001 

Linear2 -2 -1.9997 0.0158 0.0003 <0.0001 -1.9997 0.0158 0.0003 <0.0001 

Intercept3 5 4.9977 0.0742 -0.0023 <0.0001 4.9977 0.0742 -0.0023 <0.0001 

Linear3 1.5 1.5009 0.0224 0.0009 <0.0001 1.5009 0.0224 0.0009 <0.0001 

Intercept4 28 27.9993 0.0316 -0.0007 <0.0001 27.9993 0.0316 -0.0007 <0.0001 

Sigma 1 1.0000 0.0071 0.0000 <0.0001 1.0000 0.0071 0.0000 <0.0001 

0.4 Intercept1 5 5.0003 0.0129 0.0003 <0.0001 5.0003 0.0129 0.0003 <0.0001 

Intercept2 20 19.9987 0.0525 -0.0013 <0.0001 19.9987 0.0525 -0.0013 <0.0001 

Linear2 -2 -1.9997 0.0158 0.0003 <0.0001 -1.9997 0.0158 0.0003 <0.0001 

Intercept3 5 4.9977 0.0742 -0.0023 <0.0001 4.9977 0.0742 -0.0023 <0.0001 

Linear3 1.5 1.5009 0.0224 0.0009 <0.0001 1.5009 0.0224 0.0009 <0.0001 

Intercept4 28 27.9993 0.0316 -0.0007 <0.0001 27.9993 0.0316 -0.0007 <0.0001 

Sigma 1 1.0000 0.0070 0.0000 <0.0001 1.0000 0.0071 0.0000 <0.0001 

0.6 Intercept1 5 5.0003 0.0129 0.0003 <0.0001 5.0003 0.0129 0.0003 <0.0001 

Intercept2 20 19.9987 0.0525 -0.0013 <0.0001 19.9987 0.0525 -0.0013 <0.0001 

Linear2 -2 -1.9997 0.0158 0.0003 <0.0001 -1.9997 0.0158 0.0003 <0.0001 

Intercept3 5 4.9977 0.0742 -0.0023 <0.0001 4.9977 0.0742 -0.0023 <0.0001 

Linear3 1.5 1.5009 0.0224 0.0009 <0.0001 1.5009 0.0224 0.0009 <0.0001 

Intercept4 28 27.9993 0.0316 -0.0007 <0.0001 27.9993 0.0316 -0.0007 <0.0001 

Sigma 1 1.0000 0.0070 0.0000 <0.0001 1.0000 0.0071 0.0000 <0.0001 

 * SE = Standard Error
** ρ = Correlation Level
# TPV = True Parameter Value
Note: p-values are calculated based on the average mean and SE
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Table A.11: Estimation of parameters for Outcome 1 on each polynomial trajectory in GBDTM
and GBMTM with sample size N = 4000 based on 500 simulated data sets

 
  

GBDTM GBMTM 

ρ** Parameter TPV# Mean 

Estimates 

 Mean 

SE* 

Bias P-value Mean 

Estimates 

Mean 

SE* 

Bias P-value 

0.1 Intercept1 5 5.0000 0.0091 0.0000 <0.0001 5.0000 0.0091 0.0000 <0.0001 

Intercept2 20 19.9971 0.0371 -0.0029 <0.0001 19.9971 0.0371 -0.0029 <0.0001 

Linear2 -2 -1.9994 0.0112 0.0006 <0.0001 -1.9994 0.0112 0.0006 <0.0001 

Intercept3 5 5.0002 0.0525 0.0002 <0.0001 5.0002 0.0525 0.0002 <0.0001 

Linear3 1.5 1.4999 0.0158 -0.0001 <0.0001 1.4999 0.0158 -0.0001 <0.0001 

Intercept4 28 28.0004 0.0224 0.0004 <0.0001 28.0004 0.0224 0.0004 <0.0001 

Sigma 1 1.0003 0.0050 0.0003 <0.0001 1.0003 0.0050 0.0003 <0.0001 

0.2 Intercept1 5 5.0000 0.0091 0.0000 <0.0001 5.0000 0.0091 0.0000 <0.0001 

Intercept2 20 19.9971 0.0371 -0.0029 <0.0001 19.9971 0.0371 -0.0029 <0.0001 

Linear2 -2 -1.9994 0.0112 0.0006 <0.0001 -1.9994 0.0112 0.0006 <0.0001 

Intercept3 5 5.0002 0.0525 0.0002 <0.0001 5.0002 0.0525 0.0002 <0.0001 

Linear3 1.5 1.4999 0.0158 -0.0001 <0.0001 1.4999 0.0158 -0.0001 <0.0001 

Intercept4 28 28.0004 0.0224 0.0004 <0.0001 28.0004 0.0224 0.0004 <0.0001 

Sigma 1 1.0003 0.0050 0.0003 <0.0001 1.0003 0.0050 0.0003 <0.0001 

0.4 Intercept1 5 5.0000 0.0091 0.0000 <0.0001 5.0000 0.0091 0.0000 <0.0001 

Intercept2 20 19.9971 0.0371 -0.0029 <0.0001 19.9971 0.0371 -0.0029 <0.0001 

Linear2 -2 -1.9994 0.0112 0.0006 <0.0001 -1.9994 0.0112 0.0006 <0.0001 

Intercept3 5 5.0002 0.0525 0.0002 <0.0001 5.0002 0.0525 0.0002 <0.0001 

Linear3 1.5 1.4999 0.0158 -0.0001 <0.0001 1.4999 0.0158 -0.0001 <0.0001 

Intercept4 28 28.0004 0.0224 0.0004 <0.0001 28.0004 0.0224 0.0004 <0.0001 

Sigma 1 1.0003 0.0050 0.0003 <0.0001 1.0003 0.0050 0.0003 <0.0001 

0.6 Intercept1 5 5.0000 0.0091 0.0000 <0.0001 5.0000 0.0091 0.0000 <0.0001 

Intercept2 20 19.9971 0.0371 -0.0029 <0.0001 19.9971 0.0371 -0.0029 <0.0001 

Linear2 -2 -1.9994 0.0112 0.0006 <0.0001 -1.9994 0.0112 0.0006 <0.0001 

Intercept3 5 5.0002 0.0525 0.0002 <0.0001 5.0002 0.0525 0.0002 <0.0001 

Linear3 1.5 1.4999 0.0158 -0.0001 <0.0001 1.4999 0.0158 -0.0001 <0.0001 

Intercept4 28 28.0004 0.0224 0.0004 <0.0001 28.0004 0.0224 0.0004 <0.0001 

Sigma 1 1.0003 0.0050 0.0003 <0.0001 1.0003 0.0050 0.0003 <0.0001 

 * SE = Standard Error
** ρ = Correlation Level
# TPV = True Parameter Value
Note: p-values are calculated based on the average mean and SE
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Table A.12: Estimation of parameters for Outcome 2 on each polynomial trajectory in GBTM,
GBDTM and GBMTM with sample size N = 500 based on 500 simulated data sets

 
 

GBTM GBDTM GBMTM 

ρ** Parameter Mean 

Estimates 

Mean 

SE* 

P-value Mean 

Estimates 

Mean 

SE* 

P-value Mean 

Estimates 

Mean 

SE* 

P-value 

0.1 Intercept1 -4.29708 2.113521 0.042 -3.20394 0.361038 <0.0001 -3.20971 0.313708 <0.0001 

Linear1 -3.92716 0.768494 <0.0001 -0.011 0.106448 0.918 0.005179 0.094404 0.956 

Intercept2 -1.22538 1.737032 0.481 -1.74845 0.45284 0.0001 -2.32647 0.408548 <0.0001 

Linear2 -0.14547 0.469996 0.757 -0.00619 0.128783 0.962 -0.11798 0.130753 0.367 

Intercept3 
      

-3.3652 0.762096 <0.0001 

Linear3 
      

0.121227 0.217368 0.577 

Intercept4 
      

-1.86921 0.432027 <0.0001 

Linear4 
      

0.027641 0.12896 0.83 

0.2 Intercept1 -3.57016 0.542473 <0.0001 -2.84622 0.262878 <0.0001 -3.04972 0.289312 <0.0001 

Linear1 0.053929 0.160535 0.737 -0.01515 0.076132 0.842 0.013769 0.086678 0.874 

Intercept2 -0.85997 0.626733 0.17 -0.7736 0.298393 0.01 -1.57742 0.317184 <0.0001 

Linear2 0.022894 0.156363 0.884 -0.0081 0.089912 0.928 -0.182 0.103928 0.08 

Intercept3 
      

-3.10435 0.645264 <0.0001 

Linear3 
      

0.16536 0.181349 0.362 

Intercept4 
      

-0.834 0.320036 0.009 

Linear4 
      

0.0457 0.095742 0.633 

0.4 Intercept1 -9.88555 1.865907 <0.0001 -2.9248 0.291386 <0.0001 -2.76569 0.250454 <0.0001 

Linear1 1.139762 0.434609 0.009 0.090037 0.0807 0.265 0.033371 0.074374 0.654 

Intercept2 2.676267 1.51892 0.078 -0.63955 0.289161 0.027 -0.51842 0.237108 0.028 

Linear2 -1.53156 0.356897 <0.0001 -0.17742 0.083817 0.034 -0.22658 0.076645 0.003 

Intercept3 0.598915 0.437362 0.012 0.548784 0.337531 0.104 -2.92182 0.521612 -5.60152 

Linear3 0.684539 0.178391 0.049 0.204972 0.108391 0.059 0.328139 0.140356 0.019 

Intercept4 
      

0.550767 0.334316 0.099 

Linear4 
      

0.19911 0.106895 0.063 

0.6 Intercept1 -2.89242 0.403049 <0.0001 -2.53397 0.193022 <0.0001 -2.51474 0.189529 <0.0001 

Linear1 0.30388 0.143186 0.034 0.263474 0.054276 <0.0001 0.258721 0.052379 <0.0001 

Intercept2 -1.48834 0.966516 0.124 -1.97204 0.46949 <0.0001 1.177734 0.246615 <0.0001 

Linear2 0.579334 0.272048 0.033 0.716815 0.13665 <0.0001 -0.01785 0.073857 0.81 

Intercept3 8.105447 2.875524 0.005 1.471718 0.678589 0.03 -3.04427 0.417321 <0.0001 

Linear3 -0.82104 0.654997 0.21 2.468193 0.204369 <0.0001 0.97128 0.126296 <0.0001 

Intercept4 
      

-3.17667 1.425478 0.026 

Linear4 
      

8.654814 0.73231 <0.0001 

 * SE = Standard Error
** ρ = Correlation Level
Note: p-values are calculated based on the average mean and SE
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Table A.13: Estimation of parameters for Outcome 2 on each polynomial trajectory in GBTM,
GBDTM and GBMTM with sample size N = 2000 based on 500 simulated data sets

 
 

GBTM GBDTM GBMTM 

ρ** Parameter Mean 

Estimates 

Mean 

SE* 

P-value Mean 

Estimates 

Mean 

SE* 

P-value Mean 

Estimates 

Mean 

SE* 

P-value 

0.1 Intercept1 -6.35872 1.521438 <0.0001 -3.16539 0.161227 <0.0001 -3.1972 0.155613 <0.0001 

Linear1 0.285748 0.399375 0.474 -0.00458 0.044767 0.919 0.003334 0.04685 0.943 

Intercept2 -0.30919 1.095129 0.778 -1.75941 0.200488 <0.0001 -2.29535 0.198984 <0.0001 

Linear2 -0.36412 0.28499 0.202 -0.01303 0.057902 0.823 -0.11045 0.063358 0.081 

Intercept3 
      

-3.23433 0.356033 <0.0001 

Linear3 
      

0.10416 0.102289 0.309 

Intercept4 
      

-1.85975 0.213517 <0.0001 

Linear4 
      

0.028402 0.063689 0.656 

0.2 Intercept1 -2.70449 0.191085 <0.0001 -2.82723 0.12692 <0.0001 -3.02601 0.143146 <0.0001 

Linear1 -0.02971 0.050353 0.555 -0.0147 0.037017 0.691 0.009241 0.042971 0.83 

Intercept2 -0.84071 0.295684 0.004 -0.77269 0.145003 <0.0001 -1.58353 0.157072 <0.0001 

Linear2 0.010502 0.070093 0.881 -0.0142 0.04414 0.748 -0.17163 0.051159 0.0007 

Intercept3 
      

-3.00865 0.30814 <0.0001 

Linear3 
      

0.154322 0.086902 0.076 

Intercept4 
      

-0.82309 0.159039 <0.0001 

Linear4 
      

0.041682 0.047594 0.381 

0.4 Intercept1 -5.98202 1.486543 <0.0001 -2.8928 0.134273 <0.0001 -2.76305 0.124607 <0.0001 

Linear1 0.658811 0.270541 0.015 0.086527 0.037885 0.022 0.034485 0.036973 0.351 

Intercept2 0.226995 0.902845 0.802 -0.70499 0.137948 <0.0001 -0.52613 0.118152 <0.0001 

Linear2 -0.44148 0.177864 0.013 -0.15965 0.039859 <0.0001 -0.22328 0.038136 <0.0001 

Intercept3 0.527904 0.254678 0.019 0.554893 0.166777 0.0009 -2.86492 0.25401 <0.0001 

Linear3 0.338696 0.113077 0.003 0.198548 0.053431 0.0002 0.321743 0.068513 <0.0001 

Intercept4 
      

0.552484 0.166034 0.0009 

Linear4 
      

0.196522 0.053035 0.0002 

0.6 Intercept1 -2.56617 0.164474 <0.0001 -2.50713 0.095106 <0.0001 -2.49661 0.094223 <0.0001 

Linear1 0.260756 0.05453 <0.0001 0.25838 0.026625 <0.0001 0.254886 0.026045 <0.0001 

Intercept2 -1.21532 0.49865 0.015 -2.18284 0.239563 <0.0001 1.172443 0.122332 <0.0001 

Linear2 0.466354 0.112052 <0.0001 0.758452 0.068612 <0.0001 -0.01953 0.036699 0.595 

Intercept3 5.510738 1.654844 0.045 1.778876 0.360902 <0.0001 -3.02492 0.207055 <0.0001 

Linear3 -0.66665 0.332218 0.0008 0.728153 0.164096 <0.0001 0.966528 0.062663 <0.0001 

Intercept4 
      

0.530964 0.840247 0.527 

Linear4 
      

2.980181 0.561091 <0.0001 

 * SE = Standard Error
** ρ = Correlation Level
Note: p-values are calculated based on the average mean and SE
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Table A.14: Estimation of parameters for Outcome 2 on each polynomial trajectory in GBTM,
GBDTM and GBMTM with sample size N = 4000 based on 500 simulated data sets

 
 

GBTM GBDTM GBMTM 

ρ** Parameter Mean 

Estimates 

Mean 

SE* 

P-value Mean 

Estimates 

Mean 

SE* 

P-value Mean 

Estimates 

Mean 

SE* 

P-value 

0.1 Intercept1 -4.42717 0.882989 <0.0001 -3.1638 0.107505 <0.0001 -3.21314 0.110382 <0.0001 

Linear1 -0.1564 0.298238 0.6 -0.00274 0.03078 0.93 0.007316 0.033163 0.825 

Intercept2 -1.72545 0.749014 0.021 -1.7685 0.140671 <0.0001 -2.31079 0.14145 <0.0001 

Linear2 -0.00631 0.17766 0.972 -0.00934 0.040889 0.82 -0.11004 0.045029 0.015 

Intercept3 
      

-3.22232 0.249872 <0.0001 

Linear3 
      

0.104184 0.071769 0.154 

Intercept4 
      

-1.85897 0.150393 <0.0001 

Linear4 
      

0.031868 0.044804 0.477 

0.2 Intercept1 -2.68062 0.123949 <0.0001 -2.83189 0.089673 <0.0001 -3.02735 0.101157 <0.0001 

Linear1 -0.02878 0.032319 0.373 -0.01262 0.026144 0.63 0.009993 0.030353 0.742 

Intercept2 -0.83255 0.208617 <0.0001 -0.76875 0.102329 <0.0001 -1.58111 0.110993 <0.0001 

Linear2 0.011529 0.049597 0.816 -0.01668 0.031246 0.594 -0.17307 0.036171 <0.0001 

Intercept3 
      

-3.04418 0.218684 <0.0001 

Linear3 
      

0.166624 0.061357 0.007 

Intercept4 
      

-0.82013 0.112363 <0.0001 

Linear4 
      

0.039827 0.033636 0.236 

0.4 Intercept1 -4.75503 0.95872 <0.0001 -2.89306 0.092444 <0.0001 -2.77155 0.088166 <0.0001 

Linear1 0.443051 0.172042 0.01 0.088169 0.026422 0.0008 0.037575 0.026122 0.15 

Intercept2 -0.52926 0.607479 0.384 -0.70253 0.094336 <0.0001 -0.51946 0.083437 <0.0001 

Linear2 -0.17434 0.09998 0.081 -0.16082 0.027974 <0.0001 -0.22461 0.026938 <0.0001 

Intercept3 0.483094 0.167174 0.004 0.553322 0.11763 <0.0001 -2.83942 0.178539 <0.0001 

Linear3 0.270096 0.073647 0.0002 0.198047 0.037699 <0.0001 0.314218 0.048261 <0.0001 

Intercept4 
      

0.551394 0.117269 <0.0001 

Linear4 
      

0.19683 0.037461 <0.0001 

0.6 Intercept1 -2.5696 0.11151 <0.0001 -2.4982 0.066901 <0.0001 -2.49244 0.066515 <0.0001 

Linear1 0.268259 0.034174 <0.0001 0.25607 0.01867 <0.0001 0.253932 0.018393 <0.0001 

Intercept2 -1.139 0.368317 0.002 -2.34803 0.175385 <0.0001 1.172436 0.086501 <0.0001 

Linear2 0.448771 0.076797 <0.0001 0.79325 0.050219 <0.0001 -0.01935 0.025944 0.456 

Intercept3 3.987474 1.199847 0.0009 2.08077 0.249412 <0.0001 -3.00811 0.145744 <0.0001 

Linear3 -0.38157 0.23722 0.108 0.154405 0.119836 0.198 0.960574 0.04409 <0.0001 

Intercept4 
      

2.032224 0.605113 0.0008 

Linear4 
      

1.499547 0.40833 0.0002 

 * SE = Standard Error
** ρ = Correlation Level
Note: p-values are calculated based on the average mean and SE
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A.3 Tables and figures of simulation results with two binary longitudinal out-

comes

Table A.15: Estimation of parameters for Outcome 1 on each polynomial trajectory in GBDTM
and GBMTM with sample size N = 500 based on 500 simulated data sets

 
  

GBDTM GBMTM 

ρ** Parameter TPV# Mean 

Estimates 

 Mean 

SE* 

Bias P-value Mean 

Estimates 

Mean 

SE* 

Bias P-value 

0.1 Intercept1 -4.5 -5.2566 0.9204 -0.7566 <0.0001 -5.1338 0.8048 -0.6338 <0.0001 

Intercept2 -4 -4.1256 1.1736 -0.1256 <0.0001 -4.1352 0.5934 -0.1352 <0.0001 

Linear2 1 1.0303 0.4626 0.0303 <0.0001 1.0332 0.1697 0.0332 <0.0001 

Intercept3 3.5 3.7571 1.3843 0.2571 <0.0001 3.7101 0.8736 0.2101 <0.0001 

Linear3 -1 -1.0821 0.4898 -0.0821 <0.0001 -1.0686 0.2567 -0.0686 <0.0001 

Intercept4 4 10.2503 2.5578 6.2503 <0.0001 7.3520 1.3738 3.3520 <0.0001 

0.2 Intercept1 -4.5 -4.9872 0.7195 -0.4872 <0.0001 -4.9303 0.6951 -0.4303 <0.0001 

Intercept2 -4 -4.1742 0.6859 -0.1742 <0.0001 -4.2029 0.5915 -0.2029 <0.0001 

Linear2 1 1.0465 0.2128 0.0465 <0.0001 1.0548 0.1683 0.0548 <0.0001 

Intercept3 3.5 3.7938 0.9586 0.2938 <0.0001 3.6475 0.8442 0.1475 <0.0001 

Linear3 -1 -1.0965 0.2909 -0.0965 <0.0001 -1.0593 0.2479 -0.0593 <0.0001 

Intercept4 4 6.9596 1.3198 2.9596 <0.0001 6.3150 1.3231 2.3150 <0.0001 

0.4 Intercept1 -4.5 -4.4290 0.4394 0.0710 <0.0001 -4.6201 0.4870 -0.1201 <0.0001 

Intercept2 -4 -4.3750 0.6188 -0.3750 <0.0001 -4.3631 0.5788 -0.3631 <0.0001 

Linear2 1 1.1206 0.1764 0.1206 <0.0001 1.1073 0.1627 0.1073 <0.0001 

Intercept3 3.5 3.5637 0.8100 0.0637 <0.0001 3.4758 0.7524 -0.0242 <0.0001 

Linear3 -1 -1.0310 0.2430 -0.0310 <0.0001 -1.0310 0.2208 -0.0310 <0.0001 

Intercept4 4 7.5713 1.2930 3.5713 <0.0001 4.7134 0.9501 0.7134 <0.0001 

0.6 Intercept1 -4.5 -4.2881 0.3512 0.2119 <0.0001 -4.6947 0.4822 -0.1947 <0.0001 

Intercept2 -4 -4.4980 0.5696 -0.4980 <0.0001 -4.5025 0.5542 -0.5025 <0.0001 

Linear2 1 1.1581 0.1584 0.1581 <0.0001 1.1481 0.1538 0.1481 <0.0001 

Intercept3 3.5 3.5399 0.7454 0.0399 <0.0001 3.3953 0.6858 -0.1047 <0.0001 

Linear3 -1 -1.0103 0.2287 -0.0103 <0.0001 -1.0321 0.2027 -0.0321 <0.0001 

Intercept4 4 7.9758 1.4463 3.9758 <0.0001 4.1803 0.8042 0.1803 <0.0001 

 
* SE = Standard Error
** ρ = Correlation Level
# TPV = True Parameter Value
Note: p-values are calculated based on the average mean and SE
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Table A.16: Estimation of parameters for Outcome 1 on each polynomial trajectory in GBDTM
and GBMTM with sample size N = 2000 based on 500 simulated data sets

 
  

GBDTM GBMTM 

ρ** Parameter TPV# Mean 

Estimates 

 Mean 

SE* 

Bias P-value Mean 

Estimates 

Mean 

SE* 

Bias P-value 

0.1 Intercept1 -4.5 -4.5020 0.2626 -0.0020 <0.0001 -4.4961 0.2584 0.0039 <0.0001 

Intercept2 -4 -4.0442 0.2882 -0.0442 <0.0001 -4.0549 0.2867 -0.0549 <0.0001 

Linear2 1 1.0137 0.0829 0.0137 <0.0001 1.0171 0.0824 0.0171 <0.0001 

Intercept3 3.5 3.5157 0.3963 0.0157 <0.0001 3.4992 0.3927 -0.0008 <0.0001 

Linear3 -1 -1.0040 0.1154 -0.0040 <0.0001 -1.0013 0.1142 -0.0013 <0.0001 

Intercept4 4 4.8159 0.7128 0.8159 <0.0001 4.5589 0.6476 0.5589 <0.0001 

0.2 Intercept1 -4.5 -4.4452 0.2412 0.0548 <0.0001 -4.4462 0.2377 0.0538 <0.0001 

Intercept2 -4 -4.0713 0.2891 -0.0713 <0.0001 -4.1106 0.2848 -0.1106 <0.0001 

Linear2 1 1.0245 0.0829 0.0245 <0.0001 1.0358 0.0814 0.0358 <0.0001 

Intercept3 3.5 3.5263 0.3959 0.0263 <0.0001 3.4466 0.3811 -0.0534 <0.0001 

Linear3 -1 -1.0087 0.1155 -0.0087 <0.0001 -0.9934 0.1106 0.0066 <0.0001 

Intercept4 4 4.2254 0.6926 0.2254 <0.0001 4.1051 0.5687 0.1051 <0.0001 

0.4 Intercept1 -4.5 -4.2579 0.1814 0.2421 <0.0001 -4.3855 0.2049 0.1145 <0.0001 

Intercept2 -4 -4.2965 0.2874 -0.2965 <0.0001 -4.2707 0.2798 -0.2707 <0.0001 

Linear2 1 1.1030 0.0808 0.1030 <0.0001 1.0867 0.0788 0.0867 <0.0001 

Intercept3 3.5 3.3116 0.3535 -0.1884 <0.0001 3.2758 0.3457 -0.2242 <0.0001 

Linear3 -1 -0.9471 0.1047 0.0529 <0.0001 -0.9701 0.1006 0.0299 <0.0001 

Intercept4 4 4.6069 0.6675 0.6069 <0.0001 3.6409 2.5987 -0.3591 <0.0001 

0.6 Intercept1 -4.5 -4.2152 0.1577 0.2848 <0.0001 -4.4271 0.1911 0.0729 <0.0001 

Intercept2 -4 -4.3988 0.2749 -0.3988 <0.0001 -4.4052 0.2673 -0.4052 <0.0001 

Linear2 1 1.1359 0.0767 0.1359 <0.0001 1.1271 0.0744 0.1271 <0.0001 

Intercept3 3.5 3.3339 0.3290 -0.1661 <0.0001 3.2373 0.3188 -0.2627 <0.0001 

Linear3 -1 -0.9391 0.0999 0.0609 <0.0001 -0.9815 0.0931 0.0185 <0.0001 

Intercept4 4 4.7474 0.7163 0.7474 <0.0001 3.4082 0.2919 -0.5918 <0.0001 

 
* SE = Standard Error
** ρ = Correlation Level
# TPV = True Parameter Value
Note: p-values are calculated based on the average mean and SE
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Table A.17: Estimation of parameters for Outcome 2 on each polynomial trajectory in GBTM,
GBDTM and GBMTM with sample size N = 500 based on 500 simulated data sets

 
 

GBTM GBDTM GBMTM 

ρ** Parameter Mean 

Estimates 

Mean 

SE* 

P-value Mean 

Estimates 

Mean 

SE* 

P-value Mean 

Estimates 

Mean 

SE* 

P-value 

0.1 Intercept1 -34.1256 28.44168 0.231 -2.53802 1.613088 0.116 -2.02628 0.206392 <0.0001 

Linear1 6.218871 11.39287 0.585 0.024373 0.793961 0.976 -0.05092 0.063944 0.426 

Intercept2 -0.34518 1.184791 0.771 -0.78154 1.206135 0.518 -2.28989 0.386017 <0.0001 

Linear2 -0.56958 0.39233 0.147 -0.41185 0.595776 0.49 0.125616 0.110335 0.255 

Intercept3 
      

-1.11686 0.461797 0.016 

Linear3 
      

-0.22603 0.157603 0.152 

Intercept4 
      

-1.41532 0.406314 0.0005 

Linear4 
      

-0.03688 0.124425 0.767 

0.2 Intercept1 -13.4285 5.389076 0.013 -2.317 0.43628 <0.0001 -2.18658 0.215832 <0.0001 

Linear1 2.021792 1.463652 0.167 0.022154 0.162939 0.892 -0.02719 0.066499 0.683 

Intercept2 2.236319 1.453343 0.124 -1.11195 0.399206 0.005 -2.65166 0.397411 <0.0001 

Linear2 -0.91551 0.458455 0.046 -0.00425 0.148924 0.978 0.299852 0.108131 0.006 

Intercept3 
      

-0.60683 0.417478 0.146 

Linear3 
      

-0.30793 0.147243 0.037 

Intercept4 
      

-1.07287 0.355315 0.003 

Linear4 
      

0.013517 0.106762 0.899 

0.4 Intercept1 6.034007 2.038703 0.003 -2.6046 0.376824 <0.0001 -2.19273 0.217416 <0.0001 

Linear1 -4.64712 1.130331 <0.0001 -0.21114 0.108102 0.051 -0.03394 0.068063 0.618 

Intercept2 -20.0857 3.977221 <0.0001 -2.19077 0.418463 <0.0001 -2.9489 0.398835 <0.0001 

Linear2 4.29121 1.02782 <0.0001 0.193341 0.135639 0.154 0.536748 0.106603 <0.0001 

Intercept3 3.851973 1.451661 0.008 0.056418 0.311699 0.856 0.487842 0.3735 0.192 

Linear3 -0.84414 0.428097 0.049 -0.14118 0.103 0.171 -0.4811 0.131897 0.0003 

Intercept4 
      

-0.14836 0.3071 0.629 

Linear4 
      

0.010082 0.093104 0.914 

0.6 Intercept1 0.187526 1.349595 0.89 -1.91394 0.211279 <0.0001 -1.9867 0.20871 <0.0001 

Linear1 -1.37738 0.758076 0.069 -0.10021 0.069685 0.15 -0.0842 0.067215 0.211 

Intercept2 -7.34986 2.453803 0.003 -3.03934 0.413561 <0.0001 -3.00988 0.38631 <0.0001 

Linear2 1.730669 0.740785 0.019 0.699516 0.112775 <0.0001 0.689345 0.106206 <0.0001 

Intercept3 1.140002 0.583805 0.051 1.42061 0.261713 <0.0001 1.832053 0.415386 <0.0001 

Linear3 -0.22886 0.14891 0.125 -0.33854 0.074538 <0.0001 -0.73079 0.139948 <0.0001 

Intercept4 
      

1.023941 0.334793 0.002 

Linear4 
      

-0.05683 0.101085 0.574 

 * SE = Standard Error
** ρ = Correlation Level
Note: p-values are calculated based on the average mean and SE
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Table A.18: Estimation of parameters for Outcome 2 on each polynomial trajectory in GBTM,
GBDTM and GBMTM with sample size N = 2000 based on 500 simulated data sets

 
 

GBTM GBDTM GBMTM 

ρ** Parameter Mean 

Estimates 

Mean 

SE* 

P-value Mean 

Estimates 

Mean 

SE* 

P-value Mean 

Estimates 

Mean 

SE* 

P-value 

0.1 Intercept1 -17.0851 10.07553 0.09 -2.11554 0.146425 <0.0001 -2.01117 0.101588 <0.0001 

Linear1 2.299 2.390585 0.336 -0.02365 0.042104 0.575 -0.05307 0.031471 0.092 

Intercept2 -0.60751 0.618343 0.316 -1.32246 0.207194 <0.0001 -2.27133 0.189522 <0.0001 

Linear2 -0.6485 0.197488 0.001 -0.10353 0.056386 0.066 0.122601 0.054287 0.024 

Intercept3 
      

-1.14558 0.220057 <0.0001 

Linear3 
      

-0.20752 0.07335 0.005 

Intercept4 
      

-1.42302 0.200936 <0.0001 

Linear4 
      

-0.02559 0.061074 0.675 

0.2 Intercept1 -7.18007 2.203965 0.001 -2.30151 0.110442 <0.0001 -2.17754 0.106524 <0.0001 

Linear1 0.794501 0.564298 0.159 0.021243 0.033574 0.527 -0.02729 0.032785 0.405 

Intercept2 -1.13471 0.712412 0.111 -1.14955 0.149867 <0.0001 -2.59837 0.194192 <0.0001 

Linear2 -0.05126 0.178136 0.774 0.004668 0.042358 0.912 0.291026 0.053019 <0.0001 

Intercept3 
      

-0.61161 0.199523 0.002 

Linear3 
      

-0.2966 0.069029 <0.0001 

Intercept4 
      

-1.07176 0.176837 <0.0001 

Linear4 
      

0.01504 0.053082 0.777 

0.4 Intercept1 0.491399 0.901457 0.586 -2.30243 0.130601 <0.0001 -2.19111 0.107742 <0.0001 

Linear1 -1.41502 0.454334 0.002 0.057611 0.040061 0.15 -0.03276 0.033606 0.33 

Intercept2 -7.16872 1.663208 <0.0001 -2.56422 0.196631 <0.0001 -2.93579 0.196085 <0.0001 

Linear2 1.41504 0.444725 0.001 0.387754 0.054878 <0.0001 0.536 0.052451 <0.0001 

Intercept3 0.319902 0.604378 0.597 0.020349 0.152605 0.894 0.475685 0.182171 0.009 

Linear3 -0.18952 0.176606 0.283 -0.13821 0.044456 0.002 -0.46765 0.063938 <0.0001 

Intercept4 
      

-0.1963 0.152703 0.199 

Linear4 
      

0.022105 0.04617 0.632 

0.6 Intercept1 -1.09271 0.418998 0.009 -1.92381 0.101775 <0.0001 -1.98664 0.103445 <0.0001 

Linear1 -0.50444 0.249112 0.043 -0.09686 0.032863 0.003 -0.08334 0.03321 0.012 

Intercept2 -3.6926 0.934042 <0.0001 -2.97658 0.19374 <0.0001 -2.97406 0.187952 <0.0001 

Linear2 0.720922 0.279633 0.01 0.687866 0.053226 <0.0001 0.682656 0.051773 <0.0001 

Intercept3 0.922548 0.250013 0.0002 1.384205 0.126314 <0.0001 1.801705 0.201082 <0.0001 

Linear3 -0.19154 0.060846 0.002 -0.32995 0.035844 <0.0001 -0.71306 0.066737 <0.0001 

Intercept4 
      

1.017253 0.165928 <0.0001 

Linear4 
      

-0.05496 0.050065 0.273 

 * SE = Standard Error
** ρ = Correlation Level
Note: p-values are calculated based on the average mean and SE
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Appendix B SIMULATION CODE EXAMPLE

B.1 Simulation of two binary outcomes with correlation level 0.6

let NumSamples = 500;/* Specify number of simulation */

%let NumPre = 5; /* Specify number of preliminary simulation */

%let N = 4000; /* Specify sample size */

%let nCont = 5; /*specify number of measures*/

/*Generate 5 preliminary Outcome 1*/

data PreSim1;

call streaminit(89036);

array y[&nCont];

array z[&nCont];

array t[&nCont] (1 2 3 4 5);

array eta1[&nCont];

array mu[&nCont];

do SampleID = 1 to &NumPre;

do i = 1 to &N;

do j = 1 to dim(y);

type=i/&N;

if type=<0.6 then do;

eta1[j] = -4.5;

mu[j] = logistic(eta1[j]);

y[j] = rand("Bernoulli", mu[j]);

sp=1;

end;

if 0.6<type=<0.8 then do;

eta1[j] = -4+1*j;
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mu[j] = logistic(eta1[j]);

y[j] = rand("Bernoulli", mu[j]);

sp=2;

end;

if 0.8<type=<0.9 then do;

eta1[j] = 3.5-1*j;

mu[j] = logistic(eta1[j]);

y[j] = rand("Bernoulli", mu[j]);

sp=3;

end;

if 0.9<type then do;

eta1[j] = 4;

mu[j] = logistic(eta1[j]);

y[j] = rand("Bernoulli", mu[j]);

sp=4;

end;

end;

output;

end;

end;

run;

/*Generate 5 preliminary Outcome 2*/

data PreSim1;

set PreSim1;

array eta[&nCont];

array mu[&nCont];

array y[&nCont];

array z[&nCont];
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eta1 =-2+3.2*y1;

mu1 = logistic(eta1);

z1 = rand("Bernoulli", mu1);

eta2 =-2.3+3.1*y2;

mu2 = logistic(eta2);

z2 = rand("Bernoulli", mu2);

eta3 =-2.3+3*y3;

mu3 = logistic(eta3);

z3 = rand("Bernoulli", mu3);

eta4 =-2.3+3.1*y4;

mu4 = logistic(eta4);

z4 = rand("Bernoulli", mu4);

eta5 =-2.2+3*y5;

mu5 = logistic(eta5);

z5 = rand("Bernoulli", mu5);

output;

run;

/*Output correlation between preliminary Outcome 1 and 2 in each measurement

to make sure they have the correlation coefficient around 0.6*/

proc corr data = SIMREG3 spearman;

var y1-y5 z1-z5;

by sampleID;

ods output spearmanCorr = output.CorrC1_4000_06;

run;

/*Detemine number of trajectory groups and initial value of Outcome 2 in GBTM and GBDTM*/
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%macro trajpre;

%do NumPre=1 %to 5;

data PreSim1;

set PreSim1;

if SampleID~=&NumPre then delete;

run;

PROC TRAJ DATA=SIMREG4 OUTPLOT=OP1_&NumSamples OUTSTAT=OS1_&NumSamples OUT=OF1_&NumSamples OUTEST=OE1_&NumSamples ITDETAIL;

ID i; VAR z1-z5; INDEP T1-T5;

MODEL logit; NGROUPS 3; ORDER 1 1 1;

;

RUN;

/*%TRAJPLOT(Op1_&NumSamples,OS1_&NumSamples,’Variable2 vs. Age’,’Cnorm Model’,’Variable2’,’Age’)*/

%end;

%mend trajpre;

%trajpre

/*Generate Outcome 1 in full simulation*/

data SimReg1;

call streaminit(89025);

array y[&nCont];

array z[&nCont];

array t[&nCont] (1 2 3 4 5);

array eta1[&nCont];

array mu[&nCont];

do SampleID = 1 to &NumSamples;

do i = 1 to &N;

do j = 1 to dim(y);

type=i/&N;

if type=<0.6 then do;
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eta1[j] = -4.5;

mu[j] = logistic(eta1[j]);

y[j] = rand("Bernoulli", mu[j]);

sp=1;

end;

if 0.6<type=<0.8 then do;

eta1[j] = -4+1*j;

mu[j] = logistic(eta1[j]);

y[j] = rand("Bernoulli", mu[j]);

sp=2;

end;

if 0.8<type=<0.9 then do;

eta1[j] = 3.5-1*j;

mu[j] = logistic(eta1[j]);

y[j] = rand("Bernoulli", mu[j]);

sp=3;

end;

if 0.9<type then do;

eta1[j] = 4;

mu[j] = logistic(eta1[j]);

y[j] = rand("Bernoulli", mu[j]);

sp=4;

end;

end;

output;

end;

end;

run;
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/*GBTM for Outcome 1*/

%macro traj1;

%do NumSamples=1 %to 500;

data SIMREG2;

set SIMREG1;

if SampleID~=&NumSamples then delete;

run;

PROC TRAJ DATA=SIMREG2 OUTPLOT=OP&NumSamples OUTSTAT=OS&NumSamples OUT=OF&NumSamples OUTEST=OE&NumSamples ITDETAIL;

ID i; VAR y1-y5; INDEP T1-T5;

MODEL logit; NGROUPS 4; ORDER 0 1 1 0;

/*starting value outcome 1*/

start -4.5

-4 1

3.5 -1

4

60 20 10 10;

RUN;

/*%TRAJPLOT(Op&NumSamples,OS&NumSamples,’Variable vs. Age’,’Cnorm Model’,’Variable’,’Age’)*/

%end;

%mend traj1;

%traj1

/*result output Outcome 1 in GBTM*/

DATA output.OEC1_4000_06;

SET OE1-OE500;

RUN;

DATA output.OFC1_4000_06;

SET OF1-OF500;

RUN;
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DATA output.OPC1_4000_06;

SET OP1-OP500;

RUN;

DATA output.OSC1_4000_06;

SET OS1-OS500;

RUN;

/*generate Outcome 2 in full simulation*/

data simreg3;

set simreg1;

array eta[&nCont];

array mu[&nCont];

array y[&nCont];

array z[&nCont];

eta1 =-2+3.2*y1;

mu1 = logistic(eta1);

z1 = rand("Bernoulli", mu1);

eta2 =-2.3+3.1*y2;

mu2 = logistic(eta2);

z2 = rand("Bernoulli", mu2);

eta3 =-2.3+3*y3;

mu3 = logistic(eta3);

z3 = rand("Bernoulli", mu3);

eta4 =-2.3+3.1*y4;

mu4 = logistic(eta4);

z4 = rand("Bernoulli", mu4);

eta5 =-2.2+3*y5;

mu5 = logistic(eta5);
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z5 = rand("Bernoulli", mu5);

output;

run;

/*Output correlation between Outcome 1 and Outcome 2 in each measurement*/

proc corr data = SIMREG3 spearman;

var y1-y5 z1-z5;

by sampleID;

ods output spearmanCorr = output.CorrC1_4000_06;

run;

/*Build GBTM for Outcome 2*/

%macro traj2;

%do NumSamples=1 %to 500;

data SIMREG4;

set SIMREG3;

if SampleID~=&NumSamples then delete;

run;

PROC TRAJ DATA=SIMREG4 OUTPLOT=OP1_&NumSamples OUTSTAT=OS1_&NumSamples OUT=OF1_&NumSamples OUTEST=OE1_&NumSamples ITDETAIL;

ID i; VAR z1-z5; INDEP T1-T5;

MODEL logit; NGROUPS 3; ORDER 1 1 1;

/*starting value outcome 2 based on mean of 5 simulation with sample size 4000*/

start -1.469565 -0.245484

-3.581290 0.70505

0.859367 -0.177431

54.581498 23.386612 22.031890

;

RUN;
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/*%TRAJPLOT(Op1_&NumSamples,OS1_&NumSamples,’Variable2 vs. Age’,’Cnorm Model’,’Variable2’,’Age’)*/

%end;

%mend traj2;

%traj2

/*result output Outcome 2 in GBTM*/

DATA output.OEC2_4000_06;

SET OE1_1-OE1_500;

RUN;

DATA output.OFC2_4000_06;

SET OF1_1-OF1_500;

RUN;

DATA output.OPC2_4000_06;

SET OP1_1-OP1_500;

RUN;

DATA output.OSC2_4000_06;

SET OS1_1-OS1_500;

RUN;

/*Build GBDTM for Outcome 1 and 2*/

%macro dual1;

%do NumSamples=1 %to 500;

data SIMREG4;

set SIMREG3;

if SampleID~=&NumSamples then delete;

run;

PROC TRAJ DATA=simreg4 OUTPLOT=OP2_&NumSamples OUTSTAT=OS2_&NumSamples OUT=OF2_&NumSamples OUTEST=OE2_&NumSamples OUTPLOT2=OP3_&NumSamples OUTSTAT2=OS3_&NumSamples ITDETAIL;

ID i;

VAR y1-y5; INDEP T1-T5; MODEL logit; NGROUPS 4; ORDER 0 1 1 0;
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VAR2 z1-z5; INDEP2 T1-T5; MODEL2 logit; NGROUPS2 3; ORDER2 1 1 1;

/*same start value used with GBTM*/

start -4.5

-4 1

3.5 -1

4

60 20 10 10

-1.469565 -0.245484

-3.581290 0.70505

0.859367 -0.177431

54.581498 23.386612 22.031890

54.581498 23.386612 22.031890

54.581498 23.386612 22.031890

54.581498 23.386612 22.031890

;

RUN;

/*%TRAJPLOT(OP2_&NumSamples,Os2_&NumSamples,’Opposition vs. Age’,’Cnorm Model’,’Opposition’,’Scaled Age’)

%TRAJPLOT(OP3_&NumSamples,Os3_&NumSamples,’Opposition vs. Age’,’Cnorm Model’,’Opposition’,’Scaled Age’)*/

%end;

%mend dual1;

%dual1;

/*Result output in GBDTM for Outcome 1 and Outcome 2*/

DATA output.OEC3_4000_06;

SET OE2_1-OE2_500;

RUN;

DATA output.OFC3_4000_06;

SET OF2_1-OF2_500;

RUN;
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DATA output.OPC3_4000_06;

SET OP2_1-OP2_500;

RUN;

DATA output.OSC3_4000_06;

SET OS2_1-OS2_500;

RUN;

DATA output.OPC4_4000_06;

SET OP3_1-OP3_500;

RUN;

DATA output.OSC4_4000_06;

SET OS3_1-OS3_500;

RUN;

/*Build GBMTM for Outcome 1 and Outcome 2*/

%macro MULT1;

%do NumSamples=1 %to 500;

data SIMREG4;

set SIMREG3;

if SampleID~=&NumSamples then delete;

run;

PROC TRAJ DATA=simreg4 OUTPLOT=OP4_&NumSamples OUTSTAT=OS4_&NumSamples OUT=OF4_&NumSamples OUTEST=OE4_&NumSamples OUTPLOT2=OP5_&NumSamples OUTSTAT2=OS5_&NumSamples ITDETAIL;

ID i;

VAR y1-y5; INDEP T1-T5; MODEL logit; ORDER 0 1 1 0;

VAR2 z1-z5; INDEP2 T1-T5; MODEL2 logit; ORDER2 1 1 1 1;

MULTGROUPS 4;

start -4.5

-4 0.81

3.5 -1

4
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0 0 0 0 0 0 0 0

60 20 10 10

;

RUN;

/*%TRAJPLOT(OP4_&NumSamples,Os4_&NumSamples,’Opposition vs. Age’,’Cnorm Model’,’Opposition’,’Scaled Age’)

%TRAJPLOT(OP5_&NumSamples,Os5_&NumSamples,’Opposition vs. Age’,’Cnorm Model’,’Opposition’,’Scaled Age’)*/

%end;

%mend MULT1;

%MULT1

/*Result output GBMTM for Outcome 1 and Outcome 2*/

DATA output.OEC5_4000_06;

SET OE4_1-OE4_500;

RUN;

DATA output.OFC5_4000_06;

SET OF4_1-OF4_500;

RUN;

DATA output.OPC5_4000_06;

SET OP4_1-OP4_500;

RUN;

DATA output.OSC5_4000_06;

SET OS4_1-OS4_500;

RUN;

DATA output.OPC6_4000_06;

SET OP5_1-OP5_500;

RUN;

DATA output.OSC6_4000_06;

SET OS5_1-OS5_500;
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RUN;

/*Output average of parameter estimates and standard error from GBTM GBDTM and GBMTM model*/

proc means data =output.Oec1_4000_06(WHERE=(_TYPE_="PARMS")) mean;

var INTERC01 -- _AIC_;

run;

proc means data =output.Oec1_4000_06(WHERE=(_TYPE_="STDERR")) mean;

var INTERC01-- _AIC_;

run;

proc means data =output.Oec2_4000_06(WHERE=(_TYPE_="PARMS")) mean;

var INTERC01 -- _AIC_;

run;

proc means data =output.Oec2_4000_06(WHERE=(_TYPE_="STDERR")) mean;

var INTERC01 -- _AIC_;

run;

proc means data =output.Oec3_4000_06(WHERE=(_TYPE_="PARMS")) mean ;

var INTERC01 -- _AIC_;

run;

proc means data =output.Oec3_4000_06(WHERE=(_TYPE_="STDERR")) mean;

var INTERC01 -- _AIC_;

run;

proc means data =output.Oec5_4000_06(WHERE=(_TYPE_="PARMS")) mean;

var INTERC11--_AIC_;

run;

proc means data =output.Oec5_4000_06(WHERE=(_TYPE_="STDERR")) mean;

var INTERC11--_AIC_;

run;
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/*Output trajectory average mean each measurement in every model*/

proc means data =output.Opc1_4000_06(WHERE=(T=1)) mean;

var AVG1--U95M4;

run;

proc means data =output.Opc1_4000_06(WHERE=(T=2)) mean;

var AVG1--U95M4;

run;

proc means data =output.Opc1_4000_06(WHERE=(T=3)) mean;

var AVG1--U95M4;

run;

proc means data =output.Opc1_4000_06(WHERE=(T=4)) mean;

var AVG1--U95M4;

run;

proc means data =output.Opc1_4000_06(WHERE=(T=5)) mean;

var AVG1--U95M4;

run;

proc means data =output.Opc2_4000_06(WHERE=(T=1)) mean;

var AVG1--U95M3;

run;

proc means data =output.Opc2_4000_06(WHERE=(T=2)) mean;

var AVG1--U95M3;

run;

proc means data =output.Opc2_4000_06(WHERE=(T=3)) mean;

var AVG1--U95M3;

run;

proc means data =output.Opc2_4000_06(WHERE=(T=4)) mean;

var AVG1--U95M3;

run;
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proc means data =output.Opc2_4000_06(WHERE=(T=5)) mean;

var AVG1--U95M3;

run;

proc means data =output.Opc3_4000_06(WHERE=(T=1)) mean;

var AVG1--U95M4;

run;

proc means data =output.Opc3_4000_06(WHERE=(T=2)) mean;

var AVG1--U95M4;

run;

proc means data =output.Opc3_4000_06(WHERE=(T=3)) mean;

var AVG1--U95M4;

run;

proc means data =output.Opc3_4000_06(WHERE=(T=4)) mean;

var AVG1--U95M4;

run;

proc means data =output.Opc3_4000_06(WHERE=(T=5)) mean;

var AVG1--U95M4;

run;

proc means data =output.Opc4_4000_06(WHERE=(T=1)) mean;

var AVG1--U95M3;

run;

proc means data =output.Opc4_4000_06(WHERE=(T=2)) mean;

var AVG1--U95M3;

run;

proc means data =output.Opc4_4000_06(WHERE=(T=3)) mean;

var AVG1--U95M3;
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run;

proc means data =output.Opc4_4000_06(WHERE=(T=4)) mean;

var AVG1--U95M3;

run;

proc means data =output.Opc4_4000_06(WHERE=(T=5)) mean;

var AVG1--U95M3;

run;

proc means data =output.Opc5_4000_06(WHERE=(T=1)) mean;

var AVG1--U95M4;

run;

proc means data =output.Opc5_4000_06(WHERE=(T=2)) mean;

var AVG1--U95M4;

run;

proc means data =output.Opc5_4000_06(WHERE=(T=3)) mean;

var AVG1--U95M4;

run;

proc means data =output.Opc5_4000_06(WHERE=(T=4)) mean;

var AVG1--U95M4;

run;

proc means data =output.Opc5_4000_06(WHERE=(T=5)) mean;

var AVG1--U95M4;

run;

proc means data =output.Opc6_4000_06(WHERE=(T=1)) mean;

var AVG1--U95M4;

run;

proc means data =output.Opc6_4000_06(WHERE=(T=2)) mean;

var AVG1--U95M4;
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run;

proc means data =output.Opc6_4000_06(WHERE=(T=3)) mean;

var AVG1--U95M4;

run;

proc means data =output.Opc6_4000_06(WHERE=(T=4)) mean;

var AVG1--U95M4;

run;

proc means data =output.Opc6_4000_06(WHERE=(T=5)) mean;

var AVG1--U95M4;

run;

/*Output the average proportion of trajectory groups in each model*/

data output.Osc1_4000_06;

set output.Osc1_4000_06;

if list>=4 then list=0;

list+1;

run;

proc means data =output.Osc1_4000_06 (WHERE=(list=1)) mean;

var PI;

run;

proc means data =output.Osc1_4000_06 (WHERE=(list=2)) mean;

var PI;

run;

proc means data =output.Osc1_4000_06 (WHERE=(list=3)) mean;

var PI;

run;

proc means data =output.Osc1_4000_06 (WHERE=(list=4)) mean;

var PI;

run;
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data output.Osc2_4000_06;

set output.Osc2_4000_06;

if list>=3 then list=0;

list+1;

run;

proc means data =output.Osc2_4000_06 (WHERE=(list=1)) mean;

var PI;

run;

proc means data =output.Osc2_4000_06 (WHERE=(list=2)) mean;

var PI;

run;

proc means data =output.Osc2_4000_06 (WHERE=(list=3)) mean;

var PI;

run;

data output.Osc3_4000_06;

set output.Osc3_4000_06;

if list>=4 then list=0;

list+1;

run;

proc means data =output.Osc3_4000_06 (WHERE=(list=1)) mean;

var PI;

run;

proc means data =output.Osc3_4000_06 (WHERE=(list=2)) mean;

var PI;

run;

proc means data =output.Osc3_4000_06 (WHERE=(list=3)) mean;

var PI;
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run;

proc means data =output.Osc3_4000_06 (WHERE=(list=4)) mean;

var PI;

run;

data output.Osc4_4000_06;

set output.Osc4_4000_06;

if list>=3 then list=0;

list+1;

run;

proc means data =output.Osc4_4000_06 (WHERE=(list=1)) mean;

var PI;

run;

proc means data =output.Osc4_4000_06 (WHERE=(list=2)) mean;

var PI;

run;

proc means data =output.Osc4_4000_06 (WHERE=(list=3)) mean;

var PI;

run;

data output.Osc5_4000_06;

set output.Osc5_4000_06;

if list>=4 then list=0;

list+1;

run;

proc means data =output.Osc5_4000_06 (WHERE=(list=1)) mean;
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var PI;

run;

proc means data =output.Osc5_4000_06 (WHERE=(list=2)) mean;

var PI;

run;

proc means data =output.Osc5_4000_06 (WHERE=(list=3)) mean;

var PI;

run;

proc means data =output.Osc5_4000_06 (WHERE=(list=4)) mean;

var PI;

run;

/*Output the average correlation between each measure of Outcome 1 and Outcome 2*/

proc means data =output.corrc1_4000_06 (WHERE=(variable="y1")) mean;

var z1;

run;

proc means data =output.corrc1_4000_06 (WHERE=(variable="y2")) mean;

var z2;

run;

proc means data =output.corrc1_4000_06 (WHERE=(variable="y3")) mean;

var z3;

run;

proc means data =output.corrc1_4000_06 (WHERE=(variable="y4")) mean;

var z4;

run;

proc means data =output.corrc1_4000_06 (WHERE=(variable="y5")) mean;

var z5;

run;
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To:  Hyun Lim, Department of Community Health and Epidemiology 
 
Sub-Investigators: Razieh Safaripour, College of Medicine 
  Cheng Yanzhao Cheng, School of Public Health 
  Kabir Md Rasel Kabir, School of Public Health 
  Kim Min Young Kim, School of Public Health 
 
Date:      February 13, 2020 
 
RE:   Behavioural Ethics Application ID 1759 
 

Thank you for submitting your project entitled: “Statistical methods in epidemiology using South 
Korean Health Panel (KHP) Data”. This project meets the requirements for exemption status as per 
Article 2.2 of the Tri-Council Policy Statement: Ethical Conduct for Research Involving Humans – TCPS 
2 (2018), which states “Research does not require REB review when it relies exclusively on information 
that is: 

a. publicly available through a mechanism set out by legislation or regulation and that is protected 
by law; or 

b. in the public domain and the individuals to whom the information refers have no reasonable 
expectation of privacy.” 

It should be noted that though your project is exempt of ethics review, your project should be 
conducted in an ethical manner (i.e. in accordance with the information that you submitted).  It should 
also be noted that any deviation from the original methodology and/or research question should be 
brought to the attention of the Behavioural Research Ethics Board for further review.  

 
Digitally Approved by Vivian Ramsden, Vice-Chair 
Behavioural Research Ethics Board 
University of Saskatchewan 

Figure B.1: Ethics Approval Letter for KHPS data
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