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ABSTRACT 

Oral arginine supplements are commonly used by the public for their presumed nitric oxide 

potentiating and vasodilatory role. However, there is a lack of clarity on the physiological impact 

of oral arginine on its metabolic pathways in the human body. As a versatile molecule, arginine is 

metabolized by multiple enzymes including arginase, nitric oxide synthase, arginine decarboxylase, 

and arginine: glycine amidinotransferase. Our lab has recently published a study on the 

physiological impact of oral arginine at a dose of 500 mg/kg/day administered for 4 weeks in male 

Sprague-Dawley rats. The present study examined the effects of oral L-arginine and D-arginine in 

9-week-old male Sprague-Dawley rats, administered at a higher dose of 1000 mg/kg/day in 

drinking water for a longer duration of 16 weeks. We measured enzyme expression and activity 

for different enzymes, and levels of metabolites of the arginine enzymatic pathways in the urine, 

plasma and various organs of Sprague-Dawley rats. We also measured the expression of the 

primary arginine transporter, cationic amino acid transporter 1. Oral L-arginine did not alter the 

expression of cationic amino acid transporter 1 or the levels of arginine and lysine, which use the 

same transporter, in the plasma and various organs. Oral L-arginine decreased arginase expression 

in the ileum, and arginase activity in the plasma. It also decreased arginine:glycine 

amidinotransferase expression in the liver, and creatinine levels in the urine. Similarly, L-arginine 

supplementation decreased arginine decarboxylase expression in the ileum but increased the 

expression in the liver with increased plasma total polyamine levels. Interestingly, endothelial 

nitric oxide synthase expression was significantly increased with oral D-arginine, whereas L-

arginine did not cause any significant effects in this pathway, in comparison to control. D-arginine 

is known to be inactive in the metabolic pathways, but surprisingly, D-arginine supplementation 

altered the expression of several enzymes and metabolite levels in the treated rats. In conclusion, 

long term oral supplementation of both L- and D-arginine significantly affected various enzymes 

and metabolites in the arginine metabolic pathways, as observed with a dose of 500 mg/kg/day for 

4 weeks in the previous study from our lab, even though the changes differed in both studies. 

Determining the physiological impact of oral arginine supplements on the various metabolic 

pathways of arginine would allow for a better understanding of oral arginine uses, optimum dose 

and duration, and its safety and efficacy.  
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CHAPTER 1: BACKGROUND 

1.1 Amino Acids 

Amino acids are organic monomers of proteins that consist of an amino group, a carboxylic 

group, and a side chain group, as shown in Figure 1. With the exception of glycine, all amino acids 

carry a chiral carbon and come in two mirror images called enantiomers, commonly referred to as 

optical isomers. The two forms are designated as L- and D-isomer, where the L- and D-

configuration of amino acid is determined by the location of the amino group linked to the chiral 

carbon in the Fischer projection formula. L-amino acid has an amino group on the left side of the 

chiral center, and D-amino acid has it on the right side (Grishin et al., 2020). The majority of the 

amino acids in the body that serve as building blocks for protein only exist in the L-isoform, 

making the D-isomer appear as physiologically inert. Extending from this fact, it has been noted 

that the enzymes for protein synthesis have likely adapted to only using the L-configuration of 

amino acids (Reddy, 2020). The exact reasoning behind the predominance of this enantiomer has 

not been clearly established yet, although there are various studies and theories that have come 

forward that are mainly associated with evolutionary selectivity (Grishin et al., 2020). 

 
Figure 1. Structure of an amino acid 
(Image Source: http://www.astrochem.org/sci/Amino_Acids.php) 

 

Though there are D-amino acid containing peptides that exist in eukaryotes, these peptides are 

not directly produced from the ribosomes with the traditional protein synthesis machinery, but 

rather using different mechanisms such as post-translational modification (Grishin et al., 2020). 

By the process of racemization with racemase and D-amino acid oxidase, D-amino acids can be 

converted into L-amino acids, which makes the presence of D-amino acid in food an indicator for 

certain occurrences, like fermentation or contamination (Genchi, 2017). It has been revealed that 

some D-amino acids in fact carry out important physiological functions in the endocrine system 
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and the nervous system of mammals, although there is still a huge gap of knowledge on the effects 

of D-amino acids, in comparison to L-amino acids (Kiriyama and Nochi, 2016). 

There are 20 amino acids that are known to build proteins in the body and of these, 9 of them 

are classified as essential amino acids. This is referred to as any amino acid that is unable to be 

synthesized endogenously to fulfill the optimal physiological demand, and thereby needs to be 

supplied from the diet (Lopez and Mohiuddin, 2021). On the other hand, amino acids that are 

referred to as being non-essential are sufficiently produced in the body. Conditionally essential 

amino acids, also known as semi-essential amino acids, are normally synthesized at a sufficient 

level in healthy adults, but the synthesis is compromised in specific populations under certain 

conditions, such as during infancy and for people in times of physiological stress or critical illness 

(Morris et al., 2017). Arginine, which is the core focus of this research study, is one of the 

conditionally essential amino acids that is synthesized insufficiently in people under certain 

conditions including renal or intestinal dysfunction (Morris  Jr., 2007). Arginine plays a variety of 

crucial roles in the body, which will be discussed and examined in depth as a part of this research 

project. 

 

1.2 Arginine Overview 

Arginine (Fig. 2) is a versatile, semi-essential amino acid that contributes to the synthesis of 

many biologically important molecules, by being a substrate in various enzymatic pathways 

(Böger, 2007). Some products of arginine metabolism include nitric oxide (NO), urea, and creatine 

(Wu and Morris  Jr, 1998). As mentioned earlier about amino acids, from the L- and D-isomers of 

arginine (Fig. 2), D-arginine (D-Arg) is known as the metabolically inactive isomer (National 

Center for Biotechnology Information, https://pubchem.ncbi.nlm.nih.gov/compound/D-Arginine), 

thereby the physiological effects of arginine are primarily associated with just L-arginine (L-Arg). 

Free arginine in the body come from several sources including endogenous synthesis, the diet, and 

intracellular protein turnover (Morris  Jr., 2007). In healthy adults, the normal plasma arginine 

levels are maintained in the range of 80 – 120 μmol/L (Morris  Jr., 2007). As with any person with 

arginine deficiency, arginine supplementation is necessary for growing adolescents (National 

Center for Biotechnology Information, https://pubchem.ncbi.nlm.nih.gov/compound/Arginine), 

and physiologically compromised individuals. It has been reported that preterm infants tend to 

have arginine deficiency (Becker et al., 2000), which is characterized by hyperammonemia and 
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multi-organ dysfunction (Wu et al., 2004). A study involving individuals with genetic mutation 

that leads to defective dietary uptake and reabsorption of L-Arg demonstrated that these patients 

had significantly lower vasodilatory effects and platelet counts in the blood in comparison to the 

controls, and showed myocardial ischemia with exercise testing (Loscalzo, 2001). Together, these 

physiological differences depict the importance of L-Arg nutrition in the body, especially in 

association with the role of NO, which is a metabolite of one of the major arginine pathways, that 

will be thoroughly discussed later.  

 

(A)                                      (B) 

   
Figure 2. Structures of L-arginine and D-arginine 

(A) L-arginine and (B) D-arginine. 

Source: L-Arginine | C6H14N4O2 - PubChem (nih.gov); D-Arginine | C6H14N4O2 - PubChem (nih.gov) 

 

Fortunately, with a wide variety of dietary sources of arginine, including nuts, milk products, 

and legumes, fulfilling the metabolic demands of the body is made easy by simply adjusting the 

diet (McNeal et al., 2016). A typical western diet provides approximately 25 to 30% of total 

arginine levels in the blood (Rosenthal et al., 2016). In support of this statement, a research study 
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done on healthy male subjects in their early twenties, suggested that homeostasis in arginine levels 

is largely established by the diet (Castillo et al., 1993a). 

 

1.3 Pharmacokinetics of Arginine 

1.3.1 Absorption and Bioavailability  

Arginine that comes from the diet gets absorbed in the splanchnic area of the body, through 

enterocytes (Castillo et al., 1993b) at the jejunum and ileum (Pahlavani et al., 2014). Specifically 

in the epithelial lining of the small intestine, there are brush borders that consist of amino acid 

transporters for dietary absorption (Souba and Pacitti, 1992). The transport system primarily 

responsible for selective uptake of cationic amino acids like arginine in the small intestine is 

referred to as the y+ system, which comprises of the cationic amino acid transporter (CAT) family 

(Devés and Boyd, 1998). Within this family, there are several CAT isoforms, and it has been 

suggested that each of the CAT isoforms has affinity to one of the three isoforms of nitric oxide 

synthase (NOS) enzymes (Schwartz et al., 2006). CAT-1 is known to be specifically responsible 

for the transport of arginine to endothelial nitric oxide synthase (eNOS) for its use (Schwartz et 

al., 2006). With saturation of the available transporters, such as with increase in post-prandial 

arginine levels, passive diffusion may occur for the uptake of arginine (Tangphao et al., 1999a). 

An issue with the amino acid transporters is that basic, cationic amino acids like arginine and 

lysine, use and compete for the same type of transporters, affecting the uptake of each other (Wu 

et al., 2009). In relation, it has been suggested that excess arginine intake leads to disrupted 

homeostasis of amino acids, causing adverse effects such as impairment in growth (Edmonds et 

al., 1987). The remaining free arginine in the body is filtered by the kidney and almost entirely 

gets reabsorbed through its transporters in the proximal tubule (Brosnan and Brosnan, 2004). 

Although arginine needs are readily met through the diet, approximately 40% of it undergoes 

first pass metabolism in the gut, limiting the bioavailability of free arginine in the body to enter 

the systemic circulation (Wu et al., 2009). A pharmacokinetic study of arginine supplementation 

in healthy adults (Tangphao et al., 1999b) found that following administration of 10 g of oral 

arginine in solution form, the absolute bioavailability in healthy volunteers turned out to be only 

around 20%, but with a broad range from 5 to 50%. This result indicating low availability is not 

surprising since free arginine interacts with multiple enzymes and goes through extensive 

metabolism before reaching the circulation. However, several other studies reported higher 



 

5 
 

bioavailability of oral arginine, such as in an arginine study involving hypercholesterolemic 

population where they reported the bioavailability to be around 40 to 50% (Tangphao et al., 1999a). 

One arginine pharmacokinetic study reported even higher bioavailability of oral arginine in healthy 

population following single oral administration, where the bioavailability was around 70%, 

ranging from 51 to 87% (Bode-Böger et al., 1998). As the variance between the studies suggest, 

the exact pharmacokinetics regarding the bioavailability of arginine is not well-established yet, but 

it is crucial to appreciate how important bioavailability is in understanding the role of oral arginine 

supplements in the body. The physiological effects of arginine such as vasodilation is known to be 

highly associated with its concentration in the plasma (Bode-Böger et al., 1998). Thereby, 

bioavailability is an important factor when considering the therapeutic effects of oral arginine 

supplements in the body.  

 

1.3.2 Distribution  

The bioavailability of arginine is directly linked with its distribution, as greater bioavailability 

in the blood allows for greater tissue and organ distribution. Studies that have been published on 

arginine pharmacokinetics have reported varying results in its distribution in the body. A study 

involving autoradiography with biochemical analysis recorded the radioactivity in organs of mice 

at various time intervals following intravenous injection of radio-labelled arginine (Goto, 1989). 

This study reported low distribution of arginine in the brain, lungs, and testes, and highest uptake 

by the pancreas at all time intervals.  

In contrast, there have been studies reporting otherwise, for instance, that both oral and 

intravenous arginine administration significantly increased the level of free arginine in the liver, 

testes, and the brain (Campistron et al., 1982). One important result that was noted from this study 

is that, for testes and the brain, the oral route of administration in comparison to intravenous route 

led to higher distribution of arginine. In another study involving patients with multiple myeloma, 

it was demonstrated that there was no preferential distribution of guanido-labeled arginine in any 

particular tissues from the nineteen types that were examined (Frondoza et al., 1980). In the latter 

study, plasma protein binding of arginine was also reported, which is a factor that affects 

distribution. The extent of binding varied among the patients, where interestingly, the individuals 

with advanced disease status showed high plasma protein binding of arginine with the majority 
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lasting for 7 to 10 days, and the rest showed 42% as maximum binding, with fast rate of 

disappearance of the tracer of bound arginine.  

With limited and varying results of research on arginine distribution in the human body, more 

studies need to be carried out to establish a clear understanding on the pattern of distribution 

following oral arginine administration. Filling this gap of knowledge would be helpful in 

understanding how much the arginine dose reaches the target site, in association to the 

administration route, safety and efficacy, and to see the overall picture of arginine 

pharmacokinetics from supplementation. 

 

1.3.3 Metabolism: Synthesis and Enzymatic Pathways 

There are several mechanisms for arginine synthesis in the body. Some amino acids such as 

proline and glutamine are interconvertible with arginine through a series of enzymatic steps, where 

both amino acids convert to a common intermediate, pyrroline-5-carboxylate, to ultimately convert 

to arginine (Wu et al., 1997). This intermediate gets further converted into ornithine by the key 

enzyme, ornithine aminotransferase, and then to citrulline, before reaching the final step where 

arginine is formed from arginosuccinate with the action of arginosuccinate lyase (Wu et al., 1997). 

In addition to proline and glutamine metabolism, arginine is made from a variety of other sources 

that involve citrulline production, including the NOS pathway and the enzymatic breakdown of 

asymmetric dimethyl arginine (ADMA) (Morris  Jr, 2004). In the urea cycle however, arginine is 

synthesized from citrulline as an intermediate, but does not contribute to the overall levels of free 

arginine in the body as it gets readily converted into ornithine and urea as a byproduct (Watford, 

2003). Out of all the sources for the synthesis of free arginine in the body, the intestinal-renal axis 

remains the key site in producing free arginine in the body (Wu and Morris  Jr, 1998). In brief, the 

metabolism of mainly glutamine in the epithelial cells of small intestines forms citrulline as 

explained above and releases it in the circulation where it travels in the blood and eventually gets 

taken up by the proximal tubules of the kidney (Morris  Jr, 2004). In the kidney, conversion of 

citrulline to arginine occurs, and the newly synthesized arginine gets released back into the 

bloodstream (Morris  Jr, 2004). This is the reason why arginine supplements become necessary in 

individuals who have renal or intestinal dysfunction.  It has been found that approximately 85% 

of citrulline synthesized from the intestines is taken up by the proximal tubules of kidney to 

produce arginine (Brosnan and Brosnan, 2004).  
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As a versatile molecule, arginine gets extensively metabolized through multiple metabolic 

pathways in mammalian cells. A study indicated that after around 30 min of arginine 

administration by injection, greater than 90% of labelled arginine was metabolized from the intact 

form (Frondoza et al., 1980). As illustrated in Figure 2, arginine acts as a metabolic substrate for 

arginase, NOS, arginine:glycine amidinotransferase (AGAT/GATM), and arginine decarboxylase 

(ADC) (Morris  Jr, 2004). By these enzymes, arginine leads to the production of many biologically 

important molecules in the body, including urea, NO, agmatine and creatine. 

 
Figure 3. Main enzymatic pathways and metabolic products of L-arginine 

 

1.3.4 Arginase Pathway 

The arginase pathway leads to formation of urea plus L-ornithine from L-arginine (Fig. 4). 

Ornithine is a nonprotein amino acid that leads to the formation of proline and polyamines (Ash, 

2004). Thus, arginase is an important enzyme of the urea cycle. As commonly known, the role of 

urea cycle is to detoxify ammonia and convert it into inert water-soluble urea for excretion.  

In mammals, the arginase enzyme exists in two isoforms, arginase type I and type II. The two 

isoenzymes are encoded separately by different genes and though they share comparable 

enzymatic properties, factors such as tissue distribution and expression regulation are different 

(Wu and Morris  Jr, 1998). Compartmentalization of arginase in mammalian cells may affect 

arginine metabolism through enzymes that act upon ornithine. Arginase I is usually colocalized 

with ornithine decarboxylase (ODC) in the cytosol, whereas arginase II is colocalized with 

ornithine aminotransferase (OAT) in the mitochondria (Li et al., 2001). ODC converts ornithine 

into polyamines, whereas OAT converts ornithine into proline (Fig. 4). With this information, as 

illustrated in Figure 4, arginase I may be considered to preferentially lead to polyamine synthesis 

and arginase II may preferentially lead to glutamate and proline production.  
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Figure 4. Arginase metabolic pathway of L-arginine. Arginase converts L-arginine to urea plus 

L-ornithine. Urea is inert and water soluble and easily excreted by the kidneys. L-ornithine can be 

converted to L-proline, L-glutamate or putrescine depending on further enzymatic pathway. 

Putrescine forms polyamines such as spermidine and spermine or GABA (γ-amino butyric acid), 

which can also come from L-glutamate. (Figure adapted from Morris Jr. SM., 2007) 

 

Arginase I is also referred to as the liver arginase, as this mainly exists in the cytosol of hepatic 

tissues acting as the final enzyme of the urea cycle, though it is also expressed in some extrahepatic 

tissues in low levels (Wu and Morris  Jr, 1998). Arginase I in the liver is responsible for the 

detoxification and excretion of waste nitrogen, specifically ammonia, in the form of urea, and the 

activity of this isoenzyme is known to make up for the majority of the total arginase activity in the 

body (Durante et al., 2007). As well, some studies documented that this isoenzyme activity can be 

upregulated by some hemodynamic and growth factors in the body, which induce this enzyme 

expression in vascular cells (Durante et al., 2007).  

In contrast, arginase II is widely distributed in the mitochondria of numerous parts of the body 

such as the small intestine, brain, kidney, macrophages, prostate, mammary glands and some 

vasculature, but at lower levels (Wu and Morris  Jr, 1998; Durante et al., 2007). A study found that 

in comparison to other organ tissues, the expression of arginase II was high in the kidney and the 

pancreas, moderate in the intestines, and very low in the liver (Choi et al., 2012). The exact 
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function of arginase II in non-hepatic tissues has not been clearly established yet, but the activity 

contributes to the formation of polyamines and other amino acids, such as proline and glutamate 

(Wu and Morris  Jr, 1998; Ash, 2004). As mentioned earlier, ornithine gets converted into 

polyamines, by first getting metabolized into putrescine by ODC, which further yields other 

polyamines (Stechmiller et al., 2005). Proline is responsible for biosynthesis of milk protein in 

mammary glands during lactation, and polyamines play a role in cell proliferation and growth (Ash, 

2004). In times of infection or inflammation, arginase expression and activity are elevated, causing 

more ornithine production and subsequently more synthesis of proline and polyamines. This 

increase in synthesis is able to facilitate proliferation of cells and collagen production which take 

crucial part in various physiological processes and disorders, such as would healing, inflammation, 

infection and fibrotic disorders (Morris  Jr, 2004). 

Out of the four main enzymatic pathways of arginine, the arginase pathway is known to be the 

most important one for the catabolism of arginine in mammals (Wu and Morris  Jr, 1998). Some 

studies suggest that the metabolism of arginine through arginase I in the liver, rather than 

endogenous synthesis, is the regulating factor for total arginine levels and homeostasis in the body 

(Castillo et al., 1994). With arginine administration, it was found that the rate of urea synthesis 

was significantly higher than the rates of synthesis for the metabolites of other arginine pathways 

such as NO and creatine (Wu and Morris  Jr, 1998). As well, a labeled arginine study determined 

that radioactivity from tagged arginine in rat liver was significantly lower than that of other organ 

tissues, with a very fast rate of arginine being replaced in this tissue in particular, which 

accompanies the idea that the bioavailable arginine readily gets taken up and used up by arginase 

as a part of the urea cycle in the liver  (Frondoza et al., 1980).  

 

1.3.5 Endothelial Nitric Oxide Synthase Pathway 

Out of the four arginine pathway enzymes, NOS has been most extensively studied for its 

regulation and role in the arginine metabolic pathways (Wu and Morris  Jr, 1998). As shown in 

Figure 5, NOS facilitates the conversion of L-Arg into NO and L-citrulline. L-citrulline is an 

intermediate of the urea cycle and as mentioned previously, it is able to be converted into L-Arg 

through a series of enzymatic steps. Interestingly, it is used widely as a supplement as well, as it 

is known to act as a better and more effective precursor for NO functions in the body (Kaore et al., 

2013). 
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Figure 5. Nitric oxide synthase enzymatic pathway of L-arginine metabolism. NOS enzymes, 

of which there are three isoforms, convert L-arginine into NO and L-citrulline, with the help of 

calcium (Ca2+)-calmodulin, tetrahydrobiopterin (BH4), and nicotinamide adenine dinucleotide 

phosphate (NADPH). NO has various biological functions and is metabolized into nitrite (NO2-) 

and nitrate (NO3-). L-citrulline is recycled back into L-arginine and has other metabolic fates. 

(Figure adapted from Morris Jr. SM., 2007) 

 

NO is a potent vasodilator that mediates a variety of important functions in the body. It is 

produced by the vascular endothelium, certain neurons and macrophages in response to a variety 

of agonists/stimuli including shear stress and bacterial lipopolysaccharide (LPS) (Endemann and 

Schiffrin, 2004). Some of the physiological roles that it plays include vasodilation, platelet 

antiaggregatory, neuronal long-term potentiation, non-adrenergic non-cholinergic (NANC) 

neurotransmitter, immune responses and inflammation (Wu and Morris  Jr, 1998; Endemann and 

Schiffrin, 2004). The vasodilatory effect of NO is the primary reason for which arginine 

supplements are being taken by a wide range of population nowadays. Several studies have shown 

that NO mediates neurotransmission in learning and memory, and that it also plays a 

neuroprotective role in the central nervous system (Böhme et al., 1993; Paakkari and Lindsberg, 

1995). The metabolic end products of the eNOS pathway, nitrates and nitrites, are recognized and 

being used as effective markers for the level of NO produced, rather than using NO itself, because 
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NO has a very short half-life (5-6 sec), and the metabolites have been found to be stable as its 

indicators (Lundberg, 2006; Giustarini et al., 2008).  

The NOSs exist in three isoforms dispersed throughout the body that differ by various factors 

including genetic makeup, localization and regulation (Alderton et al., 2001). The names of each 

of the isoforms have been created according to the site that they were first discovered in the body 

(Böger, 2007). 

The first isoform, neuronal NOS (nNOS), also referred to as NOS-I, was first found and is 

predominantly expressed in neuronal tissues of both the central and peripheral nervous system 

(Alderton et al., 2001). It is believed to be mainly expressed in the neurons of the brain and the 

enteric nervous system in a constitutive manner, but it also has been found in many other locations, 

such as adrenal glands, organ epithelial cells, kidney, vascular smooth muscle, kidney and the 

pancreas, and the skeletal muscle (Förstermann and Sessa, 2011). The physiological functions of 

nNOS involve regulating synaptic transmission and plasticity in the long term which is associated 

with memory formation, and it may contribute to regulating vascular tone and systemic blood 

pressure as well, though the extent of effect is unclear in comparison to eNOS, which is 

conventionally believed to be the principal enzyme for vasodilation (Förstermann and Sessa, 2011). 

NO produced by enteric neurons has been found to relax the gastrointestinal smooth muscle (Bult 

et al., 1990; Desai et al., 1991). 

Another isoform is the inducible NOS (iNOS), also known as NOS-II, which plays an important 

role in immune defense. As the name states, iNOS expression is inducible by various agents such 

as bacterial LPS and cytokines, rather than it being expressed in particular cells in the body. 

Although iNOS is capable of being induced in any region of the body, the main cell type is 

macrophages (Förstermann and Sessa, 2011). iNOS activation leads to inflammatory reactions and 

production of large amounts of NO to exert cytotoxic effects on bacteria, parasites, and cancer 

cells (Nathan and Hibbs, 1991). Something to consider with the effects of iNOS is that it may also 

damage healthy cells and tissues if it produces lots of NO in the wrong tissue, for example in septic 

shock, where it causes unmanageable vasodilation and hypotensive shock which can prove fatal 

(Petros et al., 1991). 

Lastly, endothelial NOS (eNOS), also called NOS-III, is mostly expressed in endothelial cells, 

and exhibits numerous cardiovascular roles. Out of the three isoforms of NOS, eNOS is the focus 

of this research study. eNOS produces NO in a pulsatile manner in order to regulate blood flow by 
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vasodilation, protect from blood clotting by exerting anti-platelet effects and inhibit vascular 

inflammation (Förstermann and Sessa, 2011). The function of NO is the primary reason why 

arginine supplements are popular nowadays. NO production via eNOS in the endothelium causes 

endothelium-dependent vasodilation, which occurs in response to signaling molecules such as 

bradykinin and acetylcholine, or mechanical forces (Shesely et al., 1996). An increase in calcium 

levels in the endothelial cell in response to the factors mentioned above, causes binding of eNOS 

to calmodulin, which leads to the activation of eNOS to produce NO (Förstermann and Sessa, 

2011). NO then directly diffuses into the vascular smooth muscle to stimulate guanylate cyclase 

(GC), converting guanosine-triphosphate (GTP) into cyclic guanosine-monophosphate (cGMP) to 

cause vasodilation (Archer et al., 1994). Due to the protective and regulatory role that NO has in 

the body, especially in the vasculature through eNOS activity, NO deficiency is the main reason 

for endothelial dysfunction which is believed to be a precursor of many cardiovascular diseases, 

such as hypertension and atherosclerosis (Förstermann and Münzel, 2006).  

 

1.3.6 Arginine Decarboxylase Pathway 

In addition to the arginase pathway, the ADC pathway (Fig. 6) is another metabolic pathway of 

arginine that leads to the production of polyamines, by first converting L-Arg into agmatine with 

ADC (Fig. 6), followed by hydrolysis of agmatine into putrescine by agmatinase (Wang et al., 

2014a). Both, the ADC and agmatinase enzymes are highly expressed in the brain and are together 

responsible for facilitating the production of polyamines as a part of the pathway referred to as 

“agmatine pathway” (Halaris and Plietz, 2007). Another enzyme, ODC serves a function that 

aligns with ADC in generating polyamines in the body as illustrated in Figure 4, by converting 

ornithine into putrescine (Halaris and Plietz, 2007). 
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Figure 6. The arginine decarboxylase (ADC) metabolic pathway of L-arginine. ADC forms 

L-agmatine from L-arginine, which is further metabolized to putrescine by agmatinase. Just like 

in the arginase pathway putrescine can be converted into the polyamines, spermidine and spermine, 

and into GABA (γ-amino butyric acid). (Figure adapted from Morris Jr. SM., 2007) 

 

Putrescine is a polyamine that acts as a precursor to other polyamines such as spermidine and 

spermine (Gao et al., 2009). ADC and its branch of arginine metabolic pathway had been in 

controversy in terms of its existence and physiological effects in mammals, as for a long time it 

was generally believed that ADC only exists in bacteria and plants (Coleman et al., 2004). After 

numerous studies and findings on ADC using a variety of research techniques, ADC has been 

scientifically accepted as a mammalian enzyme producing agmatine (Coleman et al., 2004).  

Polyamines are important regulators of mammalian cell growth, conceptus development, and 

protein synthesis (Mandal et al., 2013). There are numerous research studies that focused on the 

effect of polyamines on mammalian cell cycle, which demonstrated that polyamines are highly 

correlated with cell proliferation and tissue growth (Pegg and McCann, 1982). 

The direct metabolite of ADC, agmatine, is an amine mainly located in the brain regions, acting 

as an intermediate for polyamine synthesis (Halaris and Plietz, 2007). The exact physiological 

roles of agmatine, aside from polyamine synthesis, are not clearly understood yet, but there have 

been many suggestions with respect to its function in the body. It has been suggested that agmatine 
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may potentially serve important roles in cell proliferation and inflammation, and neuromodulation 

(Reis and Regunathan, 1998; Satriano et al., 1998; Zhu et al., 2004). Interestingly, agmatine may 

be counterintuitive by causing a decrease in cellular polyamine levels by activating antizymes and 

inhibiting ODC activity which normally contributes to polyamine biosynthesis (Satriano et al., 

1998).  

One of the primary reasons for the notion that agmatine may have neuromodulating functions 

was due to the discovery that agmatine was made and stored in neurons, and released from synaptic 

vesicles (Feng et al., 1997; Goracke-Postle et al., 2006). Several studies have further demonstrated 

that agmatine acts as a cell-signaling ligand for various receptors including alpha-2 adrenergic, 

imidazoline, and glutamatergic NMDA receptors (Li et al., 1994; Piletz et al., 1995), and that it 

modulates the release of various hormones and transmitters (Li et al., 1994; Kalra et al., 1995). 

Due to these reasons, a name for its potential actions on cellular and neural transmission was 

established as “agmatinergic transmission system”, to describe the actions of agmatine as a 

neurotransmitter (Reis et al., 1998). Furthermore, it was reported that at high levels, agmatine 

irreversibly blocks nNOS activity by half of its normal activity (Galea et al., 1996; Demady et al., 

2001) and downregulates iNOS activity as well (Satriano et al., 2001). As mentioned earlier, the 

exact physiological mechanism and effects for these reported agmatine functions remain 

controversial and unclear to this day, but what we do know is that agmatine is capable of acting 

on a variety of receptors in the body, thereby serving certain physiological roles that need to be 

further studied upon. 

 

1.3.7 Arginine:Glycine Amidinotransferase Pathway 

Arginine:glycine amidinotransferase (AGAT/GATM) is the rate-limiting enzyme for creatine 

synthesis in the body (Fig. 7), as a part of the arginine pathways (Wu and Morris  Jr, 1998). AGAT 

expression and distribution is limited to mainly the kidney and pancreas, and to a lower degree, in 

the liver (Walker, 1979; McGuire et al., 1984). Creatine biosynthesis via the AGAT pathway 

occurs in two steps (Brosnan and Brosnan, 2004). First, AGAT catalyzes the transfer of a 

guanidino group from arginine to glycine, producing guanidinoacetate and ornithine as a result 

(Fig. 7). Secondly, guanidinoacetate N-methyltransferase (GAMT) catalyzes methylation of 

guanidinoacetate using S-adenosylmethionine, producing creatine and S-adenosylhomocysteine 

(Fig. 7) (Brosnan and Brosnan, 2004). GAMT is predominantly expressed mainly in the liver and 
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pancreas (Braissant et al., 2005). Considering the limited enzyme expression, guanidinoacetate is 

mainly produced in the kidney by AGAT, and moves to the liver to be methylated to become 

creatine by GAMT. Creatine levels in the liver have been observed to be very low, which suggests 

that after synthesis, it gets distributed to other tissues (Wyss and Kaddurah-Daouk, 2000).  

 

 
Figure 7. Arginine:glycine amidinotransferase enzymatic pathway for L-arginine 

metabolism. Arginine:glycine amidinotransferase (AGAT/GATM) catalyzes the conversion of L-

arginine into guanidinoacetate and then into creatine. It can also form L-homoarginine.. (Figure 

adapted from Morris Jr. SM., 2007). 

 

The newly synthesized creatine from the liver enters the circulation and is readily distributed 

into skeletal muscle and nerves (Wu and Morris  Jr, 1998). Specifically, it gets actively taken up 

from the blood predominantly by muscular tissues against a concentration gradient, via the Na+- 

and Cl--dependent creatine transporters that are located along the plasma membranes (Wyss and 

Kaddurah-Daouk, 2000).  

Creatine is a very important molecule that regulates the levels of adenosine triphosphate (ATP) 

in the body, and with phosphocreatine and creatine kinase, it buffers energy needs in various 

tissues and is known to boost energy levels during rapid, high intensity exercise (Michel, 2013; da 

Silva et al., 2014). Creatine couples with a phosphoryl group released from ATP to become 

phosphocreatine with the catalytic help of creatine kinase, and about two thirds of creatine content 
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in muscles exists in the form of phosphocreatine (Kreider et al., 2017). As presented in Figure 8, 

creatine kinase works bidirectionally, thereby when ATP is needed, it facilitates hydrolysis of 

phosphocreatine into creatine and phosphoryl group to release energy that is used to form ATP 

with adenosine diphosphate (ADP) and the phosphoryl group (Kreider et al., 2017). The function 

of creatine differs for fast- and slow-twitch skeletal muscles. For fast twitch work that requires 

short burst of energy, stored phosphocreatine gets used with high level of activity of creatine kinase 

to readily regenerate depleted ATP, and the levels of ADP and ATP, as well as the phosphorylation 

state of creatine are kept at near equilibrium. On the other hand for slow twitch work of skeletal 

muscles, the site using ATP requires more of a continuous transport of high energy phosphates 

(Wyss and Kaddurah-Daouk, 2000). 

In addition to the role of creatine in forming phosphocreatine, it is also known to link cellular 

sources of ATP synthesis such as glycolysis and oxidative phosphorylation of mitochondria, with 

sites that are in need of ATP energy, such as ATPases (Wallimann et al., 2011; Schlattner et al., 

2016; Ydfors et al., 2016), which adds on to creatine function of buffering energy needs.  

Creatine synthesis in the body is crucial since both creatine and creatine-phosphate 

spontaneously get metabolized into creatinine, as shown in Figure 8, at a constant rate of around 

2% per day, which gets excreted by the kidneys in the urine, requiring replacement for the 

consistent loss (Wyss and Kaddurah-Daouk, 2000; da Silva et al., 2009). Creatinine is widely used 

as a clinical indicator for kidney health and function, as it is excreted unchanged by the kidney and 

allows for easy detection of the glomerular filtration rate (Levey et al., 1988). 

 
Figure 8. Creatine metabolism 
(Image Source: https://www.sciencedirect.com/topics/nursing-and-health-professions/creatine-phosphate) 
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1.3.8 Interaction between Nitric Oxide Synthase and Arginase 

As L-Arg serves as a common substrate for both eNOS and arginase in the body, these enzymes 

compete and interfere with the activity of one another (Wu et al., 2009). Interestingly, L-Arg has 

higher affinity to NOS in reference to a much lower Km value for NOS than arginase, but the Vmax 

of arginase is a lot higher than NOS, indicating faster maximum catalytic rate of reaction with L-

Arg, affecting arginine bioavailability for NOS (Wu and Morris  Jr, 1998). The difference in these 

enzymatic factors of the two suggests that L-Arg is used up by both enzymes at a relatively similar 

rate. Considering this and the potential impact of competing for L-Arg, the enzymatic interplay 

between NOS and arginase has been a focus of research. There are numerous studies which 

demonstrated that inhibiting arginase increases production of NO (Chang et al., 1998; Bruch-

Gerharz et al., 2003; Cuihua et al., 2004), and overexpressing arginase decreases production of 

NO (Li et al., 2001; Meurs et al., 2002; Cuihua et al., 2004).  

The mechanism of interaction between NOS and arginase goes beyond the competitive nature 

for a common substrate. As a part of the NOS pathway shown in Figure 4, a metabolite called NG-

hydroxy-L-arginine (NOHA) strongly inhibits arginase enzymes (Boucher et al., 1994), increasing 

arginine availability for NO production in various locations such as the liver and macrophages. 

Furthermore, NO production can also be interrupted by arginase activity of repressing mRNA 

translation of iNOS, and this inhibition has been reported to be fairly selective, in that arginase 

inhibited only half of protein synthesis overall, while iNOS protein expression was completely 

inhibited (Lee et al., 2003).  

Some questions that remain are how and at what dose of regular consumption of oral 

supplements of arginine would physiologically affect the two enzymes, for instance, causing 

downregulation in one of the two. This is important, because many people in present days take 

oral arginine supplements for the presumed NO function in the body, thus, if at a certain dose 

arginase suppresses eNOS activity, then supplements would be deemed counterproductive. 

An arginine study in human subjects discovered that high dose supplementation of around 36 

g/day of oral arginine accelerated the production of ornithine, a metabolite of the arginase pathway, 

whereas it did not have any significant effect on nitrate levels, which is a metabolite of the eNOS 

pathway (Beaumier et al., 1995). This suggests the possibility that L-Arg supplements may not be 

effective in increasing NO function with eNOS due to the arginase enzyme taking greater effect. 

Another study reported that inhibiting arginase stimulated the production of NO in endothelial 
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cells (Chicoine et al., 2004), which may suggest that arginase suppression may be necessary for 

the NO effects expected with L-Arg supplements in the body. More studies need to be 

accomplished to view a bigger picture on what really happens to these two major enzymes with 

oral arginine at various doses that are currently being taken by healthy people and those with 

disease conditions. 

 

1.3.9 Enzyme Deficiency and its Consequences 

Defects in the metabolic enzymes of the arginine pathways have been correlated with a variety 

of diseases, which is anticipated considering the important roles of metabolites of these enzymes 

in the body. A deficiency in liver arginase leads to hyperargininemia and to a lesser extent, 

excessive accumulation of ammonia in humans (Iyer et al., 1998). Hyperargininemia is associated 

with pathology in the central nervous system, including degeneration of the cortex and the 

pyramidal tracts causing neurological impairment, as well as growth retardation (Iyer et al., 2002). 

eNOS deficiency on the other hand has been linked with hypertension, ischemic complications, 

and endothelial dysfunction in studies using knockout mice (Huang, 2000; Seinosuke and 

Mitsuhiro, 2004), which verifies the crucial functions of NO in the cardiovascular system. Under 

specific conditions, endothelial dysfunction was able to be reversed with arginine administration 

in both diabetic rats and hypercholesterolemic humans (Wu et al., 2009). ADMA is a naturally 

occurring endogenous inhibitor of NOS that suppresses NO production and leads to NO deficiency 

(Vallance et al., 1992). Elevated ADMA levels have been observed with several disease conditions 

including hypertension and kidney failure (Vallance et al., 1992). ADMA acts as a competitive 

inhibitor of NOS, thus increasing L-Arg concentration may be effective in reversing the inhibition 

(Böger, 2006). 

ADC deficiency and its consequences have not been well studied yet, but considering the role 

of the ADC pathway, it could be anticipated that the deficiency may impair polyamine synthesis, 

which serve various roles in the body as discussed earlier.  

AGAT deficiency is from a genetic mutation characterized by insufficient creatine levels in the 

brain, and low levels of its metabolites in the blood and urine, and it leads to myopathy, global 

developmental delay, and intellectual disability, which can be treated with oral supplements of 

creatine (Stockler-Ipsiroglu et al., 2015). This enzyme deficiency is recognized as one of the three 

types of inborn disorders causing cerebral creatine deficiency syndrome (Stöckler-Ipsiroglu, 1997). 
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For all cerebral creatine deficiency disorders, intellectual disability and developmental delay are 

common characteristics, whereas myopathy is a specific characteristic for just AGAT deficiency 

(Stockler-Ipsiroglu et al., 2015). A good news is that early detection and intervention for the 

condition can improve the neurologic symptoms and potentially allow for normal outcome after 

treatment (Battini et al., 2006; Ndika et al., 2012). 

 

1.3.10 Excretion 

As mentioned earlier, arginine in systemic circulation is readily degraded and cleared from the 

body. A mammalian pharmacokinetic study of arginine (Wu et al., 2007) found that one-time 

intravenous administration of arginine temporarily increases the blood levels of arginine, before 

being brought back down to the baseline levels after just a few h. In this study, the effects of long-

term administration of intravenous and oral arginine showed similar results, where for both routes 

of administration the serum levels of arginine were not significantly different in comparison to the 

control group, when blood samples were checked 5 h post-administration. A conclusion made from 

this finding is that dietary arginine is quickly metabolized and eliminated from the body, rather 

than accumulating in the circulation to be taken up later. The elimination half-life of oral arginine 

for adult humans is reported to be approximately 1 h (Bode-Böger et al., 1998).  

The elimination of arginine does not usually take place through the kidneys because as with all 

amino acids, almost all of the filtered arginine gets reabsorbed back into the renal proximal tubules 

(Young and Freedman, 1971). Rather, arginine metabolites, such as nitrites, urea, and ornithine, 

formed after enzymatic destruction of arginine get eliminated out of the body through urine 

(Tangphao et al., 1999b). A human pharmacokinetic trial of arginine determined that 

approximately 5 g of L-Arg was eliminated in the urine when the subjects were infused with 30 g 

of intravenous L-Arg, whereas for an oral dose of 10 g, no excretion through the urine was even 

observed (Tangphao et al., 1999b). Direct excretion of intact arginine through the urine tends to 

occur when the renal reabsorption system is saturated with excess arginine in the tubules from high 

dose. For both oral and intravenous administration of arginine, L-Arg is eliminated out of the body 

in a biphasic pattern. In the first round there is a fast decline in plasma arginine levels due to renal 

clearance, followed by a more gradual fall in its concentration from non-renal excretion (Tangphao 

et al., 1999b).   
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1.4 Pharmacodynamics  

1.4.1 Protein Expression and Activity Regulation 

Interestingly, arginine affects its own metabolic fate by selectively regulating protein 

expression and activity of several enzymes, in a dose-dependent manner (Morris  Jr, 2004). For 

instance, L-Arg represses the activities of arginosuccinate lyase and arginosuccinate synthetase, 

both of which take part in catalyzing arginine biosynthesis, though the mechanism of action for 

this molecular regulation has not been clarified (Schimke, 1962, 1964). Arginine also regulates the 

expression of iNOS, where overexpression of arginase or decreased arginine uptake causes 

insufficient extracellular L-Arg levels, which inhibit the expression of iNOS, thereby 

dysregulating the host defense system (Lee et al., 2003; Manner et al., 2003; Morris  Jr, 2004). In 

addition, the level of arginine in the body affects expression of its transporters. CAT-1 expression 

is found to increase via increased transcription and translation of its gene, when there is restricted 

intake of amino acids such as arginine (Morris  Jr, 2004).  

 

1.4.2 Arginine and Growth Hormone Release 

Arginine has been found to increase the release of growth hormone (GH) at a certain dosage in 

support of numerous oral and intravenous arginine supplementation studies. The mechanism of 

GH response augmentation by arginine is by downregulating the secretion of somatostatin, which 

is responsible for inhibiting the release of GH from the pituitary (Alba-Roth et al., 1988). By 

inhibiting the inhibitory factor for GH, arginine indirectly stimulates the release of GH and 

potentiates responsiveness to growth hormone releasing hormone (GHRH)  (Collier et al., 2005). 

Studies that have tested the effects of intravenous arginine administration on GH response 

determined that both doses of 5 g and 9 g of arginine led to significantly elevated plasma GH levels 

in the resting state, whereas a higher dose of 13 g did not (Collier et al., 2005). It was further 

reported in this study that the 13 g dose was not tolerated well by most of the subjects, causing 

moderate gastrointestinal distress. However, several other studies that tested even a higher 

intravenous dose of 30 g reported the effectiveness of arginine in elevating GH concentrations 

(Weltman et al., 2000; Wideman et al., 2000; Kamel et al., 2002). The parenteral route of arginine 

administration has been shown to consistently cause increased plasma GH levels, whereas the 

enteral route has not (Chromiak and Antonio, 2002). 
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In contrast to the studies for intravenous administration of arginine, oral arginine 

supplementation studies reported conflicting results in regard to the physiological efficacy of 

arginine as a potent stimulatory agent for GH release. A low dose oral arginine study involving 

children demonstrated that 4 g of oral arginine in the form of arginine hydrochloride significantly 

increased both, the resting GH levels, and GH response to GHRH, released from the hypothalamus 

(Bellone et al., 1993). As well, another arginine study with healthy postmenopausal women given 

9 g/day of oral L-Arg for 1 month suggested this dose to be safe and effective in increasing GH 

levels (Blum et al., 2000). On the other hand, some suggested that oral arginine supplements are 

likely not effective in increasing GH levels and discouraged taking it for this purpose, adding that 

it would likely cause unpleasant gastrointestinal symptoms such as stomach discomfort and 

diarrhea (Chromiak and Antonio, 2002). This conclusion was supported by other studies involving 

male weight trainers (Walberg-Rankin et al., 1994) and bodybuilders (Lambert et al., 1993), where 

they were provided oral arginine at a dose of 8 g/day for 17 days, and 2.4 g of arginine/lysine 

supplement dose, respectively. Neither of those studies showed significantly increased GH levels. 

With the variability in the study results, it is difficult to conclude the effect of oral doses of arginine 

supplements on GH release. 

 

1.4.3 Arginine and Endothelial Function 

As outlined earlier, one of the widely known physiological functions of arginine is its effects 

on the vasculature to maintain good vessel health as a part of the eNOS pathway. As a substrate 

for eNOS and a precursor to NO, L-Arg is responsible for endothelium-dependent vasodilation, 

which is defective in individuals with endothelial dysfunction and many other cardiovascular 

diseases (Yang et al., 2009). A long-term arginine study involving patients with nonobstructive 

coronary artery disease reported that oral L-Arg taken three times a day for 6 months showed 

higher coronary blood flow in response to acetylcholine when compared with the control group, 

indicating improvement in endothelial function (Amir et al., 1998). 

In addition to its role in vasorelaxation, NO also attenuates platelet aggregation (Radomski et 

al., 1990), and prevents adhesion of platelets to endothelial cells (Radomski et al., 1987). This 

contributes to the health of the endothelium as platelet interaction with the endothelium mediates 

cardiovascular issues such as vascular inflammation and atherosclerosis (Hamilos et al., 2018).  
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Endothelial dysfunction is highly associated with alteration in eNOS function with a subsequent 

decrease in NO levels and an increase in production of superoxide (Yang et al., 2009). The 

accumulation of superoxide anions causes oxidative stress in the endothelium and takes part in 

destroying NO, contributing to endothelial dysfunction (Vallance and Chan, 2001). Several studies 

have indicated that L-Arg exhibits antioxidant functions by acting as a free radical scavenger and 

increasing total antioxidant capacity in the body (Tripathi and Misra, 2009; Fazelian et al., 2014). 

All of these research reports complement the notion that L-Arg, in association with the product of 

its major metabolic pathway, viz. NO, plays a crucial role in maintaining normal endothelial 

function. 

 

1.4.4 Role of Arginine in Targeting Factors of Type 2 Diabetes 

Arginine may be considered as a potential therapeutic agent for type 2 diabetes due to various 

physiological functions that have been demonstrated by multiple research studies. Firstly, many 

studies have demonstrated that arginine is effective in increasing insulin sensitivity in the body 

(Maccario et al.; Piatti et al., 2001; Lucotti et al., 2006; Bogdanski et al., 2012; Miczke et al., 2015). 

Insulin resistance, which is characterized by hyperglycemia, has been known to be closely linked 

with type 2 diabetes and currently is a target for the treatment of the disease (Taylor, 2012). 

Therefore, increasing sensitivity of insulin would allow for greater uptake of glucose into cells to 

ameliorate hyperglycemia and potentially reverse type 2 diabetes. In order to explain the 

mechanism of arginine action in alleviating insulin resistance, it has been speculated that insulin 

resistance is linked with reduced levels of cGMP, the second messenger of NO, and subsequent 

reduced vasodilatory response (Piatti et al., 2001). This proposal is supported by the conclusions 

drawn from other studies that insulin sensitivity is positively correlated with endothelium-

dependent NO synthesis (Petrie et al., 1996), and that insulin resistant individuals show reduction 

in vasodilatory responses (Laakso et al., 1992). Thereby, L-Arg supplementation through the 

eNOS pathway, as described previously, increases endothelium-dependent NO production, which 

acts on guanyl cyclase to increase the levels of cGMP, allowing for more vasodilation, and 

increasing insulin sensitivity. Not only is arginine known to increase the sensitivity of insulin, but 

research studies have also suggested that arginine given intravenously and not orally directly acts 

as an insulin secretagogue by a mechanism associated with depolarization of the plasma membrane 

of islet B-cells (van Haeften et al., 1989; Sener et al., 2000). 
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In addition, an interesting and novel finding of both L- and D-Arg from a study is their ability 

to mitigate endothelial dysfunction caused by high levels of glucose and its metabolite, 

methylglyoxal (MG), both of which are highly associated with type 2 diabetes (Dhar et al., 2012). 

Rather than depending on the eNOS pathway, arginine directly acts as a scavenger for MG, which 

is a glycating compound that reacts with certain proteins to synthesize irreversible advanced 

glycation end products (AGEs) (Dhar et al., 2012). AGEs cause oxidative stress and vascular 

damage, leading to diabetic complications (Dhar et al., 2008). It has been found that the production 

of MG and MG-dependent AGEs are significantly elevated in diabetic patients, and this is also 

partly likely due to alteration in glyoxalase I, which is the enzyme responsible for degrading MG 

into D-lactate (Rabbani and Thornalley, 2014). 

As arginine is capable of increasing insulin sensitivity and selectively targeting the mediator 

for vascular complications of diabetes viz. MG, arginine may potentially be effective in attenuating 

the pathogenesis of type 2 diabetes and its vascular complications.  

 

1.4.5 Arginine and Immune Function 

Research on the physiological impact of arginine on immune function has been surrounded with 

controversies around its mechanism and treatment approach. The effects of arginine on immune 

function have been mostly associated with the production of its metabolites such as NO that serve 

as immunomodulators, as a part of the arginine metabolic pathways (Kim et al., 2018). While some 

studies suggest that arginine supplementation promotes immune responses to enhance defense 

mechanisms (Visek, 1986; Barbul et al., 1990; Sax, 1994), others have indicated the opposite, that 

arginine deprivation may help with immune defense and suppress cancer growth (Lind, 2004; 

Yoon et al., 2013).  

There are numerous rationales that have been proposed to support both sides of the argument 

on arginine effects in immune function. First of all, iNOS plays a key role in mediating the function 

of immune cells as a part of the immune defense system. NO synthesized from iNOS acts as a 

proinflammatory agent in innate immune cells such as macrophages to destroy pathogens in the 

body (Bogdan et al., 2000). As a substrate for iNOS, L-Arg deficiency causes defects in the 

function and reduction in proliferation of T-cells, which was found to be recovered by arginine 

supplementation (Barbul, 1990; Rodriguez et al., 2007). This is because arginine plays a significant 

role in lymphocyte mitogenesis to improve immune function (Barbul et al., 1990), and thus 



 

24 
 

decreased bioavailability of arginine may mediate immune suppression. Arginine controls T-cell 

proliferation by directly facilitating the cell cycle of T-lymphocytes at the level of transcriptional 

and post-transcriptional regulation, acting as a thymotropic agent (Witte and Barbul, 2003). This 

conclusion has been supported by a study that demonstrated that a decrease in L-Arg availability 

causes cell cycle arrest at G0 to G1 phase for T-cells (Rodriguez et al., 2007). Also, speaking at the 

level of translation, arginine is responsible for regulating protein expression of an important 

subunit of the receptor complex for T-cells (Rodriguez et al., 2003; Popovic et al., 2007). Therefore, 

not only does arginine control proliferation of immune cells, but it also controls its action by 

modulating the formation of its receptors. Furthermore, as previously explained, L-Arg augments 

the release of GH, which increases maturation of myeloid progenitor cells, and the synthesis of 

lymphocytes and immunoglobulins (Meazza et al., 2004). 

In contrast, excess arginine leading to excess production of the iNOS catalyzed metabolite, NO, 

has been suggested to promote growth and survival of cancer cells and mediate anti-cancer 

treatment resistance (Ekmekcioglu et al., 2017; Kim et al., 2018). Studies have reported that an 

increased NO production enhances immune suppression, and progression of tumors, which may 

be due to inhibitory action of NO on IL-12-mediated Th1 immune responses (Yoon et al., 2013; 

Wang et al., 2014b; Xue et al., 2018). In terms of NO function in macrophages, it can suppress its 

activation, leading to inflammatory diseases and infection (Xue et al., 2018). Interestingly in 

addition, it has been reported that arginine supplementation actually acts a source of arginine that 

melanoma cells depend on for survival, since a crucial enzyme for arginine synthesis is often 

missing in these cells (Yoon et al., 2013). Therefore, depleting free arginine in the body could be 

useful as a therapeutic approach to enhance immunity in fighting off these cells.  

There is accumulating evidence for a variety of L-Arg mechanisms for both boosting immune 

function and downregulating immune response, thereby, the exact clinical benefit of arginine 

supplementation for disease therapy in patients is unclear to this day. 

 

1.4.6 Arginine and Wound Healing 

Arginine through its metabolic pathways has been found to contribute to the wound healing 

process. There are many physiological differences between acute wounds and chronic wounds, 

and unfortunately, knowledge on the wound healing process has only been well established for 

acute and not chronic wounds (Mast and Schultz, 1996; Stechmiller et al., 2005). In short, normal 
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acute wound healing is characterized by three steps, in order: inflammation mediated by iNOS, 

cell proliferation in tissues, and remodeling, and each one of these three steps is strictly regulated 

by various factors including inflammatory cytokines (Stechmiller et al., 2005). Wound healing is 

promoted by arginine through the two of its major metabolic enzymes, NOS and arginase in 

sequential order (Abd-El-Aleem et al., 2000; Witte and Barbul, 2003; Stechmiller et al., 2005). 

Firstly, arginine gets metabolized by all isoforms of NOS located in skin tissues such as 

keratinocytes and melanocytes (Stechmiller et al., 2005), synthesizing citrulline and NO as its 

metabolites as explained previously. NO contributes to wound healing by numerous mechanisms, 

but primarily by protecting the skin from cellular damage by causing vasodilation for better blood 

flow, inhibiting lymphocyte replication and killing pathogens (Albina and Henry, 1991; Mills, 

2001; Nieves and Langkamp-Henken, 2002). The important isoform of NOS in wound healing is 

iNOS which is found mainly in macrophages, as this isoform produces NO in high bursts compared 

to the other two isozymes (Witte and Barbul, 2003). The increase in NO synthesis by NOS is 

followed by the suppression of NOS activity and a subsequent elevation in arginase activity to 

form increased levels of ornithine and proline (Stechmiller et al., 2005). Polyamines formed from 

ornithine by ODC regulate cell replication, cell growth and tissue regeneration, and proline formed 

from ornithine by OAT is a major collagen constituent that contributes to cell growth and the health 

of connective tissues (Stechmiller et al., 2005). Collagen is very important for the process of wound 

healing as it is responsible for scar formation (Witte and Barbul, 2003). 

With results from numerous arginine studies focused on wound healing, it has become evident 

that arginine supplementation increases both hydroxyproline levels leading to a subsequent 

increase in collagen synthesis, and wound breaking strength (Seifter et al., 1978; Barbul et al., 

1983, 1985; Shi et al., 2000, 2003, 2007; Wittmann et al., 2005).  

 
1.5 Oral Arginine Supplements and its uses  

1.5.1 Optimal Oral Dosage 

In order to fully understand the safety and efficacy of oral arginine supplements, various factors 

must be considered, including the different target populations with certain conditions, dosage, and 

treatment duration. The safe range of oral doses for specific effects of arginine in the general 

population has not been clearly established yet. However, several animal and human clinical 



 

26 
 

research trials have contributed to knowledge on potential safe and effective dose ranges for 

arginine supplementation. 

An animal study involving rats, pigs, and sheep concluded based on their results that human 

enteral arginine doses of 3, 10, and 15 g/day would be safe in a 5 kg infant, 30 kg child, and 70 kg 

adult, respectively (Wu et al., 2007). From the same study, it was also suggested that an enteral 

dose of arginine ranging from 15-40 g/day should be tolerable for 70 kg human adult.  

There are many human clinical trials done to establish the safety and efficacy of oral arginine. 

One important study tested for the effects of dietary arginine at doses of 3, 9, 21, and 30 g/day for 

a full week in healthy subjects and found that 9 g/day was the dose where circulating L-Arg level 

in the blood was highest, with minimal side effects, appearing as the ideal dose (Evans et al., 2004). 

Other studies involving healthy adult volunteers reported that oral arginine supplementation was 

well tolerated with minimal adverse effects at a dose of 10 g/day (Tangphao et al., 1999b), and at 

an even higher dose of 40 g/day given for a full week (Beaumier et al., 1995).  

Oral arginine supplements are believed to be safer and more effective in the body when taken 

in multiple lower doses rather than one high dose for a few reasons (Wu et al., 2007). One is that 

as mentioned previously, due to the fact that positively-charged amino acids share the same 

transporter for absorption, arginine at a significantly high dose can possibly alter the balance of 

other cationic amino acid levels in the body (Edmonds et al., 1987). Also, it has been noted that 

divided doses of arginine for administration helps with keeping the level of arginine in the blood 

elevated for longer (Böger and Bode-Böger, 2001), whereas a one-time arginine dose does not 

change the arginine levels in the blood when compared with baseline plasma concentration after a 

few h of administration (Wu et al., 2007). Prolonging the duration of arginine circulation in blood 

means that more of it can be thoroughly distributed across the body tissues to exert its effects. It is 

crucial to find the minimal effective dose, as high arginine doses may lead to detrimental effects. 

A high arginine dose causes rapid mass production of NO that may lead to atherosclerotic lesions 

(Chen et al., 2003) and several issues in the gastrointestinal tract (Wu and Meininger, 2000).  

Further research is necessary to build a stronger foundation of understanding the exact effects 

of oral arginine at different doses and duration in the healthy population and those with disease 

conditions. So far, there is enough scientific evidence on many physiological functions and 

benefits of arginine, but practically limited evidence on the safety and efficacy of oral arginine 

supplements. Therefore, many individuals are relying on the theory behind arginine’s NO 
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augmenting property in the body to take arginine supplements, rather than scientific evidence. 

Generally, oral arginine supplements are believed to be potentially effective for various uses like 

enhancing athletic performance, sexual function, and cardiovascular health (L-Arginine, 2021). 

 

1.5.2 Use in Athletes 

Healthy populations such as the athletes have been turning to L-Arg supplements for ergogenic 

purposes. A systematic review and meta-analysis that investigated the ergogenic potential of 

arginine supplements reported that both, one-time and chronic supplementation with oral arginine 

improved both aerobic and anaerobic performance if taken at doses of 0.15 g/kg at 60 to 90 min 

prior to exercise, and 1.5 to 2 g/day for 4 to 7 weeks, respectively (Viribay et al., 2020). 

The physiological mechanisms behind the possible effectiveness of arginine supplements on 

physical performance involve the arginine metabolites NO and creatine, as well as the role of 

arginine in GH release (Campbell et al., 2004).  

GH may be useful for building lean body mass and power through its anabolic properties (Saugy 

et al., 2006), and because arginine has been hypothesized to augment GH secretion in the body, it 

is commonly viewed as an ergogenic agent. For instance, a double-blinded study that 

supplemented 15 g/day of oral arginine-aspartate to endurance-trained runners for 2 weeks prior 

to a marathon run found that plasma GH levels were significantly elevated in these subjects, with 

blood samples collected before and after the full marathon run (Colombani et al., 1999). However, 

as explained earlier, studies regarding oral usage of arginine and its effects on GH secretion have 

reported conflicting results, suggesting the need for further investigation. 

Creatine, one of the metabolites of the AGAT pathway of arginine, is well known in athletes 

for not just its role in regulating energy storage, which has been described earlier, but also for 

building muscle size and strength to increase exercise performance (Vandenberghe et al., 1997; 

Volek et al., 1999). Current evidence for the indirect benefits of oral arginine supplementation on 

physical performance related to creatine production have been associated with anaerobic or high-

intensity exercise, such as weightlifting (Viribay et al., 2020). One of the main reasons for this is 

because rapid, high bursts of energy is associated with the phosphagen system, for which the main 

substrate is creatine (Viribay et al., 2020). Although arginine normally acts as a major substrate 

for AGAT to produce creatine in the body, oral arginine supplementation may be ineffective in 

causing elevation in creatine levels for ergogenic effects. This is because creatine supplementation 
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has been determined to suppress the AGAT enzyme (Walker, 1979), and the rate-determining step 

of creatine synthesis is regulated by AGAT and not arginine levels, for guanidinoacetate 

production (Stead et al., 2001). The better option would be to directly take creatine supplements. 

NO made from arginine metabolism via the NOS pathway is known to serve important 

functions in physical performance. It causes vasodilation which helps with tissue respiration 

through enhancing oxygen uptake in muscles (Wolin et al., 1997). NO improves blood flow, 

making it easier for oxygen delivery and uptake into muscle tissues to increase tissue respiration 

(Wolin et al., 1997). With those functions, it is useful in reducing oxygen cost during exercise and 

improving exercise tolerance (Campbell et al., 2004; Jones, 2014). Thereby, evidence of benefit 

for arginine supplementation in endurance sports such as long distance running, has been 

considered to be linked to NO effects (Viribay et al., 2020). Although some research evidence on 

the benefits of NO in exercise has been established, the benefits of oral arginine supplements to 

augment NO production in the body to exert these beneficial effects, have not been thoroughly 

investigated yet in healthy individuals. 

Overall, the available data on the impact of arginine supplementation on athletic performance 

remains controversial among various studies, and a consistently effective dose and duration for 

arginine supplementation has not been established yet either (Viribay et al., 2020).  

 

1.5.3 Use in Erectile Dysfunction 

Erectile Dysfunction affects over 50% of men in the age range of 40 to 70 years, with the 

number of people diagnosed with this condition increasing with age (Eardley, 2013). The main 

regulator for penile erection is NO formed from NOS, as the process of erection is regulated by 

vasorelaxation of smooth muscles in corpora cavernosa (Ignarro et al., 1987; Maggi et al., 2000). 

As L-Arg acts as the one and only substrate for NOS to produce NO in the body (Burnett, 2004), 

the role of arginine supplementation in potentially increasing physiological NO levels for the 

treatment of erectile dysfunction has been considered and studied. A study indicated that a 

common trend seen with patients with erectile dysfunction is the significantly reduced levels of L-

Arg and L-citrulline, suggesting a link between this condition and the role of L-Arg (Barassi et al., 

2017). Although phosphodiesterase inhibitors (PDEi) are first-line drugs for treatment of this 

condition, arginine supplements may prove to be an effective alternative. PDEi inhibit the 

breakdown of cGMP to cause relaxation in penile smooth muscle and maintain penile erection 
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(Rhim et al., 2019). Arginine supplements have been shown to cause less adverse effects and have 

better safety profile than PDEi (Rhim et al., 2019). As well, it also has been mentioned that as 

arginine supplements are more commonly viewed as nutrition supplements rather than drugs, it 

may be more psychologically accepted and easily considered for use than PDEi (Cormio et al., 

2011). In terms of effectiveness of arginine supplements in men with erectile dysfunction, there 

are several studies that have demonstrated its efficacy at specific doses. 

A prospective, randomized study tested for the efficacy and safety of L-Arg supplements at a 

dose of 2.5 g/day with and without 5 mg/day PDEi for 12 weeks, in patients with erectile 

dysfunction at various levels of severity (Gallo et al., 2020). Using the International Index of 

Erectile Function – Erectile Function Domain (IIEF-EF) in this study, L-Arg monotherapy was 

found to be significantly effective in patients with mild and moderate erectile dysfunction, but 

ineffective for people with the severe form of the disease. The effectiveness of arginine 

monotherapy was greatest for the mild severity population to the point that it was suggested to be 

equally effective as PDEi monotherapy with less side effects. Overall, combination therapy of L-

Arg with PDEi showed greatest improvement for all patient populations in the study, including the 

ones with the severe form of erectile dysfunction. The conclusion made from this study was 

supported by others who reported similar results (Rhim et al., 2019; Abu El-Hamd and Hegazy, 

2020; El-Wakeel et al., 2020). For instance, another erectile dysfunction clinical study in the 

elderly population using 5 g/day of arginine for 6 weeks with and without PDEi, also suggested 

combination therapy to be the outstanding method of treatment with best efficacy, though 

monotherapy was also shown to be effective (Abu El-Hamd and Hegazy, 2020). 

 

1.5.4 Use in Hypertension 

Hypertension is known to be the leading contributor for both morbidity and mortality 

worldwide and acts as a major causal factor for cardiovascular diseases (Oparil et al., 2018). The 

impact of L-Arg supplementation has been linked with hypertension treatment, mainly due to the 

role of endothelium-dependent vasodilation associated with NO, increasing blood flow and 

decreasing vascular resistance (Khalaf et al., 2019; Gambardella et al., 2020).  

In addition to vascular resistance and blood pressure, oxidative stress caused by reactive oxygen 

species also leads to vessel damage to contribute to cardiovascular disorders like hypertension and 

therefore, anti-oxidants play an important role in the maintenance of vascular health (Senoner and 
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Dichtl, 2019). A study done on mildly hypertensive individuals determined that 2 g of oral L-Arg 

three times a day for 28 days significantly increased the level of antioxidants to reduce oxidative 

stress (Jabecka et al., 2012).  

Furthermore, several studies suggest that only specific subgroups may benefit from these 

supplements. Some indicated that arginine supplementation is effective specifically for salt-

sensitive hypertension, rather than essential hypertension (Vasdev and Gill, 2008). As well, the 

majority of the benefits seen with L-Arg supplementation were in studies of hypercholesterolemic 

individuals, which showed that this population responded and benefited well in various 

cardiovascular aspects such as endothelium-dependent vasodilation and hypotensive responses 

(Clarkson et al., 1996; Theilmeier et al., 1997; Lekakis et al., 2002; West et al., 2005). This goes 

along with the findings that blood pressure regulation by oral arginine supplements is only 

effective for certain subgroups of unhealthy population such as people with diabetes or coronary 

artery disease, and not the healthy population (Ast et al., 2011; Dong et al., 2011; Martin and Desai, 

2020). No significant effect on systolic and diastolic blood pressure was seen in healthy male 

subjects chronically taking oral L-Arg supplements at a dose of 2 g/day for 45 days (Pahlavani et 

al., 2014). However, there is also a diet-controlled human study which reported that oral L-Arg 

supplements at a dose of 10 g three times day for a week led to significantly lowered blood pressure 

in healthy volunteers, though the sample size of study was very small (Siani et al., 2000). Study 

results regarding the efficacy of oral arginine supplements in hypertension are not completely in 

consensus to conclude without a doubt that it is effective for the entire population. However, a 

significant trend of benefits has been observed for individuals with various cardiovascular diseases. 

More studies considering different factors such as the targeted dose, treatment duration, health 

status, comorbidities and baseline blood pressure would contribute to a better understanding of 

how effective oral arginine use would be in hypertension. 

 

1.5.5 Use in Hypercholesterolemia 

High levels of cholesterol in the blood have been closely linked to cardiovascular complications 

such as atherosclerosis and coronary artery disease (CAD) (Kottke et al., 1988). Supplemental 

arginine use in hypercholesterolemia has been considered due to the theoretical knowledge of NO 

as a vasodilator and inhibitor of platelet aggregation (Moncada and Higgs, 1993). Clinical studies 

with hypercholesterolemic patients have determined that oral L-Arg supplementation at 6 to 10 



 

31 
 

g/day for 2 weeks and 8.4 g/day for 2 weeks, improves endothelial dysfunction (Maxwell et al., 

2000) and platelet aggregation (Wolf et al., 1997), respectively, both of which are major 

characteristics of hypercholesterolemia. These two characteristics are very important to tackle to 

prevent the atherogenic process of hypercholesterolemia. As mentioned earlier, clinical studies of 

oral arginine effects on blood pressure mainly involved hypercholesterolemic patients. This may 

be due to the fact that cardiovascular diseases are often interconnected with one another, meaning 

that hypercholesterolemic patients likely have hypertension and the two conditions are both 

characterized by endothelial dysfunction. Endothelial dysfunction plays a major role in several 

cardiovascular disorders including hypertension, hyperlipidemia, and diabetes.  

One study tested the effects of 7 g/day of oral L-Arg 3 times a day for 4 weeks in 

hypercholesterolemic individuals with endothelial dysfunction, by measuring the endothelium-

dependent and -independent responses through brachial artery diameter (Clarkson et al., 1996). 

This with several other similar studies (Creager et al., 1992; Thorne et al., 1998) together presented 

that oral L-Arg supplementation leads to significant improvement in endothelium-dependent 

vasodilation in hypercholesterolemia. In addition, one study in particular also suggested that 

arginine supplementation efficacy is similar or even better than lipid-lowering therapies which are 

often used to reduce cholesterol levels in the blood (Stroes et al., 1995).  

 

1.5.6 Use in Type 2 Diabetes 

Due to the possible roles of L-Arg as an antioxidant, insulin sensitizer and vasodilator, its use 

as an oral supplement in diabetes has been studied. Preclinical studies done using diabetic rats 

showed that oral arginine supplementation attenuates endothelial dysfunction, reduces oxidative 

stress and improves vasodilator responses (Pieper et al., 1996; Ozçelikay et al., 2000). As well, 

studies in both diabetic rat (Claybaugh et al., 2014) and human (Piatti et al., 2001) subjects found 

oral L-Arg supplementation to be effective in improving insulin sensitivity. Lastly, oral L-Arg 

supplementation at a dose of 6.4 g/day for 18 months in middle-aged individuals with defective 

glucose tolerance and metabolic syndrome lowered the risk of type 2 diabetes in the long term, 

measured by the cumulative incidence in a 90-month follow up period (Monti et al., 2018), 

suggesting its potential as a preventive. This suggestion is also supported by the fact that both L- 

and D-Arg directly act as a scavenger for MG, a major contributor to AGEs that is known to cause 

vascular complications of diabetes (Dhar et al., 2012). However, in contrast, there is a study that 
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demonstrated that L-Arg, in the process of interacting with MG and inhibiting AGEs formation, 

ends up producing superoxide anions as a byproduct (Tsai et al., 2004). With this result, the 

researchers of this study concluded that it may be counterintuitive to use L-Arg supplementation 

for prophylaxis in diabetic patients, as the harmful product can worsen oxidative stress that already 

exists in these patients. In conclusion for now, the evidence for the clinical use of oral arginine 

supplements in diabetic population overall is controversial and unclear (Tousoulis et al., 2002). 

 

1.5.7 Use in Heart Failure 

The physiological roles of L-Arg have been associated with alleviating heart failure by 

contributing to NO formation, which causes vasodilation to reduce preload and oxygen demand 

on the heart (Macdonald et al., 1996; Le Corvoisier et al., 2000). The benefits of oral arginine 

treatment on heart failure were mainly reported for chronic, and not acute supplementation. A 

randomized, double-blinded, placebo-controlled arginine study testing for oral doses of 5.6 to 12.6 

g/day for 6 weeks reported that the oral arginine supplementation improves blood flow, functional 

status in terms of walking distance, and arterial compliance, in heart failure patients (Rector et al., 

1996). Another study determined that chronic oral arginine supplementation may be beneficial to 

improve daily functioning, according to the results indicating that chronic but not acute 

supplementation, at 6 g twice a day for 6 weeks, delayed ventilatory threshold (Doutreleau et al., 

2005). As with other cardiovascular diseases, endothelial dysfunction is a key player in heart 

failure (Chin-Dusting et al., 1996), confirming the notion that NO serves important roles for this 

condition. In contrast to various studies that evidently suggested the efficacy of oral L-Arg 

supplements on heart failure, a study of heart failure patients taking 20 g/day of oral L-Arg 

supplements for 28 days demonstrated that in these patients, hypotensive responses were not 

significantly affected (Chin-Dusting et al., 1996). Thus, it was concluded from this study that oral 

arginine supplementation does not lead to improvement in endothelial function in heart failure 

patients. In order to better understand the therapeutic potential of oral arginine supplementation in 

heart failure patients, further clinical trials for both acute and chronic supplementation are needed. 

 

1.5.8 Use in MELAS Syndrome 

Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) 

syndrome is a multi-organ disorder characterized by sudden, short-lived, and recurring occurrences 
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of stroke-like episodes (Ikawa et al., 2020). NO deficiency and endothelial dysfunction have been 

demonstrated to be closely associated with the MELAS syndrome, especially in the stroke-like 

episodes (Koga et al., 2005; El-Hattab et al., 2015). L-Arg therapy is commonly used for treatment 

of MELAS patients, and the mechanism has been linked with increased blood flow from increased 

NO levels (El-Hattab et al., 2017).  

A study involving MELAS patients treated with oral L-Arg supplements at a dose of 0.15 to 

0.3 g/kd/day for 18 months reported that the patients had elevated baseline ADMA levels, 

suggesting subsequent downregulation of eNOS to be at play in MELAS (Koga et al., 2005). The 

same study also found that the oral supplementation improved clinical symptoms of MELAS, 

reducing both the frequency and severity of stroke-like episodes and did not cause any safety 

concerns associated with side effects. Similarly in a recent long-term study involving people with 

MELAS symptoms treated with oral doses of 0.3 to 0.5 g/kg/day in three divided doses following 

each meal for two years, a tendency towards improvement in incidence and severity of ictuses 

(strokes) was observed, though not statistically significant (Koga et al., 2018).  

Currently, oral arginine supplementation is being used commonly as prophylaxis to reduce 

recurrent stroke-like episodes, whereas the intravenous route is reserved for acute use, such as 

during a stroke-like episode (El-Hattab et al., 2017). In specific terms, the recommendations for 

the dose of oral arginine for prophylaxis is 150 to 300 mg/kg/day in 3 divided doses (Sproule and 

Kaufmann, 2008; Koenig et al., 2016). 

A major limitation is that clinical studies of L-Arg supplementation on MELAS only address 

and focus on the stroke-like episodes of this disease characterized by many other factors. Therefore, 

more arginine studies covering and assessing the other aspects would allow for a bigger picture in 

understanding the therapeutic effects of oral arginine in this disease. 

 

1.6 RATIONALE OF STUDY 

Oral arginine supplements are widely being used by both healthy and unhealthy populations for 

its physiological functions and presumed effectiveness for various conditions. However, these 

supplements are being used mostly according to the theoretical knowledge on the impact of 

arginine in the body, rather than reliable scientific facts proven through clinical studies. There still 

is a huge gap of evidence and knowledge on safety and efficacy of oral arginine supplements, and 

the recommended doses for use in particular conditions are needed to be further investigated. My 
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focus for this present study was on the effects of chronically administered oral arginine on arginase, 

eNOS, AGAT, and ADC pathways, and this study was extended from a lower dose Sprague-

Dawley (SD) rat study of 500 mg/kg/day at 4-week (Martin and Desai, 2020), that has been 

published in our lab with some interesting and significant findings. The experimental protocol for 

my research is comparable to the lower dose study, but the main differences are the dose and 

duration of treatment of the rats. For this research study, oral arginine was administered for 16 

weeks at a dose of 1000 mg/kg/day, so the arginine effects were examined from rats treated with 

twice the dose and four times the treatment duration in comparison to the previous study.  

Along with many other D-isomers of amino acids, D-Arg is commonly known to be 

physiologically inert and thus is left out from consideration in most arginine studies. In order to 

verify this, we incorporated testing for the effects of oral D-Arg supplementation along with the 

L-isoform on the metabolic pathways of SD rats. From the lower dose study of 500 mg/kg/day for 

4-week treatment mentioned previously, there were some unanticipated results of D-Arg appearing 

to exert significant effects on the levels of some metabolites and enzyme expressions from the four 

arginine pathways. Thereby, the results from this chronic higher dose study were aimed to be 

compared with the results of the lower dose study to observe the trend and understand the overall 

picture of the effects of both L- and D-Arg supplementation on the arginine metabolic pathways. 

Oral arginine supplements are not only commonly used by individuals with unhealthy 

conditions such as cardiovascular diseases, but also by healthy individuals such as athletes for 

ergogenic purposes. As mentioned previously, current evidence on beneficial effects of arginine 

supplements is limited, and more research needs to be done on the general population to determine 

how and at what dose oral arginine can cause beneficial and harmful effects on the body of normal 

and healthy individuals. SD rats were used as standard, normal models for this study to test for the 

metabolic effects of supplemental arginine in healthy bodies and to establish a basis for 

understanding safety and efficacy of chronic supplementation of oral arginine in the general 

population as a contributor for pre-clinical study. On top of this present study, there is another 

separate study in progress in our lab using Zucker Diabetic Fatty rats as a pathological model, to 

understand the physiological roles of oral arginine in the unhealthy, diseased population.  
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1.7 HYPOTHESIS AND OBJECTIVES 

1.7.1 Hypothesis  

Administration of oral L-arginine (1000 mg/kg/day) to 9-week-old male Sprague-Dawley rats 

for 16 weeks will lead to changes in enzyme expressions and activities, and/or the levels of 

metabolites, of arginine metabolic pathways, whereas administration of oral D-arginine 

(1000 mg/kg/day) for 16 weeks will not affect the arginine metabolic pathways. 

 
1.7.2 Objectives 

1. To determine the physiological impact of a dose of 1000 mg/kg/day of oral arginine 

administered for 16 weeks, on its metabolic pathways in male Sprague-Dawley rats and compare 

it with the effects of 500 mg/kg/day of oral arginine administered for 4 weeks and published from 

our lab (Martin and Desai, 2020). 

2. To determine the expression of L-arginine metabolizing enzymes, viz. arginase, eNOS, AGAT 

and ADC/agmatinase, and their activities, whenever possible, after treatment with L-Arg or D-Arg 

at 1000 mg/kg/day for 16 weeks in male Sprague-Dawley rats. 

3. To determine the levels of metabolites of L-arginine metabolizing enzymes, viz. arginase, eNOS, 

AGAT and ADC/agmatinase, after treatment with L-Arg or D-Arg at 1000 mg/kg/day for 16 weeks 

in male Sprague-Dawley rats. The metabolites measured include urea, hydroxyproline, nitrite, 

creatinine and total polyamines. The metabolites chosen for measurements were based on the 

availability of their respective assay kits. Thus, creatinine was measured instead of creatine, 

hydroxyproline instead of proline and total polyamines instead of individual polyamines such as 

putrescine, spermine and spermidine.  

4. To determine the effects of D-Arg, a supposedly physiologically inert isomer of arginine, at 

1000 mg/kg/day for 16 weeks in male Sprague-Dawley rats, and compare it to the effects of L-

Arg. 

5. To measure the levels of lysine, which uses the same transporter as arginine, viz. CAT-1, in 

order to determine whether oral arginine affects lysine levels and availability. 

6. To determine the effects of oral arginine on the levels of ADMA, a product of protein 

methylation post-translational modification, because ADMA is associated with homocysteine 

levels, cardiovascular diseases and may be affected by oral arginine supplements (Bode-Böger et 

al., 2003; Krzyzanowska et al., 2006) 
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CHAPTER 2: MATERIALS AND METHODS 

2.1 Animals 

All animal protocols for this study adhered to the guidelines of the Canadian Council on Animal 

Care and had received ethical approval by the Animal Care Committee at the University of 

Saskatchewan (Animal Care Protocol #20160059). 

The animals used for this research project were eighteen 9-week-old, male Sprague-Dawley 

rats purchased from Charles River Laboratories in Quebec, Canada. The rats were fed a standard 

diet of a laboratory rat (Prolab® RMH 3000, LabDiet) provided by the Animal Care facilities. The 

standard diet which contained 22.5 % of protein in total, consisted of 1.41 % arginine. 

Following acclimatization for 1 week, the rats were randomly divided into the following 

treatment groups: 

(1) Control group: Normal diet + plain drinking water (ad libitum) (n = 4).  

(2) L-Arg group: Normal diet + L-arginine (1000 mg/kg/day) in drinking water (n = 7). 

(3) D-Arg group: Normal diet + D-arginine (1000 mg/kg/day) in drinking water (n = 7).  

The treatment was continued for 16 weeks. During the entire treatment period of 16 weeks, 

each rat was placed alone in a separate cage for the recording of individual daily intake of water. 

To prepare arginine stock solution, the arginine free base (L-Arg, Cat # W381918, Sigma-

Aldrich Canada Ltd; D-Arg, Cat # GM7267, Glentham Life Sciences, Corsham, U.K.) was 

dissolved in the drinking water, and the highly alkaline pH was adjusted to 7·4 with hydrochloric 

acid. The reasons for the method of administrating arginine in drinking water for the treatment 

groups, rather than through oral gavage or parenteral administration, were because it reflects the 

route that humans take when taking oral supplements, and daily oral gavage for 16 weeks was 

considered to be extremely stressful with an increased risk of mortality for the rats, due to the 

possibility of pulmonary aspiration. A higher dose of 1000 mg/kg/day administered for a longer 

period of 16 weeks was chosen for my project, in order to compare its physiological impact with 

a smaller dose of 500 mg/kg/day administered for a shorter duration of 4 weeks that was used in a 

study published by our lab recently (Martin and Desai, 2020). In terms of human equivalent dose, 

the dose of 1000 mg/kg/day used in my study is equivalent to a dose of about 162 mg/kg/day for 

humans (approx. 11.3 g for a 70 kg adult), according to the conversion guide provided by the Food 

and Drug Administration (2005). This dose can be considered to be moderate for humans because 

a meta-analysis that included 11 trials studying the effect of arginine supplements on blood 
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pressure in humans used arginine doses ranging from 4 to 24 g/day for periods of 2 to 24 weeks 

(Dong JY et al. 2011).  

The body weights of all the rats were recorded prior to and after the full treatment period, and 

every other day during the treatment period. The water intake for each rat was recorded every other 

day. To account for the variation in daily water intake and the gradually increasing body weights, 

and to ensure that all rats get the same dose through the drinking water, the dose of arginine to be 

added to the drinking water for each rat was calculated with a specially devised formula:  

 

Body weight (g) x 15 / water intake per day (mL) = X mL of 10 g/L stock L-Arg solution to 

be added to a 300 mL bottle and the rest tap water to make 300 mL.  

 

Arginine was supplemented in the drinking water every other day based on calculations for that 

day. After the end of the 16-week treatment, the rats in all three groups were individually placed 

in metabolic cages which were used to collect urine over a 16 h period of  overnight fasting with 

free access to water, but not food. The amount of urine collected in metabolic cages varied a lot 

from rat to rat, ranging from 0.3 mL to 55 mL, which made the urinary measurements of various 

metabolites unreliable. Thereby, urinary arginine levels were not measured. The metabolic cages 

were not connected to any instruments for metabolic measurements. The rats were anesthetized, 

and the blood samples were collected. After centrifugation of the blood samples at 12,000 rpm for 

10 min, plasma was collected, frozen and stored at -80⁰C for further analysis. Finally, the rats were 

euthanized by cutting the heart open for exsanguination. Following euthanasia, organs and tissues 

were removed, rinsed with phosphate-buffered saline, frozen in liquid nitrogen, and stored in the 

-80°C freezer.  

 

2.2 Homogenization of Tissues 

Using a mortar and pestle, various organs including the aorta, liver, ileum, kidneys, brain, lungs 

and skeletal muscle were ground into fine powder under liquid nitrogen. The powdered samples 

were stored in cryogenic tubes at -80⁰ C. To prepare tissue lysates, about 15 mg of powdered tissue 

was taken in a 1.5 mL Eppendorf tube and vortex mixed with the homogenization buffer, 

composed of 1% protease inhibitor cocktail (Cat. # P8340 Sigma-Aldrich) in 1 M Tris + 0.5 M 

EDTA + 0.3 M sucrose buffer. The protease cocktail contained, AEBSF [4-(2-aminoethyl) 
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benzenesulfonyl fluoride hydrochloride, 104 mM], aprotinin (80 μM), bestatin (4 mM), E-64 (1.4 

mM), pepstatin A (1.5 mM) and leupeptin (2 mM). The tissue mix was sonicated (3x10 sec pulses) 

using a polytron ultrasonic homogenizer. Following homogenization, the samples in the tubes were 

centrifuged for 10 min at 14000rpm to collect the supernatant from each tube. The majority of this 

supernatant collected was stored at -80°C for later use in various assays, whereas the raining was 

used to prepare for the western blot homogenates described below. 

 

2.3 Western Blotting 

Western blot experiments were performed in cell lysates of tissue samples to determine the 

enzyme expression in the treatment groups in comparison to the control group. Firstly, western 

blot homogenates were prepared as follows: the homogenates were mixed with 4x Laemmli sample 

buffer (Cat# 161-0737, Bio-Rad Laboratories) and 2.5% 2-Mercaptoethanol (Cat# M6250, Sigma-

Aldrich) in each tube, before being denatured at 95°C for 5 min in a digital heat block (Fisher 

Scientific, Ottawa, ON, Canada). In order to measure the protein concentration of the homogenates 

in each tube, protein assay was completed with using the Detergent Compatible Protein Assay 

(Bio-Rad Laboratories Ltd., Mississauga, ON, Canada).  

The loading volume of homogenates was determined by trial and error of loading amount 

between 30 μg and 75 μg, observing which one gives the best signal for the imaging software. The 

samples were loaded into 4-20% SDS-polyacrylamide pre-cast gels (Cat. # 456-1094, Bio-Rad 

Laboratories Ltd.), where each gel contains 10 of 50 μL wells. The first well was always loaded 

with 5 μL of Precision Plus Dual Color Standards (Cat. # 161-0374, Bio-Rad Laboratories Ltd.), 

to make sure that the bands detected are the proteins of interest at a specific molecular weight. The 

sample proteins in the gels were separated by electrophoresis, in an electrophoresis tank filled with 

electrode running buffer, prepared with ingredients from Bio-Rad Laboratories Ltd., Mississauga, 

ON, Canada: tris-Base (15 g/L, Cat. # 161-0719), glycine (72 g/L, Cat. # 161-0724), and sodium 

dodecylsulfate (SDS 15 g/L, Cat. # 161-0302). The gels were run at 50V initially for 5 min, 

followed by 100V for 1 hour and 25 min.  

Following electrophoresis, the separated protein bands on the gel were wet electro-transferred 

at 100V for 3 h at 4°C to a 0.45μm polyvinylidene difluoride (PVDF) membrane (Cat. # 45004110, 

GE Healthcare Life Sciences, Mississauga, ON, Canada). The transfer occurred in a tank filled 
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with transfer buffer, made of tris-Base (5.85 g/L), glycine (2.93 g/L), SDS (0.373 g/L), and 20% 

Methanol (Cat. # A452-4, Fischer Scientific, Ottawa, ON, Canada), with pH adjusted to 9.2. 

After the transfer, the membrane was blocked at room temperature with 5% bovine serum 

albumin (BSA, Cat. # A7906, Sigma-Aldrich Canada) on a shaker for an hour, in order to prevent 

non-specific binding of antibodies. This was followed by primary antibody incubation on a rocker 

at 4°C overnight (12 to 16 h). In order to dilute the antibodies prior to incubation, tris-buffered 

saline with tween (TBST) was prepared, with the following ingredients: Tris-Base (2.423 g/L), 

Sodium Chloride (NaCl, 8.766 g/L, Cat. # S271-3, Fischer Scientific), and 0.1% Tween-20 (Cat. 

# BP337-100, Fischer Scientific Canada, Ottawa, ON Canada). As with TBST, 1% BSA was also 

added when diluting the antibodies accordingly: eNOS (1:500, Cat. # 611852, BD Transduction 

Laboratories, Mississauga, ON, Canada), SLC7A1 (CAT-1, 1:1000, Cat. # ABIN5965961, 

Antibodies-Online Inc., Atlanta, GA, USA), arginase I and arginase II (1:1000, Cat. # ab91279 

and Cat. # ab203071, respectively), ADC (1:1000, Cat. # ab157214), agmatinase (1:1000, Cat. # 

ab231894), GATM (1:1000, Cat. # ab87062), and the loading control, β-actin (1:1000, Cat. # 

ab16039), all purchased from Abcam Inc., Toronto, ON, Canada.  

Following overnight incubation, the membrane was washed thoroughly with TBST five times 

at 5 min per wash, for a total of 25 min. After the wash, the membrane was subsequently incubated 

with either anti-rabbit or anti-mouse horseradish peroxidase-conjugated secondary antibody (Anti-

mouse, Cat. # 1706576, and Anti-rabbit, Cat. # 1706515, Bio-Rad Laboratories Ltd., Mississauga, 

ON, Canada) for an hour at room temperature on a shaker. The secondary antibody was diluted at 

1:10000 with TBST and 5% BSA. Following the secondary incubation, the membrane was again 

washed thoroughly for 25 min, as previously described. Finally, Clarity Western Enhanced 

Chemiluminescence Blotting Substrate (Cat. # 1705061, Bio-Rad Laboratories Ltd.) was applied 

on the membrane and incubated for about 30 sec before imaging on the ChemiDoc Imaging System 

(G:BOX Chemi XX6, Syngene, Frederick, MD, USA). The images of the protein bands were 

manually quantified using GeneTools software (Syngene, Frederick, MD, USA).  

For loading control of western blotting data, the Invitrogen No-Stain Protein Labelling Reagent 

(Cat#A44449, Fisher Scientific) was used to perform total protein normalization. This reagent 

allowed for simple and quick visualization and quantification of all the proteins on the transferred 

membranes. Following the wet electro-transfer, each membrane was washed twice at 2 min each 

on a shaker, with ultrapure water. Then, 10 mL of No-Stain Membrane Labelling Solution was 
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added to the plate with the washed membrane and put on a shaker for 10 min for labelling reaction 

to occur. This was followed by another subsequent set of wash, three times at 2 min each. Finally, 

the membranes were imaged using the ChemiDoc Imaging System for visualization of the protein 

bands on the membranes. 

 

2.4 Arginine Assay  

The levels of arginine in the samples of plasma, liver, kidney, brain, ileum, skeletal muscle, 

aorta, and lungs were measured using a fluorometric Arginine Assay Kit (Cat. # ab252892, Abcam 

Inc., Toronto, ON, Canada). This is a quick and specific enzyme-based assay, where L-Arg 

metabolites create a detectable fluorescence signal after reacting with a probe. The samples used 

for this assay were filtered using an ultrafiltration device with a 10 kD cut-off Spin Column (Cat. 

# MRCPRT010, Millipore Sigma, Oakville, ON, Canada). In brief, 250 μL for each of the sample 

supernatant prepared and stored at -20°C, as described above, was very gently transferred to the 

10 kD Spin Column using a pipette. After making sure that the caps are tightly closed, the columns 

with the samples were centrifuged at 10000 x g for 20 min at 4°C. Subsequently, the filtrate was 

collected in a separate tube to be used for the assay. For each test sample, there were three wells 

assigned in the microplate, one background well, one spike well, and one sample well. The 

background noise readings are there to get subtracted from the test sample and spike readings. 

Spike is referred to as the internal standard that is used to rule out the matrix effect in the samples. 

The reaction mix and background mix were separately prepared in this assay. The reaction mix 

was added to the blank, standard, sample, and spike wells, whereas the background mix was added 

to the just the background wells. Following the addition of the mixture, the plate was incubated 

protected from light, for an hour in a warm water bath with temperature controlled at 37°C. The 

fluorescence was measured with a fluorescence spectrophotometer (Fluoroskan Ascent, Thermo-

Fisher Scientific, Vantaa, Finland) at 535/587 nm excitation/emission wavelengths.  

 

2.5 Arginase Activity Assay 

Arginase activity was quantified in samples of plasma, ileum, liver, and kidney, using the 

colorimetric Arginase Activity Assay Kit (Cat. # ab180877, Abcam Inc., Toronto, ON, Canada). 

This is an assay for kinetic mode detection, to quantify the activity of arginase. Since excess urea 

in samples can interfere with the assay, the samples were filtered using a 10 kD cut-off spin column, 
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prior to performing the assay. The samples, standards and controls were first loaded in a 96-well 

microplate. The background control mix was added to the background wells, and the substrate mix 

was added to each sample and positive control well and incubated for 20 min in a water bath at 

37°C. Subsequently, the reaction mix was added to all the standard, sample, control wells. This is 

where arginine intermediates produced from arginase in the samples were reacted with a probe to 

develop a coloured product. Immediately after the addition of the reaction mix, the optical density 

of the product was read at 570 nm in a kinetic mode for 30 min using a microplate 

Spectrophotometer (Multiskan Spectrum, Thermo-Fisher Scientific, Vantaa, Finland). 

 

2.6 Urea Assay 

Urea is a product of arginase catalyzed breakdown of L-Arg. Urea levels in plasma, urine, liver, 

kidney, ileum, brain, skeletal muscle, and lungs were measured with a colorimetric Urea Assay 

Kit (Cat. # ab83362, Abcam Inc., Toronto, ON, Canada). This assay kit allows for quick and 

reliable detection by forming a product from urea that subsequently reacts with a probe to develop 

a gradation of colour in a microplate. The brain and lung samples were diluted 1:10 by adding 5 

μL of sample to 45 μL of the provided assay buffer. For kidney, the samples were diluted 1:20 by 

adding 5 μL of sample to 95 μL of assay buffer. The rest of the samples including plasma and urine 

were used without additional dilution. In the sample and background wells in the 96-well 

microplate, 10 μL of each of the diluted samples were carefully loaded. The volumes in the sample 

and background wells were adjusted to 50 μL per well with the assay buffer, and 50 µL of each of 

the standard solutions was directly loaded in the standard wells.  Afterwards, 50 μL of the reaction 

mix was then added into the each standard and test sample well and 50 μL of the background mix 

was added into the background wells, making the total volume in all wells 100 μL. Following the 

mix, the plate was incubated in a 37°C water bath with the lid closed to protect from light, for an 

hour. Finally, after incubation, the optical density was read at 570 nm in a spectrophotometer 

(Multiskan Spectrum, Thermo-Fisher Scientific, Vantaa, Finland).  

 

2.7 Hydroxyproline Assay 

Proline and hydroxyproline are derived from L-glutamate, which in turn is metabolically related 

to L-ornithine formation from L-Arg catalyzed by arginase. Hydroxyproline levels in the samples 

of plasma, liver, ileum, and kidney were measured using the colorimetric Hydroxyproline Assay 
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Kit (Cat. # ab222941, Abcam Inc., Toronto, ON, Canada). In this assay, hydroxyproline in the 

samples was first oxidized into a pyrrole intermediate. The oxidation reagent mix was added to 

each well in the microplate containing samples and standards, and the plate was incubated for 20 

min at room temperature. Subsequently, the pyrrole intermediate formed was further reacted with 

an acidic developer reagent containing perchloric acid, which is a toxic and very reactive substance, 

handled and disposed carefully according to the protocol. After incubation with oxidation reagent 

mix, a developer was added and incubated in a warm water bath at 37°C, for 5 min. Right after, 4-

dimethylamino benzaldehyde (DMAB) concentrate was added and incubated using a heat block at 

65°C for 45 min. In result, a coloured chromophore was ultimately generated and its absorbance 

was measured using a microplate Spectrophotometer (Multiskan Spectrum, Thermo-Fisher 

Scientific, Vantaa, Finland) at 560 nm.  

 

2.8 Nitric Oxide Synthase Activity Assay 

NOS activity was quantified in the aorta, liver, ileum, kidney, brain, lungs, and skeletal muscle, 

using the colorimetric Nitric Oxide Synthase Activity Assay Kit (ab211083, Abcam Inc., Toronto, 

ON, Canada). This assay kit detects activity of all isoforms of NOS, endothelial NOS, neuronal 

NOS, and inducible NOS. In this assay, the sample homogenates were added with a reaction mix 

that consists of L-Arg content to be served as a substrate to the NOS enzyme. The mixture was 

incubated for 1 hour in the water bath at 37°C. This was followed by the addition of NOS Assay 

Buffer and enhancer solution, which was incubated for 10 min at room temperature. Then, Griess 

Reagents 1 and 2 were added and mixed in the plate wells and incubated for 10 min at room 

temperature to develop a colour. As mentioned previously for the nitrate and nitrite assay, the 

Griess Reagents are responsible for converting nitrate into nitrite, followed by conversion of nitrite 

into a purple azo product. Immediately after the 10-minute incubation period, absorbance at 540 

nm was read for all wells in a plate reader.  

 

2.9 Nitrate/Nitrite Assay 

Nitrate and nitrite levels in plasma, liver, ileum, kidney, brain, skeletal muscle, aorta, and lungs 

were measured using the Nitrate/Nitrite Colorimetric Assay Kit (Cat. # 780001, Cayman Chemical, 

Ann Arbor, MI, USA). This assay used the samples that were filtered using the 10 kD cut-off Spin 

Column. The final products of NO after reacting with various molecules in the body, are nitrate 
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and nitrite, and since the proportion of the two metabolites are variable, the sum of levels of both 

metabolites are determined as an indicator for total NO production. This assay is based on Griess 

reaction, employing a two-step process. Nitrate in the sample is first converted into nitrite by the 

enzyme, nitrate reductase, and subsequently using Griess reagents, nitrite is converted into an azo 

chromophore, appearing dark purple in colour. After all the samples and standards were added into 

the microplate, enzyme cofactor and nitrate reductase mixtures were added and incubated for three 

h at room temperature. After the incubation period, Griess reagent 1 was added to all the wells, 

immediately followed by Griess reagent 2. Lastly, the plate was left for 10 min at room temperature 

for the development of colour, before the optical density of the final azo product was measured on 

a microplate Spectrophotometer (Multiskan Spectrum, Thermo-Fisher Scientific, Vantaa, Finland) 

at 540nm to detect the nitrite concentration.  

 

2.10 Creatinine Assay 

Creatine is a product of catalysis of L-Arg by AGAT. Creatine is converted to creatinine. 

Creatinine levels in the samples of plasma, urine, liver, kidney, ileum, brain, and skeletal muscle, 

were measured using a colorimetric Creatinine Assay Kit (Cat. # ab65340, Abcam Inc., Toronto, 

ON, Canada). In order to prevent errors in the assay from excessive protein concentration, samples 

were deproteinized using a 10 kD cut-off Spin Column prior to beginning the assay. In this assay, 

a probe reacts with a metabolite of creatinine produced from a series of reactions to develop a 

colour. To briefly outline the enzymatic reactions that occurred in this assay, creatinine in the 

samples first got converted into creatine by the enzyme, creatininase. Subsequently, creatine was 

converted into sarcosine by the enzyme, creatinase. Following an oxidation reaction of sarcosine 

led to the synthesis of a product that yields a red-coloured product. The optical density of this final, 

coloured product was measured at 570 nm on a microplate Spectrophotometer (Multiskan 

Spectrum, Thermo-Fisher Scientific, Vantaa, Finland), after the addition of the reaction mix and 

background mix in the corresponding wells as described above, and subsequent incubation for an 

hour in a water bath kept at 37°C.  

 

2.11 Total Polyamine Assay 

Polyamines such as spermine and spermidine are partly derived from putrescine, another 

polyamine, which in turn is a metabolic product of L-Arg catalyzed by ADC and agmatinase. Total 
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polyamine levels were measured in samples of plasma, liver, ileum, kidney, and brain using the 

fluorometric Total Polyamine Assay Kit (Cat. # ab239728, Abcam Inc., Toronto, ON, Canada). 

This assay used the samples that were filtered using a 10 kD cut-off Spin Columns. In this assay, 

the polyamines in the samples first reacted with an enzyme reaction mix to synthesize hydrogen 

peroxide. Hydrogen peroxide was then reacted with a polyamine probe to develop a fluorescence 

signal. The probe was diluted 1:10 right before use, with anhydrous dimethyl sulfoxide (DMSO).  

The plate was incubated in the water bath, in the absence of light for 30 min at 37°C. The 

fluorescence of the final product was measured with a fluorescence spectrophotometer (Fluoroskan 

Ascent, Thermo-Fisher Scientific, Vantaa, Finland) at 535/587 nm excitation/emission 

wavelengths. 
 

2.12 Lysine Assay 

Lysine levels in the samples of plasma, liver, ileum, and kidney were quantified by a 

fluorometric Lysine Assay Kit (Cat. # ab273311, Abcam Inc., Toronto, ON, Canada). Similar to 

the arginine assay kit, the lysine assay is also based on enzymatic metabolism, where a detectable 

fluorophore is produced after intermediates of lysine react with a probe. As well, the samples were 

deproteinized using a 10 kD Spin Column to prevent potential interference with enzymes found in 

the samples. The protocol of this assay is very similar to the arginine assay, in that for each sample, 

there were three parallel wells, one for sample, one for spiked sample, and one for background 

control. Additionally, to the spike wells were added 4 μL of the lysine standard solution. After the 

addition of samples and the standard solution in the wells of the plate, the volume of all the wells 

was adjusted to 60 μL with the provided assay buffer. As with the arginine assay, the reaction mix 

was added to all test sample and spike wells, and the background mix was added just to the 

background wells. This was followed by an incubation period of 45 min in the absence of light at 

25°C. Finally, the fluorescence was measured with a fluorescence spectrophotometer (Fluoroskan 

Ascent, Thermo-Fisher Scientific, Vantaa, Finland) at 535/587 nm excitation/emission 

wavelengths. 

 

2.13 Asymmetric Dimethylarginine Assay 

Asymmetric dimethylarginine (ADMA) is produced by methylation of proteins and it is 

believed to compete with L-Arg for NOSs. ADMA levels in the plasma, ileum, liver, and kidney 
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were measured using the colorimetric Asymmetric dimethylarginine ELISA Kit (Cat. # 

OKEH02587, Aviva Systems Biology, San Diego, CA, USA). The provided microtiter well-plate 

in this kit is pre-coated with antibody against ADMA. Firstly, the standards and samples were 

added into the wells of pre-coated anti-ADMA microplate. Immediately after ADMA-Biotin 

Complex was added in all the wells except the blank and incubated for an hour at room temperature. 

As there are limited anti-ADMA coated in the well-plate, the biotinylated ADMA competes with 

ADMA in the samples. The plate was washed three times with the provided wash buffer with 2 

min contact time each to remove any unbound ADMA. The washed wells were incubated with the 

Avidin-HRP Conjugate, for 45 min at room temperature. Following incubation, the liquid was 

disposed and thoroughly washed again in the same way as described previously. A detection 

substrate, TMB substrate, was added to the wells and incubated in the water bath at 37°C protected 

from the light for around 10 to 15 min. The gradations of the blue colour in the standard wells 

were checked every 3 to 5 min, to stop the reaction at an optimal colour. After observing an optimal 

development of colour, the stop solution was finally added to each well, where immediately with 

this addition, the colours changed to yellow gradations. Within 5 min of adding the stop solution, 

absorbance was measured at 450 nm using a microplate Spectrophotometer (Multiskan Spectrum, 

Thermo-Fisher Scientific, Vantaa, Finland). 

 

2.14 Statistical Analysis 

A power analysis was completed in the previous study in our lab (Martin and Desai, 2020), 

using G*Power (v 3.1.9.4), to choose the sample size. We used at least four different parameters 

measured (significant and non-significant) and with a P=0.05 and a power of 0.80, which gave us 

actual power values above 0.95 and a total sample size ranging from 6 to 15, which justifies our 

total sample size of 18 (4+7+7). Statistical analysis of the western blotting and assay results was 

performed using Graphpad PRISM software version 8, through one-way ANOVA with Tukey’s 

post hoc test, in order to compare differences between the rat treatment groups. The analysis results 

were expressed as Mean ± SEM. Results with a P value smaller than 0.05 were considered as 

significant, when considering the differences between the groups.  
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CHAPTER 3: RESULTS 

3.1 Oral L- and D-arginine supplements did not significantly affect the average body weight of 

Sprague-Dawley rats. 

The 9-week-old rats were initially randomly divided into three treatment groups and the average 

body weights of the three groups were not significantly different from each other. Treatment with 

L- or D-Arg for 16 weeks did not affect the average body weight of the respective treatment group 

compared with the control group, which received plain drinking water, or compared with each 

other (Fig. 9A).  

 

3.2 Oral D-arginine significantly reduced the average daily water consumption of Sprague-Dawley 

rats. 

The daily water intake was measured every other day and averaged for the group. The average 

daily intake was not different among the three treatment groups at the beginning of treatment at 9 

weeks of age. Treatment with D-Arg for 16 weeks significantly reduced the average daily water 

intake, when measured at the end of the treatment period, compared to the L-Arg group (Fig. 9B).  
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Figure 9. Oral D-arginine decreased average daily water intake, but arginine did not affect 

average body weight of Sprague-Dawley rats. Nine-week-old male Sprague-Dawley rats were 

treated with L-arginine (L-Arg) or D-arginine (D-Arg) at a dose of 1000 mg/kg/day each in 

drinking water for 16 weeks. The control (Con) group received plain drinking water. The average 

body for each group was calculated from the sum of weights of individual rats in each group 

divided by the total number. For water intake, the rats were housed individually in separate cages 

and water intake was recorded every other day. The daily water intake for each rat was calculated 

and the group average was obtained. The values are Mean ± SEM. (n = 4 for Con and n = 7 each 

for L-Arg and D-Arg groups). P<0.05 was considered significant. 
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3.3 Oral L- and D-arginine did not significantly affect arginine levels in the plasma and different 

organs.  

As shown in Fig. 10, the levels of arginine in the plasma, liver, ileum, kidney, aorta, lungs, 

brain and skeletal muscle were not significantly affected by 16 weeks of treatment with L-Arg or 

D-Arg compared with the control group or compared with each other.  
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Figure 10. Oral arginine did not affect the levels of arginine in the plasma and different 

organs of Sprague-Dawley rats. Nine-week-old male Sprague-Dawley rats were treated with L-

arginine (L-Arg) or D-arginine (D-Arg) at a dose of 1000 mg/kg/day each in drinking water for 16 

weeks. The control (Con) group received plain drinking water. Arginine levels were measured 
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with a specific assay kit (Cat. # ab252892, Abcam Inc., Toronto, ON, Canada) as described in 

methods. The values are Mean ± SEM. (n = 4 for Con and n = 7 each for L-Arg and D-Arg groups). 

(Ske. muscle – skeletal muscle). 

 

3.4 Oral D-arginine significantly increased cationic amino acid transporter 1 expression in the 

ileum, but not in the liver or aorta. 

CAT-1 is the main transporter of arginine. In the ileum, the expression of CAT-1 was 

significantly increased in the D-Arg treatment group compared to the control group (Fig. 11A, B). 

The expression of CAT-1 in the liver and the aorta was not affected by treatment with L-Arg or 

D-Arg (Fig. 11A, B).  

 
Figure 11. Oral D-arginine increased the expression of cationic amino acid transporter 1 in 

the ileum. Nine-week-old male Sprague-Dawley rats were treated with L-arginine (L-Arg) or D-

arginine (D-Arg) at a dose of 1000 mg/kg/day each in drinking water for 16 weeks. The control 

(Con) group received plain drinking water. Western blotting was performed using a specific anti-

cationic amino acid transporter-1 [CAT-1 (SLC7A1), 1:1000, Cat. # ABIN5965961, Antibodies-

Online Inc., Atlanta, GA, USA] antibody as described in methods. The values are Mean ± SEM. 

(n = 4 for Con and n = 7 each for L-Arg and D-Arg groups). P<0.05 was considered significant. 
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3.5 Oral L- and D-arginine significantly affected arginase expression in the liver and the ileum in 

Sprague-Dawley rats.  

The expression of arginase I was significantly increased in the liver following treatment with 

both L-Arg and D-Arg, compared with the control group (Fig. 12A, B). On the other hand, 

treatment with L-Arg for 16 weeks significantly decreased the expression of arginase II in the 

ileum, compared to the control group and the D-Arg group (Fig. 12A, B). D-Arg did not affect 

arginase II expression in the ileum (Fig. 12A, B). L-Arg and D-Arg did not affect arginase II 

expression in the kidney (Fig. 12A, B).   

 

 

 
Figure 12. Oral L- and D-arginine increased arginase expression in the liver, but L-arginine 

decreased it in the ileum. Nine-week-old male Sprague-Dawley rats were treated with L-arginine 

(L-Arg) or D-arginine (D-Arg) at a dose of 1000 mg/kg/day each in drinking water for 16 weeks. 

The control (Con) group received plain drinking water. Western blotting was performed using 

specific anti-arginase I and anti-arginase-II antibodies (1:1000, Cat. # ab91279 and Cat. # 

ab203071, respectively, Abcam Inc. Toronto, ON, Canada) as described in methods. The values 

are Mean ± SEM. (n = 4 for Con and n = 7 each for L-Arg and D-Arg groups). P<0.05 was 

considered significant. 
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3.6 Oral L-arginine significantly decreased arginase activity in the plasma, but not in the ileum, 

liver or kidney. 

The activity of arginase in the plasma was significantly reduced for the L-Arg group of SD rats 

treated for 16 weeks, when compared with both the control and D-Arg groups (Figure 13A). 

However, the activity levels of this enzyme were not significantly altered in the ileum (Fig. 13B), 

liver (Fig. 13C) or kidney (Fig. 13D). 

 
 

Figure 13. Oral L-arginine decreased arginase activity in the plasma. Nine-week-old male 

Sprague-Dawley rats were treated with L-arginine (L-Arg) or D-arginine (D-Arg) at a dose of 1000 

mg/kg/day each in drinking water for 16 weeks. The control (Con) group received plain drinking 

water. An arginase activity assay was performed with a specific assay kit (Cat. # ab180877, Abcam 

Inc., Toronto, ON, Canada) as described in methods. The values are Mean ± SEM. (n = 4 for Con 

and n = 7 each for L-Arg and D-Arg groups). P<0.05 was considered significant. 
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3.7 Oral D-arginine significantly affected urea levels in the ileum and the skeletal muscle in 

Sprague-Dawley rats. 

Urea is a product of the arginine-arginase metabolic pathway. Treatment with D-Arg for 16 

weeks significantly decreased urea levels in the ileum compared with the L-Arg group, but not the 

control group (Fig. 14B). On the other hand, the D-Arg group had significantly higher urea levels 

in the skeletal muscle compared with the L-Arg group, but not the control group (Fig. 14E). L-Arg 

and D-Arg did not affect urea levels in the plasma, liver and kidney (Fig. 14A, C, D).   
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Figure 14. Oral D-arginine decreased urea levels in the ileum, but increased it in the skeletal 

muscle, compared to L-arginine. Nine-week-old male Sprague-Dawley rats were treated with L-

arginine (L-Arg) or D-arginine (D-Arg) at a dose of 1000 mg/kg/day each in drinking water for 16 

weeks. The control (Con) group received plain drinking water. Urea levels were measured with a 

specific assay kit (Cat. # ab83362, Abcam Inc., Toronto, ON, Canada) as described in methods. 

The values are Mean ± SEM. (n = 4 for Con and n = 7 each for L-Arg and D-Arg groups). P<0.05 

was considered significant. 
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3.8 Oral D-arginine significantly affected hydroxyproline levels in the ileum and the brain. 

Hydroxyproline is a derivative of proline, which is formed from L-Arg catalyzed by arginase 

and OAT. Treatment with oral D-Arg for 16 weeks significantly decreased hydroxyproline levels 

in the ileum compared to the control as well as the L-Arg group (Fig. 15B). On the other hand, D-

Arg significantly increased hydroxyproline levels in the brain, compared with the control and the 

L-Arg groups (Fig. 15F).  

L-Arg and D-Arg treatment did not affect hydroxyproline levels in the plasma, liver, kidney, 

aorta or skeletal muscle in comparison to the control group or compared to each other (Fig. 15). 
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Figure 15. Oral D-arginine decreased hydroxyproline levels in the ileum, but increased it in 

the brain. Nine-week-old male Sprague-Dawley rats were treated with L-arginine (L-Arg) or D-
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arginine (D-Arg) at a dose of 1000 mg/kg/day each in drinking water for 16 weeks. The control 

(Con) group received plain drinking water. Hydroxyproline levels were measured with a specific 

assay kit (Cat. # ab222941, Abcam Inc., Toronto, ON, Canada) as described in methods. The 

values are Mean ± SEM. (n = 4 for Con and n = 7 each for L-Arg and D-Arg groups). P<0.05 was 

considered significant. 

 

3.9 Oral D-arginine significantly increased endothelial nitric oxide synthase expression in the aorta 

and the kidney, but not in the brain. 

NOSs are important enzymes catalyzing the formation of NO from L-Arg. In both the aorta and 

kidney, the expression of eNOS was significantly increased compared to the control group, 

following oral D-Arg treatment for 16 weeks, but not L-Arg (Fig.  16). Conversely, in the brain, 

neither L-Arg nor D-Arg significantly affected the expression of eNOS (Fig. 16). 

 

 
Figure 16. Oral D-arginine increased endothelial nitric oxide synthase expression in the aorta 

and the kidney. Nine-week-old male Sprague-Dawley rats were treated with L-arginine (L-Arg) 

or D-arginine (D-Arg) at a dose of 1000 mg/kg/day each in drinking water for 16 weeks. The 

control (Con) group received plain drinking water. Western blotting was performed using specific 



 

58 
 

anti-endothelial nitric oxide synthase (eNOS) antibody (1:500, Cat. # 611852, BD Transduction 

Laboratories, Mississauga, ON, Canada) as described in methods. The values are Mean ± SEM. (n 

= 4 for Con and n = 7 each for L-Arg and D-Arg groups). P<0.05 was considered significant. 

 

3.10 Oral arginine did not affect nitric oxide synthase activity in different organs in Sprague-

Dawley rats. 

As shown in the graphs in Fig. 17, oral L-Arg or D-Arg treatment for 16 weeks did not affect 

NOS activity in the aorta, ileum, liver, kidney, lungs, brain and skeletal muscle compared to the 

control or compared with each other.  
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Figure 17. Oral arginine did not affect the nitric oxide synthase activity in different organs 

of Sprague-Dawley rats. Nine-week-old male Sprague-Dawley rats were treated with L-arginine 
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(L-Arg) or D-arginine (D-Arg) at a dose of 1000 mg/kg/day each in drinking water for 16 weeks. 

The control (Con) group received plain drinking water. A nitric oxide synthase (NOS) activity 

assay was performed with a specific assay kit (ab211083, Abcam Inc., Toronto, ON, Canada) as 

described in methods. The values are Mean ± SEM. (n = 4 for Con and n = 7 each for L-Arg and 

D-Arg groups). P<0.05 was considered significant. 

 

 

3.11 Oral arginine supplements significantly affected nitrate and nitrite levels in the plasma, urine 

and ileum in Sprague-Dawley rats.  

Nitrate and nitrite levels, two main metabolic products of NO, were measured as nitrite, 

following conversion of nitrate into nitrite in the assay. Nitrite levels were significantly reduced in 

the plasma (Fig. 18A) and the ileum (Fig. 18C) in the D-Arg treated group, compared with the L-

Arg group, but not the control group. Nitrite levels were also significantly decreased in the urine 

in both the L-Arg and D-Arg groups compared to the control group (Fig. 18B). Nitrite levels in 

other organs such as the liver, kidney, lungs, skeletal muscle and the brain were not affected by 

treatment with oral arginine (Fig. 18).   
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Figure 18. Oral arginine decreased nitrite levels in the urine. Nine-week-old male Sprague-

Dawley rats were treated with L-arginine (L-Arg) or D-arginine (D-Arg) at a dose of 1000 

mg/kg/day each in drinking water for 16 weeks. The control (Con) group received plain drinking 

water. Nitrate plus nitrite levels were measured as nitrite after conversion of nitrate to nitrite with 
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nitrate reductase and measured with a specific assay kit (Cat. # 780001, Cayman Chemical, Ann 

Arbor, MI, USA) as described in methods. The values are Mean ± SEM. (n = 4 for Con and n = 7 

each for L-Arg and D-Arg groups). P<0.05 was considered significant. 

 

3.12 Oral arginine supplements affected the expression of arginine:glycine amidinotransferase in 

the liver and the kidney. 

The expression of AGAT was significantly decreased in the liver following treatment with both, 

L-Arg and D-Arg, compared to the control group (Fig. 19A, B).  However, in the kidney oral L-

Arg significantly increased the expression of AGAT compared to the control as well as the D-Arg 

groups (Fig. 19A, B). On the other hand, the expression of AGAT was not affected in the ileum 

and the brain by oral arginine (Fig. 19). 
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Figure 19. Oral L- and D-arginine decreased arginine:glycine amidinotransferase expression 

in the liver, but L-arginine increased it in the kidney. Nine-week-old male Sprague-Dawley 

rats were treated with L-arginine (L-Arg) or D-arginine (D-Arg) at a dose of 1000 mg/kg/day each 

in drinking water for 16 weeks. The control (Con) group received plain drinking water. Western 

blotting was performed using specific anti-arginine:glycine amidinotransferase (AGAT) antibody 

(1:1000, Cat. # ab87062, Abcam Inc., Toronto, ON, Canada) as described in methods. The values 

are Mean ± SEM. (n = 4 for Con and n = 7 each for L-Arg and D-Arg groups). P<0.05 was 

considered significant. 
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3.13 Oral arginine significantly affected creatinine levels in the urine and the ileum. 

Creatinine is a product of creatine, which is formed from L-Arg catalyzed by AGAT. The levels 

of creatinine were significantly decreased in the urine of L-Arg and D-Arg treated groups, 

compared to the control group (Fig. 20B). On the other hand, D-Arg treatment significantly 

increased creatinine levels in the ileum compared to the control and the L-Arg groups (Fig. 20C).  

Creatinine levels in the plasma, liver and kidney were not affected by L-Arg or D-Arg treatment 

(Fig. 20).  
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Figure 20. Oral L- and D-arginine decreased creatinine levels in the urine, but D-arginine 

increased it in the ileum. Nine-week-old male Sprague-Dawley rats were treated with L-arginine 

(L-Arg) or D-arginine (D-Arg) at a dose of 1000 mg/kg/day each in drinking water for 16 weeks. 

The control (Con) group received plain drinking water. Creatinine levels were measured with a 

specific assay kit (Cat. # ab65340, Abcam Inc., Toronto, ON, Canada) as described in methods. 

The values are Mean ± SEM. (n = 4 for Con and n = 7 each for L-Arg and D-Arg groups). P<0.05 

was considered significant. 
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3.14 Oral arginine significantly affected the expression of arginine decarboxylase in the liver and 

the ileum. 

The expression of ADC was significantly increased in the liver following treatment with oral 

L-Arg and D-Arg, compared with the control group (Fig. 21A, B). However, both L-Arg and D-

Arg significantly decreased the expression of ADC in the ileum, compared to the control group 

(Fig. 21A, B).  The expression of ADC in the kidney and the brain was not affected by L-Arg or 

D-Arg (Fig. 21).  

 
Figure 21. Oral arginine increased arginine decarboxylase expression in the liver, but 

decreased it in the ileum. Nine-week-old male Sprague-Dawley rats were treated with L-arginine 

(L-Arg) or D-arginine (D-Arg) at a dose of 1000 mg/kg/day each in drinking water for 16 weeks. 

The control (Con) group received plain drinking water. Western blotting was performed using 
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specific anti-arginine decarboxylase (ADC) antibody (1:1000, Cat. # ab157214, Abcam Inc., 

Toronto, ON, Canada), as described in methods. The values are Mean ± SEM. (n = 4 for Con and 

n = 7 each for L-Arg and D-Arg groups). P<0.05 was considered significant. 

 

3.15 Oral arginine significantly affected the expression of agmatinase in the kidney, ileum and 

brain in rats. 

Treatment with oral D-Arg, but not L-Arg, significantly increased the expression of agmatinase 

in the kidney, compared to the control group (Fig. 22A, B). In the ileum, D-Arg increased 

agmatinase expression compared to the control as well as the L-Arg group (Fig. 22A, B). In the 

brain, D-Arg had the opposite effect of decreasing agmatinase expression, compared to the control 

group (Fig. 22A, B). Agmatinase expression in the liver was not affected by oral L-Arg or D-Arg 

treatment (Fig. 22).  
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Figure 22. Oral D-arginine increased agmatinase expression in the kidney and the ileum, but 

decreased it in the brain. Nine-week-old male Sprague-Dawley rats were treated with L-arginine 

(L-Arg) or D-arginine (D-Arg) at a dose of 1000 mg/kg/day each in drinking water for 16 weeks. 

The control (Con) group received plain drinking water. Western blotting was performed using 

specific anti-agmatinase antibody (1:1000, Cat. # ab231894, Abcam Inc., Toronto, ON, Canada), 

as described in methods. The values are Mean ± SEM. (n = 4 for Con and n = 7 each for L-Arg 

and D-Arg groups). P<0.05 was considered significant. 
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3.16 Oral L-arginine significantly increased total polyamines levels in the plasma. 

Putrescine, spermine and spermidine are polyamine products of L-Arg metabolism catalyzed 

by ADC and agmatinase. The levels of total polyamines were significantly elevated in the plasma 

for the L-Arg treated group of SD rats, compared to the control and the D-Arg groups (Fig. 23A).   

Total polyamine levels in the ileum, liver, kidney and skeletal muscle were not affected by 

treatment with oral L-Arg and D-Arg (Fig. 23).  
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Figure 23. Oral L-arginine increased total polyamine levels in the plasma. Nine-week-old 

male Sprague-Dawley rats were treated with L-arginine (L-Arg) or D-arginine (D-Arg) at a dose 

of 1000 mg/kg/day each in drinking water for 16 weeks. The control (Con) group received plain 

drinking water. Total polyamines levels were measured with a specific assay kit (Cat. # ab239728, 

Abcam Inc., Toronto, ON, Canada) as described in methods. The values are Mean ± SEM. (n = 4 

for Con and n = 7 each for L-Arg and D-Arg groups). P<0.05 was considered significant. 
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3.17 Oral arginine did not affect lysine levels in the plasma and organs in rats.  

Lysine is transported by the same CAT-1 transporter as arginine, leading to competition. Oral 

L-Arg or D-Arg treatment for 16 weeks did not affect lysine levels in the plasma, liver, ileum or 

kidney (Fig. 24). 

 
Figure 24. Oral arginine did not affect lysine levels in the plasma or different organs of 

Sprague-Dawley rats. Nine-week-old male Sprague-Dawley rats were treated with L-arginine (L-

Arg) or D-arginine (D-Arg) at a dose of 1000 mg/kg/day each in drinking water for 16 weeks. The 

control (Con) group received plain drinking water. Lysine levels were measured with a specific 

assay kit (Cat. # ab273311, Abcam Inc., Toronto, ON, Canada) as described in methods. The 

values are Mean ± SEM. (n = 4 for Con and n = 7 each for L-Arg and D-Arg groups). P<0.05 was 

considered significant. 
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3.18 Oral arginine did not affect asymmetric dimethylarginine levels in the plasma and organs in 

rats. 

ADMA is formed by methylation of arginine during protein modification and could compete 

with L-Arg for NOS. As shown in the graphs in Fig. 25, treatment with oral L-Arg or D-Arg for 

16 weeks did not affect the levels of ADMA in the plasma, liver, ileum, lungs and brain in rats, 

when compared with to the control group, as well as each other. 

 
 

Figure 25. Oral arginine did not affect the levels of asymmetric dimethylarginine in the 

plasma and different organs of Sprague-Dawley rats.  Nine-week-old male Sprague-Dawley 

rats were treated with L-arginine (L-Arg) or D-arginine (D-Arg) at a dose of 1000 mg/kg/day each 
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in drinking water for 16 weeks. The control (Con) group received plain drinking water. 

Asymmetric dimethylarginine (ADMA) levels were measured with a specific assay kit (Cat. # 

OKEH02587, Aviva Systems Biology, San Diego, CA, USA) as described in methods. The values 

are Mean ± SEM. (n = 4 for Con and n = 7 each for L-Arg and D-Arg groups). P<0.05 was 

considered significant. 
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Table 2. Physiological effects of oral L-Arg and D-Arg on its metabolic pathways: Summary 

of results obtained with oral arginine at 1000 mg/kg/day for 16 weeks in Sprague-Dawley 

rats, in comparison with oral arginine at 500 mg/kg/day  for 4 weeks study (Martin & Desai, 

2020)  

 

Parameter Oral L-Arg  Oral D-Arg 

Body Weight ↔ ↔ 

Water Intake ↔ 

 

↓ vs. L-Arg 

(↔) 

Arginine Levels ↔ ↔ 

Lysine Levels ↔ ↔ 

ADMA Levels ↔ ↔ 

CAT-1 Expression ↔ 

(↓ Li, Il) 

↑ Il 

(↔) 

Arginase Pathway 

Arginase Expression ↑ Li 

↓ Il vs. C, D-Arg 

(↓ Il) 

↑ Li 

↑ Il vs. L-Arg 

(↓ Li, Il) 

Arginase Activity ↓ Pl vs. C, D-Arg 

(↔) 

↑ Pl vs. L-Arg 

(↔) 

Urea Levels ↑ Il vs. D-Arg 

↓ Sk.M vs. D-Arg 

(↔) 

↓ Il vs. L-Arg 

↑ Sk.M vs. L-Arg 

(↑ Li; ↑ Ki vs. C, L-Arg) 

Hydroxyproline Levels ↑ Il vs. D-Arg 

↓ Br vs. D-Arg 

↓ Il vs. C, L-Arg 

↑ Br vs. C, L-Arg 

eNOS Pathway 

eNOS Expression ↔ 

(↑ Ao, Ki) 

↑ Ao, Ki 

(↑ Ki) 

NOS Activity ↔ ↔ 
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(↓ Lu vs. D-Arg) (↑ Lu vs. C, L-Arg) 

Nitrate + Nitrite Levels ↑ Pl, Il vs. D-Arg 

↓ Ur 

(↑ Pl vs C, D-Arg) 

↓ Pl, Il vs. L-Arg 

↓ Ur 

(↓ Pl vs. L-Arg) 

ADC Pathway 

ADC Expression ↑ Li, ↓ Il 

(↑ Li) 

↑ Li, ↓ Il 

(↔) 

Agmatinase Expression ↓ Il vs. D-Arg 

(↔) 

↑ Ki, ↓ Br 

↑ Il vs. C, L-Arg 

(↑ Li vs L-Arg) 

Total Polyamines Levels ↑ Pl vs. C, D-Arg 

(↑ Li vs C, D-Arg) 

↓ Pl vs. L-Arg 

(↑ Pl) 

AGAT Pathway 

AGAT Expression ↓ Li 

↑ Ki vs. C, D-Arg 

(↓ Li, Ki) 

↓ Li 

↓ Ki vs. L-Arg 

(↑ Li vs L-Arg 

↑ Ki vs C, L-Arg) 

Creatinine Levels ↓ Ur 

↓ Il vs. D-Arg 

(↓ Sk) 

↓ Ur 

↑ Il vs. C, L-Arg 

(↑ Li) 

 

Results shown in black font are from the current study obtained with a dose of oral L-Arg or D-

Arg at 1000 mg/kg/day administered for 16 weeks to Sprague-Dawley rats. Results from the lower 

dose arginine study (500 mg/kg/day for 4 weeks) published  from the supervisor’s lab (Martin & 

Desai, 2020) have been included in the table of summary, highlighted in red in bracket, to compare 

with the results of the current study. 

Symbols: ↔ no change compared to control; ↑ increase compared to control unless otherwise 

stated; ↓ decrease compared to control unless otherwise stated 

Abbreviations: ADC – arginine decarboxylase; ADMA – asymmetric dimethylarginine; AGAT 

– arginine: glycine amidinotransferase; Ao – aorta; Br – brain; C – control; CAT-1 – cationic 
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amino acid transporter 1; D-Arg – D-arginine; eNOS – endothelial nitric oxide synthase; Il – ileum; 

Ki – kidney; L-Arg – L-arginine; Li – liver; Pl – plasma; Sk. M – skeletal muscle 
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CHAPTER 4: DISCUSSION 

Oral arginine supplements are widely being used by healthy people such as athletes, and people 

with different disease conditions such as hypertension, erectile dysfunction and MELAS, as a few 

examples. The use of oral arginine is based on its known physiological functions and the widely 

published reports as a substrate of NOSs and a precursor for NO formation and vasodilation. Media 

reports of these effects and especially the news that NO mediates penile erection, resulted in 

unregulated use of NO enhancing strategies to boost NO availability, including widespread use of 

arginine supplements (Klotz et al., 1999). The unfortunate outcome is that there is a general lack 

of awareness of multiple metabolic pathways for L-Arg and how they would be affected by oral 

supplements. There still is a huge gap of evidence and knowledge on safety and efficacy of oral 

arginine supplements, and the recommended doses for use in particular conditions need be further 

investigated. As well, studies involving oral arginine supplementation often leave out D-Arg from 

consideration, as D-Arg is commonly known to be physiologically inert in the body. In order to 

verify this, we tested for the effects of both L- and D-Arg supplementation on the major metabolic 

pathways of SD rats. I report the physiological effects of chronic supplementation of oral L- and 

D-Arg in SD rats, treated for 16 weeks at a dose of 1000 mg/kg/day.  

Treatment with oral L-Arg or D-Arg at 1000 mg/kg/day for 16 weeks in male SD rats did not 

produce any overt toxicity. The rats were observed every other day in the vivarium, and they 

showed normal activity and feeding behaviour among the three groups. There was no mortality. 

Firstly, the body weight of the SD rats administered oral L- or D-Arg at 1000 mg/kg/day for 16 

weeks was not significantly altered in comparison to the control group, as shown in Fig. 9A. The 

rats had been randomly divided into three groups and the average weight was not significantly 

different between groups at the start of treatment at 9 weeks of age (Fig. 9A). Though the weight 

of the rats from all groups increased with age, there was no significant difference in body weight 

among the three rat groups at the end of the 16-week treatment period at 25 weeks of age. This 

result is consistent with the findings from the previously published study from our lab, which 

reported that neither L- nor D-Arg oral supplementation at 500 mg/kg/day for 4 weeks led to 

significant changes in body weight of SD rats, in comparison to the control group (Martin and 

Desai, 2020). It may be safe to assume that oral arginine supplements are apparently not affecting 

appetite or food intake.  
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The water intake of rats was measured every other day and to enable this, the rats were housed 

individually in separate cages. The main purpose to record the water intake was to help us to add 

the appropriate amount of L-Arg or D-Arg to the drinking water so that each rat consumed the 

same daily dose of 1000 mg/kg/day of arginine. Thus, rats drinking less water had more arginine 

administered in their water. Water with arginine was changed every other day to account for any 

changes in daily drinking water using a specially devised formula described in the methods. As 

shown in Fig. 9B, the daily average water intake for the three groups was similar at the start of the 

treatment at 9 weeks of age. However, at the end of the 16-week treatment period when the SD 

rats were 25 weeks old, the D-Arg group showed significantly lower average daily water 

consumption in comparison to the L-Arg group, and not the control group (Fig. 9B). One possible 

reason for this may be due to the distinct smell and yellow colour of the water in which D-Arg was 

dissolved, unlike the L-Arg powder, which could have possibly deterred the SD rats from drinking 

water normally, resulting in reduced daily water intake. For both L-Arg and D-Arg, the base was 

used to make a stock solution of 10 g/L and the pH of the highly alkaline solution was adjusted to 

7.4 with hydrochloric acid. In comparison, a dose of 500 mg/kg/day of L-Arg or D-Arg for 4 weeks, 

reported from this lab, did not affect the average daily water intake of rats in the three groups 

(Martin and Desai, 2020). 

It is important to measure levels of arginine in the body after oral supplementation to determine 

its absorption and enable correlation of any changes observed with the levels of arginine. Oral L- 

and D-Arg supplementation at 1000 mg/kg/day for 16 weeks did not significantly affect the normal 

plasma and organ levels of arginine (Fig. 10). This result can be partly explained by the fact that 

approximately 40% of the oral arginine in the body gets extensively metabolized in the gut prior 

to systemic absorption (Castillo et al., 1993b). Additionally, even after absorption, oral arginine in 

the blood rapidly gets catabolized and cleared from the body (Wu et al., 2007). The elimination 

half-life of oral arginine supplements has been found to be around 1 hour (Bode-Böger et al., 1998) 

and so it makes sense that the levels in the plasma remained unchanged after long-term arginine 

supplementation. Another contributing factor could be changes in the expression of the main 

transporter for arginine, CAT-1, as described below and in the previous study from our lab (Martin 

and Desai, 2020). A dose of 500 mg/kg/day for 4 weeks in male SD rats also did not affect arginine 

levels in the plasma and different organs (Martin and Desai, 2020). This is very significant because 

it indicates the rapid and dynamic metabolism of arginine and the possibility that the body might 
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be capable of rapidly adjusting to dietary fluctuations or more stable changes in arginine intake as 

supplements. 

CAT-1 is a primary transporter for arginine (White, 1985). Surprisingly, oral D-Arg, and not 

L-Arg, significantly increased CAT-1 expression in the ileum in comparison to control (Fig. 11). 

The reason why ileum was chosen as a site to measure CAT-1 expression in the treated SD rats 

was because CAT-1 in the small intestine acts as the primary transporter of arginine for its 

absorption into the systemic circulation (Devés and Boyd, 1998). CAT-1 expression was also 

measured in the liver and aorta, because the liver is the secondary site containing CAT-1 for further 

arginine absorption after the initial intestinal uptake, and in the aortic endothelial cells, CAT-1 has 

been found to colocalize with eNOS (Shin et al., 2011). However, there was no significant effect 

of arginine supplementation on CAT-1 expression in the liver or aorta (Fig. 11). The finding of 

upregulation of CAT-1 expression in the ileum with D-Arg but not L-Arg supplementation was 

unexpected as L-Arg is the isoform known to normally cause metabolic effects in the body, 

whereas the D-isomer appears to be inert.  

On top of that, findings from other studies including the one published with a 500 mg/kg/day 

dose of arginine study from our lab had shown an opposite effect, that CAT-1 expression was 

downregulated in response to oral arginine supplementation, possibly in response to the elevated 

oral arginine levels, similar to a ligand-receptor relationship (Fernandez et al., 2003; Martin and 

Desai, 2020). The result is also more perplexing with the findings that the levels of neither arginine 

(Fig. 10) nor lysine (Fig. 24), which are the substrates for this transporter, were altered with L- or 

D-Arg supplementation. Currently, to the best of our knowledge, there are no research studies that 

have reported the effects of D-Arg on arginine transporters, and only studies that have reported 

arginine effects on the upregulation of CAT-1 expression focus specifically on L-Arg (Schwartz 

et al., 2006; Tachikawa et al., 2018). One possibility is that D-Arg may bind to CAT-1 in the ileum 

and prevent its interaction with L-Arg, acting as an antagonist, leading to the upregulation of CAT-

1 expression. There could be other mechanisms of D-Arg that have not been researched yet. 

Understanding the pharmacodynamics of D-Arg would definitely be helpful in interpreting its 

effects on not just the uptake transporters, but also various metabolic enzymes in the body. D-Arg 

is most definitely an interesting isomer. 
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Our lab examined the effects of arginine supplements on the mean arterial pressure (MAP). 

Since, these in vivo studies were performed by another student before me, they have not been 

included in the results section. However, they are interesting to include in this discussion. L-Arg 

and D-Arg at a dose of 1000 mg/kg/day for 16 weeks did not affect the MAP in SD rats, as shown 

in Fig. 26 below. The previous study from our lab with a 500 mg/kg/day for 4 weeks in Sprague-

Dawley rats also showed no effect on the MAP and heart rate (Martin and Desai, 2020).  

 

Figure 26. Oral arginine did not affect the mean arterial pressure or heart rate in Sprague-

Dawley rats. Nine-week-old male Sprague-Dawley rats were treated with L-arginine (L-Arg) or 

D-arginine (D-Arg) at a dose of 1000 mg/kg/day each in drinking water for 16 weeks. The control 

(Con) group received plain drinking water. The mean arterial pressure (MAP) was measured in 

anesthetized rats with a carotid artery cannula as described in methods. The values are Mean ± 

SEM. (n = 4 for Con and n = 7 each for L-Arg and D-Arg groups). (Unpublished data. With 

permission from my supervisor, Dr K Desai). 

 

This result on the MAP is very significant because it questions the validity of taking arginine 

supplements for its presumed vasodilating effect by healthy people. However, oral L-Arg, but not 
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D-Arg, at a dose of 1000 mg/kg/day for 12 weeks given to male Zucker Diabetic Fatty rats, a 

model of type 2 diabetes with hypertension, significantly decreased the MAP in a study performed 

in our lab (unpublished results). This would suggest that arginine supplements might be beneficial 

in disease conditions, but not in healthy people. Some studies have shown beneficial effects of 

arginine supplements in people with hypertension (Lekakis et al., 2002), hypercholesterolemia 

(Clarkson et al., 1996) and T2DM (Lucotti et al., 2006). The exact mechanisms of how arginine 

supplements might benefit under disease conditions have not been elucidated. 

Arginine supplements are popular in a major part due to their presumed NO-mediated 

vasodilatory effect. Our lab also examined the effects of L-Arg and D-Arg at 1000 mg/kg/day for 

16 weeks given to SD rats, on acetylcholine-induced endothelium-dependent and sodium 

nitroprusside-induced endothelium-independent vasodilation. The results in Fig. 27 below show 

that neither L-Arg nor D-Arg affected ACh-induced or SNP-induced hypotensive responses. This 

again questions the validity of taking arginine supplements by heathy people for its NO-mediated 

vasodilation. Therefore, it is important to investigate the mechanism by which arginine 

supplements benefit people with cardiovascular disease such as hypertension and atherosclerosis, 

discussed above. The results of both MAP and endothelial function in healthy population are 

important to further investigate and understand, as some suggested that arginine supplements can 

reduce blood pressure in the healthy population as well, including those with only mild blood 

pressure elevation (Mayo Clinic, 2021). With this information, the healthy population may take 

these supplements for prevention of cardiovascular issues such as hypertension. In addition, 

something to consider is that it may be perhaps good if oral arginine does not affect the blood 

pressure in healthy population, as it could prevent complications associated with hypotension 

including dizziness and falls. 



 

82 
 

 
 

Figure 27. Oral arginine did not affect the acetylcholine- and sodium-nitroprusside-induced 

hypotensive responses in Sprague-Dawley rats. Nine-week-old male Sprague-Dawley rats were 

treated with L-arginine (L-Arg) or D-arginine (D-Arg) at a dose of 1000 mg/kg/day each in 

drinking water for 16 weeks. The control (Con) group received plain drinking water. The 

acetylcholine (ACh)-induced endothelium-dependent and sodium nitroprusside (SNP)-induced 

endothelium-independent hypotensive responses concentration-related responses were recorded in 

anesthetized rats with a carotid artery cannula as described in methods. The values are Mean ± 

SEM. (n = 4 for Con and n = 7 each for L-Arg and D-Arg groups). (Unpublished data. With 

permission from my supervisor, Dr K Desai). 
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Arginase is the principal enzyme for arginine metabolism in the body, not only producing 

important products such as urea to detoxify ammonia, but is also competing with eNOS and 

downregulating it to cause various negative health effects associated with NO deficiency (Wu and 

Morris  Jr, 1998). Both oral L- and D-Arg supplementation at a dose of 1000 mg/kg/day for 16 

weeks in SD rats significantly increased arginase I expression in the liver in comparison to control 

(Fig. 12) and arginase II expression was decreased specifically with oral L-Arg supplementation 

in the ileum when compared with both the control and D-Arg groups (Fig. 12). In the kidney, 

neither L- nor D-Arg caused any significant changes in arginase II levels. This may be simply due 

to the fact that majority of the oral arginine gets metabolized prior to reaching the kidney, so that 

it is not able to cause any effects there. The observed decrease in arginase II expression in the 

ileum of SD rats treated with oral L-Arg was also seen with the lower dose study in our lab (Martin 

and Desai, 2020) and may have occurred from excessive amount of arginine acting upon arginase 

as a substrate, since arginase is the first and primary enzyme in the intestines for first-pass 

metabolism (Wu et al., 2007). The observed significant elevation of arginase I expression in the 

liver with the 1000 mg/kg/day dose of oral L-Arg seen in my study is not consistent with the effects 

of 500 mg/kg/day 4-week arginine treatment carried out in the previous study (Martin and Desai, 

2020), where for this lower dose study, D-Arg had decreased the expression of arginase I in the 

liver compared to the control (Martin and Desai, 2020). The effect on liver arginase may be dose 

related, and could be explained by the decreased arginase II expression in the ileum, which would 

then allow more arginine to go to the liver and upregulate arginase I there. This finding is also 

consistent with the report that exogenous arginine induces arginase and offers one major reason 

why oral arginine supplements may not be beneficial (Dioguardi, 2011). Thereby, theoretically the 

more supplementation of arginine in the body, the more catabolic activity of arginase there would 

be. This may be problematic because, as mentioned earlier, upregulation of arginase causes 

negative effect on eNOS, suppressing the formation of NO, which results in various diseased 

conditions such as hypertension and endothelial dysfunction (Holowatz and Kenney, 2007; 

Caldwell et al., 2018). As to why an excess of a substrate would upregulate one enzyme and down 

regulate another one may be related to mechanism of regulation of a particular enzyme.  

Additionally, L-Arg supplements also caused a significant decrease in arginase activity in the 

plasma in comparison to the control and D-Arg group (Fig.13A), whereas in the liver, ileum and 

the kidney (Fig. 13.B, C, D) it did not. This could be associated with our results on the effects of 
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L-Arg supplementation on arginase expression. Decreased arginase II expression in the ileum with 

oral arginine may lead to increased absorption of arginine in the systemic circulation. Subsequently, 

the increased bioavailable arginine in the blood may rapidly get distributed to various organs such 

as the liver through transporters, resulting in overall decreased levels of arginase activity in the 

plasma. In support, a study reported that chronic administration of L-Arg in Wistar rats increased 

plasma arginine concentration and decreased arginase activity (Moretto et al., 2017). In order to 

better understand the metabolic effects of oral arginine supplementation in the arginase metabolic 

pathway beyond the observation of the enzyme expression and activity, the levels of metabolites 

in this pathway, urea and hydroxyproline, were measured in the plasma and various organs (Fig. 

14 and 15).  

Urea levels remained unchanged with oral L-Arg or D-Arg supplementation in the plasma, liver 

and kidney in comparison to the control and with each other (Fig. 14A, C, D). However, urea levels 

were found to be significantly lower in the ileum with oral D-Arg than the levels resulting from L-

Arg supplementation (Fig. 14B). This effect of D-Arg is unexpected and is difficult to explain, 

especially when D-Arg significantly increased urea levels in the skeletal muscle when compared 

with the L-Arg, but not the control group. In contrast in the skeletal muscle, urea levels were 

observed to be significantly lower for the SD rats treated with oral L-Arg than the levels found in 

D-Arg group of SD rats (Fig. 14E). In both cases, the ileum and the skeletal muscle, the significant 

differences produced by D-Arg were only in comparison to the L-Arg group and not the control 

group and so we can also say that L-Arg increased urea in the ileum and decreased it in the skeletal 

muscle in relation to D-Arg. It may be argued that the significance is reduced because the control 

group is not involved. Interestingly, D-Arg at 500 mg/kg/day for 4 weeks had significantly 

increased urea levels in the liver and the kidney, compared to the control group (Martin and Desai, 

2020). Unfortunately, there is no clear explanation for this finding at the moment as 

pharmacodynamic studies on oral arginine and its effects on the skeletal muscle in association to 

urea production, are unable to be found.  

L-proline is a product of L-ornithine catalyzed by OAT. To recall, L-ornithine is formed from 

L-Arg by arginase. When we investigated the effects of oral arginine on hydroxyproline levels, it 

was found that oral D-Arg, and not L-Arg supplements significantly decreased hydroxyproline 

levels in the ileum (Fig. 15B) and increased hydroxyproline levels in the brain (Fig. 15F), in 
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comparison to both the control and L-Arg groups of SD rats. In the plasma, liver, kidney, and the 

aorta however, the oral arginine treatment did not have any effect on hydroxyproline levels. These 

results reflecting the effects of specifically D-Arg supplements on hydroxyproline levels are again 

difficult to understand in connection to the resulting effects on arginase expression and activity 

with limited knowledge on the impact of D-Arg in the body. However, it is noteworthy that in the 

ileum, both urea and hydroxyproline levels were significantly decreased by D-Arg (Fig. 14B and 

15B). This may possibly indicate that D-Arg plays a role in downregulating the arginase pathway 

in the ileum to lead to significant reduction in the metabolite levels, even though arginase II 

expression (Fig. 12) and activity (Fig. 13) were unchanged compared to control. In the long run, 

this may be problematic, as both urea and hydroxyproline play a significant role in the body, as 

described earlier.  

Another major enzyme for arginine metabolism is NOS. Oral arginine supplements are 

primarily used for the effects of NO, produced from the NOS pathways. From the three isoforms 

of NOS, the focus of this present study was on eNOS, which is commonly known for its 

cardiovascular effects involved with vasodilation. As discussed earlier, the MAP as well as 

endothelium dependent vasodilation were not affected by arginine supplements, which is not 

surprising as several studies on arginine therapy have concluded that oral arginine is only effective 

in regulating blood pressure for people with cardiovascular diseases, and not in healthy individuals 

(Ast et al., 2011; Dong et al., 2011; Martin and Desai, 2020).  

Oral D-Arg, but not L-Arg supplementation at 1000 mg/kg/day for 16 weeks significantly 

increased eNOS expression in the aorta and kidney of SD rats when compared with the control 

group (Fig. 16). This is interesting as no significant changes in eNOS expression occurred with L-

Arg supplementation in those two organs, suggesting that there must be some selective effect of 

oral D-Arg on the eNOS pathway that is not known yet. Currently it is believed that D-Arg does 

not act as a substrate for eNOS (Palmer et al., 1988). A possible explanation for the upregulation 

of eNOS expression is similar as explained with CAT-1 expression in the ileum, that oral D-Arg 

may just have affinity and no metabolic effect on the eNOS, acting as a competitive inhibitor and 

preventing L-Arg from binding to the enzyme. With less enzyme availability for L-Arg to cause 

effects, enzyme expression might have been increased to make up for the reduced substrate-

enzyme interaction. In comparison, in the previous study from our lab, L-Arg at 500 mg/kg/day 
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increased eNOS expression in the aorta compared to the control, and both, L-Arg and D-Arg at the 

same dose increased eNOS expression in the kidney compared to the control group (Martin and 

Desai, 2020). As to why a higher dose of L-Arg used for a longer duration in my study would not 

affect eNOS expression in the aorta and kidney is a matter of conjecture. Perhaps the body adjusts 

more with higher doses and longer duration of treatment, which hopefully will be proved with a 

dose of 500 mg/kg/day for 16 weeks in the third phase of this study in our lab. 

In order to further investigate the effects on eNOS enzyme with oral arginine supplementation, 

a NOS activity assay was also performed in various organs such as the aorta, ileum, liver, kidney, 

lungs, brain and skeletal muscle. Despite the alterations in eNOS expression and its metabolite 

levels, the activity of NOS was not significantly affected by either isoform of oral arginine 

supplementation (Fig. 17). In the study with 500 mg/kg/day dose of L-Arg and D-Arg for 4 weeks, 

the NOS activity was not affected in most organs, except in the lungs where D-Arg reduced it 

significantly compared to the control and L-Arg groups (Martin and Desai, 2020). 

Nitrate and nitrite are the main stable metabolic products of further NO metabolism. NO itself 

has a very short half-life of 5-6 sec and not easily amenable to measurement. We used an assay kit 

with nitrate reductase, which converted nitrate to nitrite which then was converted by the Griess 

reagent into a coloured product and measured. Fig. 18 shows nitrite levels, where L-Arg had 

significantly higher levels in the plasma, compared to D-Arg, but not control (Fig. 18A). Here 

again it is difficult to say that L-Arg nitrite levels were significantly higher because it was not in 

comparison to the control. In the previous study (Martin and Desai, 2020), L-Arg at 500 mg/kg/day 

for 4 weeks significantly increased nitrite levels in the plasma compared to control and D-Arg 

groups. The urinary nitrite levels were significantly lower in the L-Arg and D-Arg groups 

compared to control (Fig. 18B), which is difficult to explain, unless we use the theory that higher 

dose arginine supplements start utilizing the arginase pathway at the cost of NO production 

(Dioguardi, 2011). Thus, the reduced nitrite levels in the urine with oral L-Arg supplementation 

may be due to arginase reducing arginine bioavailability of L-Arg for eNOS, as arginase competes 

with eNOS for arginine (Wu, 2009) and arginase I has been found to be significantly upregulated 

in the liver in this study (Fig. 12). Another less likely explanation, which requires more proof, is 

that with oral D-Arg suppressing L-Arg interaction with eNOS, there will theoretically be less 

production of NO and excretion of nitrites from the body. In the ileum, oral D-Arg significantly 
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reduced nitrite levels in comparison to just the L-Arg group (Fig. 18C), which again raises the 

question whether D-Arg is metabolically inert as believed. With hardly any research on the effects 

of D-Arg in the metabolic pathways, and on the effects of chronic oral D-Arg supplementation in 

general at this very specific dose used in my study, a reliable interpretation on these results is not 

feasible at the moment. 

ADMA is formed in the body during protein turnover and posttranslational modification where 

arginine is methylated. ADMA was first shown to be an endogenous inhibitor of eNOS, and its 

levels were increased in renal failure (Vallance et al., 1992). An ADMA assay was done in plasma 

and multiple organs of SD rats to investigate whether this played a role in the resulting levels of 

expression, activity and metabolites in the NOS pathway (Fig. 25). In result, ADMA levels in the 

plasma, liver, ileum, lungs and brain were not significantly affected by either of L-Arg or D-Arg 

administration. A 500 mg/kg/day dose of L-Arg and D-Arg for 4 weeks significantly increased 

ADMA levels in the kidney compared to the control and D-Arg groups (Martin and Desai, 2020). 

Studies looking at ADMA levels after arginine supplements are hard to find, but are very necessary 

since ADMA levels are associated with several disease conditions (Böger et al., 2000; Dayal and 

Lentz, 2005; Stühlinger and Stanger, 2005; Krzyzanowska et al., 2006) and it is important to know 

whether oral arginine supplements affect their levels. Bode-Boger et al. (Bode-Böger et al., 2003) 

reported that L-Arg supplementation at 8 g twice a day orally for 14 days given to people over 70 

years of age improved endothelial function and while it did not alter ADMA levels it improved the 

L-Arg/ADMA ratio.   

The AGAT pathway is essential for creatine biosynthesis in the body for regulation of energy 

balance (Wu and Morris  Jr, 1998). Both oral L- and D-Arg supplements at 1000 mg/kg/day for 

16 weeks significantly decreased AGAT expression in the liver, compared to the control group 

(Fig. 19), whereas in the kidney, oral L-Arg and not D-Arg led to a significant increase in AGAT 

expression, compared to the control and D-Arg groups (Fig. 19). As there were no assay kits to 

quantify the levels of the direct metabolite, creatine, creatinine levels instead were measured in 

plasma, urine, and various organ samples of SD rats. Creatinine is a degradation product of creatine. 

Creatinine levels were significantly decreased in the urine with both oral L-Arg and D-Arg 

supplementation but increased in the ileum with oral D-Arg, and not L-Arg supplementation (Fig. 

20). Creatinine levels in the plasma, liver and kidney were not affected by arginine supplements 
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(Fig. 20). The reduction in creatinine levels in the urine as a result of oral arginine treatment may 

be due to the significant decrease in AGAT expression in the liver caused by both, L-Arg and D-

Arg (Fig. 19). Excessive downregulation of AGAT in the liver could affect creatinine formation 

by attenuating creatine formation, and thereby, less creatinine would be excreted and detected in 

the urine. The effects of D-Arg treatment on creatinine levels again are surprising, and difficult to 

understand with such limited evidence of D-Arg as a metabolically active substrate in the body. In 

the previous study from our lab (Martin and Desai, 2020), L-Arg at 500 mg/kg/day for 4 weeks 

had significantly decreased creatinine levels in the skeletal muscle compared to the control group, 

whereas D-Arg at the same dose had increased it in the liver compared to the control group. 

In the ADC pathway known for producing polyamines, ADC converts arginine into agmatine, 

subsequently followed by the conversion of agmatine into putrescine by agmatinase. This is an 

important metabolic pathway, as polyamines serve important roles in the body, such as cell growth 

and supporting embryo development (Wang et al., 2014a). However, ornithine, which is a 

metabolite of the arginase pathway is a major precursor for polyamines and the enzyme that 

converts it into polyamines, ODC, is the rate-limiting enzyme for de novo polyamine synthesis 

(Wang et al., 2014a). Therefore, ADC is referred to as the alternative enzyme for polyamine 

synthesis next to the primary enzyme, arginase. Both oral L- and D-Arg supplementation at 1000 

mg/kg/day for 16 weeks in SD rats significantly increased ADC expression in the liver, compared 

to the control group, and significantly decreased ADC expression in the ileum compared to the 

control group (Fig. 21). This increase in ADC expression in the liver with oral L-Arg 

administration may have been due to extensive arginine metabolism with upregulated arginase I 

as first pass metabolism (Fig. 12), limiting arginine availability for ADC causing an adaptive 

increase in expression. In addition, the decreased expression of arginase II in the ileum with L-Arg 

supplementation (Fig. 12) may have played a role in increasing ADC expression in the liver to 

make up for the high levels of oral arginine reaching the liver, which has not been metabolized in 

the ileum. The 500 mg/kg/day oral L-Arg for 4 weeks had also significantly increased ADC 

expression in the liver (Martin and Desai, 2020). Oral L-Arg-induced decreased ADC expression 

in the ileum (Fig. 21) in my study is difficult to interpret when considering a decrease in arginase 

II expression in ileum as well with L-Arg supplementation. Theoretically, decreased arginase II in 

the ileum should lead to increased ADC expression to compensate for the oral arginine to be used 
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for polyamine synthesis. This suggests the complex interaction and physiological effects of oral 

arginine on its metabolic pathways.  

The levels of agmatinase expression and total polyamines were measured in addition to 

determining ADC expression in various organs. Agmatine, the major metabolite of the ADC 

pathway is degraded by agmatinase to ultimately form various types of polyamines (Wang et al., 

2014a). Interestingly, only the oral D-Arg, and not L-Arg, supplements caused significant effects 

in agmatinase expression in comparison to control or L-Arg groups (Fig. 22). In the kidney and 

ileum, D-Arg increased agmatinase expression compared to the control and/or L-Arg groups (Fig. 

22), whereas in the brain it decreased agmatinase expression compared to the control group (Fig. 

22). One possible mechanism for increased expression may be due to adaptive response, with 

supplemental D-Arg blocking L-Arg from interacting with ADC to form agmatine or D-Arg 

blocking agmatine from being catalyzed by agmatinase causing its upregulation. As D-Arg 

supposedly does not get used up in the body of mammals, the reasoning behind these results 

remains in question for now. We were not able to measure agmatine levels by HPLC because the 

protocol described in some literature reports (Zhao et al., 2002; Regunathan et al., 2009) could not 

be reproduced.  

Oral L-Arg supplements significantly increased the total polyamine levels in the plasma, in 

comparison to both the control and D-Arg groups of SD rats (Fig. 23A). This can be explained by 

increased arginase I expression in the liver by both L-Arg and D-Arg (Fig. 12), which also 

contributes to polyamines formation through L-ornithine/OAD/putrescine pathway (Fig. 4). In 

comparison, D-Arg at 500 mg/kg/day for 4 weeks had significantly increased total polyamines in 

the plasma compared to the control, and L-Arg at the same dose had increased it in the liver 

compared to the control and D-Arg groups in SD rats (Martin and Desai, 2020). 

The activity assays for the last two enzymes, ADC and AGAT, are currently not available 

during our search, and therefore were not able to be completed. The results from these assays 

would have been useful in filling the gap of knowledge in the mismatch of results observed with 

enzyme expression and metabolite levels of those two pathways and understanding the relationship 

between the two factors. For instance, the expression levels for an enzyme can be significantly 

elevated in a particular organ, but activity levels may be downregulated or upregulated by other 

factors. Understanding the activities of these enzymes would be helpful in viewing the overall 
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picture of what really happens at the molecular level in these pathways with oral arginine 

supplementation at 1000 mg/kg/day for 16 weeks. 

 

4.1 CONCLUSIONS  

The main conclusion that can be drawn from my study is that oral arginine supplements with 

both the L and D isomers significantly affect the expression of its metabolizing enzymes and the 

levels of their metabolites in the plasma or some organs, though not in a uniform or consistent 

pattern (Table 1). This proves our hypothesis partly in that L-Arg will alter the expression/activity 

of its metabolizing enzymes and levels of their metabolites but disproves our hypothesis that D-

Arg will not affect the metabolic pathways for arginine. This was also seen with a lower dose of 

500 mg/kg/day of L-Arg as well as D-Arg administered for a shorter duration of 4 weeks in SD 

rats in the previous study from this lab (Martin and Desai, 2020). These results mandate that 

caution should be taken in the use of oral arginine supplements, especially by healthy people. They 

may not be as safe as advertised in media and as believed by the general public. The effects with 

both doses, 500 mg as well 1000 mg were not consistent which could be a result of multiple 

metabolic pathways for L-Arg, which probably interact in a more dynamic fashion with each other 

than shown by limited research in this area.  It may be because of the rapid and dynamic 

metabolism that both doses showed changes in the plasma or organ levels of arginine. As 

summarized in Table 1, L-Arg significantly increased the expression of arginase I and ADC in the 

liver and AGAT in the kidney, and it decreased the expression of arginase II in the ileum and 

AGAT in the liver. In terms of their metabolites, oral L-Arg increased urea and hydroxyproline 

levels in the ileum, and nitrite and total polyamines levels in the plasma. L-Arg decreased urea 

nitrite and creatinine levels in the urine (Table 1). On the other hand, the supposedly inert D-Arg 

increased CAT-1 expression in the ileum, arginase I in the liver, eNOS expression in the aorta and 

the kidney, ADC expression in the liver and agmatinase expression in the kidney and the ileum. 

D-Arg decreased ADC expression in the ileum and agmatinase expression in the brain (Table 1). 

In terms of their metabolites, oral D-Arg increased hydroxyproline levels in the brain and 

creatinine levels in the ileum (Table 1). D-Arg decreased hydroxyproline levels in the ileum, and 

nitrite and creatinine levels in the urine (Table 1). Each enzyme has its own multifaceted regulation 

at the molecular level, which makes interpretation of the effects of oral L-Arg and D-Arg difficult 

on different enzymes and their metabolites, especially they also vary from organ to organ. 



 

91 
 

Hopefully, these results will inspire more studies on oral arginine supplements and their impact on 

physiology and safety/adverse effects, especially when it appears that the use of these supplements 

is heavily promoted and is increasing. 

 

4.2 SIGNIFICANCE OF STUDY 

L-Arg serves an important role in producing various important molecules in the body. One of 

the products, NO from eNOS, is essential for maintaining good blood flow and alleviating vessel 

stress, decreasing the risk of endothelial dysfunction. As endothelial dysfunction has a reciprocal 

causal relationship with diabetes, L-Arg may decrease the risk of developing or severity of the 

vascular complications of diabetes. On top of the vasodilatory role related to NO production, L-

Arg has an additional direct function of scavenging methylglyoxal, a highly reactive glucose 

metabolite which induces type II diabetes in Sprague-Dawley rats (Dhar et al., 2011). This arginine 

study contributed significant data and knowledge about the overall impact of oral arginine on the 

level and expression of the important enzymes and their metabolic products, in the arginine 

metabolic pathways. In comparison to the previous study employing a 4-week administration of 

500 mg/kg/day arginine (Martin & Desai, 2020), my study used a higher dose (1000 mg/kg/day) 

for a longer duration (16 weeks) to see if the changes noted in the earlier study are magnified and 

if further metabolic changes occur. While several changes observed in the metabolic pathways 

with a 500 mg/kg/day dose were not replicated with a 1000 mg/kg/day dose, there were some other 

changes, which reflect the dynamic and rather unpredictable regulation of arginine metabolism. At 

the same time, my study highlights the fact it is difficult to predict an optimum dose and duration 

oral arginine supplements, which does not adversely and significantly affect its metabolism in the 

body. Clearly, more studies are indicated employing different doses and treatment durations to 

form concrete use guidelines for oral arginine supplements. One thing for sure is that arginine 

supplements in the two doses used in our lab significantly affect several enzymes and metabolite 

levels and caution is required in the use of oral supplements, which seems to be lacking at the 

moment.  

 

4.3 LIMITATIONS OF STUDY 

The animal model used in my study, Sprague-Dawley rats, can be considered to be one of the 

limitations of this arginine study, as there are some physiological differences between a rat model 
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and a human model. Direct application of results from animal model study to real-life human use 

is deemed to be unreliable and invalid. However, the rat model is known for its relative similarity 

to human model in genes and pharmacokinetics. Thereby, this animal model study sets a baseline 

of pharmacological research in pre-clinical testing stage.   

Another limitation is sample size chosen for each group of rats. In the previous lower dose 

arginine study (500 mg/kg/day for 4 weeks), there were 8 rats in each of three groups, whereas in 

the current study (1000 mg/kg/day for 16 weeks), 7 rats were used for each of the L-Arg and D-

Arg groups and only 4 rats were used for the control group, with a view to reduce the number of 

rats used. In hindsight, this was an error because the duration of the current study was 16 weeks 

whereas it was only 4 weeks for the 500 mg/kg/day study (Martin & Desai, 2020). So results from 

the control group in the Martin & Desai study (2020) cannot be extrapolated to the control group 

in the current study. If there were 7 rats in each group including the control, the error bars could 

have been smaller and more significant values might have been detected, where it was borderline. 

Additionally, in contrast to the lower dose oral arginine (500 mg/kg/day for 4 weeks) study 

(Martin & Desai, 2020), which used β-actin for loading control, I used total protein as a loading 

control for the current study. If the western blots were repeated with β-actin for the current study, 

the results perhaps could have been different and similar to the lower dose study. The supervisor’s 

lab intends to repeat the western blots with β-actin as loading control. 

Male rats were used for this study, which is a limitation because sex hormones might affect the 

results, and to avoid a confounding factor in interpreting results. Separate studies on female rats 

are planned as a part of this project in our lab. 

The method of oral arginine administration remains to be another limitation to this study. The 

ideal method for administration is via oral gavage, instead of adding it in drinking water, for more 

precise delivery of the set dose of 1000 mg/kg/day, as well as for consistent and rapid absorption 

of arginine in the rats. In addition, human arginine supplements are mainly taken in pill form, 

which is a more concentrated dose, as seen with oral gavage administration. However, daily oral 

gavage for 16 weeks was not practical since it would add stress as a confounding factor in the 

analysis of results. It also increases the risk of pulmonary aspiration of the gavage solution and 

mortality. We took precautions to calculate the exact dose that each rat received based on its body 

weight and daily water intake throughout the study.  
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As well, the activity assays for the other two enzymes AGAT and ADC are currently not made 

available for research use, and therefore were not able to be completed. The results from these 

assays would have been useful for interpreting the results of enzyme expressions and metabolite 

levels of those two pathways and understanding the relationship between the two factors.  

 

 

 

4.4 FUTURE WORK 

One of the primary purposes of my study was to determine the physiological impact of oral 

arginine supplements. While my study contributed a significant amount of data and knowledge 

covering the 4 main metabolic pathways of arginine, it also highlighted the fact that the 

physiological impact of arginine supplements may not be related to the dose and duration of 

treatment within certain limits, when considering the previous study from this lab (Martin & Desai, 

2020). This conclusion needs to be confirmed with a couple of more such comprehensive studies. 

In accordance, two more studies have been planned, one employing a dose of 500 mg/kg/day but 

with a greater duration of 16 weeks of treatment. The other one will employ 1000 mg/kg/day for 

a shorter duration of 4 weeks. Unfortunately, the Animal Ethics committee did not approve a dose 

of 2000 mg/kg/day citing a possible risk of pancreatitis. Another future goal of the arginine project 

in our lab is to develop oral arginine supplements as safe and effective methylglyoxal scavengers 

(Dhar et al., 2012), to attenuate the risk of formation of advanced glycation end products (AGEs) 

and development of vascular complications of diabetes, since methylglyoxal levels are elevated in 

diabetic patients and it is a major precursor of AGEs formation (Desai and Wu, 2007). 
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