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ABSTRACT Massive multiple-input multiple-output (MIMO) is playing a crucial role in the fifth genera-
tion (5G) and beyond 5G (B5G) communication systems. Unfortunately, the complexity of massive MIMO
systems is tremendously increased when a large number of antennas and radio frequency chains (RF) are
utilized. Therefore, a plethora of research efforts has been conducted to find the optimal precoding algorithm
with lowest complexity. The main aim of this paper is to provide insights on such precoding algorithms to
a generalist of wireless communications. The added value of this paper is that the classification of massive
MIMO precoding algorithms is provided with easily distinguishable classes of precoding solutions. This
paper covers linear precoding algorithms starting with precoders based on approximate matrix inversion
methods such as the truncated polynomial expansion (TPE), the Neumann series approximation (NSA), the
Newton iteration (NI), and the Chebyshev iteration (CI) algorithms. The paper also presents the fixed-point
iteration-based linear precoding algorithms such as the Gauss-Seidel (GS) algorithm, the successive over
relaxation (SOR) algorithm, the conjugate gradient (CG) algorithm, and the Jacobi iteration (JI) algorithm.
In addition, the paper reviews the direct matrix decomposition based linear precoding algorithms such as the
QR decomposition and Cholesky decomposition (CD). The non-linear precoders are also presented which
include the dirty-paper coding (DPC), Tomlinson-Harashima (TH), vector perturbation (VP), and lattice
reduction aided (LR) algorithms. Due to the necessity to deal with a high consuming power by the base
station (BS) with a large number of antennas in massive MIMO systems, a special subsection is included
to describe the characteristics of the peak-to-average power ratio precoding (PAPR) algorithms such as
the constant envelope (CE) algorithm, approximate message passing (AMP), and quantized precoding
(QP) algorithms. This paper also reviews the machine learning role in precoding techniques. Although
many precoding techniques are essentially proposed for a small-scale MIMO, they have been exploited in
massive MIMO networks. Therefore, this paper presents the application of small-scale MIMO precoding
techniques for massive MIMO. This paper demonstrates the precoding schemes in promising multiple
antenna technologies such as the cell-free massive MIMO (CF-M-MIMO), beamspace massive MIMO, and
intelligent reflecting surfaces (IRSs). In-depth discussion on the pros and cons, performance-complexity
profile, and implementation solidity is provided. This paper also provides a discussion on the channel
estimation and energy efficiency. This paper also presents potential future directions in massive MIMO
precoding algorithms.

INDEX TERMS 5G, massive MIMO, precoding, complexity, channel estimation, CF-M-MIMO,
beamspace massive MIMO, IRS, energy efficiency
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I. INTRODUCTION

RECENTLY, there has been a tremendous increase in de-
mands for faster internet access as well as instant access

to multimedia services [1], [2]. For instance, employment of
smart healthcare, smart cities, self-driving cars, and smart
energy systems, has reached stages wherein it is portended
that there will be nearly 39 billion active devices by the end
of 2025 [3], [4]. Figure 1 shows a significant increment in
the number of active connected devices in the last few years.
The most need characteristics are high capacity, high data
rates, high spectral efficiency, and high energy efficiency are
needed [3], [4].

Therefore, the fifth generation (5G) and beyond 5G (B5G)
communication systems have employed new technologies in
the context of the multiple-input multiple-output (MIMO)
schemes. Recently, remarkable research efforts have been
done to develop the conventional multi-antenna transmis-
sion techniques to achieve high spectral efficiency and high
link reliability [5], [6]. A well-known combination and ef-
ficacious technologies have been introduced in 5G such as
the ultra-dense networks (UDNs), the machine-to-machine
(M2M) communication, the centimeter wave (cmWave) or
millimeter wave (mmWave), the spectrum sharing (SS), the
internet of things (IoT), and the massive MIMO smart cities
[7]–[10].

The mmWave technology corresponds to 30-300 GHz fre-
quency band and has its own propagation characteristics [11],
[12]. It has a larger bandwidth compared to the conventional
sub-6 GHz massive MIMO systems, but with an extra path-
loss [11]. In the literature of massive MIMO systems, there
are many research efforts concentrating on mobile broadband
type-high rate issues with large data packets. The other
application of interest is the massive M2M communications
which have become the prevailing communication model of
IoT [13].

The massive M2M communications have been deployed
swiftly in the past few years and have a large number of
connected machines that are only sporadically active [13]–
[15]. Furthermore, several detection schemes are utilized
in the receivers of MIMO systems, where various antennas
transmit multiple interfering signals, to separate the data
symbols which are corrupted by noise and interference [16].

In massive MIMO, the base station (BS) serves a large
number of single or few antenna terminals in the same
band of frequency [1], [17]. The main characteristic of the
conventional sub-6 GHz massive MIMO system is that the
number of antennas in the BS is distinctly larger than the
number of antennas for all user terminals within each cell
[16], [18]. In addition, each user’s equipment (UE) in the
massive MIMO systems has its own processing unit to detect
the data.

Considering the large number of antennas in the BS, the
small processing ability in each UE leads to an intractable de-
tection process and needs a very large processing time. Here,
the amazing mission of the precoding technology is appeared
to transform the detection mechanism from the receiver side

FIGURE 1: Global growth in the total number of active
connected devices in the wireless services.

into the transmitter side where a large processing ability
can be offered [19], [20]. Although the BS has strong and
high processing ability, the demand to find lower complexity
precoding algorithms is still required.

This survey focuses on the massive MIMO notion and var-
ious types of precoding technologies for systems operating
below 6 GHz carrier frequency. It covers the algorithms of
linear precoding, non-linear precoding, the peak-to-average
power ratio precoding (PAPR), and machine learning in
precoding algorithms. In addition, it will comprehensively
describe the complexity and implementation issues of each
precoding algorithm.

A. RELEVANT PRIOR ART
In last few years, several research papers were published to
address the issues of massive MIMO systems [16], [21]–[30].
In [21], a comprehensive survey of the linear precoding algo-
rithms for massive MIMO for various cell scenarios has been
introduced. It also addressed some of the designing issues
and practical implementations of precoding algorithms. But
it did not include the issues of the non-linear precoding, the
PAPR precoding, and the machine learning role in precoding
algorithms.

In [22], the effect of the pilot contamination and impair-
ments of hardware in massive MIMO systems are discussed.
Furthermore, it reviewed the potential reasons for pilot con-
tamination, e.g. non-reciprocal transceivers and hardware im-
pairments. It also classified the pilot contamination according
to various mitigation techniques as a pilot-based tactic and
a subspace-based tactic. In [23], a comprehensive survey
of linear precoding techniques for massive MIMO systems
under a single-cell (SC) scenario is provided. The perfor-
mance of various linear precoding techniques is compared
and analyzed in terms of sum-rate, and spectral efficiency.

In [24], a survey of the mmWave massive MIMO system
challenges and benefits was introduced. As it addressed the
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boosting in user throughput, spectral efficiency, and energy
efficiency. It also considers the effects of the modulation
scheme, the signal waveform, the multiple access technique,
the user scheduling algorithm, the fronthaul design, the an-
tenna array architecture, and the precoding algorithm. Nev-
ertheless, it is concluded that the performance of mmWave
massive MIMO system in practical scenarios and real-life
applications still under intense research until this moment.

In [25], the propagation channels of massive MIMO sys-
tems are extensively investigated and main differences from
the traditional MIMO systems are discussed. In addition,
it reviewed the characteristics, measurements, and channel
models. Few futurity channels models directions for mas-
sive MIMO systems are also presented and analyzed. It is
concluded that the propagation channels will still an open
research direction in the advent few years. In [26], a com-
prehensive review of the various embodiments of digital and
analog beamforming designs by employing average chan-
nel state information (CSI) has been presented. The hybrid
beamforming design has feasible limits of the number of
radio frequency (RF) chains. In addition, it is shown that the
hybrid beamforming designs are favorable for diminishing
the cost of hardware and the overhead of training. Never-
theless, the hybrid beamforming design is considered as a
trade-off between performance and complexity in the various
applications designs and channel characteristics.

A survey in [16] introduced a detailed clarification of the
fundamentals of massive MIMO detection, and recited the
past twelve-year history of massive MIMO detection. The
authors offered an extensive review and milestones in the
development of optimal, near-optimal, linear, approximate
inversion based massive MIMO detection algorithms. Fur-
thermore, the authors have briefly explored some of the non-
linear small-scaled MIMO detectors and their applicability
in the massive MIMO systems. In addition, recent improve-
ments in detection process with incorporated machine learn-
ing

In [27], a comprehensive review of various prominent
mmWave massive MIMO systems, like multiple access tech-
nologies, hybrid precoding and combining, cell-free mas-
sive MIMO (CF-M-MIMO), non-orthogonal multiple access
(NOMA), and simultaneous wireless information and power
transfer (SWIPT) technologies is presented. In [28], a brief
overview of massive MIMO localization has been provided.
With respect of performing localization of massive MIMO
systems, user’s localization methods and refined channel
estimation routines have been advanced. Several spatial sig-
natures of users can be employed in massive MIMO systems
to meet the demands of 5G technology and to specify the
locations of the users.

In [29], a survey of the detection techniques in uplink
(UL) massive MIMO systems is introduced. The authors
concluded that the research efforts on the detection tech-
niques for UL massive MIMO systems are still in an early
phase. There are lots of considerable and imperious issues
that need to be resolved in the future, e.g. using the deep

learning algorithms for detection techniques, and finding
suitable detection techniques to work in Hetnets wireless
communications.

The authors in [30] over-viewed the artificial intelligence
(AI) implementation, and addressed several issues in the
massive MIMO systems. AI can be exploited to improve the
user experience and effectively utilize the radio resources.
The BS in massive MIMO systems needs to produce and
sense huge data for communication. Thus, the demand for
a new technology, that can learn and predict the system
requirements, has been increased. Hence, more accuracy with
lower complexity can be offered by employing an effective
AI method to massive MIMO systems.

While the above research papers discuss a number of key
issues of massive MIMO systems, none of them extensively
review the precoding techniques. However, most of these
techniques focus only on the linear precoding detection al-
gorithms.

B. CONTRIBUTION AND OUTLINE
In this paper, an extensive survey on precoding algorithms
related to the massive MIMO systems is introduced. Our
particular focus is on performance and complexity trade-off
as well as the practical implementation of general precoding
algorithms. Although the survey in [21] is extensive, the
primary focus of the paper was only on linear precoding
in massive MIMO systems for different cell scenarios. For
instance, the linear matrix inversion approximation precoder
and fixed-point iteration-based linear precoding algorithms
are not covered in [21]. In addition, the non-linear precoding
algorithms, the machine learning based precoders, and the
PAPR precoding algorithms are also not reviewed in [21].

To our best knowledge, this is the first survey to review
the most types of precoding algorithms considering only
massive MIMO systems. In the literature of massive MIMO
systems, there is a plethora of precoding algorithms. The
target of this survey is to offer insights on such algorithms
to a generalist of MIMO communication systems. This paper
is also demonstrating the use of massive MIMO for B5G
where promising technologies are flashing such as the CF-M-
MIMO, beamspace massive MIMO, and intelligent reflecting
surfaces (IRSs). Table 1 compares this paper with other prior
relevant articles.
The major contributions of this paper are summarized as:
• This paper reviews the massive MIMO precoding al-

gorithms and introduces their performance-complexity
profile so that the reader can find the differences be-
tween various precoding algorithms with a wider range
of potential solutions. It starts off with a dive into the lit-
erature of precoders for massive MIMO systems. Then,
it introduces the benefits and challenges of precoded
massive MIMO systems. It then discusses the basic
linear precoders in massive MIMO systems.

• This paper surveys the corresponding linear precoding
solutions for massive MIMO systems starting with pre-
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FIGURE 2: Outline of the paper.

coders with approximate matrix inversion methods such
as the truncated polynomial expansion (TPE) algorithm,
the Neumann series approximation (NSA) algorithm,
the Newton iteration (NI) algorithm, and the Chebyshev
iteration (CI) algorithm.

• This paper surveys the fixed-point iteration-based lin-
ear precoding algorithms for massive MIMO systems
such as the Gauss-Seidel (GS) algorithm, the successive
over relaxation (SOR) algorithm, the conjugate gradient
(CG) algorithm, and the Jacobi iteration (JI) algorithm.

• This paper reviews the direct algorithms-matrix decom-
position based linear precoding algorithms such as the
QR decomposition algorithm and the Cholesky decom-
position (CD) algorithm.

• This paper comprehensively surveys the non-linear pre-
coders such as the dirty-paper coding (DPC) algorithm,
the Tomlinson-Harashima (TH) algorithm, the vector
perturbation (VP) algorithm, and the lattice reduction
aided (LR) algorithm. Thus, due to the necessity to deal
with high consuming power by the BS with a large
number of antennas in massive MIMO systems, we have
dedicated a special subsection to describe the charac-
teristics of the PAPR algorithms as the constant enve-

lope (CE) algorithm, the approximate message passing
(AMP) algorithm, and the quantized precoding (QP)
algorithms.

• This paper reviews the precoding in promising multi-
ple antenna technologies: the CF-M-MIMO, beamspace
massive MIMO, and the IRSs.

• This paper reviews the potential of machine learning
role in precoding algorithms.

• Finally, this work is also discussing the advantages
and disadvantages of each precoder based on the
performance-complexity profile as well as the imple-
mentation solidity.

Section II presents the benefits and challenges of massive
MIMO systems. Section IV describes the massive MIMO
system model. Section V illustrates the precoding algorithms
for massive MIMO systems. Finally, section VII concludes
the paper and introduces the open research area in the pre-
coding process for massive MIMO systems. For convenient
reading, the outline of the paper is depicted in Fig. 2.

II. MASSIVE MIMO SYSTEMS: AN OVERVIEW
Massive MIMO systems are an expansion of the MIMO
technology which has been introduced since the third gener-
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TABLE 1: Prior Relevant Articles
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[21]
3 7 7 7 7 7 7 7 7 7 7

[22]
3 7 7 7 7 7 3 3 7 7 7

[23]
3 7 7 7 7 7 7 7 7 7 7

[16]
3 3 3 7 7 7 3 7 7 7 7

This
Work

3 3 3 3 3 3 3 3 3 3 3

FIGURE 3: Massive MIMO system beamforming and its services.

ation (3G) communication systems. Massive MIMO involves
hundreds to thousands of antennas occupied at the BS to
serve simultaneously many user terminals [31]. Figure 3
shows a massive MIMO scenario to create directed beams
in specific small area to serve one or few users [32] and can
be employed to obtain the following benefits:

• Spectral efficiency: Massive MIMO systems achieve a
high spectral efficiency by exploiting a large antenna
array to originate more multiplexing gain [33]. Conse-
quently, each user equipment has an individual down-
beam which leads to offering spectral efficiencies ten
times higher than that in the conventional MIMO tech-
nology [34].

• Energy efficiency: In massive MIMO systems, the gain
of transmitted signals is increased to the position of
candidate users by pointing the beam of the antenna
array into a small region. Consequently, the massive
MIMO systems radiate less power and are more energy-
efficient systems [1]. Moreover, the transmit power is
significantly reduced when the number of transmit an-
tennas is increased [35]. By dint of the huge number
of antennas in massive MIMO systems, a BS can make

several beams at the same time and directly pointing
them to a particular user or more [32]. Then, the re-
sources can be used repeatedly in the same specific
area. Thus, the throughput could be increased without
increasing the transmit power by increasing the number
of transmit antennas [36]. Massive MIMO systems have
the ability to reduce the transmitted power 1000 times
below conventional MIMO and to maximize the data
rates at the same time [37].

• User tracking: As massive MIMO systems point narrow
signal beams to the users; user tracking become more
reliable and accurate [32].

• Cost efficiency: Massive MIMO systems are con-
structed with cheap ultra lower power amplifiers, which
abstract the need for expensive bulky electronic equip-
ment. Furthermore, it eliminates the need for bulky
coaxial cables which connecting the BS components
[1]. These are a glance of low-cost features in massive
MIMO systems which reduce the system implementa-
tion cost [38].

• Reliability: A large number of antennas in massive
MIMO systems advances high diversity gain, which
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TABLE 2: Summary of Massive MIMO System, its Features, Advantages, and Challenges.

Massive MIMO Systems

Features Dozen of hundreds antennas per BS.
BS serves multiple received terminals.
Low transmitted power per antenna.
Number of antennas is much larger than number of received terminals.
Small-size antennas.
High directive gains.

Advantages High capacity.
High throughput.
High resistance against noise.
High scalability.
High energy efficiency.
High spectral efficiency.
High reliability.
High multiplexing gain.
High security.
Low fading affects.
Low latency.
Low implementation cost.
Low bit error rate (BER)
Low signal processing.
User tracking.

Challenges Pilot contamination.
Channel estimation.
Signal detection.
Signal precoding.
User scheduling.
Hardware impairments.

increases the link reliability and elasticity against fading
[39].

• Robustness: Massive MIMO systems are more robust
against internal jamming and unintended interference.
Also, they have the ability to avoid one or few antenna
failures as a result of large number of antennas [40].

• Enhanced security: In massive MIMO systems, the
large number of antennas can be used to cancel the
signals from wilful jammers [41]. Moreover, massive
MIMO systems are also inherently strong against hack-
ers and passive eavesdropping attacks due to the orthog-
onal channels of receivers and narrow beams [42].

• Simple signal processing: For Massive MIMO systems
with large antennas array, the BS immensely surpasses
the number of received terminals. This leads to make
the column vectors of the propagation matrix asymptot-
ically orthogonal under the most favorable propagation
assumption and that eliminates the interference effects,
fast fading, uncorrelated noise, and thermal noise, and
hence simplifies the signal processing [43].

III. SIGNAL PROCESSING CHALLENGES

In massive MIMO, a large number of antenna elements
leads to a utilization of random matrix theory to confirm
the approximation accuracy of large dimension settings [44].
However, the mutual orthogonality among the vector-valued
channels is one of major properties and is called as "favorable
propagation". However, the channel condition number was
used to indicate whether the propagation is favorable or not.
In other words, it is a proxy for how favorable the channel is
[45].

The work in [46] shows that the condition number could
lead to a misleading conclusion when the norms of the chan-
nel vectors are not equal. The favorable propagation has a
great impact to maximize the information rate under a power
constraint [46]. In [47], the favorable propagation condition
was analysed in a generic channel model for LOS and NLOS
propagation where a general steering matrix-propagation
matrix model was employed. The energy efficiency is also
highly affected by the statistical CSI.

In [48], an iterative power allocation algorithm has been
proposed based on sequential optimization, fractional opti-
mization, and random matrix theory. However, many chal-
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lenges are kick-in when a large number of arrays are utilized
such as:

• Pilot contamination: Channel estimation is crucial in
massive MIMO systems [49]. To estimate the UL chan-
nel, the received terminal sends orthogonal pilot signals
to the BS. Furthermore, thanks to the channel reci-
procity feature in massive MIMO systems, the BS es-
timates the downlink (DL) channel towards the received
terminal [50]. When the pilot signals in the cell and
neighboring cells are orthogonal, the BS acquires the
delicate estimation of the channel. However, in specific
resources, the number of orthogonal pilot signals is
limited [49].
As a result, this imposes the reuse concept of the or-
thogonal pilots. Subsequently, the inter-cell interference
appears due to the use of the same set of orthogonal
pilots, and the BS will receive a linear combination
of channel responses from the cell and its neighboring
cells. This is known as a pilot contamination [51]. The
pilot contamination reduces the achievable throughput.
The same phenomenon occurs in the DL channel, the
BS directs the beamforming signal towards the received
terminals in its cell in addition to undesired received
terminals in the neighboring cells [52], [53].

• Channel estimation: Channel state presents the channel
response realization. However, CSI refers to the knowl-
edge of the channel states at the BSs. It is assumed
that the statistical CSI of random variables are available
anywhere in the network. In addition, as the channels
change, instantaneous CSI about current realizations
need to be acquired [7]. In other words, CSI depicts
the signal propagation, and has information about the
communication link between the transmitter and the
receiver. CSI elucidates the combined effects of fading,
scattering, power decay, and so forth. The performance
of massive MIMO systems increases rapidly with the
minimum number of transmitting or receiving antennas
when the CSI is idealistic [54].
Pilot signaling is a method to acquire the CSI where the
antenna transmits a predefined pilot signal. However,
the transmission can be simultaneously received by any
antenna and compared with the known pilot signal to
estimate the channel from the transmitting antenna. In
case of two transmitting antennas, two orthogonal pilot
signals are normally needed. In other words, as the
number of transmit antennas increases, the number of
orthogonal pilot signals will also increases. The receive
antennas can "listen" to the pilots simultaneously where
individual channels were estimated to the transmitters
[7]. In other words, within the UL transmission, the
channel is estimated by the BS with thanks to orthogonal
pilot signals which are sent by the received terminals.
Within the DL transmission, the BS transmits pilot
signals towards the received terminals, and the received
terminals recognize the estimated channel information

for the DL transmission. Pilot signaling could cause an
overhead because every pilot signal could have been
a signal where payload data is carried. Therefore, the
overhead based on pilot signaling should be considered
and minimized.
The CSI, in the systems using frequency division du-
plexing (FDD), requires to be estimated during both the
UL and DL transmissions. FDD systems use different
frequency bands and consider different CSI correspond-
ing to each band [49]. In order to obtain the required
CSI, the BS sends training symbols to the users. Each
user estimates the channel coefficients and transmits the
estimated channel vector back to the BS [55]. Duplex
distance is usually utilized to separate the UL and DL
channels which may lead to a performance considera-
tion. The required time to transmit the DL pilot signals
is proportional to the number of BS antennas [49]. This
is a real challenge since the complexity scales with
the number of antennas. In other words, with a large
number of BS antennas in massive MIMO systems, the
use of FDD system becomes very hard and infeasible
to be implemented in practical applications [49]. Fortu-
nately, using the time division duplexing (TDD) offers
a solution for the problem within the DL transmission
by exploiting the channel reciprocity feature. The BS
can estimate the DL channel from channel information
within UL [49].
In TDD, the UL and DL operate in different time
slots but in the same frequency band. At the BS, the
design of DL precoder depends on the channel estimate
that was obtained in the previous UL slot. In TDD,
channel reciprocity is usually assumed. In high speed
scenarios, the system has to be designed carefully to
avoid a degradation in the precoder performance [56].
A performance comparison between TDD and FDD
systems in [57] shows that the TDD is more suitable in
massive MIMO. The FDD suffers from a considerable
degradation in performance in many channels. FDD can
achieve a satisfactory performance in line of sight (LOS)
scenario and high Ricean factors.
However, due to a limited number of orthogonal pilots
in massive MIMO systems in a specific cell and neigh-
boring cells, the pilot contamination problem becomes
a considerable challenge for a channel estimation [49],
[58].
The Covariance matrix plays a crucial role for resource
allocation and pilot contamination. In a plethora of
massive MIMO papers, it is commonly assumed to be
perfectly known which could lead to misleading conclu-
sions because the matrix dimensions vary with the num-
ber of antennas and other statistics based on mobility.
In practical scenarios, channels are spatially correlated
where channel elements are correlated. In order to apply
the MMSE channel estimator, covariance matrix is re-
quired [59]. In [59]–[61], the large-dimensional covari-
ance matrix was estimated using a sample covariance
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matrix. Principles of robust precoding under imperfect
CSI was comprehensively illustrated in [55]. A model
for the uncertainty of the CSI can be developed based on
a precoder to minimize the transmission power subject
to SINR constraints for all channel sets [55], [62]. In
[63], a design of robust hybrid analog/digital beamform-
ing systems under imperfect CSI was proposed where
a norm-bounded channel error and the MMSE were
utilized to capture the imperfect CSI conditions.
In [64], hardware cost and power consumption of a
hybrid analog/digital beamforming systems have been
lowered by a reduction of training sequence dimension
where a limited number of RF chains were utilized.
Toeplitz distribution theorem with specific antenna con-
figurations were applied to select the training sequence
parameter. In [65], a hybrid precoding scheme based on
equal gain transmission and the ZF has been proposed
to reduce the hardware cost and processing complex-
ity of massive MIMO systems. Detailed explanations
of hybrid precoding with hardware architectures and
methods of deployment with the impact of CSI have
been comprehensively discussed in [66]. It was shown
that the hybrid beamforming has a critical impact in
minimizing the hardware cost since a small number RF
chains at the transceivers was utilized. Hybrid beam-
forming is an energy efficient scheme because it reduces
the power consumption for each mobile device without
a performance degradation.
The channel capacity is highly affected by the instan-
taneous CSI, perfect CSI, and imperfect CSI. In [67],
the relationship between the channel capacity and the
CSI in different scenarios was determined when the
CSI is unknown at the transmitter, the CSI is perfectly
known at the transmitter, and the CSI is imperfect at the
transmitter. The impact of CSI on energy efficiency was
demonstrated in [67]–[69]. In [68], it was shown that
the CSI has a crucial impact on the energy efficiency
when transmitting over long link distances. However, its
impact is not critical in the short link distance scenario.

• Hardware Efficiency: The high computational com-
plexity of massive MIMO receivers limits the gain
that can be obtained in real applications. Therefore,
a design of energy-efficient massive MIMO systems
has attracted the attention of the research community
in both academia and industry [70]–[81]. In [70], a
resource allocation for energy-efficient in an orthogonal
frequency division multiple access (OFDMA) with a
massive MIMO system was considered. In this paper,
circuit power consumption, imperfect CSI, and different
QoS were taken into consideration. The resource allo-
cation policies were updated based on the realization of
path loss and shadowing.
Numerical results show that the large number of an-
tennas is always useful for the communication system
capacity. However, it could not be a cost effective solu-
tion for enhancing the performance. In [78], a trade-off

between energy efficiency and spectrum efficiency was
considered by utilizing the channel states, the transmit
power and its allocation. In [81], the selection of opti-
mal subcarrier rates and power allocation to obtain an
optimal energy efficiency was comprehensively demon-
strated using an iterative approach. The efficiency of
power amplifiers was modeled as a function of the num-
ber of subcarriers utilized for transmission. The water-
filling and link adaption based on CSI could be utilized
to maximize the sum rate for a transmission power
in a frequency-selective channel. However, traditional
water-filling is not the best approach to achieve efficient
and reliable subcarrier power allocation. In [79], the
subcarrier availability was taken into consideration to
maximize the transmission rate and energy efficiency.
The proposed approach has outperformed the water-
filling scheme. In [80], a new energy-efficient approach
was proposed to reduce the computational complexity
of [78]. Energy optimal link adaption and resource
scheduling techniques were derived in closed forms
where time average bit-per-Joule metrics were taken
into consideration.

• Data detection: The large number of antennas in mas-
sive MIMO systems causes a high computational com-
plexity and reduces the achievable throughput within the
signal detection. Moreover, all signals which are trans-
mitted from received terminals superimpose at the BS
and cause interference, which reduces the throughput
and spectral efficiency [82]. The maximum likelihood
(ML) detector achieves the optimum performance and
has a strong ability to minimize the probability of error.
Due to a large number of antennas in massive MIMO
systems, the ML detector has an illicit complexity [21].
Comprehensive research has been done to find the opti-
mal data detection method for massive MIMO systems
that can achieve a preferable throughput performance
with low computational complexity.
The classical non-linear detectors such as the succes-
sive interference cancellation (SIC) [83] and the sphere
decoder (SD) [84]–[86] yield acceptable performance.
Though, a large number of antennas increases the com-
putational complexity which makes the conventional
non-linear detectors impossible for massive MIMO sys-
tems. A comprehensive presentation of detection tech-
niques for massive MIMO is presented in [16]. There
are many linear detection methods that are considered
for the UL detection in massive MIMO systems, such as
the zero-forcing (ZF) and minimum-mean-square-error
(MMSE) [21], [42], [87]. In ZF detectors, the inter-
antenna interference is moderated, but the additive noise
is increased for tacky conditioned channel matrices.
The MMSE detector considers the noise power within
the detection process accordingly. The MMSE detector
performance exceeds the performance of the ZF detector
[88].
Though the ZF and the MMSE based detectors give a
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good throughput performance, they comprise a matrix
inversion during the processing which makes detection
methods computationally inefficient for a large number
of antennas [89], [90]. A plethora of research methods
has been proposed to design a low complexity detection
method for massive MIMO systems [91], [92]. Iterative
methods to avoid the exact matrix inversion are con-
sidered in the literature to find sub-optimal for the UL
detection in massive MIMO systems such as the CG
[92], AMP, GS [93], SOR, and least-square regression
selection methods [94].

• Precoding: Precoding is a conception of beamforming
where the multi-antenna systems support the multi-
stream transmission [32]. Precoding performs an im-
perious technique in massive MIMO systems where it
plays a crucial role to reduce the effects of interference
and path-loss, and increases the throughput [21], [95].
In massive MIMO systems, the BS can estimate the
CSI thanks to the UL pilot signals which are sent from
the received terminals. The received CSI at the BS
is imperfect and uncontrollable as a result of several
environmental obstacles on the wireless channel [21].
Though the BS does not have a perfect CSI, neverthe-
less the DL performance of the BS broadly depends
on the estimated CSI [32]. The massive MIMO’s BS
exploits the precoding techniques and the estimated
CSI to mitigate the interference and increase spectral
efficiency [32]. The precoding techniques give a tremen-
dous benefits to massive MIMO systems. Unfortunately,
these benefits are coming with a high computational
complexity which is directly proportional to the number
of antennas. Therefore, a low complexity precoder is
imperative to exploit in massive MIMO systems [32],
[95]. This aspect is covered in detail in this review.

The features, advantages, and challenges of massive MIMO
systems are summarized in Table 2.

IV. SYSTEM MODEL

In this section, an overview of the DL system model for
massive MIMO is presented. It is assumed that a single BS
with M -transmitted antennas is serving N -single antenna
received terminals, whereN ≤M . A frequency-flat channel,
which indicates coefficients across N -received terminals and
M -transmitted antennas, is considered. In the TDD mode,
the DL transmission has the same channel matrix H as the
UL transmission, within the channel coherence time, due to
the channel reciprocity [49]. The channel matrix H ∈ CM×N
can be represented as

H =


h11 h12 h13 · · · h1N

h21 h22 h23 · · · h2N

...
...

. . .
...

hM1 hN2 hN3 · · · hMN

 , H ∈ CM×N .

(1)

Elements of H are drawn from complex Gaussian distribu-
tions CN (0, 1).

For the DL transmission, the upcoming data a =
[a1, a2, · · · , aN ]

T , which are taken from a M -ary constel-
lation, passed into a precoding stage at the BS. The M BS
antennas form their precoded vector by converting a into
M × 1 vector as x = [x1,x2, · · · ,xM ]

T , and then send it
separately to each terminal of N -received terminals through
the channel. With the assumption of perfect CSI and synchro-
nization at the BS, the precoder can be exploited to point the
transmitted signal to its specified received terminal. Figure 4
shows the system model of massive MIMO systems with M -
transmitted antennas and N -received terminals which also
indicates the position of the precoding block.

The received vector at received terminals is y =
[y1,y2, · · · ,yN ]

T which is affected by channel effects and
noise. The N × 1 vector of the received signal at the BS can
be represented as

y = HTx + n, y ∈ CN×1, (2)

where n is N × 1 additive white Gaussian noise (AWGN)
vector whose elements are drawn from complex Gaussian
distributions CN (0, σ2

n).

V. MASSIVE MIMO PRECODING TECHNIQUES
One of the main concepts in massive MIMO systems is a
precoding technology that transforms the complexity system
from the side of received terminals to the side of BS by using
a strong signal processing technology at the transmitter side
[19]. Usually, in a real wireless propagation environment, it
is difficult to obtain a reliable CSI where the performance
of DL transmission largely depends on CSI. The precoding
technology can be employed to deal with imperfect CSI.

Many research papers have shown that massive MIMO
precoding technology acts as a critical role to out from the
bottleneck of breaking down the system’s performance by
controlling the direction of the beams and points them into
a specific received terminal location [19]. Utilization of the
precoding technology in massive MIMO systems leads to
eliminate/cancel the effects of interference and fading, and
increasing the throughput and capacity [96] when the number
of antennas approaches infinity. The precoding algorithms
can be mainly classified into linear, non-linear, PAPR precod-
ing and machine learning based precoding algorithms, which
are covered in detail in this section.

A. LINEAR PRECODING
Fig. 5 depicts the generalized block diagrams of communica-
tion systems with precoding and decoding techniques. The
P is a feedforward matrix of linear precoding, the B is a
feedback matrix of linear precoding, the K is a feedforward
matrix of linear decoding, and the C is a feedback matrix
of non-linear precoding. These matrices specify the required
precoding technique from a linear/non-linear or hybrid tech-
nique. For instance, when B= 0 the generalized precoding
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FIGURE 4: System model of massive MIMO systems with M - transmitted antennas and N -received terminals.

FIGURE 5: Generalized block diagram of communication systems with precoding and decoding techniques.

technique acts as the linear precoding technique [97]. The
Modulo arithmetic is used to adjust the average power [98].

Thus the transmitted signal for the N users in the DL
transmission, where M > N , can be expressed as:

x =
√
ρPa, x ∈ CM×1, (3)

where P is a M × N linear precoding matrix, a is a N × 1
transmitted vector before precoding process, and

√
ρ is the

transmitted average power. The precoding matrix P is related
to H. In the TDD mode, the DL channel is the transpose of
the H [49], and the N × 1 vector at N -received terminals
becomes

y = HTx + n,

=
√
ρ HTPa + n, y ∈ CN×1. (4)

In general, the P matrix of basic precoding techniques con-
tains a matrix inversion operation which leads to high com-
putational complexity, especially, if N is not greater enough

than M [98]. According to the manner of dealing with the
matrix inversion process, the linear precoding technique can
be classified into basic linear precoding, linear precoder
based on the matrix inversion approximation, linear precoder
based on fixed-point iterations, and linear precoder based on
matrix-decomposition.
1) Basic Linear Precoding Algorithms:

The basic linear precoder mainly depends on multiplying
the transmitted signal a with the precoding matrix P. The
basic linear precoder has O(N3) computational complexity
which is comparable to the exact matrix inversion complexity
[16], [99], [100].
a) Maximum Ratio Transmission (MRT) Algorithm: The
MRT aims to maximize the gain of signal into a specific
receive terminal. It is the counterpart of the matched filter-
ing (MF) and conjugate beamforming (CB) [21]. The MRT
precoding matrix formula is

P MRT =
√
β (H∗) , (5)
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where β is a scaling power factor and H∗ is the complex con-
jugate of H matrix [21]. Thus, the received signal becomes

y MRT =
√
β
√
ρ HT H∗ a + n, y ∈ CN×1. (6)

The MRT algorithm achieves the sum capacity of a massive
MIMO system when the number of M is much larger than
N , and M grows to infinity (M >> N and M → ∞). In
general, the MRT algorithm performance is close to optimal
when the inter-user interference (IUI) is trivial compared to
the noise (noise-limited systems). In the MRT algorithm,
when the values of M and N are comparable, the system
experiences a strong IUI. Thus, the throughput of each user
becomes low which degenerates the massive MIMO concept
[21]. Another amazing feature of the MRT algorithm is that
each antenna in the BS can perform its signal processing
locally [101]. That allows a decentralized construction for the
large number of antennas and leads to a great flexible system
[21], [102], [103].
b) Zero-Forcing (ZF) Algorithm: The ZF algorithm is a
common algorithm of fundamental precoding techniques. It
is the counterpart of the channel inversion. A ZF algorithm
mitigates the interference caused of other users by pointing
the signal beam into the intended user whereas nulling the
other directions where other users are located [104]. This
nulling is performed by multiplying the user data with the
following ZF precoding matrix

P ZF =
√
βH∗

(
G−1

)
, (7)

where G = HTH∗ is a Gram matrix whose diagonal compo-
nents indicate power imbalance throw the channel, and non-
diagonal components indicate the mutual correlations among
the channels. While the number of transmit antennas grows
to infinity in massive MIMO systems, G goes to become an
identity matrix and the matrix inversion computations can be
simplified. The received signal of the ZF algorithm can be
expressed as

y ZF =
√
β
√
ρ HTH∗

(
G−1

)
a + n, y ∈ CN×1. (8)

The ZF algorithm performance is close to optimal when the
noise is trivial compared to the IUI. The ZF algorithm is
considered to be practical when neglecting the AWGN in the
massive MIMO channel model, while the massive MIMO
precoding algorithm becomes much simpler to implement.
Unfortunately, the noise is not negligible in a real situation
and utilization of the ZF algorithm in massive MIMO sys-
tems may not give an optimal solution. The ZF algorithm
may achieve accurate results at high signal-to-noise ratio
(SNR) [21], [104], [105].
c) Minimum Mean Square Error (MMSE) Algorithm: The
MMSE algorithm exploits the benefits of the MRT and
ZF algorithms and achieves a balance between them [21].
Therefore, it has an acceptable performance in moderate
noise and interference systems [105]. The MMSE algorithm
is the counterpart of the regularized ZF (RZF), signal-to-
leakage-and-interference ratio (SLNR) [106], eigenvalue-

based beamforming, and transmit Wiener filtering [104]. The
MMSE algorithm is created by using the mean square error
method in the signal to minimize the error filtering between
the transmitted symbols from the BS and the received termi-
nal.

The MMSE precoding matrix formula is

PMMSE =
√
β H∗ (G + V + λ IN )

−1
, (9)

where λ is a positive regularizing factor which depends on
the system dimensions, the noise variance, and uncertainty
of channel at the transmitter. The matrix V is a N × N
deterministic Hermitian non-negative definite matrix. When
V= 0, a balance occurs between increasing the channel gain
toward intended received terminals (at a large value of λ )
and eliminating the IUI (at a small value of λ ). The MMSE
algorithm performs as the ZF algorithm at λ→ 0, and as the
MF algorithm at λ → ∞ [21], [107]. The received signal of
the MMSE algorithm is

yMMSE =
√
β
√
ρHTH∗ (G + V + λ IN )

−1
a + n. (10)

However, the computation of the ZF and MMSE precoding
matrix comprises the inversion of a very large-dimension
matrix, particularly for large values of M and N [21], [108].
Therefore, it is quite important to offer a method to diminish
the complexity of the basic precoding algorithms [109].
2) Linear Precoder Based on the Matrix Inversion Approxi-
mation:

A large number of M compared to N leads to make G as
a diagonal dominant, where the non-diagonal components go
to zero and diagonal components become close to M [82],
[110]. A matrix inversion of G requires a high computational
complexity. There is a plethora of research to approximate
or avoid the matrix inversion of G rather than computing
it [111]. In addition to the high complexity of a matrix
inversion, a defy in matrix inversion is the inversion of nearly
singular and ill-conditioned matrix [112]. To beat the inveter-
ate noise boost, advanced precoders with approximate/avoid
matrix inversion methods are required.
a) Truncated Polynomial Expansion (TPE) Algorithm: The
TPE precoding algorithm aims to achieve a similar per-
formance of the MMSE algorithm with low computational
complexity. The TPE algorithm exploits an approximation
of known precoding matrices instead of the matrix inversion
in the MMSE algorithm to balance between complexity and
achievable data rate via different truncation orders [21],
[113]. The TPE precoding matrix formula is

PTPE =
J−1∑
j=0

pjH
∗ (G)

j
, (11)

where pj is a scalar coefficient, and J is the number of terms
of the precoder polynomial. Thus, proper adjusting value of
J leads to a smooth transition between the traditional low-
complexity MRT (J = 1) and the high-complexity RZF (J
= min(M , N )) precoding. Clearly, the flexibility of the TPE
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algorithm appeases in the ability to easily tailor the hardware
complexity or changed it dynamically by increasing and
reducing J depending on the high or low SNR, respectively
[21], [114].
b) Neumann Series Approximation (NSA) Algorithm: The
NSA algorithm can tackle the high computational complexity
by employing the Neumann series in the matrix inversion
approximation [107]. In the NSA algorithm, the inversion
process in traditional inversion algorithms such as the MMSE
algorithm is replaced by a series of matrix vector multiplica-
tions (sum of powers) which has a simple flow of data and
can be highly parallelized [115]. The NSA algorithm has
more energy efficiency and low complexity than the other
traditional inversion algorithms i.e. ZF, and MMSE algo-
rithms [100], [116], [117]. This is because the fact that the
G matrix becomes diagonally dominant as the value (M/N )
ratio increases [107]. The diagonal G matrix can be used as
initial matrix in the Neumann series. When the G matrix is
non-diagonally dominant, due to low value of (M/N ) ratio
and high antenna correlation, the NSA algorithm experiences
a slow convergence of the Neumann series [113].

The NSA algorithm treats with non-diagonal matrix by
decomposed G into the sum of diagonal elements matrix
D and non-diagonal elements matrix E, which needs more
iterations to achieve a certain performance [107], [118]. The
NSA expands the inverse matrix G−1 as

G−1 ≈
∞∑
i=0

(
IN −X−1G

)i
X−1, (12)

where X is the matrix of an initial approximation of G−1.
The matrix X must satisfy

lim
i→∞

(
IN −X−1G

)i ' 0N . (13)

For a reasonable convergence for the NSA algorithm, the
value of λmax must be less than one (|λmax| < 1)
where λmax is the largest magnitude of eigenvalue of the(
IN −X−1G

)
matrix [118]. For the non-diagonally matrix

G=D+E, the G−1 can be represented as

G−1 ≈
∞∑
i=0

(
D−1E

)i
D−1, (14)

where the condition

lim
i→∞

(
−D−1E

)i ' 0N , (15)

must be satisfied. The NSA algorithm minimizes the com-
putational complexity to O(K2) instead of O(K3) at the
number of iterations lower than 2 ( i62) [107], [119]. In
[120], a weighted NSA (WNS) algorithm for massive MIMO
systems based on the large Wishart matrix properties is
proposed to fast up the convergence of the NSA algorithm.

The WNS algorithm offers a noteworthy increase in the
convergence and weights are not sensitive to channel inves-
tigation in case of i.i.d. at a low to reasonable correlation
factor. In [121], by exploiting the properties of the WNS al-

gorithm, a weighted Neumann series-steepest descent (WNS-
SD) iterative precoder is proposed to obtain a fast con-
vergence while maintaining low-complexity. Also in [121],
an accelerated weighted Neumann series-steepest descent
(AWNS-SD) precodig algorithm is proposed. The AWNS-SD
algorithm has a remarkable increase in the convergence rates
while maintaining low-complexity and guaranteeing a wide
range of convergence. The AWNS-SD algorithm has a near
performance of the ZF algorithm in only one iterative step for
identical massive MIMO systems.
c) Newton Iteration (NI) Algorithm: The NI algorithm is
a method used in approximating the matrix inversion. It is
the counterpart of the Newton-Raphson method [122]. The
matrix inversion estimation at the ith iteration is

X(i) = Xi−1
(
2IN −GXi−1

)
, (16)

while

G−1 = lim
n→∞

X(i) when
∥∥IN −GX0

∥∥ < 1, (17)

where X0 is an initial rough estimation. Finding the initial
value in the NI algorithm is complicated and needs extra cal-
culations. Besides that, the NI algorithm needs a significant
number of iterations to have fast convergence [116]. High
reliability with quadratic convergence can be offered in the
NI algorithm [122].

Similar to the NSA algorithm, the NI algorithm just needs
a simple computation to speed the precoding process. Though
the NI needs one extra matrix multiplication in each iteration,
it converges faster than the NSA algorithm [122]. In [118], to
accelerate the convergence, a joint NI algorithm and NSA
algorithm (NI-NSA) is proposed. The first iteration of the NI
algorithm is exploited to re-extract the NSA algorithm series,
which leads to a high probability convergence. Numerical
results show that the joint NI-NSA algorithm has a more
efficient and speed convergence rate compared to the NSA
algorithm, without increasing the computational complexity
at later iterations (i > 2). The joint NI-NSA algorithm also
derives a high probability convergence condition aboutM/N
ratio.
d) Chebyshev Iteration (CI) Algorithm: The CI algorithm
is also approximating the matrix inversion process in linear
precoding for massive MIMO systems by employing iterative
computation [109]. The matrix inversion estimation at the ith

iteration is

X(i) = Xi−1
(
3IN −GXi−1

(
3IN −GXi−1

))
, (18)

while

G−1 = lim
n→∞

X(i) when
∥∥IN −GX0

∥∥ < 1. (19)

However, finding the initial value in the CI algorithm, as in
the NI algorithm, is complicated and related to the eigen-
values of the matrix G. Where, the convergence rate of the
CI algorithm is affected by iterative initial values, which
are needed to determine carefully [107]. Though the CI
algorithm needs two matrix additions and three matrix mul-
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tiplications (18), it converges faster than the NI algorithm
[109].

In [109], the optimization of initial values is carried out for
the CI algorithm. Thus, the initial values become easier to be
acquired. The result of simulation shows that the optimized
CI algorithm offers the same achievable average rate as the
RZF algorithm’s rate after just two iterations. The optimized
CI algorithm offers the same performance as the CI algorithm
after just one iteration.

In [100], a precoding technique using the joint CI and NSA
(CI-NSA) algorithm is proposed to achieve the near-optimal
performance. The CI-NSA algorithm optimizes the NSA
algorithm by CI method, which converges faster than the
other existing NSA precoding algorithms. The computational
complexity of the CI-NSA algorithm is similar to the NSA
and NI-NSA algorithms. Nevertheless, the CI-NSA algo-
rithm offers a faster convergence rate with fewer iterations
and with the same performance. Thus, the CI-NSA algorithm
offers a trade-off between performance and complexity.
3) Fixed-Point Iteration-Based Algorithms:

The fixed-point iteration-based algorithms approach to
realize G by solving a linear precoding equation x in Gx = a
iteratively, instead of x = G−1a directly [113]. Subsequently,
precoders based on fixed-point iteration algorithms approach
can be described as below:
a) Gauss-Seidel (GS) Algorithm: When M is very large and
M >> N , the G matrix becomes diagonally dominant
and meets a symmetric positive definite condition of the GS
algorithm. The GS algorithm is mainly used to iteratively
solve a linear precoding equation without a matrix inversion.
The GS algorithm is also known as the Liebmann algorithm
or the method of successive algorithm [20]. By factorized
G matrix into diagonal matrix D, lower-triangular matrix L
and upper-triangular matrix U as G=D+L+U [117], the GS
algorithm can be presented as

x(i) = (D + L)
−1
(
a−Ux(i−1)

)
. (20)

The computational complexity of the GS algorithm is
O(K2) as a result of using matrix-vector multiplication.
Unlike the matrix inversion approximation algorithms, the
GS algorithm can be relaxed as selecting an initial vector x0.
x0=D−1 can be a good initial estimation [123]. Where the GS
algorithm exploits the most recent values at each iteration,
its BER performance is better than the NSA algorithm with
lower complexity at the same number of iterations [124].
In addition, the GS algorithm converges a bit faster than
the NSA algorithm [99], [117]. In [125], a GS-based matrix
inversion approximation (GSBMIA) algorithm is proposed
which simplifies calculations by approximating the matrix
inversion process. The GSBMIA algorithm has a similar
convergence rate of the GS algorithm. In order to speed up the
convergence rate of the GSBMIA algorithm, it is combined
with the NI algorithm. Numerical results show that the GSB-
MIA algorithm and joint algorithm have a faster convergence
rate than the approximate matrix inversion algorithms like the

NSA and NI algorithms.
b) Successive Over-Relaxation (SOR) Algorithm: The SOR
algorithm is proposed to enhance the convergence rate of the
GS algorithm by employing a variable relaxation factor of ω.
Therefore, the SOR algorithm, like the GS algorithm, offers
a good performance at the starting of iteration [116]. By
decomposing G matrix as G=D+L+U, the SOR algorithm’s
equation is expressed as

x(i) = (D− ωL)
−1
[
(ωU + (1− ω)D)x(i−1) + ωa

]
.

(21)
The ω acts as a decisive function in the convergence rate of
the SOR algorithm. If ω = 1, the SOR algorithm works as the
GS algorithm. The SOR algorithm is being convergent when
0 < ω < 2 [126]. It also outperforms the NSA algorithm with
lower complexity [126]. The convergence rate of the SOR
algorithm is faster than the GS algorithm [127].

However, the SOR algorithm has a higher complexity
than the GS algorithm [128]. In addition, the convergence
rate of the SOR algorithm is not fast enough. In [129], a
symmetric SOR (SSOR) algorithm is proposed to reduce
the complexity of the SOR algorithm. Where each iteration
in the SSOR algorithm has two half iterations. The first
half iteration is similar to the SOR iteration and the second
half iteration is similar to the SOR algorithm with reverse
order equations. The performance of the SSOR algorithm is
close to the MMSE algorithm performance. In [130], a low-
complexity method to enhance the SOR algorithm is pro-
posed to obtain a fast convergence rate compared with other
methods. Linear fitting method has been used to determine
the best relaxation parameter. However, it obtains almost
the same computational complexity. Numerical results show
that the proposed SOR algorithm overcomes other iterative
algorithms in terms of BER. In [116], the joint SOR matrix
inverse and NI (SORMI-NI) algorithm is proposed to get an
overall advantage within the iteration. The SORMI iteration
is done before the NI iteration to offer the initial value of the
NI algorithm and offer more efficient and speed searching.
By doing that, the NI algorithm achieves fast convergence
at an early stage of the iteration. Besides that, the SORMI
algorithm solves the problem of difficultly to isolate G−1a in
the SOR algorithm.

In [131], four joint algorithms are proposed to find lin-
ear precoding factors in massive MIMO systems and then
obtain more speed convergence with low complexity. The
first algorithm is the joint CI and NSA algorithm (CI-NSA),
which accelerates the convergence rate of the NSA algo-
rithm with more delicate inversion. The second algorithm is
the SOR-based approximate matrix inversion (SOR-AMI),
which offers a direct simplified matrix inversion with the
same convergence rate of the traditional SOR algorithm. The
third and fourth algorithms are extension and improvement
of SOR-AMI and they are called the NI-SOR-AMI and CI-
SOR-AMI. These four proposed algorithms offer a near-
optimal BER performance of the ZF algorithm. The conver-
gence rate of the proposed CI-NSA algorithm is faster than
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the conventional NSA algorithm with the same complexity.
Likewise, the convergence rates of the CI-SOR-AMI and NI-
SOR-AMI algorithms are faster than the conventional SOR
algorithm.
c) Conjugate Gradient (CG) Algorithm: The CG algorithm is
another good method to solve the linear equations iteratively
by avoiding the matrix inversion process. It can achieve
the same performance as the MMSE algorithm after a few
iterations with lower computational complexity by about one
order of magnitude. In addition, the CG algorithm has higher
BER performance, higher capacity, and lower computational
complexity than the NSA algorithm [127]. The CG algorithm
is also known as Lanczos orthogonalization algorithm [107].
The CG iterations can be described as

x(i+1) = x(i) + α(i−1)F(i), (22)

where Fi is the conjugate direction matrix related to G, as(
F(i)

)H
G F(j) = 0, for i 6= j, (23)

where α(i−1) is a scalar factor and denotes the step size and
G must be a symmetric positive definite matrix to make the
CG algorithm convergent. The CG algorithm contains several
division processes and a large number of iterations, and the
degree of parallelism is low [91], [107], [118]. In the CG
algorithm, the zero vector is usually used as an initial solution
[107].

In [107], a new algorithm named as a three-term-recursion
conjugate gradient (TCG) algorithm is proposed. It mainly
aims to make the algorithm to have fast convergence besides
reducing the computational complexity by selecting a good
initial value. Also, the TCG algorithm has higher parallelism
than the conventional CG algorithm.

In [132], a novel low complexity algorithm for the linear
precoding in massive MIMO systems based on the CG algo-
rithm with asymmetric G matrix is proposed. The algorithm
has two versions of the CG algorithms: the first version
is conjugate gradient squared (CGS) and the second is Bi-
conjugate gradient (Bi-CG). The two novel algorithms over-
come the conventional CG algorithm in terms of convergence
speed and BER performance.
d) Jacobi Iteration (JI) Algorithm: The JI is a simple iterative
algorithm used to find a solution of X̂ = G−1a. By decom-
posing G into a diagonal matrix D and off-diagonal matrix
R, the estimated signal can be presented as

x(i) = D−1
[
a + (D−G)x(i−1)

]
, (24)

which must satisfy

lim
i→∞

(
I−D−1G

)i
= 0. (25)

The initial matrix of the JI precoder can be presented as

x(0) = D−1a. (26)

The JI algorithm has lower performance and lower conver-
gence rate than the GS and SOR algorithms [99], [121],

[124]. Conversely, the JI algorithm enjoys parallelism and
effective hardware implementation and hasO(K2) computa-
tional complexity which is lower than the complexity of the
NSA, GS, and SOR algorithms [117], [121], [128].

In [133], a joint JI and steepest descent algorithm (JI-SD)
is proposed to obtain a good direction of searching for the JI
algorithm to increase the convergence rate. The convergence
rate of the JI-SD algorithm is not met for the large number
of M in massive MIMO systems. In [134], a new joint
JI and CG (JI-CG) algorithm is proposed to speed up the
convergence rate of the JI algorithm. In the joint algorithm,
to discover a more delicate searching direction for the JI
algorithm, the CG algorithm is employed two times. The JI-
CG algorithm overcomes the JI-SD in terms of BER or at
least has similar BER with faster convergence rate at lower
complexity and latency.
4) Precoding Based on Matrix-Decomposition:

The direct algorithms-matrix decomposition precoder for
massive MIMO systems is conventionally used for the matrix
inversion process instead of using an explicit matrix inversion
in small-scale MIMO systems [135]. It is numerically stable
over the basic linear precoder algorithms such as the MRT,
ZF, and MMSE algorithms. Besides that, it can be employed
to offer a modular design, where the inversion process can be
dispensed between different parts [136]. However, the em-
ploying of the direct algorithms-matrix decomposition in the
massive MIMO systems has a considerable computational
complexity. Where the direct algorithms-matrix decomposi-
tion needs to decompose the G matrix into a multiplication
of small matrices as in the QR algorithm and the Chelosky
decomposition algorithm [136].

In spite of the significance of the direct algorithms-matrix
decomposition, their analysis of complexity for massive
MIMO systems and the differentiation with existing fixed-
point iteration-based algorithms and matrix inversion approx-
imation algorithms is lacking in the literature [135], [137].
a) QR Decomposition Algorithm: The QR decomposition
algorithm can be applied to get the solution of (10) as

yMMSE =
√
β
√
ρHTH∗ (G + V + λ IN )

−1
a + n

=
√
β
√
ρHTH∗ (QR)

−1
a + n

=
√
β
√
ρHTH∗

(
R−1QH

)
a + n, (27)

where Q is N × N unitary matrix and contains orthogonal
columns and R is an N ×N upper triangular matrix.

The block diagonalization algorithm (BD) is a famous lin-
ear precoding decomposition algorithm for DL transmission
in multi-user MIMO (MU-MIMO) systems [138]. The BD
algorithm offers good performance but with a high compu-
tational complexity where each user needs to employ two
singular value decomposition (SVD) operations. In [139], the
QR decomposition algorithm is used with the BD algorithm
to reduce the complexity, by using the QR operation instead
of the first SVD operation. Where this joint algorithm known
as the QR decomposition based BD algorithm (QR-BD).
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Also in [139], a new algorithm, QR decomposition and Gram
Schmidt (QR-GS) algorithm, is introduced for DL transmis-
sion in multi-user MIMO (MU-MIMO) systems. The QR-
GS algorithm offers similar performance as the BD and QR-
BD algorithms with a significant reduction in computational
complexity.

In [140], an improved precoding algorithm for large-scale
MU-MIMO systems is proposed. This algorithm is a joint
algorithm that consists of the BD algorithm with QR de-
composition of the ZF matrix and is known as the QR-ZF-
BD algorithm. The QR-ZF-BD algorithm employs the ZF
algorithm and the QR decomposition algorithm instead of
a complex SVD process in the classical BD algorithm. The
QR-ZF-BD algorithm has two stages. Firstly, it uses the QR
decomposition algorithm to minify the multi-user interfer-
ence (MUI). Secondly, it uses the ZF and QR decomposition
algorithms again to increase the spectral efficiency. The result
of the simulation shows that the QR-ZF-BD algorithm offers
better spectral efficiency than other recent decomposition
algorithms.

In [141], An MMSE-based QR-BD (QR-MMSE-BD) pre-
coding algorithm was proposed which has lower complexity
than both the BD and QR-BD algorithms.
b) Cholesky Decomposition (CD) Algorithm: The CD algo-
rithm can be applied to get the solution of (10) as

yMMSE =
√
β
√
ρHTH∗ (G + V + λ IN )

−1
a + n

=
√
β
√
ρ HTH∗

(
LLH

)−1
a + n

=
√
β
√
ρ HTH∗

(
(LH)−1(L)−1

)
a + n, (28)

where a matrix L is the lower triangular matrix. In [142],
utilization of the CD algorithm with Sherman-Morrison strat-
egy (CSM) is proposed. The CSM algorithm contributes to
solving the problem of basic linear precoding algorithms in
massive MIMO systems which need to get a large-size matrix
inversion operation and have high computational complexity.
The CSM algorithm offers a near-optimal performance of
the MMSE algorithm by iteratively decomposing the large-
size matrix inversion process. The result of simulation shows
that the CSM algorithm has better BER and sum-rate per-
formance than the NSA and SOR algorithms with fewer
operations and reducing the computational complexity from
O(N3) to O(N2).

For smooth readability and comparison, the computational
complexity of the linear precoding algorithms is presented
in Table 3 and their pros and cons are comprehensively
reviewed in Table 4.

B. NON-LINEAR PRECODING

As mentioned above, there are two main classes of signal
precoders for massive MIMO systems: linear precoders and
non-linear precoders. Though, the linear precoder algorithms
have the advantages of low complexity, their insufficiency in
precoding accuracy cannot be neglected, particularly when
M/N is close or equal to one [110]. The optimum signal

precoder is the ML precoder. Unfortunately, the ML pre-
coder’s complexity increases exponentially with the increase
M , so it is unattainable to implement in massive MIMO
systems [152]. This section introduces the most used non-
linear massive MIMO signal precoding algorithms, and its
related advantages and disadvantages.

1) Dirty-Paper Coding (DPC):
The DPC algorithm was alluded by Costa in 1983, which

evidenced that the capacity of the theoretical channel can
be offered and the interference can be annulled when the
interference is known at the transmitter side [153]. In MU-
MIMO systems, when the precoding matrix is designed for
the nth received terminal, the interference that comes from
the first up to (n − 1)th received terminals are deemed to
be annulled. Besides that, the DPC algorithm can offer a
remarkable performance without needing extra power in the
transmission side and without sharing CSI with the receiver
side. However, the DPC algorithm is impracticable, because
it needs an infinite length of codewords and sophisticated
signal processing [154], [155].

The DPC algorithm has been proposed to offer the opti-
mum DL sum-rate for massive MIMO systems, where the
idea of the DPC algorithm is that the sum-rate of a system
is equal to the sum-rate of a free-interference system when
the interference is known at the transmitter side [154]. The
sum-rate of the DPC algorithm can be presented as

C = maxW log2 det(IN + H∗WHT) bits/s/Hz, (29)

where W is a N ×N diagonal power allocation matrix, and∑
diag(W) = 1. In [156], a novel non-linear precoding

algorithm known as ZF-DPC is proposed. It is a suboptimal
DPC algorithm with lower complexity. The ZF-DPC algo-
rithm is based on the QR decomposition of the channel where
it is assumed that users have a single receive antenna.

In [20], the performance of the ZF-DPC algorithm has
been scrutinized in the condition of the rayleigh fading
model, and QAM modulation with 100,000 Monte-Carlo
trials. The ZF-DPC algorithm can overcome the conventional
MMSE algorithm by approximately 3 dB for 64-QAM at a
higher SNR.
2) Tomlinson-Harashima (TH) Precoding:

The TH precoding algorithm is a suboptimal implementa-
tion algorithm of the DPC algorithm, which is a combination
of the DPC algorithm and the modulo arithmetic [157], [158].
The TH algorithm is proposed by Tomlinson and Harashima
in 1972 [157], [159]. The TH algorithm is originally an
equalization process proposed to repeal the ISI [160]. Be-
sides that, the TH algorithm can be used to clear the sub-
channels interference in MIMO systems [98]. Though the
TH algorithm experiences a loss of performance in contrast
with the DPC algorithm, it has a practical implementation.
The TH algorithm has more complexity when compared
to linear precoding algorithms but efficaciously eschew the
noise amplification [98]. The TH algorithm has three prime
components, the feedforward filter, the feedback filter, and
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TABLE 3: Computational Complexity of the Linear Precoding Algorithms, i is the number of the required iteration.
Algorithm Computational complexity Complexity order

ZF N3 + 2MN2 +MN +M [100] O(N3)

MMSE 3N3 + 2N2 +NM2 +MN2 +M [116] O(N3)

NSA (i− 2)N3 +MN2 +N2 + 2MN +M [117] O(N2) for i 6 2

WNS (i− 2)N3 +MN2 +N2 + 2MN +M +N [120] O(N3)

NI i2N3 +N2 +MN +M [116] O(N3)

GS i4N2 +NM +M [134] O(N2)

CG i(4N2 + 10N) +NM +M [134] O(N2)

CI 2N3 + i8N2 + 2N2 + 2MN2 + 2MN + 2 [113] O(N3)

JI i(4N2 − 2N) +NM +M [134] O(N2)

SOR i(4N2 + 4N) +NM +M [128] O(N2)

Improved SOR i(N2 +N) +NM +M [130] O(N2)

SSOR i(8N2 + 8N) +NM +M [128] O(N2)

SORMI i(N3 +N2) +NM +M [116] O(N3)

WNS-SD i(N2 + 2N) + 2N2 + 7N +MN +M + 7 [121] O(N2)

AWNS-SD i(N2 + 2N) + 4N2 + 17N +MN +M + 7 [121] O(N2)

NI-NSA (i− 2)N3 + 3MN +N +M [100] O(N2) for i 6 2

CI-NSA (i− 2)N3 + 4MN +N +M [100] O(N2) for i 6 2

JI-SD i(4N2 − 2N) + 12N +MN +M [134] O(N2)

SORMI-NI (2− i)N3 + 2N2 +NM +M [116] O(N2) for i > 2

SOR-AMI iN2 + 2NM +M [131] O(N2)

NI-SOR-AMI 2N3 + (i− 1)N2 + 2NM +M for i 6 3 and 2N3 +N2i+ 2NM +M for i > 3 [131] O(N3)

CI-SOR-AMI 3N3 + iN2 + 2NM +M [131] O(N3)

JI-CG 2(4N2 + 8N) +NM +M for i = 1 and i(4N2− 2N) + 24N +NM +M for i > 2 [134] O(N2)

CSM 4N2 − 3N − 1 [142] O(N2)

the modulo arithmetic [98], [161].
Figure 6 shows the block diagram of the TH algorithm

where it is assumed that M is equal to N [98]. Based on
LQ decomposition, the TH algorithm can be carried out by
decomposing HT to the multiplying of a lower triangular
matrix L and a unitary matrix Q as [98]

HT = LQ. (30)

A matrix K is a scalar matrix which weighting a coefficient of
each sub-stream and has a diagonal format [98]. The diagonal
elements of K are the inverse of the diagonal elements of L
matrix [98]. The K matrix can be represented as

K =


l−1
11 0 0 · · · 0

0 l−1
22 0 · · · 0

...
...

. . .
...

0 0 0 · · · l−1
NN

 , (31)

where the lij for i, j = 0, ..., N is a diagonal element of L

matrix. The matrix B is a feedback (pre-cancellation) matrix,
which is a lower triangular matrix and all diagonal elements
are ones [98]. The feedback matrix B is used to remove the
previous stream interference from the immediate stream and
it can be represented as [98]

B = KL. (32)

The matrix F is a feedforward matrix which is a conjugate
transpose of Q and utilized to save a transmitted power
constant and to compel the spatial causality at the transmitter
side [98], [162].

F = QH. (33)

The pre-cancellation process in the TH algorithm leads to
an increase of the power of each stream layer [98]. Modulo
arithmetic is used in the transmitter and the receiver sides to
adjust the average power [98], [162]. The modulo operation
is tightly related to the utilized constellation A. Assuming
that the M -ary square of QAM constellation is exploited to
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TABLE 4: Pros and Cons of the Linear Precoding Algorithms in Massive MIMO Systems
Algorithm Pros Cons

MRT • It supports locally signal processing in each antenna in the BS [101].
• More flexibility.
• It has a close to optimal performance in the noise-limited system [101].
• If the propagation matrix has nearly orthogonal columns, it works properly [21].

• It is not robust against the IUI [21], [127].
• It dos not able to offer a full diversity at a high spectral efficiency [127].
• It offers a low performance if the channel is an ill-conditioned [16].

ZF • It has a higher data rate than the MRT algorithm [127].
• It eliminates the IUI [127].
• It offers a trade-off between performance and complexity.
• It has a close to optimal performance in the interference-limited system [16].

• It does not consider the effects of noise [116].
• It has a complicated matrix inversion process with a large ratio of (M/N ) [16].
• It amplifies the noise [21], [127].
• It offers a low performance if the channel is ill-conditioned [21], [127].
• It dos not have the ability to enhance the diversity gain or reduce computational complexity when

the ratio of (M/N ) goes to one [16].

MMSE • It offers a trade-off between the MRT and ZF algorithms [21], [116].
• It has a better performance in a noisy environment than ZF algorithm [16].
• It eliminates the IUI [143].
• It considers the effects of noise [16], [116].
• It offers a near-optimal performance with a proper channel propagation case [32].

• The G matrix is must be a symmetric positive definite [144].
• It has a complicated matrix inversion method especially when M is very high [143].
• It dos not have the ability to enhance the diversity gain or reduce the computational complexity when

the ratio of (M/N ) goes to one [101], [145].

TPE • It has more stability and better performance than the the NSA algorithm [121].
• It has an optimized polynomial coefficient to speed up the convergence rate [129].

• It needs an additional computational complexity over the NSA algorithm [121].
• It has a larger delay than the NSA algorithm [121].
• The determination of the optimized coefficient is complicated and must be updated in each iteration

[121].

NSA • It contains matrix multiplication and addition processes only without division processes [118].
• It has simple hardware implementations [120].
• It has a near-optimal performance of the ZF algorithm when the ratio of (M/N ) is large [16],

[100].
• It has a marginal lower complexity than the ZF algorithm when the ratio of (M/N ) is large [100].
• It does not need a complicated optimization parameter as the TPE algorithm [129].
• It can be highly parallelized [115].
• It has a simple data-flow [115].

• It converges only when the ratio of (M/N) > 5.83) [118], [121].
• It has a slow convergence rate [120].
• When M is not large enough, it shows the same computational complexity of the MMSE algorithm

[121].
• It has a significant loss of performance in large massive MIMO systems [146].

WNS • It has a faster convergence rate than the conventional NSA algorithm [120].
• The computations of its optimized weights is not affected by instantaneous channel realization

[120].
• It has the same cost of complexity of the conventional NSA algorithm [120].
• It has a near-optimal performance compared to optimal exact inversion algorithms at a fourth term

of series [120].

• It can not converge when N is very large in high mobility environment [120].
• The G matrix is must be a symmetric positive definite [121].
• It needs additional calculations to find a suitable optimized weights [121].

NI • It has a high degree of parallelism [147].
• The matrix inversion process is easy to be realized [109], [116], [147].
• It has a fast convergence rate during the later stage of iterations [116].
• The complexity can be controlled only by the number of iterations [116], [118].

• Its initial value calculations is very complicated [116], [118].
• It has two order of convergence (slow convergence rate) [109], [116].
• It is a high complexity algorithm compared to the other iterative algorithms [109].

CI • It has a fast convergence rate during the whole algorithm iterations [100].
• It has a third-order convergence which is faster than the NI algorithm [100], [109].
• It can offer the same achievable rate of the MMSE algorithm after just two iterations [109].
• It needs fewer iterations to obtain the same performance of the NI algorithm at the same initial

value [109].

• It needs an accurate selection of initial value to guarantee convergence [107], [109].
• It has a higher complexity than the NI algorithm [109].

GS • It has a faster convergence rate than the JI and NSA algorithms [123], [124], [148].
• It offers a capacity-approaching performance of conventional linear precoders by an iterative

manner without complex matrix inversion and with few number of iterations [113], [148].
• It employs the optimal relaxation factor to increase the convergence rate [149].
• It can offer the same achievable rate of the MMSE algorithm after just two iterations [149].
• It has a better performance on the beginning iterations [116].
• It has lower computational complexity than the MMSE algorithm by one order of magnitude [116],

[144].
• It can converge for any initial value [148].
• It depends on the last updated value in each iteration [148].
• It has a double convergence rate of the conventional JI algorithm [150].

• It is difficult to be implemented in parallel [121], [134].
• It needs additional calculations to find a suitable optimized factor.
• The G matrix is must be a Hermitian positive definite [144].
• The G matrix is must be a symmetric positive definite [144], [150].

SOR • It offers a near-optimal performance of the MMSE algorithm with a few number of iterations
[128].

• It employs a variable relaxation factor to enhance the convergence rate [116], [128].
• It can offer a good performance at beginning of iterations [116].
• Its convergence rate is faster than the JI and GS algorithm rate [127].

• It is very sensitive to relaxation factor [128].
• Its performance is degraded in the later iterations.
• The G matrix is must be a symmetric positive definite [126].
• It converges only when 0 < ω < 2 [128].
• It is difficult to find its optimal relaxation factor [130].
• It has a less degree of parallelism than that in the JI algorithm [151].

CG • It offers a fast convergence rate with at most N number of iterations [91].
• It offers higher capacity-approaching, BER performance, and lower complexity than the conven-

tional NSA algorithm [127].
• It offers a near-optimal performance of the ZF algorithm with a few number of iterations [127].
• It offers zero value of relative residue [132].
• It has lower computational complexity than the MMSE algorithm by one order of magnitude [127].
• It has an accurate gradient searching direction [132].

• It has many division processes [150].
• The G matrix must be a symmetric positive definite [127].
• It has a higher complexity in each gradient computation [134].

CGS • It can converge when G matrix is an asymmetric positive definite [132].
• It has a higher convergence rate with lower relative residue than the CG algorithm [132].
• It does not need to compute the transpose of G matrix as in the BI-CG algorithm [132].
• It has a double convergence rate of the BI-CG algorithm with a lower complexity [132].
• Its relative residue is equal to zero in the (N − 1)th iteration or before [132].

• It has an irregular behavior of convergence [132].
• It needs to make a balance between the convergence rate and accuracy [132].

BI-CG • It is more accurate than the CGS [132].
• It has a lesser relative residue than the CGS algorithm [132].
• It can converge when G matrix is an asymmetric positive definite [132].
• It has a higher convergence rate with lower relative residue than the CG algorithm [132].

• It needs to compute the transpose of G matrix [132].
• The G matrix is must be a symmetric positive definite [132].
• It needs to make a balance between the convergence rate and accuracy [132].

JI • Its convergence rate increase linearly with increasing M [121].
• It offers a near-optimal performance of the ZF algorithm with few iterations [146].
• It offers capacity-approaching of the ZF algorithm few iterations [146].
• It has lower computational complexity than the ZF algorithm by one order of magnitude [146].
• It has an easy implementation [121].
• It can offer the same achievable rate of the MMSE algorithm after just two iterations [149].

• It converges only when the ratio of (M/N) > 5.8) [146], [125].
• The G matrix is must be a symmetric positive definite [146].
• It has lesser robustness and speed than the GS algorithm [117].
• It has a high latency [134].
• It has a low convergence rate because of the possible oscillations [128].

SSOR • It offers a near-optimal performance of the ZF algorithm [128].
• It has a lesser sensitivity to the relaxation parameter than the SOR algorithm [128], [129].
• It offers more flexibility for practical systems [129].
• It has lower computational complexity than the ZF algorithm by one order of magnitude without

performance loss [129].
• It optimizes the relaxation parameter, which is dependent just on the dimension of massive MIMO

system [129].
• It is suitable for a fast time-varying system [129].
• It has a higher performance than the NSA and TPE algorithms [129].

• It needs accurate calculations for the optimized relaxation factor [129].
• The G matrix is must be a Hermitian positive definite [129].
• It has a double complexity cost over the conventional SOR algorithm [128].
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SOR-AMI • It has a direct simple matrix inversion process [131].
• It has lower computational complexity than the conventional SOR, while maintains the

same convergence rate [131].
• It has a higher convergence rate than the CI-NSA algorithm [131].
• It offers a near-optimal performance of the ZF algorithm [131].

• It has a lower convergence rate than the CI-SOR-AMI, and NI-SOR-AMI algorithms [131].

NI-SOR-AMI • It has a faster convergence rate than the SOR, SOR-AMI, and CI-NSA algorithms
[131].

• It offers a near-optimal performance of the ZF algorithm under correlated and uncor-
related channels [131].

• It is favorite because of its lower complexity and more accurate inversion result [131].
• It offers an efficient direction for the searching process for the SOR-AMI algorithm

[131].
• It has a high probability of convergence [131].

• It has a lower convergence rate than the CI-SOR-AMI algorithm [131].

CI-SOR-AMI • It has a faster convergence rate than the SOR, SOR-AMI, CI-NSA, and NI-SOR-AMI
algorithms [131].

• It offers a near-optimal performance of the ZF algorithm under correlated and uncor-
related channels [131].

• It offers an efficient direction for the searching process for the SOR-AMI algorithm
[131].

• It has a high probability of convergence [131].

• It is not preferable in practice due to its high complexity and not accurate inversion result
compared to the NI-SOR-AMI algorithm [131].

NI-SOR • It has a global speed convergence during the iterations [116].
• It has more effective and faster searching than the NI and SOR algorithms [116].
• It needs a lower hardware cost than the NI and SOR algorithms [116].

• It needs accurate calculations for the optimized relaxation factor of the SOR algorithm to
determine the initial value of the joint algorithm [116].

NI-SORMI • It is robust for different ratio of (M/N ) [116].
• It has lower computational complexity than the MMSE algorithm [116].
• It speeds up the convergence rate of the NI algorithm [116].

• It has a high computational complexity compared with the JI, NI, and SOR algorithms [116].

CI-NSA • It has a balance between fewer iterations and a performance [131].
• It offers a near-optimal performance of the ZF algorithm under correlated and uncor-

related channels [100], [131].
• It offers a good direction for searching process for the NSA algorithm [100], [131].
• It improves the convergence rate of the NSA algorithm [100], [100].
• It has a more accurate inversion result than the conventional NSA algorithm [100],

[131].
• It has a high probability of convergence [100], [131].
• It has a smaller spectral radius [100].
• It can offer a better BER with a fewer number of iterations than the other existing

iterative algorithms [100], [131].
• Wide range of convergence [100].

• It has a lower convergence rate than the CI-SOR-AMI, NI-SOR-AMI, and SORMI algo-
rithms [131].

• It converges only when the ratio of (M/N) > 5.83) [131].

WNS-SD • It has a high hardware efficiency [121].
• It offers a near-optimal performance of the ZF algorithm [121].
• It can accelerate the convergence rate with a high probability when the ratio of (M/N )

is small [121].
• It offers a high parallelism and low complexity [121].
• It meets a strict latency requirement in massive MIMO systems [121].
• It offers a wide range of convergence [121].
• At first stage of the WNS algorithm, the SD algorithm offers an efficient convergence

direction [121].

• It needs additional calculations to find a suitable optimized weights.
• The G matrix must be a symmetric positive definite [121].

AWNS-SD • It needs just one iteration to reach a near-optimal performance of the ZF algorithm
[121].

• It offers a high parallelism and low complexity [121].
• It meets a strict latency requirement in massive MIMO systems [121].
• It offers a wide range of convergence [121].
• It quit improves the convergence rate of the WNS-SD algorithm [121].
• Its convergence rate overcomes the other competitive algorithms like the NSA, WNS-

SD, and JI-SD algorithms, while preserves lower complexity [121].

• The G matrix must be a symmetric positive definite [121].

JI-SD • It offers a well direction for searching process for the JI algorithm [121].
• It significantly speeds the convergence rate over the JI algorithm [121].
• It has a higher speed of convergence rate over the NSA, SD, CG, and JI algorithms

[134].

• It can not converge when the ratio of (M/N ) is small [121].

NI-NSA • It speeds up the convergence rate of the NSA algorithm [118], [118].
• It offers a good direction for the searching process for the NSA algorithm [118].
• It can offer a very high convergence probability [118], [118].
• It has a two-order of convergence [100], [118].

• Its convergence rate is lower than the convergence rate of the CG, GS, NSA, and CI-NSA
algorithms [118], [131].

• It converges with high probability only when the ratio of (M/N) > 5.83) [118], [118].

JI-CG • It offers an accurate direction of searching for iterations of the JI algorithm [134].
• It has a better BER performance than the NSA, GC, JI, and JI-SD algorithms with a

faster convergence rate [134].
• It has a simple hardware implementation [134].
• It has a reasonable latency [134].

• The G matrix must be a symmetric positive definite [134].

get the a symbols [162]. Based on the concept of SIC, the
elements of pre-signal vector x̃ could be represented as

x̃n = MODM

(
an −

n−1∑
l=1

bnlx̃nl

)
, n = 1, 2, ..., N (34)

where bnl is the element of the matrix B and MODM is a

modular arithmetic which can be designated as

MODM (x) = x− 2
√
M

⌊
1

2
−<

{
x

2
√
M

}⌋
−
⌊

1

2
+ =

{
x

2
√
M

}⌋
.

(35)

Utilization of the modulo operation in the TH algorithm
causes some losses of performance as shaping, modulo, and
power losses [163], [164]. The loss of modulo could be
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FIGURE 6: The block diagram of the TH algorithm based on LQ decomposition.

avoided by exploiting the large constellation with a suitable
decoding algorithm , or by modifying the input signal by
adding a perturbation vector [163]. The TH precoder algo-
rithm has a higher computational complexity compared with
linear precoding algorithms, where it mainly has three pro-
cessing steps precancellation matrix, LQ decomposition of
HT, and the feedforward matrix. Furthermore, the use of the
TH algorithm with limited CSI is ambiguous [162]. However,
utilization of the TH algorithm in massive MIMO systems
has two main challenges: the high computational complexity
and the instability due to the CSI inaccuracies [162]. In
[165], a low-complexity TH algorithm is proposed which
obtains a performance near to the conventional TH algorithm
performance. Particularly, the proposed algorithm has the
same computational complexity of the RZF algorithm for
calculating the feedforward and feedback matrix. Per contra,
the proposed algorithm may still have a high computational
complexity, especially in massive MIMO systems.

In [166], a hybrid low-complexity algorithm which com-
bines the linear and TH algorithms (HL-TH) is proposed.
In the HL-TH algorithm, users are classified into groups to
diminish the computational complexity, where each group
has a lower size of efficacious channels than the realistic
channels. The proposed algorithm has two steps. The first
step is minimizing the inter-group interference by simply
exploiting CSI in an inner linear precoder. In the second step,
a TH precoding algorithm successively removes the intra-
group interference in each group. The result of simulation
shows that the HL-TH algorithm has a higher BER for each
user compared to the RZF algorithm and has a substantially
lower computational complexity than the low-complexity TH
algorithm proposed in [165].

In [162], a novel algorithm for the DL massive MU-
MIMO systems is proposed to address the challenges of
the conventional TH algorithm. The proposed algorithm is
a special case of the HL-TH algorithm but does not rely on
grouping and without assuming the users’ channel correla-
tion matrices. Furthermore, the proposed algorithm utilizes
conventional linear algorithms with a TH algorithm to offer a
lower complexity implementation, and offer more resilience
for diverse kinds of CSI while maintaining a substantial
performance rate. The proposed algorithm increases the sum-
rate over linear precoders with delayed and limited CSI
and has robustness with smaller size arrays and different

propagation conditions.
3) Vector Perturbation (VP) Precoding:

The VP algorithm is proposed in [167] to present an easy
encoding technique without explicating the dirty-paper tech-
niques, and viewed as a generalized TH algorithm [167]. The
VP algorithm offers a full diversity order with a much lower
complexity compared with the DPC algorithm [168]. The VP
algorithm offers a near-capacity performance and regularizes
a variation on the inversion process, where exploits a sphere
encoder to perturb the input data to mitigate the transmitted
energy, after that the vector of perturbed data is precoded by
a linear front-end precoder [167]–[170]. The transmitter in
the VP algorithm chooses the precoding matrix to relieve the
IUI and after that finds the perturbation vector according to
the criterion of minimizing the unscaled transmitted power
[167]. The pseudo-inverse of H matrix and its regularized
version can be used as the generator matrix of the lattice
[167].

The perturbation operation in the VP algorithm needs the
linear front-end precoding process to select the perturbing
vector of the signal to be sent to all the users, which indicates
that these two processes are required to be done jointly [167].
Whereas the TH algorithm chooses the scalar integer offset
sequentially to be used in the transmitter and it does not
execute nearly as well as the VP algorithm selection. The
VP algorithm is modifying the transmitted data, instead of
modifying the inverse process, by aligning the data symbols
at the transmitter to the eigenvalues of the inverse H matrix
on an instantaneous basis [167]. This modifying can be done
by discreetly inserting a scalar integer vector offset at the
transmitter and that leads to an interference cancellation at
the receiver by applying a modulo arithmetic operation. In
the VP algorithm, the CSI is assumed to be perfectly known
at the transmitter, and each receiver requires only a single
pre-arranged scalar which is regarding to the channel SNR
[171].

The VP algorithm has the unpretentious interpretation of
placement of the largest ingredients of the signal along with
the lowest singular values of the inverse channel, and the
smallest signal ingredients of the signal along the highest
singular values [167]. However, a sphere encoding technique
can be utilized in selecting the required vector perturbation
[172], [173]. Figure 7 shows the block diagram of the VP
algorithm and for simplicity assuming M is equal to N , and
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FIGURE 7: Block diagram of the VP algorithm. [174].

the perturbed data ã vector can be represented as [174]

ã = a + τ l∗, (36)

where l∗ is the N × 1 selected perturbation vector with
complex integer entries, and τ is the absolute value of the
maximum magnitude of the constellation symbol which is
equal to [169], [172], [174]

τ = 2 |c|max + ∆, (37)

where ∆ is the minimum Euclidean distance of the constel-
lation [169], [172]. Depend on the VP-ZF as an example, the
transmitted signal x can be represented as [174]

x =
1
√
γ
H∗
(
HTH∗

)−1
ã, (38)

where γ is the scaling factor of transmit power, and is equal
to [169], [172], [174]

γ =
∥∥∥H∗ (HTH∗

)−1
ã
∥∥∥2

F
. (39)

After that, the signal symbol vector at the receiver is scaled-
back and a modulo operator is employed to clear the pertur-
bation affect τ l∗. The output of the receiver y is represented
as [169], [172], [174]

y = modτ

[
√
γ

(
1
√
γ

(a + τ l∗) + n

)]
= modτ [a + τ l∗ +

√
γn] , (40)

and with ignoring the effect of n, the received vector y
becomes [169], [170], [174],

y = a + n. (41)

From (40),
√
γ has the prime role in the perturbation vector l∗

design. The performance of the system degrades significantly
with a large value of γ [98]. Thus, the value of γ is minimized
to find the best perturbation vector l∗ as [98], [169], [170],
[174]

l∗ = arg minl

∥∥∥H∗ (HTH∗
)−1

(a + τ l∗)
∥∥∥2

F
. (42)

The optimization process in (42) is a 2N -dimensional real
integer lattice problem (NP-hard problem). The sphere search
algorithms are commonly exploited to do this minimization

process where the computational complexity increases expo-
nentially with N .

In [175], a block diagonalized vector perturbation (BD-
VP) algorithm that joins the BD and VP algorithms for
the MU-MIMO system is proposed. The BD-VP algorithm
avoids the needing for a global CSI like in the BD algorithm,
and hence diminishes the receiver complexity of each user.
It has a comparable performance of diversity to the BD
algorithm. However, the BD-VP algorithm has rather high
complexity at the transmitter side due to the combination
of BD and VB algorithms. In [176], a low-complexity BD-
VP algorithm and a user grouping vector perturbation (UG-
VP) are proposed to enhance the performance of the BD-
VP algorithm. However, the BD-VP and UG-VP algorithms
are sub-optimal algorithms where the perturbation process is
done independently for each user/group. To clarify the per-
formance loss, the authors in [169] proposed a new joint VP
algorithm (JVP) that achieves a considerable performance
with the conventional VP algorithm and can be exploited in
the adaptive modulation system.

In [177], a novel VP precoding algorithm assisted by
reactive tabu search (RTS) for the large-scale MU-MIMO
systems is proposed where the RTS is an iterative local
neighborhood search technique. The proposed algorithm has
the ability to efficiently flee from penurious local minima
and achieves a quasi-optimal performance with a significant
complexity reduction compared to the conventional VP algo-
rithm.

In [178], a novel thresholded VP (TVP) algorithm is pro-
posed to offer a tradeoff between performance and complex-
ity for the VP algorithm in small and large scale MU-MIMO
systems. A threshold for specific performance is exploited
to decrease the sphere search process within the perturbation
vectors. Once the threshold is achieved, the searching process
should be terminated, and hence, considerable complexity is
obtained. The sum-rate achieved by the proposed algorithm
is approximately 90% of the conventional VP sum-rate, with
at lower than 50% of the computational complexity.

In [172], a novel VP algorithm with limited feedback is
proposed for MU-MIMO systems. The proposed algorithm
avoids the extensive high complexity of the sphere searching
in the conventional VP algorithm by employing a Min-Max
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FIGURE 8: The search areas of CVP algorithm for 4-QAM.

optimization. The proposed algorithm dodges the scaling
process at the receiver by constraining the searching area
of perturbing vectors to the symbol constellation areas, as
denoted in Fig. 8 by the shaded areas, which are constructive
to the data symbol. Therefore, this algorithm is known as a
constructive vector perturbation (CVP). Dodging a scaling
process at the receiver is the main advantage in the CVP
algorithm, especially in the limited feedback scenarios.

In [170], a novel hybrid TH and VP algorithm (TH-VP) is
proposed. The proposed algorithm employs the TH algorithm
to remove the IUI. It also employs the VP algorithm in
equalizing each diversified spatial stream of the user. In
the TH-VP algorithm, the two non-linear algorithms can
be combined in one optimization process to obtain a low
computational complexity and a satisfactory performance in
comparison with other competitive algorithms such as the
VP, ZF-VP and BD-VB algorithms. The TH-VP performance
overcomes the ZF-VP and BD-VB algorithms, and is close to
the performance of the DPC algorithm.

In [171], a robust VP algorithm is proposed, which can
jointly deals with the CSI imperfections and inaccurate
power-scaled factors under the criterion of the MMSE algo-
rithm. The proposed VP algorithm is less sensitive to CSI
imperfections and inaccurate power-scaled factors in contrast
to the conventional VP algorithm.
4) Lattice Reduction Aided (LR) Precoding:

Lattice theory is firstly exploited in detection and precod-
ing techniques for MIMO systems in [179]. The main con-
cept of the LR algorithm is exploiting the discrete behavior
of the digital information and deal with H as a basis of a
point lattice [180]. In the LR algorithm, there are typically
three steps [180]:
• Reducing the basis for the lattice by employing a uni-

modular matrix.
• Solving precoding problem related to a reduced basis.
• Transforming back the solution into the original domain

by the uni-modular matrix.
There are sundry definitions of the LR algorithm with cor-
responding reduction criteria, like the LLL reduction [181],

[182], the Seysen reduction (SR) [183], the Brun reduction
(BR) [184], the Korkine-Zolotareff reduction (KZ) [185],
[186], the Minkowski reduction (MR) [187], and the Gauss
reduction (GR) [188]. The selecting of the optimal perturbed
vector brings about the problem of searching the closest
point within a lattice [189], which can be done by sphere-
searching [167]. This optimal solution is computationally too
costly. Solving precoding problems related to the reduced
basis displays advantages in performance and complexity. In
[168], [190]–[192], some of sub-optimum precoding tech-
niques can offer a full diversity when preceded by the LLL
lattice reduction. However, employing the LR algorithm in
the precoding process is unlike the LR-aided data detection,
where it can avoid the shaping problem, e.g., the relaxation
from a finite to an infinite lattice [193].

Assuming N 6 M , ZF-based precoding, and O is a right
pseudo-inverse matrix which equals to

O = H∗
(
HTH∗

)−1 (43)

the corresponding reduced matrix Õ is given by

Õ = OT, (44)

where T is an uni-modular transformation matrix. Thus, the
(42) can be reformulated in terms of O and T as

‖O (a + τ l∗)‖2 =
∥∥OTT−1 (a + τ l∗)

∥∥2

=
∥∥∥Õ (ã + τ l̃∗)

∥∥∥2

, (45)

where ã = T−1a, and l̃∗ = T−1l∗ [190], [194], [195]. The
LR algorithm can be also exploited with the conventional
linear precoding algorithm. In [196], the jointly LR-SR aided
the ZF or MMSE linear precoding algorithms are proposed
(see Fig. 9). Utilization of the SR technique offers a more
orthogonal basis than that offered by the LLL technique. The
SR technique achieves 0.5 dB in BER performance at 10−5

over the LLL performance. The computational complexity
of the SR technique is about 92% of the LLL technique for
4×4 MIMO system with 4 QAM [197], [198]. In [199], the
LR-aided linear precoding algorithm is employed in the BD
algorithm in lieu of the second SVD process to parallelize
each stream of users. Also, a complex LLL (CLLL) algorithm
is employed in the LR algorithm to reduce the computational
complexity of the LLL algorithm by approximately 50%
without any effect in performance [200].

In [201], the employing of the LR algorithm in the VP
algorithm based on a multi-branch (MB) strategy (MB-LR-
VP) for MU-MIMO systems is proposed. The MB builds a
collection of branches for transmitting information streams
depending on a pre-infectious ordering scheme. Besides that,
a development of an efficient scheme to construct the transmit
ordering patterns is also proposed to find an optimal selection
mechanism. The MB-LR-VP algorithm offers a better BER
performance than the conventional VP precoding algorithm.

In [202], a joint LR and VP algorithm is proposed for
massive MU-MIMO systems to offer reduced BER at all
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FIGURE 9: The block diagram of LR aided linear precoding using SR algorithm.

TABLE 5: Computational Complexity of Some Non-linear Precoding Algorithms.

Algorithm Computational complexity Notes

TH 8
(
N
M + 2

3

)
N3 + 2

(
2T
(
1 + 2NM

)
− 1
)
N2 + 2

(
T
(
2− N

M

)
+ 2
)
N − 8T [166]. Where T is the channel coherence time.

HL-TH 4
(
4 N
MG + 10

3G2

)
N3 +

(
2NM (4T − 1) + 4 (T−1)

G

)
N2 +

(
4− N

M

)
N − 8TG [166] Where T is the channel coherence time, and G is

the number of user groups.

VP-sphere searching O(N6) [169] -

ZF-VP 4M
3

3 + 4M2 + 2M [170] -

BD-VP 4
3M

3 +
∑N
k=1O(n6

k) [169] This complexity is for MU-MIMO system where
each user has nk antennas. On the other hand, the
complexity for MU-MIMO system where each
user has a single antenna can be easily obtained
as 4

3M
3 +O(N6).

UG-VP 4
3M

3 +
∑G
g=1O(n6

g) [169] Where G is the number of user groups, and ng is
the number of user in each group.

JVP 4
3M

3 +O(M6) + 2M [169] -

Low complexity VP 4
3M

3 +
∑N
k=1

[
n4
kO(log (ω))

]
[176] • This complexity is for an MU-MIMO sys-

tem where each user has nk antennas. On
the other hand, the complexity for MU-
MIMO system where each user has single
antenna can be easily obtained as 4

3M
3 +[

N4O(log (ω))
]
.

• ω is the norm of the longest basis of D matrix
of the BD algorithm.

VP-RTS O(N2M) [177] -

LR-LLL O(N4) [201] -

LR-CLLL 8
(
4M2N + 8MN2 + 9N3

)
[204] -

SNRs with no lowering in capacity. Two types of the LR-VP
algorithm have been proposed, namely LR-VP-ZF and LR-
VP-MMSE algorithms. The LR-VP algorithms have better
BER and higher capacity than the BD, TH and VP precoding
algorithms for massive MU-MIMO systems.

In [203], a comparison between the LR and TH algorithms
is presented. The authors deduced that the TH algorithm
always overcomes the LR algorithm in a well-conditioned
channel, whilst the LR algorithm is outshined in an ill-
conditioned channel. The optimization process for stream
ordering makes the TH algorithm triumph in a broad range
number of channels, essentially in the large-scale MIMO
systems.

For smooth readability and comparison, the computational
complexity of the non-linear precoding algorithms is pre-
sented in Table 5 and their pros and cons are reviewed in

Table 6.

C. PEAK-TO-AVERAGE POWER RATIO (PAPR)
PRECODING

It is clear that a MIMO system with a large number of
antennas will considerably boost hardware cost and power
consumption when costly linear power amplifiers are em-
ployed [212]–[215]. Thus, it was necessary to find a practical
way to implement massive MIMO systems. An efficient non-
linear power amplifiers can be exploited to offer a practi-
cal implementation of massive MIMO systems [212]–[215].
Thus, the PAPR should be minimized to relieve the effect of
amplifier non-linearities. In this sub-section, the precoding
algorithms, which aim to reduce the PAPR, will be reviewed.

1) Constant Envelope (CE) Precoding:
The CE precoding algorithm for massive MU-MIMO sys-
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TABLE 6: Pros and Cons of the Non-linear Precoding Algorithms.
Algorithm Pros Cons

DPC • It offers the sum-rate capacity, where its capacity is the same as the capacity when there is no
interference [154], [155].

• It offers the best performance than all other precoding algorithms [154].
• It eliminates the known-interference at the transmitter and obtains free-interference output [154].

• It demands a high computational complexity and that leads to unfavorable level
of complexity especially in massive MIMO systems [127], [155].

TH • It has a close-to-capacity performance [166].
• It can efficaciously eschew the noise amplification [205].
• It can recompense the interference through multiple antennas and multiple users in the MIMO

systems [205].
• It employs the modulo operation to offer ISI canceling [205].
• It employs the modulo operation to limit the transmitted power at the transmitter, and to void the

non-linear distortion at the receiver [206].
• It acts as spatial equalization [207].
• It has a promising performance, by employing SIC of the data streams at the transmitter, where

it overcomes other linear precoding algorithms performance [208], [209].
• It has a practical implementation in contrast with the DPC algorithm [98].

• It is more expensive and complex compared to linear precoding algorithms
[205].

• Its computational complexity may also be too high for a medium or large ratio
of (M/N ) [166].

• It has a sensitivity to the CSI inaccuracies [209].
• It may increase the transmitted power at the transmitter due to employing the

SIC process [98].
• The use of the modulo operation leads to some losses of performance as shaping,

modulo, and power losses [163], [164].
• It sequentially chooses its scalar integer offset, and it does not execute nearly as

well as the jointly VP algorithm vector selection [167].
• It suffers some diversity penalty [195].

VP • It improves the channel inversion performance and offers near-capacity performance [169].
• It has a simple encoding technique without explicating the dirty-paper techniques [167].
• It minimizes transmit power by perturbing the transmit signal vector by another vector [175].
• It finds the optimal perturbation vector by solving a minimum distance type problem [175].
• It much improves transmit scaling factors and enhanced the received SNRs in contrast to linear

precoding [167].
• It offers a full diversity order with much lower complexity compared with the DPC algorithm

[168].
• It mitigates the IUI [167].

• It needs to a computationally terrible sphere search out of different candidate
perturbation vectors to reduce the precoded signal norm [174].

• Its power-scaled factors in the transmitter are data-dependent, which leads to a
considerable overhead in transmission to feedforward the instantaneous power-
scaled factors to the receiver [174].

• It has a dynamic range of received signals related to the power-scaled factor
[174].

• It can not employ the adaptive modulation because to the constant modulo
operation base τ [169].

• Its performance degrades significantly in the limited feedback scenarios [173].
• It suffers from the CSI imperfections and inaccurate power-scaled factors [171].

LR • It significantly diminishes the searching complexity of the benchmark sphere encoding [203].
• It outperforms the performance of the TH algorithm in the ill-conditioned channels [203].
• It is vastly implemented in practical designs [201].
• It diminishes the average transmitted power by amending the region which contains the

constellation points [168].
• It can achieve the optimum asymptotic slope of symbol error rate [168].
• It can offer a full diversity when preceded by the LLL lattice reduction technique [190], [191],

[192].
• It can offer high performance with a low computational complexity [180].
• It does not experience the shaping problem [180].
• It orthogonalizes the columns of H and reduces its size [210].

• It needs a perfect CSI at the transmitter [211].
• It has relatively high complexity with corresponding reduction criteria, like the

LLL technique [199].
• Its degree of H columns orthogonlization depends on the corresponding reduc-

tion criteria [196].

tems was proposed by Mohammed and Larsson in [212],
[213], [216] to minimize the PAPR of the transmit signal.
The CE algorithm has inexpensive and highly power-efficient
amplifiers. For a given sum-rate and a large value of M ,
it can reduce the total transmit power by about 4 dB in
contrast to an algorithm that employs highly linear power-
inefficient amplifiers. In the CE algorithm, the array power
gain is still offered on certain mild channel conditions, and
the sum capacity of the average-only total transmit power-
constrained channel can be offered [213].

Figure 10 shows the transmission process of data signals
a by the CE constraint [212], [217], [218]. Where, the trans-
mitted signal from each antenna is

xm =

√
P

M
ejθm for m = 0, 1, ...,M, (46)

where P is the total transmitted power, and θm is the phase
angles of transmitted signals and exemplifies the precoding
phase of the CE precoder signals. Then, the received signal
at the nth user can be represented as [217]

yn =

M∑
m=1

hn,m

√
P

M
ejθm + nn for n = 0, 1, ..., N, (47)

where hn,m is the channel coefficient between the mth an-
tenna and the nth user, and nn is the zero mean AWGN vector
of the nth user. For simplicity, the (47) can be rewritten as

FIGURE 10: The transmission strategy of data signals by the
CE algorithm for the DL massive MU-MIMO systems.

[217]

yn = an + tn + nn for n = 0, 1, ..., N, (48)
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where an = gne
jΦm is the PSK data symbol for the nth user,

and tn is the interfering signal for the nth user

tn =

(
M∑
m=1

hn,m

√
P

M
ejθm − gnejΦn

)
. (49)

The total MUI energy can be represented as [213], [217]

EMUI =
N∑
n=1

∣∣∣∣∣
(

M∑
m=1

hn,m

√
P

M
ejθm − gnejΦn

)∣∣∣∣∣
2

. (50)

The phase angles of transmitted signals {θ1, θ2, ..., θM} are
optimized to minimize (50) [212], [219]. Therefore, the CE
precoding algorithm can be designed as follows [213], [217]

pCE : minθ


N∑
n=1

∣∣∣∣∣
(

M∑
m=1

hn,m

√
P

M
ejθm − gnejΦn

)∣∣∣∣∣
2
 ,

subject to |θm| 6 π, ∀m ∈ {1, 2, ...,M} .
(51)

In the CE algorithm, the transmitted signals are restricted by
a constant amplitude, and the MUI at all users are minimized
by optimizing the non-linear least squares (NLS) problem of
the transmit signals phase angles (51) [212], [213], [217].
Unfortunately, the conventional CE precoding algorithm de-
pends on gradient descent (GD) method to solve this non-
convex NLS problem which converges to a local minimum
and suffers from a slow convergence rate [213], [214], [219],
[220].

The authors in [213] deal with the NLS problem in the
CE algorithm by proposing the sequential gradient descent
(SGD) search algorithm, but the SGD algorithm is often
stuck in the local minima when the number of M is not large
enough to suppress the MUI [214]. In [221], the annulus
constrained (AC) precoding algorithm is proposed to relax
the lower-bound amplitude constraints of the CE algorithm.
The AC algorithm offers an additional degree of freedom by
allowing amplitudes to alter within a pre-specified interval
to further enhance the performance of the MUI suppression,
but it increases the transmit signal PAPR. The AC algorithm
employs the SGD algorithm to search for optimal precoding
weights. However, the AC precoding algorithm is higher
computational complexity than the SGD algorithm because
it has a larger searching space to find optimal precoding
weights.

In [220], a novel algorithm is proposed to enhance the
MUI suppression ability of the CE algorithm by employing a
cross-entropy optimization (CEO) algorithm. However, this
algorithm has a higher computational complexity than the
SGD algorithm. In [222], another novel algorithm known
as Riemannian conjugate gradient (RCG) algorithm, is pro-
posed to enhance the MUI suppression ability of the CE algo-
rithm by dealing with the feasible region of NLS problem in
the CE algorithm as a manifold of a complex circle. However,
the RCG algorithm has a remarkable lower computational
complexity than the SGD and CEO algorithms.

In [223], the impact of phase-angle constraints at the BS

is investigated. Where more restrictions on the transmitted
phases are utilized at different symbol times. These restric-
tions can be led to an increase in the system power efficiency.
While the above CE algorithms describe only the interference
minimization problem, prior researches on linear precoding
[167], [224], [225] prove that the interference minimization
does not certainly offer the preferable performance in a
MIMO system. In general, as the interference depends on
data, the transmitter has the capability to prophesy the MUI
at the receiver and can exploit that knowledge to impact
it and profit from it [226]. In precocious researches [227],
[228], precoders are proposed to reduce the negative results
of interference while conserving its positive components.
Whereas these interference effects are defined depending
on the correlation between the sub-streams of a phase shift
keying MIMO system.

In [226],the authors proposed a novel CE precoding al-
gorithm for massive MIMO systems with the concept of
constructive interference (CIN) which offers a remarkable
performance enhancement compared to interference reduc-
tion algorithms [229]–[231]. In [219], a manifold-based algo-
rithm to solve the CIN problem of the CE precoding, by using
the RCG algorithm to find a local minimizer, is proposed. The
proposed CE-CIN-RCG precoding algorithm views the feasi-
ble region of NLS problem in the CE algorithm as an oblique
manifold (OM). The precoded symbols by the CE-CIN-RCG
algorithm is perfectly constant envelopes, in contrast to the
relaxed convex problem in the algorithm proposed in [226].
Furthermore, the CE-CIN-RCG algorithm has superior sym-
bol error rate (SER) performance and lower computational
complexity than the CE-CIN algorithm proposed in [226].

In [232], the continuous-time CE (CTCE) precoding algo-
rithm is proposed for the DL massive MU-MIMO systems.
The CTCE transmits signals are transmitted to different users
from arbitrary constellations simultaneously. The CTCE al-
gorithm needs about 3 dB more radiated power above the
traditional linear precoders at low sum-rates. The CTCE
algorithm has less consumed power than the traditional linear
precoders due to more power efficient hardware designs,
where it dos not require the hardware linearity of the BS and
power amplifiers operated at maximum efficiency.

In [233], the performance of the CE algorithm is compared
with the corresponding performance of the ZF algorithm for
a large scale MU-MIMO system. The achievable SINR of the
CE algorithm overcomes the ZF algorithm by about 5-6 dB
when the power amplifier works in the saturation region.
2) Approximate Message Passing (AMP) Precoding:

Solving the non-convex NLS problem of the CE algo-
rithms is computationally intractable. Inspired by the amaz-
ing performance of the AMP algorithm in a rapid inference
in the related of compressed sensing topic [235], [235]–
[237], the AMP precoding algorithm for massive MU-MIMO
systems is proposed in [214] to offer a practical solution for
the CE precoding problem without the need to find a global
optimal solution of non-convex problem in a computationally
difficult method. In addition, the AMP algorithm can offer a
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TABLE 7: Computational Complexity of the PAPR Precoding Algorithms.
Algorithm Computational complexity Notes

CE-GD O(M2N) [213], [219]. This complexity is for each iteration.

CE-SGD O(MN) [213] This complexity is for each iteration.

CE-AC O(2M2N) [214] This complexity is for each iteration.

CE-CEO O(kMN) [219] • This complexity is for each iteration.
• k is the number of random samples in each iteration.
• k is usually quit larger than M and N .

CE-RCG O(MN) [219] This complexity is for each iteration.

CE-CIN-RCG O(MN) [219] This complexity is for each iteration.

AMP 7MN + 9M + 2N [214] This complexity is for each iteration.

One bit precoder O(4M ) [155] -

One bit-SDR O((4M + 1)4.5) [234] -

One bit-SQUID O(2(k1M
3 + k2M

2)) [234] k1 is the iteration numbers of the first loop, and k2 is the iteration
numbers of the second loop

One bit-ADMM O(M2) [234] -

trade-off between computational complexity and achievable
performance.

The AMP algorithm converts the precoding problem of
massive MU-MIMO systems to a probabilistic inference
problem by recasting the non-convex NLS problem of the
CE algorithms into an estimation problem. To design the
AMP algorithm which can estimate the transmitted vector x
based on the received vector a, the following virtual model is
introduced [214], [218]

a = HTx. (52)

The conditional probability distribution function (pdf) of an
anonymous signal x given the knowledge of matrix HT and
the observations of a can be acquired by employing the
Bayes’ rule [238] and depending on (52) as

p(x | HT,a) ∝ p(a | HT,x)p(x)

∝

[
N∏
n=1

p(an | HT,x)

]
︸ ︷︷ ︸

the likelihood function

[
M∏
m=1

p(xm)

]
︸ ︷︷ ︸

the prior pdf

, (53)

where ∝ indicates the identity after normalization to unity.
The (53) can be represented by using the factor graph [239],
as shown in Fig. 11, where the likelihood function consists of
a product of N factors relative to the constraint over each an
and the prior pdf consists of a product of M factors relative
to what is expected of each xm [214], [218]. The factor graph
consists of M + N factor nodes and M variable nodes. The
factor graph takes apart the estimation problem into a number
of simple mutually local problems. The local problems are
solved by constrained local nodes in an interactively and
parallel manner [218]. Then the signal components which
contain the pdf of the signal component are described based
on a belief propagation (BP) [218].

The BP consists of two kinds of messages: first the mes-
sages from variable nodes to factor nodes, msgm→n(xm),

FIGURE 11: Factor graph representing the probabilistic
model in (53), where the filled rectangles denotes to factor
nodes, and the filled circles denotes to variable nodes.

and second the messages from factor nodes to variable
nodes, msgn→m(xm) [214], [218]. The messages are up-
dated through the local nodes by the AMP algorithm to
iteratively optimize the precoding design for massive MU-
MIMO systems. The AMP algorithm overcomes the CE-GD
and CE-AC algorithms in relation to the desired complex
multiplication numbers and the required time to converge.
Furthermore, the AMP algorithm can offer a trade-off be-
tween the PAPR reduction and MUI suppression with fa-
vorable results [214], [218]. In [218], a comparative study
between the AMP algorithm, the CE algorithm, and the linear
precoding algorithms is introduced. The AMP algorithm has
a significant improvement in the BER performance than the
CE algorithm and has comparable BER performance with the
linear precoding performance.
3) Quantized Precoding (QP):

In order to exploit the favorable features of massive MIMO
systems, one needs to take into account the related negative
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TABLE 8: Pros and Cons of the PAPR Precoding Algorithms.
Algorithm Pros Cons

CE • It can offer an O(M) array power gain on certain mild channel conditions [213].
• It can provide beamforming and spatial multiplexing gains which leads to improve the spectral and energy

efficiencies [233].
• It allows reducing the overall transmitted power linearly with increasing the fixed data rate at each user [213].
• It minimizes the MUI [213].
• It offers near-optimal performance [213].
• It achieves a close to sum capacity of the MRT algorithm [212], [213].
• It eases the using of non-linear and high power-efficient RF components [213], [220].
• Its high tolerance to the non-linearities of power amplifier leads to basically a milder in-band distortion [233].
• It needs smaller transmitted power than the MRT algorithm by about 2 dB for sufficient large ratio of M/N

[213].
• It needs smaller transmitted power than a system employs highly linear power-inefficient amplifiers by about

4 dB for a sufficient large ratio of M/N [213].
• It can overcome the ZF algorithm by about 5-6 dB [233].

• It can not be exploited when the MUI is significantly high [213].
• It needs a sufficiently large ratio of M/N [213], [220].
• It needs to solve an non-convex NLS problem which leads to a high complexity and slow

convergence rate [213], [220].

CE-GD • It is exploited to solve the non-convex NLS problem of the CE algorithm [213]. • It has a slow convergence rate [213].
• It has a high computational complexity [213].
• It describes only the interference minimization problem [219].
• It suffers from set in advance optimization because it strongly depends on the constella-

tion energy [219].
• It has a lower performance than CI algorithms [219].

CE-SGD • It improves the performance of MUI suppression for the CE algorithm by using sequential GD method [213],
[219].

• It is often stuck in the local minima when the ratio of M/N is not large enough [213],
[220].

• It strongly depends on the selection of the initial guess [213], [220].
• It describes only the interference minimization problem [219].
• It suffers from set in advance optimization because it strongly depends on the constella-

tion energy [219].
• It has a lower performance than the CIN algorithms [219].

CE-AC • It improves the performance of the MUI suppression for the CE algorithm by relaxing the amplitudes
constraints lower band [214].

• It offers an additional degree of freedom by allowing amplitudes to change within the pre-determined interval
[214].

• It has a higher computational complexity than the SGD algorithm [214].
• It has a faster convergence rate than the CE-GD algorithm [214].
• It increases the transmitted signal PAPR [214].
• It describes only the interference minimization problem [219].
• It suffers from the set in advance optimization because it strongly depends on the

constellation energy [219].
• It has a lower performance than the CIN algorithms [219].

CE-CEO • It further improves the performance of the MUI suppression for the CE algorithm by employing CEO method
[213], [220].

• It offers a better MUI suppression performance than the SGD algorithm [214], [220].

• It has a higher computational complexity than the SGD algorithm [220].
• It is not suitable for practical implementation [214], [220].
• It describes only the interference minimization problem [219].
• It suffers from set in advance optimization because it strongly depends on the constella-

tion energy [219].
• It has a lower performance than the CIN algorithms [219].

CE-RCG • It further improves the performance of the MUI suppression for the CE algorithm by viewing the feasible
region of the NLS problem as a manifold of complex circle [219].

• It has the fastest convergence rate of the CE algorithms [219].
• It has much lower complexity than both the CE-GD and CE-CEO algorithms.

• It describes only the interference minimization problem [219].
• It suffers from set in advance optimization because it strongly depends on the constella-

tion energy [219].
• It has a lower performance than the CIN algorithms [219].

CE-CIN-RCG • It offers near-optimal performance [219].
• It offers a remarkable enhancement compared to the RCG, CEO, AC, SGD, and GD based algorithms [219].
• It enhances the CE algorithm by viewing the feasible region of the NLS problem as an oblique manifold

[219].
• It has perfectly constant envelops in contrast to the relax-convex problem of CE-CIN algorithm, which

proposed in [219], [226].
• It has a higher SER performance and lower computational complexity than the CE-CIN algorithm, which

proposed in [219], [226].

• It has a lower convergence rate than the RCG algorithm [219].

AMP • It offers a practical solution for the CE problem without the need to find globally optimal solution of non-
convex problem [214].

• It has a practical implementation for massive MU-MIMO systems [214], [218].
• Its computational complexity increases linearly with the number of antennas in the BS, and that supports it in

massive MU-MIMO systems [218].
• It offers a trade-off between PAPR reduction and MUI suppression with favorable results [214], [218].
• It has a parallel nature [214].
• It offers a faster convergence rate and fewer complex multiplication process than the CE-GD and CE-AC

algorithms [214].
• It has a remarkable higher BER performance than the CE algorithm and has comparable BER performance

with the linear precoding performance [218].

• It can slightly overcome the AC precoding algorithm at the initial stage only, but
eventually the CE-AC algorithm overcomes it [214].

One-bit precoder
[155]

• It greatly diminishes the power consumption.
• It facilitates the industrial design of the QP algorithm.
• It is vastly implemented in practical designs.
• It has a significant enhancement in performance over the linear QP algorithm.

• It needs a huge number of antennas in the BS to reach the performance of ideal infinite-
resolution performance.

• It suffers from the coarse quantization which leads to heavy performance loss especially
with a high order of modulation.

• It has a very high computational complexity.

One-bit-SDR • It offers near-optimal solution for the QP problem [155].
• Its BER performance is robust in small and large-size of MU-MIMO systems for a wide SNR range [155].
• It considers as a benchmark for the QP performance [234].
• It avoids the non-convex constraint in the original precoding problem by solving the relaxed versions of the

non-convex problem [234].
• It is robust against the CSI imperfections [155].

• It has a high computational complexity [234].
• It is not practical in the massive MIMO systems, with hundreds number of antennas

[234].
• Its run-time is higher than the run-time of the proposed precoder in [234], which is based

on the ADMM framework, by approximately 380 times, and than the run-time of the
SQUID precoder by approximately 10 times.

One-bit-SQUID • It has a comparable performance with the SDR precoder in large-size MU-MIMO systems [203].
• It has a lower computational complexity than the SDR precoder [234].
• It can be carefully employed in the massive MIMO systems [234].
• It is based on the ADMM framework [155], [234].
• It is robust against the CSI imperfections [155].

• Its iteration procedure has double loops, where the inner loop is necessary to solve `∞-
norm operator [234].

• Its run-time is higher than the run-time of the proposed precoder in [234], which is based
on the ADMM framework, by approximately 3.9 times.

Proposed precoder
in [234]

• It offers state-of-the-art BER performance comparable to the SDR precoder while preserving the advantages
of low complexity.

• It can be employed in the massive MIMO systems.
• It is faster than the SDR algorithm by 300 times.
• It is more efficient than the SQUID precoder, where it has a single loop in its iteration procedure.
• It has a global convergent.
• It has a significant reduction in the run-time compared to the SDR and SQUID precoders.
• It is based on the ADMM framework.
• It can serve a high order of modulation system, e,g, QPSK, 16-QAM, and 64-QAM.

• It has a significant higher computational complexity in contrast to the linear QP algo-
rithms.

• It still needs more antennas in high order modulations, e.g. 64-QAM.
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effects caused by employing a large number of antennas in
the BS. A high number of RF chains at the BS leads to a con-
siderable increase in the complexity of hardware, costs, and
power consumption [155]. One of the main causes of power
consumption in massive MIMO systems is the data convert-
ers at the transmitter [155]. In the DL transmission, each
RF chain generates the transmit baseband signal by using
a pair of digital-to-analog converters (DACs) [155]. These
DACs experience a power consumption that increase with
the resolution (in bits) exponentially and with the bandwidth
linearly [240], [241]. In conventional MIMO systems, RF
chains employ high resolution DACs (6 10 bits) [155], and
consume approximately 40-50 % of the overall operational
power consumption [213]. Subsequently, the resolution of
DACs must be restricted to save power consumption within
reasonable levels. In [242], a linear QP based on the MMSE
algorithm by paying attention to the DACs distortion is
proposed. This proposed algorithm exploits DACs with 4
to 6 bits resolution and overcomes the traditional linear QP
algorithms for moderate-size MIMO systems at high SNR.

The more restricted one-bit DAC precoding is mainly
dependent on the well-known Bussgang theorem [243] and it
is a special case of constant-envelope (CE) algorithm, where
the transmitted signal phase is restricted to only four diverse
values [213], [216].

In [244], a quantized MRT precoding algorithm with one-
bit DACs, which leads to manageable distortion levels, is
described for Massive MU-MIMO systems. Furthermore, in
[245], the performance of the quantized ZF precoding algo-
rithm with one-bit DACs is analyzed on a Rayleigh-fading
channel. The authors in [245] show that the intense distortion
for each antenna resulted from one-bit DACs can be averaged
out when a large number of transmit antennas are employed.
Moreover in [246], a comparative study of using ideal DACs
and one-bit DACs in massive MU-MIMO systems. The one-
bit DACs performance loss can be compensated by deducting
about 2.5 times more antennas of the BS.

In [155], the issue of DL precoding for massive MU-
MIMO systems on frequency-flat channels with low-
resolution DACs at the BS is investigated. The authors in
[155] considered both quantized linear precoder, where a
precoder is succeeded by a finite resolution DAC, and non-
linear precoder where the outputs of DAC are directly gen-
erating by jointly using the data vector with the CSI. The
performance of the MRT and ZF linear precoders according
to a coarse quantization is also analyzed. The performance
of infinite resolution DACs can be achieved by using 3 to 4
bits DACs. The authors in [155] also proposed a new non-
linear precoder with one-bit DACs which overcomes linear
precoders but with a cost of computational complexity. The
performance of the proposed non-linear precoder is less than
the performance in the infinite resolution case by 3 dB for
10−3 uncoded BER, with 128 BS antennas and 16 single-
antenna users. Where the performance of linear precoders is
less than the performance in the infinite resolution case by
8 dB. Figure 12 previews the QP for the DL massive MU-

MIMO systems with low-resolution DACs. Where x ∈ XM
is the precoded vector and X is the set of complex numbers
C when DACs has infinite resolution [155].

In practical MIMO architectures with finite-resolution
DACs, the quantization labels can be defined as [155]

L = {`0, `1, ..., `L} , (54)

where

`i = α4
(
i− L− 1

2

)
, i = 0, 1, 2, ..., L− 1, (55)

where 4 is a step size of symmetric uniform quantizers, α
is a scaled power factor, and L is the number of quantization
levels.

The quantizer-mapping function of the one-bit DACs can
be presented as [155]

x = Q (Pa) =

√
P

2M
(sgn (<{Pa}) + jsgn (={Pa})) ,

(56)
where P is the average power, P is the precoding matrix,
and Q(.) : CM → XM is the non-linear quantizer-mapping
function which characterizes the joint process of the 2M
DACs at the transmitter.

The finite quantization outputs of X are [155]

X =

{√
P

2M
(±1± j)

}
. (57)

The one-bit QR problem can be formulated as follows [155]

minimizex∈XM , β∈R
∥∥a− βHTx

∥∥2

2
+ β2Nσ2

n,

subject to β > 0, (58)

where β is a precoding factor. To solve the QP problem in
(58) at a fixed value of β, the evaluation of |X |M = 4M

vectors is required, where the computational complexity
grows exponentially with M . In recent literature review,
there is a variety of developing low-complexity non-linear
precoders which offer near-optimal performance for the one-
bit QP problem, such as semidefinite relaxation (SDR) [155],
[247]–[249], squared-infinity norm Douglas-Rachford split-
ting (SQUID) [155], [250], [251], adaptation sphere precod-
ing (ASP) [155], [252]. Where the relaxed versions of the QP
problem can be solved by these non-linear algorithms.

In [234], a highly efficient non-linear precoding algorithm,
for massive MU-MIMO systems with one-bit DACs based
on an alternative direction method of multipliers (ADMM)
framework is proposed. The ADMM based algorithm solves
the original non-convex precoding problem directly instead
of solving relaxed versions problem. The ADMM based
algorithm offers a performance of the SDR algorithm, and
it is faster than the SDR algorithm by 300 times.

For smooth readability and comparison, the computational
complexity of the PAPR precoding algorithms is presented
in Table 7 and their pros and cons are comprehensively
reviewed in Table 8.
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FIGURE 12: Previewing of the QP for the DL massive MU-MIMO systems with low resolution DACs [155].

FIGURE 13: Channel estimation for precoded massive MIMO with FDD utilizing machine learning in reducing the feedback
overhead.

D. MACHINE LEARNING PRECODING

Machine learning algorithms have lately shown a great
prospective in treating complex optimization problems in the
emerging wireless communications applications and settings
[253]. For instance, there is a plethora of detection techniques
for massive MIMO based on machine learning [254]–[256].
There is also an extensive literature that is dealing with
deep learning utilization precoded mmWave MIMO systems
[257]. For example, the authors in [258] have introduced
a precoded massive MIMO system that is using FDD. As
mention earlier, the CSI should be known at the transmitter
for the precoding process. Unlike, TDD which takes advan-
tage of channel reciprocity in CSI estimation, FDD needs
feedback to the BS with the CSI. The multiuser channel
estimation and feedback problem have been considered as
a distributed source coding (DSC) problem which is solved
using generalized deep neural network (DNN) architecture
(see Fig. 13).

The overhead problem of FDD CSI is also tackled in
[259], [260] for precoded massive MIMO in conventional
frequency bands. A two-stage decoder is a common solution
to reduce the size of the feedback information [261]. An outer
decoder reduces the large channel dimensions to be ready to
be used by the inner decoder to control the IUI similar to
multiuser MIMO precoding. To this end, a DNN architecture
is developed in the outer decoder to optimize the channel
dimensions. The DNN machine-learning model is evaluated
and proved to enhance the average sum-rate and achieves
near-optimal performance.

The deep learning algorithms are also used to enhance
the problem of SIC used in massive MIMO-NOMA systems
[259]. SIC in massive MIMO suffers from imperfections es-
pecially when multiple user’s real-world scenarios is consid-
ered. A joint optimization for both MIMO-NOMA precoding
and SIC is done by minimizing the total mean square error of
the users’ signals. The superior performance and effective-
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ness of the proposed scheme are demonstrated through the
numerical results. In [262], deep learning tools are exploited
to optimize the biConvex 1-bit precoding algorithm where
per-iteration parameters are introduced. The algorithm is
tested in different channel models and shows satisfactory
results in vastly changing propagation conditions.

VI. PRECODING IN PROMISING ANTENNA
ARCHITECTURES FOR B5G
The 5G cellular technology was implemented by several
mobile carriers. It reduces the data connections latency and
increases the data rate. However, inter-cell interference and
handover issues are remaining to limit the cell-edge perfor-
mance. In addition, a large number of antennas at the massive
MIMO transceiver causes an extra computational and im-
plementation complexity. The design of energy-efficient and
sustainable communication systems is also still an issue to be
handled in B5G. Therefore, three promising multiple antenna
technologies/architectures are flashing up in B5G networks:
the CF-M-MIMO, beamspace massive MIMO, and the IRSs
[263].

A. CELL-FREE MASSIVE MIMO
In CF-M-MIMO, the concepts of distributed MIMO and
massive MIMO are combined with no cell-boundaries, and
hence, intercell interference is mitigated [264]. The UEs are
simultaneously served by a large number of service antennas
(access points (APs)) that distributed over a wide geographic
area. In CF-M-MIMO, there is a central processing units
(CPU), but the information exchange between the CPU and
the APs is very limited to the payload data. The ZF pre-
coding scheme is utilized in many CF-M-MIMO systems.
However, it requires an exchange of the instantaneous CSI
among all APs which complicates the processing when a
large number of APs is utilized [265]. In [266], [267], a
conjugate beamforming, ZF precoding scheme, and max-
min power control were utilized with the DL CF-M-MIMO
to guarantee a good service at a high spectral efficiency.
Centralized ZF precoding was implemented in part of APs,
while the maximum-ratio-transmission (MRT) was applied
in other APs.

In [268], it has shown that increasing the number of anten-
nas per AP results in a stronger hardening effect. However,
this paper has used the MRT without taking into account
neither the pilot contamination nor the imperfect CSI. It also
omits the effect of power allocation strategies on the channel
hardening. In [269], it is shown that the degree of hardening
is highly affected by the power allocation coefficients, and
hence, it affects the specific precoding scheme. The work in
[269] has been analyzed in [270] with accounting for differ-
ent realistic channel model assumptions and different system
configurations where ZF precoding scheme was exploited.

In [271], the high power consumption in CF-M-MIMO
was tackled by a low complexity power control technique
with ZF precoding scheme to maximize the energy efficiency
of CF-M-MIMO when imperfect CSI is used. In order to

avoid instantaneous CSI exchange, local partial ZF, and local
protective partial ZF schemes were proposed to provide
an interference cancellation gain and improve the spectral
efficiency of the CF-M-MIMO system. Compared to the
traditional ZF and MRT schemes, local partial ZF and local
protective partial ZF schemes have significantly enhanced the
spectral efficiency of the CF-M-MIMO system [272]. Unfor-
tunately, a large number of antennas at each AP is required
in local partial ZF schemes which is more challenging for
UL design [273]. In [274], a partial MMSE is proposed as a
precoding scheme. Although it is nearly optimal, the power
allocation for distributed operation was not investigated.

B. BEAMSPACE MASSIVE MIMO
A low complexity realization can be achieved by exploiting
the spatial structure of the channels and transceiver hardware
can be utilized without sacrificing the operational flexibility
or the performance. By employing designed discrete lens
array (DLA), the conventional channel in the spatial domain
can be converted to the beamspace channel [275]. The more
antennas that are used in a M-MIMO transceiver, there is a
need to rethinking the signal processing and linear precoding
where beamspace MIMO formulation is one of the most
popular approach. It is expected that the number of anten-
nas will continue to increase in sub-6 GHz communication
networks. Hence, the dimensionality of M-MIMO arrays
with hybrid digital-analog, tiled arrays and sub-arraying is
going to be impractical. Therefore, utilization of subspace
approach based on effective channels will benefit the massive
MIMO processing. In case of high frequencies (i.e. millime-
ter wave (mmWave)), beamspace will be mandatory [263].
Beamspace MIMO can significantly reduces the number of
power RF chains in mmWave communications [276].

The beamspace channel is sparse, hence, the dimension of
the massive MIMO can be reduced by selecting a small num-
ber of powerful beams [277]. In [278], a precoding scheme
in beamspace was proposed where the spatial channel spar-
sity was exploited. The beamspace techniques have a great
impact in accomplishing a satisfactory precoding with a low
complexity. In [276], optimal hybrid cross-entropy (HCE)
based hybrid precoding scheme and lens array architecture
were utilized to propose a feasible precoding scheme. The
proposed architecture has achieve a satisfactory performance
and a high energy efficiency. In [277], an optimal HCE based
hybrid precoding with machine learning was proposed. The
probability distribution of the hybrid precoder is updated by
minimizing the cross-entropy. Numerical results show that
the proposed scheme can achieve a satisfactory performance
with high energy efficiency. Figure 14 illustrates the concepts
of beamspace MIMO and hybrid precoding architecture. In
[279], the beamspace channel sparsity was exploited for
the training of the deep neural network. A deep learning
compressed sensing channel estimation and hybrid precoding
were considered and the network was trained offline to pre-
dict the beamspace channel amplitude. Then, a deep learning
quantized phase hybrid precoding method was developed to
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FIGURE 14: Traditional MIMO in the spatial domain, beamspace MIMO, and hybrid precoding architecture [277].

FIGURE 15: A communication system aided with the IRS
[280].

obtain a satisfactory spectral efficiency.

C. INTELLIGENT REFLECTING SURFACES
In last few years, IRS has gained a great attention in the
research community and considered as a promising solution
to provide new degrees of freedom and hence, improve the
spectral and energy efficiency (bit/Joule) of B5G communi-
cation networks with low hardware cost. In the IRS, a large
set of low-cost elements are composed in a metasurface (a
planar array) to diffusely reflects incoming signals in a smart
controllable manner. In other words, with a pre-programmed
phase shifts and/or reflecting amplitudes, each element is able
to independently reflect the incoming signal. It is similar
to the concept of reconfigurable reflect arrays with real-
time control and reconfigurability [263]. Figure 15 shows an
IRS-aided multi-user multi-input-single-output (MU-MISO)
communication system.

In [281], [282], a symbo-level precoding (SLP) with the
assistance of IRS was proposed. In order to minimize the
worst-case symbol error probability at the BS, phase shift at
the IRS is proposed. Numerical results have shown that the
performance can be significantly improved by incorporating
the IRS. In [280], a precoding design of IRS-aided commu-
nication system was proposed where the multi-user interfer-
ence (MUI) was exploited to improve the performance. Al-
ternating optimization (AO) algorithm was utilized to obtain
the precoding matrix and phase shift matrix. In [283], the
precoding matrix of the BS and the reflection coefficients
of the IRS were optimized by the block coordinate descent

(BCD). In addition, the minorization-maximization (MM)
algorithm was utilized to reduce the computational com-
plexity.In [284], the Riemannian conjugate gradient, branch-
and-bound, and direct quantization were used to attain a
low-resolution SLE precoder for single-antenna users. For
multi-antenna receivers, decomposition of the large scale
optimization problem was applied to decompose the original
problem into several sub-problems.

D. OTHER MASSIVE MIMO PRECODERS
Full-duplex (FD) radios were incorporated into advanced
technology such as the massive MIMO [285]. In addition,
beam domain transmission has been introduced in a massive
MIMO system to further enhance the spectral efficiency. In
[286], the precoding for FD massive MIMO systems was
comprehensively discussed. A beam-domain FD (BDFD)
based on the basis expansion model is proposed to make
the co-time co-frequency UL and DL transmission possi-
ble. Intelligent scheduling of beam-domain distribution is
utilized to mitigate the self-interference (SI) and improve
the transmission efficiency. This method has used the time-
frequency efficiently and hence, the spectral efficiency gain
is improved. Although numerical results show the superiority
of the BDFD scheme over the TDD/FDD massive MIMO, the
beamforming complexity should be taken into consideration,
particularly in high speed railways (HSR) scenarios [287].

In [288], a beam extraction method is utilized to elim-
inate the pilot contamination using a secure beam-domain
transmission scheme. In [289], a beam domain hybrid time
switching (TS) and power splitting (PS) simultaneous wire-
less information and power transfer (SWIPT) system for
FD massive MIMO is proposed for energy harvesting and
channel estimation. The SI is eliminated without using in-
stantaneous SI CSI. Numerical results show that the proposed
hybrid system can achieve a considerable transmission effi-
ciency gain. In [287], a hybrid beamforming and an angle-
domain (AD) channel tracking schemes were proposed for
HSR scenarios where the channel has been decomposed into
spatial angular information and beam gain. In order to reduce
the computational complexity, a beam-domain precoding
scheme is utilized in the hybrid beamforming.

In [290], the optimal jamming precoding with a power
solution in DL massive MIMO was investigated where ap-
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proximate orthogonal beam domain channels of the BS were
considered. The correlation of the beam domain channels was
also investigated. The ZF precoding has achieved an optimal
configuration for jamming defense. It is noteworthy that the
power consumption of the precoding in the defense against
a jammer was reduced by a proper increase in the channel
approximation error [288].

VII. OPEN RESEARCH AREA AND CONCLUSION
A. OPEN RESEARCH AREA
Most research efforts carried out on massive MIMO have
so far focused mainly on linear precoding algorithms. As it
has been illustrated throughout this survey, there are trials
to find low complexity versions of the non-linear precoders
such as the DPC and TH. However, there are great potentials
in finding more efficient and high performance non-linear
precoders with comparable complexity with linear precoders.

Moreover in [259], [260] and [261], the DNN is uti-
lized in massive MIMO systems to solve the problem of
multiuser channel estimation and feedback, tackle the over-
head problem of FDD CSI, and enhance the SIC problem.
Furthermore, there is an extensive literature that is dealing
with the precoding problem of mmWave MIMO systems by
employing the deep learning [257]. Nevertheless, the litera-
ture has a remarkable lack of employing the AI technology,
in general, in the conventional sub-6 GHz massive MIMO
systems. However, there are huge opportunities to employ
the AI technologies such as machine learning and DNN
to design a high-performance and low-complexity precoder.
For example, the AI technologies can be used to find the
optimal perturbation vector of the non-linear VP precoder
instead of using the sphere search algorithms. In addition,
it can be used to optimize the MUI in the CE precoding
algorithm. Furthermore, it can be used to minimize the one-
bit problem, and to do various optimization processes in
the precoder algorithms. Also the machine learning can be
exploited to choose the best algorithm to be applied instead
of the best data estimation. Although the learning stage could
severely increase the computational complexity, it can be
performed off-line to obtain the optimal precoding algorithm.
In addition, the employment of the virtual channel model
(VCM) is a potential direction of new innovation for precod-
ing algorithms in massive MIMO systems. Although most
existing precoding techniques are proposed for centralized
massive MIMO networks, they can be exploited in the CF-
M-MIMO.

The research in a high altitude platform (HAP) massive
MIMO to obtain an efficient RF precoder and a baseband
precoder with limited RF chains is also still in its infancy
where AI can be exploited to provide high efficiency.

B. CONCLUSION
Massive MIMO provides a great improvement in user experi-
ence and mobile services. It will stay a competitive candidate
in the next decade. However, significant research dedicated to
the transmitter’s design is proposed. This paper has surveyed

the linear and non-linear precoding schemes that pertain to
massive MIMO systems. Although linear precoders suffer
from performance deterioration under certain scenarios, they
still play a crucial role in the transmitter design due to
their relative simplicity. In this paper, a comparison between
different linear precoders is provided. In addition, an in-depth
discussion on non-linear precoders with their performance-
complexity profile is presented. It is shown that the non-
linear precoders have a high computational complexity but
they are promising to obtain a satisfactory performance. This
paper also reviewed the potential of machine learning role
in precoding algorithms. Moreover, this paper has reviewed
the precoding schemes in CF-M-MIMO, beamspace massive
MIMO, and the IRS technologies. Besides that, channel
estimation, collection of CSI in TDD and FD, impact of the
condition number, and energy efficiency have been discussed.
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