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Abstract

A model’s response for a given input pattern depends on the seen patterns in the
training data. The larger the amount of training data, the more likely edge cases are
covered during training. However, the more complex input patterns are, the larger
the model has to be. For very simple use cases, a relatively small model can achieve
very high test accuracy in a matter of minutes. On the other hand, a large model
has to be trained for multiple days. The actual time to develop a model of that size
can be considered to be even greater since often many different architecture types
and hyper-parameter configurations have to be tried.

An extreme case for a large model is the recently released GPT-3 model. This
model consists of 175 billion parameters and was trained using 45 terabytes of text
data. The model was trained to generate text and is able to write news articles and
source code based only on a rough description. However, a model like this is only
creatable for researchers with access to special hardware or immense amounts of
data. Thus, it is desirable to find less resource-intensive training approaches to
enable other researchers to create well performing models.

This thesis investigates the use of pre-trained models. If a model has been
trained on one dataset and is then trained on another similar data, it faster learns
to adjust to similar patterns than a model that has not yet seen any of the task’s
pattern. Thus, the learned lessons from one training are transferred to another task.
During pre-training, the model is trained to solve a specific task like predicting the
next word in a sequence or first encoding an input image before decoding it. Such
models contain an encoder and a decoder part. When transferring that model to
another task, parts of the model’s layers will be removed. As a result, having to
discard fewer weights results in faster training since less time has to be spent on
training parts of a model that are only needed to solve an auxiliary task.

Throughout this thesis, the concept of siamese architectures will be discussed
since when using that architecture, no parameters have to be discarded when trans-
ferring a model trained with that approach onto another task. Thus, the siamese
pre-training approach positively impacts the need for resources like time and en-
ergy use and drives the development of new models in the direction of Green Al
The models trained with this approach will be evaluated by comparing them to
models trained with other pre-training approaches as well as large existing models.
It will be shown that the models trained for the tasks in this thesis perform as good
as externally pre-trained models, given the right choice of data and training targets:



2 Abstract

It will be shown that the number and type of training targets during pre-training
impacts a model’s performance on transfer learning tasks. The use cases presented
in this thesis cover different data from different domains to show that the siamese
training approach is widely applicable. Consequently, researchers are motivated
to create their own pre-trained models for data domains, for which there are no
existing pre-trained models.



Zusammenfassung

Die Vorhersage eines Models hiangt davon ab, welche Muster in den wihrend des
Trainings benutzen Daten vorhanden sind. Je grofler die Menge an Trainingsdaten
ist, desto wahrscheinlicher ist es, dass Grenzfille in den Daten vorkommen. Je
grofer jedoch die Anzahl der zu lernenden Mustern ist, desto groer muss jedoch
das Modell sein. Fiir einfache Anwendungsfille ist es moglich ein kleines Modell
in wenigen Minuten zu trainieren um bereits gute Ergebnisse auf Testdaten zu er-
halten. Fiir komplexe Anwendungsfille kann ein dementsprechend grofles Modell
jedoch bis zu mehrere Tage benodtigen um ausreichend gut zu sein. Die tatsédch-
liche Zeit um so ein Modell zu entwickeln ist meist noch grofler, da nur in den
seltensten Fillen die erste Version eines Modells die richtige ist. Vielmehr werden
in der Praxis erst mehrere Architekturen und Konfigurationen ausprobiert werden
miissen um gute Ergebnisse zu erzielen.

Ein Extremfall fiir ein groes Modell ist das kiirzlich veroffentlichte Modell
mit dem Namen GPT-3. Dieses Modell besteht aus 175 Milliarden Parametern
und wurde mit Trainingsdaten in der GroBenordnung von 45 Terabyte trainiert.
Das Modell wurde trainiert Text zu generieren und ist in der Lage Nachrichtenar-
tikel und Quelltext zu generieren, basierend auf einer groben Ausgangsbeschrei-
bung. Solch ein Modell konnen nur solche Forscher entwickeln die Zugang zu
entsprechender Hardware und Datenmengen haben. Es demnach von Interesse
das Trainingsvorgehen daher zu verbessern, dass auch mit wenig vorhandenen
Ressourcen Modelle fiir komplexe Anwendungsfille trainiert werden konnen.

Diese Arbeit beschifigt sich mit dem Vortrainieren von neuronalen Netzen.
Wenn ein neuronales Netz auf einem Datensatz trainiert wurde und dann auf einem
zweiten Datensatz weiter trainiert wird, lernt es die Merkmale des zweiten Daten-
satzes schneller, da es nicht von Grund auf Muster lernen muss sondern auf bereits
gelerntes zuriickgreifen kann. Man spricht dann davon, dass das Wissen trans-
feriert wird. Wihrend des Vortrainierens bekommt ein Modell hdufig eine Aufgabe
wie zum Beispiel, im Fall von Bilddaten, die Trainingsdaten erst zu komprimieren
und dann wieder herzustellen. Bei Textdaten konnte ein Modell vortrainiert wer-
den, indem es einen Satz als Eingabe erhilt und dann den néchsten Satz aus dem
Quelldokument vorhersagen muss. Solche Modelle bestehen dementsprechend aus
einem Encoder und einem Decoder. Der Nachteil bei diesem Vorgehen ist, dass
der Decoder lediglich fiir das Vortrainieren benotigt wird und fiir den spéteren An-
wendungsfall nur der Encoder benétigt wird. Da beim Vortrainieren der Decoder
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jedoch mit trainiert wird, ist der Trainingsprozess bei diesem Encoder-Decoder-
Vorgehen langsam.

Zentraler Bestandteil in dieser Arbeit ist deswegen das Untersuchen der Vor-
teile und Nachteile der siamesische Modellarchitektur. Diese Architektur besteht
lediglich aus einem Encoder, was dazu fiihrt, dass das Vortrainieren kostengiin-
stiger ist, da weniger Gewichte trainiert werden miissen. Der wesentliche wis-
senschaftliche Beitrag liegt darin, dass die siamische Architektur ausfiihrlich ver-
glichen wird mit vergleichbaren Ansdtzen. Dabei werden bestimmte Nachteile
gefunden, wie zum Beispiel dass die Auswahl einer Ahnlichkeitsfunktion oder
das Zusammenstellen der Trainingsdaten grofe Auswirkung auf das Modelltrain-
ing haben. Es wird erarbeitet, welche Ahnlichkeitsfunktion in welchen Kontexten
empfohlen wird sowie wie andere Nachteile der siamischen Architektur durch die
Anpassung der Trainingsziele ausgeglichen werden kdnnen. Die entsprechenden
Experimente werden dabei auf Daten aus unterschiedlichen Dominen ausgefiihrt
um zu zeigen, dass der entsprechende Ansatz universell anwendbar ist. Die Ergeb-
nisse aus konkreten Anwendungsfillen zeigen aufSerdem, dass die innerhalb dieser
Arbeit entwickelten Modelle dhnlich gut abschneiden wie extern verfiigbare Mod-
elle, welche mit groem Ressourcenaufwand trainiert worden sind. Dies zeigt,
dass mit Bedacht erarbeitete Architekturen die bendtigten Ressourcen verringern
konnen.



Chapter 1

Introduction

1.1 Introduction

In this day and age, neural networks are used in many different contexts, for exam-
ple, speech recognition on a smartphone or visual object detection for self-driving
cars. Their advantage is that they can process complex information in a very short
period of time, giving the impression of immediate response. A model’s response
for a given input pattern in production depends on the seen patterns in the train-
ing data. The larger the amount of training data, the more likely edge cases are
covered during training. However, the more complex input patterns are, the larger
the model has to be. For very simple use cases like the commonly used MNIST
dataset', a relatively small model can achieve very high test accuracy in a matter of
minutes. On the other hand, a large model, like the commonly used BERT model
in the NLP context, has been trained for multiple days [32]. The actual time to
develop a model of that size can be considered to be even greater since often many
different architecture types and hyper-parameter configurations have to be tried.

An extreme case for a large model is the recently released GP7-3 model [14].
This model consists of 175 billion parameters and was trained using 45 terabytes of
text data. The model was trained to generate text and is able to write news articles”
and source code based only on a rough description®. The capabilities of such a
model are impressive. However, a model like this is only creatable for researchers
with access to special hardware or immense amounts of data. The analysis of the
needed resources, time, and data are called Red Al, and Green Al [116]. Red Al
focuses on aspects such as accuracy (or similar measures) by increasing a model’s
training time, training data, or the number of parameters. In contrast, Green Al fo-
cuses on efficiency, i.e., creating comparably good results by decreasing the needed
resources.

"The commonly used MNIST dataset is considered as too easy for neural networks and has been
replaced by Fashion MNIST [135].
https://www.theguardian.com/commentisfree/2020/sep/08/
robot-wrote—-this—article—gpt-3, accessed 2020-12-21.
*https://gpt3.website/, accessed 2020-12-21.
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Ideally, creating a neural network consists of two basic steps: building the net-
work by creating its architecture, and training the network. However, the two steps
impact each other since it is unlikely that the very first built model is perfectly
suited for the given task. During training, some architectural design decisions may
prove to be disadvantageous for the given task and available data. In such cases,
training has to be canceled, the architecture or the way data is given into the model
has to be revised, and training has to be restarted. This relates to the common
phrase used in agile programming, being fail early, fail often (John C. Maxwell).
The earlier such problems can be identified, the faster the model’s overall develop-
ment will be. Since neural network training times are mostly large, some problems
may only be found after a long training time.

When training a neural network, the most important aspect is changing the
weights using gradient descent [74]. There exist approaches like Batch normaliza-
tion [56] or different kinds of optimizers [58, 104, 142] to speed up the process
of gradient descent. In this thesis, a different aspect of speeding up the training
process shall be investigated through the use of pre-trained models. If a model has
been trained on one dataset and is then trained on another similar data, it faster
learns to adjust to similar patterns than a model that has not yet seen any of the
task’s pattern. Thus, the learned lessons from one training are transferred to an-
other task.

Transfer learning has been proven successful ([125, 34, 120, 29], see also sec-
tions 4.1 and 4.3.4). Transfer learning means a neural network is trained twice.
First, it is trained on a dataset with typically lots of samples. After this initial train-
ing, the network is trained on another dataset. That second dataset typically has
significantly fewer samples compared to the first dataset. The network has already
been trained on data, which means it can identify common patterns for the given
use case. The advantage of this transfer learning approach is even more significant,
the more similar the data is for the two training phases. The larger dataset may con-
tain the same patterns in different contexts, which reduces the problem of model
overfitting. In some cases, the model can learn patterns that are even not present
at all in the second dataset but are crucial when using the model in production.
That way, using a pretrained model for a task does not only decrease training time
but can also increase the overall performance. If the two datasets are unrelated,
transfer learning cannot be used.

Critical design decisions have to be made when pre-training a model before
transferring it to another task. During pre-training, the model is trained to solve a
specific task like predicting the next word in a sequence or first encoding an input
image before decoding it. Such models contain an encoder and a decoder part
(often called autoencoders, see section 2.2.2 for details). When transferring that
model to another task, parts of the model’s layers will be removed. The model
will most likely not be used to solve the same task as during the first training step.
However, if the transfer learning task’s data strongly differs from the first training
phase’s data, the learned features cannot be used, and thus the pre-training efforts
are wasted. As a result, having to discard fewer weights results in faster training
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since less time has to be spent on training parts of a model that are only needed to
solve an auxiliary task.

Throughout this thesis, the concept of siamese architectures (see section 2.2.5)
is discussed since when using that architecture, no parameters have to be discarded
when transferring a model trained with that approach onto another task. Thus, the
siamese pre-training approach positively impacts the need for resources like time
and energy use and drives the development of new models in the direction of Green
Al The models trained with this approach will be evaluated by comparing them to
models trained with other pre-training approaches as well as large existing models.
It will be shown that the models trained for the tasks in this thesis will perform as
good as externally pre-trained models, given the right choice of data and training
targets. Also, the use cases presented in this thesis cover different data from differ-
ent domains to show that the siamese training approach is widely applicable. This
again shall motivate other researchers to not blindly use an existing pre-trained
model but also to create a custom pre-trained model for use cases for which there
exists no suited pre-trained model.

1.2 Research focus

To enable researchers to create well-performing models while having only limited
resources, like small amounts of data or not the latest hardware, this thesis moti-
vates the use of pre-trained models for various machine learning problems. Among
the different kinds of pre-training approaches, the siamese training approach will
be investigated thoroughly and compared against other approaches since that ar-
chitecture type is most efficient when considering the number of parameters dur-
ing pre-training. However, when dealing with the siamese training approach, the
following questions have to be investigated in detail:

1. What are the effects of different hyper-parameter decisions for the siamese
pre-training approach? When using the siamese training approach, several de-
sign decisions have to be made which are unique to this training approach. One
of those is with which similarity or distance function to compare the created en-
codings. Popular similarity functions like cosine, euclidian, or Jaccard all lead to
acceptable results. However, these similarity functions require encoding values to
be in a specific range. For example, Jaccard similarity requires all values to be
in between 0 and 1, while cosine similarity works best if the values are centered
around 0. These value range requirements affect a model’s performance when the
encoding is used for additional training tasks. That phenomenon, as well as the
general effect of different similarity functions, will be investigated in section 3.1.
Created encodings from language data are used in transfer learning tasks in sec-
tion 3.1 and 3.3, as well as for a concrete use case in section 4.3. For all these
encodings, it has to be discussed what kind of features these encodings contain
and whether these features are suited for the given use case. In section 4.3 it is
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shown that the encodings are not suited, and an adjustment for the training process
is presented and discussed.

2. How does the number and type of pre-training targets affect a model’s
performance on transfer learning tasks? Neural networks always have to be
trained with a training target. This also applies to unsupervised pre-training since
no gradients can be calculated without a training target. A straight-forward clas-
sification task uses a different type of architecture compared to a network that is
trained in an unsupervised manner. Unsupervised training targets can be, for ex-
ample, the reconstruction of input data. This is typically done when dealing with
images: An image is encoded to a vector representation, which is passed through a
decoder that has to reconstruct the input image. This kind of architecture is called
an autoencoder (see section 2.2.2). For textual data, a model could be trained to
encode an input sentence before decoding it again. For both cases, the trained en-
coder would learn about the most occurring features in the input data, which again
is advantageous when transferring the encoder onto a different task. An encoder-
decoder architecture is suitable for this task.

Training an autoencoder is expensive since the model consists of two parts,
of which, in most cases, only one part is needed for transfer learning tasks. The
siamese architectures (see section 2.2.5), on the other hand, only consists of an
encoder part and does not need a decoder. When training a siamese model, pairs
are created from the data and are either positive or negative. The model has to
create an encoding for each entry of the pair. If the pair is positive, the encodings
have to be similar. If the pair is negative, the encodings have to be dissimilar.
Training these kinds of models may be cheaper due to the need for fewer weights.
However, this thesis investigates the effect the selection of positive and negative
pairs have on a siamese model’s performance (see for example section 3.2). Also,
it has to be investigated how siamese models perform on transfer learning tasks in
comparison to models that have been pre-trained with other techniques (see section
4.3.4). The concept of multitask learning (see section 2.1.4) is discussed in detail
by showing how a model’s results are affected by training with multiple training
targets.

3. What is the relation between a slim encoder like a small siamese model and
a large general-purpose model like BERT? The usage of pre-trained models
is common in many fields: When dealing with visual data, it is common to use a
pre-trained model like VGG16 [122] or ResNet [45]. For NLP tasks, there exist
general-purpose models like BERT [32]. All these mentioned models have been
trained on huge datasets and contain many parameters. They have learned a wide
variety of features, which again makes them easily transferable to nearly any use
case from the same domain. However, while those models’ size is one of their
strengths, it is also one of their weaknesses. If those models are fine-tuned for
a specific use case, it may be very resource intensive to train them. This creates
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the question of whether it is necessary to use a resource-intensive model and fine-
tune it or whether it might be better to train a small model from scratch using a
smaller dataset. Sections 3.1 and 3.3 compare how to train models that are rela-
tively small compared to their large counterparts, sections 4.1 and 4.3 describe use
cases in which both model types have been used and discussed the advantages and
disadvantages of both types.

1.3 Structure

The mentioned research questions from section 1.2 will be tackled by executing
multiple experiments. By doing that, the effects of hyper-parameters like distance
functions, architectures, and training data choices can be discussed. Since unsuper-
vised pre-training does not require labels, the trained models are compared quali-
tatively. In the context of text data, learned word and sentence embeddings will be
compared. Additionally, the models will be applied to a transfer learning task for
quantitive analysis. The experiments will cover data with different dimensionality
and from different domains to show the different effects of the hyper-parameter
choices and to also show that the siamese training approach can be applied to sev-
eral different use cases. The result will be a set of general guidelines on how to
pre-train neural networks using the siamese training approach.

Chapter 2 gives an overview of learning paradigms to embed different use cases
for how neural networks can be used. Here, the focus will be on those paradigms
that can be applied to unsupervised learning (see section 2.1), for example, those
for which no labels are needed. After that, neural network architectures for un-
supervised learning tasks are explained (see section 2.2). One property that will
be discussed in detail is how complex it is to train these architectures. For exam-
ple, an autoencoder first encodes input data before decoding it, whereas a siamese
architecture only encodes data.

Having explained different architectures for unsupervised pre-training, chapter
3 covers the actual pre-training. These models and all other models in this thesis
have been created using Keras* in combination with Tensorflow>. For hardware,
GPUs provided by the clara cluster at Leipzig University have been used . The
experiments use different kinds of data to show that the concept of pre-training is
universal and not bound to a specific use case or type of data. Experiments using vi-
sual data are shown first (see section 3.2) since those data can be used to visualize
effects of architecture design choices regarding autoencoders and siamese archi-
tectures. Next, word embeddings are trained (see section 3.1), where the effect of
different similarity functions like cosine or euclidian similarity is discussed. Also,
the amount of data used for pre-training is discussed by training multiple models
using different amounts of data before applying them onto transfer learning tasks.

*nttps://keras.io/
‘https://www.tensorflow.org/
*https://git.sc.uni-leipzig.de/sc/
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In section 3.3, sentence embeddings are trained. The trained sentence embeddings
are used on transfer learning tasks. It is shown that the simple approach results in
worse performance compared to using a popular model like BERT. It is shown that
the worse performance is caused by low feature richness. It will be shown how
using multiple training targets significantly improves the models’ performance.

After having created multiple guidelines for what to consider when pre-training
neural networks with different data types, that knowledge is applied to multiple
practical use cases in chapter 4. The first use case is a classification task using
tweets (see section 4.1). For this task, only a limited amount of labeled training
data is available, which again shows the advantages of using pretrained models
with a large amount of unlabeled data. Section 4.3.4 also covers a use case with a
small amount of labeled training data, whereas the data type is visual data. Section
4.3 covers a study in which n-gram embeddings created from one corpus are used
to find similar n-grams in a different corpus. The main problem to overcome is
that the learned patterns during unsupervised pre-training are not suited to solve
the given task. It is shown that the architecture has to be slightly changed to be
adjusted for that problem.

Finally, chapter 5 gives an overview of all the learned lessons throughout this
thesis.

1.4 Related publications

Results from the case studies presented in chapter 4 have already been published
in the peer-reviewed proceedings of various computer science and computational
humanities conferences:

e Bryan, M., Philipp, J.: Unsupervised pre-training for text classification using
siamese transfer learning. In: Cappellato, L., Ferro, N., Losada, D., Miiller,
H. (eds.) CLEF 2019 Labs and Workshops, Notebook Papers. CEUR-
WS.org (Sep 2019) - This article presents a siamese architecture for pre-
training recurrent networks on textual data. The network has to map pairs
of sentences onto a vector representation. After having pretrained that net-
work, it was enhanced and trained on a smaller dataset to have it classify
textual data. I was shown that using this kind of approach for pre-training
results in better results comparing to doing no pre-training or only using
pre-trained embeddings when doing text classification for a task with only a
small amount of training data. For evaluation, the bots and gender profiling
dataset provided by PAN 2019 was used.

e Bryan, M., Heyer, G., Philipp, N., Rehak, M., Wiedemann, P.: Convo-
lutional attention on images for locating macular edema. In: Zheng, Y.,
Williams, B.M., Chen, K. (eds.) Medical Image Understanding and Analy-
sis. pp. 391-398. Springer International Publishing, Cham (2020) - Neural
networks have become a standard for classifying images. However, by their
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very nature, their internal data representation remains opaque. To solve
this dilemma, attention mechanisms highlight regions in input data that have
been used for a network’s classification decision. This article presents two
attention architectures for the classification of medical images. First, a sim-
ple architecture is explained, which creates one attention map that is used
for all classes. After that, an architecture that creates an attention map
for each class is shown. The presented architectures well meet the baseline
of standard convolutional classifications while at the same time increasing
their explainability.

e Bryan, M., Burghardt, M., Molz, J.: A computational expedition into the
undiscovered country - evaluating neural networks for the identification of
hamlet text reuse. In: CHR (2020) - This article describes a two-step pro-
cessing pipeline for identifying text reuse of Shakespeare’s Hamlet in a cor-
pus of postmodern fiction by comparing n-grams from both sources. A key
feature of that approach lies in a pre-filtering step, in which target sentences
in the fiction corpus are selected that are potential candidates for Hamlet
text reuse. In a second filtering step, potential text reuse pairs are compared
by their vector representation using a neural network trained in an unsu-
pervised manner. It was found that using the vector similarity resulted in
undesired results since the similarity is based on different textual features
compared to what is actually desired.
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Chapter 2

Machine learning

Chapter 1 motivated the usage of using pretrained models when tackling machine
learning tasks by introducing the two-step process called transfer learning. It was
also mentioned that using auxiliary training targets with possibly misleading labels
can be used to pre-train a model before transferring it onto another task. This
section defines several different learning approaches and relates transfer learning
and weak supervision to them. At first, different learning paradigms are compared.
These learning paradigms describe how learning experiments are to be done with
different types of labeled data. For that, different types of machine learning models
are mentioned, whereas only neural networks are looked at in detail. For these
types of models, different architectures and configurations shall be investigated. Of
these different architectures, siamese models are looked at very closely. That type
of architecture has the advantage that none of its parameters have to be discarded
when transferring a model to another task.

2.1 Learning paradigms

This section shall investigate different paradigms for machine learning experi-
ments. Machine learning can be defined as using information gathered in the
past to improve performance make predictions about events in the future [81].
Mathematically speaking, machine learning comprises of a set of input samples
X = x9,x1,...x, and a function f : X — ) which describes a mapping from
training samples onto a desired representation [141, 23]. Each input sample can
contain one or more numerical features, which can be things like the height of a
person or the number of occurrences of a specific word in a text. If an input is
not numerical, like a word or an image, it has to be transformed into a numerical
representation. For textual data, this can be done by creating a vector of a length
corresponding to the number of words in a given dictionary. The occurrence of a
specific word would be represented by setting a value in the vector to 1, whereas
the vector’s position corresponds to the word’s position in the used dictionary. For
visual data, images can be transformed into a numerical representation using each

13
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pixel’s color values, typically between 0 and 255. Also, since the function f con-
tains a set of parameters to be changed, f is called a model. Different parameters
with which the training process is controlled are called hyperparameters. In the
training process of a machine learning experiment, that function f has to be trained
such that its output 7 is as close as possible to a predefined output Y. Training is
done in pairs (X;, Y;), whereas Y; is called a label or target.

The aspect with which to separate the different paradigms is the providing of
labels for training. When a target is given for each input sample, that paradigm
is called supervised learning. When labels only partially exist or when labels
are possibly incorrect, these approaches are called semi-supervised learning (also
called incomplete supervision [140, 139]). When there are no labels given, the
task changes such that not a function from input samples onto different classes
shall be learned, but a model shall find patterns in the data. Such findings are not
predefined, which is why that paradigm is called unsupervised learning.

2.1.1 Supervised learning

For supervised learning experiments ([85] among others), the data comprises of
pairs with labels for each input sample: L = (z1,%1), (z2,¥2), -, (Z|L}, ¥|L|)-
When training, at all times, the current performance of the model can be evalu-
ated by calculating the distance between all current predictions Z for the input
samples and the desired targets Y. As metric for evaluating such distance, mean
squared error like MSE(Y,Z) = > N(Y,, — Z,)?/N, whereas N represents the
number of all training samples. The values of Y can be of two forms, which are
either categorical or real-valued.

If the values in Y contain categorical data, the labels represent class informa-
tion for the input data. In that case, the learning experiment is called a classification
task. When there are two classes to predict, it is called binary classification. Tech-
nically, two classes can be represented by one output value. If the number of classes
is larger than two, it is called multiclass classification. Exemplary use cases for su-
pervised learning experiments could be a data set with images of objects, and the
labels contain information which object on these images can be found. An exem-
plary data set for this is the MNIST!, which contains about 60,000 black-and-white
images the size of 28x28 pixels, whereas each image contains one of ten possible
digits. For textual data, classifying email into the categories spam or no-spam is a
common Uuse case.

When having real-valued labels, the model has to give a numerical prediction,
which could be something like predicting temperature values or prices. In that
case, the learning experiment is called a regression task. When training a model
in a supervised manner, the data is split into training and test data. That way, the
model is trained on training data, and its performance is evaluated using the test
data. That way, the problem of overfitting can be prevented: When the model is

! Available at http://yann.lecun.com/exdb/mnist/
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trained only on one set of data, it adjusts itself to that training data that when using
it in production, i.e., having the model predict input samples that have not been
seen when training the model, such predictions can be very bad if they contain
patterns that have not been seen during training. When training a model using
training and test data, the training error on both sets of data is expected to decrease
during training. If the test data’s error is rising again, while the training data’s error
continues to decrease, overfitting is happening, and training should be stopped.

The training process for supervised training is easy to control because of the
ability to evaluate the model’s performance. The downside of such an approach
lies in what needs to be done before training: the creation of training pairs (X;, Y;),
which can be very expensive, whereas, at the same time, the amount of unlabeled
data is much higher [85].

When evaluating a model’s learning progress, it is common to use a larger
subset of the data as training data and a smaller subset as test data ([74] among
others). While the training data is used by the model to adjust its parameters to
give a better output for the given input-output-pairs from the training data, the
test data is used to monitor the model’s performance on non-training data. If the
model’s performance on the training data is significantly better compared to its
performance on the test data, the model may be overfitting to the training data and
thus may perform badly on unseen data when used in production. In some cases,
the split between training and test data may be such that, by chance, some patterns
are only included in the test data and not in the training data, leading to the model
not being able to learn those patterns. To overcome this downside of a random
data split, it is common to do several splits of training and test data. Here, the
data can be split into K subsets, of which 1 is used for testing and K-/ are used for
training. The training is done K times, whereas each time a different subset is used
for testing, and at the end, all test accuracies are averaged. That approach is called
K-fold cross-validation ([74] among others).

In this thesis, supervised learning is used for all experiments, at least indirectly:
Neural networks always have to be trained with data samples consisting of input
data and a label. Otherwise, gradient descent could not be computed. However, in
the case of unsupervised learning, the training target with which a model is trained
is only used during that unsupervised training phase, while the model will be used
differently. Actual supervised learning experiments are executed in sections 4.1
and 4.3.4, where models are trained to classify tweets or patients’ images.

2.1.2 Transfer learning

Transfer learning [89, 42] describes a two-step approach where a model is trained
on two different data sets. Intuitively, transfer learning is done when considering
that it is easier to learn about apples when already having learned about pears®.
When training a model, mathematically, it is assumed that input samples come

2Example taken from [89].
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from a certain feature space and have the same distribution as the input samples
in the test or production phase, respectively. If a model is reused for a different
task, it is assumed that the new input samples and their features are from a similar
distribution.

Transfer learning can be used when for a specific task, only a small set of
training data exists. At first, the model will be trained on a data set with input
samples from a similar domain compared to the desired task. In the first training
phase, the model can learn generic patterns. In the second phase, the model will
be trained on the smaller but desired data set. With the learned patterns from the
first data set, training may be easier than only training the model in the smaller
dataset. Also, instead of pre-training a model oneself, a pre-trained model from
a different source can be used. For example, when dealing with neural networks,
there exist several pre-trained models. For visual tasks, famous pre-trained models
are Densenet [54], Resnet [45] or VGG16 [122]. These three models have been
trained on large image data sets and have learned to recognize very different visual
features. When using such a model on a different use case, the very last layer for
classification has to be removed in favor of a custom classification layer, whereas
all the other weights are kept. When a model is then trained, it does not need to
learn common visual patterns from scratch but can reuse such learned patterns.
For textual data, pretrained models exist for word embeddings ([78, 91, 11] among
others) or sentence embeddings ([59, 71, 32] among others). All these models have
in common that they have been trained on large text corpora, whereas the auxiliary
training tasks differ among the different models.

In experiments as done by [50] and others, a network was first trained to reduce
the dimensionality of data and then classify it. This approach is close to transfer
learning, but since the classification training was done on the same data used in the
first training phase, it is not called such.

A practical use case may be in medical images where there could be a dataset of
medical images that either contain symptoms of one or more diseases or no disease
(see section 4.3.4). If that data set is very small, a model first could be trained on a
dataset containing images of the same type with similar diseases. The model then
could learn visual patterns, which can then be reused when training on the smaller
dataset.

2.1.3 Active learning

Active learning (also called self-learning [117, 37, 2] or query-learning [119]) de-
fines an iterative learning process, where there are two different data sets, of which
there is one data set L with labeled input samples, as is with supervised learning,
and a second data set U = w1, 22, ..., 2y With unlabeled training samples and
falls under incomplete supervision. The model is trained on the data set L, which
contains input samples with corresponding targets. It can predict values for all
unlabeled input samples from dataset U when having trained the model. These
predictions can then be checked by a human annotator (also called oracle [140]).
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The model’s prediction can be seen as confidences with which to label unlabeled
data. Predictions with high values can easily be annotated as correct such that the
training set can be extended. When the model’s prediction is not polarized such
that one class gets a high value, these cases can be seen as edge cases, for which
there have not been enough samples in the training set so far, such that the model
was not able to give a clear prediction. It has been shown that some newly labeled
samples provide more information than other samples [119]. After having labeled
data, the number of samples in data set U has decreased and has increased in data
set L. The model can then be trained such that it adjusts itself to the now enlarged
training set to give better predictions to the samples in the data set U.

Supervised-learning depends on labels being existent for all input samples, of
which the creation can be expensive since a human annotator has to make deci-
sions for all existing input samples. Only a subset of input samples needs to be
labeled when doing active learning before training a model. Unlabeled data still
has to be labeled, but such a process is more straightforward since an annotator just
has to confirm predictions with very high confidence and only has to make more
challenging decisions on edge-cases.

Active learning is not used thoroughly in this thesis. However, in section 4.3,
an approach is presented in which n-gram pairs created by a model are annotated.
These annotations are then used to continue training that model. That approach
can be considered being the initial step of an active learning process.

2.1.4 Multitask learning

In the previously mentioned supervised learning experiments, a model is trained to
solve a single task, meaning learning a function f : X — ). That function f can
be trained such that for one given input sample, several tasks can be solved at once:
f:X = V1,Ys,...Y,. That pattern is called multitask learning [22]. It shall be
noted that the different tasks’ targets are independent of each other. For example,
when there is an image data set containing images of either cats and dogs, a model
has to predict a cat’s occurrence and a dog’s occurrence. If both occurrences are
mutually exclusive, these two predictions are the same task. On the other hand, a
different task could be something unrelated to the first task, such as recognizing
the presence of different objects in the background.

When a model learns features to do its classification task, these learned fea-
tures can be shared by all tasks. This type of learning can be reasoned biologically
[109]: When a baby is learning to recognize objects, it is learning visual patterns.
The knowledge of human faces can later help to recognize animals’ faces. When
training a model for one task, all information helping the model to do the classifi-
cation task is used, all unneeded information is discarded. The more different tasks
there are, the more information from the input samples has to be kept, given that
all tasks are independent of each other. Keeping more information is improving a
model’s ability to generalize [22], because the more information is discarded, the
more is a model overfitting onto a data set. Creating training data that is suited for
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multitask learning is more costly than creating data for one single-task learning:
Using multitask learning means having multiple labels for each training sample.

Multiple authors have shown the power of multitask learning. In the context
of drug discovery, a dataset containing 40 million measurements has been used
to predict biological targets [98]. The authors have shown that the more targets
were given to the model, the better the model performance on all tasks was. In
the context of language data, [28] trained a model to do several NLP tasks at once:
For a given sentence, they made the network predict part-of-speech tags, chunks,
named entity tags, semantic roles, semantically similar words, and the likelihood
that the sentence makes sense (grammatically and semantically) using a language
model. They stated that the joint learning of all tasks improved the model’s overall
performance. The authors in [73] put an image into a model and had the model,
on the one hand, produce a set of possible image tags and, on the other hand, a
full sentence describing the image. They found out that having the model create a
set of possible tags for the image improved the sentence generation. They reasoned
that creating simple tags is easier and enables the model to quickly learn features to
solve that task. Those features then helped the sentence creating part of the model
to create a full sentence from those features. For translation tasks, [133, 72] made
use of multitask learning by inputting a sentence one language into a model and
have the model output that same sentence in a different language. Simultaneously,
the model has to create a list of pos tags for the sentence in the input language.
It was also described that there are several types of multitask learning, namely
one-to-many, many-to-many, and many-to-one. In the recent past, one of the most
famous use-cases of multitask learning was the creation of the BERT language
model [32], whereas BERT stands for Bidirectional Encoder Representations from
Transformers. This model is a multilayer recurrent model that receives a sentence
as input and was trained to solve several tasks at once, like predicting missing
words from a sequence or predicting the following sentence.

Multitask learning is used in sections 3.1 and 3.3. Here, models trained with
language data are trained to solve several problems at once. For example, a model
has to predict masked words from a sequence as well as that word’s POS tag.

2.1.5 Unsupervised learning

As mentioned before, unsupervised learning approaches deal with data set which
contain no labels at all. Learning without labels can be seen as more natural since
when humans or animals gather information about their surroundings with their
senses, such inputs are not labeled. Only on very few occasions, a mother could
tell her child, "that is a dog." The child then has to connect learned features from
the past with the now learned label.> Thus, because of lacking labels, it is not the
goal to map the input sample onto a predefined representation but onto an undefined
representation with reduced dimensionality compared to the input samples’ dimen-

3Example from Geoffrey Hinton, 1996. Quoted in [43].
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sionality. When dealing with unsupervised learning, the task can be described as a
density estimation [85] or compression [123] by reducing redundancies in the input
data.

When reducing the dimensionality of data, the data’s original size is being de-
creased to a smaller representation. In the non-machine learning context, there
exist different ways to create such representation, depending on the desired use
case. A commonly used dimensionality reducing method is hashing, which maps
data of any given length or size onto a fixed-length representation. With this, it is
desired that two similar data samples in their raw representation result in very dif-
ferent hashed representations. A use case for this would be storing passwords: If
two passwords with similar characters had a similar hash representation, it would
be possible to find the original password given a password’s hash. A different, very
technical way of reducing data is compression. Here, the data that is to be com-
pressed is searched for patterns that appear multiple times to store these patterns
only once. The looked-for similarity of these patterns is binary: Either two patterns
are the same or different. This strictness has to be used since, when extracting the
data, it has to be extracted to the same representation as it had before compres-
sion. Another way to reduce data representation is by using domain knowledge and
defining features with which data shall be looked at. For example, when looking at
textual data, one could be interested in the number of occurrences of a specific set
of words or word groups. When counting these words, a text or document can then
be described by using only these counts. When two documents contain the same
number of words one is interested in, their reduced representation would be the
same. The question of whether the two documents are similar then is very subjec-
tive: They may contain different content, different lengths, or different metadata,
but given this one aspect they are looked at, they are similar.

Unsupervised data dimensionality reduction methods all work such that they
look for repeating patterns in data or related features, respectively, and combine
them into one. PCA [38] compares features by their correlation and groups those
features such that the reduced features are as uncorrelated as possible. Dimension-
ality reduced data samples are similar in their reduced representation when their
features, which are most used by the PCA reduction, are similar in their original
state. As an example, images could be dimensionality reduced using PCA. Groups
of pixels that always have the same color would be correlated and combined into
one reduced feature [75]. When two images’ pixels have a similar color at these
spots, their reduced representation would be similar. The patterns to look for do
not need to be the same but just have to be correlated or similar. This approach is
similar to the previous compression approach, but in this case, it is not possible to
reconstruct the data given only the reduced state since the compression is done with
a data loss. The used features for dimensionality reduction also do not necessarily
be the same set of features humans would be interested in. If there is a set of images
with animals, a human probably would say two images are the same if they con-
tain the same animal. On the other hand, if there are substantial repeating patterns
on the images, a PCA algorithm could choose this pattern for combining features
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like a big blue sky. When then comparing the similarity of images, they would be
grouped by the fact whether they contain a big blue sky or not. Technically, this
may be the best approach to reduce the data’s dimensionality, and semantically this
could not be desired.

Training neural networks in an unsupervised manner shall be investigated in
detail in 2.2. The concept of unsupervised training will be investigated in detail
in chapter 3. Here, unsupervised training is done with different types of data. For
example, a model is trained with visual data by having it first encode the data before
decoding it again. When considering language data, one model is trained to create
a vector representation of sentences. These vector representations are compared,
whereas the model has to create the vectors such that two sentences’ vectors are as
similar as possible if they appear as coherent sentences in the given training corpus.

2.1.6 Weak supervision

Weak supervision [103] (also called inaccurate supervision [140, 139], minimal
supervision [19] or distant supervision [79, 4]) is similar to supervised learning as
both provide labels for all input samples. The key difference is that these labels are
knowingly possibly incorrect or may even be incorrect most of the time. The reason
for using incorrect labels is that they may be way cheaper to create compared to
ground truth data or that they are used as a heuristic for the lack of real labels.
There are similar forms of creating such labels, depending on the use case, but
they all have in common that labels may be contradicting.

For learning relationships between entities, [ 19] have used a text corpus crawled
from the web. The authors use a few predefined entities with known relations, e.g.,
whether company A has acquired company B as a starting point to find new rela-
tions in their corpus. They are aware that some of their findings may contradict
other findings, e.g., sentences could be saying that a company has acquired another
company, but other sentences may be neglecting that statement. Thus, they use
an SVM classifier to classify a relation between the two entities using the found
statements with the entities appearing. In [4], the authors also try to learn relations
between entities but are using topic models. They state that a sentence can contain
entities like Barack Obama and United States, which is a hint that there is a rela-
tion between these two entities. Still, they mention that other sentences are likely
not to contain these two entities, which weakens their relation. In [79], the authors
try to find relations between entities as well, but they are using a database with
known relations as a baseline to train a classifier that finds new relations in large
text corpora.

A different type of incorrect labels can be the usage of labels created by crowd-
sourcing. Here, humans create labels, but since they cannot be fully trusted, labels
for the same input sample can be given several times and may be contradictive
[137, 96].

In this thesis, weak supervision is used for some of the unsupervised learning
experiments as well as for one supervised learning experiment. When training the
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models for word or sentence embeddings, words or sentences are taken randomly
taken from the corpus to create training pairs (see sections 3.1 and 3.3). Some of
these pairs may be misleading since, for example, a word pair that is randomly
chosen as being non-coherent may be appearing coherently somewhere else in the
corpus. In the case of supervised learning, section 4.3.4 is describing an experiment
where a model has to predict the success of treatment for a disease given a set
of images. In some of the cases, the images may give the impression that the
treatment has been successful, although the label says otherwise, which has to do
with external factors, which again are not present in the data.

2.1.7 Reinforcement learning

Reinforcement learning [126] deals with problems where an actor or agent has
to decide on actions in states to complete a task. A teacher or critic cannot give
feedback on each actor’s choice but can only give feedback when a specific state
has been reached. It is the actor’s task to find a series of actions that result in the
teacher’s best feedback. It is essential to know that such best series of actions is
not known beforehand. A popular use case for reinforcement learning is having a
program learning to play chess: For a human, it is obvious when a game of chess
has been won or lost, but it is not known which action in any state is the best choice.
Reinforcement learning could be seen as a special case of semi-supervised learning
since, for some states, there exists a label, but for most states, there is no label.
Given the environment, some tasks could also be defined as weakly supervised
tasks since, in some environment states, the same action could lead to different,
contradicting outcomes since not the full state is given to the model, but some
states are kept hidden.

For learning a series of actions that lead to a successful endstate, an algorithm
gives values to each state’s actions. The actions’ values depend on the state’s value,
which can be used by choosing that particular action. The only fixed values are
values given by the teachers. All other actions’ values are derived from experience.
In order to not force an algorithm to keep track of every visited state, which can
be impossible for environments with infinitely many or practically infinitely many
states, neural networks have shown to be able to solve this problem ([80, 121, 83,
67] among others). Depending on the context, reinforcement learning model can
be initialized with knowledge learned from tasks from the same domain, which is
why transfer learning can be used in the context of reinforcement learning.

2.1.8 Inexact supervision

For some learning tasks, there may exist a data set with input samples and corre-
sponding labels, but the labels may be inexact [140, 139]. An example could be
a set of images with labels whether a specific object can be found on an image,
whereas for a given task, the specific location of such an object could be needed.
However, the labels only contain a rough information about where the object to be
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found is in the image. For textual data, there could be a dataset with sentences and
sentiment information as label, whereas a sentiment information for specific words
or word groups would have been more accurate.

2.2 Non-supervised neural network architectures

When being given a large labeled data set, it is relatively easy to train a neural
network such that it learns to classify the data. However, for most use-cases, such
data sets do not exist. There is often not much data for a given task, and if there
is, there are hardly any labels. This section tackles these problems by describing
architectures that have been used for non-supervised tasks. All these architectures
have in common that they need to solve the critical problem, that non-supervised
training of neural networks may at first sight not be possible: The usage of gradient
descent creates the need of a target value for each input sample in order to calculate
an error and a resulting gradient. However, when using artificial labels, neural
networks can be trained unsupervised by having them solve a task that has the
side effect of, for example, reducing the input data’s dimensionality. Nearly all
described architectures follow the encoder-decoder paradigm [101] by encoding
input samples onto a vector representation and then decoding it.

2.2.1 Restricted Boltzman Machines

The breakthrough [35] for training neural networks came in 2006 when a strategy
was developed that enabled the training of deep networks [50, 49, 36]. Here, a
Restricted Boltzman Machine (RBM) was used, which is a small network that
consists of an input layer (with so-called visible units), hidden layer (with so-called
hidden units), and one weight matrix. When training, input samples are mapped
onto a hidden representation, and the network has to reconstruct them using the
very same weights:

P(hj=1v) =0 (bj + Zwi,jvi> 2.1)

i=1

n
P(UZ' = 1‘h) =0 | a; + Zwi,jhj (2.2)
j=1
When training an RBM, input data is passed through the network three times:
1. The input is encoded P(h|v)

2. The input is reconstructed using its hidden represenation: P(v’|h)

3. The reconstructed input is encoded: P(h/|v)
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Steps 2 and 3 could be repeated several times (so-called Gibbs-sampling), but
in practice, one step more than often is enough. Using the variables v, h,v’, b/, the
gradients can be calculated using constrastive divergence, of which detailed expla-
nation can be found in [21]. Using this approach, the network learns to compress
the input samples such that the reconstruction loss is minimized, although that can
only be measured indirectly.

When one layer has been trained sufficiently, the trained layer’s weights are
fixed, and the next layer is trained to create a more abstract representation of the
input data. This is done by first passing an input sample to the layer with the al-
ready trained weights and then using this hidden representation as the next layer’s
visible representation. After having trained several layers that way, the network can
be fine-tuned by being trained in a supervised manner for a classification task. For
visual data, images are represented by a single vector, whereas each value in the
vector represents one pixel. Training the RBM results in the model learning which
pixels’ appearances are correlating. When dealing with textual data, the input vec-
tor can, for example, represent a document, whereas each value presents a word
being used in that document. When training, the RBM learns about co-occurring
words in a document. An exemplary use case for that approach is the hashing
of documents [113], which was done by representing documents by tokens used in
them and having an RBM learn to reduce the document’s dimensionality. Using the
approach, documents can be compared using their reduced vector representation.

RBMs have the disadvantages of using symmetric weights, which limits the
model’s capability to learn patterns. Also, since they are designed as probabilistic
models, they are not well defined for dealing with non-binary input.

2.2.2 Autoencoders

Autoencoders are similar to the previously described Restricted Boltzman Ma-
chines in that sense that they map data onto a reduced vector representation and
then reconstruct the input data using that reduced representation [9]. Still, there
are several key differences:

e An autoencoder uses different weights matrices for decoding and encoding,
compared to one symmetric weight matrix of an RBM

e For calculating the training error and gradients, the reconstruction error is
used

e Backpropagation is used instead of contrastive divergence
e Non-binary values can be used without any problems

e Only two steps have to be taken instead of three

These advantages have lead to autoencoders being favored over RBMs. Also,
they have been enhanced such that they are forced to learn more abstract patterns
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in the input data [129]: The input samples can be corrupted (noising), but the
network has to reconstruct the uncorrupted data (denoising). That way, instead of
just compressing and decompressing the given data, the network is forced to learn
what patterns are noise and what patterns belong to the input samples.

Autoencoders can be used for the same use cases as RBMs can, but they are
easier to train given their advantages. Except for being used for the pre-training
paradigm, they are also used to have data clustered ([44, 6, 136], among others).
[41] has created a supervised use-case for this architecture: Here, a neural network
was trained to denoise medical images. During training, the authors used clean
images to which they added noise. The network had to reconstruct the clean version
of the images. The same concept is used in section 3.2.

2.2.3 Word2Vec

Another famous example of non-supervised neural network architecture is Word2 Vec
[78]. It comprises an architecture and training procedure which are very similar to
an autoencoder. It is a network architecture that maps single words onto vector
representation. The network’s architecture consists of two layers, of which the in-
put layer has as many nodes as words in a dictionary and as many output nodes as
the number of features of the words’ vector representation. The second layer is the
reverse of the first layer. During training, the network is given data in the form of
sentences, of which a word is chosen as focus word along with its context, which
is the focus word’s surrounding words in the given sentence. The network has to
predict (reconstruct) the context words given the focus word (so-called Skip gram)
or predict (reconstruct) the focus word given the context words (so-called CBOW).
In both variants, the focus word’s or the context’s vector representation has to be
such that the reconstruction is as close to the target as possible. The network has
to learn that some words appear more often in a focus word’s context than other
words so that two words with two very different contexts have to have a different
vector representation compared to two words with a very similar context.

When there is a phrase fo drink coffee in a café, coffee could be the center word.
Its vector representation is used to predict the probability of other words appearing
in its context. The representation has to be such that words like drink and café get
a high probability, and other words, which are unlikely to appear in the context of
coffee, get a low probability. Another word like fea also has words like drink and
café in its context and thus will receive a similar vector representation like coffee
since they have to predict a similar context. Given their vector representation, the
words coffee and tea will be similar.

Training Word2Vec consists of two-step, of which the first one is very cheap
computationally and the second one is very expensive. When getting a word’s
vector representation, one just has to look at its corresponding entry in the weight
matrix. To get the vector representation of a context, one has to look up the cor-
responding word’s vector representations and then calculate the sum. For the pre-
diction, the dot product of the vector and the output-weight matrix has to be cal-
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culated in order to get the probabilities for all words in the dictionary. The bigger
the dictionary, the more expensive that calculation is. To speed up this step, the dot
product is not created for all words from the dictionary but for the desired targets
and some randomly chosen samples, which are seen as negative targets.

When given a context, not the whole context is reconstructed but only a focus
word. Apart from this, another key difference is when comparing Word2Vec to
autoencoders: The targets may be contradictory. Focus words and their context are
chosen randomly from input sentences. One focus word likely appears in different
contexts. Also, since negative samples are chosen randomly, a pair that previously
has been used as a positive sample can now be used as a negative sample and thus
revert the previously done weight change. These contradictive training samples
slow down the training process. Still, when considering a given context combined
with a positive target and a randomly chosen negative target, it is very unlikely that
the two targets are switched for the same context. More than enough for the given
context and positive target, different negative targets are samples. Thus, in the long
run, the impact of contradictive samples can be neglected.

Autoencoders and Word2Vec are both trained in an unsupervised manner, but
autoencoders have consistent labels, whereas Word2Vec has inconsistent labels.
Thus, Word2Vec should be classified as a weakly-supervised paradigm. An exter-
nal implementation of Word2Vec is used in section 3.1.

2.2.4 Sequence to sequence

The previously used examples for neural networks all have all assumed that data
is static, as it is the case for images or the previously described word contexts that
have not considered word orders. However, a lot of data is sequential, meaning
the order in which input values are fed into a network plays a crucial role in the
data’s meaning. When looking at words used in a sentence, for example, a lot more
meaning can be taken from a sentence when the correct order of its words is known.
Also, when translating from one language into another, one might be interested in
translating full sentences instead of single words.

For use cases that receive a sequence of input samples as input and have a
different sequence as output, sequence to sequence has been proven to be a suited
architecture [26, 125, 72, 59]. For some tasks, using a single recurrent layer as
input and output may be sufficient. However, a sequence to sequence architecture
has the advantage of being able to map input onto outputs when both have different
lengths.

A sequence to sequence architecture contains two recurrent layers. The first
layer receives the input data, has no output layer, and learns a representation of
the whole sequence at its last internal state. This representation is then given into
a different layer by initializing the internal state with the last internal state of the
previous recurrent layer. The layer then produces an output sequence typically
until a predefined stop token has been produced. The number of layers used can
vary. The lower bound of used layers is one since the two described steps, i.e.,
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consuming the input sequence and producing the output sequence, can be done
theoretically by the same recurrent layer. As is the case with other types of neural
network architectures, there is no upper bound for the number of layers.

When being trained in a supervised manner, sequence to sequence has been
used to translate sentences from one language to sentences from another language
[125]. Here, a recurrent layer received a sentence token-wise. Next, a different
recurrent layer created a sequence of tokens from another language using the pre-
vious layer’s last internal state. The same architecture was used by [26], although
here, the more neutral name encoder-decoder was used to describe the architecture.
In [72], the sequence to sequence architecture has been used together with the mul-
titask learning paradigm. Here, an input layer received a sentence as a sequence
of tokens. Next, the recurrent layer’s last state was used to initialize to different
recurrent layers, of which the first one had to create a sentence in a different lan-
guage. The second one had to create a sequence of pos tags of the sentence in the
target language. It was shown that having added the second task improved the per-
formance of the first task. For unsupervised training with weak labels, sequence to
sequence was used to create a vector representing the semantic meaning of a vector
[59]. The authors have given a sentence token-wise into a recurrent layer and used
the recurrent layer’s last state to initialize to different recurrent layers, which had
the task to generate the input sentence’s preceding and succeeding sentence from
the training corpus. That way, the network had to learn which patterns in the in-
put sentences lead to patterns in the output sentences. The architecture was named
Skip thought, and the sentence vector representations have been used to find similar
sentences by comparing sentences using their vector representation.

Sequence to sequence is used in section 3.3 the same way as it was used by
[125, 26].

2.2.5 Siamese neural networks

The previously described unsupervised architectures all received data as input,
mapped it into a representation with reduced dimensionality (encoding), and then
reconstructed the input data (decoding). As a result of this, RBMs consistent of
three steps since the reconstructed input data was encoded again. Autoencoders
contain an encoding step and a decoding step. The described Skip thought archi-
tecture did not reconstruct input data but had the network generate preceding and
succeeding sentences but contained dedicated encoding and decoding steps. For
most use cases, decoding data is expensive. In the case of image data, decoding
data means creating an image of the same size as the input image, which then
is compared to the input image. This means, given images of the typical size of
256 x 256, 65536 pixels values for a greyscale image would need to be created
and compared with the input image. For a colored image, that number would need
to be calculated by three. For textual data, decoding data is expensive because the
probability of tokens from a dictionary must be predicted. The larger the dictio-
nary, the larger the number of weights to be trained. For sequential data with a
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large dictionary, the weights for only the last step can take up the biggest share of
the entire network’s number of weights.

To circumvent the need for decoding the input data, siamese neural networks
have been proven useful. This type of architecture takes input samples and encodes
them to a vector representation without needing to decode the data. This is because
when training siamese networks, input data is trained in pairs. These pairs are
then either positive or negative. When positive pairs are given into the network,
their encoded vector representations have to be similar. When a negative pair is
given into the network, their encoded network representations have to be unsimilar.
What accounts for a positive or negative pair depends on the use case and shall be
discussed by presenting different examples of use cases of siamese architectures.
When training the model using pairs, four data samples have to be encoded for
getting loss values for a positive and a negative pair. Instead of handling data in
pairs, it is also possible to treat data in triplets [24, 115, 107]. Oftentimes, the three
contained data samples are referred to as anchor, positive and negative. Hereby, the
positive and negative samples do get their label in relation to the anchor sample.
Three samples have to be encoded to create positive and negative loss values when
calculating the model’s loss. Additionally, it is possible to limit the loss such that
the similarity of the positive pair only should be bigger compared to the similarity
of the negative pair:

loss(a, p,n) = max(0, sim(a,n) — sim(a,p) + ¢€) (2.3)

Using that equation for loss calculation, the loss is O if the similarity of the
pair (a,p) is higher compared to the similarity of the pair (a,n). When thinking
of mapping input samples into a vector space, the loss is only greater than 0 if the
anchor sample is closer to the negative sample compared to the positive sample.
Without using the maz function, the model would be trained to move the posi-
tive pair as close to each other as possible. At the same time, the negative pair is
moved as far away from each other as possible. When using a similarity function
like euclidian distance, a negative pair’s samples would need to be placed in op-
posite corners of the vector space to have a similarity score of 0. This may seem
implausible since there still may be shared features even if the pair is negative.

Using the maz(0, o) approach seems more plausible since the criteria for choos-
ing positive and negative pairs often are vague. For example, in the case of training
image similarity, two images may, on the one hand, contain the same desired ob-
ject and are thus treated as a positive pair. On the other hand, they could be totally
different in all other aspects. When wanting to pair data, it may be enough to train
the model only such that these two image’s vector representations are closer to
each other than a vector representation of a random different image. The downside
using the max (0, @) approach is that in many cases, the loss is 0, which results in
having no gradients for that training pair and, thus, in slower training. Also, since
the positive and negative training pairs are often created randomly, each sample
is paired with different other samples and thus is pushed into several different di-
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rections in the vector space of the same time, which cancels some aspects out and
hinders extreme values.

When counting the number of de- and encoding steps when comparing siamese
models to autoencoders, one might argue that siamese models also need to steps,
the same as autoencoders, since two input samples have to be encoded when train-
ing. The key difference between these two architectures is that an autoencoder’s
decoding part is needed for training but not needed for the actual encoding for
data. Thus, a part of the network is trained that only plays a role during train-
ing. For siamese models, all parts that are trained will be used after training for
encoding data.

The earliest usage of a siamese architecture seems to be by [13]: In their
project, the authors wanted to calculate the similarity between signatures. The
signatures have been given into the neural network by a set of different predefined
features. A positive pair contained two signatures from the same person; negative
signatures were two signatures from two different persons. The last layer’s output
was linear, and the vector representation of two signatures was compared using
cosine similarity. A positive pair needed to have a cosine similarity of +1, a neg-
ative pair needed to have a cosine similarity of —1. [27] created another siamese
approach: Here, the authors created a convolutional neural network with a linear
output. During training, the network was trained to give face images from the
same person a cosine similarity of 1. When the images came from two different
persons, the cosine similarity should be —1. Another siamese architecture for text
was created by [87]. Job descriptions were given character-wise into a neural net-
work to create a vector representation. The different descriptions had been labeled
beforehand, such that the network was given data in pairs that depended on those
labels.

When considering learning paradigms, siamese architectures fall under unsu-
pervised learning since they reduce data dimensionality, and the learned represen-
tation is not defined beforehand. In the provided examples by other authors, they
have been trained using well-defined labels. Throughout this thesis, siamese neu-
ral networks shall be trained using weak labels (see sections 3.1 and 3.3). It shall
also be shown how this approach can be used for transfer learning by pre-training
a siamese network and then using it for a different task.

2.3 Efficiency

The success of things like new training strategies, hyperparameter settings, or acti-
vation functions is mostly measured in accuracy. For example, at many big confer-
ences, most articles presented their contribution by improving accuracy, or some
related measure [116]. The study’s authors form the term Red Al and mention that
typically a model’s performance is increased by using more data, more layers, or
more training time. Each of these three aspects makes a model’s creation more
expensive: Using more training data implies that more data has to be stored. The
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dataset Common Crawl 2019* contains text data with the size of 220TB. Using
more layers means the gradients during training are smaller, which again means
the model has to be trained longer, except when more expensive hardware is used.

The authors also define the term Green Al and suggest that when measuring a
model’s cost, not only the time to do inference on one sample is measured, but also
the time and cost needed to create the model [116]. In these measures, they include
carbon emission, electrical usage, elapsed time, and FLOPs. All these factors are
hard to measure and hard to compare: The emission of carbons and electrical usage,
for example, highly depends on the used hardware and can be lowered by using
efficient modern hardware, which on the other hand is more expensive than older
hardware.

In the context of this thesis, two metrics shall be used to compare models’
efficiencies. The first metric to use is time. All trained models in this thesis have
been trained using the same data, hardware, and time. Only the type of model
differs. For example, when training word vectors, one model is trained using an
encoder-decoder approach while the other one only uses an encoder. Section 3.1
investigates the results, giving an indication about which architecture type learns
faster.

The second metric used to determine efficiency is FLOPs. FLOP stands for
floating point operation and defines the number of mathematical computations
[47]. For example, if a vector has 128 features and is mapped onto a layer with
64 features, there needs to be a weight matrix with shape (128,64) and since the
dot product is used, there are 128 x 64 = 8192 FLOPs needed for this one layer for
one sample.’ Different deep-learning libraries like tensorflow and pytorch offer so-
called profilers to measure FLOPs or similar metrics. However, the results of those
profilers are seldomly exactly the same since the internal implementation of a layer
may differ. Also, when using recurrent layers for sequential data, the number of
FLOPs needed to compute an output depends on the length of the sequence. As a
result, the number of needed FLOPs to train a recurrent model could be lowered by
using shorter sequences. These inaccuracies result in the numbers of FLOPs being
mentioned throughout this thesis being hardly comparable with numbers mention
in other articles. Thus, this thesis does not compare models using their exact num-
ber of FLOPs needed during training but looks at what kind of layers architectures
contain, how costly these layers are and which other architecture type eliminates
costly layers.

*https://commoncrawl.org/2019/07, accessed 2020-23-12.
>In practice, such a layer typically also has a bias which is added to the result of such dot product.
However, modern hardware is optimized to do these two operations in a single operation.
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Chapter 3

Siamese training

The siamese architecture was introduced as a method of how to pretrain neural
networks (2.2.5). The following chapter describes several pratical experiments
in which the approach of training neural networks using that architecture is used
together with using weak labels (see section 2.1.6). Since, both, weak supervision
and siamese neural networks falls under the category of unsupervised learning, all
experiments are compared with other architectural approaches which do not use the
siamese architecture approach. It is then examined how hyperparameter settings as
well as auxiliary training targets influence the result of the training.

To show that the siamese training approach is applicable to different kinds of
data, three different types are used. The shown exemplary input data types are
presented in the following order:

static data is used in the form of word embeddings. Words presented to the network
together with their context in order to learn semantic representations.

visual data is used in the form of image sequences. Images themselves can be seen
as two dimensional data, whereas the two dimensions are width and height
of the image. When each positions contains three values to represent the
color value of the corresponding pixel, the images are three dimensional.
In the presented examples the images are two dimensional but have a time
dimensionality.

textual datais used in the form of sentences. Sentences are represented as a sequence
of tokens and are, similar to word embeddings, to the neural network in their
context, whereas context on a sentence level shall be defined as neighbouring
sentences or, on a broader level, sentences from the same document.

31
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3.1 Word embeddings

Word embeddings are the results of a process in which words from a dictionary
are mapped onto a numerical representation that makes it possible to calculate a
similarity between words. The aspects with which two words are considered sim-
ilar depend on the chosen method of creating the numerical representations. Word
embedding approaches are built on meta-data derivable from text data, like which
words are appearing in the same contexts ([61, 48, 78]), other approaches built on
ontologies like the Wikipedia article link structure [97]. In all cases, it is assumed
that words themselves have no meaning. Their meaning depends on words in a
context. Unknown words, for example, have no meaning to a reader. Only when
that unknown word is used in different contexts and or referred to as a physical
object, it gains meaning. Word embeddings make use of this concept. Machine
learning approaches do not have prior knowledge of language or general knowl-
edge about the world. Machine learning approaches are bound to only experience
things in the form of numbers or indexes, respectively. This section first describes
the linguistic theory behind word embeddings before then presenting evaluating
different approaches to train word embeddings with respect to distance functions
and model architectures.

3.1.1 Structural linguistics

Data contains information. That information is represented by different symbols
which themselves do not contain meaning. When considering spoken language,
language consists of a sequence of sounds, whereas the sounds only make sense
when combined using the target language’s rules. The same rule applies when lan-
guage is being represented by text. Textual data consists of character sequences.
The characters are needed to build words, which, when being combined correctly,
form sentences in the target language. Although not mentioned in linguistical con-
texts, the same pattern applies to visual data: Images are represented by pixel,
whereas a single pixel does not have meaning. However, a group of pixels can
create patterns like edges and areas, whereas the combination can form complex
objects.

The idea of linguistical concepts being represented by smaller things which on
their own do not have meaning is called structural linguistics [48]. Here, utterances
are being viewed on different levels [118] which can be (among others):

phonemes , which are sounds used to form morphemes

morphemes , which are one or more phonemes, which are used to create words. The
English word cats consists of the morphemes cat and -s, whereas the first
morpheme is also a valid word, whereas the second one is not.

lexical categories , which (also called part-of-speech tags) are categories which can be assigned
to words to determine their role in a sentence. Lexical categories are (among
others) nouns, verbs, and adjectives.
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noun phrases contain a (pro-)noun as the sentence’s subject.

On each of these different levels, the different units are in two kind of relations
[114]: syntagmatic relations and paradigmatic relations. When looking at the two
relations on a word level, two words are in a paradigmatic relation if they appear in
a similar context. In the two sentences The dog likes to eat food and The cat likes to
eat food, the words dog and cat are surrounded by the very same words. Thus they
appear in the same context and share a paradigmatic relation. On the other hand,
words share a syntagmatic relation when they appear in the same context. Thus,
every word shares a syntagmatic relation with all other words from the sentence it
appears in.

The appearance of two words in the same sentence can also be called co-
occurrence ([48, 12], among others). As a consequence of that definition, given
enough data, any two words can share a syntagmatic relation. To circumvent
the problem, the definition is extended such that two words are significant co-
occurrences if their joint appearance is not random, which again is defined by the
probability of two words appearing together is above a predefined threshold [62].

3.1.2 Model types
Co-occurrences

In linguistics, co-occurrences ([61, 48], among others) refer to the joint occurrence
of two lexical units (typically words) in a corpus, document, or sentence. It is
assumed that there exists a dependence between these two terms if their joint oc-
currence happens conspicuously often together. When looking at the two sentences
The weather is sunny today and The weather is cloudy today, the words weather
and foday appear together, from which an assumption can be drawn that they in
some way related. In practice, co-occurrences are found by counting words and
calculating their relation using, for example, the dice coefficient. Some authors
use the term collocation when two words are occurrence directly adjacently ([10],
among others). When considering the word pairs strong coffee and powerful cof-
fee, strong and powerful do not co-occur but both have the same collocation. When
two words appear in the same context but do not co-occur, this can be a strong hint
for two words being synonyms.

Co-occurrences are calculated by using a matrix. Each row and column in that
matrix represents one type from a dictionary. The values in the matrix represent
the number of co-occurrences of the two words, depending on the specific row and
column. Here, co-occurring can be defined as two types appearing in the same
window, the same sentences, paragraph, document, or any other way how to split
the used corpus into different parts. After having created the co-occurrence matrix,
a similarity measure like the dice-coefficient can be used to calculate the similarity
of two types: Given the words that appear alongside a given term, if two terms
are appearing in similar contexts, their dice-coefficient will be high. If two types
appear in different contexts, their dice-coefficient will be low.



34 CHAPTER 3. SIAMESE TRAINING

Word2Vec

The use case of Word2Vec (see section 2.2.3) is to use the resulting word vectors to
calculate similarities between words. When looking at the Word2 Vec architecture,
two problems stand out. The first one is that the architecture consists of two ma-
trixes, of which only the first matrix will be used after training. The second matrix
is only necessary for the training process. This problem can be solved by using
the same matrix for both steps, i.e., encoding and decoding. The second problem
is that the network is trained to predict a context (or one word given a context),
but when using the model, the actual prediction is not used but only the network’s
internal state. When training the network, the fact that semantically similar words
receive similar vector representations is a pleasant side effect, but the network is
not explicitly trained for this. The resulting problem is that the network is not
trained to compare two vectors with a specific computational method like euclid-
ian or cosine distance but still, cosine distance is typically used when comparing
two-word vectors.

When considering computation costs, the encoding step is very cheap since
the word’s vector only has to be taken from the weight matrix without any other
computation needed. The expensive part for training the model lies in predicting
a word’s context: Here, the probability for each word has to be calculated by first
using the dot product involving the word vector and the weight matrix before then
calculating the probability for each word using the softmax activation. The number
of needed FLOPs for training depends on the dictionary size D and vector size V.
A dot product has to be calculated for decoding, so the number of FLOPs is D x V.
Using only a random subset for the decoding steps replaces the dot product at the
cost of not training all weights at the same time.

Siamese architecture

The siamese architecture (see section 2.2.5) has been described as an encoder ar-
chitecture with no decoder. Input pairs are mapped onto a vector representation
and then compared using a predefined similarity measure. When using a siamese
architecture for word vector representations, the training procedure is very similar
to the one being used by Word2Vec: Training data is used such that words are taken
from sentences together with their context, i.e., neighboring words. Two words are
given into the network, and their vector representation is trained such that the sim-
ilarity is 1 (or that the distance is 0) given the predefined similarity measure. The
network has to be trained with negative pairs to consider the trivial case where the
network assigns the same vector representation to every input sample, which would
always result in a vector similarity of 1, to which the network has to give a vector
similarity of 0. Negative pairs can be any two randomly chosen words from the
dictionary. By chance, two words that appear together often could be chosen as a
negative pair that way, but given the fact that they are often appearing together and
thus often a positive pair, choosing them as negative pair does no harm but only
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slows down the training.

When comparing the siamese architecture to the Word2Vec architecture, the
two mentioned problems of Word2Vec are solved: Word2Vec uses a decoding ma-
trix in training, which will not be used after training, while the siamese architecture
does not need a decoding matrix. Also, the vector representations are trained to be
similar using a specific similarity measure. Thus two word vectors being similar is
not a pleasant side effect but the actual training target. Computation costs and the
number of FLOPs during training are also significantly lower since neither a dot
product nor a probability has to be calculated.

3.1.3 Distance functions

When training a siamese model, the network creates a vector representation of two
input samples. That input samples are then compared. If the pair is positive, the
distance between the two vector representations has to be small. When the pair is
negative, the distance has to be high. Deciding for a specific distance function leads
to different results in the vector representations and impacts the model’s further
use. This section describes four types of distance functions. In some contexts, the
term similarity functions is used. Here, all distance functions are defined, such
that a positive pair receives a distance value of 0 and a negative pair a distance
value of 1. The similarity value can be calculated using the formula similarity =
1 — distance. When training neural networks, it can be suggested to limit the
model’s output. Thus, when using cosine distance, the vectors are activated using
tanh to limit the feature range to (—1, 1). For all the other distance functions, the
vectors are activated using sigmoid to limit the feature range to (0,1). Without
these limitations, values could become very large, making training unstable.

Cosine distance. When calculating the distance of two vectors, cosine distance
is often used, for example in the original article describing Word2Vec [78]. Cosine
distance takes two vectors as input and calculates the angle between them:

i AiBi
cos(A,B) = =1 (3.1

(2 AL X B
i=1 i=1

When two vectors are placed in a vector space, their distance is not calculated
by their distance from the origin but only from their direction. When considering
a two-dimensional space, when there is a vector (1,1) and a vector (2,2), the
second vector is farther away from the origin than the first vector. However, when
traveling from the origin to both data points, both points lie on the same line,
which creates an angle of 0° between them. Thus their cosine distance is 0. When
there are two vectors (1,1) and (—1,—1), their distance from the origin is the
same. To reach them from the origin, one has to draw lines from the origin in the
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Figure 3.1: Average feature value of two siamese models trained with different
distance functions.

opposite direction. Thus, the angle between those lines is 180°, which results in
the maximum cosine distance of 1. When training a siamese model with the cosine
distance, each feature’s absolute value does not play a significant role. It is much
more important whether a value is below or above 0. Since neural networks are
typically initialized using Gaussian distribution such that each weight is around 0,
the weights hardly have to be changed during training, which results in the model
converging much faster. The final distribution of exemplary features can be found
in figure 3.1a. As the downside of using cosine distance compared to the other
distance functions is that calculating cosine distance is much slower.

Euclidian distance. When considering a vector space, euclidian distance calcu-
lated the squared distance of two points:

eucl(A, B) = (3.2)

Contrary to cosine distance, the two points’ relation to the vector space’s origin
is not considered. When beginning training, each feature’s value starts at 0.5 after
sigmoid activation. Thus, all input samples are placed very close to each other in
the vector space. To accord for negative data pairs which shall receive a distance
value of 1, features are changed such that they are either close to 0 or 1. Since the
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weights have to be changed more than the needed changed when using cosine dis-
tance, training takes more time. On the other hand, calculating euclidian distance
is much faster. An exemplary feature distribution of a model trained with euclidian
distance can be found in figure 3.1b.

Jaccard distance. The Jaccard distance (also called Jaccard index or Intersection
over Union (IoU)) calculates the distance or similarity between two sets. Here,
the intersection of the two sets is put in relation to the two sets’ union. If the
intersection is the same as the union, the two sets are equal. On the other hand, the
smaller the intersection is in relation to the union, the more distant the two sets are.

AB+AB)
25 A" 25 B

When dealing with numerical vectors being bound to values between 0 and 1,
the intersection is the product of these two vectors. If the two vectors are (1,1)
and (1,0), their intersection is (1,0). The relation of the intersection to the first
vector can be calculated by dividing the sum of the intersection by the sum of the
first vector, which is 1/2 = 0.5. For the second vector, this formula equals 1. The
average of the two results has to be calculated to get the Jaccard similarity, which
is 0.75. If these two vectors were to be made more similar, the feature’s values
which are not 1 for both vector have to be changed: When changing the second
feature of the first vector to O or the second feature of the second vector to 1, the
two vector’s Jaccard similarity would equal to 1. This means only features with a
value of 1 have an impact on two vector’s Jaccard similarity.

Intuitively spoken, two vectors have high Jaccard similarity if the same features
are present. When training a model using Jaccard distance, the neural network must
learn which features are shared for a given input pair. An advantage compared to
euclidian and cosine distance is that two vectors easily can be made distant: When
a negative training pairs two vector’s present features partially overlap, only these
overlapping features need to be changed by setting them to 0 for one of the two
vectors. The rest of the present features can be changed without affecting that
distance. Simultaneously, when using cosine or euclidian distance, any change in
one input sample’s vector representation affects its relation to all other samples
since each feature will have the same impact on the distance to other vectors.

A downside of using Jaccard index lies in calculating the product of two vec-
tors: For example, if two vectors have the value 0.5 for one feature, the product
will be 0.25. This again leads to a similarity smaller than 1, although the feature’s
two values are the same. This means that features’ values have to be close to either
0 or 1. This effect can be seen in figure 3.1c, showing exemplary feature values of
word embeddings.

jaccard(A,B) =1 — ( (3.3)

Weighted Jaccard distance. To overcome the disadvantage of values having to
be either 0 or 1 when using Jaccard index, an extension of that approach can be
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used:

E:irnin(fh,ZEQ
E:irnax(fg,lﬂ)

Here, instead of using the product of two vectors, each feature’s value is con-
sidered using the minimum and maximum values. If two vectors are (1, 0.5), their
Jaccard similarity would not equal 1 since the vectors’ second feature does not
equal either O or 1. On the other hand, the weighted Jaccard index accounts for
the values being equal while at the same time weighing it lower than the first fea-
ture. When using Jaccard similarity, features either have to be 0 or 1, meaning
features are binary. When using weighted Jaccard similarity, features can be any
value between O or 1. This difference can be seen in figure 3.1d.

weighted_jaccard(A,B) =1 — ( ) (3.4)

3.1.4 Word embedding evaluation

After having explained three approaches to calculate word similarity, the presented
approaches are to be evaluated. The problem when evaluating models that have
been trained in an unsupervised manner to assign vector representation to words
is that there are no correct or incorrect vector representations. Thus, the vector
representations have to be evaluated for plausibility: The evaluation is done quali-
tatively by looking at exemplary words and similar words and quantitatively using
lists of predefined word pairs.
There are three basic types of models that are to be compared:

e Word2Vec
e Siamese architecture

e Co-occurrences

e GloVe

The first two types are neural network-based and are trained on a list of ten
million English sentences taken from the Wortschatz project at Leipzig University .
The sentences contain no specific content, but they are a subset of a larger dataset.
Each sentence was transformed into a POS tag sequence from that larger dataset,
which was then used to find typical and non-typical sentence structures [86]. The
mentioned subset, which has been used for training, contains sentences that contain
typical POS tag sequences. The Word2Vec model was trained for about 48 hours
using a library called Gensim? and contains 120,000 words.

Of the siamese architectures, four have been trained, which differ only in the
type of activation and distance function used as described in section 3.1.3. Both
models have been trained for twelve hours.

"https://corpora.uni-leipzig.de/, [40]
https://radimrehurek.com/gensim/
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The fifth type of model is a set of pre-calculated co-occurrences by the afore-
mentioned Wortschatz project based on different types of data sources, like news
and Wikipedia articles. The data contains similarity values for pairs calculated us-
ing cosine and the dice-coefficient. If a pair is not in the given data set, its similarity
is unknown.

The sixth type of models are word vectors trained using fasttext>. The authors
mention that there are many different words with minor word variations for some
languages, as is the case for German. To overcome this problem, they describe an
approach for which there is not one word vector for one word, but instead, words
are described by character tri-grams, which themselves get a vector representation.
A word’s vector representation then is the sum of the vector representations of its
character tri-grams.

Lastly, the GloVe * model is a set of word vectors which are created from
singular value decomposition and are based on a co-occurrences matrix. The GloVe
model contains 2,196,017 words. The authors mention that similar words can be
found using the cosine or euclidian distance.

Similar words

For evaluating similar word lists, reference words are chosen as a pre-chosen type.
The top 20 words have been calculated for each type of model. The lists are to be
evaluated whether the found similar words are of the expected type. The chosen
types are:

e stop word
e high frequent verb
e verb in past tense

e domain-specific noun

Stop words. Stop words are used to build sentences and contain no semantic
meaning themselves. They rather connect words with semantic meaning. Hav-
ing no semantic meaning, it is expected that similar words also have no semantic
meaning, thus are stop words themselves. As an exemplary stop word, the word
an was chosen. The results in table 3.1 are interesting because there are not only
exclusively other stop words. Moreover, the words seem to be rather non-sense.
The given definition of stop words contains the aspect that a word has no semantic
meaning. When training is just beginning for a neural network, the network does
not know anything about the words. If then, during training, words are shown in
different contexts, their vector representation is moved to a designated place in the
vector space. If a word is not being presented in many different contexts, but for

3https ://fasttext.cc/,[11]
“Global Vectors, https://nlp.stanford.edu/projects/glove/, [91]
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Siamese
Rank | cosine euclidian Jaccard weighted Jaccard
1 gratification a idolater afterthought
2 another gratification  adopter eyesore
3 a another acko outdoorsman
4 the warrants aider understatement
5 any the appendectomy epiphany
6 warrants mech ressam ultimatum
7 gyros continuous  aesthete phoblacht
8 this beholder glazyev errant
9 nesters forensic arrestable electrician
10 beholder chaos oxXymoron undisclosed

Table 3.1: Similar words of the word an for models trained with the siamese ap-

proach.

Siamese
Rank | cosine euclidian  Jaccard weighted Jaccard
1 another a a that
2 a SO this the
3 the the and this
4 any that in a
5 this and which  so
6 it this as it
7 in something that of
8 that as it in
9 as it for only
10 for which being another

Table 3.2: Similar words of the word an for models trained with the siamese ap-

proach with non-frequent words filtered.
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\\PAY Crawl
Rank | cosine euclidian | cosine euclidian
1 another a it.An An
2 a SO them.An another
3 the the An SO
4 any that -an the
5 this and -An that
6 it this —an and
7 in something withan a
8 that as time.An this
9 as it ofan something
10 for which here.An as

Table 3.3: Similar words of the word an for neural network based models with
non-frequent words filtered for the Word2Vec model.

Co-occurrences GloVe
Rank | cosine  dice cosine  euclidian
1 a a another another
2 another another a one
3 the the is is
4 one one one a
5 its its the as
6 his his as the
7 some some which  which
8 any any that it
9 plenty  plenty  with be
10 more more it only

Table 3.4: Similar words of the word an for co-occurrences based models.
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Siamese
Rank | cosine euclidian  Jaccard weighted Jaccard
1 hear hear know know
2 forgive forgive do think
3 convince kill anything do
4 kill teach let feel
5 remind inspire hear what
6 teach recognize think understand
7 criticize  explain something hear
8 inspire telling remember mean
9 inform remind imagine remember
10 marry frighten anybody want

Table 3.5: Similar words of the word tell for models trained with the siamese
approach.

w2v Crawl
Rank | cosine euclidian | cosine  euclidian
1 hear hear telling  telling
2 forgive forgive Tell say
3 convince kill tell. told
4 kill teach tells know
5 remind inspire Telling ask
6 teach recognize told do
7 criticize  explain tell. The tells
8 inspire telling re-tell believe
9 inform remind say see
10 marry frighten retell story

Table 3.6: Similar words of the word tell for neural network based models.

example, only one context, its vector representation is very close to the words it
co-occurred with. Thus, a word like outdoorsman may have only occurred once
together with the word an. The results in table 3.2 show similarities of the same
model, whereas non-frequent words have been filtered and are therefore not listed.
The lists now show only stop words as similar words. The Word2Vec model trained
with the gensim framework suffered from the same problem. Its result list is shown
with filtered words (see table 3.3.

The result lists for the other model types show other stop words. The only ex-
ception is when the crawl model with cosine distance. As was mentioned before,
the crawl model’s word vectors are created from character tri-grams. Thus, a differ-
ent word with similar character tri-grams will get a similar vector representation.
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Co-occurrences GloVe
Rank | cosine dice cosine euclidian
1 ask ask know  know
2 know know telling telling
3 see see ask ask
4 let let say say
5 give give what  why
6 remember remember why what
7 do do let let
8 get get me sure
9 hear hear want  want
10 understand understand how how

Table 3.7: Similar words of the word tell for co-occurrences based models.

Rank | cosine euclidian W2V

1 cat cat cat cat

2 puppy  puppy neighbor neighbor
3 kitte pig wallet wallet
4 toy kitten horse horse
5 rat horse baby laptop
6 pet monkey  car toy

7 pig mouse laptop puppy
8 horse  bunny toy baby
9 mouse bird nose nose
10 bug hound pig bird

Table 3.8: Similar words of the word dog for neural network based model types.

High frequent verb. Tables 3.5, 3.6 and 3.7 contain lists of similar words for the
high frequent verb zell. All lists except the lists for the GloVe model contain words
that play a similar role in a sentence, i.e., the word tell could in some sentences
easily be replaced with a verb like ask.> It shall be noted that the similar words of
the siamese models are closer to other high-frequency words regarding conversa-
tions compared to the similar words of the Word2Vec model. The similar words
of the GloVe model do not seem to be different verbs, but words that are likely to
appear in a sentence alongside the verb fell. For the crawl model with cosine as
distance function, there are again words with similar character tri-grams at the top
of the list.

Frequent noun. Tables 3.8, 3.9 and 3.10 show similar words for the noun dog.
As with the similar word lists of the verb tell, the similar words of the Word2Vec

SExemplary sentences could be Let me tell you. and Let me ask you.
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W2V Crawl
Rank | cosine euclidian | cosine euclidian
1 cat cat dogs dogs
2 neighbor neighbor puppy puppy
3 wallet wallet Dog Dog
4 horse horse doggie pup
5 baby laptop canine doggie
6 car toy pup pet
7 laptop puppy dog. canine
8 toy baby doggy doggy
9 nose nose dachshund cat
10 pig bird terrier poodle

Table 3.9: Similar words of the word dog based on Word2Vec models.

Co-occurrences GloVe
Rank | cosine dice cosine  euclidian
1 dogs dogs dogs dogs
2 sled cat puppy  puppy
3 cat pet cat pet
4 pet sled pet cat
5 bird animal  pup puppies
6 barks bird canine  canine
7 treats pets puppies pup
8 cats horse cats cats
9 mushers  girl kitten terrier
10 animal animals terrier kitten

Table 3.10: Similar words of the word dog for co-occurrence based model types.
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Siamese
Rank | cosine euclidian Jaccard weighted Jaccard
1 stole acquired had dislocated
2 sold spotted worked  slept
3 acquired  stole lived stole
4 purchased rented started  caught
5 spotted dug played saw
6 visited ate was ran
7 rented poured became walked
8 rebuilt drank met paroled
9 ate visited gave thrown
10 drove drove shot fainted

Table 3.11: Similar words of the word bought for models trained with the siamese
approach.

w2v Crawl
Rank | cosine euclidian | cosine euclidian
1 stole acquired purchased purchased
2 sold spotted sold sold
3 acquired  stole puchased  buy
4 purchased rented baught got
5 spotted dug Bought buying
6 visited ate bougth puchased
7 rented poured purchsed. purchsed
8 rebuilt drank buy purchase
9 ate visited splurged went
10 drove drove purchaced used

Table 3.12: Similar words of the word bought based on Word2Vec models.

model seem to be of a wider variety, as can been seen by words like lapfop and
wallet, which are not related to the domain of animal words. The other models
all have other animals or words closely related to dogs (sled) as similar words.
The only exception for this are the two siamese models having been trained using
the Jaccard distance. Their similar words contain lists that are not words from the
animal domain but are words that are probably used alongside the word dog like,
for example, lovely or little.

Verb in past tense. Tables 3.11, 3.12 and 3.13 show similar words for the high
frequent verb bought. All models show different verbs which are also in past tense.
The only exception are the word lists of the crawl model, which have a high share
of words with similar character tri-grams.
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Co-occurrences GloVe
Rank | cosine dice cosine euclidian
1 purchased purchas  purchased purchased
2 buy buy sold sold
3 sold sold buying got
4 buying buying buy buying
5 acquired  acquired sell picked
6 sell sell got sell
7 owns owns selling wanted
8 paid paid sells selling
9 purchase  purchase picked buy
10 invested invested  buys decided

Table 3.13: Similar words of the word bought for co-occurrences based models.

Siamese
Rank | cosine euclidian Jaccard  weighted Jaccard
1 iframes iframes online iframes
2 iframe geolocation watch password
3 trackback  iframe address  username
4 retargeting password visit app
5 reprint bookmark  send delete
6 newsnow  embed welcome  publish
7 spamming  url register  customize
8 arvixe username find login
9 https html share spam
10 plugin cultist eat subscription

Table 3.14: Similar words of the word browser for models trained with the siamese
approach.

Domain specific noun. Tables 3.14, 3.15 and 3.16 show similar words for the
domain-specific word browser. This word was chosen because it is linked to a
single domain. The lists of similar words all contain words from that same do-
main solely, but the lists based on neural network models, i.e., the siamese models
and the Word2Vec model, contain words in a wider variety. This is coherent with
the previous lists, where also a wide variety of words from the same context was
shown.

All model types show plausible similar words for the chosen reference words.
However, it has to be mentioned that the models have been trained for different
amounts of time: The siamese models have only been trained for twelve hours and
show similar results as the Word2Vec model, which has been trained about four
times longer. It was explained that the siamese model only contains an encoder
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W2V Crawl
Rank | cosine euclidian | cosine euclidian
1 upgrade inbox browsers browsers
2 inbox upgrade broswer Browser
3 password username  web-browser web-brows
4 subscription calendars  Browser broswer
5 smartphone  organize Firefox Firefox
6 buy horizons  browers browers
7 activate hips webbrowser  FireFox
8 username homepage browser. browser.
9 calendars doorstep firefox webbrowser
10 bodyweight fingertips  FireFox firefox

Table 3.15: Similar words of the word browser based on Word2Vec and co-
occurrences similarities.

Co-occurrences GloVe
Rank | cosine dice cosine euclidian
1 browsers browsers browsers  browsers
2 chrome chrome firefox firefox
3 firefox firefox browser
4 0s 0s ie toolbar
5 safari web toolbar web
6 web safari javascript webpage
7 web web mozilla browsing
8 browsing browsing netscape  user
9 desktop  desktop  web mozilla
10 mozilla explorer  user webpages

Table 3.16: Similar words of the word browser for co-occurrences based models.



48 CHAPTER 3. SIAMESE TRAINING

part, whereas the Word2Vec model contains both an encoder and a decoder part.
Two aspects explain the additional needed training time: First, the additional pa-
rameters lead to additional computations when doing a feed-forward step and when
doing backpropagation. Additionally, the parameters used as word embeddings are
the parameters from the model’s encoder part. When training, these gradients de-
pend on the gradients of the decoder part of the model. When using backpropa-
gation, the error is passed through the network using its weights. The error gets
multiplied by the weights, and since weights are typically small values centered
around zero, the errors get smaller with each additional layer. When comparing a
Word2Vec model with a siamese model, there is one additional layer between the
encoder part of the Word2Vec model and the point where gradients are calculated
initially.

It was also shown that the Word2Vec model’s similar word lists often contain
words that seem to not belong to the same domain as the word with which to
compare with, whereas the other models had fewer non-fitting words. The reason
for this may be that the Word2Vec model’s word vectors have been compared using
either euclidian or cosine distance. Both distances gave plausible results, but, as
mentioned before, the model was not trained to give word vectors that have to
be compared using a specific similarity function. It just turns out that these two
functions give somewhat plausible results. It shall be noted that the siamese models
have been trained to create word vectors for which a specific distance function has
to be used in order to compare these vectors. Using other functions would create a
list with words that do not make sense, and thus these lists are not shown here.

It can be concluded that Word2Vec is an impressive tool that leads to useful
word vectors, but it seems that the resulting lists of similar lists are a bit of a nice
coincidence. It shall also be noted that the shown results could be different when
using a model that has been trained longer and on more data. However, when
comparing Word2Vec with the siamese approach, the siamese approach can get the
same results with far fewer resources.

When comparing the siamese models with the co-occurrence-based models,
they show similar results. A significant downside of the co-occurrence-based mod-
els is that each pair’s similarities must be calculated in advance. With an increasing
number of words, the number of pairs is growing exponentially, as is the needed
amount of memory to save that similarity pairs.

Predefined word lists

In the previous chapter, lists of similar words have been evaluated in a qualitative
matter by picking exemplary reference words and looking at similar word lists
for different models. When looking at lists of similar words, the binary decision,
whether a word is similar or not, differs from person to person. When given the
reference word dog, some people would argue that kennel is a word related to it
because it is from the same domain, while others would argue that even cat is not
similar to dog since it is a different animal. To overcome this problem, this section
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evaluates the previously used models quantitatively by using similar word lists that
have been created by a group of people. When several people decide whether
two words are similar, they will come to different conclusions. Using the average
value, words with a higher average can be considered more similar than words with
a lower average.

The presented word embedding models use different similarity functions to
calculate the similarity score between words. When looking at similar words and
their similarity score, looking at the actual score value is not very useful. For
example, when working with neural networks with many features for the word
embeddings, many of those features could be very similar or even the same for all
the words because the network did not need these features. When calculating the
similarity scores, these scores will never be zero because some values are always
the same. Similarly, considering cosine or euclidian similarity, a similarity score of
zero would mean that two vectors are exactly the opposite. It is hard two imagine
two words having exactly opposite features. Two words like black and white may
be opposites, but they still have in common that they are both colors. Thus, it is
not possible to say for similar words which actual score could be expected.

When considering predefined word lists with similarity scores, it has to be
noted that these lists contain word pairs with a specific range of similarity scores.
The models which are to be used for this evaluation give different similarity scores.
The following steps have been done to make the scores comparable: For all word
pairs, the model’s similarity score has been calculated and stored together with the
predefined list score. These score pairs are used to create an average factor. That
factor is used to convert the predefined list’s similarity score to the models’ score.
For example, when the word pair black and white has a similarity score of 5/5 in
the predefined list, and the euclidian similarity is 0.95, the resulting factor will
be 0.19. This also respects the fact that the used models only give the maximum
similarity score when the same word is paired with itself, and otherwise, the score
will always be lower than one. Using such a factor can determine the maximum
similarity score for word pairs, where the two words are not the same. When it
has to be evaluated how close the model’s prediction is for a specific word pair,
the used factor shall be the average factor of all known pairs except for the pair
that has to be evaluated. The evaluation results are the average absolute distance
of the model’s prediction to the predefined similarity. Since the co-occurrence-
based models can only give similarity scores when a score for that pair has been
pre-calculated, missing pairs are skipped.

Three datasets will be used to evaluate the used models:

WordSim353 The first dataset is the WordSim353 [1] dataset. The dataset consists of 353
word pairs, which have been annotated by either their relatedness or their
similarity on a scale from 0 to 10. The list of similar pairs mostly contain
words that have something in common, e.g. train and car are both vehicles
or physics and chemistry both are sciences. The list of related pairs mostly
consists of two words which both belong to the same domain. Exemplary
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Siamese

cosine euclidian Jaccard weighted Jaccard
ws353, similarity | 0.044  0.064 0.059 0.047
ws353, relatedness | 0.038  0.054 0.047 0.045
rg65 0.096 0.121 0.111 0.103

Table 3.17: Average error on the datasets ws353 and rg65 for models trained with
the siamese approach.

W2V Crawl

cosine euclidian | cosine euclidian
ws353, similarity 0.066 0.068 0.191 0.19
ws353, relatedness | 0.045 0.049 0.087  0.099
rg65 0.112 0.112 0.305 0.359

Table 3.18: Average error on the datasets ws353 and rgb65 based on Word2Vec
similarities.

highly related pairs are computer and keyword, country and citizen or day
and dawn. Pairs which have received low relatedness scores are for example
drink and ear or rooster and voyage.

RG65 The second dataset is called RG65 [108] and contains 65 word pairs. The
pair similarity was defined on a scale from 0 to 4. An exemplary high simi-
larity pair is midday and noon, an exemplary low similarity pair is fruit and
Sfurnace.

MEN The third used dataset is called MEN [15] and contains 3000 pairs. The
pairs are rated by their similarity in a range from O to 50. In contrast to
the other two used datasets, all words are annotated by their part-of-speech
tag. An exemplary pair of high similarity is sun and sunlight, of which both
are annotated as nouns. A pair with a high similarity score and differing
part-of-speech tags is flame and burn.

For all datasets, the score range will be normalized to values between 0 and 1
before splitting the existing pairs into close pairs and distant pairs. Close pairs are
pairs with a similarity score bigger than 0.5. Distant pairs are pairs with a similarity
score smaller than 0.5.

The results in tables 3.17, 3.18 and 3.19 show the average error for the chosen
models on the ws353 and rg65 datasets. The neural network-based models perform
better than the co-occurrence-based models, while the siamese models perform
best. All models perform better on the similarity task compared to the relatedness
task. For both ws353 tasks, similarity, and relatedness, the scores are in the same
range, i.e., a similarity pair with a high score like football and soccer has the same
value as a relatedness pair with a high score like psychology and Freud. Thus, the
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cosine dice cosine euclidian
ws353, similarity | 0.111  0.113  0.224  0.223
ws353, relatedness | 0.109 0.113  0.105 0.103
rgb5 0.322 0.346 0.368 0.372

Co-occurrences | GloVe

Table 3.19: Average error on the datasets ws353 and rg65 dataset for co-occurrence
based models.

Siamese

euclidian (48h) Jaccard (600) Jaccard (900)
ws353, similarity | 0.052 0.051 0.046
ws353, relatedness | 0.043 0.046 0.045
rgb5s 0.101 0.104 0.101

Table 3.20: Average error on the datasets ws353 and rg65 dataset for co-occurrence
based models.

Siamese
cosine euclidian Jaccard weighted Jaccard
all pairs 0.045 0.071 0.057 0.052
only nouns 0.049 0.079 0.061 0.056
only verbs 0.024 0.033 0.027 0.027
only adjectives 0.024 0.049 0.028 0.023
nouns with rest 0.047  0.073 0.059 0.054
verbs with rest 0.036  0.052 0.048 0.044
adjectives with rest | 0.024  0.049 0.028 0.023

Table 3.21: Average error on MEN dataset for models trained with the siamese
approach.

Ww2v Cawl

cosine euclidian | cosine euclidian
all pairs 0.061  0.063 0.162 0.178
only nouns 0.066  0.067 0.182 0.203
only verbs 0.03 0.031 0.042  0.052
only adjectives 0.035 0.038 0.218 0.277
nouns with rest 0.063 0.064 0.166 0.182
verbs with rest 0.047  0.049 0.082 0.086
adjectives with rest | 0.035  0.038 0.218 0.277

Table 3.22: Average error on MEN dataset for Word2Vec models.
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Co-occurrences | GloVe

cosine dice cosine euclidian
all pairs 0.147 0.151 0.218 0.215
only nouns 0.169 0.173 0.258 0.254
only verbs 0.062 0.065 0.051 0.076
only adjectives 0.1 0.106  0.265 0.259
nouns with rest 0.16 0.163 0.231 0.228
verbs with rest 0.123 0.127 0.091 0.091
adjectives with rest | 0.1 0.106  0.265 0.259

Table 3.23: Average error on MEN dataset for co-occurrence based models.

relatedness pairs are more distant in their meaning, which results in lower similarity
scores created by the models. The previously described factor may even out the
difference in ranges, but the range of semantic distance of the relatedness pairs
varies more than the similarity pairs. The fact that all models perform better on the
relatedness score shows that it is easier to say that two words belong to the same
domain and thus are related compared to saying two words are closely related and
thus similar.

When looking at lists of similar words in section 3.1.4, it becomes evident that
the Word2Vec model’s lists often contain words as being similar, which seemed to
not belong in that lists. That effect may also be why the Word2 Vec model performs
worse than the siamese models.

In tables 3.21, 3.22 and 3.23, the evaluation results using the MEN dataset
can be found. In general, the results are similar to the results of the other two
evaluations, meaning that the neural network-based models perform better than
the co-occurrence-based ones, while the siamese models perform better than the
Word2Vec model.

When looking at the siamese models’ results, it is evident that their perfor-
mance differs regarding the distance function. The model trained with the cosine
function always had the lowest average error, while the model trained with the
euclidian distance function always performed worse. The reason for this may be
because it is faster to train a model with cosine distance, as was explained in sec-
tion 3.1.3. To further prove this point, a siamese model with euclidian distance was
trained for 48 instead of 12 hours. The evaluation results for that model can be
found in table 3.20, showing that the average error went down significantly. An-
other noticeable pattern is that the weighted Jaccard distance model is constantly
performing better than the model with non-weighted Jaccard distance. The prob-
lem for this may be that when using non-weighted Jaccard distance, features are
close to being binary (as shown in 3.1.3). Since the number of features for all
models is the same, the fact that the features are binary decreases that model’s
expressiveness. Two additional models have been trained with 600 and 1200 fea-
tures, respectively, to prove this point. The evaluation results of these models can
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be found in table 3.20, showing that the downside of storing information binary
can be evened out with more available features.

To summarize the effect of different distance functions, the experiments show
that cosine distance seems to be the best choice when wanting to get the best results,
although its execution time is higher compared to the other functions.® When speed
is an issue, weighted Jaccard’s performance is close to cosine distance while be-
ing significantly faster. Non-weighted Jaccard distance performs worse, although
increasing the number of features solves this problem. Since binary values can
be stored way more efficiently than float values, non-weighted Jaccard is a good
choice when memory usage is an issue. On the other hand, euclidian distance per-
formed worse on all evaluation experiments, which can only be solved by training
longer. When comparing the siamese models’ results to the other models, it is ev-
ident that they perform better. This demonstrates that they are explicitly trained to
be used with a given distance function results in better results than models that are
not explicitly trained for any distance function.

Transfer learning

The result of unsupervised learning tasks can be used to map data onto a reduced
vector representation and before comparing input samples with each other, as has
been done in the previous two sections 3.1.4 and 3.1.4. However, as was men-
tioned in section 2.1.2, trained models in an unsupervised manner can also be used
as pretrained models on another task. This section makes use of pretrained word
embeddings and transfers them onto different tasks. The evaluation pipeline used
is called SentEval’. SentEval offers a standardized evaluation of word and sen-
tence embeddings on different predefined tasks. When using this pipeline, either
pre-calculated word embeddings can be used or, when wanting to use sentence
embeddings, a custom function has to be defined with which to vectorize given
sentences. The created vectors are then given into a simple multilayer neural net-
work before creating an output for one of the tasks. The tasks used in the thesis
are:

MR contains each 5331 positive and negative movie reviews [131].
CR contains 2407 positive and 1368 negative product reviews [53].

SUBJ contains each 5000 subjective and objective movie reviews and plot sum-
maries [90].

MPQA contains words or word groups taken from news articles that have been clas-
sified for either being positive or negative [132].

%The cosine distance has been calculated using the cosine_similarity function of the sklearn li-
brary. The calculation of the similarity value of two vectors is significantly slower than calculating
the other three distance functions.

"https://github.com/facebookresearch/SentEval, [29]
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Jaccard weighted Jaccard

MR
CR
SUBJ
MPQA
SST2
SST5
TREC
MRPC
SICKE

Siamese
cosine euclidian
66.37  66.27
73.99 73.46
84.59  84.99
77.38  78.66
66.78  67.38
34.07  34.57
64.6 68.0
69.62 70.38
73.8 76.5

65.24
74.36
84.63
78.96
67.0
33.12
73.4
69.97
72.1

69.14
75.31
86.81
81.78
71.33
36.02
79.4

69.51
74.67

Table 3.24: Test accuracy on the senteval tasks for the models trained with the

siamese approach.

Table 3.25: Test accuracy on the senteval tasks.

W2V  Crawl GloVe
MR 63.46 75.27 77.42
CR 72.03 T77.51 80.77
SUBIJ 80.55 89.89 91.56
MPQA | 73.39 86.09 87.69
SST2 62.99 77.76 81.11
SST5 31.27 39.86 44.34
TREC | 77.2  80.8 84.2
MRPC | 68.52 71.88 73.1
SICKE | 74.47 78.95 78.77

SST2/SSTS are datasets containing sentences with either binary or fine-grained sentiment
information [124].

TREC contains 5000 questions of different categories [66].

MRPC contains sentence pairs that are labeled as either being paraphrased or not
paraphrased [33].

SICKEntailment contains sentence pairs which are labeled with a similarity score

8

Table 3.24 and 3.25 shows the results for several tasks from the SentEval frame-
work. When looking at the results, it becomes evident that the siamese approach
performs better on all tasks than the Word2Vec model, having been trained using
the gensim framework but worse to the Crawl and GloVe word vector models.

Simultaneously, when looking only at the four siamese models’ results, the
model trained with euclidian distance performs better on all tasks than the model

Shttps://wiki.cimec.unitn.it/tiki-index.php?page=CLIC



3.1. WORD EMBEDDINGS 55

having been trained with cosine distance. This may be related to the fact that
the evaluation tasks deal with sentences and thus with sequences of word vectors.
These vector sequences are merged using each feature’s average value. Creating
the average value of these vectors has a different impact on the two model types
since their features have different characteristics (see figure 3.1). When using co-
sine distance to compare two vectors, the angle of two vectors is calculated. The
angle’s origin is the value 0. The features of the model having been trained us-
ing cosine distances all lie around 0. When a feature is changed from +0.001 to
—0.001, the absolute change is minimal, but this change can have a huge impact
when calculating an angle. Thus, when training the model using cosine distance,
the feature values do not necessarily need to become large. Instead, assigning a
small but precise value can lead to good results. However, when these precisely
trained values are averaged, information can get lost. On the other hand, when the
model is trained using euclidian distance, the features have to be as much distant
from each other as possible to account for negative examples. Thus, the features
are close to 0 or 1. When creating the average value of a sequence of features of
which, for example, a lot have the value 1 and some 0, the average value may still
be high, which means less information has been lost.

Training variations

Next, siamese models are trained using different training parameters to investigate
different settings’ impact on evaluation results.

Selected data It can be assumed that when applying a trained model to a task like
the movie review task (MR), lots of word vectors are never used. Thus when pre-
training the model, lots of trained patterns are never needed. Instead, the time spent
on learning unneeded patterns could be spent learning patterns that are actually
needed for a specific task. The models are trained on the same data but only with
word pairs that appear in the tasks. For example, for the MR task, a model will be
trained on the same dataset as before, but when choosing word pairs, only words
are chosen that appear in the MR task’s data. Thus, the model does not know about
words that do not appear in the task’s data.

Table 3.26 shows the evaluation results of the additional experiments. There
has been a model trained for each specific task and distance function. Interestingly,
training the models in filtered data leads to no conclusive results. Looking at this
the other way around, adding more data to these tasks did not impact the results
either. This result is contrary to the common belief that adding more data will al-
ways lead to better results. When generalizing this statement, adding more data
to a machine learning experiment could possibly lead to worse results. The addi-
tional data can contain patterns that harm a model’s performance when applied to
a transfer task.

On the other hand, there may be patterns in data that are so common, even
with small datasets, they are learned, while adding more data will not affect a



56 CHAPTER 3. SIAMESE TRAINING

Siamese
cosine euclidian Jaccard weighted Jaccard
MR +3.84 +1.17 -0.3 —0.43
CR +1.56 +0.63 —-0.4 +0.74
SUBJ | +3.11 -1.03 -4.77 —-0.34
MPQA | —3.65 +0.43 —4.7 +0.14

SST2 -1.0  +0.11 +1.98  +0.72
SSTS +3.21 +0.23 +2.94 +0.18

TREC | —1.23 —3.56 -731 —44
MRPC | —4.58 —1.31 —-2.73 —-2.05
SICKE | +1.01 —-0.45 -5.08 +0.0

Table 3.26: Test accuracy on the senteval tasks for the models trained with the
siamese approach with selected data. The results are presented in relation to the
results in table 3.24.

model’s performance. When considering the SentEval tasks, the customer review
task (CR) is about discriminating sentences by their positivity. This can be done by
looking out for specific words like good or nice. When considering word embed-
dings, a model only has to give these words a similar vector representation to get
good results. Contrary to this, the MRPC task dealt with analyzing sentence pairs
and deciding whether they are paraphrased or not. This task requires way more
knowledge since sentence pairs could be about any topic. The fact that all models
performed better when trained with more training data further proves that point.

Tripletloss Table 3.27 shows the evaluation results of experiments with the same
architectures as the models in table 3.24 but are trained with triplet loss with cal-
culating the loss using as follows (see also section 2.2.5:

loss(a, p,n) = max(0, sim(a,n) — sim(a,p) + €) (3.5)

The results in table 3.27 show that using maz(0, -), the models perform worse
compared to not using that approach. When not using max(0, -), the models are
trained to assign extreme similarity values to training pairs. Since pairs are cre-
ated randomly, there are hardly predicted labels with extreme values, except if the
shown pair is a well-suited representative for a positive or negative pair. Since
the models have to predict extreme labels, meaning 1 for positive pairs and O for
negative pairs, the loss and the resulting gradients are high, resulting in bigger
weight changes. When using maz (0, -), the loss value is O if the pair (a, p) is more
similar than the pair (a,n). Since the average loss value is assumed to be lower
compared to not using max(0,-), training is significantly slowed down. Also,
the models trained with euclidian and cosine distance perform way better than the
models trained with Jaccard index. When having to assign a similarity value of 0
to a negative pair with euclidian or cosine distance, this results in placing samples
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Siamese

cosine euclidian Jaccard weighted Jaccard
MR —-3.27 —5.06 —5.5 —8.88
CR —-1.67 —-9.7 —-10.6 —11.55
SUBJ | —2.87 —7.26 -8.99 —11.07
MPQA | —2.2  —7.2 —-6.99 —11.82
SST2 —-1.27 -84 —-7.69 —17.51
SSTS —-2.03 —5.57 —-1.67 —10.82
TREC | +1.2 +40.2 —6.2 —17.01
MRPC | —0.43 —-3.31 —1.51 —3.02
SICKE | +0.22 —5.16 —-7.22 —17.98

Table 3.27: Test accuracy on the senteval tasks for the models trained with the
siamese approach and triplet loss using maxz(0,-). The results are presented in
relation to the results in table 3.24.

into opposite spaces in the vector space. When using Jaccard index, on the other
hand, the overlapping features are considered when calculating similarity. If there
are no overlapping features, the similarity is 0, but a sample’s features can still be
changed without affecting a negative pair’s similarity. Since it is possible when us-
ing Jaccard index to assign a similarity score of 0 to negative pairs, the loss value
will be 0 more often compared to using euclidian or cosine distance, resulting in
even lower average gradients and thus slower training.

Additional training targets In section 3.2, it is shown that a siamese model is
only learning features that are necessary for the auxiliary training task. Patterns in
the input data that are not needed are not represented in the encoded vector rep-
resentation. On the other hand: The more complex the auxiliary training task is,
meaning if many features from the input data are needed to pair positive correctly
and negatives pairs, the richer the vector representation gets. Adding a different
target to the model instead of pairing input samples is another way to enrich vec-
tor representations. Table 3.28 shows the test accuracy of several models on the
SentEval tasks in comparison to the base models in table 3.24. These new models
have been trained to pair positive and negative pairs correctly and have been given
the additional task to predict an input token’s POS tag given that token’s vector
representation. Thus, the POS tag information needs to be represented in the to-
ken’s vector representation. For the model using cosine distance for calculating
the similarity of two vectors, the results have improved. For all the other distance
functions, the results are worse. This shows that using different similarity functions
has a different impact on using additional training targets. When using euclidian,
Jaccard similarity, and weighted Jaccard similarity, the similarity depends on the
vectors’ absolute values. Thus, when the model is trained with an additional train-
ing task, the absolute vector values negatively affect both training targets. On the



58 CHAPTER 3. SIAMESE TRAINING

Siamese

cosine euclidian Jaccard weighted Jaccard
MR +1.75 —1.78 —-5.46  —3.77
CR +0.45 —0.77 —-7.16 —0.61
SUBJ | +1.19 -0.32 —4.88 —1.07
MPQA | +3.42 —-3.39 —-5.74 =53
SST2 +2.69 —0.77 —7.25 =5.27
SSTS +24  —-2.62 -3.03 =29
TREC | +14.0 +4.8 —-1.6 —0.2
MRPC | +0.07 —1.22 +0.93  +2.08
SICKE | +1.48 —5.18 —-3.44 —-0.23

Table 3.28: Test accuracy on the senteval tasks for the models trained with the
siamese approach with predicting an input token’s pos tag as additional task. The
results are presented in relation to the results in table 3.24.

other hand, cosine similarity is indifferent to absolute value changes since only the
angle between two vectors affects the similarity. Thus, the model can store more
information than the other models.

Number of positive/negative examples All models have been trained in the pre-
viously presented evaluations by showing the same number of positive and nega-
tive examples. If a model was to be only trained with positive examples, the model
could learn to map every input sample onto the same vector representation. To
prevent this, negative examples have to be shown. Table 3.29 shows the impact of
showing a different number of negative pairs for each positive pair. The numbers
represent the average test accuracy of all SentEval tasks for each model, depend-
ing on the number of negative pairs shown during training and the used distance
function. The results show that the number of shown negative examples does not
significantly impact the transfer tasks’ performance. This further shows that train-
ing the model with weak labels can lead to good results.

When thinking of the training as moving elements in a vector space, showing
positive pairs means moving two elements closer together while showing negative
pairs moving them away from each other. Figure 3.2 shows an exemplary vector
space with two possible training patterns. In the left part, the blue input sample is
paired with several other samples, whereas all pairs are being labeled as negative.
The blue sample has to be moved to the left to increase its distance to the other
samples. In the right half, the blue sample is paired with one other sample, whereas
that pair is labeled as positive. Here, the blue sample is also moved to the left. This
shows that even with no or hardly any positive pairs, the model can learn useful
representations. In word embeddings, a negative pair could mean choosing two
random words from two random sentences.

In a fictitious experiment, there are four different words: the, a, football and
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Negative examples for
each positive example
013092 31.21 29.43 34.48

0.1 |67.99 67.13 61.08 66.72

0.5 ] 70.55 68.84 62.13 69.23

116791 6891 68.75 71.55

2717 69.08 65.33 69.23

10 | 69.73  68.48 60.13 69.03

inf | 58.58 61.13 55.09 67.99

cosine euclidian Jaccard weighted Jaccard

Table 3.29: Average test accuracy on the senteval tasks for models trained with
N negative pairs for each positive pair. Choosing infinite negative pairs for each
positive pair means is equal to only chosing negative pairs.

Figure 3.2: Test accuracy on the transfer learning task for the four pretrained mod-
els and one not-pretrained model.

player. The first two words appear with a very high frequency in that corpus, while
the latter two appear with low frequency. The vector representations contain three
features. The used similarity function is Jaccard index. The two words the and a
are chosen as negative pairs with the highest probability. As a result, the model’s
optimal solution is to assign one of the three features for each of the two words.
The other two words will then both be assigned to the third feature. This means that
even if the words football and player are not explicitly labeled as a positive pair,
the fact that they are chosen as a negative pair with lower frequency compared to
all other possible pairs in the fictitious corpus makes them an implicit positive pair.

Conclusion

At the end of section 3.2, four statements regarding pre-training neural networks
for visual data have been made. These four statements can be transferred onto
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training word embeddings:

e Using an autoencoder when training word embeddings is expensive because
the decoder often needs to map a small vector representation onto a large
dictionary, which at the same time is sparse. Training with the siamese ap-
proach can remove that expensive decoding step, resulting in faster training
because fewer weights have to be trained, showing the advantage of a slim
model (see research question 3 in section 1.2). This was shown in section
3.1.4, where the word lists based on the Word2Vec model and the siamese
models contain roughly the same words, although the Word2Vec model was
trained four times longer.

e The basic Word2Vec is trained with an encoder-decoder architecture, of
which the output of the encoder is used as token representation, although
that layer has not explicitly been trained to be used as such. On the other
hand, if an encoder’s output is explicitly trained to be paired with other out-
puts, the created list of similar pairs contains less seemingly unfit entries.

e It was shown that the models trained with cosine similarity train faster, es-
pecially compared to euclidian distance (see section 3.1.4), which shows the
impact of hyper-parameter decisions. The reason is that cosine distance (as
weighted Jaccard similarity) does not rely on absolute values. Instead, only
the angle of vectors is important. In the case of euclidian distance, the model
has to assign extreme values to all features to get a similarity value of 0.

e Jaccard index assigns features such that a feature value of 1 represents a
feature being present. At the same time, a feature value of O represents a
feature being absent. To receive a high similarity score, the feature values
have to be as close as possible to 1, resulting in the features being binary.
Weighted Jaccard similarity, on the other hand, enables the model to assign
any value between 0 and 1 to a feature. Having binary features is an advan-
tage when wanting to store data as compact as possible. If this is not an issue,
the binary features restrict the model’s expressiveness and consequently its
performance on transfer learning tasks (see section 3.1.4).

e The previous two points refer to research question 1 stated in section 1.2 and
show that the choice of the similarity function is a critical choice to make
when training a siamese model.

e Using more data when pre-training a model does not necessarily improve
the model’s result on a transfer learning task (see section 3.1.4). In fact, it is
more important that the data used for pre-training contains features that can
be used on the transfer learning tasks. A neural network learns about patterns
in relation to the frequency with which patterns appear. If a feature that is
critical for a transfer learning task appears infrequently in the dataset used
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for pre-training, adding more data with new features can result in a model
not learning that critical feature.

e In order to enrich that vector representation for word embeddings, a model
has been trained that needed to predict a token’s POS tag given that token’s
vector representation. The results in table 3.28 show that these additional
training tasks increase the model’s performance on transfer tasks.

e Even if there are hardly any true positive pairs compared to the number of
negative pairs, the model can still learn to create useful vector representa-
tions.
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Figure 3.3: Convolutional kernels for feature extraction on visual data. Image taken
from [65].

3.2 Visual data

Next to textual data, visual data is the other most available type of data. Since cam-
eras are ubiquitously available, it is very easy to create images of everyday situa-
tions. Artificial intelligence models can be used for these photographs for various
purposes, such as classifying what kind of object can be seen on an image [46, 60]
or classifying and locating objects on images [105, 106]. Other non-photographic
images may be scans of handwritten documents that are to be transformed into full
digital documents. Thus a model has to recognize the layout of a scan and the text
on it [84]. In other contexts, medical devices can create images of specific parts
of the human body, which then should be analyzed whether diseases can be found
[57, 68, 88, 17].

When working with textual data, texts contain sequences of words, whereas
the combination of words creates meaning. Images are similar in the sense that
they consist of areas of single pixels, the combination of which creates visual ob-
jects. When neural networks process that type of data, convolutional neural net-
works (CNNG5s) are used for this [64, 65]. A convolutional layer consists of several
so-called kernels. A kernel is a matrix with height and width corresponding to a
number of pixels that are processed (see figure 3.3). These kernels react to different
visual features represented by pixels in that area: The weights of some kernel may
lead to a high activation if the pixels form a horizontal stripe, another kernel may
react to vertical stripes while another kernel may react to edges. The next convolu-
tional layer’s kernels then can process the created features of found lines and edges,
combining those and creating more abstract visual features [138]. When working
with faces, the first layer may find lines and edges, the second layer square, circles,
and rectangles, the third eyes, noses, and ears, and the fourth layer a whole face.

The difficulty with textual data is that a word can be used in several contexts
and have slightly different meanings each time. On the other hand, a word’s pres-
ence is a piece of binary information: Either a word is used or not used. Visual
data, on the other hand, is way more complex. When looking at different images
of the very same object, it may look different each time: The perspective, lighting,
background, and other factors can differ each time. Also, if the object is not unique
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but belongs to a class of objects, like if the object is a car or a dog, that object may
look very different on each image but still be of the same class. Thus, to detect a
visual object, its abstract visual features have to be learned. For example, a dog is
not defined by particular pixels being present but by seeing four legs, ears, a snout,
and a tail. To have a model learn to identify a dog on an image robustly, it needs to
get training images with a variety of the mentioned features.

Although there is a variety of visual data available, as is the case with text,
not all of it is labeled. Additionally, if a model has to learn a particular task,
there may be only very few available images suited for training. In the context of
neural networks, image classifying tasks have been among the first for which pre-
training has been done. This section investigates different pre-training approaches
for models dealing with visual data and introduces a siamese pre-training approach
for visual data.

3.2.1 Pre-training approaches
Autoencoders

Autoencoders have been created that receive an image as input, reduce its dimen-
sionality, and reconstruct the image (see section 2.2.2). That way, the model has
to learn what visual features exist in order to be able to fully reconstruct an image.
This is approach can be seen as compression: An image consists of a fixed number
of pixels. For several images, there exist specific patterns that are repeated. For
example, when looking at the MNIST data’, which contains small images of hand-
written digits, all these digits are created by similar patterns being stripes. Many
digits share the same type of stripe. Thus, the model can reduce the input image’s
dimensionality by transforming the pattern being represented by individual fea-
tures to being represented by features in the model’s layers. When reconstructing
the image, the autoencoder’s decoding part can paint that stripe because it knows
which part of the image is represented by that single feature.

As an extension of plain autoencoders, denoising autoencoders have been in-
troduced [129]. Here, noise is added to the input image before being given into
the encoder. The decoder has to reconstruct the input image but without the noise.
This means that the model cannot merely compress the input image but has to un-
derstand what the original image looks like. A practical use case for this is the
denoising of images ([41], among others). Here, a model is trained with a set of
clean images. During training, noise is added to the images, and the model has
to reconstruct the clean image. When used in production, the model can remove
noise from images because it has learned which of the image’s patterns are wanted
and which have to be removed.

Depending on the size of an image, training an autoencoder can be costly
computation-wise. The usage of a convolutional kernel is quite cheap. For exam-
ple, using a 32 kernels of size 33 on a black-white image requires 32 x3x3 = 288

*http://yann.lecun.com/exdb/mnist/
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operations. Modern hardware is optimized to simultaneously apply these opera-
tions to the whole image, so executing a single convolutional layer is relatively
cheap. On the other hand, when calculating the reconstruction loss, the difference
between each input and output pixel has to be calculated. For an image of 512x 512
pixels, this results in 262144 operations. Comparing these numbers shows the cost
of training a model containing a decoder.

Transfer learning

A different way of pre-training large models consisting of convolutional layers is
transfer learning (see section 2.1.2). Here, a model is trained on a dataset with
many classes and has to classify the images. Given a huge variety of classes, the
model has to learn about many different visual features. When transferring the
model to another task, its last layer - being the classification layer - is removed
and exchanged by a new classification layer used to classify other classes. When
training the model with the new set of images, it may find visual patterns in the new
training images similar to those seen in the previous training phase. Other patterns
that have been seen before may not occur in the new training data. However, given
the huge variety of classes, it is likely that a new classifying layer can make use
of the found features by the pretrained model. Exemplary model among others for
this use case are VGG16 [122] and ResNet [45].

Using autoencoders for pre-training has the disadvantage that the model con-
sists of an encoder-decoder structure. As is the case with decoding of words (see
section 3.1) and sentences (see section 3.3), the decoding part of a model, on the
one hand, is expensive. On the other hand, weights are trained, which are not used
after pre-training. Pretrained models may be suitable if the transfer learning use
case contains similar input data compared to the data the model has been trained
with. If the number of shared features of the two datasets is too large, such a model
cannot be used. If a custom model is to be pretrained like the previously mentioned
VGG16 model, this can only be done if there is class information.

Siamese approach

In this section, Siamese pre-training is presented to circumvent the mentioned dis-
advantages of the existing pre-training methods regarding models handling visual
data. Since only an encoder is needed and no decoder, roughly half of the weights
are used compared to an encoder-decoder structure like an autoencoder. As is the
case when dealing with textual data, images have to be used in positive and negative
pairs. Pairing can be done using meta-information regarding the training dataset.
If there is class information, a positive pair can be two images of the same class.
If there is no class information, but the images are stored in a specific order (sim-
ilar to sentences in a document), coherent images can be used as a positive pair
(see section 4.3.4). If there is no suited meta-information, and every image has
been viewed as unique, random subparts of the image can be used as positive pairs,
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Figure 3.4: Ten exemplary images from the imagenet dataset.

while random subparts from different images are used as negative pairs.

3.2.2 Model evaluation

The presented training approaches have been evaluated. For this, the Imagenet
dataset!® was used. That dataset contains 1000 classes with 1.28 million images.
For the following evaluation, 200 random classes have been used with roughly
130, 000 images, which have been split into training and test images using a ran-
dom subset of 80% of each class for training and the remaining 20% for testing.
The 200 classes have been split into two sets, of which the first set has been used for
pre-training and the second set for classification. The images are of different sizes
and have been reshaped to 256 x 256 pixels for training. Ten exemplary images
from that dataset can be found in figure 3.4. All models have been trained using the
same encoder structure (see figure 3.6) to ensure that the training approach leads
to different results. The encoder has been created by using skip-connections [46]
(see figure 3.5).

Pretraining

When training autoencoders on image data, the training process can easily be visu-
alized. The model is trained to recreate input images while passing them through
a bottleneck. Over the cause of training, the difference between the input images
and the reconstructed images gets smaller and smaller. Exemplary reconstructed
images showing the model’s training progress can be found in figure 3.7. It be-
comes evident that in the beginning, the model is only reconstructing very broad
features like an average color of an area and roughly what shapes in an image are
present. For example, in figure 3.7a the leftmost image contains a dog. In the re-
construction, shapes of the face are recognizable, but all reconstructions lack color
information. Over time, the reconstructed images gain more and more details. Still,

Ohttp://image-net.org/, [110]
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(c) Progress shortly after three epochs.

b

(d) Progress shortly after ten epochs.

Figure 3.7: Autoencoder training progress by visualizing exemplary reconstruction
of input images.
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the images are never reconstructed perfectly. This is because the model is forced
to pass the image’s information through a bottleneck. The smaller that bottleneck
is, the less detailed the reconstructed images become because most of the details
have to be discarded. Instead, only an average representation of the images can be
learned. On the other hand, the bigger the bottleneck is, the more details can be
kept. An extreme example would be a bottleneck, the same size as the number of
pixels. In that case, no information would be discarded.

Contrary to autoencoders, the siamese models’ training progress is hard to visu-
alize. What instead can be done is visualizing the learned features after the models
have been trained. A second model is trained to do that: The siamese model only
contains an encoder part. The second model gets that pretrained encoder and adds
a new decoder that reconstructs the images. The weights of the encoder are fixed
during training. That way, the decoder is forced to reconstruct the input images
using only the siamese model’s vector representation. Exemplary reconstructed
images can be found in figure 3.9. The reconstructed images of the basic siamese
model (see figure 3.9a), which had to pair images during training by their class la-
bel, are more blurry compared to the reconstructed images of the autoencoder. This
shows that the different training target leads to different features being learned: The
model is trained to pair vector representation of images from the same class. Thus,
the model does not need to contain as many features of the input image in its vector
representation. If one of the classes has a very distinguishable visual feature, the
vector representation only needs to contain that feature.

The other siamese model did not receive the full input image but received two
subparts of the same image as positive pair. Figure 3.8 shows an exemplary positive
pair. The model receives images of the size 32 x 32 pixels and halves height and
weight till it reaches 2 x 2. Thus the model halves the images’ sizes four times.
If the model receives an image of the size 128 x 128, the images are reduced to
8 x 8. If that model is to be used as a classifier, additional blocks (see figure 3.5)
would need to be added and trained. Thus, the model contains a smaller encoder
than the autoencoder or the siamese model working with full images, but when
transferring it to another task, the encoder has to be enhanced to make up for the
missing blocks. The reconstructions of that siamese model can be found in figure
3.9b. The reconstructions are more detailed compared to the reconstructions of the
other siamese model. This has to do with two facts: On the other hand, the encoder
shrinks the input images fewer times, which means the bottleneck is bigger. On
the other hand, the encoder had to learn other features. The siamese model trained
on classes only had to learn distinguishable features from the whole class, while
the siamese model trained on image subparts had to learn visual features from the
images themselves. If a face is shown on an image, the two subparts may cover
that face, so features representing faces must be learned.
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Figure 3.8: Two random subparts from the same image which are used as positive
pairs for siamese training.

(b) Reconstructed images of an siamese encoder that received subparts of an image during
training.

Figure 3.9: Image reconstructions of input images using the vector representations
created by two different siamese models.
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Figure 3.10: Test accuracy on the transfer learning task for the four pretrained
models and one not-pretrained model.

Transfer learning

This section presents the transfer learning task results with the pretrained models
and a non-pretrained model. Different classes from the Imagenet data were used
for the classifying task compared to pre-training. The results can be found in figure
3.10, which shows that the models perform differently on the transfer learning task.

The worst performing model is the model that has not been pretrained. This is
expected because its weights were initialized randomly, and the model does not
know about any visual features. Over time the test accuracy is rising, but the
progress is much slower compared to other models.

The second worst performing model is the model that has been pretrained by
classifying 100 classes and for which an untrained one replaced the last layer. All
other layers are used with their already trained weights, thus the layers can recog-
nize visual features. The still bad performance compared to the other models may
result from the layers learning features that are very focused on the classes used in
the pre-training phase. To further prove this point, the encoded vector representa-
tion of input images has been used to reconstruct that very input images (see figure
3.11). The reconstructed images show that the models which have been explicitly
trained to reconstruct the images, i.e., the autoencoder, can recreate the images
with more details than the models trained to classify the input images. The recon-
structed images’ quality does not differ significantly when using the same input
images used during training or images that have not been used during training. For
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(c) Reconstructed images of an decoder using input images from the training dataset which
have been encoded by a model trained to classify images.

(d) Reconstructed images of an decoder using input images from the transfer dataset which
have been encoded by a model trained to classify images.

Figure 3.11: Reconstructed images using decoders after encoding input images.
The encoders are either explicitly trained such that the decoder can reconstruct the
images (i.e. autoencoder) or such that a classifier can correctly classify the input
images.
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the classifying model, the reconstructed images contain significantly fewer details
compared to the autoencoder’s images. The most noticeable feature of the recon-
structed images is that color areas very roughly copy the structure of the input
image. This shows that the encoder is looking for specific patterns. For exam-
ple, given a flower as an input image, the encoder covers the information that a red
shape is surrounded by a green shape (see figure 3.11c, 6th image). When using the
trained encoder on images that have not been used during training, the reconstruc-
tion show even fewer features, showing that there are hardly any features found
that the classifier can use.

The classifier initialized with the siamese models’ weights performs signifi-
cantly better than the model initialized with the weights from the classifying model.
The fact that a decoder can create more features from an image’s vector represen-
tation created by a siamese model (see figure 3.9) compared to an encoder trained
to classify images (see figures 3.11c and 3.11d) leads to better performance on a
transfer learning task since more features can be used on the new dataset. The
model initialized with weights from the encoder of an autoencoder is performing
the best, while its reconstructions also do compare the most features compared to
the other models (see figures 3.11a and 3.11b).

Learned features

To further show that the autoencoder keeps more features than the siamese model
trained on whole images, an experiment with a toy-dataset was executed. The
dataset contains images with a size of 64 x 64. Each image contains one stripe,
while each stripe has two properties: The stripe is either horizontal or vertical
and has one of three colors, red, green, or blue. The siamese model is trained
with positive and negative pairs. Two images are a positive pair when their stripes
have the same orientation, while the color information is ignored. After training
the siamese model, a decoder is trained to reconstruct the input images using the
siamese model’s vector representations of the input images.

Figure 3.10 show the results of the reconstruction of the two models. The
middle row contains the reconstruction of the autoencoder. The autoencoder can
reconstruct the images using both properties of the stripe, namely the orientation
and the color. The bottom row contains the reconstruction of a decoder that had to
use the vector representation of a siamese model. The siamese model was trained to
pair images by the orientation of the stripes. The decoder was able to reconstruct
the orientation but could not reconstruct the color. This shows that the images’
vector representation does not contain any color information.

This experiment with the toy-dataset explains why the encoder in the trans-
fer learning task with the Imagenet data performs better than the siamese models
trained on class information: When reconstructing full images, the autoencoder
has to keep as much information as possible. The siamese model can discard much
information. If it was only trained on two classes of images that contain either cars
or people, the model only has to look out for wheels or faces. Other features are
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Figure 3.12: Reconstruction of the toy-dataset. The upper row contains the original
images, the middle row the construction of the autoencoder, the bottom row the
reconstruction of a decor using a siamese model’s vector representation of the input
images.

not learned because it is not necessary to learn those features.

Conclusion

When deciding how to pre-train a model when dealing with visual data, the follow-
ing conclusions can be drawn:

e The decoder part of an autoencoder may be expensive but given small im-

ages, that cost can be neglected. The bigger the images are, the less inclined
one should be to use an autoencoder.

If the ratio of images per class compared to the number of classes is high,
e.g., if there are only two classes, a siamese model should not be trained
using that class information because lots of information can be lost. Instead,
a siamese model can be trained using subparts of the available images.

If the ratio of images per class compared to the number of classes is low,
meaning there are lots of classes, a siamese model using that class informa-
tion can be used since the model has to consider many visual features from
the input images.

A model trained with the siamese approach has to create vector represen-
tations using the information of positive and negative pairs. If there is one
critical feature that is sufficient to distinguish those positive and negative
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pairs, other features will not be learned (see figure 3.10). This refers to re-
search question 2 from section 1.2, showing that the learned encodings may
not have enough features for transfer learning tasks.
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3.3 Sentence embeddings

The models shown in the previous section 3.1 have been used to calculate similari-
ties between words. That kind of data was described as one-dimensional data. This
section covers two-dimensional data in the form of sentences. A model has to find
common patterns in the given training data when doing unsupervised pre-training.
In the context of training word embeddings, these patterns are words that appear in
a similar context because they carry a similar meaning. A similar exemplary mean-
ing is shared by the two words red and blue, which both are colors and thus are
likely to appear in similar, if not the same, contexts. Sentences contain sequences
of words. These words gain additional meaning when being combined. For exam-
ple, the word merry describes something positive, the word christmas describes a
Christian holiday. The combination of both, merry christmas, not only describes a
happy Christian holiday but has additional cultural context as being a phrase being
used at a specific time of the year.

At the same time, due to being made of several words, sentences can have sev-
eral statements. The sentence I am hungry can be spoken while stressing each of
the three words. If the first one is stressed, the focus is put on the person being
hungry. If the second word is stressed, the focus is on the verb and its tense. If the
third one is stressed, the focus is on the actual feeling. For the given example, it is
difficult to say what other sentences this sentence is related to since there are many
dimensions of similarity. The sentence I am not hungry may be an opposite state-
ment, but it contains the same features of person, time, and feeling. The sentence /
was hungry may also be considered opposite because the mentioned feeling is not
being felt right now but has been overcome, i.e., the sentences / was hungry and I
am not hungry describe the same state with different words, which is that a person
was hungry in the past but is not hungry anymore.

When thinking about the similarity of two words, the main factor probably is
the similarity of the contexts the two words in question appear in. When thinking
about the similarity of two sentences, the answer is way more subjective since a
sentence contains way more information. One person may be focussing on the
grammatical structure of sentences, like the tense of words. A second person may
be interested in actual words used, while a third person may only be interested in
the topic. Thus, it is hardly possible to give one good list of similar sentences.
Moreover, a model being trained to create vector representations of sentences has
to gather various aspects in a sentence so that, given a use case, the desired aspects
can be used while other aspects can be discarded.

This section describes how to train models with a siamese approach to get a
vector representation for sentences. Similar to the previous section 3.1 with word
embeddings, these sentence embeddings are first analyzed on a qualitative by look-
ing at lists of similar sentences before then using the pretrained models for transfer
tasks.
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3.3.1 Model types

This section describes several approaches to how to create sentence embeddings,
of which the siamese approach will be described in most detail.

Word embeddings

Since sentences are created using words, the baseline for creating sentence em-
bedding shall be created by using the average vector representation of all words
in a given sentence. For this, any model that can create a vector representation for
single words can be used to create a sentence embedding. For short and simple sen-
tences, it can be assumed that just adding the vector representation of words equals
to merging the meanings of the words. On the other hand, the longer a sentence is,
the more likely some vectors cancel each other out.

Sentence2Vec

When using word vectors that have not been trained for being used in sentences,
the vectors may have unwanted properties. For example, the meaning of a sentence
is probably not defined by the vector representation of stop words but by verbs and
nouns. When the word vectors are summed, stop words could be over-represented
in the sentence’s vector representation. To account for this, the approach Sen-
tence2Vec [63] trains word vectors such that for a given sentence, the vector repre-
sentation of a subset of words is summed. Next, a classifier has to predict the next
subset’s succeeding word. This approach is very similar to the CBOW approach
used by Word2Vec, where the word in the middle of a context has to be predicted.

SkipThoughts

While the two previously mentioned approaches are focussing on words in only
one sentence and also do not consider the order of such words, SkipThoughts [59]
uses a recurrent layer that receives a sequence of word vectors. The last state of
the recurrent layer is used to initialize a second recurrent layer, which has to gen-
erate a sequence of words. The sentence that is to be generated is the sentence’s
succeeding sentence used as an input sentence. That way, the first recurrent layer
has to collect information from the input sentence such that the second recurrent
layer can create a likely succeeding sentence. The result is that the vector represen-
tations of sentences are similar if their succeeding sentences are similar. The first
recurrent layer can be seen as an encoding layer, while the second recurrent layer
can be seen as a decoding layer. This creates the same problem of all encoder-
decoder approaches, which is that the decoder may only be used during training.
When generating sequences of words, the problem becomes even more significant
since the decoding step involves predicting the likelihood of words appearing in
succeeding sentences, including the likelihood for a whole dictionary.
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The number of needed FLOPs for training the SkipThought architecture con-
sists of three factors: The recurrent encoder, the current decoder, and the prediction
of words from a dictionary. The computational cost depends on the length of the
sequences, the size of the recurrent layers, and the size of the dictionary.

QuickThoughts

In contrast to SkipThoughts, QuickThoughts [71] consists of an encoder part but has
no decoder part. Instead, multiple sentences are being encoded and then given into
a classifier. The sentences are taken from a corpus, and two sentences are coherent,
meaning in the corpus, one sentence is appearing after the other. The rest of the
sentences are random sentences. The classifier then has to decide which sentences
are coherent. Since the same encoder is used for all sentences, sentences with
similar words are likely to share the same vector representation. If among multiple
vector representations of sentences, two are similar, the classifier can learn that
these two sentences are the coherent pair.

On the other hand, the vector representation of two coherent sentences does
not necessarily need to be similar. If one sentence’s vector representation’s fea-
tures contain information about the color word red being used in a sentence, and if
another sentence contains the word blue, these two features could be represented
way differently. The classifier then has to learn that these two features are related
while at the same time being different represented differently in the vector repre-
sentation. Thus, when comparing these sentence vectors using a distance function
like cosine, the vectors may be dissimilar. Simultaneously, this is not a problem
for the classifier because it has learned that aspect of the encoder.

The QuickThought architecture requires no recurrent decoding layer as well
as no prediction onto a dictionary. As a result, the number of FLOPs needed for
training is significantly lower compared to the SkipThought approach.

BERT

In the recent past, the BERT model [32] has been shown to be an architecture
that can successfully be transferred onto many different tasks. The architecture
consists of several bidirectional recurrent layers that have been extended with a
self-attention mechanism called transformer [128]. When considering all models
investigated in this thesis, the BERT model needs the highest number of FLOPs
during training due to the relatively high number of layers and the fact that each
layer contains multiple weight matrixes. During training, a sequence of tokens is
given into the model, while the model has to predict the same tokens at its output
layer. The critical constraint is that some of the input tokens are masked. Thus, the
model does not see some of the sequence’s tokens but still has to predict them. This
section investigates why this approach leads to excellent performance on transfer
learning tasks. For all experiments including the BERT model, the framework
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HuggingFace'! [134] is used. Of the different BERT model types that framework
offers, only the BERT model from Google is used.

Siamese architecture

The approach of training a model to create vector representations of sentences is
very close to the previously mentioned QuickThoughts approach. It also contains
an encoder while at the same time having no additional classifier. Instead, the
encoder’s output is used as the input sentence’s vector representation and is given
into a pre-defined distance function to calculate the distance to another given input
sentence. This results in a similar but a little lower number of FLOPs needed
during training compared to the QuickThought approach. As described previously,
the siamese model has to be trained with positive and negative pairs. If the model
would be trained only using positives pairs, meaning all input pairs should receive
a distance of 0, the model could converge to a trivial solution by giving the same
vector representation to each input sentence.

3.3.2 Training parameters

When training a neural network such that it provides embeddings for sentences,
there are several ways to train that model, both regarding architecture and data.
This section looks at different aspects and discusses how they influence a sentence’s
vector representations. The discussion will focus on the siamese training approach,
while each discussed aspect can be applied to some of the other model types.

Sentence pairs

As mentioned in section 2.2.5, the siamese training approach includes the usage
of data pairs. A pair consists of two input samples from the dataset and is either
positive or negative. When training word embeddings, a positive pair consists of
two words from the same context, while the context is defined by a window size.
This means, if the window size is five, all words that appear together with not more
than five words between them are considered a positive pair.

When dealing with sentences, sentences contain sequences of words and carry
more information than a single word. Many options can be considered as a positive
pair or context, respectively. The narrowest definition of a context, which is typi-
cally used, defines two directly coherent sentences as a positive pair. This seems
quite intuitive: A sequence of sentences is typically used to describe a bigger pic-
ture. Thus, two coherent sentences are most likely referring to the same abstract
topic, leading to the two sentences sharing similar words and expressions. If they
are shown to the siamese model with the positive label, the model can learn that
the words or word groups from these two sentences are related, meaning they will
get similar vector representations. On the other hand, since sentences describe a

"https://github.com/huggingface/transformers/
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topic, using a whole document as context can also seem feasible: If there is a news
article about a football match, specific words are reoccurring in the whole article.
On the other hand, if the document is a book, there may be too many topics such
that a model can hardly identify whether a pair is positive or negative.

Negative examples are used to prevent the model from assigning all input sam-
ples the same vector representation. Deciding from which context to take other
sentences significantly impacts the resulting vector representations. The easiest
and typically chosen approach is to use random input samples as negative exam-
ples. Using this approach, a sentence from a news article about football might be
paired with articles about politics. The model can then learn that these used words
or word groups do not belong together and assign different vector representations.
A smaller context could be a sentence pair with several sentences in between. This
may be suited for documents with varying topics. If the corpus only contains doc-
uments dealing with one topic, this context size may not be a good choice since
the negative pairs may always contradict the positive pairs. On the other hand, if,
for example, the beginning of a document is written in a different style compared
to the end of a document, this aspect could be learned when using negative pairs
from the same document.

In any case, given that negative examples are chosen randomly, and their scope
overlaps the scope of positive pairs, it could happen that a positive pair might
also be chosen as a negative pair. This slows down the model’s training, but in
the long run, this is a minor problem: The scope of positive pairs could cover
sentences from the same document, and the scope of negative pairs could cover the
whole corpus. A negative pair might consist of sentences from the same document.
Simultaneously, it is much more likely that the same pair is chosen as a positive
pair, which cancels the previously mentioned negative effect.

Sentence length

When training a neural network, training is done in batches. Each batch contains a
pre-defined number of training samples. When training a model using the siamese
approach, there is a fixed number of sentences used as sentence one and a fixed
number used as sentence two. The network then creates the vector representa-
tions for sentences one and sentence two, calculates the pairwise distance, and
then changes the weights with respect to whether the pair was positive or negative.
The data for each sentence group has to be converted into fixed-length matrixes.
When considering token sequences, the matrixes consist of three dimensions: input
sample, time step, token index. When a group of sentences is converted into one
matrix, the sentences have different lengths, while the matrix’s time step dimen-
sion has a fixed size. This means if there are sentences that are shorter than other
sentences, their reserved space in the input matrix will not be used. The bigger the
length differences of sentences are, the more space will be empty. In the worst case,
one sentence of a batch could be very long with, for example, 50 tokens, while the
rest of the sentences are all very short. In that case, nearly all of the matrix will be
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empty.

To circumvent the problem, there are two approaches that both have their draw-
backs. The first is to make sure when creating an input matrix that all used sen-
tences have a similar length or even the same length. The problem with this solu-
tion is that some sentences may be over-represented: Sentence lengths are not dis-
tributed evenly, but depending on the language and corpus, most sentence lengths
are distributed around an average length. For languages like German or English,
one could think of setting a minimum length of sentences since each sentence
should at least contain one subject and a verb, while one-word sentences mostly
are imperative statements like Stop!/. At the same time, sentences, in theory, could
be infinitely long. Also, the longer a sentence is, the smaller is the number of sen-
tences with precisely the same number of tokens. Thus, when pairing words by
their token length and choosing a sentence with, for example, 75 tokens, there may
be no other sentence with exactly that length. At the same time, memory usage
grows with each additional time step.

The other solution of dealing with different sentence lengths is to use a random
subsequent of a sentence. An exemplary length could be five tokens. This means
for each sentence pair, a random coherent subpart of five tokens is chosen. This
way, it is very likely that no parts of the input matrix are left empty, ensuring faster
training. At the same time, it increases the noise in the training data. For example,
there could be a sentence pair like The sun is shining today and It is a very nice
day. If the first five words are chosen from the second sentence, it is basically not
possible to decide whether these two sentences are coherent. Training sentences in
pairs falls under weak supervision because of their weak labels (see 2.1.6). Using
random subsets of sentences makes the labels even weaker.

Recurrent layers

When dealing with sequential data, using recurrent layers is an obvious choice.
Recurrent layers have two inputs per time-step, which are the input data (or value
from a previous layer) and data from the previous time step. This way, the internal
state of a recurrent node is adjusted at each time step of the sequence, no matter
its length.'> When the model’s task is to create similar vector representations for
similar input sentences, a recurrent layer’s internal state can learn features like what
words or word groups have been seen. The last internal state of the recurrent layer
can then be used as the sentence’s vector representation.

Several recurrent layers, optionally combined with bi-directional layers, in-
crease the level of abstraction of the sentence’s vector representation. At the same,
recurrent layers are resource-heavy, especially when working with long sequences.
A different approach than using multiple recurrent layers is extending the model
by adding one additional layer after the recurrent layer. That layer receives the

12Recurrent layers suffer from the problem of vanishing gradients the longer a sequence is. Com-
plex node structures tackle that problem by using, for example, LSTMs [51], the details of which
shall not be discussed here.
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recurrent layer’s last internal state and maps that state onto a new vector. When
only using one recurrent layer, the problem of using the last internal state of the
recurrent layer is that the last time-step’s input will be passed once through the
network.

Using the last internal state of the recurrent layer forces the recurrent layer to
memorize all of the sentence’s features in its internal state. An alternative approach
to using the last internal state is using the average or sum of the internal state with
regard to all time steps. This way, the sentence’s features have not to be carried over
all time steps. Instead, the recurrent layer can output certain features at specific
time steps, and the need to carry all features over the whole sequence is lowered.
As layer type, LSTMs are more fitted for this approach compared to GRUs [26]:
GRUs are a simpler form of LSTMs, which do not have a dedicated output gate.
Thus they output their internal state at each time step. LSTMs, on the other hand,
have an output gate, which is used to decide which information is presented to other
nodes or layers at which time step. If a layer offers its internal state at each time
step, creating an average value of that internal state may result in many features
being canceled out. When only dedicated values are presented, this effect can be
lowered.

If the use case to which the trained model should be applied contains a fixed
sentence length, an alternative to using recurrent layers are convolutional layers.
Convolutional layers contain so-called kernels that are applied to input data. The
kernels are a weight matrix that covers a size that is typically smaller than the input
data. If an input sample consists of five time-steps and the kernel length covers
three time-steps, the kernel is used three times: For tokens 1 to 3,2 to 4, and 3 to 5.
The result of this one convolutional layer is a new sequence of length three, which
again can be given into a new convolutional layer to shorten the sequence. The fact
that a kernel is used multiple times on the input data with the same weights ensures
fast execution. Also, if a kernel covers a word group, the word group’s position in
the sequence does not affect the kernel.

Model output

The most significant impact of how a sentence is represented by a vector is caused
by deciding how the model should create that single vector. There are two types
of creating that vector representing, of which the simplest is to use static word
embedding. Each token can be transformed into a vector representation, while
all vectors are stored in a two-dimensional matrix with shape sizes consisting of
sequence length and feature size. To transform this matrix into a vector, the matrix
is reduced at the first dimension, typically using the mean or sum function. Some
aspects of a word’s features may be canceled out with other words’ features using
that approach. For example, if one word has the value —0.1 for a feature and
a different word has the value +0.1 for the same feature, these two values get
canceled out, and information gets lost. On the other hand, when several words
have the same value for the same feature, this can significantly impact the resulting
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sentence vector. While being simple, reducing a matrix to a single vector using the
average or sum does not consider the words’ order.

To account for the order of words, using recurrent layers is an obvious choice.
When using these types of layers, there are two possible ways to create a vector
representation of a sentence. One of these two options is to use the last internal
state of the (last) recurrent layer. That state contains information on the whole
sequence since the whole input sequence has been given into the network at that
point in the network. What exact information the network is storing at that state de-
pends on what auxiliary task the network has to solve. The SkipThought approach
trains the network such that the following layer has to create the sequence of the
following sentence from the training corpus. Thus, the previously mentioned last
internal state must contain enough information such that the next layers can create
that succeeding sentence. The QuickThought approach uses the recurrent layer’s
last internal state of multiple input sentences, which are given into a following
layer, which has to classify which input sentences are coherent. Thus, the sen-
tences’ vector representations have to contain information that the following clas-
sifying layer has enough information to decide which sentences belong together.
Given the corpus, very few aspects of an input sentence may be needed to decide
which sentences belong together. If there is a corpus of news articles and only
one article contains words regarding football, it may enough to only watch out for
specific keywords. Thus, these sentences are expected to receive a similar vector
representation even if they consist of different sentence structures. The mentioned
problem also applies to the siamese training approach, which is an improvement of
the QuickThought approach by removing the classifying part and instead directly
using the recurrent layer’s last internal state for calculating vector similarity using
a pre-defined similarity function.

The BERT model uses a different approach regarding the last layer. Here, not
the last state of the last recurrent layer is used. Instead, the model is predicting
a sequence with the same length. Contrary to the SkipThought approach, it is
not using a sequence-to-sequence approach with one layer’s last internal state as
a bottleneck. The model is trained such that it is given tokens from a dictionary
and has to predict the very same tokens. Additionally, some tokens from the input
sequence are replaced by a mask token, but the model has to predict the original
token. If no input tokens would be masked, the model could simply pass the input
information straight to the output without using recurrent weights. With masked
tokens, the model has to learn which exact tokens have been replaced by the mask
token and is forced to use that token’s context. A different advantage of predicting
tokens is that the recurrent layers are not forced to remember the sequence as a
whole in their hidden state. If a token from the beginning of a sentence needs to be
predicted, many surrounding input tokens may hold enough information to make a
good prediction.

Apart from learning to predict masked tokens, the BERT model is also trained
on a second task. A second sentence is given into the model. As is the case with
the QuickThought or siamese approach, that second sentence is either a following
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coherent sentence from the training corpus or a random sentence. A so-called class
token is added at the beginning of the sequence. The last recurrent layer’s output
of both sentences at time-step O is given into an extra layer dedicated to deciding
whether the two shown sentences are a positive or negative training sample.

When predicting a sequence of tokens as the BERT model does, the output can
be transformed into a single vector by, for example, taking each feature’s average
value over the sequence. This approach is the same as when using a simple word
embedding model. However, when using word embeddings without a recurrent
layer, the vectors at each time-step are independent. When using a recurrent layer,
the resulting word embeddings depend on their context. This leads to homonyms
getting different word vectors given their context. It can be derived which of the
several meanings of a homonym is referred to. Alternatively, the last recurrent
layer’s output at time-step 0 can be used as a sentence vector since that vector is
trained similarly to the QuickThought approach.

The token sequence output can be trained in a siamese manner, meaning the
decoder part can be removed. The BERT model uses the last recurrent layer to
predict tokens from a dictionary. Instead of using such an expensive prediction, the
output can be changed such that the last recurrent layer’s output at each time-step is
compared to the vector representation of the target token. This approach is similar
to the siamese word embeddings approach described in section 3.1.2. All vectors
of the last recurrent layer are compared to a static vector representation of the input
sequence as well as with static vector representations of a random sentence. As is
the case with the static siamese word embeddings, the recurrent vectors have to be
similar to the same sentence’s static vectors while being dissimilar to vectors of the
random sentence.

3.3.3 Sentence embedding evaluation

As has been done when evaluating word embeddings (see section 3.1.4), sentence
embeddings shall be evaluated qualitatively and quantitatively. The sentence em-
beddings will be used to find sentences with similar vector representations to see
what training parameters result in what kind of similar sentences. After that, the
sentence embeddings will be used on a set of transfer-learning tasks.

The models for this evaluation are trained on a corpus of news articles from
the year 2016. The dataset has been gathered from the Wortschatz project at
Leipzig University.!3 The dataset contains roughly 56,000 news articles with about
2,630,000 different sentences. To reduce the memory size needed, if a chosen
sentence from the dataset contains more than 15 tokens, a random subpart of 15
coherent tokens will be used.

Word embeddings The models being evaluated are related to the mentioned model types in sec-
tion 3.3.1. The base model for sentence embeddings will be created by using
the average vector representation of a sentence’s words using the siamese

Bhttps://corpora.uni-leipzig.de/, [40]
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model with cosine distance function to make sure all models are trained on
the same dataset. The Sentence2Vec approach will not be considered in eval-
uation since that approach is very close to the usage of average word vectors.

SkipThoughts A model with the SkipThought approach has been trained with coherent sen-
tences from the mentioned news articles dataset as training pairs. Since se-
quence generation requires many resources, a smaller dictionary of the most
frequent 20,000 words has been used.

QuickThoughts A model with the QuickThought approach has been trained with three input
sentences, of which two are coherent sentences from the same news article
and the other one is a random sentence. The three sentences’ vector repre-
sentations had been concatenated to a single vector, which was then given
into a classifier that had to decide whether the second or third shown input
sentence is the random sentence.

BERT The mentioned BERT architecture (see section 2.1.4) is trained to predict
missing tokens from a sequence. At the same time, the model is trained
to predict whether a pair of two sentences is coherent or not. The model’s
output consists of word embeddings for the input sentence’s tokens plus an
additional vector, which is given into the coherence classifier during training.
When using the BERT model, the token embedding sequence will be used
and the additional output.

Siamese The base siamese model has been trained with one recurrent layer with
tanh as recurrent activation function and cosine distance function. The sen-
tence pairs have been chosen the same way as for the QuickThought ap-
proach. Apart from the base model, there have also been other siamese
models trained in order to investigate the effects of the training parameters
mentioned in section 3.3.2.

Similar sentences

In order to get a list of similar sentences, a long list of sentences is chosen. The
Wortschatz project at Leipzig University offers a list of typical sentences, whereby
typical is defined by a sentence having a POS tag structure that is frequently used
[86]. The dataset contains roughly 50,000,000 sentences.

An exemplary list of similar sentences can be found in table 3.30. The used
base sentence is listed with Rank O, while all similar sentences are listed with Rank
1 to 10, while the sentence listed with Rank 1 has the highest similarity score. As
can be seen from this list, most similar sentences are basically the same since they
differ only in a few words. Other experiments with different base sentences or
model types have shown that similar sentences consist of mostly other sentences
with only one or two words changed. When wanting to compare different models,
there is not much to learn from these lists. Thus instead of using all available
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Sentence

But criminal investigations are different.
But friendlies are different.
But ideologues are different.
But refineries are different.
But kokanee are different.
But diaries are different.
But reptiles are different.
But SUVs are different.

But painkillers are different.
But nonprofits are different.
But many taxis are different.
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Table 3.30: Similar sentences for the base sentence But criminal investigations
are different using a model with word embeddings based of 50,000,000 different
sentences.

sentences, 1,000,000 sentences are chosen. The fewer sentences there are, the
more significant the variations of similar sentences are. This gives further insight
into what effects different model types have on sentence similarity.

After transforming all these sentences into their vector representation, one of
these sentences is chosen, and its similarity to all other sentences is calculated.
Since lists of similar sentences need more space than lists of similar words, there
are fewer examples shown compared to section 3.1.4. The shown examples are
chosen such that the most distinguishing features of a model type can be exemplar-
ily presented. The results are shown as tables, whereas the first sentence with rank
0 is the base sentence, and all the other sentences are the sentences that have been
paired with the base sentence. Similarity values are not shown since the actual
value is less important than the order of sentences. Also, different distance func-
tions have different value ranges, so it is hard to compare the absolute similarity
values directly. For example, for a vector pair, to have a similarity value of 0 us-
ing cosine distance, the vectors would need to point in exactly opposite directions,
which is unlikely to happen. On the other hand, when using Jaccard similarity, it is
much more likely that there is a similarity value of O or close to O since this means
that there are hardly any overlapping features.

Word embeddings The first model, which is evaluated, is a model that maps
words onto their vector representation. The model has been trained using the
siamese approach with cosine as distance function. Using cosine has the advantage
that sentences with different lengths can easily be compared. When, for example,
creating the sum of a sequence of word vectors, cosine distance does not consider
the absolute value of the result but only the vector’s direction. Thus, when two
sentences are compared to which one is short and one is long, they are similar if
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Sentence

She took on the new form in her book.

She illustrated her first book in 1990.

She chronicles this movement in her new book.
Viriginia Cymbal enters her name in a drawing.
She maintains a studio in her home.

Gabehart reviews her work in her studio.

She announced her candidacy in a YouTube video.
Her number is in the phone book.

She is working on her first book.

She left notes in the guest book.

She wrote it in the dust on her furniture.
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Table 3.31: Similar sentences for the base sentence She fook on the new form in her
book using a model with word embeddings based on 1,000,000 different sentences.

their vector point in similar directions.

Table 3.31 shows a list of similar sentences for a given base sentence. The base
sentence contains several words or word groups, which can also be found in the
similar sentences. For example, all sentences contain either the word she or her.
Also, all sentences contain in her or something similar like in the as well as the
word book. Since not all sentences contain the word book but all contain either
she or her, this shows that the impact of words from the same word group on the
similarity is bigger compared to the impact of words like took or form, which do
not belong together.

To further prove this point, table 3.32 shows a list of similar sentences for a base
sentence with only high-frequent words with the word expensive as an exception.
The other sentences all contain the word group it’s not or a slight variation, while
no sentence contains the word expensive or even a variation. It shall also be noted
that the sentence vector does not contain information about word order, which
again shows the immense impact of high frequent words or word groups. Table
3.33, on the other hand, contains a base sentence with few high-frequent words but
words representing a specific topic. The other sentences all contain words of the
same topic. The last example further shows the impact when dealing with a sum
of word vectors: The word vectors all point in a specific direction, and when using
the sum of these vectors, some features may be canceled out while shared features
stay.

Table 3.34 contains a list of similar sentences created by a model that has been
trained using euclidian distance. Since this sentence embedding also does not take
word order into account, it is a coincidence that eight out of ten sentences start
with the same word. On the other hand, it shall be noted that the other sentences
all contain the word she, her, and a preposition. At the same time, two sentences
seem to not belong to that list. This phenomenon also occurred in other word lists,
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Sentence

No, it’s not expensive.
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No, it’s not fun.

No, it’s not Bigfoot.

No, it’s not Interlachen.

No, it’s not forever.

Obviously, it’s not appropriate.
So, no, it’s not clear.

No, it’s factual.

No, there’s not enough.

It’s not really there either.

It’s not arbitrary, either.
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Table 3.32: Similar sentences for the base sentence No, it’s not expensive using a
model with word embeddings.
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Sentence

But criminal investigations are different.
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These are serious charges.

Defendants are no different.

These claims are serious.

These criminal charges are pending.

They are strictly minor criticisms.

These discrimination charges are false.

But the situations are completely unrelated.
These are not isolated incidents.

These charges are merely accusations.

The charges are serious.

Table 3.33: Similar sentences for the base sentence But criminal investigations are
differente using a model with word embeddings.
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Sentence

She took on the new form in her book.

She pivoted her head and took in the clientele.
She chronicles this movement in her new book.
Turpel-Lafond took the new position in 2006.
The wedding took place on Blennerhassett Island in Parkersburg.
She spent her childhood on the Front Range.
She wrote it in the dust on her furniture.

She spent her childhood in the Glentana area.
She spent her days on the couch.

She did her thesis on the growth of trout.

She still keeps the funeral program in her wallet.
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Table 3.34: Similar sentences for the base sentence She rook on the new form in her
book. using a model with word embeddings which has been trained using euclidian
distance

which are not shown here. A reason for this may be that it is easier to train a model
using cosine distance than euclidian distance, as mentioned in section 3.1.4. Also,
when using euclidian distance, it is crucial to use the average of word vectors and
not the sum. If the sum is used, the sentence vector of a long sentence can have
very big values compared to the vector of a short sentence. On the one hand, it is
difficult to compare sentences with different lengths. On the other hand, the value
range of sentence vectors is not limited to a fixed range.

SkipThoughts Table 3.35 shows a list of similar sentences for the SkipThought
approach. The list consists of sentences containing parts of the base sentence,
although the variation of these sentences seems bigger than the sentences in ta-
ble 3.31. Training a model using the SkipThought approach is more difficult than
using the siamese approach since generating sequences is always computationally
expensive. When giving a sequence of tokens into a model, this step is rather cheap
since, from the input matrix, which maps from a dictionary to a vector represen-
tation, only one row representing one token has to be taken. When generating a
sequence of tokens, as is the case with the SkipThought approach, each dictionary
entry receives a probability of being the token at the current position. The bigger a
dictionary is, the more expensive that last step is.

In the original article [59], the authors mention having tackled this problem by
training the model using a dictionary containing 20,000 entries. Out-of-vocabulary
(OOV) words have to be replaced by a single token. The downside now is that
critical distinguishing words are now merged into one word: A sentence like The
OOV is very nice. can have many possible preceding sentences. These sentences
from different contexts will get the same vector representation since they have the
same succeeding sentence. After training the model with a reduced dictionary, the
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Sentence

She took on the new form in her book.

Serenity Homecare is a new business in the ArkLaMiss.
She set her purse on the kitchen counter.

“She lost her pulse in the helicopter,” Mehta said.
Needleman probes in the book.

Tess Baldonado took the loss in the circle for Holbrook.
She found her son in the street after the gunfight.

She was last seen in Seine Bight on Sunday.

She nodded her head in the affirmative.

She could not show her face in the seventh grade.
Amanda Kasbohm earned the win in the cage on Saturday.
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Table 3.35: Similar sentences for the base sentence She took on the new form in
her book using a model trained with the SkipThought approach.

authors have used a larger pretrained word embedding matrix to use with the model.
Thus, when creating sentence vectors after training, the model did not suffer from
the OOV problem.

It can be assumed that the model’s performance gets better the larger the used
dictionary during training is. The basic approach is similar to the Word2Vec ap-
proach, which also had an encoder-decoder architecture and predicted entities that
appeared in the same context. Also, the sentence vectors have not been trained for
being used with an explicit distance function. It can be assumed that lists of similar
sentences would be better if that would have been the case.

QuickThoughts Tables 3.36 and 3.37 show lists of similar sentences based a
model trained with the QuickThought approach. The similar sentences all start with
the same word as the two base sentences. Of the first list, eight of ten sentences
have a verb in past tense as the second word, and the two other sentences have a
verb in past tense in the second position. The most similar sentence for both lists
even has the same word as the last word. When comparing these two lists with the
lists from the SkipThough approach, the lists seem a little better since more aspects
of the two base sentences can found in the similar sentences.

This may have to do with the fact that training a model using the QuickThought
is relatively easy. The same encoder part is reused several times, and there is no
decoder. These two things result in guick training. A downside of this approach
is that the last step of the architecture contains a classifier, which receives several
vector representations and has to find the coherent sentence pair. The problem is
that the sentence representation is not explicitly trained for being used as a sim-
ilarity measure. For example, when a sentence vector contains 512 features, one
feature could be that a color word has been mentioned. At the same time, a differ-
ent feature could represent the very same thing. The classifier can now learn that
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Sentence

She took on the new form in her book.
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She created 12 pieces for the book.

She married Joseph E. Buchner on July 14, 1951 in Ely.
She was born Feb. 21, 1951, in New Brockton.

She also used to teach the hawaiian hula.

She married Kenneth Inman on Nov. 18, 1967 in Durant.
She asks no money for her efforts.

She was born August 6, 1962 in New Albany.

She married John Shearer in 1953 in Pampa.

She also offers a new fashion jewelry line.

She was born in New Mexico.

Table 3.36: Similar sentences for the base sentence She took on the new form in
her book using a model trained with the QuickThought approach.

Rank | Sentence

0 But criminal investigations are different.

1 But Thursday’s scenario was different.

2 But this product is different.

3 But factoids are not facts.

4 But the counties are already appealing.

5 But the prosecutor wants more.

6 But the involvement of faculty is essential.
7 But Marcotullio is no spring chicken.

8 But Pat Skala was completely flabbergasted.
9 But Moravia can’t run.

10 But Japan immediately struck back.

Table 3.37: Similar sentences for the base sentence But criminal investigations are

different using a

model trained with the QuickThought approach.
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Sentence

She took on the new form in her book.

She chronicles this movement in her new book.
Forcum explained the method to his work.

We used in her first book.

Saru Jayaraman has used this model in her work.
He wrote much of the book in Capanna.

That resonant depth is missing from the new book.
She was delicate with the form of her music.

This attitude is captured throughout her new book.
I addressed it as a form of writing.

Savarkar composed his book on Hindutva in 1924,
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Table 3.38: Similar sentences for the base sentence She took on the new form in
her book using a pretrained BERT model.

these two features represent the same thing and can classify these two sentences as
coherent. However when comparing these two sentences’ vector representations,
they may differ since the used features two represent color words being used are
not the same. When using such a vector for transfer learning, this problem can be
neglected since a succeeding layer can learn that these two features represent the
same thing.

BERT Tables 3.38 and 3.39 show lists of similar sentences having used a BERT
model. The BERT model offers two outputs. One is a sequence of token vectors
and is a class vector. In this case, the sequence of token vectors has been averaged.
The sentence vectors have been compared using cosine distance, as has been done
with the last three model types. What is different from the previous models is that
these similar sentences contain not only the same words from the base sentences
but also whole word groups. The first sentence contains the word group in her
book, while the other sentences contain word groups like in her new book, from the
new book and her new book. For the second list, the base sentence and all similar
sentences end with are different.

BERT offers an innovative tokenizer. Instead of working with full words, the
BERT tokenizer splits words into single parts. A German word like hunde does
not exist in the BERT dictionary. Instead, the word is split into hund and ##e. This
means that the base form is used together with a suffix. This enables the model to
not learn about specific words but also learn about relations between words: When
the word hunde is trained, the word hund is trained as well.

The BERT model uses several bidirectional recurrent layers and returns one
vector representation for each token. Contrary to a sequence of word vectors cre-
ated by the Word2Vec model, the token vectors are dependent on the other tokens.
Thus, the token mean has a different token vector depending on its context, mean-
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But criminal investigations are different.
The situations are different.

Our policies are different.

Our experiences are different.
The facts are different.

Other areas are different.
Demands on schools are different.
All their stories are different.
Your approaches are different.
Our beliefs are different.

All families are different.
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Table 3.39: Similar sentences for the base sentence But criminal investigations are
different using a pretrained BERT model.

ing the model accounts for homonyms.

Siamese models Tables 3.40 and 3.41 show lists of similar sentences by a model
having been trained using the siamese approach and cosine as distance function.
The model was trained on random subparts of sentences ranging from token length
5to 15. Also, the sentences were given into the model after reversing them. This
leads to information coming from the first tokens of a sentence being weighted
higher than information from the end of a sentence. This effect can be seen in the
two lists of similar sentences: All similar sentences begin with the same word as
the base sentence. Nine of ten sentences from the first list even share the first two
words with the base sentence, while the only exceptional sentence has that word in
the third position.

The fact that similar sentences are most similar with the beginning of a base
sentence or the end if not used in reverse shows that using a recurrent layer can
be a limiting factor. At each time step, a recurrent layer receives information from
the previous time step as well as the previous layer. The longer a sequence is, the
likelier it is that information from earlier time steps diminishes. Using advanced
recurrent layers like GRUs [26] or LSTMs [51] partially solve this problem, mean-
ing using a plain recurrent layer would probably lead to much worse results. Table
3.42 contains a list of similar sentences based on a model that returns a matrix of
token vectors, which is then reduced using the maximum function. Contrary to the
previous model type, the similar sentences do not all begin with the same word.
Instead, the similar aspects are more broad, meaning all sentences start with the
word she, followed by a word in past tense, and the possessive pronoun /er.
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Sentence

She took on the new form in her book.

She took no prisoners in those interviews.
She took on the challenge.

She took herself off medication.

She took fourth in the discus.

She took down 5.9 rebounds per outing.
She took on the role of head chef.

She first took on the responsibility in 2002.
She took on the role of CEO in 2006.

She took it the wrong way.

0 She took on a new challenge at a difficult time.
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Table 3.40: Similar sentences for the base sentence She took on the new form in
her book using a model trained with the siamese approach and cosine as distance
function.
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Sentence

But criminal investigations are different.
But board members are human.

But his views are shifting.

But her motivations are also altruistic.
But daily users are different.

But healthy choices are available.

But his ideas are big.

But critics say that wasn’t enough.

But his credentials are dubious.

But drones are no joke.

0 But its causes are not necessarily different.
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Table 3.41: Similar sentences for the base sentence But criminal investigations are
different using a model trained with the siamese approach and cosine as distance
function.
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Sentence

She took on the new form in her book.

She raced her close finish with first place.

She was satisfied with her early-season times.
She’s elegant in her slight frame.

She had this quiet strength about her.

She then developed lymphoedema in her legs.
She bemoaned the ongoing passing of her profession.
She lives in Denver with her husband and son.
She’s won several awards for her public service.
She lost her stamina and her hair.

0 She served her country in Kuwait.
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Table 3.42: Similar sentences for the base sentence She took on the new form in
her book using a model trained with the siamese approach and cosine as distance
function.

Transfer learning

As was mentioned in section 2.1.2, models trained in an unsupervised manner can
be used on different tasks after havin been trained initially. The word embedding
models introduced in section 3.1.2 have been transfered onto different tasks. The
tasks are provided by the SentEval'* framework and are described in section 3.1.4.
The sentence embedding models introduced in section 3.3.1 are now also used

Table 3.43 shows the test accuracy on the Senteval tasks for the models trained
with the siamese approach using the last recurrent layer’s last internal state. Table
3.44 shows the test accuracy for the same tasks, but the models trained with the
QuickThought and SkipThought approach and a pretrained BERT model. When
looking at the results, it becomes evident that there are significant differences be-
tween the BERT model and the other models. The BERT model’s performance, on
average, is a little better than the performance of the siamese word embeddings (see
table 3.24). The models from section 3.1.4 create a sequence of word embeddings
while not accounting for context and order of words. On the other hand, the BERT
model creates a sequence of word embeddings that are context-aware. Thus it is to
be expected that the BERT model performs better than the models with static word
embeddings.

The other models perform worse than the BERT models, although they are
explicitly trained to create sentence embeddings. The average test accuracy of the
siamese models (table 3.43) and the QuickThought model are very similar.

“https://github.com/facebookresearch/SentEval, [29]
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Siamese

cosine euclidian Jaccard weighted Jaccard
MR 57.02 56.68 57.02 55.99
CR 65.46  63.15 65.46 64.29
SUBJ | 78.04 77.37 78.04 76.55
MPQA | 75.6 74.45 75.6 75.5
SST2 57.17  59.58 57.17 57.83
SST5 28.14  26.88 28.14 25.48
TREC | 66.0 73.2 73.4 79.4
MRPC | 65.91 66.32 66.0 63.2
SICKE | 66.67 67.55 66.67 64.79

Table 3.43: Test accuracy on the senteval tasks for the models trained with the
siamese aproach, using the last recurrent layer’s last internal state.

QuickThought SkipThought BERT (average) BERT (class)

MR 58.59 61.68 69.81 67.79
CR 65.54 69.62 77.62 75.92
SUBJ 73.46 70.86 93.26 92.39
MPQA | 75.5 76.02 80.59 79.31
SST2 61.29 61.94 74.03 70.68
SSTS 28.6 35.84 36.06 35.25
TREC | 70.8 67.4 83.8 67.0

MRPC | 66.32 67.3 71.71 69.39
SICKE | 70.49 71.06 76.76 65.31

Table 3.44: Test accuracy on the senteval tasks for the models trained with the
QuickThought and SkipThought aproach as well as a BERT model.
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3.3.4 Siamese extension

The BERT model performs significantly better on all transfer learning tasks than
the other models. This subsection is presenting results of different extensions of
the previously used siamese architecture in order to show what architectural aspects
lead to the BERT model’s better results. Apart from being trained for a longer pe-
riod of time as well as with more diverse data, the central hypothesis to prove is that
the BERT model’s output contains richer features than the vector representations
of the siamese models.

Sequence generation

As described in section 3.3.2, the siamese and the QuickThought approach have in
common that the created sentence vectors are used to predict whether a sentence
pair is a positive or negative pair. For some training pairs, it may be enough for the
model to look out for specific keywords to know whether it is a possible positive
pair for an unknown other sentence. Thus, those sentences have a vector represen-
tation with very little information. When dealing with visual data, the same effect
was shown in section 3.2.2: Here, a siamese model was trained to create a vector
representation for images. The images were paired by their class representation,
making it possible for the model to ignore visual features that did not correlate
with the class information. For sentences, to prove that looking out for specific
keywords is a relatively easy task, a siamese model was trained with a different
sampling of negative examples: Instead of choosing any random sentence from the
whole corpus, negative pairs were always from the same document. Positive pairs
were directly coherent sentences.

In order to prove that sentence vectors from the SkipThought approach do con-
tain more information compared to models from the siamese and QuickThought
approach, the basic siamese approach was extended. The base model uses the last
recurrent layer’s last internal state with a sigmoid activation function. That output
is used to compare the positive and negative pairs using weighted Jaccard index.
That specific combination of activation and similarity function is used because a
high value of a feature means that that feature is present: When comparing two vec-
tors, they are multiplied. The higher the sum of the product, the more similar these
two vectors are. When dealing with the SkipThought model, the model’s vector
representations cannot be analyzed the same way since they have not been trained
with the same constraint. To make the vector representations of the basic siamese
model and the SkipThought model comparable, a hybrid model has been trained.
That hybrid model consists of an encoding part like the siamese model, but at the
same time, the sentence’s vector representation is used to recreate the following
sentence in a decoder part, as is the case with the SkipThought approach.

The two models are used to create vector representations of the example sen-
tences, which already have been used in section 3.3.3. For all sentences’ vectors,
the average value of all features is shown in figure 3.13. The values are sorted from
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Figure 3.13: Average features activation for a sentence vectors for a basic siamese
model, a basic siamese model with negative samples only from the same document
(NSD) and a hybrid model of the siamese models and the SkipThought approach.

Base NSD  Hybrid
MR 55.99 56.95 60.34
CR 64.29 65.67 69.12
SUBJ | 76.55 77.46 75.15
MPQA | 75.5  76.17 76.02
SST2 57.83 59.86 62.08
SSTS 25.48 30.14 35.21
TREC | 794 782 67.1
MRPC | 63.2 68.7 66.9
SICKE | 64.79 69.68 70.51

Table 3.45: Test accuracy on the senteval tasks for the basic siamese model, the
same model only being trained with negaties pairs from the same document (NSD)
as well as the hybrid model of the siamese approach and the SkipThought approach.
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highest average to lowest average, meaning that some features have a high value
for nearly all sentences while other features are always zero. The image shows
that a lot of the available features are never used. It also shows that when using
sentences from the same document as negative pairs leads to a few more features
being used compared to using random sentences from the whole corpus as nega-
tive pairs. This shows that the auxiliary task of distinguishing positive and negative
pairs is harder when the negative pairs are taken from the same document. That
same model also performs better on nearly all of the SentEval tasks. If that archi-
tecture is extended such that the sentences’ vector representation has to be used
for a second task, recreating another sentence like with the SkipThought approach,
the average feature activation is higher, and there are fewer features that are never
used. Table 3.45 shows the average test accuracy for the different SentEval tasks.
The performance of the extended siamese model is better than the basic model, and
the performance is similar to the SkipThought model’s performance.

The extension of the basic siamese model and the increased performance leads
to two conclusions: First, learning whether two sentences are a positive pair works.
When creating list of similar sentences, the lists seem plausible (see section 3.3.3).
On the other hand, the created features from a given sentence are less rich than
other training approaches. This shows that the auxiliary task is too simple since
only a few features are needed. Second, the richness of features in a sentence’s
vector representation impacts the model’s performance on a transfer learning task.
If the vector representation only contains features representing that a specific key-
word has been found, that vector representation does not contain enough informa-
tion for a task like getting sentiment information from that same sentence.

Additional training tasks

This extension of the siamese architecture has improved the results on the transfer
learning tasks, but on the one hand, the extension has added an expensive decoder
part while, on the other hand, still performing worse than the BERT model. When
creating a sentence vector representation using the siamese or QuickThought ap-
proach, the sentence’s vector is used to be compared with another sentence’s vector.
Here, all words used in a sentence may not be as important as simple keywords.
Thus, if a sentence contains a word group that has not been used in training to
distinguish positive and negative sentence pairs, that word group is not represented
in that sentence’s vector representation. On the other hand, the BERT architecture
prevents the model from discarding information gained from input tokens since the
information of every token is needed in the output layer.

In order to show that this architecture causes richer vector representations,
the basic siamese architecture was extended such that another training target was
added: Instead of only using the last recurrent layer’s last internal state, the model
had to create a sequence of vector representations. As is the case with the BERT
model, the output sequence’s length is the same as the input sequence. Contrary to
predicting the input tokens from a dictionary, the output was trained with positive
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Figure 3.14: Average features activation for a sentence vectors for a basic siamese
model and a siamese model trained with the BERT approach.

and negative pairs. That approach is similar to training static word embeddings,
as seen in section 3.1.2. Simultaneously, the sequence of output vectors was re-
duced to a single vector representation, which was used as the sentence’s vector
representation. As similarity function for the token vectors and the sentence vec-
tor, weighted Jaccard index was used. The matrix of token vectors was reduced
to a single vector by using each feature’s maximum value at each time-step. The
positive examples of the token vectors were the same tokens as the input tokens at
the same time-step. The negative examples were random tokens from the corpus.
The positive example of the sentence vector was the sentence vector of the follow-
ing sentence in the corpus. The negative example was the sentence vector from a
random sentence in the corpus.

Figure 3.14 shows the average feature activation of sentence vectors created by
a basic siamese model with the recurrent layer’s last internal state used as sentence
vector as well as the siamese model with also had to create vector representations
for tokens at each time-step. The figure shows that the model trained with an addi-
tional training target creates sentence vector representations that contain richer fea-
tures compared to the model trained on only one task. The original BERT model’s
feature activation cannot be shown as a comparison because that model’s output
was not trained to be O if a feature is not present and having a value larger than O if
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S S+T  S+T+M S+T+M+PT BERT
MR 57.2  63.49 70.9 69.73 69.81
CR 62.94 64.29 75.13 74.44 77.62
SUBJ | 72.31 84.38 83.16 87.16 93.26
MPQA | 74.9 76.16 77.41 76.25 80.59
SST2 58.87 65.4  64.52 65.86 74.03
SST5 26.56 32.99 33.48 34.38 36.06
TREC | 72.8 788 774 77.1 83.8
MRPC | 63.19 66.04 69.26 67.94 71.71
SICKE | 67.04 77.37 77.05 75.25 76.76

Table 3.46: Test accuracy on the senteval tasks with models trained with Sentence
pairing, Token pairing, Masked input as well as the performance of the original
BERT model.

that feature is present. The extended siamese architecture, as well as the BERT ar-
chitecture, can be compared to a denoising autoencoder (see section 2.2.2, [129]):
Here, a model is given input data to which noise has been added. The model has to
recreate the original input data and therefore has to learn which input features are
correlated and which ones are noise. The positive effect of this has been proven in
section 3.2.2: An autoencoder was pre-trained on visual data before using that pre-
trained weights for initializing a classifier on different data. The autoencoder was
performing significantly better than the other pretrained models. Having to recre-
ate the whole input data means that more features have to be learned compared to
the use case where a model has to classify input data: Here, it is possible to ignore
features that do not correlate with the classification target.

Table 3.46 shows the results of the same model with various additional training
tasks. The models have been trained using cosine distance since it was shown that
this distance function could cope best with additional training tasks (see section
3.1.4).

S The first model is the basic model that only had to create a sentence vector

T The second model was trained with the additional tasks of creating token
embeddings for each time-step. The sequence of token embeddings was
summed and used as sentence embedding.

M The third model was trained as the second model but with randomly masked
input tokens.

The results show that the more training tasks are used, the better the model’s
performance is on transfer tasks. This again shows that using more training targets
results in a richer vector representation of a sentence. The model trained with three
training targets and input masking is even performing only slightly worse than the
original BERT model. As an additional training target, another model type was
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S+T+M  S+T+M+PT (cl) S+T+M+PT (df) BERT
MR 70.9 69.73 71.45 69.81
CR 75.13 74.44 75.13 77.62
SUBJ | 83.16 87.16 88.1 93.26
MPQA | 77.41 76.25 78.15 80.59
SST2 64.52 65.86 69.82 74.03
SST5 33.48 34.38 35.93 36.06
TREC | 77.4 77.1 79.4 83.8
MRPC | 69.26 67.94 69.05 71.71
SICKE | 77.05 75.25 76.85 76.76

Table 3.47: Test accuracy on the senteval tasks with models trained with Sentence
pairing, Token pairing, Masked input as well as POS-Tag prediction. When having
to predict a token’s POS tag, the vector similarity will either be calculated using a
distance function or a classifier. When using a classifier, the vector representations
of the tokens have been merge using either the average or minimum/maximum.

trained. That model had to predict a token’s POS tag from its vector representa-
tion. This, however, creates a new problem: The model’s loss function consists
partially of the vector similarity of positive and negative pairs and the correct POS
tag prediction. The models are trained with a specific distance function to create
similar or dissimilar vector representations for positive or negative pairs. Thus, the
vectors need to have specific properties to ensure correct similarities. For example,
in the case of Jaccard index, a big value represents a feature being present. The loss
coming from the prediction of a token’s POS tag will also influence a token’s vec-
tor representation. That additional influence may break the desired property for the
chosen vector distance function. To investigate that effect, two model types have
been trained: The first one is the model with one bidirectional recurrent layer, the
output of which is used as a vector representation. That same vector representation
will be given into a classifier to predict the token’s POS tag. The second model
type is similar to the QuickThought approach: The vector similarities will not be
calculated using a pre-defined distance function. Instead, two vectors are given
into a classifier that has to classify whether the shown vector pair is a positive or
negative pair. The same vector representation is also given into another classifier
for the POS tag prediction. When creating the vector representation for the whole
sentence, the average vector representation from all the sequence’s tokens is used.
If a recurrent layer was to be used, the same problem presented in sections 3.2
and 3.3.3 would occur: The recurrent layer’s last internal state would only contain
features needed for calculating the sentence similarity while all other features, for
example, features that represent a token’s POS tag, would be lost.

The results in table 3.47 show the performance of the models that have been
trained with the additional training task of predicting each token’s POS tag. The
two new models perform slightly better than the model that was not trained with



3.3. SENTENCE EMBEDDINGS 103

POS tag prediction for each token. Of the two new models, the one where the vec-
tor similarity had been calculated using a dedicated classifier performed on average
worse compared to the model, which directly used the token’s vector representa-
tion. When being trained to create a vector representation that is to be used with
a specific distance function, the created vectors need to have specific properties.
For example, when using euclidian distance, negative pairs must have maximum
values for all features, while vectors being compared with cosine distance can have
values close to zero, as long as the vectors point in different directions. When the
model is trained with an additional target like predicting a token’s POS tag us-
ing the token’s vector representation, the additional loss may harm the properties
needed for the distance function. For example, when using cosine distance, small
value changes to predict better the POS tag may significantly impact the similarity
of two vectors since small changes in the values can lead to significant changes to
the direction the vector points at. To solve this problem, it was argued that giving
the vector representations into a classifier may solve that problem because then the
vector representation does not have specific properties.

However, the results of table 3.47 show that using additional classifiers does
not lead to better results. There are several explanations for this:

e Using one or more additional classifier models slows the learning process
since adding more layers to the model lowers the gradients.

e Having a model learn whether two vectors are similar or not is not trivial.
If the two vectors to classify are identical, this could be easily solved by
calculating the distance between the two. However, a neural network cannot
explicitly subtract values and calculate a distance. It has to find patterns in
the data. For the executed experiments, the two vectors have been given into
the classifier in one case. In another experiment, the euclidian distance of the
two vectors was given as additional input. The performance of both variants
was the same.

e The classifier has to learn the same information twice. If the vector repre-
sentation of sentences A and B are given into the classifier, the classifier still
has to learn about the pair B A.

e Creating a vector representation that is used for being compared with a spe-
cific distance function is an auxiliary task during training. Adding another
task during training may break needed properties for the chosen distance
function, but this does not harm the performance on transfer learning tasks.
However, the performance is harmed when using the vectors for finding sim-
ilar vectors (see section 4.3).

Conclusion

The presented training extension in the previous section 3.3.4 has shown that a
model’s performance on the transfer learning task is better the more different aux-
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iliary tasks have been used during pre-training. In the end, the model’s performance
on the SentEval tasks was comparably well compared to the BERT model. How-
ever, on more complex tasks, it can be assumed that the BERT model will perform
better due to the remaining differences: The BERT model consists of 12 layers of
layers, while the presented models only contain one layer. It is also mentioned that
it was trained on a corpus of books and Wikipedia data, while the presented models
were trained on a set of news articles. Additionally, the BERT model’s recurrent
layers are extended with a self-attention mechanism [128] instead of using plain
bidirectional recurrent layers. The existing siamese architecture has been extended
by using more layers and self-attention layers. The self-attention layer usage has
given a small performance boost, whereas using more layers has not improved re-
sults. Since using more layers results in slower training, it can be assumed that the
models have to be trained for a significantly longer period of time to achieve better
results: The authors of the BERT model note that their model has been trained for
four days and a batch size of 256. The presented multi-target siamese models have
been trained for 12 hours using a batch size of 16. Other authors have changed
how the BERT model is trained and found that longer training time, longer se-
quences, and larger batches have improved the model’s performance [70]. Thus,
it can be assumed that the here presented models also gain from an expansion of
hardware resources. However, this section’s experiments aimed to show that the
auxiliary tasks with which a model is trained, significantly impact that model’s
output. Also, increased richness in a model’s output positively impacts its perfor-
mance on a transfer learning task.

Given the different experiments executed in this section, several conclusions
can be drawn:

e As is the case with images and word embeddings, autoencoders are expen-
sive. When used with sentences, i.e., a sequence of words, they are even
more expensive since the processing step onto a vector of the dictionary has
to be done several times. The siamese architecture helps to circumvent this
expensive step and therefore reduces the training time. However, as was the
case with feature-rich images, some patterns of the input data may not be
represented in a sequence’s feature representation since that feature was not
needed for the task of pairing positive and negative pairs.

e To get richer vector representations, the training task can be enhanced by not
only pairing sentences but also forcing the model to predict missing tokens
from an input sequence: By randomly masking input tokens, the model has
to create a rich vector representation for each step of the sequence. Having
the model also predict the POS tag for each token of the input sequence
further improves transfer learning tasks’ performance.

e The previous two points answer research question 1 from section 1.2: The
chosen method, how to create positive and negative input pairs, affects the
learned features (see also section ??), which is a hyper-parameter decision.
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o If the model’s output is to be used directly for calculating vector similarity,
the model should be explicitly trained for that task. Using the vector repre-
sentations for an additional task will harm the task of calculating similarity
(see research question 2 from section 1.2).

e One of the experiments in section 3.2 has shown that an input sample’s vec-
tor representation only contains information that is needed for successfully
discriminating positive and negative pairs. In order to enrich that vector rep-
resentation for word embeddings, a model has been trained that had to pre-
dict a token’s POS tag given that token’s vector representation. The results
in table 3.28 show that these additional training tasks improve the model’s
performance on transfer tasks.
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Chapter 4

Case studies

The previous chapters have discussed the concept of pre-training neural networks
(see section 2) and presented challenges of pre-training neural networks using the
siamese training approach (see section 3). The impacts of different selection of
training data or distance functions were shown along with the effect of different
training targets. The following chapter describes several case studies in which neu-
ral networks are used which have been pre-trained using the learned lessons. The
case studies contain visual and textual data. This shows that the concept of siamese
pre-training of neural networks using weak labels can be done on several types of
data. The trained models’ performances will be evaluated by comparing them with
commonly available models like BERT for textual data and ResNet for visual data.
It will be shown that the custom pre-trained models perform comparably well as
the externally pre-trained models, which have pre-trained using significantly more
resources. This again will show that using a well-thought pre-training approach is
as valuable as using a large amount of resources.

107
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4.1 Text classification using transfer learning

In the previous sections 3.1.4 and 3.3.3, models have been pre-trained on textual
data before then being applied onto different tasks. That approach is called transfer
learning (see section 2.1.2). Additionally, it was shown that the models trained on
large data were, on average, performing roughly the same as the models trained
only on the data on which they were evaluated. The only difference lies in the
task’s complexity: The more complex a task is, the better the model trained on large
data is (see section 3.1.4). In section 3.3.4 it was shown that pre-training a model
with multiple training targets results in richer vector representations of the input
data: When dealing with sentences, instead of only pairing two sentences’ vector
representations, a model can also be trained to create rich vector representations
for each token of a sentence, before then merging those token representations to a
single vector representation.

This section makes use of the drawn conclusions from previous experiments.
At the same time, it is studied how the merging of multiple sentence representations
affects a classification task. The context in which this study was executed is the
bots and gender profiling task of PAN 2019 [30, 99, 100, 93]. The rather small
dataset provided by PAN @ CLEF 2019 [30] consists of tweets of different authors
[100]. The challenge’s task is to categorize authors by whether they are a bot or a
human being, and if the latter, whether the author is male or female.!

4.1.1 Related Work

Transfer learning [89] is commonly used in the field of computer vision by using
the pretrained ImageNet [46], which is trained on 1.2 million images, on tasks like
image classification [34], object detection [39], image segmentation [31] or others.
In the context of textual data, first the decision has to be made whether treating
the data as static or sequential. In the first case, existing word vector models like
Word2Vec [78], GloVe [91] or context2vec [77] can be used to create a vector rep-
resentation of a sentence, tweet or document. Typically, this is done by calculating
the average of all tokens’ vector representations. For example, [69] have created
an architecture for question answering using pretrained word vectors using Glove,
[25] created a neural network for natural language inference, in which they used
pre-trained word vectors, [127] used a pre-trained embedding for creating a neural
network to do semantic role labeling. When treating textual data sequentially, the
already architecture types like SkipThougths [59], QuickThoughts [71] or variations
of the architecture based on BERT [32, 94].

Approaches for author classification not using neural networks include the ap-
proach presented by [7]. Here, the authors extracted features from tweets like the
average number of emojis, hashtags or semicolons used or the number of links
posted. These features were given into an SVM classifier. [S5] created a dictionary
with words used only by each of the possible classes of authors. For an unknown

"The results from this section have been presented at CLEF 2019 [18].
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tweet, the likelihood of belonging to one class can then be calculated based on the
words used in that tweet. [95] created a similar approach by normalizing all tweets,
e.g., replacing URLs with an URL token. N-grams of lengths 3-5 were created, and
the ones with the highest tf-idf scores were kept. Tweets were then represented by
the n-gram used in them and were classified using an SVM.

4.1.2 Data

For the presented task, tweets of 2880 authors are given as training data. When
comparing that amount of authors with the number of users a service like Twitter
sees daily, it is incredibly small. With that small amount of data, the problem is
that typical tweet patterns or even linguistic patterns may not be presented often
enough in the training data that the network can robustly learn to recognize these
patterns. Also, some patterns can occur above-average in the training data so that
the network could overfit to the training data, which then is disadvantageously
when using it on data unseen during the test phase.

Table 4.1 shows a subset of tweets of three different users. The data is very
diverse: Some tweets contain short or long sentences; some contain a sentence and
a link; others contain direct messages to other users. For every author, there are
100 different tweets. There are 4120 different authors of which 2060 are bots, 1030
are male, and 1030 are female.

4.1.3 Author embeddings

In the previous sections, experiments were executed, creating word- or sentence-
embeddings. For the presented task in this section, however, an author embed-
ding has to be created. Previously, words have been described as 1-dimensional
data, while text was described as 2-dimension data since text contains sequences
of words. When continuing that thought, author embeddings are created from
3-dimensional data since authors’ tweets are sets of text. Since the tweets all
have a fixed maximum length and the number of tweets is the same for all au-
thors, the tweets could be represented by a three-dimensional variable with shape
(num_tweets x mazximum_length x num.haracters).

Visual data was introduced as 3-dimensional data, which was processed using
convolutional layers. However, convolutional layers cannot be used when dealing
with tweets: Convolutional layers’ kernels are assuming that neighboring data is
related. For example, in an image, neighboring pixels form visual objects. How-
ever, when considering a set of tweets, there is no neighboring relation in two
different dimensions: The given tweets in the given tasks contain no timestamp.
Thus, it is not known in which time-relation the tweets stand. Also, if one was to
assume that the given order is related to them being sorted by time, it is unknown
whether the tweets are sorted ascending or descending, nor is it known how much
time lies between the tweets. The second non-related dimension is the word rela-
tion: When using a two-dimensional convolutional layer as with image data, not
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Author Label Tweet

#1 Bot I accidentally forgot to graduate from college. - Anne Lam-
ott

#1 Bot Gluten Free Recipes - Making a Gluten-Free Gravy
http://t.co/aEbpDqvyHu

#1 Bot Read the History of Foreigner http://t.co/Ujp7fjp8vr

#1 Bot Read How to Use LinkedIn for Your Company
http://t.co/OXuGp0OOnHS

#1 Bot I love science fiction. - Pam Grier

#2 Female @hotelsdotcom Depending what province it has a name. In
Ontario it’s Simcoe Day, in Manitoba it’s Terry Fox Day.
It’s also not a holiday in all provinces so a different name
in each province is kind of cool based on the history of the
region!

#2 Female RT @TheMarilynShow: #ICYMI: But on the bright side,
they were definitely well fed!

#2 Female RT @F55F: Not sure how much to give as a wedding gift
this wedding season? @TorontoStar has some guidelines to
help you get through: https:...

#2 Female @jamama_man That was intense!

#2 Female Goal!!!!!!!!!! #EnglandvsSweden

#3 Male @ashleeyywatt123 that’s actually legit

#3 Male @vmorra wasssssup? :D

#3 Male Who’s reaching wasaga this weekend?

#3 Male @ashleeyywatt123 what a random tweet

#3 Male Ok so change of plans since we did Miami last year we are

going to Los Angeles in October instead. Cali here I come!

Table 4.1: Examplary tweets from three different users of the bots and gender
profiling task of PAN 2019.
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only the neighboring words in a tweet are considered, but also words cross tweets.
For example, the first words of tweets would be treated as neighbors. Since the
meaning of words is created by what words are following in a sentence or tweet
and not by other first words of other tweets, using convolutional layers for this
three-dimensional data is not suited.

The tweet data has to be treated hierarchically: There has to be a single vector
representation for every tweet. The vector representations of those tweets then have
to be merged into a single vector representation. There are multiple approaches
possible to do this:

avg Calculating the average value was done for the transfer learning tasks with
word embeddings. If the vector representations’ features contain high or
low values for all tweet encodings, that information can be used. However,
when considering two tweets, if one feature contains a high value for one
tweet and a low value for the other tweet, the average value would be the
same compared to a feature having a mid-ranged value for both tweets. To
circumvent that problem, the impact of also using the variance of all features
also was investigated.

minmax When creating vector representation while using Jaccard or weighted Jac-
card similarity as distance function, the created features gain the property
that a high value corresponds to a feature being present while a low value
represents a feature being absent. When creating tweets, the corresponding
vector representations of those tweets may contain some critical features for
one of the classes. If, in such a case, those features have a high value, using
the maximum of all features ensures that that high value is being kept.

recurrent The tweets are represented by a sequence of vector representations, the same
as text is represented by a sequence of tokens. That fact makes using a
recurrent layer to create an author embedding a plausible choice. When
calculating the average value of all tweet encodings or using the maximum
value, much information is lost. A recurrent layer could consider all features
of all tweets to ensure a rich author embedding. However, using a recurrent
layer means introducing an additional layer that has to be learned.

For the given tweet data, the label for all authors is known: Half of the tweets
are classified as coming from bots, a quarter of the tweets are coming from male
authors, and the missing quarter is coming from female authors. If there was data
with no known labels for authors, training author embeddings could be done using
the siamese training approach: A random subset of an author’s tweets is chosen as
one entry of a pair. All tweets are encoded and merged using one of the chosen
merge functions. For the pair’s second entry, either a random subset of different
tweets from the same author is chosen to create a positive pair, or a random subset
of tweets from a different author is chosen to create a negative pair.
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4.1.4 Evaluation

To solve the task of classifying an author’s tweets into three different classes, sev-
eral model types should be investigated:

e The basic siamese model trained to create a vector representation for a given
input sequence (see section 3.3.1)

e The extended siamese model is trained to create a vector representation for
each token of the input sequence. The created vector representations are re-
duced to a single vector, which is used as the sequences vector representation
(see section 3.3.4)

e The extended siamese model, which also had to predict a token’s POS tag
(see section 3.3.4)

e The BERT model [32]

e A model that was not pre-trained

The siamese models have been trained with either cosine distance or weighted
Jaccard distance. On average, the models with cosine distance performed a little
better. Thus only their results are shown. Also, a different kind of model has been
trained, which used the vector representations as input values for a classifier. For
example, a classifier received two sentences’ vector representations and then had
to predict whether the presented pair is a positive or negative approach (see section
3.3.1). The created tweet encodings are merged with the average, minmax, or the
recurrent method for all model types. In the task’s description, the classification
task was split into two subtasks: First, it has to be decided whether an author is
a bot or human, then if the author is likely human, whether the author is male or
female. When the models were trained, they have been trained to predict whether
the author is a bot, male or female, i.e., there was no hierarchical decision making.
This was chosen because the probability, for example, of an author being female
directly influences the probability of that author being a bot. Ten experiments have
been executed for all model types and merge modes using 80% of the authors as
training data and the rest as test data. For each experiment, the split was done
randomly. Also, all models have been trained for one hour.

Table 4.3 shows the average test accuracy of the previously mentioned exper-
iments. The best model correctly classified about 80% of the authors. For the
different classes, all classes were predicted with the same accuracy. Thus, no class
was particularly hard to predict. The siamese model trained with cosine distance,
the tasks called S+7+M, and the merge function minmax has been used to predict
all authors’ tweets. These predictions have been used to look at authors with high
probability for one class. Looking at those tweets can give insight into what tweet
behavior lead to which classification. Also, using the merge function minmax has
another advantage: Given that the tweet encodings’ features are ranged between
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avg avg+var minmax recurrent
no pre-training 0.7055 0.7121  0.7224  0.6490
cosine, S 0.5841 0.5924  0.5930  0.5885
cosine, S+T+M 0.7932 0.7996  0.7909  0.7371
cosine, S+T+M+PT 0.7656 0.7741  0.7605  0.7146
classifier, S 0.6023 0.6171  0.6433 0.6123
classifier, S+T+M 0.7513 0.751 0.7498  0.6595
classifier, S+T+M+PT | 0.7185 0.7112  0.7285 0.6208
BERT 0.5992 0.6469 0.6423  0.5871
BERT, 24 hours 0.7815 0.7855  0.7709  0.7552
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Table 4.2: Test accuracy on the bot gender profiling task with models trained with
Sentence pairing, Token pairing, Masked input as well as POS-Tag prediction as
well as two other model types: BERT and a model without pre-training.

avg avg+var minmax recurrent
no pre-training 0.7055 0.7121  0.7224  0.6490
Siamese, S 0.6023 0.6171  0.6433  0.6123
Siamese, S+M 0.7513 0.751 0.7498  0.6595
Siamese, S+M+PT | 0.7185 0.7112  0.7285  0.6208
BERT 0.5992 0.6469 0.6423  0.5871
BERT, 24 hours 0.7815 0.7855  0.7709  0.7552

Table 4.3: Test accuracy on the bot gender profiling task with models trained with
Sentence pairing, Token pairing, Masked input as well as POS-Tag prediction as
well as two other model types: BERT and a model without pre-training.
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—1 and 1, an encoding with values mostly close to 0 is unlikely to have its values
used in the classifier. On the other hand, if there is a tweet of which the encoding’s
features have a log of very high or very low values, that encoding’s values will
be used in the classifier. Thus, given all the author’s encodings, it is possible to
calculate the tweet that has the biggest impact of the result of the minmax function.

For the bot class, the author, predicted with the highest bot confidence, had
many long tweets with sentences similar to news stories’ headlines. Additionally,
all tweets end with a link. The bot predicted with the second-highest confidence
contains tweets with exclusively buzzwords like Chances and Opportunities, the
tweet with the second most significant impact on the minmax advertises a /... ] web-
based adult entertainment video on demand network [...]. Of the male authors,
the male author predicted with the highest confidence mostly tweets about soccer-
related topics. His tweet with the most impact on the classification mentions that
Daniel Arzani has signed for #CelticFC, another tweet celebrates [...] the goal of
the weekend [...]. For the female users with the highest prediction confidence, no
particular topics stood out. The only noteworthy aspect is that many tweets tag
many other Twitter users.

When not looking at the actual tweets but the performance of the different
models given table 4.3, several conclusions can be drawn from these results:

e The model not having been pre-trained performs worse, which again demon-
strates the benefit of using pre-trained models, even if they are not pre-trained
on data from the same domain.

e The siamese model trained only with the auxiliary task, as to whether two
sentences are coherent, performs worse than the models trained on additional
tasks. This again confirms the results from sections 3.2.2 and 3.3.4 (see also
research question 2 from section 1.2).

e The models trained with the additional task of predicting a tokens POS tag
are not performing better compared to the models without that additional
task. In section 3.3.4, the very same models were used, but the results were
the other way around. This shows that the additional features learned by the
POS tag task helped to improve the results for the SentEval tasks. However,
the tweets in the bot gender profiling tasks were different in the way that the
tweets do not necessarily consist of coherent sentences. Instead, the tweets
frequently consist of smilies, emojis, punctuation, unknown words like user
names, and grammatically incomplete sentences. Knowledge about POS
tags does not help in this context. This further confirms experiments from
section 3.1.4: Here, models have been trained on either selected data or the
big textual corpus. In some cases, using more data has not led to significant
improvement in results, thus showing that the bigger corpus did not lead to
features being learned that improve the models’ performance on the transfer
learning tasks. When dealing with tweets, knowing about grammatically
correct sentences does not improve the models’ performance.
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e The BERT model is performing significantly worse compared to all the other
pre-trained models. At first, this is surprising because the BERT model is
larger, has been pretrained longer, and on more data. However, the fact that
the BERT model consists of significantly more layers is also one of its dis-
advantages: The more layers a neural network has, the smaller its gradients
become. The result is that one hour of training time is too short for the BERT
model to adapt to the presented use case. To further show this, it was trained
for an additional 23 hours. After having been trained for 24 hours in total, its
results were comparable to the results of the other models (see also research
question 3 from section 1.2).

e The previous point relates to a statement made in sectionl.2: Training an
autoencoder is expensive because a lot of weights are used in training that
are not used for a transfer learning task. In this section, the pre-trained BERT
model was used. That model consists of many layers, which lead to very
good results in many tasks. However, the other models used in this section
achieved comparable results with significantly fewer layers. This relates to
the situation with the autoencoder since the BERT model has more layers
and thus more weights than are actually needed for some tasks.

e When merging the tweets’ encodings to a single encoding by using the fea-
tures’ average values, also adding the features’ variance improves the results.
This shows that some information is lost when calculating the average. This
impact can be prevented by also including the minimum and maximum val-
ues. The fact that using minmax as merge mode shows that for this clas-
sifying task, for some authors, it is enough to know whether a few specific
features are present (i.e., having a very high or low value). Using a recur-
rent layer as merge mode proved to be the worst of the four options, which
shows that having additional parameters learned how to do the merging is
slow. In fact, since the pre-trained part of the models, which create the tweet
encodings, are further trained, the tweet encodings can be created such that
negative aspects of the merge modes are minimized.”

?1t can be assumed that using all four merge modes at once would lead to even better results since
each merge mode’s disadvantage can be compensated by one of the other merge modes.
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4.2 Predicting treatment success of macular edema

When being on the internet, anyone can create data by, for example, creating a post
on an internet forum. The meaning of a post on a forum may only be graspable if
the topic of that forum is known, i.e., linguistic data is highly variable and highly
dependent on context. For machine learning approaches, such problems are chal-
lenging, but due to the sheer amount of data, linguistic models can successfully
be trained (see models like BERT [32] or the experiments in section 4.1). A use
case for linguistical models may be the prediction of a customer’s email’s senti-
ment. If the sentiment was incorrectly classified, this might result in an unsatisfied
customer.

In contrast to textual data, there hardly exists any medical data. Also, if a
machine learning model is used in the medical context, for example, when deciding
how to treat a patient, incorrect predictions may do long-term harm to a patient.
Given the sparse data and the high demand for model quality, working with medical
data must be done more carefully. In the beginning, the data most often is created
by expensive and specialized devices. Also, the used data has to be labeled by
experts, in this case, being doctors or researchers in the medical field. These two
factors play a significant role in the high cost of medical data.

Still, artificial intelligence and neural networks, in particular, are used more
and more for supporting doctors in their decisions. Among many existing medical
fields, this especially has been the case of treating macular edema [3, 102, 52, 112].
Macular edema is an eye disease that can affect visual acuity. Among the possible
causes, the most common diabetic cause of vision loss in different societies is
diabetic macular edema [92]. It has been shown that the blindness rate would be
reduced by comprehensive screening programs and early treatment of the eyes with
effective diagnostic tools [130].

This section describes two created studies for creating models that are dealing
with images of macular edema.® The first model is used to predict a binary value,
representing the model’s confidence that something pathological can be found on
one of the images. The second model is used to predict the treatment process of
patients.

4.2.1 Macular edema dataset

The department of ophthalmology of the university hospital of Leipzig University
has created a dataset of Optical Coherence Tomography (OCT) images. The im-
ages show a cross-section of an eye’s retina. Figure 4.1 shows an exemplary raw
image of the macular edema dataset. The image contains two parts: The left part
of the image show an eyeball. The dark green lines represent the set of images
taken from the retina, whereas the bright green arrow represents the part of the
retina shown in the right part of the image. Here, a cross-section of the retina can
be seen. This particular retina contains a macular edema. For training the neural

3Work building on the results of this section has been presented at MIUA 2019 [17].
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Figure 4.1: An exemplary raw image of the macular edema dataset.

(a) An OCT image of a retina (b) An OCT image of the
without edema. macular without edema.

(¢) An OCT image of the (d) An OCT image of the
macular with visible edema. macular with visible edema.

Figure 4.2: Several exemplary OCT images from the macular edema dataset.
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networks, the right part of the raw image. Figure 4.2 shows accordingly prepro-
cessed images. The upper two images show an eye’s retina without macular edema,
whereas the bottom two images contain macular edema. The raw images are all of
varying sizes, of which the average width is around 1500 pixels, and the average
height is 500 pixels. For the following experiments, all eyes have been resized to
1282128 pixels.*

The dataset consists of images that can be put into two broad categories. The
first category contains images with labels containing a retina with or without mac-
ular edema. Of these kinds of images, there are 3543 images with signs of macular
edema and 1436 images with no signs. The second category contains all images
with macular edema. However, for these kinds of images, there exist additional
metadata. This metadata includes information like the patient’s age, treatment in-
formation like specific drugs given, and information regarding the treatment suc-
cess. The treatment success is measured by a simple test being how many letters
on a chart the patient can read. If the number of readable letters increases, this
is seen as a sign that the patient’s eyesight has improved. The treatment success
can also be monitored by measuring specific information regarding the macular
edema. However, the patient’s subjective impression of eyesight is seen as the crit-
ical value to improve. There are 107 images of patients’ retina for which there was
a treatment success. For patients without treatment success, there are 351 images.

4.2.2 Pretraining

For the two models to be presented, various models have been pretrained to get
the most of the existing data. The different approaches that have been used are the
same as presented in section 3.2.

Autoencoder The first one is an autoencoder. The autoencoder receives a ran-
domly chosen image and consists of an encoder and a decoder step. The encoder
consists of six blocks with skip layers (see figures 3.5 and 3.6) and encodes the
input images to a tensor of shape (2, 2,256). If that encoder were to be used for
further tasks, the value tensor would be reshaped to a vector with 1024 values. The
decoder receives the encoded tensor, consists of six skip connection blocks, and
creates a tensor of shape (128,128, 1), i.e., of the same shape as the input image.

Siamese The siamese models contain the same encoder part as the previously
mentioned autoencoder. However, the encoder’s output is flattened to a vector with
1024 features, which is then passed through another feedforward-layer with out-
put shape 512. Depending on the used similarity function, that vector is activated
with either sigmoid when using weighted Jaccard index or tanh when using cosine
distance. The positive/negative pairs are chosen by the image’s class information.

“There have been experiments with larger image sizes. However, there was no significant im-
provement compared to 1282128 pixels.
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Thus, when the two randomly chosen images have the same class, they are consid-
ered a positive pair. Otherwise, it is considered a negative pair. A second training
target is the reconstruction of the input image using the image’s vector representa-
tion. That approach is the same as using an autoencoder.

Instead of using a distance function for calculating vector similarity, a classifier
can be used for that task as well (see section 3.3.4). In that case, a classifier receives
two image encodings and has to predict whether the two images belong to the same
class.

ResNet The ResNet [45] model was trained on a large image data set and thus
have learned to recognize very different visual features. When using it for a transfer
learning task, as has been done here, the model’s last layer will be removed. That
way, the model is only creating an image encoding instead of classifying an input
image into one of 1000 different classes. This model was included in the evaluation
study to test how well a model that has been pretrained on an entirely different
dataset will perform.

4.2.3 Patient classifying

The OCT creates several images of a patient’s eye at once (as shown in the left
part of figure 4.1). When a doctor examines a patient, the doctor has to look at
every taken image to check whether something pathological can be found. If any
of the created images contain macular edema signs, the patient has to be treated
accordingly. Since the patterns that need to be found by the doctors can be very
small, and there are many images, manually checking each image can be very
time-consuming.

This section presents the results of a study that has been executed using the
macular edema dataset (see section 4.2.1). The dataset contains sets of image of
289 patients’ eyes (see table 4.4). The images are split into sets, while each set
belongs to one patient. For that set, there is information on whether something
pathological can be found on at least one of the images. In that case, that eye has
to be classified as having macular edema. Otherwise, the eye has to be classified
as non-edema.

The models used for this task contain the pretrained encoders from the previous
section 4.2.2. For each eye, a random subset with a maximum of 16 images is
chosen. Each of those images is encoded. Next, the different encodings are merged
into a single encoding. There are two different methods used to merge the images:
Either the encodings are averaged. In that case, the resulting encoding has the
same number of features as each single image encoding. In the other case, the
encodings are merged using each feature’s minimum and maximum value. Here,
the resulting encoding has twice the number of features as a single image encoding.
The merged encoding is given into a classifier, consisting of three feedforward
layers with a single output at the end, representing the eye’s class. The models
are trained several times with a different set of training and test data each time.
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edema healthy
num. of patients 200 89
num. of images 3629 1350
avg. num. of images per patient | 18.16  15.17
min. num. of images per patient | 1 1
max. num. of images per patient | 224 206
med. num. of images per patient | 8.5 6

Table 4.4: Numbers of image types in the macular edema dataset for the patient
classifying task.

average minmax

edema healty weighted | edema healty weighted
cosine 0.589 0.553 0.564 0.477 0.539 0.520
cosine, reconstruction 0.750 0.742 0.745 0.695 0.764 0.743
classifier 0.631 0.5 0.541 0.486 0.53 0.516
classifier, reconstruction | 0.653  0.446 0.589 0.603 0.606 0.604
autoencoder 0.796 0.46 0.692 0.796 0.361 0.662
Resnet 0.727  0.779 0.763 0.812 0.785 0.793
no pretraining 0.756  0.252 0.601 0.657 0.438 0.589

Table 4.5: Test accuracy for the patient classifying task with different pretrained
model types and different methods of merging sets of image encodings. The siami-
ase model was either trained using cosine distance or using an additional classifier.

For both classes, 80% of the data is used for training, and 20% of the data is used
for testing. Each model is trained 20 times with random weight initializations
each time. The different images per patient could be seen as sequential data. This
would result in the different images encoding being passed through a recurrent
neural network, typically done with textual data. It was decided not to use recurrent
models in this context: Recurrent layers imply that the data given into those layers
depends on the data’s order. For the given tasks, the order of images is arbitrary,
thus using a recurrent layer does not seem suited.

Table 4.5 shows the results for the models given their pretrained encoder and
their method of merging the set of image encodings. As was the case with the
experiments in sections 3.3.4, 3.1.4 and 4.1.4, the models trained with multiple
training targets performed the best. The Resnet model performed the best among
these models since it was pre-trained on a huge image dataset containing 1,000 dif-
ferent classes. However, given that this model was trained on 1,000 classes instead
of two and probably longer than one hour, its performance is only slightly better
than the next best model. This is similar to the results of sections 3.1.4 where
word embedding models pre-trained with smaller data performed about as well as
models trained on large data. The model pre-trained to classify an image’s vector
encoding performed worse than the model trained with a specific distance function.



4.2. PREDICTING TREATMENT SUCCESS OF MACULAR EDEMA 121

Figure 4.3: An exemplary healthy images with patterns that can also be found in
images containing something pathological.

This further confirms the results from the mentioned previous sections. Using an
autoencoder for image data may be expensive because of the encoder. However,
since the encoder is trained, such that is has to reconstruct as many visual features
as possible, leading to learning of many features. This is why it is not surprising
that the siamese models pre-trained without the additional target of reconstructing
the input image perform worse than the autoencoder. Also, nearly all models per-
formed better on correctly predicting the image sets labeled as having edema. This
is not surprising since edema’s visual pattern is quite strong: If there is a set of
images and one of the images contains a black circle in the middle of the image, all
images are classified as edema. On the other hand, if none of the images contain
edema, all of the images must be checked thoroughly. Strong evidence for this as-
sumption is the fact that the not-pretrained model classifies the edema images with
high accuracy while having trouble with the non-edema images.

When looking at the incorrectly classified image sets, there is another reason
why the performance for the healthy images is lower than the performance regard-
ing edema image sets: Apart from the edema images being easier to classify, some
of the healthy images contain visual features shared by the edema patient. Figure
4.3 shows an example of those images. Unfortunately, for this image set, there is
only a single image in that image set, leading to a miss-classification.

4.2.4 Treatment prediction

The previous section described the task of classifying a patient’s eye, whether
something pathological could be found. If yes, that eye has to be treated. Of the
several possible treatments, one is to give an injection into the edema. If success-
ful, the edema is getting smaller, which results in a better vision for that patient and
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(a) OCT image for month 0. (b) OCT image for month 3.

Figure 4.4: Two OCT images for one patient at month 0 and month 3.

thus an increased quality of life. For some patients, though, there is no improve-
ment, and a different kind of treatment has to be tried. Knowing early whether a
treatment will lead to no significant improvement is critical because an alternative
treatment can be implemented. Thus, given data of a running treatment, the task is
to predict the treatment success.

For predicting treatment success, significantly less data is available: Patients
have to be monitored over a longer period of time. If a patient is being monitored
and, after a certain time moves, loses interest in the study or even dies, the treatment
success cannot be known. For these reasons, there exists only data for 20 patients
for which the treatment has been successful and 62 for which the treatment has
not been successful. For each patient, there exist images from the beginning of
the treatment (month 0) and three months (month 3) after the beginning of the
treatment. The treatment’s success is defined after a period of twelve months. For
months 0 and 3, there exist at least two images per patient. Figure 4.4 contains two
images of the same patient for month 0 and month 3. Alongside the visual data,
there exists meta-data regarding the treatment process. These meta-data includes
general information like the patient’s age and sex, whether the shown eye is the left
or right eye, as well as medical information like what kind of drug has been given
alongside the treatment or whether there have been other kinds of surgery done. In
total, there are 15 different values of meta-information.

Since there is hardly any data and the visual patterns vary widely between
the images, it is evident that a not pre-trained model would easily overfit to the
training data. If that model was to be used on test data, it is to be expected that
its performance is not good enough to be used in production. Thus, since there
exists a large set of images that is of the same type as the data for the task of
treatment success prediction, the model will be created with a pretrained encoder.
The encoder will be used to create an image encoding for the images from months
0 and 3. The images of the two-time steps are merged separately such that the
following layers can learn which change in features over time leads to what kind
of treatment success. If all input images were merged into one encoding, the eye’s
change over time would be lost. Alongside the image encodings for the two time-
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meta-data no-metadata

sucess no success weighted | success no success weighted
autoencoder 0.682 0.688 0.686 0.658 0.649 0.651
siamese + reconstruction | 0.744  0.692 0.704 0.729 0.712 0.716
no pretraining 0.543 0.531 0.533 0.521 0.504 0.508

Table 4.6: Test accuracy for the patient classifying task with different pretrained
model types and different methods of merging sets of image encodings.

steps, the meta-data is added. Since the image encoding has 512 features and there
are 15 values from the meta-data, the vector given into the classifier contains 1039
features. For these experiments, the image encodings have been merged using
both the minmax and the average function. When using both functions, one of
the functions’ possible disadvantages can be compensated by the other function.
Of the different similarity functions, the pretrained models trained with cosine as
similarity function have been chosen. Also, that type of model was either trained
with the additional target of reconstructing the input image. As was the case with
the previous experiment, the following models have been trained several times with
arandom split of training and test data, whereas 80% of both classes, i.e., treatment
success and no treatment success, have been used for training data and 20% have
been used for test data.

Table 4.6 shows the results for the task of treatment success prediction for
different kinds of models with meta-data either given or not given. The results
show that the model that has not been created with a pretrained encoder performs
significantly worse than the other models. Since its performance is around 50%,
and there are two classes to predict, the model has not learned at all to correctly
predict treatment success on the test data. The other models all perform about 70%
correct, which shows that given the images, it is possible to predict the treatment
success. In the case of additional meta-information, the performance is better for
all models. Also, as was the case for the experiments in section 4.4, the model
which has been created with the pretrained encoder, which was trained on two
targets, performs the best. This again shows that pre-training a model with different
targets, even if the labels are weak, improves the model’s performance on transfer
tasks.

4.2.5 Conclusion

Most importantly, the results in section 4.2.4 show that it is possible to predict
treatment success. However, the average prediction accuracy is not sufficient to be
used reliably. For all trained models, the average score was calculated for each test
image. Figure 4.5 shows the quantity of those scores using ten quantiles, i.e., how
many treatments have been predicted correctly in which percentage of the case.
The results show that, in some cases, the models can predict the treatment success
correctly with high confidence, while for other cases, the models cannot predict
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with certainty. Given this data, in future research, the question has to be posed
why some cases are predictable while others are not. If validated medically, the
presented models could be used for treatment prediction for some of the patients.
When looking at research question 2 in section 1.2, the results from this study
demonstrate that pre-training a model with multiple training targets, such as input
image reconstruction and weak labels by using randomly chosen image pairs, lead
to better results compared to no use of pre-training. This further shows that when
working on a machine learning task with small amounts of labeled data, the usage
of additional non-labeled data delivers better overall results.
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4.3 Finding Shakespeare quotes using sentence similari-
ties

Any created text contains patterns that already exist in other text. Such re-use
of text may occur knowingly or unknowingly. Texts do not contain independent
meaning and are seen as being intertextual. Consequently, the study of analyzing
texts by re-used patterns and which texts or documents are related is called intertex-
tuality [5]. In some cases, those words or phrases can be re-used to communicate
a deeper meaning which can only be understood if that other author is known as
well [8]. Analyzing whether a text is referencing a different text can be considered
being subjective. However, finding re-used sentences or word patterns can give a
strong hint about an intertextual reference.

This section covers three executed studies for the detection of Shakespearean
intertextuality (see [76]) in post-modern fiction, as Shakespeare’s words, topics,
characters, and plots are present in some of the most successful writers of the genre
like for instance, Neil Gaiman & Terry Pratchett [111]. For the first study, a corpus
of 31 books is used together with a list of 109 known quotes.> The second study
used the same data but added additional training data, which was more suited for
the given use case. The third study contained a small corpus of phrases which have
been manually annotated with additional information like the type of quote.

4.3.1 Book corpus

The first study presents an NLP-pipeline consisting of two steps: First, a classifier
is used to extract sentences in the corpus of post-modern fictional literature that are
potential candidates for quoting Shakespeare. Second, these candidate sentences
are compared to the actual Shakespearean texts. This comparison is implemented
using a sequence vector representation created by a siamese neural network. That
model is created using the drawn conclusions from section 3.3.

4.3.1.1 Data

The data for finding reused Shakespeare quotes consists of two parts: The first
part includes text created by Shakespeare. They include dramas like Hamlet, Mac-
beth and Othello as well as other dramas, tragedies and sonnets. In total, there are
around 140,000 lines of Shakespeare text. The other part of the data set includes
post-modern fictional literature in the form of 31 books. The books and the Shake-
speare texts are all parsed to create a unified way of representing text. First, all lines
containing capital letters are discarded because those lines often are in the form of
CHAPTER ONE. Some of the books or Shakespeare texts include line breaks that
are not aligned with sentences. Some lines contain the end of one sentence and
the next sentence’s beginning. Thus, all line breaks are removed to create one long

5This study has been executed in corporation with Manuel Burghardt and Johannes Molz [16].
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line. That line is split into sentences using the nltk sentence tokenizer ©. Lastly,
punctuation is removed, and all lines are changed to lower case. There may be
quotes in modern literature in the middle of the sentence, while the original quote
is at the beginning of the sentence, starting with a capital letter. Lowercasing the
data makes the lines more similar to each other. Table 4.7 shows the included books
along with the number of parsed sentences per book.

Alongside the unlabeled data, there also exists ground truth data [82]. These
include found reused Shakespeare quotes from Shakespeare’s Hamlet in nearly all
of the books. An exemplary found quote exists in Early Riser by Jasper Fforde.
One of the lines is Something rotten in the winter.. That sentence is referencing
Shakespeare’s Hamlet: Something is rotten in the state of Denmark. Overall, the
type of references varies: Some found references do only contain a single word
(Yorrick, fishmonger), others use the whole sentence (There are more things in
heaven and earth), while others use the original quote but change some words (to
espresso or to latte). In total, the ground truth contains 109 entries that are seen
as being fit for an automated process. Not considered found references include,
for example, very long paragraphs or are seen as too abstract. An example of the
latter would be a scene where two people are talking, of which one is standing on
a balcony. Such a scene would be a reference to Hamlet, but that context is not
extractable from a single sentence.

4.3.1.2 Method

To find reused Shakespeare quotes in post-modern fictional data, first, it has to be
discussed what exactly should be found. The previous section described existing
ground truth data for quotes referencing Shakespeare’s Hamlet. The length variety
of those quotes is large, i.e., some quotes refer to a single quote while other quotes
refer to a whole line or sentence. Thus, it was decided to split the Shakespeare
data and the sentences of post-modern fictional literature into n-grams of varying
lengths. If there is a very short quote containing only one or two words, any varia-
tion will make it unrecognizable. It thus was decided that these kinds of quotes are
best to be found by using a predefined list of keywords and then looking them up
in another document. For example, the names of characters in Shakespeare’s plays
are mostly unique. If one of those names is used in another text, it almost always
references Shakespeare. In the ground truth data, the longest coherent quotes con-
tain around 13 words. Other references are stretched over whole paragraphs. It was
decided not to aim to find those kinds of references because they are mostly very
abstract. Thus, the resulting lengths for n-grams are 5, 7, 9, 11, and 13. To reduce
the number of n-grams, even numbers are left out since, for example, n-grams of
length 6 are included in n-grams of length 7.

*https://www.nltk.org/
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Title Author #Sentences
Adams, Douglas H2G?2 The Ultimate Hitchhiker’s Guide 21,289
Barnes, Julian The Noise of Time 3,208
Carter, Angela Nights At The Circus 5,883
Carter, Angela Shaking A Leg 15,433
Carter, Angela Wise Children 5,927
Fforde, Jasper Early Riser: The new standalone 9,654
Fforde, Jasper Lost in a Good books 9,258
Fforde, Jasper One of our Thursdays is Missing 7,640
Fforde, Jasper Something Rotten 9,201
Fforde, Jasper The Eyre Affair 8,997
Fforde, Jasper The Well Of Lost Plots 9,305
Fforde, Jasper The Woman Who Died a Lot 7,746
Fry, Stephen Making History 12,608
Fry, Stephen Moab Is My Washpot 6,951
Fry, Stephen Paperweight 7,631
Fry, Stephen The Hippopotamus 7,741
Fry, Stephen The Liar 8,280
Gaiman, Neil Anansi Boys 10,778
Gaiman, Neil Trigger Warning 9,772
Pratchett, Terry Guards! Guards! 9,649
Pratchett, Terry Nation 9,084
Pratchett, Terry Night Watch 11,317
Pratchett, Terry The Amazing Maurice and His Educated Rodents 7,412
Pratchett, Terry Wyrd Sisters 8,315
Pratchett, Terry; et al. The Science of Discworld 2 8,009
Rushdie, Salman East, West 2,597
Rushdie, Salman Imaginary Homelands 6,078
Rushdie, Salman Joseph Anton 12,551
Rushdie, Salman The Ground Beneath Her Feet 13,006
Rushdie, Salman The Moor’s Last Sigh 8,214
Smith, Zadie On Beauty 12,631

Table 4.7: Corpus of postmodern fiction novels that will be used to test the auto-
matic approach for text reuse detection.
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4.3.1.3 Filtering

When splitting each sentence of the two text sources into n-grams of the shown
lengths, the data size grows significantly. Instead of comparing each Shakespeare
sentence with each sentence from the post-modern fictional literature data, all n-
grams of the Shakespeare sentences have to be compared with all n-grams of all
sentences from the post-modern fictional literature data. The number of pairs that
have to be compared would be very high, resulting in a very slow process. Simulta-
neously, by looking at the created n-grams, it was evident that most of them are not
quote-worthy. For example, in Adam Douglas’s The Ultimate Hitchhiker’s Guide,
there is a 5-gram at the end of the. That 5-gram could occur in any sentence by
any author, and it is not of further interest. The same can be said about most of the
created n-grams.

To split the n-grams into two groups, quote-worthy and not-quote-worthy, a
classificator was trained. The classificator received a sequence of tokens and had
to predict whether the sequence was taken from the n-grams of the Shakespeare
data or the n-grams of the post-modern fictional literature. The n-grams are cho-
sen randomly from the two corpora. There is no weighting when choosing the
n-grams. Since the post-modern fictional literature corpus is larger than the Shake-
speare corpus, most of the n-grams are chosen from that corpus. This ensures that
frequent n-grams are classified as non-Shakespeare, even if they also appear in the
Shakespeare corpus. On the other hand, n-grams from the Shakespeare corpus are
chosen with less frequency. Given that, and the fact that they contain words that
are unlikely to appear in the post-modern corpus, the model is trained to classify
these n-grams into the class of Shakespeare n-grams. During training, the n-grams
given into the model are randomly masked. This ensures that the model does not
memorize the quotes word by word and ensures that quotes with changed words
are also classified as a potential Shakespeare quote. The trained classifier assigns
an n-gram like at the end of the a probability of being from a Shakespeare text of
0.0012. An n-gram like her too too solid kitchen a probability of 0.9313, which is
a variation of the quote this foo too solid flesh.

The threshold to be set when filtering the n-grams is critical for finding Shake-
speare references. If the threshold is set too high, too many potential references are
discarded. To keep as many potential quotes in the data as possible, the threshold is
set to a low value of 0.2. N-grams of length 5 were filtered using a higher threshold
of 0.7. After looking at the filtered data, it was noticed that n-grams of length 5
contained many non-quoteworthy entries. Also, since the n-grams of length 5 are
the shortest, there were significantly more entries than the other lengths. The two
threshold values were found by ensuring that many known references are still in-
cluded in the data. Also, even though the threshold values seem very low, between
80% and 90% of the n-grams are discarded (see table 4.8).
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ngram length number of ngrams number of ngrams after filtering

5 1,729,519 237,690
7 1,480,019 359,216
9 1,262,438 101,875
11 1,078,270 38,872
13 921,433 5,284
Sum 6,471,679 742,937

Table 4.8: The number of n-grams for each n-gram length before and after filtering
for the corpus of postmodern fictional literature.

4.3.1.4 Pairing

The created n-grams are to be paired using their vector representation. Of the
different lengths, only n-grams of the same length are paired. The models which
are used to create vector representations are the following:

e The basic siamese model trained to create a vector representation for a given
input sequence (see section 3.3.1)

e The extended siamese model is trained to create a vector representation for
each input sequence’s token. The created vector representations are reduced
to a single vector, which is used as the sequences vector representation (see
section 3.3.4)

e The extended siamese model, which also had to predict a token’s POS tag
(see section 3.3.4)

e The model trained using the SkipThought approach (see section 3.3.1)
e The model trained using the QuickThought approach (see section 3.3.1)

e The BERT model [32]

4.3.1.5 Evaluation

The presented pipeline in section 4.3.1.2 was executed using a subset of the Shake-
speare data as well as the full Shakespeare data. Pairing all n-grams from both
corpora would lead to a very high number of pairs. To investigate the different
model performances, the quotes from the ground truth data referencing Shake-
speare’s Hamlet (see section ??) are used as a subset of the Shakespeare data. This
means, instead of using all sentences from the Shakespeare corpus, only sentences
are used that contained a known quote. On the one hand, this makes it possible to
calculate a precision value for each model: The ranked lists can be annotated by
how many pairs are seen as true-positives. Simultaneously, it is known which pairs
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ngram length  Shakespeare (full) Shakespeare (ground truth)

5 276,291 332
7 154,500 300
9 48,276 282
11 6,157 239
13 718 232
Sum 485,942 338

Table 4.9: The number of n-grams for each n-gram length before and after filtering
for the Shakespeare corpus.

need to be found, which means a recall can be estimated. After having compared
different model types, and estimated suited threshold values for vector similarity,
the presented pipeline was used on the full Shakespeare data.

After using the filter presented in section 4.3.1.3, table 4.9 shows the number
of n-grams for each n-gram length and corpus.

4.3.1.6 Ground truth data

The listed model types in section 4.3.1.4 have been used to create vector representa-
tions of all the n-grams from the ground truth subset. These vector representations
have been paired with the filtered n-grams presented in section 4.3.1.3. The result
lists have been sorted by vector similarity, and each result list has been cut after
2000 entries. The result list of all model types have been merged into a single re-
sult list. After removing duplicate entries, that result list contained 3858 entries.
The merged result list has been manually annotated: Of the 3858 entries, 119 have
been marked as a reference, while 3739 have been marked as not being references.
A ranked list for all model types has been created using that annotated list. The
average precisions for all model types can be found in table 4.10.

The calculated average precision for the different model types confirms several
drawn conclusions from section 3.3. The smaller the number of training tasks
during pre-training, the worse the average precision is. The models named S and
QuickTought only had to create a vector representation, which then had been used
to determine whether a sentence pair is a positive or negative training example.

The results in table 4.10 confirm several results from section 3.3. It was shown
that a single training task, like pairing two sentences, results in a somewhat usable
vector representation. However, these vector representations perform worse com-
pared to other trained model types. It was shown that the worse performance was
caused by the encodings not including as many different aspects compared (see
sections 3.2.2 and 3.3.3). In the present evaluation task, the model trained with the
smallest number of training targets performs worst. The models trained with the
QuickThought and SkipThought approach perform slightly better. The SkipThought
approach consists of a decoder part used to generate a sentence. Thus, more in-



132 CHAPTER 4. CASE STUDIES

10 @ o 1.0 4
- \.
Qeooq 00 o o
.
08 e o 08
°
> >
T ] £
= 06 ° Z 06
£ E
i ® gy ~ E
s LIS 5
£ o4 ) £ 044
0.2 0.2
0.0 0.0
o 500 1000 1500 2000 2500 3000 3500 ) 500 1000 1500 2000 2500 3000 3500
Result list index Result list index
1.0 @ 10 Mes @
@00 o mmew o @ ssmece .
\ .
Y L]
L TN
0.8 ®ee o 0.84
®,,
o o
L ]
2 ® . z
5 b s
£ 06 £ 061
@ @
5 5
£ 04 £ 044
0.2 0.2
0.0 0.0
o 500 1000 1500 2000 2500 3000 3500 ) 500 1000 1500 2000 2500 3000 3500
Result list index Result list index
(©) S+T+M+PT (d) S+T+M (classifier)
10 Rag,, 1.0
T mememen come o N \-“" ¢ ®ocemee ome o .
® o o o an -
0.8 q 0.8+
> >
HE £ 061
s s
S o4 S 044
0.2 0.2
0.0 0.0
0 500 1000 1500 2000 2500 3000 3500 o 500 1000 1500 2000 2500 3000 3500
Result list index Result st index
(e) S+T+M+PT (classifier) (f) SkipThought
10 1.0+
et ee A S
L]
* @™ oo ® on .
o Commee
08 - 0.8 e0cees w,
.
2 z .
E 0.6 E 0.6 4
s s
3 04 S 044
02 0.2
0.0 0.0
0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500
Result list index Result st index

(g) QuickThought (h) BERT

Figure 4.6: Position of the true-positive pairs in the result list of the models shown
in table 4.10.
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Model Average precision
S 0.4547
S+T+M 0.7302
S+T+M+PT 0.6601
S 0.5408
S+T+M (classifier) 0.6522
S+T+M+PT (classifier) 0.5746
SkipThought 0.6001
BERT 0.6956

Table 4.10: Average precision on the merged annotated result list with models
trained with Sentence pairing, Token pairing, Masked input as well as POS-Tag
prediction. When having to predict a token’s POS tag, the vector similarity will
either be calculated using a distance function or a classifier. The vector representa-
tions of the tokens have been merged using either the average.

formation from the preceding sentences is needed compared to the QuickThought
approach, which again leads to better performance on transfer learning tasks (see
section 3.3.4) and table 4.10. The models that had to create a vector representation
for each token of the input sequence and a token for the whole sentence performed
better than the previously mentioned models. The models trained with even one
additional training task, being the prediction of each token’s POS tag, performed
worse (see section 3.3.4). This shows that, when directly using a vector representa-
tion for a similarity task, any additional task that breaks the desired vector proper-
ties harms the performance on similarity tasks. Additionally, the models trained to
create a vector representation using a specific distance function perform better on a
task where these vector representations and distance functions are explicitly used.
Models like BERT or the siamese models that used a classifier to predict sentence
pairs and POS tags perform a little worse since their vector representations have
not explicitly been trained to be used with a specific distance function.

Figure 4.6 shows the positions of true-positive pairs in the ranked lists that
have been created by the different model types. The X-axis represents a pair’s
rank, while the Y-axis represents the vector similarity. The fact that some models’
similarity score is falling faster than other models is not important since only the
relative similarity values are important. That means if one pair is seen as very
similar and one pair as very different, it is not important whether the similarity
score is 0.1 or 0.5. It is only important how many other pairs are ranked between
the two mentioned pairs. The result lists all start with pairs that contain a vector
similarity of precisely 1. This is because some pairs contain the same n-grams. For
example, the sentence [What] a piece of work is a man is used in Hamlet as well
as in The Science of Discworld 2 by Terry Pratchett et al. Pairs that are placed on
lower ranks on the list are of more interest. Pairs with a vector similarity lower than
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1 but still very high are, for example, The mirror up to nature paired with A mirror
up to nature (The Noise of Time by Julian Barne) or with A mirror up to life (Wyrd
Sisters by Terry Pratchett). The lower the similarity score is, the more variance
there is in the pairs. For the model called S+7T+M, fo be or not to be that is the is
paired with to espresso or to latte that is the question (Something Rotten by Jasper
Fforde) has received a similarity score of 0.9171. A pair with a lower similarity
score is things in heaven and earth and in either earth or heaven (Nights At The
Circus by Angela Carter) with a similarity score of 0.8294.

False-positive pairs with a high similarity score are mostly pairs with a high
overlap of tokens but are still not considered a reference taken from Shakespeare.
For example, the 5-gram The beauty of the world is paired with The end of the
world. These two 5-grams have the same sentence structure, but given the longer
contexts the two sentences are in, it is obvious that The end of the world is not a
reference to Shakespeare. Another example of the same problem is the pair in my
mind s eye and in my mind since it. The true-positive pair with the lowest similarity
score contains the n-grams is rotten in the state and something rotton in the state.
The similarity score of that pair is 0.8757.

37 of the ground truth quotes were either not found by the presented approach
or ranked with a score so low that they are lost among the other low-ranked false
positives like, for example, the references her father’s death or O God! God!.
Apart from quotes that have been filtered out in the pre-filtering step of the pipeline,
other quotes that were not identified were found to be not suited for the presented
approach. Among these quotes, there were ones with only one word like Yorrick,
for which a simple string-search would be feasible. References like 2b or not 2b
differ too much from the original quote to be found automatically, while other
references had typographical errors (rotfon compared to rotten).

4.3.1.7 Full Shakespeare data

The previous section presented an evaluation study on a ground-truth dataset con-
taining found Shakespeare quotes. The study showed that references that contain
a large overlap of tokens, as well as quotes that have some changed keywords, can
be found. References that are either very short, contain large variations, or are
very implicit and therefore require a lot of context knowledge have not been found.
Given the different model types, it was also shown that a model that is explicitly
trained to create vector representations using a specific distance function produced
the result list with the highest average precision. The executed study also helped
determine which thresholds to use for the vector similarity. The lowest scored true-
positive pair had a vector similarity of 0.8757. Such a threshold does not mean that
there are no true-positive pairs to be found with a lower score, but it shows that it
is less likely to find true-positive pairs. For the full Shakespeare data, a threshold
of 0.8 was used.

The n-grams of the post-modern fictional literature corpus were filtered using
a dedicated classifier. That classifier was used to discard n-grams like at the end of
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ngram length Shakespeare (full) Shakespeare (filtered)

5 276,291 44,458
7 154,500 19,552
9 48,276 6,102
11 6,157 861

13 718 161
Sum 485,942 338

Table 4.11: The number of n-grams for each n-gram length before and after filter-
ing for the Shakespeare corpus.

the. Such n-grams probably appear in both corpora but are not of further interest.
The study in section 4.3.1.6 only used n-grams from the known ground truth data of
the Shakespeare corpus, which made a pre-filtering of n-grams unnecessary since
the number of n-grams is relatively small and most of the n-grams are considered
quote-worthy. For the full Shakespeare corpus, a pre-filtering of n-grams is nec-
essary since when using the full corpus, many sentences that are not quote-worthy
are also included, and thus also many n-grams that need to be discarded. Table 4.11
shows the number of n-grams of the different lengths before and after filtering.

The result list contains 590, 369 entries. Of that list, only the top 5,000 entries
were checked. At the top of the list are pairs where both n-grams are identical. For
example, the quote The seeming truth which cunning times put is used in Shake-
speare’s The Merchant of Venice as well as in The Moor’s Last Sigh by Salman
Rushdie. A different example is He jests at scars that never felt a wound used in
Romeo and Juliet as well as in The Eyre Affair by Jasper Fforde. The n-gram as the
end of his is used in Love’s Labour’s Lost as well as in Imaginary Homelands by
Salman Rushdie. That pair is a false-positive and made it past the n-gram filtering.
Exemplary pairs with a very high similarity score are there were nothing else to be
done (Henry 1V) and there was nothing else to be done (Joseph Anton by Salman
Rushie).

A pair with lower vector similarity is the n-gram I am a most poor woman
and (Henry VIII) paired with I am a poor fellow and i (East, West by Salman
Rushdie). Another example is the n-gram [In] sooth i know not why i am so sad
(The Merchant of Venice) paired with [In] truth i do know why i am so sad (Paper-
weight by Stephen Fry). The n-gram and a heart of gold is paired 19 times with
several other variants that contain the words heart of gold, all of which appear in
The Ultimate Hitchhiker’s Guide by Adam Douglas.

Of the false-positive pairs, many of them contain the words of the. For example,
The beggars of the world is paired with The privations of this world. When training
the n-gram filtering classifier, there are n-grams like The beauty of the world. Since
some of the words are masked during training to ensure variants of quotes are not
filtered (see section 4.3.1.3), any quote like The X of the Y is seen as a quote with
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high confidence. Thus, many variants with those words passed the n-gram filtering
along with n-grams containing word groups like in the, by the, or of his.

4.3.2 Asymmetricrical vectorization

When having a results list with several thousand entries, it is not feasible to man-
ually check all entries for true-positive findings. This is especially the case if, at
high-ranked positions, many entries contain undesired patterns. In section 4.3.1.6,
a result list with around 4,000 annotated n-gram pairs was created. Using these
annotations and especially the knowledge about what accounts for a desired pair
and especially, since they make the biggest share, what accounts for a negative pair.
To do that, a network was created to create vector representations that give lower
similarity scores that have been seen as false-negatives. The created annotations
are suited to continue training a siamese model since the annotations can be seen
as positive and negative data pairs, which are the critical part of training siamese
models.

Among the annotated pairs, there are pairs with both entries being seem fo me
all the. If a model is given such a pair as a negative pair, it cannot create a smaller
similarity score: The presented siamese architectures use the same weights for all
inputs. If the network were trained to give a different vector representation to one
of the pair’s entries, the other entry’s vector representation would change in the
same way. To solve that problem, the network’s symmetric property has to be
broken by training two encoders that share the same architecture but not the same
weights. Such a model will be trained in the same way as the symmetric model,
only that it is possible to create two different vector representations for the same
input. When creating vector representations for the n-grams of the Shakespeare
corpus and the post-modern fictional literature corpus, it must be kept in mind to
use one branch of the model for each corpus.

The existing model was copied to speed up training, and the weights of the
first branch of the model were fixed. That means, if the first branch of the model is
used to create vector representations for the n-grams of the Shakespeare corpus, the
existing vectors can be kept. For the second branch of the model, the weights have
to be changed such that for false-positives, the vector representation is such that the
pair will receive a lower score. Of the annotated data, there are 119 positive and
3739 negative pairs. If only those pairs were shown to the asymmetrical model,
it would create only high similarity scores for the exact n-grams of that result list.
If only the negative pairs would be shown, the second branch could change such
that the vector representation will be such that it will not be similar to any other
vector representation. It was decided only to use the annotated data’s negative pairs
for training the second branch. For positive pairs, random coherent sentence pairs
from the existing larger corpus of news articles were used.

After training, the model’s second branch was used to create a vector repre-
sentation of the n-grams from the annotated data. With the pairs’ new similarity
scores, an average precision of 0.9415 was achieved. That high score is not sur-
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Model Average precision
S+T+M (trained asymmetrically) 0.7713
S+T+M (trained symmetrically)  0.7302
BERT 0.6956

Table 4.12: Average precision on the merged annotated result list with an addi-
tional model which has been pre-trained with asymmetrically on manually anno-
tated data.

prising given that the model was trained on precisely that data. If it only was
trained on positive and negative pairs from that dataset, a score very close to 1 can
be expected. Another effect of the two branches is that the similarity scores can-
not be directly compared. If there is a pair with two identical n-grams, using two
branches leads to that pair receiving a score lower than 1. To achieve a score of 1,
the two vector representations would need to be the same. If the second branch of
the model is trained with some negative pairs that are identical or near-identical n-
grams, this also means that identical or near-identical positive pairs receive a lower
score. As a result, the new similarity score shall be called interest score.

To evaluate the new vector representations, the list of pairs from section 4.3.1.6
was used. The list was sorted with the new similarity scores before then calculating
the average precision. The values presented in table 4.12 show that the new model
performs better than the ones previously used. To further analyze the results, the list
containing 5, 000 entries from section 4.3.1.7 was used. The vector representations
of the n-grams coming from the post-modern fictional literature corpus were re-
calculated, and the list was re-sorted by the new interest score. For both lists,
positional changes of all entries were calculated to see which pairs were ranked
higher and which ones were ranked lower. The pair with the entries and it is mine
that and and that it is therefore is ranked 4,090 positions lower with the new score.
Other pairs that are moved down in the result list are pairs with entries like as
the sweat of a and of the faithful as a as well as a fellow of the selfsame and is
a fellow of the. The fact that pairs containing words like of the are ranked low
shows that pairs with those words were frequent negative pairs when training the
newly created second branch. The pair with entries of sun and moon and that the
and of the sun and the moon and was moved 200 ranks up in the list. At first,
this may seem surprising because the pair contains very similar n-grams, and both
the similarity and interest score are around 0.89. However, when considering the
similarity score, there are significantly more pairs with a score higher than 0.9,
resulting in this particular pair being lower. Many higher ranked pairs are now
ranked lower with the interest score. A similar example is the pair with the entries
between my finger and my thumb and and my ear between finger and thumb and,
which moved 247 ranks up to rank 141. Also, there is a pair with the entries at the
latter end of and at the end of the. This pair is occurring multiple times since the
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Lexia Shakespeare quote reference

Hieronimo go by  go, by Saint Hieronimo  go by old Hieronimo
bear a brain I do bear a brain. we must bear some brain
carry coals we will not carry coals I would bear no coals
hillo ho ho Illo, ho, ho, my lord ho, illo ho

host of heaven death stood gaping wide host of heaven

mind’s eye In my mind’s eye eye of their mind

planet strike planets strike struck with a planet

sea of troubles sea of troubles a troubled Sea of passion
the rest is silence  The rest is silence. The rest is belly

to be or not to be  to be or not to be to do, or not to do

Table 4.13: An exemplary subset of the small gold standard quotes dataset.

second part occurs in several of the used models. These pairs already received a
lower score due to the interest score, but this pair is not in the annotated data. If
this pair and other unwanted pairs were included in the annotated data, the interest
score could be improved even further.

4.3.3 Reference type evaluation

The previously used dataset had the disadvantage that it contained references from
31 books with no guarantee that all references had been found. Thus, if a model
were to rank a reference high, which has not been identified as a true-positive yet,
it would impact the evaluation metric negatively, although the model acted cor-
rectly. To further analyze the impact of different architectures on the results of
finding reused Shakespeare quotes, a small dataset of manually annotated refer-
ences has been created, hereafter called the small gold standard quotes’. There are
100 different Shakespeare references with 20 unique quotes in this dataset. Table
4.13 contains exemplary lexias, Shakespeare quotes and references. The context in
which the references are used is not shown.

The analysis in section 4.3.1.6 is built to handle a large corpus. The presented
pipeline includes a step in which n-grams from the Shakespeare corpus are paired
with n-grams from the corpus of post-modern fictional literature. Both sets of n-
grams have been filtered in a previous step to reduce the number of pairs since,
without that filtering, the number of pairs would be too large to get meaningful
results in an acceptable amount of time. The presented data in table 4.13 only
contains known quotes. Thus, the same approach from section 4.3.1.6 can be used
without filtering. Consequently, the results are not influenced by an n-gram clas-
sifier or any other arbitrarily set threshold but only depend on the model used to

"The dataset has been created by Manuel Burghardt (burghardt@informatik.
uni-leipzig.de) by using the WordWeb IDEM portal (https://wordweb-idem.ch/)
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Example
Type Original Reference
Insertion to be or not to be to be named or not to be named
Deletion go, by Saint Hieronimo  go by Hieronimo
Subst. Illo, ho, ho, my lord Illo ho , boys
Subst. (semantic) we will not carry coals I would bear no coals
Subst. (gram./ortho.) hell itself should gape  death stood gaping wide
Changed word order  planets strike struck Corioles like a planet
Repitition Illo, ho, ho, my lord ho, by, so, ho, illo ho, illo ho

Table 4.14: Examples for the different reference types with which the quotes from
the small gold standard quotes dataset have been annotated.

create an n-gram’s vector representation. There is additional information about the
type of reference for all found references, whereas a reference can be annotated as
being of multiple types. The available types are described in table 4.14.

The gold standard dataset is split into two parts. The first part contains the
20 unique Shakespeare quotes, and the second part contains the contexts in which
one of the Shakespeare quotes has been used. The contexts have been split into
n-grams of length 5, 7, 9, 11, and 13 using a sliding-window approach. After
creating vector representations from both sets, each entry from the Shakespeare
quotes is paired with each n-gram from the references. For each context, multiple
n-grams are paired with the Shakespeare quote, but only the pair with the highest
similarity score is kept. The result is 20 different lists with 100 entries each. How
the result lists are grouped is equivalent to entering each Shakespeare quote into
a search engine and getting a result list of 100 entries. Since it is known which
entries belong to which search term, the lists are evaluated using the normalized
discounted cumulative gain (nDCG).

Similar to the experiments from sections 3.3.3, 4.1.4 and 4.3.1.6, an exter-
nally pre-trained BERT model has been compared with a custom pre-trained model
trained with the siamese approach and multiple training targets. All models also
have been fine-tuned by further training them with the same training target with
which they have been pre-trained but on a dataset containing text a corpus of early
modern drama®. Training time for all models was limited to six hours. Another
approach to make use of the pre-trained BERT model is to add an additional layer,
which receives the vector representations of two inputs and has to predict whether
the shown pair is a positive or negative pair °. The same approach was also im-
plemented using the output of the pre-trained siamese model. When creating the
result list, these two models’ vectors were not compared using vector similarity but
the trained classifier.

8https ://graphics.cs.wisc.edu/WP/vep/vep—-early—-modern-drama—-collection/
*https://keras.io/examples/nlp/semantic_similarity_with_bert/
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Model type nDCG
BERT 0.7524
BERT (fine-tuned) 0.7123
BERT (similarity) 0.3612
BERT (classifer) 0.3547
S+M+T+POS 0.7194

S+M+T+POS (fine-tuned) 0.744
S+M+T+POS (classifier)  0.3451
S+M+T+POS (overlap) 0.7656

Table 4.15: Discounted cumulative gain of different model types on the small gold
standard quotes dataset.

Table 4.15 shows the results of different models that have been used to create
the vector representations. The base BERT model is the best performing BERT
model. The fine-tuned version performed slightly worse. With the fine-tuning, the
model has been adjusted to words and sentence structures from the same domain,
but the output is still not trained to be used as an n-gram’s vector representation.
Another BERT model was trained with an additional layer on top of the base model.
That layer created an output for each time-step, which then has been averaged to
create a single vector representation for the whole sequence, similar to the siamese
training approach. This model performed significantly worse than the base model,
showing that the additional layer needs longer training time since it is trained from
scratch. Also, since it is trained on only one task, its vector representations may
contain fewer features than the models trained on multiple tasks (see section 3.3.4).
The siamese models performed a little worse than the base BERT model, although
the fine-tuning had a bigger effect. For both model types, the variant trained to
give two vector representations into a dedicated classifier performed worst, which
was expected: Similar to the BERT model with the additional layer, the classifier
is trained from scratch and has to learn which features indicate a positive pair. Two
things slow training down especially: First, when the model is given two identical
vectors, the similarity score is not 1 by definition, as is the case for the models
trained using vector similarity but has to be learned explicitly. Second, vectors
are given into the model as inputs (A, B), while input pair (B, A) would be an
unknown pair. The model performing slightly better than the other models is a
siamese model, which has been fine-tuned explicitly on giving a high vector sim-
ilarity to overlapping sentence pairs. During fine-tuning, when selecting positive
pairs, half of the positive pairs were coherent sentences from the corpus. The other
half were overlapping parts from the very same sentence.

Figure 4.7 shows the frequency of ranks of the true-positive pairs for the BERT
model as well as the best-performing model trained with the siamese training ap-
proach. The figure shows, similarly to table 4.15, that both models perform com-
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Figure 4.7: The ranking frequency of the true-positive examples of the dataset
using two different models.
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Type Count BERT  S+M+T+POS (overlap)
All 100 0.7524  0.7656
Insertion 30 0.7230 0.7160
Deletion 41 0.7221 0.7327
Subst. 29 0.8873 0.8801

Subst. (semantic) 15 0.5008 0.6965
Subst. (gram./ortho.) 41 0.6088 0.5847
Changed word order 23 0.6532 0.6756
Repitition 11 0.7763 0.7889

Table 4.16: Normalized discounted cumulative gain for different reference types.

parably well. For both model types, most of the true-positive pairs are placed at the
beginning of the result lists. For example, for the Shakespeare quote we will not
carry coals, both models ranked the reference you must carry no coals first, with
all other true-positives being ranked directly after. Another quote, for which the
true-positive were ranked very high by both model types, was the quote springes to
catch woodcocks. Also, the true-positive pairs for the Shakespeare quote hell itself
should gape were ranked high. However, the reference therefore gapeth hell and
openeth was ranked in the middle of the result list for both models, showing that
a change in word order has a significant impact on the similarity score. The true-
positive pairs for the short quote planets strike were ranked low by both models.
For example, the BERT model ranked the reference error and be planet struck on
position 74, showing that short quotes are hard to find in long n-grams. Another
quote for which the models performed badly was the quote All the world’s a stage.
One very highly ranked false-positive is the n-gram all the rest is nothing. That
n-gram has the sentence structure (All the X is Y), showing that true-positives for a
quote with very common structures are likely to be buried in a list of false-positives.

Table 4.16 shows the normalized DCG for the different reference types. The
results show the models perform differently on the different reference types, al-
though both models show similar patterns. The models performed the best on the
reference type for which there are simple substitutions in the reference compared to
the original quote. An example for this is the quote fo be or not to be which is ref-
erenced as to marry or not to marry.. This result repeats the findings from section
3.3.3: When models are to be used for vector similarity on sentence basis, most
models put the highest emphasis on the sentence structure. The fact that references
with a changed word order perform significantly worse than average further proves
this statement. The models’ performances for the references of types insertion and
deletion are relatively close because insertion and deletion are related: For each
n-gram pair, there is one n-gram shorter than the other one.
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4.3.4 Conclusion

The search for reused passages of Shakespeare’s texts, at first sight, might look like
a standard task for existing text similarity detection approaches. However, finding
pairs reused in the sense of an intertextual reference can be rather challenging, as
automated searches for these are bound to produce many false positives. Given the
different kinds of intertextual references, in order to get an exhaustive result list
of possible references, multiple references have to be used. The usage of vector
representations was proven to be a suited approach. However, other approaches
may be more suitable for finding very short or very abstract references.

This section also presented a multiple-step process to tackle the problem of
finding intertextual references at sentence and sub-sentence level. It was found
that a critical element is the pre-filtering of potential quote candidate sentences to
reduce the number of false positives (as compared to previous studies by [20] and
[82]). Without this pre-filtering, the number of pairs that need to be compared
would have been extremely high. In the second filtering step, potential pairs were
compared by their vector representation using a neural network trained without su-
pervision. A third step was introduced, which builds on annotated n-gram pairs.
These annotations are used to train a model that creates a different vector represen-
tation such that similarity scores of some pairs with similar or equal structure are
low.

This thesis raised the question of how a model’s pre-training task affects its
performance on a transfer learning task (see section 1.2, research question 1). The
BERT model was trained on the masked language model task and the next sentence
prediction task. Also, the model contains multiple layers and was trained for four
days. Using these time and data resources lead to the model creating outputs with
rich features, resulting in good results for transfer tasks like pairing n-grams using
their embedding 4.3.1.6. However, fine-tuning that model to this specific proved to
be difficult: The last layer’s hidden state was not explicitly trained to be used for
vector similarity. Fine-tuning the model on different data using the same tasks with
which it was trained before does not improve the model’s performance on the new
task (see section 4.3.3). The siamese model, which has been explicitly trained to
create a vector representation for an input sequence, performs worse than the basic
BERT model. However, fine-tuning this model to data from the task’s domain
improved the model’s performance. The model performed even better when the
training also included positive pairs consisting of two pairs from the same sentence.
Since the model is to be used to pair n-grams with token overlap, using this kind of
target during training improved the model’s performance. The different results of
the different model types show, on the one hand, that the BERT model consists of
rich features, which, on the other hand, are hard to adjust because of the model’s
size. The slim siamese models contain a little less rich features, but they are easier
to adjust to specific tasks or specific domains (see section 1.2, research question
1). Section 4.3.2 further shows that models result in better performance when they
are trained with a task closer to how they will be used: The model was trained with
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overlapping sentence pairs, but most of them were selected negative pairs from one
of the result lists. The small size of the model made it easy to get these improved
results.

Section 4.3.2 showed that training a model, with a selection of false-positives
and with non-symmetrical encoders, can lead to significant improvements, which
is to be expected since that training task is closest to the way how the model is to
be used. Also, the fact that, in section 4.3.3, the siamese models performed compa-
rably well compared to the BERT model shows that a large pre-trained model may
not be needed for this case. Furthermore, if a model is fine-tuned with a task that
precisely fits the given use case, a smaller model can adjust faster to the new data.
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Conclusion

5.1 Conclusion

Throughout this thesis, it has been shown on multiple occasions that using pre-
trained models on transfer learning tasks leads to better results compared to using
models that have been trained from scratch:

e Section 4.1 presented a study of classifying tweets of different authors. The
authors had to be classified by whether they are a bot, male or female. Given
the immense amount of data created on Twitter every day, the amount of la-
beled data was tiny. The used models to tackle this task had been pre-trained
on a set of news articles (see section 3.3). Using that language knowledge
learned from those articles, it was possible to classify the author better than
a model that had to learn about tweets from scratch (see section 4.1.4).

e When one is to classify images in the field of medicine, the type of model to
develop depends on the available data. In an ideal case, each image would
have an exact label. However, as was the case for the study in section 4.3.4,
the labels were not per image but per set of images. This made it impossible
to classify single images. A whole set of images had to be classified at
once. Furthermore, since some images had somewhat contradicting labels,
the classification results got worse. Additionally, in the field of medicine,
the amount of data is small, the amount of labeled data even smaller. This
creates a need for pre-trained models. These models are pre-trained on a
different set of data and then transferred to another task (see section 2.1.2).

Since there are several ways to pre-train models, several experiments have been
executed to evaluate the impact of those choices considering data-selection and ar-
chitecture types. When pre-training a model on data, the chosen training target is
an auxiliary target for the model, meaning that the model most likely is not to be
evaluated on that specific training target. The actual interesting part of the model is
one of its intermediate states. Since that internal state cannot be trained explicitly,
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the process of pre-training neural networks is defined as being unsupervised (see
section 2.1.5). When an autoencoder is trained to reconstruct images, the recon-
structed images’ quality only gives a hint about the model’s performance on future
tasks. In another example, a model can be trained to create similar vector repre-
sentations to sentence pairs with similar topics. However, in a transfer learning
task, that model will have to solve a different problem but can use the pre-learned
knowledge about words and sentence structures.

The first approach presented was Boltzman Machines (see section 2.2.1). Here,
a model was trained with contrastive divergence learning to create a hidden repre-
sentation of input samples. Here, the training target is to minimize the so-called
energy of the model. That approach had the disadvantages of needing three steps
while at the same time only being able to train one layer.

Another typical choice of pre-training target is the reconstruction of data. This
is done when dealing with all kinds of data:

e When training word embeddings, the Word2Vec model [78] was trained to
reconstruct the context given one word (see section 3.1).

e In the context of image data, the encoding and full decoding of images is
called an auto-encoder (see section 3.2).

o In the context of sentences, it is possible to pass a sentence token-wise into
a recurrent layer and have a next layer reconstruct that sentence or generate
a new one (see section 3.3.1).

These reconstructing models all contain an encoding and a decoding part. Mostly,
the encoding part is the part that is re-used and transferred onto other tasks. In those
cases, the decoding part is only needed to solve the auxiliary training target. After
pre-training, the decoder is discarded, which means that many weights are trained,
although they are not needed later on. Also, having more layers in a neural network
leads to smaller gradients, and since the decoder is the final part of an autoencoder,
the encoder only receives small gradients since there are additional layers between
the encoder and the calculation of the model’s loss.

Siamese models are models that are pre-trained using an auxiliary target as the
previously mentioned models but which only have an encoder part and no decoder
part (see section 2.2.5). When training these kinds of models, the auxiliary train-
ing target is to create a vector representation for each input sample. The input
samples’ vector representations are then compared with one another. The goal is
to have small distances between vector pairs coming from so-called positive pairs
and to have large distances from so-called negative pairs. The selection of positive
and negative pairs defines what kind of vector representations are learned. In the
context of image data, a positive pair can contain two images from the same class,
whereas a negative pair can contain two images of different classes. In that case,
the vector representation will contain features such that images from the same class
share the same features.
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Section 1.2 presented several research questions regarding pre-training that
have been investigated in this thesis.

1. What are the effects of different hyper-parameter decisions for the siamese
pre-training approach? It has been shown that training a siamese model with
positive and negative pairs can create vector representations that can be used for
transfer learning tasks. At first, this may seem surprising because compared to
autoencoders, the training target contains contradicting information (see section
2.1.6): For example, if pairs are chosen randomly, a pair with very similar features
may be chosen as a negative pair. In the case of sentence data, pairs can be created
from documents with positive pairs, including sentences from the same document,
and negative pairs, including sentences from different documents. In theory, pairs
from different documents might contain the same topic but are considered nega-
tive. Also, a positive pair from the same document can contain different topics.
However, it was shown that these issues do not affect the outcome negatively in the
long run. It was shown that it is even possible to train a model using only negative
pairs (see section 3.1.4).

Apart from deciding on the training targets and creating pairs, it also has to
be decided what kind of distance function to use. It was shown that that choice af-
fects the vector representation significantly. For example, section 3.1.4 showed that
models trained with cosine distance trained the fastest. This is because cosine dis-
tance calculates the angle between two vectors and is not affected by large values.
Thus, the model only has to change the values of features slightly. On the other
hand, large values affect euclidian distance, resulting in a need for longer training.
When using Jaccard index, it has been shown that the resulting features can be used
as binary values. However, that binarization leads to a smaller expressiveness of a
model.

It was also shown that models perform better when they have been pre-trained
for a specific similarity function. This is the case when dealing with the reduc-
tion of sequences of vector representation to a single vector representation. For
example, the word embeddings in section 3.1.4 have been averaged to create a sin-
gle vector representation, although not having been trained for that method. The
effects were that the embeddings trained with cosine distance performed poorly:
Those vectors are centered around the value 0, whereas the two values —0.1 and
0.1 represent a significant change since they result in the vector pointing in a dif-
ferent direction. Word embeddings trained with other distance functions were not
affected by that problem since their vectors depend on absolute values.

2. How does the number and type of pre-training targets affect a model’s per-
formance on transfer learning tasks? The effect of training targets was shown
in section 3.2.2: Here, images with two features have been created. A line was
placed either horizontally or vertically and was either red, green, or blue. The
siamese model was trained with pairs being only determined by the bars’ direction.
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When the image encodings have been given into a decoder such that the decoder
reconstructs the original input image, the line’s direction could be reconstructed
perfectly. However, the decoder could not choose the correct color since that infor-
mation was not included in the siamese image’s vector representation. In the case
of learning vector representations for sentences by simply pairing sentences, it may
be enough to only lookout for a few keywords in the input sentence to know which
sentence pairs are positive or negative. For example, if a training corpus contains
news articles about politics and one article about football, the sentence’s vector rep-
resentation for the article dealing with football may contain only one feature. That
feature could represent the fact that a word dealing with football was used. If that
model were to be transferred to the task of classifying different football articles, its
pre-learned features would not be useful.

It was further shown that the richness of features in a vector representation af-
fects the model’s performance on transfer learning tasks (see section 3.3.4). The
more features of all possible features in a vector representation were used by a
siamese model, the better the model was performing on transfer learning tasks.
Additional training tasks were added during training to have a model create richer
features. In the context of sentences, instead of only creating a vector represen-
tation for sentence pairs, the model had to create a vector representation for each
sequence’s token. That approach resulted in richer vector representations and better
performance on transfer learning tasks while then being comparable to the perfor-
mance of the popular BERT model [32].

When using the models for similarity tasks, models that have been trained to
explicitly create vector representations that are then compared using a distance
function performed better on such tasks than models where the vector representa-
tion was only an internal state. This phenomenon was shown in section 3.1.4 when
dealing word similarities as well as section 4.3.1.6 when comparing sentences. For
the task of finding similar n-grams, the model that was trained with positive pairs
that consisted of overlapping sentence parts performed better than other models
when being used for exactly that task.

3. What is the relation between a slim encoder like a small siamese model and
a large general-purpose model like BERT? The BERT model is a model that
consists of many layers, was trained for several days, and on a very huge dataset.
Throughout this thesis, it was shown that the learned features of that model are
very rich and lead to good results in many tasks (see sections 3.3.4 and 4.3.3).
However, adjusting that model onto specific tasks proved to be difficult because of
the model’s size. In section 4.1, several models have been fine-tuned for a specific
classification task. The slim siamese models achieved good results after one hour
of training, while the BERT model only achieved comparable results after having
been fine-tuned for 24 hours. Similarly, the BERT model achieved the best results
for the evaluation on the small gold standard quotes out-of-the-box (see section
4.3.3). However, several fine-tuning methods did not improve the performance on
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that dataset. On the other hand, the small siamese model performed a little worse
but could be fine-tuned to perform a little better than the BERT model.

Consequently, it is still encouraged to always try the BERT model’s perfor-
mance on any NLP task. If the task includes a classification problem, meaning a
classifier has to be added to the existing layers, the BERT model will probably al-
ways perform best because the learned features can be used. However, fine-tuning
the model for a similarity task proved to be difficult since the last layer’s output
was not trained to be used for similarity. Thus, when fine-tuning a pre-trained NLP
model requires the inclusion of a specific pre-training task, it is recommended to
use a smaller model since it can easier adapt to a specific task.

5.2 Summary and Outlook

Section 1.1 addressed the problem of large models which have been trained using
large resources, covering hardware, data, and time. This trend in machine learn-
ing is called Red Al [116] and creates the problem that researchers without these
resources cannot create comparable results. Green Al, in contrast, focuses on ef-
ficiency. This includes creating comparable results using fewer resources. The
positive effect of pre-trained models was shown throughout this thesis: Using a
pre-trained model results in faster training time since a model does not need to
learn features from scratch. However, a model’s performance is affected by how it
was pre-trained, including the used pre-training task and data. A central finding is
that a relatively small model can compete on different tasks with large pre-trained
models given the correct pre-training target. This shows the effectiveness of the
siamese pre-training approach as well as that putting thought into a model’s archi-
tecture can be as valuable as having expensive hardware.

Consequently, researchers are motivated to create their own pre-trained models
for data domains, for which there are no existing pre-trained models. In this thesis,
the domains of textual and visual data were used as exemplary use cases. Future
work has to focus on data from other domains, like audio data, to show further the
general applicability of the presented concept in this thesis.
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