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We consider a situation where the distribution of a random variable is being estimated
by the empirical distribution of noisy measurements of that variable. This is common
practice in, for example, teacher value-added models and other fixed-effect models for
panel data. We use an asymptotic embedding where the noise shrinks with the sample
size to calculate the leading bias in the empirical distribution arising from the presence
of noise. The leading bias in the empirical quantile function is equally obtained. These
calculations are new in the literature, where only results on smooth functionals such as
the mean and variance have been derived. We provide both analytical and jackknife
corrections that recenter the limit distribution and yield confidence intervals with
correct coverage in large samples. Our approach can be connected to corrections for
selection bias and shrinkage estimation and is to be contrasted with deconvolution.
Simulation results confirm the much-improved sampling behavior of the corrected
estimators. An empirical illustration on heterogeneity in deviations from the law of
one price is equally provided.
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1 Introduction

Let θ1, . . . , θn be a random sample from a distribution F that is of interest. Suppose that

we only observe noisy measurements of these variables, say ϑ1, . . . , ϑn. A popular approach

is to do inference on F and its functionals using the empirical distribution of ϑ1, . . . , ϑn.

This is common practice when analyzing panel data with heterogenous coefficients. In the

literature on student achievement, for example, θi is a teacher effect, ϑi is an estimator

of it obtained from data on student test scores, and we care about the distribution of

teacher value-added (see, e.g., Jackson, Rockoff and Staiger 2014 for an overview). In the

same vein, Guvenen (2009), Browning, Ejrnæs and Alvarez (2010), and Magnac and Roux

(2021) estimate heterogenous earning profiles, while Ahn, Choi, Gale and Kariv (2014)

find substantial heterogeneity in ambiguity aversion In a nonlinear fixed-effect model, the

marginal effect is heterogenous across units and interest lies in the distribution of these

effects as well as its functionals (Chamberlain 1984, Hahn and Newey 2004). Although the

plug-in approach is popular, using ϑ1, . . . , ϑn rather than θ1, . . . , θn introduces bias that

is almost entirely ignored in practice. Barras, Gagliardini and Scaillet (2021), who are

interested in the distribution of the skill of fund managers, find that not accounting for

bias leads to substantial overestimation of tail mass and misses to pick up the substantial

asymmetry in the skill distribution.

We analyze the properties of the plug-in estimator of F in a location-scale setting where

ϑi = θi +
σi√
m
εi, εi | (θi, σ2

i ) ∼ i.i.d. (0, 1),

where m is a parameter that grows with n. As the variance of the (heteroskedastic) noise

is σ2
i /m, this device shrinks the noise as the sample size grows. This is a very natural

asymptotic embedding in settings where ϑi is an estimator of θi obtained from a sample

of size m, as in a panel data setting or meta-analysis (Vivalt, 2015). It is related to,

yet different from, an approach based on small measurement-error approximations as in

Chesher (1991, 2017),1 and has precedent in the analysis of fixed-effect models for panel

1Chesher (1991) provides expansions for densities, while we focus on distribution and quantile functions.
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data, although for different purposes, as discussed in more detail below (see, e.g., Hahn

and Kuersteiner 2002 and Alvarez and Arellano 2003).

Efron (2011) essentially entertains the homoskedastic setting with normal noise, where

ϑi| θi ∼ N(θi, σ
2/m),

and defines selection bias as the tendency of the ϑi’s associated with the (in magnitude)

largest θi’s to be larger than their corresponding θi. He proposes to deal with selection bias

by using the well-known Empirical Bayes estimator of Robbins (1956), which here is equal

to

ϑi +
σ2

m
∇1 log p(ϑi),

where p is the marginal density of the ϑi and ∇1 denotes the first-derivative operator. For

example, when θi ∼ N(0, ψ2) this expression then yields the (infeasible) shrinkage estimator(
1− σ2/m

σ2/m+ ψ2

)
ϑi,

a parametric plug-in estimator of which would be the James and Stein (1961) estimator.

More generally, non-parametric implementation would also require estimation of p and its

first derivative. Shrinkage to the overall mean (in this case zero) is intuitive, as selection

bias essentially manifests itself through the tails of the empirical distribution of the ϑi

being too thick.2 Shrinkage is commonly-applied in empirical work (see, e.g., Rockoff 2004;

Chetty, Friedman and Rockoff 2014). It should be stressed, though, that, while shrinkage

improves on ϑ1, . . . , ϑn in terms of estimation risk, it does not lead to preferable estimators

of the distribution F or its moments.

Chesher (2017) discusses the impact of noise in the explanatory variables in a quantile-regression model;

this is a different setup than the one considered here. Evdokimov and Zeleneev (2020) use our device of

measurement error that shrinks with the sample size to correct inference in generalized method-of-moment

problems.
2The same shrinkage factor is applied to each ϑi, a consequence of the noise being homoskedastic. How

to deal with heteroskedastic noise in an Empirical Bayes framework is not obvious. Discussion and a recent

contribution can be found in and Weinstein, Ma, Brown and Zhang (2018).
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The approach taken here is different from Efron (2011). Without making parametric

assumptions on F , we calculate the (leading) bias of the naive plug-in estimator of the

distribution,

F̂ (θ) := n−1
n∑
i=1

1{ϑi ≤ θ}.

This calculation allows to construct estimators that correct for the bias directly. In the

James-Stein problem, where θi ∼ N(η, ψ2), for example, the bias under homoskedastic

noise equals

−θ − η
2

σ2/ψ2

m
φ

(
θ − η
ψ

)
+ o(m−1).

Thus, the empirical distribution is indeed upward biased in the left tail and downward

biased in the right tail. A bias order of m−1 implies incorrect coverage of confidence

intervals unless n/m2 → 0. We present plug-in and jackknife estimators of the leading bias

and show that the bias-corrected estimators are asymptotically normal with zero mean and

variance F (θ) (1−F (θ)) as long as n/m3 → 0. So, bias correction is preferable to the naive

plug-in approach for typical data sizes encountered in practice, where m tends to be quite

small relative to n. We also provide corresponding bias-corrected estimators of the quantile

function of F .

If the distribution of σi εi is fully known, recovering F is a (generalized) deconvolution

problem that can be solved for fixed m. Deconvolution-based estimators are well studied

(see, e.g., Carroll and Hall 1988 and Delaigle and Meister 2008). However, they have a

very slow rate of convergence and it is well documented that they can behave quite poorly

in small samples.3 In response to this, Efron (2016) has recently argued for a return to

a more parametric approach. Our approach delivers intuitive estimators that enjoy the

usual parametric convergence rate and are numerically well behaved. Although it does

3There are also solutions to the measurement-error problem based on repeated measurements (or

instrumental variables), coupled with suitable independent restrictions (see, for example, Horowitz and

Markatou 1996, Li and Vuong 1998, Hu 2008, Hu and Schennach 2008, and Bonhomme, Jochmans and

Robin 2016a,b). These can be useful alternatives in static models for panel data, where the object of

interest is the distribution of the random intercept, as in the work of Horowitz and Markatou (1996), for

example.
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not deliver a fixed-m consistent estimator, bias correction further ensures that size-correct

inference can be performed, provided that n/m3 is small. It is not clear how to conduct

inference based on deconvolution estimators.

Working out the statistical properties of F̂ (and of its quantile function) is non-trivial

because F̂ is a non-smooth function of the data ϑ1, . . . , ϑn. As such, the approach taken

here is different from, and complementary to, recent work on estimating average marginal

effects in panel data models, which only looks at smooth functionals such as the mean

and variance (see, e.g., Fernández-Val and Lee 2013; Okui and Yanagi 2019). The impact

of noise on smooth transformations of the ϑi can be handled using conventional methods

based on Taylor-series expansions. We contrast such an approach with our derivations

below. How to perform inference on the quantiles of marginal effects in nonlinear panel

models is a long-standing open question (Dhaene and Jochmans, 2015), and the current

work can be seen as a first step in that direction.

In work contemporaneous to our own, Okui and Yanagi (2020) derive the bias of a

kernel-smoothed estimator of F and its derivative. Such smoothing greatly facilitates

the calculation of the bias, making it amenable to conventional analysis. However, it

also introduces additional bias terms that require much stronger moment conditions as

well as further restrictions on the relative growth rates of n, m, and the bandwidth that

governs the smoothing. Nevertheless, the (leading) bias term obtained in Okui and Yanagi

(2020, Theorem 3) coincides with ours in Proposition 1 below. Additional discussion on

and comparison between the two different approaches is given in Okui and Yanagi (2020,

p. 169–170).

2 Large-sample properties of plug-in estimators

Let F be a univariate distribution on the real line. We are interested in estimation of

and inference on F and its quantile function q(τ) := infθ{θ : F (θ) ≥ τ}. If a random

sample θ1, . . . , θn from F would be available this would be a standard problem. We instead

consider the situation where θ1, . . . , θn themselves are unobserved and we observe noisy
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measurements ϑ1, . . . , ϑn, with variances σ2
1/m, . . . , σ

2
n/m for a positive real number m

which, in our asymptotic analysis below, will be required to grow with n. We assume the

following.

Assumption 1. The variables (θi, σ
2
i , ϑi) are i.i.d. across i, with

E(ϑi | θi, σ2
i ) = θi , E((ϑi − θi)2 | θi, σ2

i ) =
σ2
i

m
,

and σ2
i ∈ [σ2, σ2] ⊂ (0,∞) for all i.

Our setup reflects a situation where the noisy measurements ϑ1, . . . , ϑn converge in squared

mean to θ1, . . . , θn at the rate m−1. A leading case is the situation where ϑi is an estimator

of θi obtained from a sample of size m that converges at the parametric rate.4 We allow

θi and σ2
i to be correlated, implying that the noise ϑi − θi is not independent of θi. Hence,

we allow for measurement error to be non-classical. Recovering the distribution of θi from

a sample of (ϑi, σ
2
i ) is, therefore, not a standard deconvolution problem.

It is common to estimate F (θ) by

F̂ (θ) := n−1
n∑
i=1

1{ϑi ≤ θ},

the empirical distribution of the ϑi at θ. As we will show below, under suitable regularity

conditions, such plug-in estimators are consistent and asymptotically normal as n → ∞
4Everything to follow can be readily modified to different convergence rates as well as to the case where

var(ϑi| θi, σ2
i ) = σ2

i /mi,

with mi := pim for a random variable pi ∈ (0, 1]. It suffices to redefine σ2
i as σ2

i /pi. When the ϑi represent

estimators this device allows for the sample size to vary with i. For example, in a panel data setting, it

would cover unbalanced panels under a missing-at-random assumption. Further, the requirement that ϑi

is unbiased can be relaxed to allow for standard non-linearity bias of order m−1. We do not do this here as

it is possible quite generally to reduce the bias down to O(m−3/2), for example via a jackknife or bootstrap

correction, making it negligible in our analysis below. Furthermore, the split-sample jackknife approach to

bias correction that we discuss below would automatically take care of this additional m−1 bias without

modification.
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provided that m grows with n so that n/m2 converges to a finite constant. The use of

ϑ1, . . . , ϑn rather than θ1, . . . , θn introduces bias of the order m−1, in general. This bias

implies that test statistics are size distorted and the coverage of confidence sets is incorrect

unless n/m2 converges to zero.

The bias problem is easy to see (and fix) when interest lies in smooth functionals of F ,

µ := E(ϕ(θi)),

for a (multiple-times) differentiable function ϕ. An (infeasible) plug-in estimator based on

θ1, . . . , θn would be

µ̃ := n−1
n∑
i=1

ϕ(θi).

Clearly, this estimator is unbiased and satisfies µ̃
a∼ N(µ, σ2

µ/n) as soon as σ2
µ := var(ϕ(θi))

exists. For the feasible plug-in estimator of µ,

µ̂ := n−1
n∑
i=1

ϕ(ϑi),

under standard regularity conditions, a Taylor-series expansion of ϕi(ϑi) around θi yields

E(µ̂− µ) =
bµ
m

+O(m−3/2), bµ :=
E(∇2ϕ(θi)σ

2
i )

2
,

and

var(µ̂) =
σ2
µ

n
+O

(
n−1m−1

)
.

Hence, letting z ∼ N(0, 1), we have

µ̂− µ
σµ/
√
n

a∼ z +

√
n

m2

bµ
σµ
∼ N(c bµ/σµ, σ

2
µ),

as n/m2 → c2 < ∞ when n,m → ∞. The noise in ϑ1, . . . , ϑn introduces bias unless ϕ is

linear. It can be corrected for by subtracting a plug-in estimator of bµ/m from µ̂. Doing so,

again under regularity conditions, delivers and estimator that is asymptotically unbiased

as long as n/m3 → 0.
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2.1 Distribution function

The machinery from above cannot be applied to deduce the bias of F̂ as it is a step

function and, hence, non-differentiable. We will derive its leading bias under the following

conditions. To state them, we let

εi :=
ϑi − θi
σi/
√
m

and write f for the density function of F .

Assumption 2. The variables εi are independent of (θi, σ
2
i ), their distribution is absolutely

continuous and has finite fourth-order moment. The function f is three times differentiable

with uniformly bounded derivatives, and one of the following two sets of conditions holds:

A. The function E(σp+1
i |θi = θ) is p-times differentiable for p = 1, 2, the joint density

of (θi, σi) exists, the conditional density function of θi given σi is twice differentiable with

respect to θi and the derivatives are bounded in absolute value by a function e(σi) such that

E(e(σi)) <∞.

B. There exists a deterministic function σ so that σi = σ(θi) for all i; and (ii) σ is three

times differentiable and has uniformly-bounded derivatives.

Assumption 2 imposes smoothess on certain densities and conditional expectations but not

on the estimator of F .

Define the function

β(θ) :=
E(σ2

i |θi = θ) f(θ)

2
,

which is well-behaved under Assumption 2, and let

bF (θ) := β′(θ)

be its derivative. We also introduce the covariance function

σF (θ, θ′) := F (θ ∧ θ′)− F (θ)F (θ′),

where we use θ ∧ θ′ to denote min{θ, θ′}. Proposition 1 summarizes the large-sample

properties of F̂ .
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Proposition 1. Let Assumptions 1 and 2 hold. Then, as n,m→∞,

E(F̂ (θ))− F (θ) =
bF (θ)

m
+O(m−3/2), cov

(
F̂ (θ), F̂ (θ′)

)
=
σF (θ, θ′)

n
+O(n−1m−1),

where the order of the remainder terms is uniform in θ. If furthermore n/m2 → c ∈

[0,+∞), then
√
n

(
F̂ (θ)− F (θ)− bF (θ)

m

)
 GF (θ),

where GF (θ) is a mean zero Gaussian process with covariance function σF (θ1, θ2).

Proof. The proof is in Appendix A.

To illustrate the result suppose that σ2
i is independent of θi and that θi has density function

f(θ) =
1

ψ
φ

(
θ − η
ψ

)
,

as in the James and Stein (1961) problem. Letting σ2 denote the mean of the σ2
i an

application of Proposition 1 yields

bF (θ) = −θ − η
2

σ2

ψ2
φ

(
θ − η
ψ

)
.

Thus, F̂ (θ) is upward biased when θ < η and is downward biased when θ > η. This finding

is a manifestation of the phenomenon of regression to the mean (or selection bias, or the

winner’s curse; see Efron 2011). It implies that the empirical distribution tends to be too

disperse.

2.2 Quantile function

The bias in F̂ translates to bias in estimators of the quantile function. A natural estimator

of the quantile function is the left-inverse of F̂ . With this definition, the plug-in estimator

of the τth-quantile is

q̂(τ) := ϑ(dτne),

where ϑ(dτne) is the dτneth order statistic of our sample, where dae delivers the smallest

integer at least as large as a.
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To calculate the leading bias in q̂(τ) observe that it is an (approximate) solution to the

empirical moment condition

F̂ (q)− τ = 0

(with respect to q). From Proposition 1 we know that

E(F̂ (q(τ)))− τ =
bF (q(τ))

m
+O(m−3/2),

uniformly in τ , so the moment condition that defines the estimator q̂(τ) is biased. Letting

bq(τ) := −bF (q(τ))

f(q(τ))
, σ2

q (τ) :=
τ(1− τ)

f(q(τ))2
,

we obtain the following result.

Proposition 2. Let the Assumptions 1 and 2 hold. For τ ∈ (0, 1), assume that f > 0 in

a neighborhood of q(τ). Then,

√
n

(
q̂(τ)− q(τ)− bq(τ)

m

)
d→ N(0, σ2

q (τ)),

as n,m→∞ with n/m2 → c ∈ [0,+∞).

Proof. The proof is in Appendix A.

As an example, when θi ∼ N(η, ψ2), independent of σ2
i , we have

bq(τ) =
σ2/ψ2

2
(q(τ)− η),

which, in line with our discussion on regression to the mean above, is positive for all

quantiles below the median and negative for all quantiles above the median. The median

itself is, in this particular case, estimated without plug-in bias of order m−1. It will, of

course, still be subject to the usual n−1 bias arising from the nonlinear nature of the

estimating equation.
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3 Estimation and inference

Propositions 1 and 2 complement the existing results on the bias in smooth functionals

(Fernández-Val and Lee 2013; Okui and Yanagi 2019) of the distribution of heterogenous

parameters in panel data models. Our calculations confirm that the order of the bias in the

empirical distribution and in the quantile function is of the same order as in the smooth

case, m−1.

3.1 Split-panel jackknife estimation

Importantly, our results validate a traditional jackknife approach to bias correction as in

Hahn and Newey (2004) and Dhaene and Jochmans (2015). Such an approach exploits

the fact that the bias is proportional to m−1 and is based on re-estimating θ1, . . . , θn from

subsamples. The simplicity of such a method makes it very useful in panel data applications,

for example.

To illustrate how the jackknife would work here, consider a stationary (balanced) n×m

panel. Let ϑi,m1 be an estimator of θi constructed from the n×m1 subpanel consisting of

the first m1 cross sections only. Then

F̂m1(θ) := n−1
n∑
i=1

1{ϑi,m1 ≤ θ}

is the plug-in estimator of F (θ) based on this subpanel alone. From Proposition 1 it follows

that

E(F̂m1(θ)) = F (θ) +
bF (θ)

m1

+O(m
−3/2
1 ).

Using the remaining m2 := m − m1 cross sections from the full panel we can equally

calculate estimators ϑi,m2 and subsequently construct

F̂m2(θ) := n−1
n∑
i=1

1{ϑi,m2 ≤ θ},

for which

E(F̂m2(θ)) = F (θ) +
bF (θ)

m2

+O(m
−3/2
2 )
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follows in the same way. Consequently,

b̃F (θ) := m1F̂m1(θ) +m2F̂m2(θ)−mF̂ (θ)

is a split-panel jackknife estimator of the leading bias term bF (θ). Hence,

F̃ (θ) := F̂ (θ)− b̃F (θ)

m
.

is a nonparametric bias-corrected estimator.

A jackknife estimator of the quantile function can be defined in the same way. Moreover,

let ϑ(dτne),m1 and ϑ(dτne),m2 be the dτne order statistic of the re-estimated quantities in the

first and second subsample, respectively. Recall that ϑ(dτne),m1 is the (approximate) solution

to F̂m1(q)− τ = 0, and so is our estimator of q(τ) as obtained from the information in the

n×m1 subpanel only. As before,

b̃q(τ) := m1ϑ(dτne),m1 +m2ϑ(dτne),m2 −mϑ(dτne)

is a nonparametric estimator of bq(τ) that gives rise to a jackknife bias-corrected estimator

of the quantile function.

The large-sample behavior of these jackknife estimators is the same as for the analytic

corrections in Propositions 3 and 4 below. The split-sample jackknife is simple to implement

but requires access to the original data from which ϑ1, . . . , ϑn were computed. This can

be infeasible in meta-analysis problems, where each of the ϑi is an estimator constructed

from a different data set that need not all be accessible. It can also be complicated in

structural econometric models, where ϑi may be the solution to a cumbersome optimization

programme that can be time-consuming to solve. We discuss an alternative bias-correction

estimator next.

3.2 Analytic bias correction

We will formulate regularity conditions for a plug-in estimator of the bias to be consistent

under the maintained assumption that the σ2
1, . . . , σ

2
m are known. We conjecture that,
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under suitable conditions, the results below will continue to go through when the σ2
i are

replaced by estimators.

A bias-corrected estimator based on Proposition 1 takes the form

F̌ (θ) := F̂ (θ)− b̂F (θ)

m
, b̂F (θ) := −

(nh2)−1
∑n

i=1 σ
2
i k
′ (ϑi−θ

h

)
2

,

where k′ is the derivative of kernel function k and h is a non-negative bandwidth parameter.

Thus, we estimate the bias using standard kernel methods. For simplicity, we will use a

Gaussian kernel throughout, so k′(η) := −η φ(η).

We establish the asymptotic behavior of F̌ under the following conditions.

Assumption 3.

(i) The conditional density of θi given σi is five times differentiable with respect to θi and

the derivatives are bounded in absolute value by a function e(σi) such that E(e(σi)) <∞.

(ii) There exists an integer ω > 2, and real numbers κ > 1 + (1−ω−1)−1 and η > 0 so that

supθ(1 + |θ|κ) f(θ) = O(1) and supθ(1 + |θ|1+η) |∇1bF (θ)| = O(1), and supθ|bF (θ)| = O(1).

(iii) The density of ε, g, satisfies g(ε) ≤ C (1 + |ε|)−α for finite constant C and α ≥ κ+ 1.

Assumption 3 contains simple smoothness and boundedness requirements on the conditional

density of θi given σ2
i , as well as tail conditions on the marginal density of the θi and on

the bias function bF (θ).

We have the following result.

Proposition 3. Let Assumptions 1, 2, and 3 hold and let ε := (3 − ω−1)ω−1 > 0. If

h = O(m−1/2), h−1 = O(m2/3−4/9 ε), and h−1 = O(n), as n → ∞ and m → ∞ with

n/m4 → 0, then
√
n(F̌ (θ)− F (θ)) GF (θ)

as a stochastic process indexed by θ, where GF (θ) is a mean zero Gaussian process with

covariance function σF (θ1, θ2).

Proof. The proof is in Appendix B.
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The implications of Proposition 3 are qualitatively similar to those for smooth functionals

discussed above. Indeed, for any fixed θ, it implies that

F̌ (θ)
a∼ N(F (θ), F (θ)(1− F (θ))/n)

as n → ∞ and m → ∞ with n/m4 → 0. Thus, the leading bias is removed from F̂

without incurring any cost in terms of (asymptotic) precision. Given the correction term,

the sample variance of

1{ϑi ≤ θ}+
1

2

1

mh2
σ2
i κ
′
(
ϑi − θ
h

)
is a more natural basis for inference in small samples than is that of 1{ϑi ≤ θ}.

A data-driven way of choosing h is by cross validation. A plug-in estimator of the

integrated squared error
∫ +∞
−∞ (F̌ (θ)−F (θ))2 dθ (up to multiplicative and additive constants)

is

v(h) :=
n∑
i=1

n∑
j=1

σ2
i σ

2
j

h2
φ′(ϑi, ϑj;h) +

n∑
i=1

∑
j 6=i

σ2
i

h

(
mφ′

(
ϑi − ϑj
h

)
− nm

n− 1
φ

(
ϑi − ϑj
h

))
,

where we use the shorthand

φ′(ϑi, ϑj;h) :=
1

4

1√
2h
φ

(
ϑi − ϑj√

2h

)(
1

2
− (ϑi + ϑj)

2

4h2
+
ϑiϑj
h2

)
.

See Appendix C for details on the derivation. The cross-validated bandwidth then is

ȟ := arg minh v(h) on the interval (0,+∞).

Now turn the bias-corrected estimation of the quantile function. Proposition 2 readily

suggests a bias-corrected estimator of the form

q̂(τ)− b̂q(τ)

m
, b̂q(τ) := − b̂F (q̂(τ))

f̂(q̂(τ))
,

using obvious notation. While (under suitable regularity conditions) such an estimator

successfully reduces bias it has the unattractive property that it requires a non-parametric

estimator of the density f , which further shows up in the denominator.

An alternative estimator that avoids this issue is

q̌(τ) := ϑ(dτ̂∗ne), τ̂ ∗ := τ +
b̂F (q̂(τ))

m
,
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The justification for this estimator comes from the fact that E(F̂ (q(τ))) − τ ∗ = O(m−2),

where τ ∗ = τ + bF (q(τ))/m, and its interpretation is intuitive. Given the noise in the ϑi

relative to the θi, the empirical distribution of the former is too heavy-tailed relative to

the latter, and so q̂(τ) estimates a quantile that is too extreme, on average. Changing the

quantile of interest from τ to τ ∗ adjusts the naive estimator and corrects for regression to

the mean.

Proposition 4. Let the assumptions stated in Proposition 3 hold. For τ ∈ (0, 1), assume

that f > 0 in a neighborhood of q(τ). Then,

√
n (q̌(τ)− q(τ))

d→ N(0, σ2
q (τ)),

as n,m→∞ with n/m4 → 0.

Proof. The proof is in Appendix B.

The corrected estimator has the same asymptotic variance as the uncorrected estimator.

It is well-known that plug-in estimators of σ2
q can perform quite poorly in small samples

(Maritz and Jarrett 1978). Typically, researchers rely on the bootstrap, and we suggest

doing so here. Moreover, draw (many) random samples of size n from the original sample

ϑ1, . . . , ϑn and re-estimate q(τ) by the bias-corrected estimator for each such sample. Then

construct confidence intervals for q(τ) using the percentiles of the empirical distribution of

these estimates. Note that, again, this bootstrap procedure does not involve re-estimation

of the individual θi.

4 Numerical illustrations

4.1 Simulated data

To support our theory we provide simulation results for a James and Stein (1961) problem

where θi ∼ N(0, ψ2) and we have access to an n×m panel on independent realizations of

the random variable

xit| θi ∼ N(θi, σ
2).
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This setup is a simple random-coefficient model. It is similar to the classic many normal

means problem of Neyman and Scott (1948). While their focus was on consistent estimation

of the within-group variance, σ2, for fixed m, our focus is on between-group characteristics

and the distribution of the θi as a whole. We estimate θi by the fixed-effect estimator, i.e.,

ϑi = m−1
m∑
t=1

xit.

The sampling variance of ϑi|θi is σ2/m. Rather than assuming this variance to be known

we implement our analytical bias correction using the estimator

s2i := (m− 1)−1
m∑
t=1

(xit − ϑi)2.

We do not make use of the fact that the ϑi are homoskedastic in estimating the noise

or in constructing the bias correction. Moreover, the implementation of our procedure is

non-parametric in the noise distribution.

A deconvolution argument implies that

ϑi ∼ N(0, ψ2 + σ2/m).

Thus, indeed, the empirical distribution of the fixed-effect estimator is too fat-tailed. In

particular, the sample variance of ϑ1, . . . , ϑn,

ψ̂2 :=
1

n− 1

n∑
i=1

(ϑi − ϑ)2, ϑ := n−1
n∑
i=1

ϑi,

is a biased estimator of ψ2. To illustrate how this invalidates inference in typically-sized

data sets we simulated data for ψ2 = 1 (so F is standard normal) and σ2 = 5. The panel

dimensions (n,m) reported on are (50, 3), (100, 4), and (200, 5). Table 1 shows the bias and

standard deviation of ψ̂2 as well as the empirical rejection frequency of the usual two-sided

t-test for the null that ψ2 = 1. The nominal size is set to 5%. In practice, however, the test

rejects in virtually all of the 10, 000 replications. The table provides the same summary

statistics for the bias-corrected estimator

ψ̌2 :=
1

n− 1

n∑
i=1

(
(ϑi − ϑ)2 − s2i

m

)
.
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The adjustment reduces the estimator’s bias relative to its standard error and brings down

the empirical rejection frequencies to just over their nominal value for the sample sizes

considered.

Table 1: Inference on ψ2 in the James-Stein problem from n×m panel data.

bias std se/std size (5%)

n m ψ̂2 ψ̌2 ψ̂2 ψ̌2 ψ̂2 ψ̌2 ψ̂2 ψ̌2

50 3 1.616 -0.054 0.525 0.577 0.964 0.971 0.973 0.082

100 4 1.224 -0.028 0.321 0.337 0.966 0.969 0.997 0.073

200 5 0.989 -0.010 0.199 0.205 0.985 0.985 1.000 0.062

Table notes. ψ̂2 is the plug-in estimator of ψ2. ψ̌2 is its (analytically) bias-corrected version constructed

using estimators of the variance of the noise distributions. The table reports the bias and standard

deviation of these estimators, along with the ratio of the average standard error to the standard deviation

and empirical rejection frequencies of a two-sided t-test for the null that ψ2 = 1, which is the value with

which the data were generated.

A popular approach in empirical work to deal with noise in ϑ1, . . . , ϑn is shrinkage

estimation (see, e.g., Chetty, Friedman and Rockoff 2014). This procedure is not designed

to improve estimation and inference of F or its moments, however. In the current setting,

the (infeasible, parametric) shrinkage estimator is simply(
1− σ2/m

σ2/m+ ψ2

)
ϑi.

Its exact sampling variance is(
ψ2

σ2/m+ ψ2

)
ψ2 = ψ2 − σ2/ψ2

m
+ o(m−1).

It follows that the sample variance of the shrunken ϑ1, . . . , ϑn has a bias that is of the

same order as that in the sample variance of ϑ1, . . . , ϑn. Interestingly, note that, here, this

estimator overcorrects for the presence of noise, and so will be underestimating the true

variance, ψ2, on average.

The upper two plots in Figures 1, 2, and 3 provide simulation results for the distribution

function F for the same Monte Carlo designs. The figures deal with the sample sizes
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(50, 3), (100, 4), (200, 5), respectively. The left plots contain (the average over the Monte

Carlo replications of) the analytically bias-corrected estimator (solid blue line), with the

bandwidth chosen according to a cross-validation procedure, together with 95% confidence

bands placed around in. Each of the plots also provide the average of the naive plug-

in estimator (dashed red line), the empirical distribution of the Empirical-Bayes point

estimates (dashed-dotted purple line), and the actual standard-normal distribution that

is being estimated (solid black line).5 The upper right plots in Figures 1, 2, and 3 have

the same structure, only now the bias-corrected estimator being plotted is the split-sample

jackknife.

The simulations clearly show the substantial bias in the naive estimator. This bias

becomes more pronounced relative to its standard error as the sample size grows and,

indeed, F̂ starts falling outside of the confidence bands (of the bias corrected estimator) as

the sample size increases. The Empirical-Bayes estimator is less biased than F̂ . However,

its bias is of the same order and so, as the sample size grows it does not move toward F

but, rather, towards F̂ .6 The confidence bands of F̌ and F̃ settle around F as the sample

grows. The results also show near identical performance of the split-sample approach and

the analytical approach based on our bias formula. Indeed, the curves in the left and right

plots are virtually indistinguishable.

The reduction in bias in our estimators of F is again sufficient to bring the empirical

size of tests in line with their nominal size. To see this Table 2 provides empirical rejection

frequencies of two-sided tests at the 5% level for F at each of its deciles using both F̂ and

F̌ . The rejection frequencies based on the naive estimator are much too high for all sample

sizes and deciles and get worse as the sample gets larger. Empirical size is much closer to

5Empirical Bayes was implemented non-parametrically (and correctly assuming homoskedasticity)

based on the formula stated in the introduction using a kernel estimator and the optimal bandwidth

that assumes knowledge of the normality of the target distribution.
6Recall that the Empirical-Bayes estimator is not designed for inference on F but, in stead, aims to

minimize risk in estimating θ1, . . . , θn. In terms of RMSE it dominates ϑ1, . . . , ϑn. For the three sample

sizes considered here, the RMSEs are 1.667, 1.246, and 1.000 for the plug-in estimators and 1.233, 1.018,

.874 for Empirical Bayes.
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Figure 1: Estimation of F and q in the James-Stein problem from 50× 3 panel data.

-3 -2 -1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

D
IS

T
R

IB
U

T
IO

N
ANALYTICAL CORRECTION

-3 -2 -1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

SPLIT-SAMPLE CORRECTION

-1.5 -1 -0.5 0 0.5 1 1.5

-2

-1

0

1

2

Q
U

A
N

T
IL

E
S

-1.5 -1 -0.5 0 0.5 1 1.5

-2

-1

0

1

2

Figure notes. The upper plots contain the average (over the Monte Carlo replications) distribution function

(full blue line) obtained via analytical bias correction (left plot) and split-sample jackknife estimation (right

plot) along with 95% confidence intervals around them at each of the quantiles of F (blue ◦). Each plot

also contains the true curve (full black line) and the average of the empirical distribution function of the

estimated θi (dashed red line) and of their Empirical Bayes adjustments (dashed-dotted purple line). The

lower plots contain corresponding QQ-plots of the average bias-corrected quantile function (blue ∗) at each

of the deciles of F together with 95% confidence intervals. The 45◦ line (dashed black line) corresponds to

the truth. Average estimates for the naive (red ∗) and Empirical Bayes (purple ∗) estimator are equally

pictured.
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Figure 2: Estimation of F and q in the James-Stein problem from 100× 4 panel data.
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Figure notes. The upper plots contain the average (over the Monte Carlo replications) distribution function

(full blue line) obtained via analytical bias correction (left plot) and split-sample jackknife estimation (right

plot) along with 95% confidence intervals around them at each of the quantiles of F (blue ◦). Each plot

also contains the true curve (full black line) and the average of the empirical distribution function of the

estimated θi (dashed red line) and of their Empirical Bayes adjustments (dashed-dotted purple line). The

lower plots contain corresponding QQ-plots of the average bias-corrected quantile function (blue ∗) at each

of the deciles of F together with 95% confidence intervals. The 45◦ line (dashed black line) corresponds to

the truth. Average estimates for the naive (red ∗) and Empirical Bayes (purple ∗) estimator are equally

pictured.
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Figure 3: Estimation of F and q in the James-Stein problem from 200× 5 panel data.
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Figure notes. The upper plots contain the average (over the Monte Carlo replications) distribution function

(full blue line) obtained via analytical bias correction (left plot) and split-sample jackknife estimation (right

plot) along with 95% confidence intervals around them at each of the quantiles of F (blue ◦). Each plot

also contains the true curve (full black line) and the average of the empirical distribution function of the

estimated θi (dashed red line) and of their Empirical Bayes adjustments (dashed-dotted purple line). The

lower plots contain corresponding QQ-plots of the average bias-corrected quantile function (blue ∗) at each

of the deciles of F together with 95% confidence intervals. The 45◦ line (dashed black line) corresponds to

the truth. Average estimates for the naive (red ∗) and Empirical Bayes (purple ∗) estimator are equally

pictured.
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nominal size after adjusting for noise, and this improvement is observed at all deciles of

the distribution.

Table 2: Inference on F in the James-Stein problem from n×m panel data.

τ .1 .2 .3 .4 .5 .6 .7 .8 .9

(n,m) = (50, 3)

F̂ 0.4814 0.5518 0.3695 0.1530 0.0681 0.1598 0.3801 0.5610 0.4828

F̌ 0.0600 0.0928 0.1039 0.0785 0.0563 0.0745 0.1029 0.0891 0.0628

(n,m) = (100, 4)

F̂ 0.6962 0.7304 0.5564 0.2280 0.0566 0.2312 0.5586 0.7352 0.7034

F̌ 0.0608 0.0848 0.0920 0.0664 0.0494 0.0734 0.0932 0.0782 0.0532

(n,m) = (200, 5)

F̂ 0.926 0.902 0.7634 0.3288 0.0576 0.3212 0.7646 0.903 0.9146

F̌ 0.0536 0.0828 0.0996 0.0770 0.0496 0.0792 0.0978 0.0780 0.0554

Table notes. F̂ is the empirical distribution of the ϑi. F̌ is its (analytically) bias-corrected version

constructed using estimators of the variance of the noise distributions. The table provides, for several

combinations of (n,m), rejection frequencies of the associated two-sided tests of the null that F (Φ−1(τ)) = τ

for a range of different quantiles τ ; the data were generated with F set to the standard-normal distribution

function.

The lower two plots in Figures 1, 2, and 3 provide corresponding simulation results

for estimators of the deciles of F . The presentation is constructed around a QQ-plot of

the standard normal, pictured as the black dashed-dotted line in each plot. Along the

QQ-plot, the average (over the Monte Carlo replications) of the naive estimator (red),

Empirical Bayes (purple), and the bias-corrected quantiles (blue) are shown by ∗ symbols.

Again, the left plots deal with the analytical correction and the right plots show results

for the split-sample approach. Confidence intervals around the corrected estimators (in

blue,-o) are also again provided. Like the naive estimator, the Empirical Bayes estimators

reported are the appropriate order statistics of ϑ1, . . . , ϑn, after shrinkage has been applied

to each. Visual inspection reveals that the results are in line with those obtained for

the distribution function. As the sample size grows, only q̌ successfully adjusts for bias

arising from estimation noise in ϑ1, . . . , ϑn. Here, the split-sample correction is slightly
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more effective than our analytical approach.

4.2 Empirical illustration

We use quarterly panel data on a set of 48 consumer price index items in 52 US cities.

The data span the period 1990–2007, yielding 72 time series observations. They were used

by Parsley and Wei (2001), Crucini, Shintani and Tsuruga (2015), and Okui and Yanagi

(2019, 2020) to investigate the cross-sectional heterogeneity in deviations from the law of

one price. Let pcit be the price of item i in city c at time t and define the random variable

xcit = log

(
pcit
p1it

)
= log(pcit)− log(p1it)

for all (52 − 1) × 48 = 2448 city/item combinations apart from the reference city (which

here is Albuquerque, New Mexico). For each city/item combination we estimate the mean,

standard deviation and first-order autocorrelation of xcit non-parametrically from the time

dimension of our panel. Our interest lies in the distribution functions of their population

counterparts. We estimate these three distributions by the empirical distributions of the

cross-sectional estimates, and then correct for plug-in bias via the split-sample jackknife

procedure. Our results complement the analysis of Okui and Yanagi (2020, Figure 1),

which gives corresponding estimates of the associated density functions.

The results are collected in Figure 4. The plots contain the empirical distribution

functions (dashed red line) together with 95% confidence bands based on the split-sample

jackknife (shaded blue region). The correction for regression to the mean to the empirical

distribution is clearly visible for the mean (left plot). It is also statistically significant,

with the tails of the empirical distribution falling out of the confidence region. The sample

standard deviation and autocorrelation obtained from the time series are biased estimators

and so the empirical distribution function for these parameters (middle and right plot,

respectively) suffer from an additional bias that is of the same order of magnitude as is the

bias due to estimation noise (see the discussion on Footnote 4). The split-sample jackknife

corrects for both these sources of bias automatically. Here, the bias adjustment leads to a

pronounced shift of the empirical distribution; the corrected distribution functions all but
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Figure 4: Deviations from the law of one price
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Figure notes. The empirical distribution functions of the means (left) standard deviations (middle) and

autocorrelations (right) of the time series of xcit = log(pcit) − log(p1it) for all city/item combinations

(dashed red line) along with 95% confidence bands constructed from the split-sample jackknife estimator

of each of these distributions (shaded blue region).

stochastically dominate the naive plug-in estimators. The differences between the corrected

and uncorrected functions are quantitatively large and, given the small standard error, they

are also statistically significant.

5 Conclusions

In this paper, we have considered inference on the distribution of latent variables from noisy

measurements. In an asymptotic embedding where the variance of the noise shrinks with

the sample size, we have derived the leading bias in the empirical distribution function

of the noisy measurements and suggested both an analytical and a jackknife correction.

They provide a simple and numerically stable (approximate) solution to a generalized

deconvolution problem that, in addition, yields valid inference procedures. The split-sample

jackknife is particularly straightforward to implement and we recommend its use whenever

possible.
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A Appendix

Notational convention: we let ∇q
pϕ denote the qth derivative of ϕ with respect to its

pth argument. We omit the subscript for univariate ϕ.

A.1 Proof of Proposition 1

The following known result is useful to prove Proposition 1.

Lemma A.1 (Komlós, Major and Tusnády 1975). Let Gn denote the empirical cumulative

distribution of an i.i.d. sample of size n from a uniform distribution on [0,1]. Let Bn denote

a sequence of Brownian bridges. Then

sup
u∈[0,1]

∣∣√n (Gn(u)− u)− Bn(u)
∣∣ = Op(log(n)/

√
n).

Proof of Proposition 1. We begin with the bias calculation. Suppose, first, that Part A

of Assumption 2 holds. Then (θi, σi) have a joint density, h(θi, σi), say. We will denote the

marginal density of σi by h(σi) and the conditional density of θi given σi by h(θi|σi). For

any real number δ let

G(θ, δ) := E(1{θi + δσi ≤ θ}) =
∫ σ
σ

∫ θ−δσ
−∞ h(ϑ, σ) dϑ dσ.

Note that G(θ, 0) = F (θ) and that

E(F̂ (θ)) = E(1{ϑi ≤ θ}) = E

(
1

{
θi +

εi√
m
σi ≤ θ

})
= E

(
G(θ, εi/

√
m)
)
. (A.1)

Assumption 2 implies that G is smooth and differentiable in its second argument. By

definition of the function e(σi),

sup
θ

sup
δ
|∇3

2G(θ, δ)| = sup
θ

sup
δ

∣∣∣∫ σσσ3∇2
1h(θ − δσ|σ)h(σ) dσ

∣∣∣ ≤ ∫ σσσ3 e(σ)h(σ) dσ, (A.2)

which equals E(σ3
i e(σi)) and is finite by assumption. Therefore, by (A.1) and a third-order

expansion of G(θ, εi/
√
m) in its second argument around zero we find that

E(F̂ (θ)) = F (θ) +
1

2

∇2
2G(θ, 0)

m
+

1

6

E(ε3i ∇3
2G(θ, ε∗i /

√
m))

m3/2
=

1

2

∇2
2G(θ, 0)

m
+O(m−3/2),
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where ε∗i is some value between zero and εi, and where, in addition to (A.2), we have used

that E(εi) = 0 and E(ε2i ) = 1 by construction and that E(|εi|3) < ∞ by assumption. By

direct calculation,

∇2
2G(θ, 0) = 2 bF (θ).

Therefore,

E(F̂ (θ)) = F (θ) +
bF (θ)

m
+O(m−3/2),

as claimed.

Suppose, next, that Part B of Assumption 2 holds. Then we have a deterministic

relationship between θi and σi. We may define G(θ, δ) as above but have to take care when

Taylor expanding in δ, as the function may be non-continuous. A non-continuity occurs

whenever the number of solutions t (on the real line) to the equation t+ δσ(t) = θ changes.

However, at δ = 0 the only solution to this equation is t = θ, and because we assume that

the function σ(θ) has uniformly bounded derivative σ′, there always exists η > 0 such that

for all δ ∈ (−η, η) and all real θ the equation t + δσ(t) = θ has a unique solution in t on

the real line. We denote this solution by t∗(θ, δ), that is, we have t∗(θ, δ) + δσ(t∗(θ, δ)) = θ.

Using this we find that for δ ∈ (−η, η) we have

G(θ, δ) = F (t∗(θ, δ)), ∇1
2t
∗(θ, δ) = − σ(t∗(θ, δ))

1 + δ σ′(t∗(θ, δ))
,

where the last equation is obtained by taking derivatives of t∗(θ, δ) + δσ(t∗(θ, δ)) = θ with

respect to δ and then solving for the derivative. Because we have that t∗(θ, 0) = θ we then

find

G(θ, 0) = F (θ), ∇1
2G(θ, 0) = −σ(θ)f(θ), ∇2

2G(θ, 0) = 2bF (θ).

Differentiating further we see that ∇3
2G(θ, 0), and ∇4

2G(θ, 0) are functions of the derivatives

of f and σ up to third order. Our assumption that these derivatives are uniformly bounded

implies that

sup
θ

sup
δ∈[−η,η]

∣∣∇4
2G(θ, δ)

∣∣ <∞. (A.3)

The only obstacle that now prevents us from proceeding with an expansion as we did under

Assumption 2.A is that the bound (A.3) is restricted to a neighborhood around zero. To
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complete the derivation of the bias we argue that the restriction that δ ∈ (−η, η) relaxes

sufficiently fast as m grows. We do so as follows. Note, first, that, by Markov’s inequality,

P (|εi| > η
√
m) ≤ m−2

E(ε4i )

η4
= O(m−2).

Then

E(F̂ (θ)) = E
(
G(θ, ε/

√
m)
)

= E
(
{|εi| ≤ η

√
m}G(θ, ε/

√
m)
)

+ E
(
{|εi| > η

√
m}G(θ, ε/

√
m)
)

= E
(
{|εi| ≤ η

√
m}G(θ, ε/

√
m)
)

+O(m−2),

uniformly in θ, because,

sup
θ
E({|εi| > η

√
m}G(θ, εi/

√
m)) ≤ P (|εi| > η

√
m) = O(m−2),

noting that supθ supδ G(θ, δ) ≤ 1 by definition of the function G. Next, a Taylor expansion

of G around δ = 0 gives

E(F̂ (θ)) = E(G(θ, εi/
√
m)) = F (θ) +

1

2

∇2
2G(θ, 0)

m
+

1

6

∇3
2G(θ, 0)

m3/2
+R(θ) +O(m−2),

where we have used that F (θ) = G(θ, 0), that E(εi) = 0 and that E(ε2i ) = 1, and have

introduced the notational shorthand

R(θ) := R2(θ)−R1(θ)

for

R1(θ) := P (|εi| > η
√
m)F (θ)

+ E({|εi| > η
√
m} εi)

∇1
2G(θ, 0)√
m

+
1

2
E({|εi| > η

√
m} ε2i )

∇2
2G(θ, 0)

m

+
1

6
E({|εi| > η

√
m} ε3i )

∇2
3G(θ, 0)

m3/2

and

R2(θ) :=
1

24

E({|εi| ≤ η
√
m} ε4i ∇4

2G(θ, ε∗i /
√
m))

m2
;
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here, ε∗i lies in between zero and εi. To validate our bias expression it remains only to

establish that supθ|R(θ)| = O(m−3/2). To do so we show that supθ|R1(θ)| = O(m−2), and

that supθ|R2(θ)| = O(m−2), in turn. By Hölder’s inequality,

|E({|εi| > η
√
m} εi)| ≤ E({|εi| > η

√
m})3/4E(ε4i )

1/4 = O(P (|εi| > η
√
m)

3/4) = O(m−3/2).

In the same way,

|E({|εi| > η
√
m} ε2i ) = O(m−1), |E({|εi| > η

√
m} ε3i ) = O(m−1/2),

follow. Consequently,

sup
θ
|R1(θ)| = O(m−2) sup

θ
(1 +∇1

2G(θ, 0) +∇2
2G(θ, 0) +∇3

2G(θ, 0)) = O(m−2),

using that all relevant derivatives on the right-hand side are bounded. Next, noting that,

as |ε∗i | ≤ |εi|, the event |εi|/
√
m ≤ η implies that |ε∗i |/

√
m ≤ η, we have

sup
θ
|R2(θ)| =

1

24

supθ E({|εi|/
√
m ≤ η} ε4i ∇4

2G(θ, ε∗i /
√
m))

m2

≤ 1

24

supθ supδ∈[−η,η]|∇4
2G(θ, δ)|E(ε4i )

m2

= O(m−2),

because of (A.3). Therefore, supθ|R(θ)| = O(m−2), and so

E(F̂ (θ)) = F (θ) +
bF (θ)

m
+O(m−3/2),

as before.

Now turning to the result on the covariance, note that

cov(F̂ (θ1), F̂ (θ2)) =
E(F̂ (θ1 ∧ θ2))− E(F̂ (θ1))E(F̂ (θ2))

n

depends only on E(F̂ (θ)) which, up to O(m−3/2) and uniformly in θ, has been calculated

above. Moreover,

cov(F̂ (θ1), F̂ (θ2)) =
(F (θ1 ∧ θ2) +O(m−1))− (F (θ1) +O(m−1)) (F (θ2) +O(m−1))

n

=
F (θ1 ∧ θ2)− F (θ1)F (θ2)

n
+O(n−1m−1)

=
σF (θ1, θ2)

n
+O(n−1m−1),
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as stated in the proposition.

To complete the proof it remains only to verify the limit distribution of the scaled

empirical distribution function. Let Fm(θ) := E(1{ϑi ≤ θ}), the distribution function

of ϑi. Our assumptions imply that Fm is continuous and that it has no mass points.

With ui := Fm(ϑi), we therefore have that ui is i.i.d. uniformly distributed on [0, 1] by

the probability integral transform. An application of Lemma A.1 with u = Fm(θ) and

exploiting monotonicity of distribution functions then gives

sup
θ

∣∣∣√n(F̂ (θ)− Fm(θ))− Bn(Fm(θ))
∣∣∣ = Op(log(n)/

√
n).

We have already shown that, uniformly in θ,

Fm(θ) = F (θ) +
bF (θ)

m
+O(m−3/2).

Therefore, using that n/m3 → 0 if n/m2 → c ∈ [0,+∞) as n,m→∞,

√
n(F̂ (θ)− Fm(θ)) =

√
n

(
F̂ (θ)− F (θ)− bF (θ)

m

)
+ o(1),

holds uniformly in θ. Furthermore, our bias calculation implies that Fm(θ)−F (θ) converges

to zero uniformly in θ as m → 0, so that applying Lévy’s modulus-of-continuity theorem,

that is,

lim
ε→0

sup
t∈[0,1−ε]

|Bn(t)− Bn(t+ ε)|√
ε log(1/ε)

= O(1), ε > 0,

to our problem yields supθ|Bn(Fm(θ)) − Bn(F (θ))| p→ 0 as m → ∞. We thus have

that Bn(Fm(θ))  Bn(F (θ)). Putting everything together and noting that, by definition,

Bn(F (θ)) = GF (θ), we obtain

sup
θ

∣∣∣∣√n(F̂ (θ)− F (θ)− bF (θ)

m

)
−GF (θ)

∣∣∣∣ = op(1),

which completes the proof of the proposition.

Proof of Proposition 2

Lemma A.2. Let Assumptions 1 and 2 hold. Let fm denote the density function of ϑi.

Then,
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(i) supθ|fm(θ)− f(θ)| = O(m−1),

(ii) supθ|∇1fm(θ)−∇1f(θ)| = O(m−1),

(iii) supθ|∇2fm(θ)−∇2f(θ)| = O(1),

(iv) supθ|∇3fm(θ)−∇3f(θ)| = O(1).

Proof. From the argument in the proof of Proposition 1 we have

Fm(θ)− F (θ) =
1

2

E(ε2i H(θ, ε∗i /
√
m))

m

by a second-order expansion, where ε∗i is a value between zero and εi and we introduce the

function

H(θ, δ) :=
∫ σ
σ
σ2∇1

1h(θ − δσ|σ)h(σ) dσ,

where h(θi|σi) and h(σi) are the density functions of θi given σi and of σi, respectively.

Differentiating with respect to θ yields the first conclusion of the lemma as

sup
θ
|fm(θ)−f(θ)| = sup

θ

∣∣∣∣12E(ε2i ∇1
1H(θ, ε∗i /

√
m))

m

∣∣∣∣ ≤ E(σ2
i )

m

supθ supδ|∇1
1H(θ, δ)|

2
= O(m−1),

which follows from the inequality

sup
θ

sup
δ
|∇1

1H(θ, δ)| = sup
θ

sup
δ

∣∣∣∫ σσσ3∇2
1 h(θ − δσ|σ)h(σ) dσ

∣∣∣ ≤ ∫ σσσ3 e(σ)h(σ) dσ <∞

and the definition of the function e(σ) in Assumption 2. The second conclusion of the

lemma follows in the same manner, differentiating once more. Finally, the third and fourth

conclusion are obtained similarly. The point of departure is now the following identity,

which is derived in the proof of Proposition 1,

Fm(θ) = E
(
G(θ, ε∗i /

√
m)
)

where

G(θ, δ) :=
∫ σ
σ

∫ θ−δσ
−∞ h(ϑ|σ)h(σ) dϑ dσ.

Repeated differentiation shows that

sup
θ

sup
δ
|∇3

1G(θ, δ)| = sup
θ

sup
δ
|
∫ σ
σ
∇2

1h(θ − δσ|σ)h(σ) dσ| ≤ |
∫ σ
σ
e(σ)h(σ) dσ| <∞,

sup
θ

sup
δ
|∇4

1G(θ, δ)| = sup
θ

sup
δ
|
∫ σ
σ
∇3

1h(θ − δσ|σ)h(σ) dσ| ≤ |
∫ σ
σ
e(σ)h(σ) dσ| <∞,
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and so supθ|∇3Fm(θ)| = O(1) and supθ|∇4Fm(θ)| = O(1) follow. Furthermore,

sup
θ
|∇2fm(θ)−∇2f(θ)| ≤ sup

θ
|∇2fm(θ)|+ sup

θ
|∇2f(θ)| = O(1),

sup
θ
|∇3fm(θ)−∇3f(θ)| ≤ sup

θ
|∇3fm(θ)|+ sup

θ
|∇3f(θ)| = O(1),

follows because f has uniformly bounded derivatives up to third order by assumption. This

completes the proof.

Proof of Proposition 2. The ϑi are i.i.d. draws from the distribution Fm which according

to Lemma A.2 has non-degenerate density fm, that is, the ϑi are continuously distributed.

Thus,

u(k) := Fm(ϑ(k))

is the kth order statistic of a uniform sample. We set k = dτne for the rest of the proof.

Then q̂(τ) = ϑ(k). Since k/n→ τ by construction, it is well-known that

√
n(u(k) − τ)

d→ N(0, τ(1− τ)). (A.4)

Let qm(τ) := F−1m (τ), the τth-quantile of Fm. By expanding the function F−1m around τ we

find that

q̂(τ) = F−1m (u(k)) = qm(τ) +
u(k) − τ
fm(qm(τ))

+ r(k)

for remainder term

r(k) := −
f ′m(ξ(k))

fm(ξ(k))3
(
u(k) − τ

)2
,

where ξ(k) is a value between F−1m (τ) and F−1m (u(k)). From (A.4) we have u(k) − τ =

OP (n−1/2). This implies that ξ(k)
p→ τ . Using Lemma A.2 we may conclude that fm(ξ(k))

p→

fm(τ)→ f(τ) > 0, and, therefore, that r(k) = Op(n
−1). We thus have

q̂(τ) = qm(τ) +
u(k) − τ
fm(qm(τ))

+Op(n
−1).

Again using Lemma A.2 and our assumption that f(θ) > 0 in a neighborhood of q(τ) =

F−1(τ) we have fm(qm(τ))−1 = f(q(τ))−1 +O(m−1), and therefore

q̂(τ) = qm(τ) +
u(k) − τ
f(q(τ))

+Op(n
−1 + n−1/2m−1). (A.5)
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From Proposition 1 we know Fm(θ) = E(F̂ (θ)) = F (θ)+bF (θ)/m+O(m−3/2), and therefore

qm(τ) = q(τ)− bF (q(τ))/f(q(τ))

m
+O(m−3/2). (A.6)

Combining (A.4), (A.5), and (A.6) gives the statement of the theorem.

Proof of Proposition 3

Lemma A.3. Let the assumptions of Proposition 3 hold. Then,

(i) sup
θ
E(b̂F (θ)− bF (θ)) = O(m−1) +O(h2),

(ii) sup
θ

var(b̂F (θ)) = O(n−1h3),

(iii) sup
θ

(1 + |θ|1+η) |∇1b̂F (θ)−∇1bF (θ)| = Op(h
−(ω+1)/ω).

Lemma A.4. Let Assumptions 1 hold and define

bi(θ) := −σ
2
i

h2
φ′
(
ϑi−θ
h

)
2

.

If f is bounded, then, for any ε > 0,

sup
θ
E(|bi(θ)− E(bi(θ))|ε)1/ε = O(h−2+ε

−1

).

The proof of those two lemmas is provided below, after the proof of the main text results.

Proof of Proposition 3. We first show that

sup
θ∈R

∣∣∣b̂F (θ)− bF (θ)
∣∣∣ = O(m−1) +O(h2) +O(n−1/2 h−3/2−ε).

The result of the proposition then follows readily. For a finite ν, introduce the function

t(θ) := sgn(θ)
1− (1 + |θ|)−ν

ν
.

Note that t maps to the finite interval (−ν−1, ν−1) and is monotone increasing; moreover,

∇1t(θ) = (1 + |θ|)−(1+ν). Now consider the reparametrization τ = t(θ); note that τ lives in
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a bounded interval. From Lemma A.3(iii), using the chain rule of differentiation, it follows

that

sup
τ∈(−ν−1,ν−1)

∣∣∣∇1
τ b̂F (t−1(τ))−∇1

τbF (t−1(τ))
∣∣∣ = Op(h

−(1+ω−1)), (A.7)

where we use the notation ∇τ to indicate derivatives with respect to τ . We therefore have

that b̂F (t−1(τ))− bF (t−1(τ)), as a function τ , has a uniformly-bounded Lipschitz constant.

Now let Ih be a partition of (−ν,−ν−1) with subintervals that are (approximately) of length

lh := h3−ω
−1

. Then (A.7) implies that

sup
θ
|b̂F (θ)− bF (θ)| = sup

τ∈(−ν,ν)
|b̂F (t−1(τ))− bF (t−1(τ))|

is equal to

max
τ∈Ih
|b̂F (t−1(τ))− bF (t−1(τ))|+Op(h

2). (A.8)

Here, the order of the remainder terms follows from the choice of lh. Now introduce the

shorthand

∆̂(θ) := b̂F (θ)− E(b̂F (θ)).

Then

max
τ∈Ih
|b̂F (t−1(τ))− bF (t−1(τ))| ≤ max

τ∈Ih
|∆̂(t−1(τ))|+ sup

θ
|E(b̂F (θ))− bF (θ)|

and so Lemma A.3(i) implies that

max
τ∈Ih
|b̂F (t−1(τ))− bF (t−1(τ))| ≤ max

τ∈Ih
|∆̂(t−1(τ))|+O(m−1 + h2).

Moving on, observe that the number of subintervals making up Ih is equal to dl−1h e =

dh−3+ω−1e, where dae delivers the smallest integer at least as large as a. We therefore have

E

((
max
τ∈Ih

∣∣∣∆̂(t−1(τ))
∣∣∣)ω) = E

(
max
τ∈Ih

∣∣∣∆̂(t−1(τ))
∣∣∣ω)

≤ E

(∑
τ∈Ih

∣∣∣∆̂(t−1(τ))
∣∣∣ω)

=
∑
τ∈Ih

E
(∣∣∣∆̂(t−1(τ))

∣∣∣ω) ≤ ⌈h−3+1/ω
⌉

sup
θ∈R

E
∣∣∣∆̂(θ)

∣∣∣ω .
(A.9)
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Let bi(θ) := −1
2
h−2 σ2

i φ
′ (ϑi−θ

h

)
and ∆i(θ) := bi(θ) − Ebi(θ). We may then write ∆̂(θ) =

n−1
∑n

i=1∆i(θ). Notice that ∆i(θ) are independent and mean zero. By Rosenthal (1970,

Theorem 3) we therefore have that(
E

(∣∣∣∣∣n−1/2
n∑
i=1

∆i(θ)

∣∣∣∣∣
ω))1/ω

is bounded from above by

c max


(
n−1

n∑
i=1

E
(
∆i(θ)

2
))1/2

, n−1/2

(
n∑
i=1

E (|∆i(θ)|ω)

)1/ω
 ,

where the constant c only depends on ω. Using Lemma A.3(ii) we obtain

sup
θ∈R

(
n−1

n∑
i=1

E(∆i(θ)
2)

)1/2

= sup
θ∈R

(
n var b̂F (θ)

)1/2
= O(h−3/2).

Using Lemma A.4 we obtain

n−1/2 sup
θ∈R

(
n∑
i=1

E (|∆i(θ)|ω)
1/ω

)
= n−1/2+1/ω sup

θ∈R
(E |∆i(θ)|ω)

1/ω

= O(n−1/2+1/ω h−2+1/ω) = O(h−3/2),

where in the last step we used the condition that h−1 = O(n). We can therefore conclude

from Rosenthal’s inequality above that(
sup
θ∈R

E
(
|∆̂(θ)|ω

))1/ω

= n−1/2

(
E

(∣∣∣∣∣n−1/2
n∑
i=1

∆i(θ)

∣∣∣∣∣
ω))1/ω

= O(n−1/2h−3/2).

Using this and (A.9) we obtain

max
τ∈Ih

∣∣∣∆̂(t−1(τ))
∣∣∣ = O(h(−3+1/ω)/ω n−1/2 h−3/2) = O(n−1/2 h−3/2−ε),

where ε = 3/ω − 1/ω2. Combining this with (A.8) and (A.9) we thus conclude

sup
θ∈R

∣∣∣b̂F (θ)− bF (θ)
∣∣∣ = O(m−1) +O(h2) +O(n−1/2 h−3/2−ε),

as claimed.
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Now, with h = O(m−1/2) and h−1 = O(n1−2ω−1
) we find

sup
θ∈R

√
n

m

∣∣∣b̂F (θ)− bF (θ)
∣∣∣ = OP (n1/2m−1h2 + n1/2m−2 +m−1h−3/2−ε)

= OP (n1/2m−2 +m−4/9ε
2

)

= oP (1),

where in the last step we also used that n/m4 → 0 and that m → ∞. The result of

Proposition 3 now follows immediately from Proposition 1.

Proof of Proposition 4

Let Gn(u) := F̂ (F−1m (u)) be the empirical distribution function of the i.i.d. sample ui =

Fm(ϑi). Lemma A.1 and Theorem 1 in Doss and Gill (1992) give

sup
τ∈[0,1]

∣∣√n (G←n (τ)− τ) + Bn(τ)
∣∣ = oP (1), (A.10)

where G←n again denotes the left inverse of Gn Bn(τ) is the sequence of Brownian bridges

that previously appeared in Lemma A.1.

Equation (A.10) yields

G←n (τ̂ ∗)−G←n (τ) = (τ̂ ∗ − τ)− n−1/2 [Bn(τ̂ ∗)− Bn(τ)] + op(n
−1/2).

Also, τ̂ ∗ − τ = Op(m
−1) follows from the results above. Lévy’s modulus-of-continuity

theorem then implies that Bn(τ̂ ∗)− Bn(τ) = oP (1). Therefore,

G←n (τ̂ ∗)−G←n (τ) = Op(m
−1) + op(n

−1/2).

By definition we have q̌(τ) = F̂←(τ̂ ∗) and q̂(τ) = F̂←(τ), and also that G←n (τ) = Fm(F̂←(τ)).

Substituting this into the last displayed equation yields

Fm(q̌(τ))− Fm(q̂(τ)) = Op(m
−1) + op(n

−1/2).

Lemma A.2 and our assumptions guarantee that Fm(τ) has a density fm(τ) that is bounded

from below in a neighborhood of q(τ) for the quantile of interest τ . The last result therefore
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also implies that

q̌(τ)− q̂(τ) = Op(m
−1) + op(n

−1/2). (A.11)

Next, The result (A.10) implies
√
n(G←n (τ)− τ) B(τ) for a Brownian bridge B. For

q̌(τ) = F̂←(τ̂ ∗) we have Fm(q̌(τ)) = G←n (τ̂ ∗), and therefore

√
n(Fm(q̌(τ))− τ̂ ∗) B(τ).

From Proposition 1 we know that Fm(θ) = E(F̂ (θ)) = F (θ)+bF (θ)/m+O(m−2), uniformly

in θ. We then find

√
n

(
F (q̌(τ))− τ +

bF (q̌(τ))− b̂F (q̂(τ))

m
+O(m−2)

)
d→ N(0, τ(1− τ)),

From the proof of Proposition 3 we also know that supθ(
√
n/m)

∣∣∣b̂F (θ)− bF (θ)
∣∣∣ = op(1),

and therefore

√
n

(
F (q̌(τ))− τ +

bF (q̌(τ))− bF (q̂(τ))

m
+O(m−2)

)
d→ N(0, τ(1− τ)).

Smoothness of the function bF and (A.11) imply bF (q̌(τ))−bF (q̂(τ)) = O(m−1)+op(n
−1/2).

We thus obtain
√
n (F (q̌(τ))− τ)

d→ N(0, τ(1 − τ)) An application of the delta method

with transformation F−1 then gives the result. This completes the proof.

B Proof of Lemmas A.3 and A.4

Before proving Lemmas A.3 and A.4 we first state one known result and establish two

further intermediate lemmas.

Lemma B.1 (Mason 1981). Let Gn be the empirical cumulative distribution of an i.i.d.

sample of size n from a uniform distribution on [0,1]. Then, as n→∞,

sup
u∈(0,1)

[u(1− u)]−1+ε |Gn(u)− u| → 0,

almost surely, for any 0 < ε ≤ 1/2.
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Lemma B.2. Let Assumption 1 hold. Then, if supθ(1 + |θ|κ) f(θ) <∞,

sup
θ

(1 + |θ|κ) fm(θ) = Op(1).

holds.

Proof. The conditional density of ϑi − θi given θi evaluated in ε is

p(ε| θ) := E

(
1

σi/
√
m
g

(
ε

σi/
√
m

)∣∣∣∣ θi = θ

)
.

We thus have

fm(ϑ) =
∫∞
−∞p(ϑ− θ| θ) f(θ) dθ =

∫ ϑ/2
−∞ p(ϑ− θ| θ) f(θ) dθ +

∫∞
ϑ/2

p(ϑ− θ| θ) f(θ) dθ.

Without loss of generality we will take the value ϑ to be positive throughout. We have the

bound

fm(ϑ) ≤ sup
θ
f(θ)

∫ ϑ/2
−∞ p(ϑ− θ| θ) dθ + supθ≥ϑ/2 f(θ)

∫∞
ϑ/2

p(ϑ− θ| θ) dθ. (B.1)

Consider the second term on the right-hand side in (B.1). supθ≥ϑ/2 f(θ) = O(1 + |ϑ/2|−κ)

by assumption and so it suffices to show that the integral is finite for all ϑ. To see that

this is so, observe that

∫∞
ϑ/2

p(ϑ− θ| θ) dθ =
∫ ϑ/2
−∞ p(ε|ϑ− ε) dε =

∫ ϑ/2
−∞E

(
1

σi/
√
m
g
(

ε
σi/
√
m

)∣∣∣ θi = ϑ− ε
)
dε

and use the change of variable ε∗ =
√
mε∫∞

ϑ/2
p(ϑ− θ| θ) dθ ≤

∫∞
−∞maxσ∈[σ,σ]

{
1

σ/
√
m
g
(

ε
σ/
√
m

)}
dε =

∫∞
−∞maxσ∈[σ,σ]

{
1
σ
g
(
ε
σ

)}
dε

≤ C
∫∞
−∞maxσ∈[σ,σ]

{
1
σ

(
1 +

∣∣ ε
σ

∣∣)−α} dε

≤ C
∫∞
−∞

1
σ

(
1 +

∣∣∣ εσ ∣∣∣)−α dε = C/(α− 1) = O(1).

Next, for the first right-hand side term in (B.1), recall that supθ f(θ) <∞, and so we need

to show that the integral vanishes sufficiently fast as ϑ → ∞. To see that this is the case

we proceed as before by observing that

∫ ϑ/2
−∞ p(ϑ− θ| θ) dθ =

∫∞
ϑ/2
E
(

1
σi/
√
m
g
(

ε
σi/
√
m

)∣∣∣ θi = ϑ− ε
)
dε
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to obtain ∫ ϑ/2
−∞ p(ϑ− θ| θ) dθ ≤

∫∞
ϑ/2

maxσ∈[σ,σ]

{
1

σ/
√
m
g
(

ε
σ/
√
m

)}
dε

≤
∫∞√

mϑ/2
maxσ∈[σ,σ]

{
1
σ
g
(
ε
σ

)}
dε

≤ C
∫∞√

mϑ/2
1
σ

(
1 + ε

σ

)−α
dε = O(1 + (

√
mϑ/2)1−α).

Thus, as long as α > 1 and α ≥ κ+ 1 we have

fm(ϑ) = O(1 + |ϑ/2|−κ)

uniformly in ϑ, as claimed. This completes the proof of the lemma.

Lemma B.3. Let Assumptions 1 and 2 hold and let

γrm(θ) := E(σri |ϑi = θ) fm(θ), γr(θ) := E(σri |θi = θ) f(θ).

Then, for any integer r,

sup
θ
|∇qγrm(θ)−∇qγr(θ)| = O(m−1)

provided that the conditional density h(θ|σ) is (q + 2) times differentiable with respect to θ

and that there exists a function e so that |∇q+2
1 h(θ|σ)| ≤ e(σ) and E(e(σi)) <∞.

Proof. Fix r throughout the proof. First note that, by Bayes’ rule and Assumption 1, we

may write

γrm(ϑ) =
∫ σ
σ

∫∞
−∞σ

r 1
σ/
√
m
g
(

ϑ−θ
σ/
√
m

)
h(θ, σ) dσ dθ

A change of variable from θ to ε := (ϑ− θ)/(σ/
√
m) then allows to write

γrm(ϑ) = E
(
Br(ϑ, εi/

√
m)
)
, Br(θ, δ) :=

∫ σ
σ
σr h(θ − δσ, σ) dσ.

Observe that Br(ϑ, 0) = γr(ϑ). Now, by a Taylor expansion,

∇qγrm(ϑ)−∇qγr(ϑ) =
E (ε2i ∇

q
1∇2

2Br(ϑ, ε
∗
i /
√
m))

m
.
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Also, as

∇p
1∇

q
2Br(θ, δ) = (−1)q

∫ σ
σ
σr+q∇p+q

1 h(θ − δσ, σ) dσ

for any pair of integers (p, q), we have that

sup
θ

sup
δ
|∇q

1∇2
2Br(θ, δ)| ≤ σr+q sup

θ
sup
δ
|
∫ σ
σ
∇2+q

1 h(θ − δσ|σ)h(σ) dσ| ≤ σr+q
∫ σ
σ
e(σ)h(σ) dσ,

which is finite. Therefore, uniformly in θ,

∇qγrm(θ)−∇qγr(θ) = O(m−1),

as claimed. This completes the proof.

Proof of Lemma A.3.

Part (i): With

βm(θ) :=
E(σ2

i |ϑi = θ) fm(θ)

2
,

a change of variable and integration by parts yield

E(b̂F (θ)) = −
∫∞
−∞

βm(ϑ)
h2

φ′
(
ϑ−θ
h

)
dϑ =

∫∞
−∞∇

1βm(θ + hε)φ(ε) dε.

Taylor expanding ∇1βm around ε = 0 and using our assumptions of the distribution of ε

we obtain

E(b̂F (θ)) = ∇1βm(θ) + h2
∫∞
−∞∇

3βm(θ + hε∗) ε2 φ(ε) dε

2
,

where ε∗ lies between ε and zero. From Lemma B.3 we have

∇1βm(θ) = ∇1β(θ) +O(m−1) = bF (θ) +O(m−1),

uniformly in θ, and supθ|∇3βm(θ)| <∞. Therefore,

E(b̂F (θ)) = bF (θ) +O(m−1) +O(h2),

as claimed.

Part (ii): Note that

var(b̂F (θ)) = E(b̂F (θ)2)− E(b̂F (θ))2 =
n−1

4
E

(
σ4
i

h4
φ′
(
ϑ− θ
h

)2
)
− bF (θ)2 + o(n−1).
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Now, with

β2
m(θ) :=

E(σ4
i |ϑi = θ) fm(θ)

4
,

we have

n−1

4
E

(
σ4
i

h4
φ′
(
ϑ− θ
h

)2
)

=
∫∞
−∞

β2
m(ϑ)
h4

φ′
(
ϑ−θ
h

)2
dϑ ≤ supθ|β2

m(θ)|
n

∫∞
−∞φ

′ (ϑ−θ
h

)2
dϑ

h4

which is O(n−1h3) uniformly in θ as supθ|β2
m(θ)| <∞ because σi is finite and fm is bounded,

and ∫∞
−∞φ

′ (ϑ−θ
h

)2
dϑ = h

4
√
π
,

independent of θ. This completes the proof.

Part (iii): First observe that

∇1bF (θ) = ∇2β(θ)/2,

so that (1 + |θ|1+η) |∇1bF (θ)| < ∞ follows directly from Assumption 3. What is left to

show is that

sup
θ

(1 + |θ|1+η) |∇1b̂F (θ)| = Op(−(1 + ω−1)).

Note that

∇1b̂F (θ) =
(nh2)−1

2

n∑
i=1

σ2
i φ
′′
(
ϑi − θ
h

)
.

By Hölder’s inequality,

|∇1b̂F (θ)| ≤ h−2


(
n−1

n∑
i=1

(σ2
i /2)ω

)ω−1
×


(
n−1

n∑
i=1

∣∣∣∣φ′′(ϑi − θh

)∣∣∣∣ψ
)ψ−1

 ,

where ψ := (1 − ω−1)−1. The first term in braces is bounded in probability because

the σ2
i are finite. For the second term in braces, write Gn for the empirical cumulative

distribution of an i.i.d. sample of size n from the uniform distribution on [0, 1] and let

G′n(u) := n−1
∑n

i=1 δui−u, where δa is Dirac’s delta at a. Then, writing ∇u for the derivative
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with respect to u, we get

n−1
n∑
i=1

∣∣∣∣φ′′(ϑi − θh

)∣∣∣∣ψ =

∫ 1

0

∣∣∣∣φ′′(F−1m (u)− θ
h

)∣∣∣∣ψ G′n(u) du

= −
∫ 1

0

∇1
u

∣∣∣∣φ′′(F−1m (u)− θ
h

)∣∣∣∣ψ Gn(u) du

= −
∫ 1

0

∇1
u

∣∣∣∣φ′′(F−1m (u)− θ
h

)∣∣∣∣ψ u du
−
∫ 1

0

∇1
u

∣∣∣∣φ′′(F−1m (u)− θ
h

)∣∣∣∣ψ (Gn(u)− u) du

(B.2)

where we have used integration by parts in the first step and replaced Gn(u) by u+(Gn(u)−

u) in the second step. We now consider each of the integrals on the right-hand side in turn.

First, integrating by parts,

−
∫ 1

0

∇1
u

∣∣∣∣φ′′(F−1m (u)− θ
h

)∣∣∣∣ψ u du = E

(∣∣∣∣φ′′(ϑi − θh

)∣∣∣∣ψ
)
. (B.3)

Clearly, this term is bounded uniformly on any finite interval. To evaluate it for large

values of θ, observe that

1

h
E

(∣∣∣∣φ′′(ϑi − θh

)∣∣∣∣ψ
)

=

∫ +∞

−∞

1

h

∣∣∣∣φ′′(ϑ− θh
)∣∣∣∣ψ fm(ϑ) dϑ

=

∫ θ+h log(1+|θ|)

θ−h log(1+|θ|)

1

h

∣∣∣∣φ′′(ϑ− θh
)∣∣∣∣ψ fm(ϑ) dϑ

+

∫ ∞
log(1+|θ|)

|φ′′(z)|ψ fm(θ + zh) dz

+

∫ ∞
log(1+|θ|)

|φ′′(z)|ψ fm(θ − zh) dz.

Here,∫ θ+h log(1+|θ|)

θ−h log(1+|θ|)

1

h

∣∣∣∣φ′′(ϑ− θh
)∣∣∣∣ψ fm(ϑ) dϑ ≤ O(log(1 + |θ|)) sup

θ
|fm(θ)| = O(log(1 + |θ|)),

because supθ|φ′′(θ)|ψ = O(1) and fm is bounded. Further, because

∫∞
x
|φ′′(z)|ψ dz = O(x2ψ−1 e−ψ x

2/2), as x→∞,
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and fm(θ) = O(|θ|−κ) as |θ| → ∞ by Lemma B.2, we have∫∞
log(1+|θ|) |φ

′′(z)|ψ fm(θ + zh) dz = O
(

log(1 + |θ|)2ψ−1 e−ψ log(1+|θ|)2/2
)
,∫∞

log(1+|θ|) |φ
′′(z)|ψ fm(θ − zh) dz = O

(
log(1 + |θ|)2ψ−1 e−ψ log(1+|θ|)2/2

)
.

Then, as

e−ψ log(1+|θ|)2/2 = o(|θ|a) for any a > 0 as |θ| → ∞

we may conclude that the term in (B.3) is O(h|θ|−κ log(1 + |θ|)) uniformly in θ. Next, for

the second term in (B.2) we use Lemma B.1 to establish that, for any ε ∈ (0, 1/2], we have∣∣∣∣∫ 1

0
∇1
u

∣∣∣φ′′ (F−1
m (u)−θ

h

)∣∣∣ψ (Gn(u)− u) du

∣∣∣∣
≤ op(1)

∣∣∣∣∫ 1

0

∣∣∣∣∇1
u

∣∣∣φ′′ (F−1
m (u)−θ

h

)∣∣∣ψ∣∣∣∣ (u1−ε (1− u)1−ε) du

∣∣∣∣
= op(1)

∣∣∣∣∫ +∞
−∞

∣∣∣∣∇1
u

∣∣∣φ′′ (F−1
m (u)−θ

h

)∣∣∣ψ∣∣∣∣ (Fm(ϑ)1−ε (1− Fm(ϑ))1−ε) dϑ

∣∣∣∣ ,
where the op(1) term is independent of θ. The integral term can be bounded in the same

way as (B.3). Hence,∣∣∣∣∫ 1

0
∇1
u

∣∣∣φ′′ (F−1
m (u)−θ

h

)∣∣∣ψ (Gn(u)− u) du

∣∣∣∣ = op(h|θ|(1−ε) (1−κ) log(1 + |θ|))

uniformly in θ. We therefore have that

sup
θ
|b̂F (θ)| ≤ h−2Op(1)

{
(O(h|θ|−κ log(1 + |θ|)) + op(h|θ|(1−ε) (1−κ) log(1 + |θ|))ψ−1

}
.

For any η > (κ− 1)(1− ε)(1− 1/ω)− 1 > 0 it then follows that

sup
θ

(
1 + |θ|1+η

)
|b̂F (θ)| = OP

(
h−(1+ω

−1)
)
.

Here, our assumption κ > 1 + (1 − 1/ω)−1 guarantees that we can find ε > 0 such that

η > (κ− 1)(1− ε)(1− 1/ω)− 1 > 0 holds. This concludes the proof.

Proof of Lemma A.4. First observe that, for any ε > 0,

sup
θ
E(|bi(θ)− E(bi(θ))|ε) ≤ sup

θ

ε∑
p=0

(
ε

p

)
E(|bi(θ)|p)E(|bi(θ)|ε−p) ≤ 2ε sup

θ
E(|bi(θ)|ε).
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Therefore,

sup
θ
E(|bi(θ)− E(bi(θ))|ε)ε

−1 ≤ 2 sup
θ

(E(|bi(θ)|ε))ε
−1

= sup
θ

(∫∞
−∞

E(σ2ε
i |ϑi=ϑ) fm(ϑ)

h2

∣∣φ′ (ϑ−θ
h

)∣∣ε dϑ)ε−1

≤ sup
ϑ

(E(σ2ε
i |ϑi = ϑ) fm(ϑ))ε

−1

(
supθ

∫∞
−∞

∣∣φ′ (ϑ−θ
h

)∣∣ε dϑ)ε−1

h2

= O(hε
−1−2),

where we have used the definition of bi(θ) in the first step, boundedness of the σi and fm

in the second step, and the fact that

∫∞
−∞

∣∣φ′ (ϑ−θ
h

)∣∣ε dϑ = O(h),

independent of θ, in the final step. This completes the proof.

C Least-squares cross validation

The integrated squared error of

F̌ (θ) = F̂ (θ)− b̂F (θ)

m

is

∫
(F̌ (θ)− F (θ))2 dθ =

∫
b̂F (θ)2 dθ

m2
−

2
∫

(F̂ (θ)− F (θ)) b̂F (θ) dθ

m
+ term independent of h.

Using the definition of b̂F and expanding the square the first right-hand side term can be

written as∫
b̂F (θ)2 dθ

m2
=
m−2

n2

n∑
i=1

n∑
j=1

σ2
i σ

2
j

h2
1

4

∫
1

h
φ′
(
ϑi − θ
h

)
1

h
φ′
(
ϑj − θ
h

)
dθ,

and using properties of the normal distribution we calculate∫
φ′
(
ϑi − θ
h

)
φ′
(
ϑj − θ
h

)
dθ =

1√
2h
φ

(
ϑi − ϑj√

2h

)(
h2

2
− (ϑi + ϑj)

2

4
+ ϑiϑj

)
.
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Next, exploiting that φ′(η) = −η φ(η) and using well-known results on the truncated normal

distribution

−
2
∫
F̂ (θ) b̂F (θ) dθ

m
=
m−1

n2

n∑
i=1

n∑
j=1

σ2
j

h2

∫ +∞

ϑi

φ′
(
ϑj − θ
h

)
dθ

=
m−1

n2

n∑
i=1

n∑
j=1

σ2
j

h2

∫ +∞

ϑi

(
θ − ϑj
h

)
φ

(
θ − ϑj
h

)
dθ

=
m−1

n2

n∑
i=1

n∑
j=1

σ2
j

h

(
ϑi − ϑj
h

)
φ

(
ϑi − ϑj
h

)

=
m−1

n2

n∑
i=1

∑
j 6=i

σ2
i

h
φ′
(
ϑi − ϑj
h

)
.

Omitting terms for which j = i in the last expression is justified by the fact that φ′(0) = 0.

Finally, for the last term, integrating by parts shows that

2
∫
F (θ) b̂F (θ) dθ

m
= −m

−1

n

n∑
i=1

σ2
i

h

∫
φ

(
ϑi − θ
h

)
f(θ) dθ.

The integral in the right-hand side expression represents an expectation taken with respect

to f . A leave-one-out estimator of the entire term is

− m−1

n(n− 1)

n∑
i=1

∑
j 6=i

σ2
i

h
φ

(
ϑi − ϑj
h

)
.

Combining results and multiplying the entire expression through with n2m2 yields the

cross-validation objective function stated in the main text.
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