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Abstract

This paper introduces new methods of identification and estimation of the first-price
sealed bid auction model and compares them with the previous existing ones.

The first method of estimation allows us to estimate directly (through an iterative al-
gorithm) the cumulative distribution function of the private values without estimating the
private values beforehand. In the second method, we use a quantile approach. Although
the first-price auction is a complex nonlinear inverse problem, the use of quantile leads to a
linearisation of the model. Thus, in contrast with the existing methods we are able to deduce
a closed-form solution for the quantile of the private values. This constructive identification
allows for a one-stage estimation procedure that can be performed using three regulariza-
tion methods: the Tikhonov regularization, the Landweber-Friedman regularization and the
kernels.

We conduct a Monte Carlo experiment to compare our methods of estimation by c.d.f.
and quantiles with the methods of estimation developed by Guerre et al. (2000), Marmer
and Shneyerov (2012), and Hickman and Hubbard (2015).
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1 Introduction

The first-price sealed bid auction is one of the four standard types of auctions (along
with the second-price sealed bid auction, ascending auction and descending auction) and
therefore has made the object of an intensive study in the literature for auctions.

A first price auction model is a game of incomplete information. The main features of
a game theoretic model of incomplete information are captured by the following model:
players receive a signal (or a type) denoted by ξ , generated by a probability characterised
by its cumulative distribution function F , or by its quantile function F−1. Players know
their type ξ and their distribution F . They play an action X , function of ξ and F :

X = σF(ξ ). (1.1)

The strategy σ is in general assumed to be strictly increasing with respect to ξ . We
assume the statistician observes X and knows σ as a function of ξ and F . The types
and their distribution are unknown and the objective of the econometric analysis is to
derive an estimator and test on F and on ξ . The strategy σ usually derives from an
assumption on the equilibrium of the game, for example σ may be the Nash equilibrium
or an approximation.

From a statistical viewpoint, the main characteristic of this model is that it involves
simultaneously the unobservable element ξ and its distribution. This is different from
most of the econometric literature, where models contain an unobserved residual but the
parameters do not depend on its distribution. From an economic perspective, we may
make a distinction between the reduced form analysis (the distribution of X) and the
structural analysis (estimation of F). The structural analysis allows to do counterfactual
analysis. For example, if we change the rule of the game, this would change the strategy
σ , but we could still run simulations based on the estimated same F .

In the case of symmetric first-price private values auction models, the Nash equilib-
rium of the game determines σ of the form 1:

X = σF(ξ ) = ξ −

∫ ξ

ξ
FN(u)du

FN(ξ )
with N ≥ 1 and ξ ∈ [ξ ,ξ ]⊂ R, (1.2)

and N + 1 is the number of bidders (known by the player and the econometrician). The
identification and the estimation of the independent private values first price auction
model has already received a lot of attention from the econometricians and the break-

1In most applications this specification is too simple and should be extended. The distribution of ξ may
depend on conditioning variables Z and the strategy may be function of conditioning variables W and of
some unknown element θ . However, this paper will consider the simplest case, in order to focus on the
possible resolutions of the functional equations generated by the model.
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through in this subfield has been made by the paper of Guerre et al. (2000). By rear-
ranging the terms of the first-order condition associated with the maximization problem
of the bidders, the authors prove the nonparametric identification of the distribution of
private values, without any kind of restrictions besides those imposed by the economic
theory. Moreover the model remains identified even in the case where the econometri-
cian observes only the transaction prices, which in this case correspond to the winning
bids. Guerre et al. (2000) pioneered a series of papers based on an inversion of the σ

function, which generates a relation ξ = λ (X ,G), where G is the cumulative distribution
function (c.d.f. hereafter) of X (hereafter we will name their approach as the "GPV ap-
proach"). From the observations X and the estimation of G, one may derive the ξ ’s and
then estimate F .

The aim of this paper is threefold. Firstly, we propose a new identification and estima-
tion procedure using a functional quantile approach as developed in Enache and Florens
(2020), Enache (2015), Enache and Florens (2014) and Enache and Florens (2018) (here-
inafter we will name their approach as the "quantile approach"). Loosely speaking this
methodology implies rewriting the model in terms of the relation between the quantile of
private values and the quantile of bids. At the heart of this relation there is again the con-
cept of Bayesian Nash Equilibrium that maps the types of the players into their actions,
i.e. the bids. In the case of a first price auction model, writing the model under a quantile
form leads to a linear inverse problem, therefore simplifying the analysis with respect
to the cumulative distribution function approach mentioned previously. Moreover, under
the quantile approach one does not need to invert the strategy function of the bidders, σF .
Other papers that use also a quantile-based approach are Gimenes and Guerre (2014),
Luo et al. (2015), Marmer and Shneyerov (2012).

Secondly, we develop new estimation procedures using a functional c.d.f. approach,
extending the works of Protopopescu (1998), Florens et al. (1998) and Florens and Sbaï
(2010). It is based on a functional relation linking F and G in the form of G = T (F).
This relation can be non linear and its inversion allows to derive an estimation of F from
an estimation of G (hereinafter we will name this approach as the "c.d.f. approach"). As
noted above, in the specific case of first-price auction model it is possible to linearize
the problem. However, it may not be the case in general. Hence, in order to allow our
procedures to be more general, it is important to study the implementation and properties
of the direct nonlinear c.d.f. approach.

Thirdly, we aim at comparing the performances of quantile approach, GPV approach
and c.d.f. approach.

The paper unfolds as follows: in section 2 we present our new methods of estimation
of the first-price auction model, section 3 and 4 describe the c.d.f. approach and, respec-
tively, the quantile approach in more details, section 5 compares our methods with the
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existing ones in the setting of a Monte Carlo experiment. Section 6 concludes.

2 Two approaches to analyze the model

In an independent private values first-price auction, the strategy function of the Bayesian
Nash Equilibrium has been recalled in 1.2. For simplicity we assume that we observe
several games with the same N and F and that we get an iid sample of data of size n:
x1,x2, ...,xn.

Assumption 1.

1. The support of ξ is a compact interval [ξ ,ξ ] ⊂ R and the values ξ and ξ are
assumed to be known.

2. The true c.d.f. of ξ is denoted F0 and is assumed to be to an element of C q[ξ ,ξ ],
q ≥ 1. The density f0 is assumed to be bounded from below on [ξ ,ξ ]. The true
c.d.f. of X is denoted G0 = T (F0).

Under the assumption above, the strategy σ defined in 1.2 is strictly increasing.

2.1 The c.d.f. approach

We have the relation:
G(x) = F ◦σ

−1
F (x), (2.1)

where G(x) = Pr(X ≤ x) is the cumulative distribution of the data. This implicit relation
comes from the observation that: Pr(X ≤ x) = Pr(σF(ξ )≤ x) = Pr(ξ ≤ σ

−1
F (x)).

Equation (2.1) may be denoted G = T (F), where T is an operator. It defines a non
linear inverse problem: G is estimable and F should be estimated by solving this equa-
tion. The structural econometric model corresponding to the first-price auction model
can be written in terms of the functional equation:

A(F,G) = G−T (F) = 0.

We face an inverse problem that is nonlinear and ill-posed, as we will see later.

2.2 The quantile approach

As mentioned in the previous section, the relation between the c.d.f. of the bids and the
c.d.f. of the private values described in the equation 2.1 is a nonlinear one. This relation
becomes linear (in the quantile functions of the private values and bids) if one inverts the
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equation (2.1) (as in Enache and Florens (2020), Enache and Florens (2014) and Enache
and Florens (2018)):

G−1(α) = σF ◦F−1(α), (2.2)

where α ∈ [0,1]. After some manipulations (see appendix A.1)we get that:

G−1(α) =
N

αN

1∫
0

1[u≤α]u
N−1F−1(u)du

Let us denote by r(α) =
αN

N
G−1(α) and ϕ(α) = F−1(α) the two quantile functions (up

to some weighting element). We then have the relation:

r = Kϕ, (2.3)

where K is the linear operator:

(Kϕ)(α) =

1∫
0

1[u≤α]u
N−1

ϕ(u)du. (2.4)

The structural econometric model corresponding to the first-price auction model can be
written in terms of the functional equation:

A
(

ϕ,G−1
)
= Kϕ− r = 0.

This equation generates a linear inverse problem. Let us now discuss the ill-posedness of
the two-inverse problems presented in sections 2.1 and 2.2.

2.3 A mildly ill-posed inverse problem

Let L2[ξ ,ξ ] be the set of square real integrable functions on [ξ ,ξ ] in R, associated with
the uniform measure. Our functional parameter set is a subspace F of L2[ξ ,ξ ] typically
characterised by smoothness conditions. F0 is the subset of F of cumulative distribution
functions (F ∈F0 ⊂F if F(ξ ) = 0, F(ξ ) = 1 and if F is non decreasing). Note that F0

is a closed convex subset of F . We assume that F0 is an element of F0.
The true quantile function F−1

0 is denoted ϕ0 and is an element of the set of square in-
tegrable functions (w.r.t. the uniform measure) defined on [0,1]. Let us denote this set by
L2
[0,1]. The two spaces of L2

[ξ ,ξ ]
and L2

[0,1] are provided with their canonical Hilbert space

structure. We consider first the properties of the linear case derived from the analogies of
our problem under the quantile approach.
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The equation r = Kϕ defines an inverse problem as one cannot directly observe ϕ ,
but has instead an indirect measurement of it, which is r. Moreover, even r is measured
with some error. This problem is well-posed if the inverse operator K−1 exists and it
is continuous, such that for a consistent estimation of r, one can recover a consistent
estimation of ϕ . In other words, a problem is well posed in Hadamard sense if a solution
exists, it is unique and it is stable, i.e. small errors in the measurement of r do not have a
significant impact on the estimation of ϕ .

To illustrate the ill-posedness characteristic of our problem let us consider the case
N = 1 (i.e. two bidders). In that case, K reduces to the integral operator:

r(α) =

α∫
0

ϕ(u)du,α ∈ [0,1].

This equation implies that r is differentiable and that K is not invertible without re-
strictions on the image space of K. The nature of ill-posedness may be illustrated by the
following remark:

Remark 1. In this particular case with two bidders, the singular value decomposition2

implies that the eigenvectors are ϕ j(α) = cos

(
π

(
j+

1
2

)
α

)
and the singular values

are λ j =
1

π( j+
1
2
)
, j=0,1,... The degree of ill-posedness of this problem with respect to

the differential operator L on [0,1] is 1 because K = L−1 (see Engl et al. (2000)). This
property is illustrated by the geometrical decline of order 1 of the λ j.

Below we generalize the remark made above. Let us denote ψ(α) the function G−1.
Under regularity conditions, ψ(α) may immediately be derived from equation (2.3). The
solution would be

ϕ(α) = ψ(α)+
α

N
ψ
′(α). (2.5)

The inversion of K also requires that ψ is first order differentiable, which characterizes
an order of ill-possedness of 1. A geometric decline of the spectrum of the operator or
equivalently a finite order of ill-posedness characterize mildly ill-posed inverse problems.

Consider now the nonlinear equation generated by the model in the cdf form. The
known operator T is defined on F and its image is G = T (F ). The elements of G are
real functions defined on an interval [x,x], also associated with the uniform measure and
we associate G with the L2 topology.

As T is nonlinear, it will be approximated locally by a linear operator and we have
the following lemma:

2Recall that ϕ j and λ 2
j are eigenvalues of K∗K (K∗Kϕ j = λ 2

j ϕ j), where K∗ is the adjoint operator of K,
studied in Section 4.

6



Lemma 1. Under Assumption 1, T is Fréchet differentiable and its derivative is:

dTF0(F̃)(x) =
F0 ◦σ

−1
F0

(x)

N
∫ σ
−1
F0

(x)
0 FN

0 (u)du

∫
σ
−1
F0

(x)

0
FN

0 (u)F̃(u)du. (2.6)

Proof. See B.1 in Appendix.

In a nonlinear problem, ill-posedness may be considered globally or locally (see Engl
et al. (2000) or Gagliardini and Scaillet (2012)). In this paper we only look to the local ill-
posedness. The transform of F̃ by the derivative of T need to be first order differentiable
and the resolution of 2.6 wrt F̃ requires a smoothness condition of the left hand side. For
the same reason as in the linear case the local degree of ill-posedness is equal to 1 and
the problem remains mildly ill-posed.

We are now faced with three possible strategies to estimate F or ϕ = F−1. We can
estimate G by the usual empirical c.d.f. and solve (2.1), we can estimate G−1 by the
empirical quantile function and solve (2.2), or we can estimate G−1 = ψ by a smooth
estimator and estimate ϕ using formula (2.5). The first approach involves the resolution
of a nonlinear ill-posed problem and will be solved by an iterative algorithm, which needs
to be stopped at some step in order to regularise the inversion. The second method needs
to select a regularized inverse of K depending on some regularisation parameter. In the
last method we need to choose a smooth estimator of ψ , which requires for example a
bandwidth selection. The ill-posedness of the problem appears in the three equivalent
forms of the equation and in each case a regularisation parameter should be selected.

In the simulations we will compare these three methods and the original method pre-
sented in Guerre et al. (2000). Remember that, following preliminary results by Jean-
Jacques Laffont, these authors construct the estimation of F in the following way. Equa-
tion (1.2) implies:

ξ =
1

N−1
G(x)
g(x)

, (2.7)

where g is the density of G. In a finite step they estimate non parametrically G and g
and they reconstruct the ξ ′s from the relation above. Then they perform a nonparametric
estimation of F and of its density, f .

3 The c.d.f. approach

3.1 A nonlinear inverse problem: iterative algorithm

In this section, we consider the resolution of the equation G = T (F) by an iterative algo-
rithm. Let us first compute the adjoint of the dTF0:
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Lemma 2. The operator T is a linear bounded operator from F to G and its adjoint
operator dT ∗F0

: G −→F verifies:

dT ∗F0
(H̃)(ξ ) = FN

0 (ξ )
∫

ξ

ξ

H̃(σF0(u))
FN

0 (u)
du. (3.1)

Proof. See B.1 in Appendix.

Remark 2. This last adjoint operator is obtained from the L2 topology on G even if
dTF0(F̃) is differentiable. If G̃ is the set of differentiable functions of G , dTF0 is included
in G̃ . If G̃ is associated to a Sobolev topology, the adjoint of dTF0 is different. However,
the empirical c.d.f. Ĝ is not in G̃ and this motivates our choice for the computation of
dT ∗F0

.

We know from Guerre et al. (2000) that the model is globally identified. Local iden-
tification, i.e. injectivity of dTF0 , is verified in Florens and Sbaï (2010).
We also know from Protopopescu (1998), Florens et al. (1998) that first-price indepen-
dent private value model is (mildly) ill-posed of order one.

The equation G = T (F) has a regularised solution computed by a landweber iteration
with an Hilbert Scale penalty (see Kaltenbacher et al. (2008)).
Let first consider these two integral operators from F to F :

(Mψ)(t) =
∫ t

ξ

ψ(u)du (3.2)

and (M∗λ )(u) =
∫

ξ

u
λ (t)dt. (3.3)

Algorithm 1. The Landweber algorithm is defined by:

1. F̂0 is arbitrarily selected (e.g. F̂0 is the c.d.f. of a uniform on [ξ ,ξ ]).

2.
F̂k = F̂k−1 +wMM∗T

′∗
F̂k−1

(
Ĝ−T (F̂k−1)

)
, (3.4)

where w is a fixed number verifying:

w
∥∥∥dTF0MM∗T

′∗
F0

∥∥∥< 1. (3.5)

The algorithm stops at step k0. We discuss later on the choice of the stopping rule.

Remark 3. Algorithm 1 may be motivated by the following argument. As F0 is differen-
tiable, we may rewrite the equation G = T (F) by G = T (M f ) where f = F ′. Then the
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Fréchet derivative of T M is dTF0M and a usual algorithm on f is

f̂k = f̂k−1 +w(dTF0M)∗
(

Ĝ−T (M f̂k−1)
)
. (3.6)

Note that (dTF0M)∗ = M∗dTF0 . If we transform this relation by M we get formula (3.4).

Let us now discuss the empirical selection of the stopping rule.

3.2 Data driven stopping rule and relaxation parameter

In order for the Landweber iteration to converge, we must find the optimal number of
iterations for the algorithm. If we let k→ ∞, the algorithm will diverge and we would be
likely to observe over-fitting. We are using the stopping rule as given in Fève and Florens
(2014), i.e. we select the value of k which minimizes the expression:

k||Ĝ−T (F̂k)||. (3.7)

Also, in order to converge, we need ‖dTF‖ ≤ 1 in the algorithm. If it is not the case, a
relaxation parameter ω is applied such that:

ω‖dTF‖ ≤ 1. (3.8)

3.3 Rate of convergence

We can first notice that the c.d.f. G of the observed actions is not available precisely, but
the corresponding perturbed function is Gδ = Ĝ with:

||Ĝ−G||2 = O(δ ). (3.9)

Lemma 3. We have equation (3.9). If we assume F be β times differentiable (0 < β ≤ 2),
then we have:

‖F̂−F‖2 = O(δ
β

β+1 ). (3.10)

Proof. See Appendix B.2.

Note that with Ĝ being the empirical c.d.f., then δ = 1
n , and F being twice differen-

tiable w.r.t. ξ , then β = 2, we have ‖F̂−F‖2 = O(n−
2
3 ).
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4 The quantile approach

4.1 A linear inverse problem

We have seen in the Section 2 that the quantile function of the bids, G−1(α) (denoted
ψ(α)) is related to the quantile function F−1(α) (denoted ϕ(α)) by an integral equation:

nα
N

ψ(α) =

1∫
0

1[u≤α]u
N−1

ϕ(u)du or r = Kϕ. (4.1)

This equation is a linear Fredholm equation of type I that has been extensively studied
in the literature (see Engl et al. (2000) and Carrasco et al. (2007)). This equation may be
analyzed from different view points.

Firstly, it may be solved and an easy computation shows that:

ϕ(α) = ψ(α)+
α

N
ψ
′(α). (4.2)

Indeed equation(4.1) implies the differentiability of ψ and ψ ′ is its derivative. Then, the
estimation of ϕ by (4.2) requires a differentiable estimation of ψ .

Our quantile approach is similar to the one by Marmer and Shneyerov (2012) (see
equation 3 in their paper), but there is an important distinction. Compared with Marmer
and Shneyerov (2012) we focalize the "inversion", i.e. the transformation of the distri-
bution of the bids into the distribution of valuations on the transformation between the
two quantile functions. Recomputing the distribution F or its density becomes a question
independent of the game model. In particular, we never need to estimate the density or
the derivative of the density of the bids. If the object of intent is f , then we will simply

use the following relation f = (ϕ−1)′ =
1

ϕ ′(ϕ−1)
.

Remark 4. Equation (4.2) exhibits many interesting features: it shows that the deviation
between the quantile of bids and the quantile of private values equals

α

N
ψ
′(α) and that

this factor is decreasing with the number of participants, N. Moreover, one can see that

ξ = x and ξ = x+
1
N

ψ
′(1). This last equation may be used to estimate ξ .

Remark 5. If the estimation of ψ is constrained to be in C 1[0,1], ϕ may be estimated
by replacing ψ by this estimation. The regularization in that case is introduced by the
constraint on the estimation of ψ (ψ has to be smooth). This analysis is very standard in
nonparametric statistics and is in particular used for the estimation of the density. There
is however an over identification question that appears. Even if ψ is a quantile function
(or its estimator), ϕ characterized by (2.5) is not necessarily a quantile function. ϕ(0) =
ψ(0), but ϕ is not necessarily increasing. To obtain this property we need to estimate
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ϕ such that ϕ ′(α)

(
1+

1
N

)
+

α

N
ψ
′′(α) is nonnegative. In practice we omit generally

this constraint and if ϕ is not increasing, we complete the estimation by constructing an
increasing approximation of ϕ .

A second approach is to estimate ϕ by a regularized solution of (4.2), which does
not need a smooth estimation of ψ . The more common regularizations is the Tikhonov
aproach based on the minimisation of least squares penalized by an L2 norm. Sequential
methods may also be applied. The space of functions ϕ or ψ is L2[0,1] provided with the
uniform measure and the operator K is now an operator from L2[0,1] into L2[0,1]. This
is an Hilbert Schmidt operator because (see Carrasco et al. (2007)):

1∫
0

1∫
0

(
1(u≤ α)uN−1

)2
dudα < ∞. (4.3)

This operator is then bounded and compact. Its adjoint operator K∗ (L2[0,1]→ L2[0,1])
is characterized by:

1∫
0

(Kϕ)(α)λ (α)dα =

1∫
0

ϕ(β )(K∗λ )(β )dβ , (4.4)

that verifies:

(K∗λ )(β ) =
β N−1

N

1∫
β

α
N

λ (α)dα. (4.5)

Then: (
K∗Kϕ

)
(β ) =

1∫
0

α
N−1

β
N−1(1−max(α,β ))ϕ(α)dα. (4.6)

For more details about the above computations see Appendix C.1.
The Tikhonov regularized solution with an L2 norm of the densities is defined by:

ϕµ = argmin‖r−Kϕ‖2 +µ

∥∥∥M−1
ϕ

∥∥∥2
(4.7)

=
(

µM∗−1M−1 +K∗K
)−1

K∗r

= M(µI +M∗K∗KM)−1M∗K∗r,

under the assumption that ϕ is at least twice differentiable.
This approach may be generalized by replacing M by Ms (with possibly s = 0), if ϕ is

sufficiently differentiable and defined on a Hilbert scale penalization approach (see Engl
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et al. (2000) chapter):

ϕµ = Ms(µI +Ms∗K∗KMs)−1Ms∗K∗r. (4.8)

An alternative regularized solution of (4.1) is given by the Landweber algorithm, starting
with an arbitrary ϕ0:

ϕk+1 = ϕk−ωMM∗K∗(r−Kϕk), k = 0, ...,k0 and
∥∥ωM∗K∗KM

∥∥< 1. (4.9)

The regularization is given by the stopping rule k0.

4.2 Estimation of the quantile function ϕ

4.3 Estimation under smoothness constraint on ψ

If (xi)i=1,...n is the iid sample of the bids, we denote by (xin)i=1,...n the order statistic and
the empirical quantile function:

ψ̂(α) =
n

∑
i=1

xin1

(
α ∈

(
i−1

n
,

i
n

])
. (4.10)

To implement the method derived from equation (4.1), we need a smooth version of ψ ,
denoted ψ̃ equal to:

ψ̃(α) =
n

∑
i=1

xin

i
n∫

i−1
n

1
h

c
(

α− y
h

)
dy (4.11)

=
n

∑
i=1

xin

C

α− i
n

h

−C

α− i−1
n

h


 ,

where C is the cumulative distribution of a Nadaraya-Watson kernel c and h is a suitably
chosen bandwidth. The estimator is then:

ϕ̃ = ψ̃(α)+
α

N
ψ̃
′(α). (4.12)

We will give in the appendix C.2 the mean and the variance of this estimator where
the regularization parameter is the bandwidth of the estimation (4.11). Under usual reg-
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ularity condition on the kernel and if ϕ ∈ C 3[0,1], the rate of convergence of E
(
ϕ̃−ϕ

)2

is O
(

1
nh

+h4
)

and under a suitable choice of h, the rate is of order n−4/5 which is the

usual rate of a density of a single variable (equivalent to Guerre et al. (2000)). If ψ̃ is suf-

ficiently smooth, ϕ ′, the quantile density, may be estimated by ψ̃ ′
(

1+
1
N

)
+

α

N
ψ̃
′′(α)

which converges at the same rate as the derivative of a density (n−4/5 for the square of

the norm). From ϕ̃ and ϕ̃ ′ we may recover F = ϕ−1 and f =
1

ϕ ′ ◦ϕ
which converges at

the same rate as ϕ and ϕ ′ (for the transformation of ϕ and ϕ ′ into F and f , see Enache
and Florens (2020)).

4.4 Estimation without constraint on ψ

If ψ is not estimated under a differentiability constraint, we need to solve the equation
Kϕ = r by one of the regularisation method presented in the section 4.1: the Tikhonov
solution ((4.7)) or the Landweber algorithm ((4.8)). In these two approaches, the esti-
mation of ψ is given by (4.10) and the integrals M, M∗, K and K∗ are approximated by
Riemann sums. For example, the estimator of K∗r is equal to:

(
K̂∗r
)
(u) =

uN−1

N
1
n

n

∑
i=1

1

(
u≤ i

n

)(
i
n

)N

xin, (4.13)

and ϕ̂µ is estimated by (4.10) where K∗r is replaced by (4.13) and where the integrals M,
M∗, K and K∗ are approximated by Riemann sums.

Note that both in the Tikhonov and Landweber estimations, the introduction of M
implies that ϕ̂µ is differentiable and then ϕ ′, F and f may be derived from ϕ̂µ as before.

The rate of convergence of this estimation is discussed in the Appendix C.3.

4.5 Choice of h, µ and k0

Data driven methods for choosing µ has been developed in several papers. We may select
µ which minimises

1
µ
‖r̂−Kϕ̂

(2)
µ ‖, (4.14)

where ϕ̂
(2)
µ is the iterated Tikhonov estimator of order 2 defined by (see (Carrasco et al.

(2007)):

ϕ̂
(2)
µ = ϕ̂µ +µM(αI +M∗K′KM)−1M−1

ϕ̂µ . (4.15)

In the iterative Landweber approach, we are using the stopping rule as given in Fève
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and Florens (2014): we select the value of k0 which minimizes the expression

k‖r̂−Kϕ̂k‖. (4.16)

We study in Appendix C.3(see Enache (2015) and Enache and Florens (2014)) the prop-
erties of ϕ̂µ (the properties of ϕ̂k0 would be obtained in a very similar way).

5 Monte Carlo Study

We are going to show simulations results for the First-Price independent private values
auction model presented above. The true value for the private information is F0(s) = s2.
We consider two cases for each method: N = 5 bidders and 20 rounds, which gives 100
observed bids, or N = 3 bidders and 33 rounds, which gives 99 observed bids. Our
Monte Carlo experiment consists of 1000 replications. Solutions are evaluated over a
grid of values equal to the number of observations. We run the algorithm using Matlab.
Some results are shown below. Dashed lines correspond to 90% confidence intervals and
the mean of all 1000 estimations. The true function is a plain line.

It should be noted that in our methods based on Tikhonov or Landweber regularisa-
tion, we do not impose additional smoothness constraints (by opposition to, for example,
smoothness constraints imposed by the use of kernel methods).

We will first present graphical results for existing two-step GPV type methods and
then our one-step methods based on inverse problem techniques. Finally, we will make
a more precise comparison using Mean Squarred Error (MSE) and bias, for the entire
range of values or close to the upper boundary (last 10 %).

Figures 1 and 2 are the application of the two steps kernel based method in Guerre
et al. (2000), with trimming. We use the Matlab code provided by Hickman and Hub-
bard (2015). We use trapezoidal numerical integration of the estimated p.d.f. to obtain
an estimate of the c.d.f. We do not observe much difference between 3 and 5 players.
This method is not supposed be effective, in particular because of sample trimming and
boundary issues. Different corrections to GPV approach exist in the literature.

As expected, the results can be improved using the Boundary-Correction GPV esti-
mator (BCGPV) proposed by Hickman and Hubbard (2015), without trimming and with
boundary correction. It provides more satisfactory results, as illustrated in Figures 4 and
3. We do not observe much difference between 3 and 5 players. To a lesser extent, the
boundary issue remains, but overall the fit appears satisfactory.

Another adaptation of GPV approach is Marmer and Shneyerov (2012), writing the
problem in quantile form. They do not need explicit trimming. Also, they present meth-
ods to estimate the quantile function and the c.d.f.. Results are in Figures 5 to 8. It seems
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we gain precision going to 5 players, compared to 3 players (because the distribution
of bids is closer to the distribution of private values), but we do not observe dramatic
change. Similarly to BCGP estimator, overall their method seems to perform well, but
the boundary issue remains. This is true for both quantile and c.d.f. estimators, even
if their quantile approach seem to produce larger bias at the boundary than their c.d.f.
estimator.

Figures 9 and 10 are the application of our kernel quantile estimation method, with
boundary correction, which reduces the bias at the boundary of the kernel estimation of
the quantile of bids. It behaves similarly to the quantile approach suggested in Marmer
and Shneyerov (2012), also with some clear boundary issues. Even though this method is
not based on GPV two-step approach, boundary issues remain as it is still kernel based.

Figures 11 and 11 correspond to the application of our Landweber c.d.f. estimation
method presented in Algorithm 1. We do not impose any constraints. In particular,
we do not use a kernel based approach and there are no smoothness or monotonicity
constraints. As we do not have a Sobolev penalty, following our notation, it means that M
is the identity matrix. In the case of 3 players, the method performs remarkably badly, in
particular in terms of bias. When we have 5 players, the accuracy is somehow remarkable,
given the total lack of constraints. In particular, we observe a clear improvement at the
boundary compared to all previous kernel based approaches.

Figures 15 and 16 correspond to the application of the Tikhonov quantile estimation
method presented in 4.13. We impose a Sobolev penalty. Contrary to the Landweber
c.d.f. approach, the procedure is stable also with 3 players, even though we clearly gain
precision with 5 players. This inverse problem also improves results at the boundary.
However, we should note that we get aberrant numerical values when we arrive very
close to the upper bound and, therefore, we dropped them.

Figures 13 and 14 are the application of the Landweber quantile estimation method,
where we also impose a Sobolev penalty. It can be considered as the iterative counterpart
of 4.13 and hence could hopefully provide smoother results. Indeed, we observe less
variation in the results, even if the average bias does not seem to improve. In addition,
we still observe an improvement at the boundary. We can notice that this approach does
not produce much aberrant numerical values very close to the upper bound.

It is useful to complement our graphical interpretations with a report of Mean Inte-
grated Squarred Errors (MISE) and average bias values. We report results for the full
range of observations and for the last 10 % (i.e., close to the boundary). For each case,
the best result is in red.

A general comment is that quantile based methods have good small sample properties
and our method based on the equation (4.2) is certainly the easiest to be applied by the
practitioners. The method does not require a preliminary estimation of the private values
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and the choice of the regularization parameter (the bandwidth) is well known and easily
implemented.

Our estimation confirms that the original GPV method, which has been a seminal
contribution to theoretical researchers can not be applied without some corrections as in
the BCGPV extension.

The quantile Landweber estimation gives, by Monte Carlo simulations, small confi-
dence intervals and has good performance at the upper boundary of the distribution of the
private values. Due to the usual few number of observations, this part of the distribution
is the most difficult to be estimated. We should also note that alternative approaches,
(such as the quantile or c.d.f. estimation by Marmer and Shneyerov (2012)), have also
good properties.

Even if the use of quantiles seems the more powerful tool for the estimation of the
first-price auction models, the functional approach based on c.d.f. and using an iterative
algorithm for the inversion has good properties. Moreover, it can be generalized to other
games of incomplete information up to the difficult computation of the adjoint operator.

Finally, we want to recall that functional approaches do not require observation of
bids but only estimation of the quantile (or the c.d.f.) of the bids. Functional estimation
may be extended for example in the case where the bids are observed with error or, more
generally when the estimation of the distribution of the bids comes from another model.
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6 Conclusions

The first-price auction model has been intensively studied in the econometric literature.
Probably one of the best well-known papers in this field is the one by Guerre et al. (2000)
where the authors show the nonparametric identification of the distribution of the private
values within the independent private values paradigm and provide a two-steps estima-
tion method. In our paper, we treat the same problems of identification and estimation
but while using a functional approach. The first-price auction gives rise to a complex
nonlinear inverse problem. Although the information contained in the quantile functions
is the same as the information contained in the cumulative distribution functions, the
use of quantiles leads to a linearization of the problem. By contrast with previous ap-
proaches used in the literature of first-price auctions, within this framework, we are able
to find a closed-form solution for the quantile of the private values. Therefore we obtain
a constructive identification (see Matzkin (2013)) that allow for a one stage estimation
procedure. The estimation is performed using three regularization methods: Tikhonov
regularization, Landweber-Friedman regularization and estimation by kernels. We also
show that it is also possible to implement a one stage estimation of the c.d.f. directly,
for example using an iterative regularization. The Monte Carlo simulations show the per-
formances of the functional approach, in particular a better performance of the quantile-
based estimators. The functional estimation derived from the c.d.f. approach may be
extended to other game theoretic models.
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A Appendix section 2

A.1 Solution of the quantile equation

While the equation G(x) = F ◦σ
−1
F (x) has no closed-form solution in F , the quantile

version of it, i.e. G−1(α) = σF ◦ F−1(α) can be fully solved. After performing the
composition one obtains:

G−1(α) = F−1(α)−

F−1(α)∫
ξ

FN(u)du

FN(F−1(α))
,

or, equivalently:

G−1(α) = F−1(α)− 1
αN

F−1(α)∫
ξ

FN(u)du.

After the change of variable F(u) = v we obtain that:

G−1(α) = F−1(α)− 1
αN

α∫
0

FN(F−1(v))
1

f (F−1(v))
,dv

or, equivalently:

G−1(α) = F−1(α)− 1
αN

α∫
0

vNF−1′(v)dv.

After integration by parts we get that:

G−1(α) =
N

αN

α∫
0

vN−1F−1(v)dv.

B Appendix section 3

B.1 Computation of derivatives

Let us first derive a general result for game theoretic inverse problems. This computa-
tion partly reproduces some results of Florens and Sbaï (2010). The computation of the
adjoint is new.

Let us consider the operator T (F) = F ◦σ
−1
F = F ◦ϕF with

ϕF = σ
−1
F .
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We first compute the Gâteaux derivative of T in F0 in the direction F̃ (i.e. δ

δα
T (F0 +

αF̃)|α=0 ), which gives:

dTF0(F̃) = ( f0 ◦ϕF0).dϕF0(F̃)+ F̃ ◦ϕF0, (B.1)

where dϕF0(F̃) is the derivative of ϕ as a function of F .
Moreover from the identity σF(ϕ(x)) = x we derive:

dϕF0(F̃) =− 1
σ ′F ◦ϕF0

dσF0(F̃), (B.2)

where σ ′F = δ

δξ
σF(ξ ,F0).

The:
dTFo(F̃) = F̃ ◦ϕF0−

f0 ◦ϕF0

σ ′F0
◦ϕF0

.dσF0(F̃). (B.3)

This derivative computed using Gâteaux derivative is actually a Fréchet derivative, as
shown by Florens and Sbaï (2010).

In the case of private values first price models, this formula becomes:

dTF0(F̃)(x) =
F0 ◦ϕF0(x)

N
∫ ϕF0(x)

ξ
F0

N (u)du

∫
ϕF0(x)

ξ

F0
N (u) F̃ (u)du.

Under our assumptions, this linear operator from F to G is compact and then bounded.
At a more general level, we may compute the adjoint of dTF0(F̃) for T (F) = F◦σF ,

where F is an element of L2 on an interval provided with a density ρ . If H̃ ∈ G , we have
by definition 〈

dTF0(F̃), H̃
〉
=
〈

F̃ ,dT ∗F0
(H̃)
〉
.

Then:

∫ [
F̃ ◦ϕF0−

f0 ◦ϕF0

σ ′F0
◦ϕF0

.dσF0(F̃)

]
(x).H̃(x)ρ(x)dx

=
∫

F̃(ξ ){H̃(σF0(ξ ))
ρ(σF0(ξ ))σ

′
F0
(ξ )

π(ξ )
}π(ξ )dξ −

∫
dσ
∗
F0
{ f0 ◦ϕF0

σ ′F0
◦ϕF0

H̃}π(ξ dξ ),

where dσ∗F0
: G →F is the adjoint of dσF0 . Then:

dT ∗F0
(H̃)(ξ ) = H̃(σF0(ξ ))

ρ(σF0(ξ ))σ
′
F0
(ξ )

π(ξ )
−dσ

∗
F0
{ f0 ◦ϕF0

σ ′F0
◦ϕF0

H̃}(ξ ). (B.4)
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B.2 Proof of Lemma 3

Proof. Under the source condition F ∈ℜ[
(

T
′∗

F T
′

F

) β

2
], our result is obtained by general-

ising Theorem 2.13 in Kaltenbacher et al. (2008) with β = 2. (β = 2µ in their Theorem
2.13, where they have at most µ = 1

2 ) We need now to check the condition. In the case
of a game of incomplete information, we have seen that the Fréchet derivative of T in the
direction F̃ has the form

dTF(F̃) = a
∫ c

ξ

bF̃ .

This implies that F ∈ℜ[
(

T
′∗

F T
′

F

) β

2
] is equivalent to F being β times differentiable w.r.t.

ξ . Hence our result.

C Section 4

C.1 Computation of the adjoint operator

The adjoint operator of K, denoted by K∗, is characterized by 〈Kϕ,λ 〉 = 〈ϕ,K∗λ 〉 or
equivalently:

1∫
0

λ (α)dα

1∫
0

1[u≤α]u
N−1

ϕ(u)du =

1∫
0

ϕ(u)du
1∫

0

uN−1
1[u≤α]λ (α)dα,

which amounts to:

(K∗λ )(u) = uN−1
1∫

0

1[u≤α]λ (α)dα.

This computation implies in particular that:

K∗Kϕ = vN−1
1∫

0

uN−1

 1∫
0

1[v≤α]1[u≤α]dα

ϕ(u)du= vN−1
1∫

0

uN−1(1−max(u,v))ϕ(u)du.

We also have that:

(K∗r)(u) =
uN−1

N

1∫
0

1[u≤α]r(α)αN dα.
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C.2 Properties of the estimator derived from a smooth estimation of
the quantile function of the bids

For the estimation of ψ we follow the approach considered in several papers (see Jones
(1992) for a survey and Enache and Florens (2014)). Other possible methods may be
used, in particular the inversion of a smooth version of the empirical c.d.f.. We assume
that ψ is a C 3 function and then the quantile density, ψ ′ is twice differentiable. The bias
of our estimation of ϕ verifies:

E
(
ϕ̂(α)−ϕ(α)

)
= E

(
ψ̂(α)−ψ(α)

)
+

α

N
E
(
ψ̂
′(α)−ψ

′(α)
)
. (C.1)

Following Jones (1992) this expression is approximated by:

E
(
ϕ̂(α)−ϕ(α)

)
' 1

2
h2

σ
2
c

ϕ ′′(α)

ϕ
′2 +

α

N

ϕ ′(α)ϕ ′′′(α)−3
(
ϕ ′′(α)

)2

ϕ
′3(α)


 , (C.2)

where c is the kernel function and σc its variance. The variance term of the estimation is
only driven by the estimation of of ψ ′ because the variance of ψ has a rate 1

n faster than
the variance of ψ ′. Then:

V
(
ϕ̂(α)

)
' 1

nh
ϕ
′2(α)

α2

N2

∫
c2. (C.3)

As usual for nonparametric estimation a optimality rate for h is n
−

1
5 (for a second order

kernel) leading to an optimal rate of convergence of n
−

4
5 . Under integrability conditions

this rate is also the rate of E
∥∥ϕ̂µ −ϕ

∥∥2.

C.3 Properties of the Tikhonov solution of the quantile function

We consider:

ϕ̂µ−ϕ =M
(
µI +M∗K∗KM

)−1 M∗K∗(r̂−Kϕ)+M
(
µI +M∗K∗KM

)−1 M∗K∗Kϕ−ϕ =A+B,
(C.4)

and we look at the behavior of these two terms.
The first term, A, converges to a Gaussian Process for a fixed µ . Indeed note first that:

√
n(r̂−Kϕ)⇒ αN

g◦G−1(α)
(Brownian Bridge). (C.5)

The Brownian Bridge is the Gaussian process on [0,1] with mean 0 and covariance func-
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tion min(α,β )−αβ (see Van der Vaart (1998)). This convergence is actually true on
[ε,1] for any ε > 0, but the transformation by K∗ regularizes the origin (see Enache and
Florens (2020)). We denote by Σ the asymptotic variance of

√
n(r̂−Kϕ) characterized

by the covariance function:
αNβ N

g◦G−1(α)g◦G−1(β )
. (C.6)

Then
√

nA coverges to a Gaussian process on [0,1] with 0 mean and variance Ω where:

Ω = M
(
µI +M∗K∗KM

)−1 M∗K∗ΣKM
(
µI +M∗K∗Kµ

)−1 M∗. (C.7)

The first term of E
∥∥ϕ̂µ −ϕ

∥∥2 is
1
n

TrΩ. Let us introduce the following assumption:

Assumption 2. Let
(

λ 2
j ,ϕ j

)
j≥0

be the spectral decomposition of M∗K∗KM (where

M∗K∗KMϕ j = λ 2
j ϕ j, ∀ j). We assume that ∃ ∈ [0,1] such that ∑

j

< ∑ϕ j,ϕ j >

λ
2ρ

j

< ∞.

Then:

Lemma 4. TrΩ = O
(

1
µ1−ρ

)
. Proof:

TrΩ = O

∑
λ 2

j < ∑ϕ j,ϕ j >(
µ +λ 2

j

)2

 (C.8)

= O

∑
λ

2(1+ρ)
j(

µ +λ 2
j

)2
< ∑ϕ j,ϕ j >

λ
2ρ

j

 . (C.9)

As
λ

2(1+ρ)
j(

µ +λ 2
j

)2 is of order
1

µ1−ρ
we have the result.

Let us look now at the bias term B in (C.4). We assume:

Assumption 3. ϕ ∈ Range of M and ϕ = Mp, with p ∈ Range(M∗K∗KM)
−

β

2 .

Then:

Lemma 5. ‖B‖2 = O
(

µβ

)
, if β ≤ 2 and‖B‖2 = O

(
µ2
)

if β > 2.

The proof is given in Carrasco et al. (2007) and it is very similar to the proof of the
previous lemma after remarking that our assumption is equivalent to:
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∑
ρ≥0

< ϕ j,ϕ j >
2

λ
2ϕ

j

< ∞. (C.10)

Then this lemma implies that

E
∥∥ϕ̂µ −ϕ

∥∥2
= O

(
1

nµ1−ρ
+µ

β

)
. (C.11)

The optimal rate for µ is n−
1

1+β−ρ given a rate for E
∥∥ϕ̂µ −ϕ

∥∥2 proportional to n−
1

1+β−ρ .

We will comment the previous assumption but note that if β = 2 and ρ =
1
2

, this rate is

exactly n
−

4
5 , the rate obtained in the previous results.

Let us comment the assumptions. The assumption 3 means that ϕ is in the range of M

which is equivalent to ϕ(0)= 0 and to ϕ differentiable. Moreover p∈Range(M∗K∗KM)

β

2

when β = 2 is equivalent to p = M∗K∗ν (ν ∈ L2[0,1]) which requires p twice differen-
tiable (plus some boundary conditions). In particular, Assumption 2 requires ϕ ∈ C 3.

Assumption 2 is difficult to verify. Consider a particular case where M is not intro-
duced in the estimation (s=0 in the notation of (4.8)) and if N = 2 with ξ uniform on [0,1].

In this case, x =
1
2

ξ and the bids are uniform [0,
1
2
]. Under these assumptions K is the

integral operator of M and the spectral decomposition of K∗K is
(

λ 2
j ,ϕ j

)
with λ 2

j = c
1
j2

and ϕ j
(
ξ
)
= cos(

cξ

j
). The operator Σ reduces to the Brownian Bridge and < ∑ϕ j,ϕ j >

is also proportional to
1
j2 . Then if ρ =

1
2
− ε for any small positive ε , Assumption 2 is

verified and the rate of convergence of ϕ̂µ is n
−

4
5−2ε .

Remark 6. Under usual regularity conditions, the rate of the estimation of ϕ by solving

equation (4.2) is n
−

4
5 and it is a minimax rate under the assumption that ψ is nonpara-

metrically estimated as a smooth version of the empirical distribution. This rate is not
verified if G = ψ−1 is estimated differently. For example, the bids may be observed with
error and G may be estimated by deconvolution of the distribution of the observed bids.
The rate obtained in Lemma 3 is more general in the sense that it can be applied for any

estimation of G. In the case where G is estimated by the empirical c.d.f., our rate n
−

2
3 is

only an upper bound and may be improved using stronger assumptions. The estimation
by equation (4.8) (or (4.9)), equivalently leads to identical rate as the nonlinear case if
ρ = 0.
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Figure 1: CDF after Guerre-Perrigne-Vuong, Silvermann rule. N=3, L=33

Figure 2: CDF after Guerre-Perrigne-Vuong, Silvermann rule. N=5, L=20
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Figure 3: CDF after Hickman-Hubbard with boundary correction. N=5, L=20

Figure 4: CDF after Hickman-Hubbard with boundary correction. N=3, L=33
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Figure 5: CDF Marmer-Shneyerov. N=3, L=33

Figure 6: CDF Marmer-Shneyerov. N=5, L=20
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Figure 7: Quantile Marmer-Shneyerov. N=3, L=33

Figure 8: Quantile Marmer-Shneyerov. N=5, L=20
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Figure 9: Quantile kernel with boundary correction. N=3, L=33

Figure 10: Quantile kernel with boundary correction. N=5, L=20
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Figure 11: CDF estimation using Landweber. N=3, L=33

Figure 12: CDF estimation using Landweber. N=5, L=20
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Figure 13: Quantile Landweber. N=3, L=33

Figure 14: Quantile Landweber. N=5, L=20
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Figure 15: Quantile Tikhonov. N=3, L=33

Figure 16: Quantile Tikhonov. N=5, L=20
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