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Abstract
Parametric properties are behavioral properties over program events
that depend on one or more parameters. Parameters are bound
to concrete data or objects at runtime, which makes parametric
properties particularly suitable for stating multi-object relationships
or protocols. Monitoring parametric properties independently of
the employed formalism involves slicing traces with respect to
parameter instances and sending these slices to appropriate non-
parametric monitor instances. The number of such instances is
theoretically unbounded and tends to be enormous in practice, to
an extent that how to efficiently manage monitor instances has
become one of the most challenging problems in runtime verification.
The previous formalism-independent approach was only able to do
the obvious, namely to garbage collect monitor instances when
all bound parameter objects were garbage collected. This led to
pathological behaviors where unnecessary monitor instances were
kept for the entire length of a program. This paper proposes a new
approach to garbage collecting monitor instances. Unnecessary
monitor instances are collected lazily to avoid creating undue
overhead. This lazy collection, along with some careful engineering,
has resulted in RV, the most efficient parametric monitoring system
to date. Our evaluation shows that the average overhead of RV in the
DaCapo benchmark is 15%, which is two times lower than that of
JavaMOP and orders of magnitude lower than that of Tracematches.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Assertion checkers, Class invariants, Formal methods, Reliabil-
ity; D.2.5 [Software Engineering]: Debugging aids, Error handling
and recovery, Monitors; D.3.2 [Programming Languages]: Object-
oriented languages; D.3.4 [Programming Languages]: Code gener-
ation, Memory management

General Terms Languages, Performance, Reliability, Verification

Keywords runtime verification, runtime monitoring, testing, de-
bugging, aspect-oriented programming, garbage collection

1. Introduction

Monitoring is an effective technique for ensuring software reliability.
The well known concept of typestate [30] property can be enforced
by using monitoring techniques. Typestates refine the notion of
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Figure 1. Typestate description for HASNEXT

type by stating not only what operations are allowed by a particular
object, but also what operations are allowed in what contexts.

Figure 1 shows the typestate description for HASNEXT. The
HASNEXT typestate says that it is invalid to call the next() method
on an Iterator object when there are no more elements in the
underlying Collection, i.e., when hasnext() returns false, or when
it is unknown if there are more elements in the Collection, i.e.,
hasnext() is not called. From the unknown state, it is always an error
to call the next() method because such an operation could be unsafe.
If hasnext() is called and returns true, it is safe to call next(), so the
typestate enters the more state. If, however, the hasnext() method
returns false, there are no more elements, and the typestate enters
the none state. In the more and none states, calling the hasnext()
method provides no new information. It is safe to call next() from
the more state, but it becomes unknown if more elements exist, so
the typestate reenters the initial unknown state. Finally, calling next()
from the none state results in an error.

Typestate Property Example- It is straightforward to encode
this, and all typestate properties, as particular (one-parameter) para-
metric properties. Figure 2 shows this property using the RV system
presented in this paper. For demonstration purposes, we specify the
same property using two different formalisms. The first formalism
is a direct translation of the typestate diagram using the finite state
machine (FSM) capabilities of RV, and is denoted by the fsm key-
word. Each state in the typestate is written as a name followed by its
transitions (i.e., monitored events) in brackets. The first state in the
FSM description (unknown) is always considered to be the initial
state of a finite state machine in the RV system. The second formal-
ism is linear temporal logic (LTL), prefixed by the keyword ltl. The
LTL formula here states that any call to next() must always ([])
be immediately preceded ((*)) by a call to hasnext() that returned
true. The RV system supports multiple logical formalisms, and as
this example demonstrates, some formalisms can lead to much more
succinct and easy to understand specifications.
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HasNext(Iterator i) {
event hasnexttrue after(Iterator i) returning(boolean b) :

call(* Iterator.hasNext()) && target(i) && condition(b) {}
event hasnextfalse after(Iterator i) returning(boolean b) :

call(* Iterator.hasNext()) && target(i) && condition(!b) {}
event next before(Iterator i) :

call(* Iterator.next()) && target(i) {}

fsm :
unknown [

hasnexttrue -> more
hasnextfalse -> none
next -> error

]
more [

hasnexttrue -> more
next -> unknown

]
none [

hasnextfalse -> none
next -> error

]
error [ ]

@error {
System.out.println("improper Iterator use found!");

}

ltl: [](next => (*)hasnexttrue)
@violation {

System.out.println("improper Iterator use found!");
}
}

Figure 2. HASNEXT property in RV using FSM and LTL

The monitored events are prefixed by the keyword event and
are encoded using slightly extended AspectJ [25] pointcuts. One
such extension is the condition pointcut, which is similar to the
if pointcut: it ensures that the given pointcut is only applied if its
condition is true, but unlike the if pointcut, it is able to refer to
variables bound by returning advice. Thus, the hasnexttrue event is
only generated if hasnext() returns true, and the hasnextfalse is only
generated if hasnext returns false. The per Iterator nature of the
HASNEXT typestate is encoded by using one Iterator parameter.

For each property, the code block following it is referred to as a
handler. The handler is executed when a condition of its correspond-
ing specification is met. For instance, the FSM handler in Figure 2
is executed when the machine enters the error state, while the LTL
handler is executed when the LTL formula is violated. Handlers may
contain any arbitrary Java code, but here they simply print messages.
Such behavior is useful for debugging and testing purposes.

Parametric properties properly generalize typestates, as we shall
see, by allowing more parameters. This allows us to specify not only
properties about a given object such as the HASNEXT example, but
also properties that specify relationships between objects.

General Parametric Property Examples- Figure 3 shows a
property for the unsafe use of Collection and Iterator. The
property flags it as an error if an Iterator is created, its underlying
Collection is modified, and then the Iterator is used again. Here
we use the extended regular expression (ERE) capabilities of the
RV system, as specified by the ere keyword. The occurrence of
update∗ at the beginning of the pattern allows any number of updates
before the first create event, in which the Iterator is first created.
We wish to catch this behavior because Java Collections do not
allow concurrent modification. The JVM usually throws a runtime
exception when this occurs, but the exception is not guaranteed to
be thrown in a multi-threaded environment.

Figure 4 shows a specification for the safe use of reentrant locks,
called SAFELOCK, stating that the number of calls of an acquire() in
a given method is balanced with the number of calls to release(). This
property is parametric both in the Lock in question and in the Thread,
and is specified using the context-free grammar (CFG) plugin of

UnsafeIter(Collection c, Iterator i) {
event create after(Collection c) returning(Iterator i) :

call(Iterator Collection.iterator()) && target(c) {}
event update after(Collection c) :

(call(* Collection.remove*(..))
|| call(* Collection.add*(..))
|| call(* Collection.clear(..))) && target(c){}

event next before(Iterator i) :
call(* Iterator.next()) && target(i){}

ere : update* create next* update+ next
@match {

System.out.println("improper Concurrent Modification found!");
}
}

Figure 3. UNSAFEITER property in RV using the ERE plugin

SafeLock(Lock l, Thread t){
event acquire before(Lock l, Thread t):

call(* Lock.acquire()) && target(l) && thread(t) {}
event release before(Lock l, Thread t):

call(* Lock.release()) && target(l) && thread(t) {}
event begin before(Thread t) :

execution(* *.*(..)) && thread(t) && !within(Lock+) {}
event end after(Thread t) :

execution(* *.*(..)) && thread(t) && !within(Lock+) {}

cfg : S -> S begin S end | S acquire S release | epsilon
@fail { System.out.println("improper Lock use found!"); }
}

Figure 4. SAFELOCK property in RV using the CFG plugin

the RV system. The events begin and end refer to the beginning and
end of every method. The thread pointcut is also an RV extension
of standard AspectJ pointcuts that allows for binding the current
Thread of execution in the monitored program. The pattern for the
specification, prefixed by the keyword cfg, has S for its start symbol.
The first symbol seen is always assumed the start symbol. The CFG
pattern requires that begin and end events are matched and properly
nested with acquire and release events, which must also be matched.

Monitoring parametric properties in their full generality is a
complex task. Several parametric monitoring systems such as
Eagle [20], J-Lo [11, 12, 29], Tracematches [4, 8], JavaMOP [16,
17], PTQL [23], PQL [26], QVM [5], SpoX [24], PoET [22], and
RuleR [9] have been proposed in recent years. In parametric moni-
toring systems, the parameters are dynamically bound to objects at
runtime, thus resulting in a potentially unlimited number of monitor
instances, one per combination of parameter bindings. The main
challenge underlying the monitoring of parametric properties is
therefore how to effectively manage these monitor instances, in
particular how to efficiently retrieve all the monitor instances inter-
ested in an event when it takes place, and how to efficiently garbage
collect monitor instances which have become unnecessary.

Earlier attempts such as Tracematches [4, 8] are careful to
manage their memory, but hardwire their property specification
formalism (regular expression only). JavaMOP [16, 17] is generic in
specification formalisms, but, however, it has memory leaks. Due to
JavaMOP’s creation of separate monitor instances in order to handle
each separate parameters instantiation, recognizing and removing
unnecessary monitor instances is quite challenging. JavaMOP is
only able to collect a monitor instance when all the bound parameters
are garbage collected, which ensures that no event can happen to the
corresponding monitor instance. The problem with this method
of garbage collection can be clearly seen in the UNSAFEITER
property from Figure 3. Because it is the next event at the end
of the pattern that actually causes the error, there is no way to
ever match the pattern if the Iterator bound to a given monitor
instance is garbage collected. However, JavaMOP is only able to
collect the associated monitor instance if both the Collection

and the Iterator are garbage collected. Unfortunately, in most



realistic programs, Collections have much longer lifetimes than
the Iterators created from them. Because of this, JavaMOP would
have large numbers of monitor instances–when monitoring most
programs–that could never possibly match the pattern because their
bound Iterators had been collected. The RV system, which is
presented in this paper, is a commercial grade system developed by
a startup company.1 RV is able to collect these monitor instances, as
well as many others that JavaMOP does not collect.

To collect monitor instances that JavaMOP is unable to collect,
we implement, in RV, a means to prune unnecessary monitor
instances based on a static analysis of the monitored property.
The results of the static analysis, which we refer to as coenable
sets, are used at runtime to determine when a monitor instance
can no longer reach a triggering state, and can thus be garbage
collected. For example, in UNSAFEITER (Figure 3), the coenable
sets associated to event update consist of all those subsets of
events which can potentially make update a relevant event for
a monitor for UNSAFEITER, that is, {next}, {next, update}, and
{next, create, update}. Indeed, in any matching trace containing
update, the event update is followed by precisely all the events in
one of these subsets. Consider now a monitor M for UNSAFEITER
corresponding to a particular parameters instance, say c 7→ c1 and
i 7→ i1, and suppose that an event update is just being dispatched
to M . At this moment, M knows that it has a future only if all the
events in at least one of the coenable sets of update are possible. In
particular, if the Iterator i1 has already been garbage collected,
then M will never match, since each of the coenable sets of update
contains a next, which can only be generated by i1. Thus, M can
safely terminate itself and be garbage collected in this situation.
Removing unnecessary monitors is still an expensive task, and in the
interest of making it as efficient as possible, a lazy collection method
is used. This technique makes RV the most efficient parametric
monitoring system to date, by a large margin (see Section 5).

Our monitor garbage collection technique is orthogonal to other
optimization techniques for parametric monitoring. More precisely,
our technique is aimed at improving the base performance of para-
metric monitoring by means of keeping the number of monitor
instances low without relying on (expensive) knowledge about the
source program or on minimizing the distance between events and
their monitors. Other optimizations can be applied on top of our
garbage collection technique and thus start from this base per-
formance and improve it. For example, staged indexing (or de-
centralized indexing), which has been proposed and implemented
in [6, 8, 17], piggy-backs indexing trees onto parameter instances.
This reduces the cost of lookup due to better cache locality and
fewer hash lookups. Also, significant runtime overhead reductions
have been achieved using program static analysis [14, 15, 21, 26],
by removing unnecessary instrumentation. RV supports both staged
indexing and program static analysis via the Clara approach [15].
Nevertheless, we deliberately disabled these orthogonal optimiza-
tions in our evaluation, to properly measure the effectiveness of the
proposed garbage collection technique. Enabling these orthogonal
optimizations would only hide the inefficiency of base monitoring.

We evaluate our RV garbage collection technique and compare it
to those in JavaMOP and Tracematches in Section 5. We picked
these two systems for comparison because they are known for
their efficiency (the best so far). The average overhead of RV in
version 9.12 of the DaCapo [10] benchmark suite is 15%, even
with no static or decentralized indexing optimizations, which is
two times lower than 33% of JavaMOP and nine times lower
than the 142% of Tracematches disregarding those cases where
Tracematches failed to terminate. Even the largest overhead of
RV in two versions of DaCapo, from UNSAFEITER-bloat, is only

1 We cannot mention the company name due to double blind reviewing.

251%, while in JavaMOP, 7 cases show overhead higher than 251%,
and in Tracematches, 20 cases show higher overhead and 9 cases
do not terminate.

Outline The rest of this paper is as follows: Section 2 provides
a brief overview of parametric monitoring; Section 3 explains the
theory of the coenables sets used for pruning unnecessary monitor
instances, and shows some examples; Section 4 discusses our data
structures to efficiently garbage collect monitors by using coenables
sets, as well as how the coenable sets are actually used during the
monitoring process; Section 5 presents our experimental data; and
Section 6 provides some concluding remarks.

2. Parametric Properties and Monitoring

To explain the garbage collection of unnecessary monitor instances,
we first introduce some background theory on parametric monitoring.
For consistency, we follow the notation and terminology recently
proposed by the JavaMOP authors in [18]. We begin by introducing
the notions of event, trace, and property, first non-parametric and
then parametric. Trace slicing is then defined as a reduct operation
that forgets events that are unrelated to the given parameter instance.

Definition 1. Let E be a finite set of (non-parametric) events,
called base events or simply events. An E-trace, or simply a (non-
parametric) trace when E is understood or not important, is any
finite sequence of events in E , that is, an element in E∗. If event e ∈ E
appears in trace w ∈ E∗ then we write e ∈ w. ε is the empty trace.

For UNSAFEITER in Section 1, the set of events E is {create, update,
next}, and a possible trace is “create next update next”.

Definition 2. An E-propertyP , or simply a (base or non-parametric)
property, is a function P : E∗ → C partitioning the set of traces
into (verdict) categories C. In general, C may be any set.

Consider again UNSAFEITER. The match traces are those matching
the pattern, e.g., “create next update next”. There are also traces
that have not matched yet, but may still match in the future, such
as “update create”, which we call ? (unknown) traces. Lastly, there
are traces that may never match again, such as “create update next
next”, which we refer to as fail traces. Thus we pick C to be the
set {match, fail, ?}, and define its property PUNSAFEITER : E∗ → C
as follows: PUNSAFEITER(w) = match if w is in the language of the
UNSAFEITER ere, PUNSAFEITER(w) = ? if w is a prefix of a string in
the language of the ere, and PUNSAFEITER(w) = fail otherwise.

We next extend the above definitions to the parametric case. Let
[A→B] be the set of total functions, and let [A⇁B] be the set of
partial functions from A to B.

Definition 3. (Parametric events and traces). Let X be a finite set
of parameters and let V be a set of corresponding parameter values.
If E is a set of base events like in Definition 1, then let E〈X〉 be
the set of corresponding parametric events e〈θ〉, where e is a base
event in E and θ is a partial function in [X⇁V ]. Partial functions θ
in [X⇁V ] are called parameter instances. A parametric trace is
a trace with events in E〈X〉, that is, a word in E〈X〉∗.
A parametric trace for UNSAFEITER could be “update〈c 7→ c1〉
update〈c 7→ c2〉 create〈c 7→ c1, i 7→ i1〉 next〈i 7→ i1〉”. To
simplify writing we often assume the parameter set implicit, as
in the following, which is the same trace: “update〈c1〉 update〈c2〉
create〈c1, i1〉 next〈i1〉”.

Definition 4. LetX be a finite set of parameters. If E is a set of base
events like in Definition 1, we define a parametric event definition,
or event definition for short, as a function D : E → P(X), where
P is the power set, that maps each event e to a set of parameters



D(e) that will be instantiated by e at runtime.D is extended to E∗ as
D(ε) = ∅ and D(ew) = D(e) ∪ D(w), and to P(E) as D(∅) = ∅
and D({e} ∪ E) = D(e) ∪ D(E). Parametric event e〈θ〉 is D-
consistent if dom(θ) = D(e). Parametric trace τ is D-consistent
if e〈θ〉 is D-consistent for each e〈θ〉 ∈ τ .

The UNSAFEITER property contains the parametric event definition
D(create) = {c, i}, D(update) = {c}, D(next) = {i}. It states
that, for example, parameters c and i will be instantiated at runtime
when a parametric event create〈θ〉 is received. For a trace “create
update”, D(create update) is {c, i}.
Definition 5. θ, θ′ ∈ [A⇁B] are compatible if for any x ∈
dom(θ) ∩ dom(θ′), θ(x) = θ′(x). We can combine compatible
instances θ and θ′, written θ t θ′, as follows:

(θ t θ′)(x) =

 θ(x) if θ(x) is defined
θ′(x) if θ′(x) is defined
undefined otherwise

θ t θ′ is also called the least upper bound (lub) of θ and θ′. θ is
less informative than θ′, written θ v θ′, if for any x ∈ X , if θ(x) is
defined then θ′(x) is also defined and θ(x) = θ′(x). t is extended
to Pf ([X⇁V ]) in the natural way. Here Pf is the finite power set.

Definition 6. (Trace slicing) Given parametric trace τ ∈ E〈X〉∗
and θ in [X⇁V ], let the θ-trace slice τ �θ ∈ E∗ be the non-
parametric trace defined as:

• ε�θ= ε (recall that ε is the empty trace)

• (τ e〈θ′〉)�θ=
{

(τ�θ) e if θ′ v θ
τ�θ otherwise

The trace slice τ�θ first filters out all the parametric events that
are not relevant for the instance θ, i.e., which contain instances of
parameters that θ does not care about, and then, for the remaining
events relevant to θ, it forgets the parameters so that the trace can
be checked against base, non-parametric properties. It is crucial
to discard events from parameter instances that are not relevant
to θ during the slicing, including those more informative than
θ. Referring back to our parametric trace from above, the non-
parametric trace slice for parameter instance 〈c2〉 is “update”, that
for 〈c1〉 is “update”, the slice for 〈c1, i1〉 is “update next”, and the
slice for 〈i1〉 is “next”.

Definition 7. Let X be a finite set of parameters together with
their corresponding parameter values V , like in Definition 3, and
let P : E∗ → C be a non-parametric property like in Definition 2.
Then we define the parametric property ΛX.P as the property (over
traces E〈X〉∗ and verdict categories [[X⇁V ]→ C])

ΛX.P : E〈X〉∗ → [[X⇁V ]→ C]
as (ΛX.P )(τ)(θ) = P (τ�θ) for each τ ∈ E〈X〉∗, θ ∈ [X⇁V ].

A parametric property is therefore similar to a normal property, but
one partitioning parametric traces in E〈X〉∗ into verdict categories
in [[X⇁V ] → C], that is, original (as in the non-parametric
property) verdict categories indexed by parameter instances. This
allows the parametric property to associate an original category for
each parameter instance from [X⇁V ].

Next we define monitors and parametric monitors. Like for
parametric properties, which are just properties over parametric
traces, parametric monitors are also just monitors, but for parametric
events and with instance-indexed states and verdict categories.

Definition 8. A monitor M is a tuple (S, E , C, ı, σ, γ), where S is
the set of states, E is the set of input events, C is the set of verdict
categories, ı ∈ S is the initial state, σ : S×E → S is the transition
function, and γ : S → C is the verdict function. The transition
function is extended to handle traces, i.e., σ : S × E∗ → S where
σ(s, ε) = s and σ(s, ew) = σ(σ(s, e), w). M = (S, E , C, ı, σ, γ)

Algorithm MONITOR(M = (S, E , C, ı, σ, γ))
function main(τ)
1 ∆← ⊥; ∆(⊥)← ı; Θ← {⊥}
2 foreach e〈θ〉 in order in τ do
3 : foreach θ′ ∈ {θ} tΘ do
4 : : ∆(θ′)← σ(∆(max{θ′′ ∈ Θ | θ′′ v θ′}), e)
5 : : Γ(θ′)← γ(∆(θ′))
6 : endfor
7 : Θ← {⊥, θ} tΘ
8 endfor

Figure 5. Monitoring Algorithm

is a monitor for property P : E∗ → C if γ(σ(ı, w)) = P (w) for
each w ∈ E∗. Monitor M defines the property PM : E∗ → C
with PM (w) = γ(σ(ı, w)). Monitors M and M ′ are equivalent iff
PM = PM′ .

We next define parametric monitors starting with a base monitor and
a set of parameters: the corresponding parametric monitor can be
thought of as a set of base monitors running in parallel, one for each
parameter instance.

Definition 9. Given parameters X with corresponding values
V and monitor M = (S, E , C, ı, σ, γ), the parametric moni-
tor ΛX.M is the monitor ([[X⇁V ] → S], E〈X〉, [[X⇁V ] →
C], λθ.ı,ΛX.σ,ΛX.γ), with

• ΛX.σ : [[X⇁V ]→S]× E〈X〉 → [[X⇁V ]→S]
• ΛX.γ : [[X⇁V ]→S]→ [[X⇁V ]→C]

defined as

(ΛX.σ)(δ, e〈θ′〉)(θ) =

{
σ(δ(θ), e) if θ′ v θ
δ(θ) otherwise

(ΛX.γ)(δ)(θ) = γ(δ(θ))

for each δ ∈ [[X⇁V ]→S] and each θ, θ′ ∈ [X⇁V ].

Therefore, a parametric monitor ΛX.M maintains a state δ(θ) ofM
for each parameter instance θ, takes parametric events as input, and
outputs categories indexed by parameter instances (one category of
M per instance). Intuitively, one can think of a parametric monitor as
a collection of “monitor instances”. Each monitor instance, which
is indexed by a parameter instance, keeps track of the state of one
trace slice. The rule for ΛX.σ can be read as stating that when an
event with parameter instance θ′ is evaluated, it updates the state
for all monitor instances more informative than the instance for θ′,
and the instance for θ′ itself, leaving all other monitor instances
untouched. The rule for ΛX.γ simply states that γ is applied to a
state, as normal, but the state is found by looking up the state of the
monitor instance for θ. One of the major results in [18] states that if
M is a monitor for P , parametric monitor ΛX.M is a monitor for
the parametric property ΛX.P .

Figure 5 shows the basic abstract monitoring algorithm for
parametric properties from [18]. Given parametric property ΛX.P
and M a monitor for P , MONITOR(M) yields a monitor that is
equivalent to ΛX.M , that is, a monitor for ΛX.P . The functions
[[X⇁V ] → S] and [[X⇁V ] → C] of ΛX.M are encoded by
MONITOR(M) as tables ∆ and Γ with entries indexed by parameter
instances in [X⇁V ] and with contents states in S and verdict
categories in C, respectively. Such tables will have finite entries
because each event e binds only a finite number of parameters
defined by D(e).

The monitoring algorithm first clears ∆, which contains the
monitor state for each parameter instance, then assigns ı, the initial
state, to ∆(⊥). Θ, which contains all known parameter instances,
is initialized to contain only the empty partial function ⊥. For



each event e〈θ〉 that arrives during program execution (line 2),
MONITOR(M) generates every compatible parameter instance by
combining θ with all the previously known compatible parameter
instances (line 3). It then updates the state of every one of these
compatible parameter instances (θ′) with the state, transitioned by
event e, of the “monitor instance” corresponding to the “largest”
parameter instance less than or equal to θ′ (line 4). At the same time
we also calculate the verdict category corresponding to that monitor
instance and store it in table Γ (line 5). Rather than storing a whole
slice as in Definition 6, the knowledge of the slice is encoded in the
state of the monitor instance for θ′. After the algorithm completes, Γ
contains the verdict category for each possible trace slice. An actual
implementation is free to report a verdict category of interest (e.g.,
match or fail) as soon as it is discovered.

3. Coenable Sets

When monitoring parametric properties, it is easy to generate a large
number of monitor instances. For example, as seen in Section 5,
the program bloat generates 1.9 million monitor instances when
monitored for the UNSAFEITER property. After some time, some of
these monitor instances may become unnecessary, e.g., because they
have no hope of reaching a verdict category in G. Indeed, as seen in
Section 5, the RV garbage collection technique flags 1.8 million of
these monitor instances as unnecessary. Chen et al. [19] proposed
a formalism-independent method, called “ENABLE sets”, to avoid
needlessly creating monitors that will never trigger. Here we show
how a dual method can be derived to avoid needlessly retaining
monitors that will never trigger. Computing the coenable sets is
expected to be a quick static operation in practice, because they are
a function of the specification to monitor (which is expected to be
small) and not of the program (which is expected to be large).

Definition 10. Givenw ∈ E∗ and e, e′ ∈ w, we let e w e
′ denote

that e′ occurs after e in w. Let COENABLEw(e) = {e′ | e w e
′}

be the trace coenable set of e. Given property P : E∗ → C and
a subset of verdict categories of interest (or goal) G ⊆ C, the
property coenable set is defined as the map COENABLEP,G : E →
P(P(E)) where COENABLEP,G(e) = {COENABLEw(e) | w ∈
E∗ s.t. P (w) ∈ G, e ∈ w, COENABLEw(e) 6= ∅} for each e ∈ E .

Intuitively, if event e is encountered during monitoring, but none of
the event sets of COENABLEP,G(e) are possible in the future, it is
impossible to reach any verdict category in G, so a monitor for P
observing e will never trigger. We drop all ∅s from COENABLEP,G
because they can cause monitor instances to be retained that are
unnecessary. An ∅ in COENABLEP,G(e) means that the trace suffix
consisting of only the event e can lead to a category in G for some
trace prefix. However, our interest is in the ability to reach G again
in the future. If there is a trace suffix that can lead to a state in G
from e, then its events will be added to COENABLEP,G(e). If there
is no trace suffix that can lead back to a state in G, there is no reason
to maintain the monitor instance after it has executed the proper
handler due to the occurrence of e.
FSM Example We define finite state machines in the spirit of
Definition 8. A finite state machine is a tuple (S, E , C, ı, σ, γ) where
E is a finite alphabet, S is a finite set of states, ı ∈ S is the
initial state, σ : S × E ⇁ S a partial transition function, C a set
of verdict categories, and γ : S → C the verdict function. The
property monitored by an FSM classifies a trace w into γ(σ(ı, w)),
where σ is extended to strings in the natural way, and fail if
σ(ı, w) is undefined.

We can find COENABLEP,G , for the property monitored by an
FSM, by the least fixed point of the following equations. Recall that

G ⊆ C is the set of verdict categories of interest:

SEEABLE(s) =
⋃

σ(s,e)=s′

{{e} ∪ T | T ∈ SEEABLE(s′)}

COENABLEP,G(e) =
⋃

σ(s,e)=s′

SEEABLE(s′)

We can use the equations above to generate coenable sets for
our example from Figure 3, one need simply generate a finite state
machine from the property’s ERE. For P = UNSAFEITER and
G = {match}, the COENABLEP,G sets are:

COENABLEP,G(create) = {{next, update}}

COENABLEP,G(update) =

{
{next}, {next, update},
{next, create, update}

}
COENABLEP,G(next) = {{next, update}}

Note that if we did not remove ∅s, COENABLEP,G(next) would
contain ∅. Each inner set can be thought of as a conjunction of
events that must occur at least once for a verdict category in G
to still be reachable, while the outer sets are a disjunction (see
Section 4.2.2). For example, if the event seen by monitor instance
M is update and next can still be seen at some future point, then M
is still necessary. Likewise, if the event seen by M is next, then both
next and update must be possible forM to ever match. In particular,
if the corresponding Collection object instance is already dead then
we know that the event update will never be possible, so we can
safely garbage collect M . Definition 11 formalizes this notion.
CFG Example A CFG is a tuple (N, E , S,Π) where N is a finite
set of nonterminals, E is a finite set of terminals, S ∈ N is the
initial nonterminal, and Π is a set of productions of the form
A → β where A ∈ N and β ∈ (N ∪ E)∗. The monitor for a
CFG classifies traces that are in the language of the grammar into
the verdict category match.

For a CFG, to compute COENABLEP,{match} we find the least
fixed point of the following equations:

G(ε) = {∅} G(e) = {{e}} G(A) =
⋃

A→β G(β)

G(β1β2) = {T1 ∪ T2 | T1 ∈ G(β1), T2 ∈ G(β2)}

C(x) =

{
T1 ∪ T2

∣∣∣∣ A→ β1xβ2,

T1 ∈ C(A), T2 ∈ G(β2)

}
COENABLEP,{match}(e) = C(e)

Informally, G(A) is the set of events generated by the CFG, if
the symbol A were used as the initial nonterminal of the CFG. The
equation G(β1β2) = {T1 ∪ T2 | T1 ∈ G(β1), T2 ∈ G(β2)}
generalizes this notion to entire traces of symbols (where symbols
are either events or non-terminals). C is the coenable sets function
generalized to traces that include both non-terminals and events.
For a production, A → β1Bβ2, C(B) needs to cope with the fact
that A has its own coenable sets. Thus its definition unions possible
coenable sets of A with the sets of symbols that are generated by
β2. The rest of RV only needs to know coenable sets for events so
coenables is just the restriction of C to events.

Definition 11. Given property P : E∗ → C, goal G ⊆ C, set
of parameters X and event definition D : E → P(X) (see Def-
inition 4), the property parameter coenable set is defined as the
map COENABLEXP,G : E → P(P(X)) where COENABLEXP,G(e) =
{D(E) | E ∈ COENABLEP,G(e)} for each e ∈ E .

The COENABLEXP,G sets tell us which parameter objects must
be alive for a verdict category in G to be reachable. For P =
UNSAFEITER, G = {match}, and X = {c, i}, the COENABLEXP,G



sets are:

COENABLEXP,G(create) = {{c, i}}
COENABLEXP,G(update) = {{i}, {c, i}}

COENABLEXP,G(next) = {{c, i}}

Now with the COENABLEXP,G sets we can explicitly decide when a
monitor instance may be collected. For example, in UNSAFEITER
we know that if, at any time, the Iterator bound to i is garbage
collected, then a match can never occur because i occurs in every
one of the inner sets. This makes sense because the event that causes
a match in the UNSAFEITER pattern is use of the Iterator. As men-
tioned in Section 1, this situation could produce a very large memory
leak in JavaMOP [17] where long living Collections would cause
monitor instances for dead Iterators to be retained because it could
not remove a monitor instance unless all bound parameter objects
were collected. We prove this concept by showing that certain pa-
rameters specified by COENABLEXP,G(e) for a trace wew′ must be
able to occur in w′ for a verdict category to be reached.

Theorem 1. Consider the same assumptions as in Definition 11,
and a trace slice wew′ ∈ E∗. If for each Y ∈ COENABLEXP,G(e)
there exists some y ∈ Y such that y 6∈ D(w′) then P (wew′) 6∈ G.

Proof. Suppose, for the sake of contradiction, that P (wew′) ∈ G
and that each Y ∈ COENABLEXP,G(e) contains a y such that
y 6∈ D(w′). By Definition 10, because P (wew′) ∈ G there must be
some E ∈ COENABLEP,G(e) that contains exactly those events in
w′. Then, by Definition 11, there must be Y ∈ COENABLEXP,G(e)
containing exactly the parameters in D(w′). Contradiction.

Discussion The COENABLEXP,G sets are a conservative approxima-
tion of the situations in which a monitor instance may be collected.
From Definition 6 we know that an event ewhere x ∈ D(e) can only
occur in a trace-slice τ�θ if θ(x) is still alive in the system. If θ(x)
has been garbage collected, there is no way for any e with x ∈ D(e)
to occur in trace slice for θ. This is precisely how monitoring arrives
in the situation presented in Theorem 1, where all possible suffixes
w′ of the trace slice wew′ do not contain at least one parameter
in each set of the COENABLEXP,G(e), and it becomes impossible to
reach a verdict category in G. Clearly, if it is impossible for the θ
trace slice to ever reach a verdict category in G, there is no reason
to keep the monitor instance for θ.

The Tracematches system uses a more precise formulation,
which is similar, but based on the state of the monitor. Intuitively,
the Tracematches garbage collection technique can be thought of
as coenables sets indexed by state rather than events, but the
formulation as presented in [8] is considerably different. While theirs
is more precise, our empirical results, presented in Section 5, show
that the coenable set technique is able to reduce memory usage in the
RV system to comparable levels with Tracematches, while the RV
system has considerably lower runtime overhead. More importantly,
the Tracematches garbage collection technique is limited to finite
logics, such as the regular expressions of Tracematches. However,
our coenable approach is extensible to any underlying monitor
implementation. We have a coenables sets generation algorithm
for the context-free grammar plugin. A static state-based technique,
such as the one used by Tracematches, could not be used for context-
free properties because the state space is unbounded.

The coenables technique reclaims much more memory than
JavaMOP’s garbage collection, which, as already explained, has to
wait for all bound parameter objects to be collected (see Section 5).
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Figure 6. Indexing trees for UNSAFEITER

4. Implementation

The data structures used by previous runtime monitoring sys-
tems [4, 17, 20] are not sufficient for efficient garbage collection
of monitor instances. The challenge is how to efficiently garbage
collect unnecessary monitor instances that are contained in the data
structures. Using the standard data structures of previous systems,
the overhead of instance removal easily overwhelms the benefit of
having fewer instances. Our specialized data structures, introduced
here, track the garbage collection of parameter objects and remove
unnecessary monitor instances when discovered using coenable
sets (Section 3). In this section, we present the modified indexing
trees used by RV as well as the mechanism by which unnecessary
monitors are garbage collected.

4.1 Indexing Trees
The RV system builds upon the Indexing Tree technique of the
JavaMOP system presented in [17]. The indexing trees are an
efficient means to represent the tables ∆ and Γ from the monitoring
algorithm in Figure 5. Locating the correct monitor instances to
update for each received event is one of the most important and
expensive tasks of a runtime monitoring system that supports
formalism-independent parametric properties like JavaMOP and
RV. Whenever a parametric event e〈θ〉 is processed, all monitor
instances corresponding to parameter instances more informative
than θ must be updated. Thus we need a mapping from parameter
instances to sets of monitor instances more informative than that
instance. Each value in the map is either the next level of the tree
or, at the leaves, the appropriate set of monitor instances. Once we
have this set we update all the contained monitor instances.

For example, processing update〈c2〉 for UNSAFEITER (Figure 3)
requires that we update the monitor instances that are more informa-
tive than 〈c2〉. Thus we lookup 〈c2〉 in the 〈c〉-tree of Figure 6 to find
the set of monitor instances more informative than 〈c2〉 and update
each instance. Multiple indexing trees can exist since each event
may contain a different subset of parameters; each subset of possible
parameters receives its own tree. As an example, for UNSAFEITER
we have a 〈c〉-tree, an 〈i〉-tree, and a 〈c, i〉-tree.

4.2 Collecting Unnecessary Monitors
There are two performance benefits to garbage collecting unneces-
sary monitors: reduced memory usage, and reduction in the time
needed to update monitor instances because many of the moni-
tor instances that would be updated are no longer necessary. As
an example of the latter, consider UNSAFEITER again. If we have
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Figure 7. (A) Notifying monitors for garbage collected 〈c2〉 in the
〈c〉-tree. (B) Cleaning up the broken mapping in the 〈c〉-tree

a monitor instance for 〈c1, i1〉 and i1 is garbage collected, even
though it is impossible to match the UNSAFEITER pattern, all future
update events are sent to 〈c1, i1〉. Unfortunately, collecting monitor
instances introduces overhead; we must keep this overhead low so
that it does not outweigh the benefits of garbage collection.

Eager garbage collection of unnecessary monitors introduces
a very large amount of runtime overhead, which almost always
overwhelms any benefits. This is because eager collection requires
propagating the information regarding liveness of parameter objects
to monitor instances far too frequently. Additionally, eager collection
can result in removing instances from some data structures that will
never be used again.

Therefore, we use a lazy garbage collection scheme. We iter-
ate monitor instances and propagate the information of garbage
collections of parameter objects lazily, and we remove unneces-
sary monitors lazily. When an indexing tree containing a garbage
collected parameter object is accessed and the tree detects this, it
informs all the relevant monitor instances contained within itself.
Then, the monitor instance decides if it can still possibly reach a
verdict category in G in the absence of the parameter object that has
been garbage collected. Later when more space is needed in the data
structure or when monitor instances are updated, we remove mon-
itor instances from the accessed data structure but not from other
data structures. A monitor instance is garbage collected when it is
removed from all data structures. This is similar to mark-and-sweep
garbage collection. If a data structure itself is garbage collected,
any contained monitor instances never need to be garbage collected
separately. The next sections explain this process in detail.
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Figure 8. A compaction in RVSet when some monitor instances are
collectable

4.2.1 Parameter Object Garbage Collection Notification
Propagation of parameter object garbage collection information
starts from the mappings in the indexing tree. The mappings used
in the RV are implemented as a class called RVMap. RVMap uses
WeakReferences for its keys. A WeakReference in Java does not
stop the garbage collector from collecting its referent; when the
referent is garbage collected, the WeakReference points to null.
Whenever an operation (put or get) is performed on an RVMap–or
the hash table underlying the map needs to be expanded to store more
entries–it looks through a subset of its entries for keys with null

referents. When there is a key with a null referent due to a garbage
collection, RVMap notifies all of the monitor instances below itself
in the indexing tree. For example, Figure 7 (A) shows a possible
scenario where 〈c2〉 is garbage collected and the 〈c〉-tree is accessed.
The 〈c〉-tree notifies all of the monitor instances below 〈c2〉.

4.2.2 Determining When Monitor Instances are Unnecessary
When a monitor is notified of a newly garbage collected parame-
ter object, it decides whether it can still reach a verdict category
of interest in the absence of garbage collected parameter objects
by using the coenable sets introduced in Section 3. Each mon-
itor instance stores the last event it receives, e, so that it may
check COENABLEXP,G(e), when this notification takes place. The
monitor instance need simply check if all the parameter objects
of any set in COENABLEXP,G(e) are alive. RV statically translates
COENABLEXP,G(e) to a minimized boolean formula to make this
check as efficient as possible:

ALIVENESS(e) =
∨

S ∈ COENABLEX
P,G(e)

( ∧
x ∈ S

livex

)

where livex is a boolean that is true only if the parameter object of
parameter x has not been garbage collected. Then, ALIVENESS(e)
is true only if the monitor is necessary. Maintaining livex variables
in a given monitor instance for each parameter and checking the
generated boolean expression at runtime is sufficient for determining
when said instance becomes unnecessary.

Continuing our example from the last section, the monitor
instances notified of garbage collected parameters in Figure 7 (A)
check their ALIVENESS to determine if they are unnecessary. Here,
m1 and m3 are unnecessary and therefore marked. Note that the set
under 〈c2〉 is not altered because other RVMaps in the index tree still
point to it. In Figure 7 (B), the RVMap removed the broken map entry
index by c2. m1 and m3 will be removed at some future time when
the 〈c, i〉-tree or 〈i〉-tree are accessed or expanded, as we explain in
the next section.

5. Evaluation of the RV System

We evaluate our formalism-independent garbage collection for
parametric monitoring implemented into RV. Also, we compare the



HASNEXT UNSAFEITER UNSAFEMAPITER UNSAFESYNCCOLL UNSAFESYNCMAP ALL
(A) ORIG (sec) TM MOP RV TM MOP RV TM MOP RV TM MOP RV TM MOP RV RV

bloat 3.6 2119 448 116 19194 569 251 ∞ 1203 178 1359 746 212 1942 716 130 982
jython 8.9 13 0 0 11 0 1 150 18 3 11 1 1 10 0 0 4
avrora 13.6 45 54 55 637 311 118 ∞ 113 42 75 144 80 54 74 16 275
batik 3.5 3 2 3 355 9 8 ∞ 8 5 208 9 9 5 3 0 28

eclipse 79.0 -2 4 -1 0 -1 -1 5 -3 0 -4 2 1 ∞ -1 -1 0
fop 2.0 200 49 48 350 21 13 ∞ 58 14 ∞ 78 25 ∞ 71 19 133
h2 18.7 89 17 13 128 9 4 1350 21 6 868 21 4 83 20 5 23

luindex 2.9 0 0 1 0 0 1 1 4 1 1 1 1 2 0 0 1
lusearch 25.3 -1 1 0 1 2 2 2 2 0 4 0 1 3 1 1 3

pmd 8.3 176 84 59 1423 162 123 ∞ 571 188 1818 192 76 ∞ 144 26 620
sunflow 32.7 47 5 3 7 2 0 9 4 1 13 6 5 17 6 6 6
tomcat 13.8 8 1 1 37 1 1 3 1 1 2 0 1 2 1 3 1

tradebeans 45.5 0 -1 1 1 1 2 5 3 -1 -1 1 2 3 1 5 2
tradesoap 94.4 1 3 0 2 1 1 2 0 1 0 0 1 2 2 5 1

xalan 20.3 4 2 2 27 7 2 10 5 2 3 2 3 4 4 3 4
(B) ORIG (MB) TM MOP RV TM MOP RV TM MOP RV TM MOP RV TM MOP RV RV

bloat 4.9 56.8 19.3 13.2 7.7 146.8 79.0 ∞ 173.4 56.1 6.8 127.9 48.3 6.9 55.4 12.7 340.9
jython 5.3 5.7 4.6 4.8 4.9 4.6 4.8 6.0 19.5 4.7 5.3 4.5 4.4 5.9 4.8 5.1 4.7
avrora 4.7 4.6 12.4 9.1 4.4 136.2 15.8 ∞ 14.7 8.5 4.3 28.0 12.6 4.4 13.0 4.9 22.3
batik 79.1 79.2 78.7 79.3 75.2 93.6 86.6 ∞ 91.2 79.6 78.2 93.2 85.1 79.9 86.9 76.7 104.3

eclipse 95.9 100.8 107.6 97.1 98.3 100.0 110.3 106.9 93.8 101.1 100.4 109.2 90.1 ∞ 98.6 98.7 98.9
fop 20.7 97.4 47.1 52.5 24.3 24.2 29.4 ∞ 69.2 28.1 ∞ 54.8 24.8 ∞ 55.9 25.2 47.5
h2 265.0 267.8 598.5 565.2 267.2 266.2 262.4 312.4 688.3 268.2 271.4 690.3 265.5 271.0 718.3 270.0 283.7

luindex 6.8 5.6 5.5 5.6 6.3 6.9 6.8 7.4 8.2 6.9 7.4 7.4 7.5 7.1 7.4 11.0 11.8
lusearch 4.6 4.7 4.4 4.8 4.6 4.8 4.2 4.0 4.3 4.8 4.5 4.5 4.6 4.6 4.8 4.7 4.7

pmd 18.0 56.9 59.8 48.5 17.2 146.3 86.4 ∞ 212.7 93.6 20.3 238.4 84.6 ∞ 117.1 32.9 420.0
sunflow 4.4 4.5 4.8 4.9 4.8 4.3 4.7 4.7 4.4 4.4 5.1 4.3 4.9 4.5 4.7 4.5 4.6
tomcat 11.6 11.4 12.3 11.4 12.5 11.0 11.5 11.9 11.4 11.0 11.3 11.3 11.3 11.4 11.4 11.8 11.8

tradebeans 63.2 62.9 62.7 62.1 63.7 63.9 64.1 63.3 62.5 62.7 63.2 62.8 62.0 64.0 62.8 64.0 62.5
tradesoap 64.1 61.8 62.3 63.3 63.4 63.1 64.4 64.1 63.5 62.0 60.7 65.0 65.9 65.5 64.5 65.6 64.5

xalan 4.9 4.9 5.0 5.1 4.9 4.9 4.9 4.9 4.5 4.9 5.0 4.8 5.0 5.1 4.9 4.9 5.0

Figure 9. Comparison of Tracematches (TM), JavaMOP (MOP), and RV: (A) average percent runtime overhead; (B) total peak memory
usage in MB. (convergence within 3%,∞: not terminated after 1 hour)

performance of RV to JavaMOP and Tracematches, two of the most
optimized monitoring systems in runtime and memory, respectively.

5.1 Experimental Settings
For our experiments, we used a Pentium 4 2.66GHz / 2GB RAM /
Ubuntu 9.10 machine and version 9.12 of the DaCapo (DaCapo 9.12)
benchmark suite [10], the most up-to-date version. We also present
the result from the previous version, 2006-10 MR2 of DaCapo
(DaCapo 2006-10), but only for the bloat and jython benchmarks.
DaCapo 9.12 does not provide the bloat benchmark from the Da-
Capo 2006-10, which we favor because it generates large overheads
when monitoring Iterator-based properties. The bloat benchmark
with the UNSAFEITER specification causes 19194% runtime over-
head (i.e., 192 times slower) and uses 7.7MB of heap memory in
Tracematches, and causes 569% runtime overhead and uses 147MB
in JavaMOP, while the original program uses only 4.9MB. Also,
although the DaCapo 9.12 provides jython, Tracematches cannot
instrument jython due to an error. Thus, we present the result of
jython from the DaCapo 2006-10. The default data input for Da-
Capo was used and the -converge option to obtain the numbers after
convergence within±3%. We also looked into other benchmarks in-
cluding Java Grande [28] and SPECjvm 2008 [2], and saw little to no
overhead even with our Iterator-based properties. Instrumentation
introduces a different garbage collection behavior in the monitored
program, sometimes causing the program to slightly outperform the
original program; this accounts for the negative overheads seen in
both runtime and memory.

We used the Sun JVM 1.6.0 for the entire evaluation. The
AspectJ compiler (ajc) version 1.6.4 is used for weaving the aspects
generated by JavaMOP and RV into the target benchmarks. Another
AspectJ compiler, abc [7] 1.3.0, is used for weaving Tracematches
properties because Tracematches is part of abc and does not work
with ajc. For JavaMOP, we used the most recent release version,

2.1.2, from the JavaMOP website [1]. For Tracematches, we used
the most recent release version, 1.3.0, from [3], which is included in
the abc compiler as an extension. To figure out the reason that
some examples do not terminate when using Tracematches, we
also used the abc compiler for weaving aspects generated from RV
properties. Note that RV is AspectJ compiler independent. RV shows
similar overheads and terminates on all examples when using the abc
compiler for weaving as when ajc is used. Because the overheads
are similar, we do not present the results of using abc to weave
RV generated aspects in this paper. However, using abc to weave
RV properties confirms that the high overhead and non-termination
come from Tracematches itself, not from the abc compiler.

The following properties are used in our experiments. They were
borrowed from [13, 14, 19, 27].

• HASNEXT: Do not use the next element in an Iterator without
checking for the existence of it (see Figure 2);

• UNSAFEITER: Do not update a Collection when using the Iterator
interface to iterate its elements (see Figure 3);

• UNSAFEMAPITER: Do not update a Map when using the Iterator
interface to iterate its values or its keys;

• UNSAFESYNCCOLL: If a Collection is synchronized, then its
iterator also should be accessed synchronously;

• UNSAFESYNCMAP: If a Collection is synchronized, then its
iterators on values and keys also should be accessed in a
synchronized manner.

All of them are tested on Tracematches, JavaMOP, and RV for
comparison. We also monitored all five properties at the same
time in RV, which was not possible in other monitoring systems



HASNEXT UNSAFEITER UNSAFEMAPITER UNSAFESYNCCOLL UNSAFESYNCMAP
E M FM CM E M FM CM E M FM CM E M FM CM E M FM CM

bloat 156M 1.9M 1.9M 1.8M 81M 1.9M 1.8M 1.6M 73M 3.6M 44K 3.5M 143M 4.1M 0 3.7M 161M 3.4M 0 3.4M
jython 106 50 47 26 179K 50 38 38 179K 101K 94 101K 156 100 0 83 256 150 0 122
avrora 1.5M 909K 850K 765K 1.4M 909K 860K 808K 1.3M 1.2M 18 1.2M 2.4M 1.8M 0 1.7M 1.5M 909K 0 904K
batik 49K 24K 21K 21K 125K 24K 21K 10K 55K 33K 140 27K 73K 50K 0 34K 50K 26K 0 26K
eclipse 226K 7.6K 5.3K 2.9K 119K 6.6K 5.1K 2.6K 113K 22K 2.2K 7.8K 233K 15K 0 7.5K 241K 18K 0 9.2K
fop 1.0M 184K 74K 151K 709K 7.7K 7.2K 1.8K 499K 177K 67 160K 1.2M 239K 0 217K 1.2M 231K 0 213K
h2 27M 6.5M 6.0M 5.6M 12M 3.7K 3.3K 1.3K 12M 6.6M 9 6.5M 27M 6.5M 0 6.5M 27M 6.5M 0 6.5M
luindex 371 66 40 2 4.4K 65 39 0 378 183 2 59 436 132 0 30 472 125 0 25
lusearch 1.4K 131 196 114 748K 130 210 18 20K 944 338 1.4K 1.7K 262 0 402 1.8K 263 0 158
pmd 8.3M 789K 694K 571K 6.4M 551K 473K 382K 4.3M 1.3M 110K 1.1M 8.8M 1.5M 0 1.3M 8.6M 1.1M 0 999K
sunflow 2.7M 101K 101K 100K 1.3M 2 0 0 1.3M 83K 0 83K 2.7M 101K 0 101K 2.7M 101K 0 101K
tomcat 25 6 0 0 132 4 0 0 68 26 0 0 29 10 0 0 33 12 0 0
tradebeans 11 3 0 0 31 2 0 0 29 13 0 0 13 5 0 0 15 6 0 0
tradesoap 11 3 0 0 31 2 0 0 29 13 0 0 13 5 0 0 15 6 0 0
xalan 11 3 0 0 8.9K 2 0 0 119K 20K 0 20K 13 5 0 0 15 6 0 0

Figure 10. Monitoring statistics: number of events (E), number of created monitors (M), number of flagged monitors (FM), number of
collected monitors (CM).

for performance reasons or structural limitations. We have tested
several non-Iterator based properties: HASHSET, SAFEENUM,
SAFEFILE, and SAFEFILEWRITER [13, 14, 19, 27]. None of these
properties produce overheads above 5% in any of the DaCapo
benchmarks, thus their results are not presented in this paper in
detail.

5.1.1 Removing Unnecessary Monitor Instances
Monitor instances are removed lazily because in many cases the
maps and sets containing monitor instances flagged for removal
may be garbage collected themselves. Eager removal would result
in unnecessary work in such cases. For example, in Figure 7 (B), if
the 〈c2〉-subtree in the 〈c, i〉-tree is going to be garbage collected,
there is no reason to remove flagged monitor instances from it.

Unnecessary monitor instances are only removed when an
indexing tree is accessed. Whenever an RVMap looks for keys with
null referents it also checks the values of mappings which do not
have null referents. The value can be either a monitor instance, a
set, or a lower level map. If the value is a flagged monitor instance
or an empty data structure, it removes the mapping. If it is a set,
it must be checked for internal monitor instances that have been
flagged for removal. When a set is checked for unnecessary monitor
instances, all of the instances are collected, and the remaining
necessary monitor instances are compacted in one pass, as can
be seen in Figure 8.

5.2 Results and Discussions
Figures 9 and 10 summarize the results of the evaluation. Note that
the structure of the DaCapo 9.12 allows us to instrument all of the
benchmarks plus all supplementary libraries that the benchmarks
use, which was not possible for DaCapo 2006-10. Therefore, fop
and pmd show higher overheads than the benchmarks using DaCapo
2006-10 from [19]. While other benchmarks show overheads less
than 80% in JavaMOP, bloat, avrora, and pmd show prohibitive
overhead in both runtime and memory performance. This is because
they generate many iterators and all properties in this evaluation are
intended to monitor iterators. For example, bloat creates 1,625,770
collections and 941,466 iterators in total while 19,605 iterators
coexist at the same time at peak, in an execution. avrora and pmd
also create many collections and iterators. Also, they call hasNext()
78,451,585 times, 1,158,152 times and 4,670,555 times and next()
77,666,243 times, 352,697 times and 3,607,164 times, respectively.
Therefore, we mainly discuss those three examples in this section,
although RV shows improvements for other examples as well.

Figure 9 (A) shows the percent runtime overhead of Tracematches,
JavaMOP, and RV. Overall, RV averages two times less runtime
overhead than JavaMOP and orders of magnitude less runtime over-
head than Tracematches (recall that these are the most optimized
runtime verification systems). With bloat, RV shows less than 260%
runtime overhead for each property, while JavaMOP always shows
over 440% runtime overhead and Tracematches always shows over
1350% for completed runs and crashed for UNSAFEMAPITER.
With avrora, on average, RV shows 62% runtime overhead, while
JavaMOP shows 139% runtime overhead and Tracematches shows
203% and hangs for UNSAFEMAPITER. With pmd, on average,
RV shows 94% runtime overhead, while JavaMOP shows 231%
runtime overhead and Tracematches shows 1139% and hangs for
UNSAFEMAPITER and UNSAFESYNCMAP.

Also, RV was tested with all five properties together and showed
982%, 275%, and 620% overhead, respectively, which are still
faster or comparable to monitoring one of many properties alone
in JavaMOP or Tracematches. The overhead for monitoring all the
properties simultaneously can be slightly larger than the sum of their
individual overheads since the additional memory pressure makes
the JVM’s garbage collection behave differently.

Figure 9 (B) shows the peak memory usage of the three systems.
RV has lower peak memory usage than JavaMOP in most cases.
The cases where RV does not show lower peak memory usage
are within the limits of expected memory jitter. However, memory
usage of RV is still higher than the memory usage of Tracematches
in some cases. Tracematches has several finite automata specific
memory optimizations [8], which cannot be implemented in a
formalism-independent system like RV. Although Tracematches is
sometimes more memory efficient, it shows prohibitive runtime
overhead monitoring bloat and pmd. There is a trade-off between
memory usage and runtime overhead. If RV more actively removes
terminated monitors, memory usage will be lower, at the cost of
runtime performance. Overall, our monitor termination optimization
achieves the most efficient parametric monitoring system with
reasonable memory performance.

Figure 10 shows the number of triggered events, of created
monitors, of monitors flagged as unnecessary by the coenable
set technique, and of monitors collected by the JVM. Among the
DaCapo examples, bloat, avrora, h2, pmd and sunflow generated a
very large number of events (more than a million) in all properties,
resulting in millions of monitors created in most cases. h2 does
not exhibit large overhead because monitor instances in h2 have
shorter lifetimes, therefore the created monitor instances are not
used heavily like in bloat. sunflow has millions of events but does



not create as many monitor instances as as other benchmarks.
When monitoring the HASNEXT and UNSAFEITER properties, the
coenable sets technique effectively flagged monitors as unnecessary
and most were collected by the JVM.

6. Conclusion

We presented an effective novel garbage collection technique for
monitoring parametric properties. Previous techniques were either
completely agnostic to the property to monitor, thus incurring pro-
hibitive runtime overheads due to memory leaks, or were intrinsi-
cally dependent on particular specification formalisms, thus being
hard or impossible to use in other contexts. Our technique is the
first which is both formalism-generic and efficient. As extensive
evaluation shows, it is in fact significantly more efficient than the
existing techniques, both formalism-generic and formalism-specific.

Our results have at least two implications. On the one hand,
they show that runtime monitoring of complex specifications can
be used not only for testing, but also as an integral part of the
deployed system in many cases. Indeed, in most practical cases the
runtime overhead is negligible, so a well-designed recovery schema
implemented by means of specification handlers can ensure highly
dependable systems by simply not letting them go wrong at runtime.
Note that the combinations program/property selected for evaluation
in this paper were specifically chosen to be bad. On the other hand,
our results set a solid ground for further optimizations. For example,
static analyses of the program to monitor, like those in [14, 15, 21,
26], can be used to remove unnecessary instrumentation and thus not
even generate many of the monitors. Similarly, staged/decentralized
indexing techniques, like those in [6, 8, 17], can reduce the distance
between events and their monitors and thus reduce the overhead
taken to dispatch events to monitors.
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[16] F. Chen and G. Roşu. Java-MOP: A monitoring oriented programming
environment for Java. In Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’05), volume 3440 of LNCS, pages
546–550. Springer, 2005.
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independent monitoring of parametric properties. In Automated Soft-
ware Engineering (ASE’09), pages 383–394. IEEE, 2009.

[20] M. d’Amorim and K. Havelund. Event-based runtime verification of
Java programs. ACM SIGSOFT Software Engineering Notes, 30(4):
1–7, 2005.

[21] M. Dwyer, R. Purandare, and S. Person. Runtime verification in context:
Can optimizing error detection improve fault diagnosis. In Runtime
Verification (RV’10), volume 6418 of LNCS, pages 36–50. Springer,
2010.

[22] U. Erlingsson and F. B. Schneider. Irm enforcement of java stack
inspection. In Symposium on Security and Privacy (SP’00), pages 246–.
IEEE, 2000.

[23] S. Goldsmith, R. O’Callahan, and A. Aiken. Relational queries over
program traces. In Object-Oriented Programming, Systems, Languages
and Applications (OOPSLA’05), pages 385–402. ACM, 2005.

[24] K. W. Hamlen and M. Jones. Aspect-oriented in-lined reference
monitors. In Programming languages and analysis for security
(PLAS’08), pages 11–20. ACM, 2008.

[25] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold. An overview of AspectJ. In European Conference on Object
Oriented Programming (ECOOP’01), volume 2072 of LNCS, pages
327–353. Springer, 2001.

[26] M. Martin, V. B. Livshits, and M. S. Lam. Finding application
errors and security flaws using PQL: a program query language. In
Object Oriented Programming, Systems, Languages and Applications
(OOPSLA’07), pages 365–383. ACM, 2005.

[27] P. Meredith, D. Jin, F. Chen, and G. Roşu. Efficient monitoring of
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