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Abstract

RNA-binding proteins (RBPs) can regulate more than a single aspect of RNA metabolism.

We searched for such previously undiscovered multifunctionality within a set of 143 RBPs,

by defining the predictive value of RBP abundance for the transcription and translation levels

of known RBP target genes across 80 human hearts. This led us to newly associate 27

RBPs with cardiac translational regulation in vivo. Of these, 21 impacted both RNA expres-

sion and translation, albeit for virtually independent sets of target genes. We highlight a sub-

set of these, including G3BP1, PUM1, UCHL5, and DDX3X, where dual regulation is

achieved through differential affinity for target length, by which separate biological pro-

cesses are controlled. Like the RNA helicase DDX3X, the known splicing factors EFTUD2

and PRPF8—all identified as multifunctional RBPs by our analysis—selectively influence

target translation rates depending on 5’ UTR structure. Our analyses identify dozens of

RBPs as being multifunctional and pinpoint potential novel regulators of translation, postu-

lating unanticipated complexity of protein-RNA interactions at consecutive stages of gene

expression.

Author summary

The lifecycle of an RNA molecule is controlled by hundreds of proteins that can bind

RNA, also known as RNA-binding proteins (RBPs). These proteins recognize landing

sites within the RNA and guide the RNA’s transcription from DNA, its processing into a

mature messenger RNA, its translation into protein, or its degradation once the RNA is

no longer needed. Although we now mechanistically understand how certain RBPs regu-

late these processes, for many RBP-target interactions the consequences imposed by RNA

binding are not well understood. For 143 RBPs with known RNA binding positions, the

authors of the current study investigated how RNA molecules responded to fluctuations

in the expression levels of these RBPs, across each of 80 human hearts. Using statistical

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009658 December 8, 2021 1 / 23

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Schneider-Lunitz V, Ruiz-Orera J, Hubner

N, van Heesch S (2021) Multifunctional RNA-

binding proteins influence mRNA abundance and

translational efficiency of distinct sets of target

genes. PLoS Comput Biol 17(12): e1009658.

https://doi.org/10.1371/journal.pcbi.1009658

Editor: Greg Tucker-Kellogg, National University of

Singapore, SINGAPORE

Received: August 2, 2021

Accepted: November 18, 2021

Published: December 8, 2021

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pcbi.1009658

Copyright: © 2021 Schneider-Lunitz et al. This is

an open access article distributed under the terms

of the Creative Commons Attribution License,

which permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: This study includes

no newly generated data deposited in external

repositories. Accession numbers for all data used

in this study have been reported within the

https://orcid.org/0000-0002-3980-3789
https://orcid.org/0000-0002-1218-6223
https://orcid.org/0000-0001-9593-1980
https://doi.org/10.1371/journal.pcbi.1009658
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009658&domain=pdf&date_stamp=2021-12-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009658&domain=pdf&date_stamp=2021-12-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009658&domain=pdf&date_stamp=2021-12-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009658&domain=pdf&date_stamp=2021-12-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009658&domain=pdf&date_stamp=2021-12-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009658&domain=pdf&date_stamp=2021-12-08
https://doi.org/10.1371/journal.pcbi.1009658
https://doi.org/10.1371/journal.pcbi.1009658
http://creativecommons.org/licenses/by/4.0/


approaches, they could show that many RBPs influenced stages of the RNA lifecycle that

they were not known to be involved in. Some RBPs turned out to be true "all-rounders" of

RNA metabolism: they controlled the RNA transcript levels of some genes, whereas they

influenced the translation rates of others. This unexpected multifunctionality unveiled

previously hidden aspects of the everyday RNA-binding protein working life.

Introduction

RNA-protein interactions are crucial for a wide range of processes in multiple subcellular com-

partments, including RNA transcription, splicing, editing, transport, stability, localization, and

translation [1]. Using state-of-the-art mass spectrometry-based approaches, recent studies

have identified up to thousands of potential RNA-binding proteins (RBPs), although for many

their precise roles remain unknown [2–4]. Whereas RBPs can interact with target RNAs

through well-defined protein-RNA binding domains (RBD), uncharacterized RBDs are fre-

quently discovered [5,6] highlighting the complex, diverse, and still largely unknown nature of

RNA-protein interactions. The possession of more than a single RBD could theoretically allow

RBPs to be multifunctional, for instance through the separate regulation of different sets of tar-

gets [7]. Multifunctionality may additionally be established through the condition- or cell

type-specific expression of RBPs and their interaction partners, or through dynamic shuttling

of RBPs between different subcellular compartments, such as the nucleus and cytosol [8–11].

Accordingly, out of a large number of RBPs whose subcellular localization was recently evalu-

ated [12], the vast majority could be detected in more than one compartment, albeit of thus far

largely unknown biological significance. The potential importance of RBP shuttling was exem-

plified by the subcellular redistribution of dozens of RBPs upon global induction of mRNA

decay [13], and compartment-specific changes in RBP interactomes that could be witnessed

upon cellular stress [14]. These observations indicated that RBPs may dynamically relocate to

form a mechanistic bridge between normally compartment-restricted consecutive stages of

gene expression regulation: some taking place in the nucleus (e.g., transcription, mRNA pro-

cessing, splicing), others in the cytosol (e.g., translation, RNA decay).

RBPs are crucial regulators of mRNA translation—the synthesis of protein from a messen-

ger RNA template by ribosomes [15]. In the cytosol, RBPs can act in a general capacity (e.g.,

mRNA translation initiation or elongation), as well as in more specialized functions where

select accessory RBPs or heterogeneous ribosomes facilitate the translation of dedicated sub-

sets of target RNAs [16–18]. In the nucleus, RBPs can coordinate the process of splicing and

translation by modulating different structural and sequence properties of the mRNAs that are

exported to the cytoplasm. For instance, highly structured regions in 5’ UTRs can decrease the

efficiency of translation initiation at the cost of an overall lower translational output [19–22],

whereas increased RNA structures in CDS or 3’ UTR regions may also enhance transcript sta-

bility and hence mRNA half-life, in turn yielding higher protein output over time [23,24].

Additionally, alternative UTR usage can expose translated upstream ORFs (uORFs) or miRNA

binding sites affecting mRNA translation and/or stability. Other alternative splice events

might affect intrinsic properties of an mRNA, such as the ‘swiftness’ of nuclear export [25],

codon usage [26,27], affinity with the exon junction complex [28], or susceptibility to non-

sense-mediated decay [29].

Mechanistic insight into the quantitative effects of RBP expression on mRNA translation–

i.e., when translation rates of the endogenous RBP targets respond directly to changes in RBP

abundance–was recently provided by several studies [30–32]. These studies used this
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quantitative relationship to assign novel functions to known RBPs and to investigate the kinet-

ics through which RBPs regulate their targets. For instance, Chothani et al. used a computa-

tional correlation approach to define the frequency with which RBP levels correlate with target

translation rates. This helped to pinpoint key RBP network hubs that were crucial for transla-

tional regulation during cardiac fibrosis in vitro and in vivo [30]. In a separate study, Luo et al.
used luciferase-based 3’ UTR tethered function assays for 690 RBPs, identifying 50 RBPs

whose expression induced significant positive or negative effects on mRNA stability and/or

translation. This resulted in the novel characterization of the stress granule RBP UBAP2L as a

ribosome-associated RBP [31]. Lastly, Sharma et al. developed a methodology to investigate

RNA-protein kinetics in a time-resolved manner for the RBP DAZL [32]. This approach

helped establish a quantitative relationship that precisely explained the effect of DAZL on

mRNA levels and ribosome association, which correlated with the cumulative probability of

DAZL binding within clusters of proximal 3’ UTR binding sites.

In our current study, we describe the computational identification of putatively new, and

sometimes dual functions of RBPs in the regulation of mRNA translation. We integrate cross-

linking immunoprecipitation (CLIP)-derived mRNA targets for 143 RBPs [12,33] with the

transcriptomes and translatomes of 80 human hearts [34]—a tissue where translational control

is known to play a central role in gene expression regulation [30,34,35]. We show that the

expression levels of many, but not all, investigated RBPs indeed correlate with target mRNA

abundance and/or translational efficiency in vivo. For a subset of 21 RBPs–including proteins

with diverse previously described roles, such as the endoribonuclease G3BP1, the helicase

DDX3X, the protease PUM1 and the deubiquitinase UCHL5 –we could independently assign

dose-dependent effects to both mRNA levels and translational efficiencies of largely distinct

sets of target genes, each involved in unrelated biological processes. Mechanistically, these tar-

get genes also appeared to be regulated independently, driven by differential affinity for pro-

tein-coding sequence length or 5’ UTR structure.

Our results show that RBPs with more than a single role in human biology are likely to be

more prevalent than currently anticipated. We postulate that multifunctional RBPs may use

their functional plasticity in a condition- or compartment-specific manner to regulate gene

expression at multiple levels, for separately defined sets of target genes.

Results

RNA-binding protein abundance determines the efficiency of target gene

translation

With the aim to define which RBPs can influence more than a single stage of gene expression

control, we first determined whether RBP abundance can have predictive value for the extent

of target gene regulation in the human heart. To this extent, we compiled protein-RNA inter-

actions for 143 cardiac-expressed RBPs, consisting of the muscle-specific RBM20 [33] and 142

mostly ubiquitously expressed RBPs previously characterized in depth as part of ENCODE

[12] (see Methods, S1A Fig and S1 Table). We then correlated the expression levels of these

143 RBPs with mRNA abundance and translational efficiencies (TE) of 11,387 cardiac-

expressed genes across 80 human hearts—the largest set of matched human tissue transcrip-

tomes and translatomes that is currently available [34]. mRNA abundance was measured using

RNA-seq counts normalized per gene and per sample, whereas TE was defined as the ratio of

Ribo-seq and RNA-seq counts normalized for each individual gene and sample (see Methods).

This revealed a clear quantitative relationship between RBP expression levels and the extent of

target gene expression control (e.g., translation rates: Figs 1A and S1B).
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Next, we calculated the frequency with which mRNA levels and translational efficiencies of

the CLIP-derived target genes correlated significantly with the abundance of each RBP. For

this, we statistically evaluated associations through the sampling of 100,000 equally sized sets

of simulated theoretical targets out of the 11,387 translated genes in the human heart, yielding

58 RBPs with significant associations (empirical padj� 0.05) with target mRNA abundance

(hereafter denoted as “mRNA-RBPs” that regulate “mRNA targets”) and 37 RBPs with signifi-

cant associations with target translational efficiencies (“TE-RBPs” regulating “TE targets”)

(Figs 1B and S1C). The effect size of each significant association was quantified using the

Glass’ Delta score (4) [36], a measure of the difference between the experimental and simu-

lated groups divided by the standard deviation of the control. These significant targets, for

instance, included the candidate tumor suppressor and ubiquitous splicing regulator RBM5

[37], which we identified as a cardiac mRNA-RBP influencing mRNA abundance of at least

138 correlating targets (padj = 2.83 × 10−5; Glass’ Δ = 27.2). Reassuringly, our strategy validated

known TE-RBPs such as the eukaryotic translation initiation factor EIF4G2, whose expression

dynamics could be associated with target gene translational efficiencies of at least 235 correlat-

ing targets expressed in the human heart (padj = 5.26 × 10−5; Glass’ Δ = 6.3) [38,39] (Fig 1B).

Importantly, we could replicate our calculations for 25 out of 37 depicted TE-RBPs in an inde-

pendent, though smaller cohort of primary cardiac fibroblast translatomes (n = 20; [30])—a

system previously explored to identify RBPs with key roles in cardiac fibrosis (Fig 1C).

Positive and negative control of translation by known and unknown factors

We detected 27 (out of 37) TE-RBPs without prior evidence of regulating mRNA translation,

including 4 RBPs with no function assigned to their RNA binding ability at all (NKRF,

FAM120A, SUB1 and UCHL5) (S2A Fig). To define how these RBPs interact with existing

RBP networks to regulate target gene translation in a coordinated manner, we hierarchically

clustered the correlation coefficients of all 37 TE-RBPs and their CLIP targets. This primarily

divided the matrix in two distinct groups of TE-RBPs with marked opposite effects on target

TE, indicative of competition and/or cooperation between subsets of RBPs (Fig 2A). Interest-

ingly, the presented method joins known and novel TE-RBPs with opposing or concordant

directionality of regulation on shared targets (Fig 2B). For instance, depending on the shared

target gene bound by the splicing factor U2AF2 and the protease UCHL5, completely opposite

effects on TE could be observed and independently replicated (Figs 2B, S2B and S2C). More-

over, most shared targets were not affected by RBP collinearity (Fig 2B, see Methods).

Although these shared modes of target regulation were in part concordant with protein-pro-

tein interactions annotated in the STRING database [40], a subset of coregulatory “RBP hubs”

contained proteins with previously unknown functional similarities (e.g., UCHL5 and

U2AF2).

Fig 1. RNA-binding protein abundance predicts target translational regulation. (A) Schematic of the RBP-target correlation approach. Using

the quantified Ribo-seq and RNA-seq data from 80 hearts, pairwise RBP versus target mRNA abundance or translational efficiency correlations

were calculated. A heatmap with hierarchically clustered translational efficiency Spearman’s Rho correlations of RBPs and translated mRNAs in

the human heart are shown. Six clusters of coregulated RBPs are highlighted (See also S1 Table). (B) Heatmap with Glass’4 scores that quantify

the effect size of the witnessed significance of associations between RBPs and target gene mRNA abundance and TE. Only significant RBPs are

shown: 37 TE-RBPs (orange) and 58 mRNA-RBPs (green). For three selected RBPs (one per category), histograms illustrate the significance of

the calculated associations. (C) Dot plot displaying the fraction of translational efficiency RBP-target correlations that can be replicated in an

independent set of primary cardiac fibroblasts [30]. For each RBP, the significance of the replication was evaluated by comparing the replicated

fraction between observed and randomized sets and it is represented as a brown (significant) or red (non-significant) dot. The size of the dots

indicates the strength of significance (-log10 (padj)) and grey dots correspond to the fraction of replicated correlations in randomized sets. Error

bars indicate mean values with standard deviation (SD).

https://doi.org/10.1371/journal.pcbi.1009658.g001
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Amongst the 27 potentially new TE-RBPs was the muscle-specific and dilated cardiomyop-

athy-associated splicing regulator RBM20, whose expression correlated particularly well with

the TE of 163 experimentally validated target genes (out of 561 total targets; Glass’ Δ = 7.0; Fig

2C). Importantly, RBM20 levels specifically influenced TE and had no impact on overall

mRNA abundance or stability. Most RBM20 targets, including the sarcomere genes TTN and

TNNI3K, correlated positively (i.e., higher RBM20 expression associates with increased target

gene TE; Fig 2D) and especially those positively correlating targets showed strong enrichment

for muscle function processes (GO:0003012, padj� 5.97 × 10−16) (Fig 2C). To investigate a

possible connection between RBM20-mediated mRNA splicing and the subsequent efficiency

of mRNA translation, we evaluated whether splicing rates of known target exons correlated

directly with TE. Splicing rates were quantified using calculated percent spliced in (PSI) scores,

a metric that evaluates the efficiency of splicing for a specific exon into the transcript popula-

tion of a gene (see Methods). For 66 out of 163 (± 40%) translationally regulated RBM20 target

genes, the extent of alternative splicing indeed correlated with RBM20 abundance. A clear

example is the exon inclusion measured across the TTN I-band, whose exons are only included

in the longer TTN N2BA isoform. These I-band exons specifically drive the negative correla-

tion of RBM20 expression with overall TTN TE, indicating that their inclusion reduces the effi-

ciency with which TTN can be translated. We had previously observed that TTN translation

rates are strongly isoform-dependent [34] and can now mechanistically connect this to splicing

control by RBM20 (Fig 2E), a consequence that seems generalizable for more muscle-specific

RBM20 targets, including other sarcomere components (Fig 2D and 2E). Although the precise

mechanism through which RBM20 influences TE remains unknown, this RBP may omit the

inclusion of exons with inefficient codon translation rates or exons that impact the stability or

structure of the transcript, both of which influence protein synthesis rates [28,41].

Multifunctional RBPs including DDX3X and G3BP1 regulate mRNA

abundance and translational efficiency of independent sets of target genes

Among the 74 RBPs that correlated significantly with target gene TE (37 TE-RBPs) or mRNA

abundance (58 mRNA-RBPs), a subset of 21 RBPs could be associated independently with

both molecular traits (Figs 1B and 3A). To investigate whether the association with mRNA

abundance and TE was interrelated (and hence successive, i.e., higher target expression drives

Fig 2. CLIP analysis identifies coregulated in vivo targets of novel master regulators of translation in the human heart. (A)

Heatmap displaying the hierarchically clustered correlations between the cardiac expression levels of the 37 TE-RBPs (as determined by

normalized Ribo-seq expression) and the cardiac TE of 6,153 correlating target genes. Each of the significantly correlating target genes

was previously found to be bound by at least one of these 37 TE-RBPs based on CLIP experiments (see Methods). The clustering

separates two groups with opposite effects on TE, whose targets are enriched in mRNA metabolism (padj = 6.17 x 10−54) and

endoplasmic reticulum (padj = 1.82 x 10−7) GO terms, respectively. (B) Dendrogram with hierarchically clustered TE-RBPs based on

pairwise RBP-RBP overlaps. Shared target genes of all paired RBPs were included for clustering. Bottom heatmaps with translational

efficiency correlations of selected RBP clusters and shared significant targets. These plots illustrate distinct cooperative and competitive

RBP-target regulation modes. Pie charts illustrate the fraction of targets that remain significant after correcting for RBP collinearity per

cluster. STRING protein-protein interaction networks [40] from selected RBP clusters reveal functional association of coregulated RBPs.

Colours in edges and nodes indicate the sources of STRING evidence and known RBP functions. (C) Heatmap with hierarchically

clustered Spearman’s Rho correlation scores of RBM20 and the translational efficiency of the predicted target genes. Significant

correlating targets (n = 163, padj� 0.05) and targets involved in muscle process (GO: 0003012) are highlighted in orange and light blue

colours respectively. A list of sarcomere gene targets positively correlating with RBM20 is displayed. Selected bottom histograms

illustrate the significance of RBM20 with correlating TE targets and the absence of significance with correlating mRNA targets. (D)

Scatter plots representing the correlation between RBM20 expression (as measured by normalized Ribo-seq counts; x-axis) and the

translational efficiency (TE; y-axis) of two sarcomere genes: TNNI3K and TTN. Score and level of significance of the two Spearman’s

correlations are displayed. (E) Left: Scatter plot showing the correlation between normalized RBM20 expression levels (as measured by

Ribo-seq) and the percent spliced in (PSI) of TTN exon 156. Right: Box plot comparing average TTN I-Band isoform-specific TEs,

showing a marked difference between TTN isoform N2B (ENST00000460472), displaying a significantly higher TE than TTN isoform

N2BA (ENST00000591111) (Wilcoxon rank sum test, p-value = 0.034).

https://doi.org/10.1371/journal.pcbi.1009658.g002
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increased TE), we examined the sets of genes that correlated significantly with either trait. This

revealed a very limited overlap between correlating target genes for all 21 RBPs (16.71 ± 8.19%,

Fig 3A and S2 Table). To substantiate this observation, we compared the trait-specific strength

of the effect sizes (again as measured by the Glass’ Delta (4) [36]) and found largely no rela-

tion (S2 Table) between the correlations as independently witnessed for both traits, confirm-

ing the absence of a carryover effect (Figs 3B and S3A). This led us to denote these RBPs as

“multifunctional RBPs”—context-specific RBPs whose functional outcome depends on the set

of mRNAs it targets. A key example appears to be the multifunctional RBP DDX3X [42,43],

whose abundance correlates significantly with the mRNA levels of 339 target genes (padj =

2.83 × 10−5; Glass’ Δ = 6.9) and the translational efficiency of 730 target genes (padj =

5.25 × 10−5; Glass’ Δ = 11.89), of which only 43 targets overlap between both sets (Fig 3A and

3C). The consequences of DDX3X binding for mRNA abundance (positive correlation) or TE

(negative correlation) are opposite, though this is not the case for all multifunctional RBPs

(S3B Fig). Three other multifunctional RBPs similarly act as repressors of translation whilst

having a positive effect on mRNA abundance (DDX6, NKRF, GEMIN5), one RBP shows the

exact opposite behavior (FAM120A), and all others have concordant roles at both layers of

control (e.g., TRA2A, FASTKD2, SRSF1).

Of note, the TE and mRNA target genes of multifunctional RBPs can be enriched for sepa-

rate biological processes, indicating that duality can contribute to independent biological out-

comes. For instance, correlating DDX3X and UCHL5 TE targets code for proteins involved in

RNA splicing (GO:0008380, padj = 7.70 × 10−30), while their mRNA targets did not show any

clear functional enrichment (Fig 3C). For G3BP1, mRNA targets code for proteins involved in

localization to nuclear body (GO:1903405, padj = 5.13 × 10−12), whereas this is not the case for

translationally regulated targets, which are enriched for RNA splicing (GO:0008380, padj =

1.61 × 10−10). Such biological discrepancies are not always present: independent of the mode

of regulation, both types of PUM1 targets (TE or mRNA) appear to code for proteins involved

in mRNA processing (GO:0006397, TE padj = 2.64 × 10−22, mRNA padj = 6.40 × 10−13).

Differential affinity of multifunctional RBPs for CDS lengths and 5’ UTR

structures

Dual- or multiprotein functionality can be achieved through context-specific differences in

subcellular localization [44], interaction partners [45,46], or the presence of multiple RNA-

binding domains [47]—all of which can fine tune or restrict the subset of recognized target

genes. Based on published immunofluorescence imaging-based evidence of subcellular RBP

localization [12], 13 out of 21 multifunctional RBPs indeed localized equally well to both

nucleus and cytosol, suggesting functionality in both compartments (S3 Table).

We additionally explored the relative position of CLIP binding sites in target genes (i.e., the

position of binding within the mRNA: 5’ or 3’ UTR, CDS, or intronic). Most of the RBPs

(including e.g., DDX3X) were recruited to target gene regions in different proportions, but we

Fig 3. Multifunctional RBPs regulate translation of distinct sets of target genes. (A) Heatmap with Glass’4 scores quantifying the effect

size of the witness effects for mRNA and TE correlations. Both effect sizes are significant for a highlighted set of 21 multifunctional RBPs.

For this set of RBPs, individual Venn Diagrams representing the overlap in the total number of mRNA and TE targets are displayed. (B) Bar

plot quantifying the magnitude of mRNA and TE effect size (Glass’4 scores) for multifunctional RBPs. RBP effect sizes are largely

independent of the mode of regulation. (C) Selected histograms and dot plots illustrating the significance of RBP-target correlations and the

enrichment of GO terms for the targets bound by 4 multifunctional RBPs: DDX3X, G3BP1, PUM1, and UCHL5. For each RBP, the 12 most

significant parental GO terms are displayed. For three of the RBPs, mRNA and TE targets exhibit different enrichment of significant GO

terms. (D) Box plots with transcript, 5’ UTR, CDS, and 3’ UTR sequence lengths in nucleotides for mRNA and TE targets corresponding to

the four selected multifunctional RBPs in (C). A total of 11 multifunctional RBPs bind targets with significantly different CDS lengths

(Wilcoxon rank sum test). See also S3 Fig.

https://doi.org/10.1371/journal.pcbi.1009658.g003
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observed no marked difference in binding positioning between mRNA and TE targets (S3B

Fig). However, for SRSF7 and GEMIN5, mRNA and TE targets were enriched in intronic and

CDS binding sites respectively. For DDX6, we observed an enrichment of TE targets with 3’

UTR binding sites, of which 87% correlated negatively with the RBP. A recent study describing

a tethered function assay to assess RBP functionality found a highly concordant role for DDX6

in the repression of translation, which resulted directly from its recruitment to target gene 3’

UTRs [31]. This is in line with previously described repressive functions of DDX6 during

mRNA translation [48].

For DDX3X and 10 other RBPs, we noticed a significant change in target transcript length,

mostly explained by differences in target CDS length, which slightly increased or decreased

between TE and mRNA targets (Figs 3D and S3C). The most significant changes in CDS

length were seen for GEMIN5 (decrease for TE targets; 2,226 nt vs. 1,519 nt; padj =

3.66 × 10−9), PRPF8 (decrease for TE targets; 2,243 nt vs. 2,076 nt; padj = 1.03 × 10−8), DDX3X

(decrease for TE targets; 1,659 nt vs 1,376 nt; padj = 2.81 × 10−7) and G3BP1 (increase for TE

targets; 1,985 vs. 2,798 nt; padj = 6.11 × 10−8).

Our attention was drawn to the DEAD-box helicase DDX3X, which regulates translation

initiation by interacting with, and subsequently disentangling, highly structured RNA

sequences [49–52]. DDX3X binds 5’ UTRs and the small ribosomal unit to facilitate the trans-

lation of a subset of mRNAs with long and structured leader sequences [52]. In order to define

if additional RBPs may be required for, or involved in, translation initiation at targets with

highly structured 5’ UTRs, we looked into the 5‘ UTR’s minimum free energy (MFE, length

normalized) of TE and mRNA target genes, for each of the multifunctional RBPs. The MFE

defines the most thermodynamically probable secondary structure for each RNA sequence,

with lower MFE values pointing to more complex and structured predicted conformations.

We observed that between the positively and negatively correlating target translational effi-

ciencies of 17 out of 21 multifunctional RBPs, 5’ UTR sequences differed in structural compo-

sition (Fig 4A). In contrast, there were poor to almost no differences for the significantly

correlating mRNA targets of the same RBPs. Strikingly, three RBPs exhibited by far the stron-

gest MFE differences between positively and negatively correlating targets: next to DDX3X

(padj = 9.47 x 10−47), those were the core spliceosome factors PRPF8 (padj = 2.70 x 10−29) and

EFTUD2 (padj = 1.69 x 10−30) (Fig 4A and 4B). Positively and negatively correlating targets

also displayed minor differences in 5’ UTR lengths (S4A Fig), but the difference in MFE nor-

malized by length was much greater than the small difference observed in UTR length, which

was therefore corrected for. Moreover, the effect of MFE was still highly significant after con-

trolling for UTR length (S4B Fig). The targets shared between these RBPs displayed similar

directions of correlation with the three RBPs (Fig 4C) suggesting that these three RBPs might

rely on a similar mechanism for translational regulation that is dependent on the 5’ UTR struc-

tures of shared targets. Interestingly, we found that positively and negatively correlating targets

were involved in different functions and cellular compartments (S4C Fig). For instance, posi-

tively correlating targets from DDX3X and EFTUD2 were enriched for proteins that constitute

ribonucleoprotein complexes, in line with a recent study that showed strong translational

downregulation of ribonucleoproteins after knockdown of DDX3X [53]. On the contrary, neg-

atively correlating targets of DDX3X and EFTUD2 were enriched for proteins localizing to

membrane-bounded cytoplasmic organelles, such as the mitochondria.

Discussion

Increasing evidence suggests that RBPs can act as multifunctional gene expression regulators

[14,54]. Here, we built an in-silico method for the large-scale analysis of RBP-driven regulation
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using correlation as a proxy for mRNA abundance and translational efficiency (TE) of target

genes across 80 human heart samples. Our approach underscores the functional importance of

RBP expression fluctuations in the control of gene expression, a mechanistic feature recently

highlighted by others in vitro and in vivo to assign new unknown roles for RBPs [30–32]. We

exploited the quantitative effect of RBPs on known target genes to implicate 74 RBPs in the

regulation of mRNA abundance or translation.

We discovered 27 RBPs with previously unknown roles in translation, some of which have

well-characterized functions in other biological processes, including mRNA splicing. Previous

work revealed a handful of splicing factors that can independently mediate post-splicing

Fig 4. Differential affinity of multifunctional RBPs for 5’ UTR structures often drives opposite quantitative TE effects. (A) Dot plot displaying the significance of the

differences in 5’ UTR minimum free energy (MFE, normalized by length) between target genes that correlate positively or negatively with each multifunctional RBP.

Significance values are calculated separately for mRNA (green) and TE (brown) targets. Adjusted p-values are shown on a -log10 scale and calculated using the Wilcoxon

Rank Sum test and only 5’ UTR sequences with a minimum length of 20 nucleotides were evaluated. A dashed vertical line indicates the minimum adjusted p-value to

consider the differences in MFE as significant (padj < 0.05). (B) Box and violin plots with length normalized MFE scores for positively and negatively correlated TE targets

corresponding to the three selected multifunctional RBPs with the highest significance (Wilcoxon rank sum test) in Fig 4A (DDX3X, EFTUD2, PRPF8). For comparison,

non-correlating target genes were included in the panel figure. (C) Three-way Venn Diagram representing the overlap in the number of TE targets for the three selected

RBPs. The heatmap represents TE correlations of 156 shared target genes for the three cases.

https://doi.org/10.1371/journal.pcbi.1009658.g004
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activities, such as mRNA translation [55–57]. Instead, alternative splicing mediated by splicing

factors can cause downstream effects on the translation of spliced target genes, depending on

the qualitative decision of which mRNA isoforms are being produced [19–29]. Remarkably,

the high fraction of splicing factors that we find to influence translation would suggests previ-

ously unanticipated roles for many more splicing regulators in this process. A prominent

example is the muscle-specific and cardiac disease-relevant splicing regulator RBM20. RBM20

is a splicing repressor that modulates isoform abundances of many sarcomere genes [33,58].

Here we demonstrate that RBM20 expression correlates positively with the TE of TTN and

other sarcomere genes, suggesting that nuclear splicing control can impact cytoplasmic protein

synthesis. While we had previously reported that TTN isoform-specific changes in TE exist

[34], we now for the first time show that RBM20 has a crucial impact on TTN’s translational

output. Future functional studies should determine the specific mode of action of the splicing

factors involved in translation and whether any isoform-specific characteristics contribute to

the observed differences in TE.

Besides the discovery of potential novel functions for a subset of RBPs, we provide evidence

that 21 RBPs can modulate both target mRNA abundance and TE—a class of RBPs that we

classify as “multifunctional RBPs”. Multifunctional RBPs appear to be involved in the regula-

tion of mRNA abundance and TE of distinct groups of target genes. These target genes can be

concordantly or discordantly regulated on either layer of gene expression control. We discov-

ered that the specific affinity of several RBPs to structural properties of mRNAs, such as pro-

tein-coding sequence length, UTR length or RNA secondary structure, contribute separately

to the observed independent effects on mRNA abundance or translation. Hence, further exper-

imental validation is required to confirm the quantitative effect of each individual multifunc-

tional RBP and identify the precise mechanisms behind this dual functionality. In support of

our findings, a recent study [32] has inspected the connection between the binding kinetics of

the RBP DAZL and its effect on mRNA abundance and translation of specific sets of target

genes, identifying several 3’ UTR features–UTR length, presence of binding clusters, distance

to the polyadenylation site–that are linked to the trait-specific regulation of different groups of

targets. In addition, the usage of different ribosome binding domains, the recognition of alter-

native RBP motifs and the presence of binding sites located in different gene regions (i.e.,

UTRs, CDS, or introns) can also be indicative of RBP multi-functionality [59]. Nevertheless,

we found these mRNA characteristics to remain largely unchanged for the targets of most mul-

tifunctional RBPs identified in this study.

For a subgroup of multifunctional RBPs, we noticed that the targets regulated on the tran-

scriptional or translational level represent functionally different gene classes. Indeed, the

observed biological diversity in our study seems to match the condition-specific regulatory

complexity that needs to be achieved by a single RBP. For instance, this appears to be the case

for G3BP1—a known multi-functional RBP that can selectively compartmentalize specific sets

of mRNAs to stress granules, in order to reprogram mRNA translation under certain global

stress conditions [60–62], as well as tissue-specific contexts such as atrial fibrillation in heart

[63]. Additionally, G3BP1 plays an important role in DNA/RNA unwinding [64] and binds to

specific RNA stem-loop structures to trigger mRNA degradation [65], which is essential for

maternal mRNA clearance [66]). Another example is DDX3X, a DEAD box helicase which

can respond to stressors (e.g., viral infections [67]) by switching subcellular compartments.

DDX3X is involved in multiple processes required for RNA metabolism [42,43], for which it

uses its capacity to unwind complex and structured 5’ UTRs to promote translation initiation

at selected subsets of mRNAs [43,49,52,68]. However, there is ongoing debate as to the precise

roles of DDX3X and the mechanisms through which it regulates RNA metabolism [68], as it

can act both as a repressor or activator of translation [69].

PLOS COMPUTATIONAL BIOLOGY Unexpected multifunctionality of RNA-binding proteins

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009658 December 8, 2021 12 / 23

https://doi.org/10.1371/journal.pcbi.1009658


Our work points to an intricate relation between the direction of translation regulation and

target 5’ UTR structure, with the TE of certain targets being positively or negatively influenced

by multifunctional RBP binding depending on the complexity of target 5’ UTR sequences.

Unexpectedly, our results show that increased levels of DDX3X correlate with a lower TE for

targets with highly structured 5’ UTRs. This seems to contradict recent in vitro reports where

DDX3X knockdown in human cells [52] resulted in translational repression of mRNAs with

structured 5’ UTRs. Next to DDX3X, the strongest impact of the 5’ UTR on translational out-

put is observed for EFTUD2 and PRPF8, which display patterns of regulation highly similar to

DDX3X, suggesting an analogous mode of action in the control of target translation rates. Sur-

prisingly, EFTUD2 and PRPF8 are splicing factors which are part of the central component of

the U5 snRNP spliceosome [70] and had not been implicated in translation before. However,

the conserved GTPase EFTUD2 has sequence similarity to the translation elongation factor

EF-2 [71], possibly explaining its capacity to influence translation. Both ancient paralogs may

have evolved and diversified to complement each other.

Whereas dual functionality of extensively studied and characterized RBPs such as DDX3X

and G3BP1 had (to a certain extent) been described previously, for a selection of other RBPs

our results provide initial observations of dual functionality. For instance, UCHL5 (also

known as UCH37) is a protease with RNA binding capacity that may be part of the INO80

chromatin remodeling complex [72], though its role within RNA metabolism is yet unknown.

We established a quantitative relationship between UCHL5 expression and variability in

mRNA abundance of genes involved in chromatin organization, as well as with changes in TE

of genes involved in RNA splicing. Although UCHL5 shared target genes with core splicing

factors (U2AF2, EFTUD2 and PRPF8), its effect on the TE of targets shared with these three

splicing factors is completely opposite, suggesting contrasting regulatory behavior, and possi-

bly competition.

Very little is known about the molecular processes that control RBP multifunctionality,

although some possible mechanisms have been recently investigated, including the formation

of heterogeneous RBP complexes [73,74], switches from monomers to multimers in a concen-

tration-dependent manner [75], and changes in subcellular localization [55,76]. In our current

study, the potential mechanisms behind the observed multifunctionality could not be

explained in a uniform way: there appears to be no ‘one size fits all’ scenario. It is very probable

that RBP multi-functionality is achieved by specific combinations of individual RBP and target

features, whose precise dissection requires experimental follow-up into each individual multi-

functional RBP. An RBP may bind distinct sets of RNA within the nucleus, though, for a subset

of targets, the consequences of binding may only become apparent at a later stage of gene

expression (e.g., a change in transcript isoform production that is accompanied by a down-

stream effect on TE). Alternatively, multifunctional RBPs may physically take part in multiple

stages of gene expression by adapting subcellular localizations. For instance, HNRNPM (one

of the core splicing ribonucleoproteins that we found to influence both target gene mRNA

abundance and TE) localizes to nucleus [16] but can be exported to the cytosol to induce cap-

independent translation upon hypoxia [55]. Another example, DDX3X, shuttles between

nucleus and cytosol [67]. It remains to be established if RBPs with shared targets bind these

targets simultaneously, or if there is sequential crosstalk of RBPs and other proteins in the con-

trol of target expression. RBP abundance may also respond to target availability and not vice
versa, possibly explaining why we find many splicing regulators to rank highly within the RBP

hierarchy.

There are limitations to the methods we employ to define biological roles for RBPs and

assign targets to each. First, we note that significant associations also occur in the randomly

sampled target sets, which indicates a certain level of fuzziness in RBP-target assignment. This
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appears inevitable for RBPs with general functions in expression control, which bind and

share large numbers of targets. However, together with the calculated Glass’ delta, the distribu-

tions of significant correlations in the 100,000 randomly sampled target sets give us a good

indication of our false discovery rate in target assignment. Particularly for investigations into

the effects of RBP binding on individual target genes, the presence of potential false-positive

significant correlations indicates that independent experimental validation is warranted. A

second limitation includes the use of eCLIP experiments from two cell lines unrelated to the

heart. Our results would benefit from large-scale human heart-specific CLIP experiments that

better complement the tissue-specificity of the cardiac expressed genes. Nevertheless, all dis-

covered multifunctional RBPs are ubiquitously expressed across human tissues (S1A Fig), sug-

gesting that these proteins are major players in RNA transcriptional and translational

regulation, contributing to both global and cell-line or tissue-specific manifestations.

In conclusion, our results illustrate unanticipated complexity in RBP-RNA interactions at

multiple consecutive levels of gene expression. This warrants future in-depth experimental

research into the identified RBPs in human cardiac biology. Understanding how RBPs cooper-

ate, communicate, interact, and compete across subcellular compartments and in response to

changing conditions will be essential to fully comprehend the quantitative nature of the regula-

tory principles that underlie mRNA metabolism.

Methods

Ribosome profiling and RNA sequencing data analysis

We re-analyzed ribosome profiling (Ribo-seq) and matched RNA-seq datasets from 80 human

hearts that we generated and published previously (EGA accession code: EGAS00001003263)

[34]. In short, Ribo-seq reads were clipped for residual adapters using FASTX toolkit [77].

Reads mapping to the mitochondrial RNA, ribosomal RNA and tRNA sequences were

removed from downstream analysis. Full length paired mRNA-seq reads (2 × 101nt) were

trimmed to 29-mers (average length of Ribo-seq reads) to establish a comparable analysis of

both Ribo-seq and mRNA-seq datasets and avoid any mapping or quantification bias due to

different read length or filtering. Next, Ribo-seq and trimmed mRNA-seq reads were mapped

to the human reference genome (GRCh38, Ensembl v87) using STAR v2.5.2b [78] with maxi-

mum of 2 mismatches and -seedSearchStartLmaxOverLread = 0.5. Quantification of gene

expression was performed by counting reads mapping to coding sequence (CDS) regions of

annotated protein-coding genes, using HTSeq v0.9.1 [79]. Gene counts were normalized by

estimating the size factors simultaneously on Ribo-seq and RNA-seq datasets using DESeq2

v1.12.4 [80]. This joint normalization is required to compare both measures of gene expression

[81]. Translational efficiency (TE) was calculated on the Ribo-seq against RNA-seq ratio for

each individual gene and sample, as described previously [34].

Identification of RBP targets from published eCLIP and HITS-CLIP data

Processed eCLIP data of 150 RBPs were obtained from ENCODE (30) for HepG2 (n = 103)

and K562 (n = 120) cell lines. Datasets consisted of BED files containing eCLIP peaks and

BAM files containing reads mapped to the human genome (GRCh38.p10/hg38). The identifi-

cation of robust eCLIP peaks across replicates and cell lines was performed as suggested by

Van Nostrand and colleagues [12]. First, we used BEDTools [82] to quantify the coverage of

each predicted peak using input (mock) and immunoprecipitation (IP, antibody against RBP)

BAM files. Next, for each peak, the relative information content was defined as pi x log2 (pi/qi),

where p and q are the sum of reads mapping to the peak in IP and negative control respec-

tively. The information content was used to calculate the Irreproducible Discovery Rate (IDR)
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[83], a parameter indicating reproducible peaks across biological replicates. A significant and

reproducible peak was defined meeting an IDR cut-off < 0.01, p-value� 10−5 and fold-enrich-

ment (FC) > 8. In case two or more peaks overlapped the same genomic region, the most sig-

nificant one was included in the peak table. Additionally, non-overlapping peaks were pooled

into a single table, in order to get a complete set in both cell lines. While CLIP data was pro-

duced in a non-cardiac setting, CLIP signals are usually preserved among similarly expressed

genes of the same RBP independent of the cell line, with peak differences instead reflecting cell

type-specific expression rather than binding affinity [12]. Additionally, for the muscle-specific

splicing repressor RBM20, which was not part of the ENCODE dataset but included for its

importance for cardiac splicing and heart disease [33,58], significant rat RBM20 HITS-CLIP

targets were obtained from Maatz et al. [33] and converted to GRCh38.p10/hg38 genomic

coordinates. Only 143 RBPs with expression in human heart tissue were kept (mean FPKM

across samples >1; 142 ENCODE RBPs and RBM20).

Overall, we retrieved an average of 4,300 eCLIP-seq peaks per experiment. Finally, we

mapped these peaks to the annotated transcriptome (Ensembl v.87) and, for each RBP experi-

ment, all the genes supported by at least one CLIP-seq peak were defined as putative target

genes.

RBP-target correlation and clustering

For RBP-target correlations and clustering we included genes expressed in the human heart

(mean FPKM across samples > 1) with at least one Ribo-seq and mRNA-seq read in a mini-

mum of 20 samples (n = 11,387). Next, for pairwise complete observations, we calculated

Spearman correlations between the expression level of the RBP (as measured by Ribo-seq) and

either target gene mRNA-seq counts or translational efficiency. Only target genes that showed

a significant (padj� 0.05) correlation after correction for multiple testing using the Benjamini-

Hochberg approach [84] were retained for downstream analyses. The computed RBP-target

correlation matrix was used to calculate the Euclidean distance followed by hierarchical clus-

tering, to group RBPs with similar consequences on their target genes. Cluster visualization

was done using heatmap.3 (https://github.com/obigriffith/biostar-tutorials/tree/master/

Heatmaps). To ensure significant correlation between RBP and its target genes and exclude

numerical relationship (collinearity) between two RBPs, we selected clusters of RBPs and tar-

get genes with similar expression profiles and calculated partial correlations. Statistical com-

parison was enabled by Fisher Z-transformation of two correlation coefficients to a normal

distribution.

Target gene enrichment

To identify RBPs that are putative modulators of target gene mRNA abundance and/or TE, we

calculated the frequency with which target genes supported with CLIP-seq data correlated sig-

nificantly with each RBP. We leveraged the significance of these correlating associations by

generating 100,000 equally sized sets of theoretical targets out of all translated genes in the

human heart; an approach that has previously been shown to be highly effective [30]. For each

set, we quantified the amount of significantly correlating genes and compared the theoretical

distribution against the actual observation applying an empirical test: Empirical p-value = sum
(theoretical targets> true RBP targets) /100,000.

Empirical p-values were corrected for multiple testing (Benjamini-Hochberg method).

RBPs that showed a significant (padj� 0.05) enrichment of correlating CLIP-derived target

genes were considered as putative regulators of mRNA abundance (n = 58) and/or TE

(n = 37). It should be noted that, because of the fixed number of generated random sets, the
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minimum empirical p-value that can be calculated after correction for multiple testing is 5.25

x 10−5. Hence, the empirical test cannot quantify the strength of significance for a specific

observation. Instead, we calculated Glass’ Delta (4)[36] as a measure of the effect size, which

is defined as the difference between the two target sets divided by the standard deviation of the

theoretical group. Effect size = (true RBP targets—mean(theoretical targets)) / sd(theoretical
targets)

RBP expression across GTEx tissues

To determine the patterns of expression of each RBP across human tissues, we obtained

expression data from the Genotype-Tissue Expression (GTEx) Project [85], a database that

comprises a large set of samples corresponding to 54 human tissues. We used these data to

determine the number of tissues with detectable (average TPM� 1) or high (average

TPM� 10) expression of a given RBP (S1A Fig). An RBP was categorized as ubiquitously

expressed if expression was detected in more than 30 tissues with a TPM� 10.

Replication of target regulation using a public fibroblast cohort

We retrieved raw RNA-seq and Ribo-seq data from a cohort of 20 primary cardiac fibroblast

cultures stimulated with TGF-beta [30] and used it as a replication cohort. Raw data are avail-

able via the gene expression omnibus (GEO submission: GSE131112, GSE123018,

GSE131111) repository. Read pre-processing, mapping, gene quantification and correlation

analysis were done following the same procedures described above for the heart datasets (see

‘Read mapping and gene quantification’ and ‘RBP-target correlation and clustering’ subsec-

tions). To prove that the regulatory effect of RBPs in target translational regulation can be rep-

licated in an independent dataset, we quantified the fraction of RBP-target correlations with

similar direction of regulation in both fibroblast and human heart cohorts. Statistical signifi-

cance of the observed replications was evaluated by running 10,000 permutations of the corre-

lation coefficients in fibroblasts and comparing the fraction of shared directionality between

both cohorts in observed and randomized sets.

Analysis of differential exon splicing

To evaluate whether RBM20 could influence the TE of target genes by modulating isoform

production ratios (exon in- or exclusion), we estimated exon splicing rates by calculating the

percentage spliced in (PSI) for all exons of known and correlating RBM20 target genes, as

described previously [86]. For PSI calculation, we re-mapped the 80 paired-end cardiac

mRNA-seq (2 × 101nt) datasets to improve splice site coverage using STAR v2.5.2b [78], allow-

ing a maximum of 6 mismatches.

Functional analysis of RBP associations and target genes

Known and predicted RBP-RBP interactions were retrieved from the STRING database [40]

with confidence network edges and default settings. Moreover, we assigned biological func-

tions to define gene targets with gProfiler2 v0.1.9 (archive revision fof4439, [87]) and extracted

enriched sets of ‘child’ and ‘parent’ GO terms for the individual sets mRNA and TE targets

(padj� 0.05). Significant GO terms that involve a minimum of 20 and a maximum of 500

genes were considered, to avoid the inclusion of too general terms that show significance due

to beneficial input to term size ratios.
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Analysis of minimum free energy in 5’ UTRs

We predicted 5’ UTR secondary structures through energy minimization using RNAfold from

the Vienna Package v2.4 [88]. Using the 5’ UTR sequence of each target gene as input, mini-

mum free energies (MFE) were calculated and length-normalized to observe differences in

UTR complexity for target genes that are positively or negatively correlating with RBPs.

General remarks on statistical analysis

Statistical analysis and generation of figures was done using R v3.6.2 [89]. A full list of tools

and methods used for data analysis is stated in each corresponding Methods section. Statistical

parameters such as n, median/mean, standard deviation (SD) and significance are named in

the figures and/or the figure legends. The “n” represents the number of RBPs in Figs 4, S3A

and S4.

Supporting information

S1 Table. Analysis information for 143 RBPs. Table with all 143 cardiac expressed RBPs,

number of mRNA and TE correlating targets and significance of correlations, clusters of core-

gulated RBPs, and average RNA expression levels in human left ventricle.

(XLSX)

S2 Table. Multifunctional RBPs. Table with all 21 multifunctional RBPs, number of target

genes per molecular trait, and names and significance of the best 5 GO enrichment results.

(XLSX)

S3 Table. Multifunctional RBPs’ localization. Table with all 21 multifunctional RBPs and

their cellular localization (0: absent; 1: present).

(XLSX)

S1 Data. RData object containing DESeq2 normalized poly(A) RNA-seq and Ribo-seq

count matrices together, TE matrix (Ribo-seq/RNA-seq) and PSI count matrix. To access

this file, download R and load the RData object with the R function load: load(RData).

(ZIP)

S2 Data. RData object containing correlation matrices, global result- and effect-size tables

for all mRNA-RBPs and TE-RBPs as well as a table with MFE values for all target tran-

scripts for each TE-RBP. To access this file, download R and load the RData object with the R

function load: load(RData).

(ZIP)

S1 Fig. RNA-binding protein abundance predicts target translational regulation. (A) Bar

plot displaying the patterns of expression of the 143 RBPs across tissues. Average expression

values in transcript per million (TPM) units were retrieved from the Genotype-Tissue Expres-

sion (GTEx) Project. Most of the RBPs are ubiquitously expressed across human tissues. (B)

STRING protein-protein association networks from six coregulated RBP clusters (see also Fig

1A). Most of the clustered RBPs are involved in known functional interactions. (C) Heatmaps

with Glass’4 scores for all 37 TE-RBPs quantifying the effect size of the witness effects for sig-

nificant TE correlations.

(TIF)

S2 Fig. CLIP analysis identifies coregulated in vivo targets of novel master regulators of

translation in the human heart. (A) Described functions by Van Nostrand et al. for the set of

TE-RBPs. Functions related to translation (translation regulation and ribosome basic
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translation) are highlighted with dark red boxes. (B-C) Scatter plots representing the correla-

tion of heart (B) and primary cardiac fibroblasts (C) translational efficiencies between UCHL5

and U2AF2 and two shared targets, KPNA4 and MYL6. UCHL5 and U2AF2 have marked

opposite effects on their shared targets, indicative of a competitive effect replicated in two

independent datasets. Scores and level of significance of the two Spearman’s correlations are

displayed.

(TIF)

S3 Fig. Multifunctional RBPs regulate translation of distinct sets of target genes. (A) Net-

work representing multifunctional RBP-target interactions for both mRNA-RBPs (green) and

TE-RBPs (brown) of strong correlating pairs. Blue lines indicate shared targets in both mRNA

abundance and TE regulation of the same RBP. (B) Left: heatmap representing the average

mRNA and TE RBP-target correlation values for all 21 multifunctional RBPs. Middle: heatmap

representing differences in the relative proportion of feature binding sites (TE-mRNA) for all

21 multifunctional RBPs. Right: bar plot showing the overall proportion of feature binding

sites for all 21 multifunctional RBPs. (C) Box plots with 5’ UTR, CDS, and 3’ UTR sequence

lengths in nucleotides for mRNA and TE targets corresponding to the set of 21 multifunctional

RBPs. For each target gene, the most abundant isoform is represented.

(TIF)

S4 Fig. Differential affinity of multifunctional RBPs for 5’ UTR structures often drives

opposite quantitative TE effects. (A) Box and violin plots with 5’ UTR lengths for positively

and negatively correlated TE targets corresponding to DDX3X, EFTUD2, and PRPF8. (B)

Box and violin plots with length normalized MFE scores for positively and negatively corre-

lated TE targets. We subsampled sets of 50 genes per group and RBP, so each of the groups

had a similar distribution of 5’ UTR lengths. For comparison, non-correlating target genes

were included in the panel figure. (C) Enriched GO terms in the sets of positive and negative

correlating targets for DDX3X, EFTUD2, and PRPF8. For each RBP, the 5 most significant

GO terms are displayed.

(TIF)
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