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Abstract

Background: Cytosine modifications in DNA such as 5-methylcytosine (5mC)
underlie a broad range of developmental processes, maintain cellular lineage
specification, and can define or stratify types of cancer and other diseases. However,
the wide variety of approaches available to interrogate these modifications has
created a need for harmonized materials, methods, and rigorous benchmarking to
improve genome-wide methylome sequencing applications in clinical and basic
research. Here, we present a multi-platform assessment and cross-validated resource
for epigenetics research from the FDA's Epigenomics Quality Control Group.

Results: Fach sample is processed in multiple replicates by three whole-genome
bisulfite sequencing (WGBS) protocols (TruSeq DNA methylation, Accel-NGS
MethylSeq, and SPLAT), oxidative bisulfite sequencing (TrueMethyl), enzymatic
deamination method (EMSeq), targeted methylation sequencing (lllumina Methyl
Capture EPIC), single-molecule long-read nanopore sequencing from Oxford
Nanopore Technologies, and 850k lllumina methylation arrays. After rigorous quality
assessment and comparison to lllumina EPIC methylation microarrays and testing on
a range of algorithms (Bismark, BitmapperBS, bwa-meth, and BitMapperBS), we find
overall high concordance between assays, but also differences in efficiency of read
mapping, CpG capture, coverage, and platform performance, and variable
performance across 26 microarray normalization algorithms.
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Conclusions: The data provided herein can guide the use of these DNA reference
materials in epigenomics research, as well as provide best practices for experimental
design in future studies. By leveraging seven human cell lines that are designated as
publicly available reference materials, these data can be used as a baseline to
advance epigenomics research.

Introduction

DNA methylation plays a key role in the regulation of gene expression [1], disease on-
set [2], cellular development [1], age progression [3], and transposable element activity
[4]. Whole-genome bisulfite sequencing (WGBS) is increasingly used for fundamental
and clinical research of CpG methylation. Numerous validated protocols and commer-
cially available kits are available for WGBS library preparation ([5-7]). Other assays to
interrogate the epigenome include oxidative bisulfite sequencing [8], enzymatic de-
amination [9], and targeted approaches ([10, 11]), further accelerating the breadth and
rate of discovery in genome-wide DNA methylation studies.

As the field of epigenomics continues to advance, there is a need to establish defini-
tive standards and benchmarks representative of the methylome. In recent years, the
Genome in a Bottle (GIAB) Consortium has established seven human cell lines as refer-
ence material to enable genomics benchmarking and discovery [12]. Recent studies
have characterized the genomes of these cell lines (e.g., germline structural variant de-
tection in [13]), but none yet have examined the epigenome. Here, the FDA’s Epige-
nomics Quality Control (EpiQC) Group presents DNA methylation sequence data
across all seven GIAB reference cell lines, as well as a comparative analysis of targeted
and genome-wide methylation protocols, to serve as a comprehensive resource for epi-
genetics research. We build on top of work done in previous studies to compare the
performance and biases of WGBS library kits (e.g., [6, 14, 15]) by evaluating both com-
monly used and newly available epigenomic library preparation kits. We report the
relative performance of each kit, as measured by mapping efficiencies, CpG coverage,
and methylation estimates. We then characterize the reproducibility and challenges of
methylation estimation across the genome. We further sequenced these cell lines using
long-read technology on an Oxford Nanopore PromethION and here compare its per-
formance alongside more common chemical/enzymatic conversion kits and short-read
sequencing. Finally, we generated microarray data for these cell lines and provide
guidelines for normalization of beta values, site filtration, and comparison to sequence
data. This reference dataset can act as a benchmarking resource and a reference point
for future studies as epigenetics research becomes more widespread within the field of

genomics.

Results

Study design and sequencing outputs

We generated epigenomic data for seven well-characterized human cell lines (HG001-
HGO007) that have been designated as reference materials for genomic benchmarking by
the Genome in a Bottle (GIAB) Consortium [12]. These cell lines include NA12878
(HGO001) from the CEPH Utah Reference Collection, as well as two family trios from
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the Personal Genome Project, one of Ashkenazi Jewish ancestry (HG002-4) and one of
Han Chinese ancestry (HG005-7).

Libraries for whole epigenome sequencing were prepared using a variety of common bi-
sulfite and enzymatic conversion kits, including NEBNext Enzymatic Methyl-Seq (referred
to here as EMSeq), Swift Bio sciences Accel-NGS Methyl-Seq (MethylSeq), SPlinted
Ligation Adapter Tagging (SPLAT), NuGEN TrueMethyl oxBS-Seq (TrueMethyl), and
[lumina TruSeq DNA Methylation (TruSeq). Cell line genomic DNA was acquired from
Coriell, and one aliquot of each genome was extracted and distributed to six independent
laboratories, each utilizing one library preparation method (Table 1).

Each site prepared two technical replicates per cell line for their respective epigenetic
assay. In the case of EMSeq, libraries were prepared at two sites, designated as Lab 1
and Lab 2. All other sites were designated as Lab 1 for their library type. In the case of
TrueMethyl, pairs of replicates were made using a bisulfite-only treatment (BS) and an
oxidative bisulfite treatment (OX). All libraries were pooled into equimolar concentra-
tions and sequenced in multiplex at one site (see “Methods”), resulting in a range of
500 M to 3.5B paired-end reads per replicate. The range of sequencing depth per repli-
cate resulted from an imbalance in library pooling, as well as differences in shearing
condition and size selection per library type (see “Methods”). In addition to short-read
sequencing of epigenetic libraries, Oxford Nanopore R9.4.1 PromethION flow cells (re-
ferred to here as Nanopore) were run to generate long read sequence data for each gen-
ome, each ranging from 75B to 250B bases.

Data quality control

We performed quality control of all sequence data generated within this study using
FASTQC [16] (see Supplementary Data 1 for quality reports for every sample). As a
measure of the success of the bisulfite or enzymatic conversion step of each library
preparation, we estimated the cytosine conversion rate across CpG and non-CpG con-
texts (Additional file 1: Figure Sla). CpG methylation levels fell in the expected 45—
65% range across all libraries (Methyl Capture EPIC, as an exception, showed lower

rates, a reflection of targeting less methylated regions such as promoters and

Table 1 Sequencing across all genomes analyzed in this study, including genomic and targeted
assays. Numbers within each genome/assay cell indicate millions of paired-end 150bp reads
sequenced, with the exception of PromenthlON, which indicates millions of reads and mean read
length in parentheses. Each number represents one replicate sequenced for that genome/assay

Whole Genome Targeted
NeBI Methyl TrueMethyl
Genome Coriell ID NIST ID BioSample EM-Seq Seq Nanopore  SPLAT Bisulfite | Oxidative TruSeq EPIC
labl | lab2 | labl | labl | Labl | labl | labl | labl | Labl
7.8 (4085)
CEPH GM12878 | HGOO1 | SAMN03492678 >0 468 652 | ¢ ey | 33 108 514 338 26/
Mother/Daughter 337 392 609 | iy | 39 395 508 437 326
379 403 960 | ssusen | €25 901 508 351 239
4.5 (7346)
AlSon GM21385 | ‘He00Z || SAMNOA28S347( 367 399 650 | 16(s126) 801 504 447 609 335
Larsn6a)
7 397 829 | ‘aimey | 488 664 m 654 288
4.8 (3760)
Al Father GM24149 | HGOO3 | SAMNO38334s| T oot ae | B bost . o8 poet
Vs (52311
313 381 959 | eatty | as3 802 519 340 235
6.0 (4315)
AlMother: | GM24143 | 'HGOO3 || SAMNO3283346 | g4 173 779 | 1isan) | 433 32 345 733 339
1.5 (5590)
89 451 2.5 (2984)
ChineseSon | GM24631 | HGOOS | SAMNO3283350 | 430 497 796 owosy | 922 605 360 709 243
13 poth 701 | 2oCem | ess 47 450 514 a2
359 451 2.0(3987)
Chinese Father GM24694 HGO006 SAMNO03283348 344 422 o 1.4 (5197) 733 573 730 1012 247
24 422 815 | 46BN 1 4050 | en 220 698 265
352 as6
Chinese Mother GM24695 HG007 SAMNO03283349 365 480 714 45 4507) 143 638 573 28 234

387 176 665 16.1(5022) 1035 1015 199 312 243
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enhancers). We detected near zero non-CpG methylation as expected for all libraries,
though CHG and CHH context conversion was somewhat elevated for TruSeq libraries
(Additional file 1: Figure Sla) (see below for mapping and methylation calling that en-
abled these estimates).

Depending on library preparation, different libraries had different completely
unmethylated (lambda) or completely methylated (pUC19 plasmid) spiked-in controls
(see “Methods”). Methylation levels of these controls were very nearly 0% or 100% re-
spectively across all libraries (Additional file 1: Figure S1b), further reflecting the quality
of the data.

Mapping efficiencies

Following quality control, we examined the performance of reference-based read align-
ment and methylation estimation for samples of each library type. Our pipeline of
choice was bwa-meth (a common methylation aware, reference-based read aligner)
followed by MethylDackel for methylation extraction. This combination was chosen for
its high mapping efficiency, greatest mean depth of coverage per CpG, and computa-
tional speed (for a comparison of alignment and methylation calling pipelines, see the
supplementary results, as well as Additional file 1: Figure S2 and Additional file 1: Fig-
ure S3). Each epigenomic assay had a distinct profile of mapping outcomes (Fig. 1a).
MethylSeq had the highest primary mapping rate and lowest secondary/unmapped rate.
While EMSeq (Lab 1) and SPLAT had comparable primary mapping rates to Methyl-
Seq, SPLAT had the highest fraction of unmapped reads. TrueMethyl had the highest
rate of multi-mapped reads, while TruSeq returned the highest rate of PCR duplicate
reads.

As a measure of protocol efficiency, we estimated the total cytosine conversion in
CpG contexts and found that each whole methylome approach converted 45-65% of
CpGs. As an estimate of conversion efficiency, we also characterized methylation in
CHG and CHH contexts and found methylation rates for all libraries to be close to the
expected 0% range (nearing 100% conversion efficiency), except for TruSeq which
neared 2% in CHG contexts and 1% in CHH contexts, and MethylSeq which
approached 0.75% in CHH contexts (Additional file 1: Figure S1).

Each assay had a specific, tight profile of insert size distributions (Fig. 1b). There was
a strong relationship within each assay between the estimated insert size and the per-
centage of total bases that were trimmed prior to alignment (this included trimming
adapter content, low-quality bases, and dovetailing bases between mates of a pair of
reads). Libraries with insert sizes below 275 bp had anywhere from 5 to 25% of total
bases trimmed, while EMSeq libraries with > 275 bp insert sizes needed very few bases
trimmed other than adapter content (Fig. 1c). This was due to the 150 x 150 chemistry
used for sequencing, and the threshold for fragment size may be lower with shorter
read sequencing.

Imbalanced base trimming and unequal distribution of reads per replicate (see above)
resulted in divergent genome coverage per assay (Fig. 1d). Generally, a minimum of
20x coverage is considered sufficiently deep to characterize a genomic region, and
EMSeq and MethylSeq had the highest percentage of the genome covered at 20x. This
was followed by SPLAT, the oxidative and bisulite replicates of TrueMethyl, and lastly
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(See figure on previous page.)

Fig. 1 Sequencing and alignment metrics of whole methylome libraries, including all replicates across all
cell lines. EM = EMSeq; MS = MethylSeq; SP=SPLAT; TS = TruSeq; TM = TrueMethyl. a Distribution of
reference-based read alignment outcomes, including primary mapped reads (both mates mapped in
correct orientation within a certain distance), multi-mapped reads (read pairs containing secondary or
supplementary alignments), reads marked as PCR or optical duplicates, and unmapped reads. Ambiguous
and duplicate reads can be a subset of properly aligned reads. b Median insert size distributions derived
from distance between aligned paired end reads. ¢ Percentage of bases trimmed per replicate, either due
to low base quality, adapter content, or dovetailing reads. d Cumulative genomic coverage plot, averaged
across cell line per assay. Coverage is cut off at 200 in this plot, but extends beyond for all assays. Dotted
line indicates 20x mean coverage. e Nucleotide bias plot showing the log2 enrichment of covered versus
expected mono- and di-nucleotides. f The relationship between the number of read pairs sequenced per
assay and the mean depth of coverage per CpG dinucleotide, showing sequencing depth required to
achieve a certain level of coverage. 20x CpG coverage is shown as the dotted line. g Same as f, but plotted
using total bases sequenced, to include Oxford Nanopore sequencing, which produces variable

read lengths

the TruSeq libraries, which had the lowest percentage of the genome covered at lower
depths, but a long tail of high-coverage sites. TruSeq libraries also showed a high de-
gree of dinucleotide bias favoring GC-rich regions compared to other libraries (Fig. 1e),
owing to the GC-biased random hexamer ligation step in its library preparation, as well
as exposing samples to sodium bisulfite prior to DNA shearing.

Reads from whole methylome libraries were passed through an alignment and methylation
calling pipeline (see above). Reads were filtered from the methylation calling process if they
did not map to the reference genome, if they were marked as a non-primary alignment (sec-
ondary/supplementary/duplicate reads), or if they were assigned a mapping quality score
below MQ10. The fractions of reads that were filtered along the alignment pipeline (Add-
itional file 1: Figure S4) were highly assay-specific. At the end of this process, EMSeq libraries
retained the highest percentage of reads for methylation calling (maximum 86%), followed by
SPLAT (83%), MethylSeq (81%), TrueMethyl (80%), and finally TruSeq (77%). EMSeq also
showed laboratory specificity, with lower rates of usable bases in libraries prepared using
shorter fragment sizes (mean of 86% in Lab 1 versus 73% in Lab 2) (see “Methods”). We ob-
served no notable differences in read filtration rates between TrueMethyl libraries treated with
potassium perruthenate (KRuO4) oxidation and those only exposed to sodium bisulfite. The
average percentage of usable bases is summarized per assay for HG002 in Table 2, and more
detailed statistics for all cell lines are shown in Additional file 2: Supplementary Table 2.

We next calculated for each library type the relationship between raw total number of
read pairs sequenced versus the mean depth of coverage achieved per CpG (Fig. 1f). We
found that the rates were highly assay-specific, as seen above. Overall, in order to achieve a
target mean depth of 20x per CpG, EMSeq required the fewest reads (275-300 M read
pairs), followed by MethylSeq (366 M) and SPLAT (369 M), then TruSeq (461 M), and then
TrueMethyl (692 M), as noted in Table 2. In order to compare short-read data to long read
data of variable length from Oxford Nanopore, we calculated the same relationship using
total bases sequenced (Fig. 1g). We found that nanopore sequencing covered CpGs and
called methylation at a similar rate per nucleotide, comparable to short-read libraries.

CpG coverage and downsampling
We next analyzed the distribution of CpG coverage across the genome per assay. In
order to control for the effect of uneven sequencing depth, we first downsampled the
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Table 2 Summary statistics of mapping and library efficiency per WGBS protocol. Percent CpG
capture calculated with call sets normalized to 20x coverage. The total genome-wide CpGs under
consideration were those that could be mapped to uniquely, excluding any CpGs that fall within
unresolvable regions

EMSeq EMSeq Methyl ki L
Lab1 Lab2 Seq SPCAT Mot WMo TruSeq

Insert Size (bp) 299 327 250 221 224 207 215
Mapping Rate (%) 97 93 98 97 85 86 95
Duplicate Rate (%) 9 25 12 8 20 20 21
Dinucleotide Bias

Pl 3 1 4 10 4 4 27
Useable Bases (%) 90 77 74 81 70 67 60

Reads to reach 20x

275 303 366 369 446 496 692

CpG coverage (M)

e T 13,13 13,13 27,17 17,22 20,15 1513 10,15
il S S S
% Genome-wide 94 92 91 89 91 90 74

CpGs > 10x cov

methylation call sets for every replicate to a given mean coverage value. Downsampling
can be done by either filtering the number of reads in an alignment (BAM files), or by
randomly removing a fraction of observed cytosines and observed thymines per CpG
within methylation call sets (bedGraph files). Because downsampling at the alignment
level can be slow and demanding in terms of disk space and compute time, we set out
to evaluate if the signal from downsampling cytosines within bedGraph files recapitu-
lated downsampling aligned reads within BAM files. The two approaches yielded simi-
lar results in number of CpG sites detected, distribution of read counts, and
methylation calls. bedGraph downsampling had the added benefit that the targeted
average CpG coverage was more accurately estimated than when downsampling BAMs
(Additional file 1: Figure S5).

We proceeded with methylation call sets that were normalized to a mean of 20x
coverage per site. Unless otherwise noted, these call sets comprised merged replicates
per library type, and merged calls on positive and negative strands (i.e., reporting
methylation at the dinucleotide level rather than individual cytosines), and in the case
of TrueMethyl libraries, merging the bisulfite-only (BS) and bisulfite-plus-oxidation
(OX) replicates. The mean coverage per library shifted as expected, indicating the suc-
cess of the down sampling approach (Additional file 1: Figure S6a, showing HG003 rep-
licates to demonstrate). Notably, the methylation percentage distribution also shifted,
with the bimodal peaks at 0% and 100% becoming more pronounced, and putatively
hemimethylated regions dropping out as a function of fewer observations per site
resulting in lowered sensitivity (Additional file 1: Figure S6b). We observed that down-
sampling below 20x exaggerated this effect. Downsampling also produced an assay-
specific pattern of site dropout (Additional file 1: Figure S7). Although the overwhelm-
ing number of sites are covered by all assays, we observed the highest CpG dropout in
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TruSeq, followed by SPLAT, then MethylSeq, then TrueMethyl, then EMSeq, both
when accounting for any coverage at all (> 1x) or coverage of > 50% of the overall
mean value.

Even after normalizing for mean CpG coverage, we observed a range of assay-specific
empirical cumulative distributions (Fig. 2a). In particular, TruSeq produced left and
right tails of very low and very high coverage. This had an effect on reproducibility be-
tween replicates of the same assay (Fig. 2b), where, compared to an expected distribu-
tion of cross-replicate concordance, TruSeq showed the highest variation, followed by
TrueMethyl, while SPLAT, MethylSeq, and EMSeq were more reproducible than ex-
pected. Intra-assay coverage reproducibility was relatively consistent above 20x cover-
age (r > 0.98 for all assays), but became less consistent below 10x (r < 0.95 for all
assays). We therefore recommend 20x as a minimum CpG dinucleotide coverage value
(Additional file 1: Figure S9).

We restricted further analyses to Chromosome 1, which represents a significant portion
of the genome (10%), contains most difficult regions (such as tandem duplications and
satellites), and is computationally much more tractable than a genome-wide analysis.
When aligning CpGs covered in the 20x downsampled libraries, we found that the major-
ity of CpGs (> 90%) were covered by all assays, with some assay-specific dropout (Fig. 2c).
Nanopore sequencing was able to cover the highest number of CpGs not covered by other
assays, and TruSeq missed the highest number of CpGs covered by other assays (Fig. 2d).
Among the regions covered uniquely by Nanopore sequencing, about 20% were relevant
for epigenetic regulation (promoter, TSS, or exonic sites), while the few CpGs uniquely
captured by other assays were intronic or intergenic (Fig. 2d). Despite the small number
of differences of CpG coverage observed between assays, the genomic annotation of sites
covered was highly consistent (Additional file 1: Figure S8).

We also examined the coverage of CpG islands, shelves, and shores (Fig. 2e). Nano-
pore returned the most even coverage across these annotations, while TruSeq showed
elevated coverage relative to its overall mean in these GC-rich regions. EMSeq, Methyl-
Seq, and SPLAT returned reduced coverage in CpG islands relative to their mean CpG
coverage. This pattern was recapitulated around transcript start sites (TSS), where Tru-
Seq was overrepresented, Nanopore and TrueMethyl stayed relatively flat, and EMSeq,
MethylSeq, and SPLAT were respectively underrepresented in TSS (Fig. 2f).

Methylation across genomic CpGs

After comparing coverage of CpGs, we examined estimates of per-site methylation
across assays. As expected, we found methylation percentages to be bimodally distrib-
uted with peaks near 0% and 100% methylation. All assays exhibited enrichment for
fully methylated regions (Fig. 3a), with the exception of Nanopore, which showed un-
derrepresentation of fully methylated regions, a current limitation of the underlying
base modification calling method (see “Methods”). For short-read approaches, we cal-
culated and corrected for methylation bias (or “mbias”), a measurement of overinflated
hypo- or hyper-methylation signal toward the 5" and 3" ends of reads. Mbias analysis
revealed assay-specific deviation at read ends (Fig. 3b). We trimmed bases uniquely for
each sample where values began to inflate as recommended by MethylDackel. Mbias
analysis also revealed overall methylation trends, with SPLAT and EMSeq tending to
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have the highest average methylation across reads, while TrueMethyl had the lowest
among short-read protocols, and TruSeq was the most variably methylated per base

across reads.
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We next assigned genomic features to each CpG and summarized methylation across
regions in a metagene plot (Fig. 3c). As expected, we found that methylation levels
dropped significantly at TSS and then rose again beyond the 5'UTR in all assays. As
detected in the global analysis, methylation captured by Nanopore was lower than by
short-read assays. Nevertheless, all assays including Nanopore showed highly similar
methylation profiles around transcript start sites (TSS) genome-wide (Fig. 3d). Correl-
ation of methylation values across genome-wide CpGs was very high (Fig. 3e). How-
ever, concordance broke down among all assays when restricting to sites with 20-80%
methylation, where correlations were as low as r = 0.42 between Nanopore and TruSeq
(Fig. 3f). Therefore, the majority of disagreement between assays fell in CpG sites that
were either hemimethylated, clonally complex, or undercovered with respect to the glo-
bal mean. Although short-read protocols had higher concordance with one another (r
> 0.93 for all pairwise short-read comparisons) than with Nanopore estimates, we
found that methylation estimation from Nanopore base modification calling was com-
parable to short-read protocols, with Pearson correlation values around r = 0.90 for all
pairwise comparisons (Fig. 3g).

Family trio differential methylation

Differential methylation was examined at the family trio level. For each methylome assay,
we used the replicate-combined methylation calls (including merging bisulfite and oxida-
tive bisulfite replicates for TrueMethyl) that were normalized to 20x mean coverage.

A total of 2,298,846 CpG sites were present on Chromosome 1 in all six assays
(EMSeq, MethylSeq, Nanopore, SPLAT, TrueMethyl, and TruSeq). Coverage levels on
HGO002 were positively correlated among EMSeq, MethylSeq, and TrueMethyl (Spear-
man’s p = 0.24). SPLAT coverage was also correlated with these three assays as well as
with TruSeq, which was only weakly correlated with any other assay. Nanopore cover-
age was uncorrelated with that of any other assay. The magnitude of pairwise coverage
correlations within each assay varied considerably, with the highest levels observed for
TruSeq (0.85 < p < 0.86), SPLAT (0.62 < p < 0.71), and MethylSeq (0.47 < p < 0.48),
and the lowest for Nanopore (0.14 < p0.22), EMSeq (0.28 < p < 0.31), and TrueMethyl
(0.32 < p < 0.34).

For each assay, differential methylation analysis was independently conducted at the
family level (Ashke nazi Trio HG002-HG004 against the Chinese Trio HG005-HG007).
This also included a restriction to sites with 5x coverage in at least two out of three
members of each family group, resulting in small data reductions for EMSeq, Methyl-
Seq, Nanopore, SPLAT, and TrueMethyl (3%, 4%, > 1%, 4%, and 3%, respectively), and
a greater loss for TruSeq (14%). Comparative analysis considered only the 1,928,536
CpG sites that met this criterion for all six assays. To assess consistency in sites identi-
fied as differentially methylated (DM) by each assay (DMA), we computed the fraction
of DMA sites that were unique to each assay (a pseudo false-positive rate) (Additional
file 2: Supplementary Table 3). We also computed the total number of DM sites com-
monly identified by four or more assays (DM4+), which totaled 1.5% of the common
sites. We then determined the percentage of DMA sites that were also DM4+ sites (a
measure of specificity), as well as the percentage of DM4+ sites that were also DMA
sites (a measure of sensitivity).
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