
Trends in Renewable Energy 
OPEN ACCESSISSN:2376-2144 

Peer-Reviewed Article   futureenergysp.com/index.php/tre 

 

 

*Corresponding author: AGLazaropoulos@gmail.com              87 

Tr Ren Energy, 2021, Vol.7, No.1, 87-113. doi: 10.17737/tre.2021.7.1.00133 
 

 
Information Technology, Artificial Intelligence and 
Machine Learning in Smart Grid – Performance 
Comparison between Topology Identification 
Methodology and Neural Network Identification 
Methodology for the Branch Number Approximation of 
Overhead Low-Voltage Broadband over Power Lines 
Network Topologies  
 

Athanasios G. Lazaropoulos
1,2,*

 

 
1:  School of Electrical and Computer Engineering / National Technical University of Athens /  

9 Iroon Polytechniou Street / Zografou, GR 15780 

2:  Department of Industrial Design and Production Engineering / School of Engineering / University of 

West Attica / 250 Thivon & P. Ralli / Athens, GR 12244 

 

Received September 16, 2021; Accepted October 7, 2021; Published October 13, 2021 

 
 
Broadband over Power Lines (BPL) networks that are deployed across 
the smart grid can benefit from the usage of machine learning, as 
smarter grid diagnostics are collected and analyzed. In this paper, the 
neural network identification methodology of Overhead Low-Voltage (OV 
LV) BPL networks that aims at identifying the number of branches for a 
given OV LV BPL topology channel attenuation behavior is proposed, 
which is simply denoted as NNIM-BNI. In order to identify the branch 
number of an OV LV BPL topology through its channel attenuation 
behavior, NNIM-BNI exploits the Deterministic Hybrid Model (DHM), 
which has been extensively tested in OV LV BPL networks for their 
channel attenuation determination, and the OV LV BPL topology 
database of Topology Identification Methodology (TIM). The results of 
NNIM-BNI towards the branch number identification of OV LV BPL 
topologies are compared against the ones of a newly proposed TIM-
based methodology, denoted as TIM-BNI. 
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1. Introduction 
 

The evolution of the today’s traditional power grid hastens the coexistence of this 

grid with an intelligent IP-based communications network enhanced with a plethora of 

broadband applications, which is widely referred to as the smart grid [1-5].  

Broadband over Power Lines (BPL) technology lies among the available communications 

alternatives that may support the required information flow of smart grid.  

The two strongest points of BPL networks compared to the other communications 
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solutions, such as Radio Frequency (RF) mesh, modified Long Term Evolution (LTE), 

Code Division Multiple Access (CDMA) at sub GHz bands, dedicated fiber along 

transmission / distribution lines and 5G communications, are: (i) their easiness to support 

a communications channel upon the already installed wired power grid infrastructure, and 

(ii) their interoperability with the aforementioned communications solutions by 

exploiting the BPL wireline / wireless interfaces [6-10]. 

 Since BPL networks are deployed upon the wired power grid infrastructure that is 

not a transmission medium designed for communications signals, BPL signals are 

subjected to various inherent deficiencies, such as high and frequency-selective channel 

attenuation and noise [11-19]. As the modeling of signal transmission and propagation 

across BPL channels is concerned, a variety of BPL channel models has been proposed in 

the literature. BPL channels may follow either a deterministic approach or a statistical 

approach or a bottom-up approach or a top-down approach or appropriate syntheses of 

the aforementioned approaches [5], [11-14], [20-36]. Among the available state-of-art 

BPL channel models of the literature, the deterministic hybrid model (DHM) has 

extensively been employed to describe the channel behavior of various multiconductor 

transmission line (MTL) configurations in transmission and distribution BPL network 

topologies and is also adopted in this paper [11-14], [20], [23], [25, 26], [30].  

The outputs of DHM, such as channel attenuation and capacity, are crucial broadband 

performance metrics of the BPL topologies that further act as the big data feed for the 

supported broadband applications of smart grid, like Fault and Instability Identification 

Methodology (FIIM) [3], [37], Main Line Fault Localization Methodology (MLFLM) 

[4], Topology Identification Methodology (TIM) [3], [38], etc. As TIM is applied in this 

paper, TIM is considered to be among the most useful piecewise monotonic data 

approximation (PMA) broadband applications and approximates the exact topological 

characteristics (i.e., number of branches, length of branches, length of main lines and 

branch terminations) of an examined BPL topology by exploiting channel attenuation 

measurements of the examined BPL topology and TIM BPL topology database.  

In fact, the OV LV BPL topology database of TIM that is used in this paper assigns 

topological characteristics to respective channel attenuation measurements for a myriad 

of OV LV BPL topologies. Although there is the great number of OV LV BPL topologies 

in the TIM OV LV BPL topology database, a TIM-based methodology is proposed here, 

which exploits channel attenuation measurements and is denoted as TIM-BNI. The 

purpose is to approximate the number of branches when the OV LV BPL topology with 

known channel attenuation measurements is not among the OV LV BPL topologies of the 

TIM OV LV BPL topology database. 

 As already been mentioned, the leading philosophy behind the BPL channel 

characterization literature concentrates on following either a deterministic approach or  

a statistical approach or a bottom-up approach or a top-down approach or appropriate 

syntheses of the aforementioned approaches, but artificial intelligence (AI) and  

machine learning (ML) aspire to derive the input-output relations of the BPL channels by 

learning and capturing information from big data such as those stored in TIM OV LV 

BPL topology database [39-41]. Among the available AI and ML schemes,  

neural networks are chosen in this paper due to: (i) their popularity in the 

communications research field; (ii) their ease of implementation in various architectures; 

and (iii) their ability to be trained through the backpropagation learning process [42, 43]. 

By exploiting the available big data of the TIM OV LV BPL topology database and the 

backpropagation learning process, neural networks are going to be deployed in order to 
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discover BPL system properties and provide crucial broadband performance metrics for 

the BPL topologies in the future by deriving relations and revealing hidden states among 

the BPL system phenomena [40], [44]. Hence, the portfolio of the available supported 

BPL broadband applications of smart grid is enriched in this paper with the proposed 

neural network identification methodology for the branch number identification (NNIM-

BNI); more specifically, NNIM-BNI of OV LV BPL topologies aims at approximating 

the number of branches for a given OV LV BPL topology channel attenuation behavior 

when NNIM-BNI ignores the topological characteristics of  

the examined OV LV BPL topology. Similarly to the TIM-BNI, NNIM-BNI is going to 

approximate the number of branches when the OV LV BPL topology, whose channel 

attenuation measurements are considered, is not among the OV LV BPL topologies of the 

TIM OV LV BPL topology database. The approximation performances of the two 

proposed branch number identification methodologies of this paper, i.e., TIM-BNI and 

NNIM-BNI, are going to be assessed and compared for indicative OV LV BPL 

topologies that lie outside the TIM OV LV BPL topology database when different 

operation settings are examined.  

The rest of this paper is organized as follows: Section 2 briefly presents  

the OV LV MTL configurations and the indicative OV LV BPL topologies that are going 

to be used during the benchmark process of this paper. Also, this Section summarizes the 

basics of DHM and TIM. Section 3 initially describes TIM-BNI as well as the 

corresponding performance metrics for its evaluation. Then, a brief description of neural 

networks is given, while NNIM-BNI with its corresponding performance metrics is also 

demonstrated. Section 4 presents the performance metrics results for TIM-BNI and 

NNIM-BNI for the indicative OV LV BPL topologies when different operation settings 

are assumed. Section 5 concludes this paper. 

 

 

2. OV LV MTL Configurations, Indicative OV LV BPL Topologies, DHM and 
TIM and TIM-BNI 
  

 In this Section, the basics concerning the propagation and transmission of  

BPL signals across the OV LV power grid are first given. More specifically, OV LV 

MTL configurations and the indicative OV LV BPL topologies, which are going to be 

used for the assessment of TIM-BNI and NNIM-BNI, are presented. Then, the channel 

model of DHM is briefly analyzed by focusing on its main output of the channel 

attenuation of OV LV BPL topologies, which is of interest in this paper. Since the 

topological characteristics and the channel attenuation of OV LV BPL topologies are 

well defined, TIM and TIM OV LV BPL topology database are demonstrated. 

 

2.1 OV LV MTL Configurations and Indicative OV LV BPL Topologies 
 In accordance with [45], the typical OV LV MTL configuration that is examined 

in this paper is illustrated in Fig. 1(a). The examined OV LV MTL configuration consists 

of four parallel non-insulated conductors (i.e., 𝑛OVLV = 4), which are spaced each other 

by a vertical distance ΔOVLV. The upper conductor is the neutral conductor with a radius 

of rOVLV,n, while the lower three conductors are the three LV phases, each with a radius of 

rOVLV,p. The lowest phase conductor is hung at the height hOVLV above the ground, which 

is considered to be the reference conductor of the OV LV MTL configuration.  
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Fig. 1.  (a) OV LV MTL configuration [20], [45]. Typical OV LV BPL topology with N branches [36]. 

 

 

The exact dimensions, the material of the conductors, the structure of the conductors and 

the properties of the imperfect lossy ground are reported in [11], [20], [23], [45-47], 

while their impact on the BPL signal propagation has been analyzed in [48-50]. 

 To further study the BPL signal transmission across the OV LV BPL network, 

each network may be divided into cascaded OV LV BPL topologies bounded by the 

transmitting and receiving ends, while a generic OV LV BPL topology is illustrated in 

Fig. 1(b). Across the BPL signal transmission path, N branches with their respective 

terminations, which are assumed to be open-circuit terminations in this paper, may be 

encountered. The arbitrary k, k=1,…,N branch has length equal to Lbk and is located at 

distance ∑ 𝐿𝑖
𝑘
𝑖=1  from the transmitting end. The typical length ∑ 𝐿𝑖

𝑁+1
𝑖=1  of 1000 m is 

assumed between the transmitting and receiving ends. 

 In accordance with the literature [9], [20], five indicative OV LV BPL topologies  

(i.e., LOS, rural, suburban, urban A and urban B) are usually used, so that a general study 

of all OV LV BPL topology classes may be fulfilled. In Table 1, these five indicative  

OV LV BPL topologies are reported in terms of their topological characteristics and their 

branch number that is a parameter of interest in this paper. More specifically,  

the four indicative OV LV BPL topologies shown in green background color in Table 1 

(i.e., urban case A, suburban case, rural case and LOS case) are going to be further 

adopted, so that the approximation performances of the two proposed branch number 

identification methodologies of this paper, say, NNIM-BNI and TIM-BNI  
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Table 1 

Indicative OV LV BPL Topologies 

OV LV BPL Topology 

Name 

 

Branch 

Number 

(N) 

Length of Main Lines Length of Branches 

Urban case A 

(Typical urban case) 

3 L1=500m, L2=200m, 

L3=100m, L4=200m 

Lb1=8m, Lb2=13m, Lb3=10m 

Urban case B 

(Aggravated urban case) 

5 L1=200m, L2=50m, 

L3=100m, L4=200m, 

L5=300m, L6=150m 

Lb1=12m, Lb2=5m, Lb3=28m, 

Lb4=41m, Lb5=17m 

Suburban case  

 

2 L1=500m, L2=400m, 

L3=100m   

Lb1=50m, Lb2=10m 

Rural case  

 

1 L1=600m, L2=400m Lb1=300m 

Line-of-Sight (LOS) case  

 

0 L1=1000m - 

 

 

may be assessed. Note that: (i) the urban case A, suburban case and rural case will be 

excluded from the TIM OV LV BPL topology database, so that NNIM-BNI and TIM-

BNI blindly approximate their branch numbers; (ii) The LOS case is included in the TIM 

OV LV BPL topology database, because it is unique. Note that there can be no blind 

approximation by NNIM-BNI and TIM-BNI in the LOS case and for that reason is 

examined for verification issues; and (iii) The urban case B of 5 branches has been 

excluded for a further examination due to the high delay that imposes to the TIM OV LV 

BPL topology database preparation. 

 

2.2 DHM and TIM 
 DHM can be considered to be a synthetic BPL channel model where a fine 

module concatenation of a bottom-up, a top-down, a coupling scheme and other 

performance metric computation modules occurs [9], [11-14], [20], [45].  

By the interconnection of the first two DHM modules (i.e., the bottom-up and  

the top-down module), the propagation and transmission problem of the BPL signal 

across an OV LV BPL topology for a given OV LV MTL configuration is well defined, 

thus permitting the computation of the line channel transfer function matrix 𝐇OVLV{∙}, 

since more than 2 conductors are encountered in the OV LV MTL configuration of 

interest. Actually, the 𝑛OVLV × 𝑛OVLV  line channel transfer function matrix 𝐇OVLV{∙} that 

relates line quantities with modal ones is given by 

𝐇OVLV{∙} = 𝐓V
OVLV ∙ 𝐇OVLV,m{∙} ∙ (𝐓𝑉

OVLV)
−1

                       (1) 

where 𝐇OVLV,m{∙}  is the 𝑛OVLV × 𝑛OVLV  modal channel transfer function matrix  that 

mainly depends on the examined OV LV MTL configuration and OV LV BPL topology, 

and 𝐓V
OVLV  is a 𝑛OVLV × 𝑛OVLV  transformation matrix that depends on the physical 

properties of the MTLs and the geometry of the OV LV MTL configuration. Since modal 

channel transfer function and transformation matrices are frequency dependent, this 

implies that the line channel transfer function is also a frequency dependent parameter. 

On the basis of the first two DHM modules, the third DHM module arranges the way that 

the BPL signals are injected into and extracted from the TLs of the MTL configurations; 

say, the third DHM module mathematically describes the different coupling schemes of 

the BPL signal injection / extraction [51, 52]. With reference to eq. (1), the coupling 
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scheme channel transfer function, which is the mathematical expression of the 

interconnections of the first three DHM modules relating output BPL signals and input 

ones is given by 

𝐻OVLV,𝐶{∙} = [𝐂out]OVLV,𝐶 ∙ 𝐇OVLV{∙} ∙ [𝐂in]OVLV,𝐶                (2) 

for given coupling scheme where  C  denotes the applied coupling scheme, 𝐂in is the input 

coupling 𝑛OVLV × 1 column vector dealing with the BPL signal injection process and 𝐂out is 

the ouput coupling 1 × 𝑛OVLV line vector dealing with the BPL signal extraction process. 

More details concerning the available coupling schemes and the respective involved 

conductors of the examined OV LV MTL configuration are detailed in [51, 52].  

Οther DHM performance metric computation modules are outside the scope of this paper 

and are not further analyzed here. It is evident from eq. (2) that the coupling scheme 

channel transfer function is a frequency dependent parameter and depends on the 

topological characteristics of the examined OV LV BPL topology. Thus, for given OV 

LV MTL configuration and coupling scheme, their corresponding coupling scheme 

channel transfer functions can be computed by DHM by only adjusting the topological 

characteristics of OV LV BPL topologies.  

 The aforementioned collection of topological characteristics and corresponding 

coupling scheme channel transfer functions for a variety of OV LV BPL topologies may 

act as the big data feed of the supported smart grid broadband applications, such as TIM 

of this paper [3], [38]. In accordance with [3], TIM can identify an OV LV BPL topology 

with respect to its topological characteristics (i.e., number of branches, length of 

branches, length of main distribution lines and branch terminations) when its 

corresponding coupling scheme transfer function behavior is known. In fact, by 

appropriately storing and retrieving the previous collection of OV LV BPL topologies  

to / from the TIM OV LV BPL topology database, TIM can identify an OV LV BPL 

topology even if significant measurement differences may occur by appropriately 

exploiting piecewise monotonic data approximations [53, 54]. As the TIM OV LV BPL 

topology database is concerned in this paper, no measurement differences are assumed. 

Depending on the examined scenario of accuracy degree, corresponding TIM OV LV 

BPL topology database specifications can be assumed for the database preparation; say, 

the maximum number of branches Nmax, the length spacing Ls for both branch distance 

and branch length, and the maximum branch length Lb,max for the OV LV BPL topologies 

that are going to be stored in the database. Finally, for each OV LV BPL topology of the 

TIM OV LV BPL topology database, the following data are maintained for the further 

analysis of this paper: (i) its ID number p in the TIM OV LV BPL topology database 

when P is the number of all OV LV BPL topologies in the TIM OV LV BPL topology 

database; (ii) the actual number of branches N; and (iii) the coupling scheme channel 

transfer function values with respect to the frequency. 

 

 

3. TIM-BNI and NNIM-BNI 
 

 In this Section, the proposal of TIM-BNI and NNIM-BNI is theoretically detailed. 

Suitable performance metrics, which allow the approximation assessment of the branch 

numbers of the indicative OV LV BPL topologies in each methodology, are reported. 

Note that prior to the presentation of NNIM-BNI, an introduction of neural networks in 

OV LV BPL networks is also given. 
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3.1 TIM-BNI 
 With reference to Sec. 2.2, the TIM OV LV BPL topology database may consist 

of a plethora of OV LV BPL topologies whose number depends on the required accuracy 

degree or, in other words, the TIM OV LV BPL topology database specifications applied 

(i.e., the maximum number of branches Nmax, the length spacing Ls for both branch 

distance and branch length and the maximum branch length Lb,max, operation frequency 

range, etc). Since indicative OV LV BPL topologies of Table 1 are not included in the 

TIM OV LV BPL topology database by definition except LOS case, TIM-BNI is going to 

approximate the branch number of the examined indicative OV LV BPL topology by 

comparing its coupling scheme channel transfer function values with respect to the 

frequency, which are known for the branch number identification problem of this paper, 

against the respective ones of all the OV LV BPL topologies of the TIM OV LV BPL 

topology database. To identify the OV LV BPL topologies of the TIM OV LV BPL 

topology database that better approximate the channel attenuation behavior of the 

examined indicative OV LV BPL topology, the performance metric of  

the root-mean-square deviation (RMSD) of the amplitude of coupling scheme channel 

transfer functions in dB is first going to be computed as follows: 

𝑅𝑀𝑆𝐷TIM−BNI,𝑝 = √
∑ (|𝐻TIM,𝑝

OVLV,C(𝑓𝑞)|
dB

−|𝐻indicative
OVLV,C (𝑓𝑞)|

dB
)

2
𝑄
𝑞=1

𝑄
                                       (3) 

where  

𝑓
𝑞

= 3MHz + (𝑞 − 1) ∙ 𝑓
𝑠
, 𝑞 = 1, … , 𝑄                                           (4) 

is the flat-fading subchannel start frequency, 𝑓𝑠 is the flat-fading subchannel frequency 

spacing, 𝑄 is the number of subchannels in the examined frequency range, 𝐻indicative
OVLV,C (𝑓

𝑞
) is 

the coupling scheme channel transfer function of the indicative OV LV BPL topology at 

frequency 𝑓
𝑞
 and 𝐻TIM,𝑝

OVLV,C (𝑓
𝑞
) is the coupling scheme channel transfer function of the p-th 

OV LV BPL topology of the TIM OV LV BPL topology database at frequency 𝑓
𝑞
.  

The average value of the branch numbers of the R OV LV BPL topologies of the TIM 

OV LV BPL topology database that present the R lowest RMSDs among the P computed 

ones defines the TIM-BNI approximation of the branch number of the examined 

indicative OV LV BPL topology 𝑁TIM−BNI. It is evident that the TIM-BNI performance 

towards the branch number identification of OV LV BPL topologies, that is numerically 

assessed in Section 4, is affected by the required accuracy degree of the TIM OV LV 

BPL topology database and the number R of the lowest RMSDs that are taken into 

account during the approximation. 

 

3.2 Neural Networks and NNIM-BNI 
 As an application tool of the ML philosophy, neural networks can acquire 

knowledge and unveil hidden system properties or patterns from the simple output 

observations during the system operation. Neural networks have already been adopted in 

[55] for the channel attenuation determination of BPL networks. As already been 

mentioned, a main advantage of the neural networks is their ease of implementations in 

parallel on concurrent architectures [40], while neural networks become more accurate 

during their approximations as the backpropagation learning process exists [42, 43], [56].  

In Fig. 2, the structure of the fully connected neural network with HL hidden 

layers of neurons that is adopted by NNIM-BNI in this paper is shown. More specifically, 
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this neural network receives as input the 𝑄 × 1 column vector Δ𝐇TIM,𝑝,ℎ𝑙=0
OVLV,C {∙} that is given 

by  

Δ𝐇TIM,𝑝,ℎ𝑙=0
OVLV,C {∙} = [|𝐻TIM,𝑝

OVLV,C(𝑓1)|
dB

− |𝐻LOS
OVLV,C(𝑓1)|

dB
 ⋯ |𝐻TIM,𝑝

OVLV,C(𝑓𝑞)|
dB

− |𝐻LOS
OVLV,C(𝑓𝑞)|

dB
 ⋯ |𝐻TIM,𝑝

OVLV,C(𝑓𝑄)|
dB

− |𝐻LOS
OVLV,C(𝑓𝑄)|

dB
 ]T       (5) 

Note that the column vector Δ𝐇TIM,𝑝,ℎ𝑙=0
OVLV,C {∙} concerns the arbitrary p-th OV LV BPL 

topology of the TIM OV LV BPL topology database at frequencies 𝑓
𝑞

, 𝑞 = 1, … , 𝑄 .  

In eq. (5), |𝐻LOS
OVLV,C{∙}|

dB
 is the amplitude of the coupling scheme channel transfer 

functions of the LOS case of Table 1 in dB and [·]T denotes the transpose of the matrix. 

After the input layer, the hidden layers occur. For the arbitrary hl hidden layer, its output 

𝑄 × 1 column vector Δ𝐇TIM,𝑝,ℎ𝑙
OVLV,C {∙} is given by 

Δ𝐇TIM,𝑝,ℎ𝑙
OVLV,C {∙} = 𝜎(𝐖𝒉𝒍 ∙ Δ𝐇TIM,𝑝,ℎ𝑙−1

OVLV,C {∙} + 𝐛𝒉𝒍)       (6) 

where 𝜎(∙) is the activation function, 𝐖𝒉𝒍 is the the 𝑄 × 𝑄 array of weights of the hl hidden 

layer and 𝐛𝒉𝒍 is the the 𝑄 × 𝑄 array of biases of the hl hidden layer. The output of the fully 

connected neural network that coincides with the output of the HL hidden layer is the 

NNIM-BNI approximation of the branch number of the examined indicative OV LV BPL 

topology 𝑁NNIM−BNI.  

Actually, NNIM-BNI exploits the MATLAB neural network training program of 

[43], [57] that is based on the architecture of the fully connected neural network 

demonstrated in Fig. 2. In accordance with [43], [57], NNIM-BNI is going to train neural 

networks of variable numbers of hidden layers by using the input and output data 

contained in the TIM OV LV BPL topology database with respect to eqs. (5) and (6). In 

accordance with [43], [57], NNIM-BNI is going to randomly split the supplied data of the 

OV LV BPL topologies of the TIM OV LV BPL topology database into three phase, i.e., 

training, validation and testing. According to [43], [57], the Levenberg-Marquardt 

algorithm is adopted during the training phase of NNIM-BNI, while the performance 

metric of RMSD of the amplitude of the differences of coupling scheme channel transfer 

functions in dB as described in eq. (5) is computed for the OV LV BPL topologies of the 

TIM OV LV BPL topology database during the testing phase. In general terms,  

the parameters of the neural networks with smaller RMSDs per hidden layer are those 

that are selected for the testing where the four indicative OV LV BPL topologies of  

Table 1 are concerned. Hence, apart from the RMSD of the OV LV BPL topologies of  

the TIM OV LV BPL topology database selected for the testing phase, the MATLAB 

neural network training program of [43], [57] can also compute RMSD of the indicative 

OV LV BPL topologies for different numbers of the hidden layers.  

Therefore, NNIM-BNI gives the NNIM-BNI approximation value of the branch numbers 

𝑁NNIM−BNI   of the examined indicative OV LV BPL topologies as well as their 

approximation RMSDs for the aforementioned topologies per hidden layer as output. It is 

evident that the NNIM-BNI performance towards the branch number identification of OV 

LV BPL topologies, which is also numerically assessed in Section 4 in comparison with 

the TIM-BNI performance, is affected by the required accuracy degree of the TIM OV 

LV BPL topology database and the participation percentage of the three phases (i.e., 

training, validation and testing) during the operation of its MATLAB neural network 

training program. 
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Fig. 2.  Architecture of the fully connected neural network with HL hidden layers. 
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4. Numerical Results and Discussion 
 

 In this Section, numerical results concerning the performance of TIM-BNI and 

NNIM-BNI are presented as well as their comparison. On the basis of  

the default operation settings of the base scenario given in Sec.4.1, the performance 

metric of RMSD is applied in order to assess TIM-BNI and NNIM-BNI approximations. 

In Sec. 4.2, the impact of higher detail (e.g., wider operation frequency range) during the 

preparation of the OV LV BPL topologies of the TIM OV LV BPL topology database is 

assessed when TIM-BNI and NNIM-BNI are applied. Also, the issue of the 

representativeness of the TIM OV LV BPL topology database is addressed. In Sec. 4.3, 

the role of the number of OV LV BPL topologies of the TIM OV LV BPL topology 

database that are considered during the computation of the average value of the branch 

numbers is investigated during the operation of TIM-BNI. In Sec. 4.4, the role of the 

participation percentages of the three phases (i.e., training, validation and testing) during 

the operation of NNIM-BNI is examined. 

 

4.1 Base Scenario and Default Operation Settings 
 As the base scenario of the cooperation of the TIM OV LV BPL topology 

database, TIM-BNI and NNIM-BNI are concerned, and the following default operation 

settings are assumed: 

 As the preparation of the TIM OV LV BPL topology database is regarded,  

the OV LV MTL configuration of Fig. 1(a) and the typical OV LV BPL topology 

with N branches of Fig. 1(b) are assumed. On the basis of the required parameters 

of the TIM OV LV BPL topology database [3], [38], during the preparation of the 

TIM OV LV BPL topology database, its OV LV BPL topologies considered 

comprises from 0 (say “LOS” case) up to 3 branches in accordance with Sec. 2.1 

and Table 1. The length spacings for branch distance and branch length are 

assumed to be equal to 100 m and 25 m, respectively, while the branch line length 

may range from 0 m to 100 m. Note that the distribution line length has already 

been assumed to be the typical one in Sec. 2.1 thus being equal to 1000 m.  

The frequency range is assumed equal to 3-30 MHz, while the flat-fading 

subchannel frequency spacing is equal to 1 MHz. For each OV LV BPL topology 

of the P ones of the TIM OV LV BPL topology database, its ID number p in the 

TIM OV LV BPL topology database, its number of branches, and the amplitude 

of its coupling scheme channel transfer function in dB with respect to the 

frequency are stored in the TIM OV LV BPL topology database.  

 As the operation of the TIM-BNI is concerned, the performance metric of RMSD 

of the amplitudes of coupling scheme channel transfer functions in dB of  

the OV LV BPL topologies of the TIM OV LV BPL topology database with 

respect to the ones of each of the indicative OV LV BPL topologies of Table 1 is 

applied as described in eq. (3). For the base scenario where default operation 

settings are assumed, the average value of the branch numbers of  

the R=5 OV LV BPL topologies of the TIM OV LV BPL topology database that 

presents the 5 lowest RMSDs among the P computed ones defines the TIM-BNI 

approximation of the branch number 𝑁TIM−BNI of each of the examined indicative 

OV LV BPL topologies of Table 1. For each of the examined indicative OV LV 

BPL topologies of Table 1, the TIM-BNI performance assessment is going to be 

fulfilled through the comparison between the TIM-BNI approximated branch 
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number value 𝑁TIM−BNI and the actual one while the performance metric of RMSD 

again assess the overall TIM-BNI approximation for the four examined indicative 

OV LV BPL topologies of Table 1. 

 As the operation of the NNIM-BNI is concerned, NNIM-BNI is based on the 

MATLAB neural network training program of [43], [57]. In accordance with [43], 

[57], the division of the available OV LV BPL topologies of the TIM OV LV 

BPL topology database is random, while the default participation percentage of 

the three phases of the MATLAB neural network training program of [43] and 

[57] (i.e., training, validation and testing) during the operation of NNIM-BNI are 

assumed to be equal to 70%, 15% and 15%, respectively. Given the amplitudes of 

coupling scheme channel transfer functions in dB for each of the four examined 

indicative OV LV BPL topologies of Table 1, NNIM-BNI gives the respective 

NNIM-BNI approximation of the branch numbers 𝑁NNIM−BNI  per hidden layer as 

output, where the maximum number of hidden layers HL is assumed to be equal 

to 5. Since the behavior and performance of the machine learning algorithms and 

the neural network approaches are referred to as stochastic,  

three executions of NNIM-BNI are going to be reported in each examined case 

given the participation percentage of the three phases. Similarly to TIM-BNI,  

for each of the examined indicative OV LV BPL topologies of Table 1,  

the TIM-BNI performance assessment is going to be fulfilled through the 

comparison between the TIM-BNI approximated branch number value 𝑁NNIM−BNI 

and the actual one while the performance metric of RMSD will again assess the 

overall NNIM-BNI approximation. 

In Table 2, the branch number approximations of TIM-BNI and NNIM-BNI are 

reported, when the aforementioned default operation settings are assumed. Apart from the 

branch number approximations, the actual branch numbers of the four examined OV LV 

BPL topologies of Table 1 are presented for comparison reasons, while the RMSDs of 

TIM-BNI and NNIM-BNI for the four examined OV LV BPL topologies are also 

computed. Note that three executions of NNIM-BNI are reported for each of the four 

examined OV LV BPL topologies. 

 From Table 2, several interesting initial remarks concerning the performance of 

TIM-BNI and NNIM-BNI can be pointed out. More specifically: 

 With reference to the performance metric of RMSD and given  

the default operation settings of the base scenario, TIM-BNI seems to better 

approximate in general the branch number of the four indicative OV LV BPL 

topologies of Table 1. Indeed, the branch number approximations of TIM-BNI are 

closer to the actual number of branches in the cases of the urban case A, rural case 

and LOS case, which are anyway highlighted in green color in Table 2,  

in comparison with the branch number approximations of NNIM-BNI.  

In contrast, NNIM-BNI only better approximates the branch number of  

the suburban case, which is again highlighted with green color in Table 2,  

when 5 hidden layers are assumed. 
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Table 2. 

Branch Number Approximations of TIM-BNI and NNIM-BNI for the Default Operation Settings  

Indicative OV LV BPL 

Topologies of Table 1 

Urban 

case A 

(Typical 

urban 

case) 

Suburban 

case 

Rural 

case 

LOS 

case 

RMSD Notes 

Actual Number of 

Branches 
N 

3 2 1 0 - - 

TIM-BNI 

(Approximated Number of 

Branches) 

𝑁TIM−BNI 

3 3 2 0.80 0.81 Default 

Operation 

Settings 

NNIM-BNI 

(Approximated 

Number of 

Branches) 

𝑁NNIM−BNI 

 

 

1
st
 

execution 

2.94 2.81 2.82 2.82 1.73 Default 

Operation 

Settings 

+ 

1 hidden 

layer 

2
nd

 

execution 

2.95 2.81 2.83 2.83 1.73 

3
nd

 

execution 

2.94 2.80 2.82 2.82 1.72 

1
st
 

execution 

8.26 1.35 2.72 2.70 3.09 Default 

Operation 

Settings 

+ 

2 hidden 

layers 

2
nd

 

execution 

5.58 2.79 2.72 2.72 2.10 

3
nd

 

execution 

5.72 2.68 2.70 2.69 2.12 

1
st
 

execution 

2.87 2.86 2.84 2.83 1.74 Default 

Operation 

Settings 

+ 

3 hidden 

layers 

2
nd

 

execution 

3 2.93 2.85 2.85 1.76 

3
nd

 

execution 

2.81 3.01 2.80 2.80 1.74 

1
st
 

execution 

3.01 -15.36 2.72 2.70 8.82 Default 

Operation 

Settings 

+ 

4 hidden 

layers 

2
nd

 

execution 

2.96 -97.39 2.29 2.17 49.71 

3
nd

 

execution 

2.90 3 2.90 2.90 1.81 

1
st
 

execution 

354.21 2.15 2.06 2.19 175.61 Default 

Operation 

Settings 

+ 

5 hidden 

layers 

2
nd

 

execution 

3.07 -159.30 2.69 2.41 80.66 

3
nd

 

execution 

3.04 -526.56 3.24 1.76 264.28 

 

 

 Since the TIM-BNI approximation of the branch number 𝑁TIM−BNI of each of the 

examined OV LV BPL topologies is equal to the average value of the branch 

numbers of the 5 OV LV BPL topologies of the TIM OV LV BPL topology 

database that present the 5 lowest RMSDs among the P computed ones,  

the TIM-BNI approximation of the branch number of the LOS case is the mean 

value of the LOS case, which is unique, and of four OV LV BPL topologies of 

one branch. 
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 By assuming up to 5 hidden layers and up to 3 executions per hidden layer,  

it is clearly shown the stochastic nature of NNIM-BNI, namely: 

o Above the third hidden layer, NNIM-BNI becomes unstable, as high or 

negative numbers of branches in OV LV BPL topologies are 

demonstrated. In fact, the differences among the NNIM-BNI branch 

number approximations of the different executions for given OV LV BPL 

topology and hidden layer are significant high, when the assumed hidden 

layers are above three. The previous observation is also verified by  

the high values of RMSD during the NNIM-BNI approximations, when 

the assumed hidden layers are above three.  

o When the hidden layers are below or equal to 3, RMSDs of NNIM-BNI 

remain low (i.e., in the majority of the cases below 2) and comparable to 

the one of TIM-BNI (i.e., 0.81). In addition, by comparing RMSD values 

of NNIM-BNI among the different executions, it is shown that these 

RMSD values remain also low and comparable among them for given 

number of hidden layers when hidden layers below or equal to 3 are 

assumed. Note that the NNIM-BNI approximations do not present 

negative or irrational high branch number values, when below or equal to 

3 hidden layers are assumed. 

 Due to the default operation settings concerning the preparation of  

the TIM OV LV BPL topology database, the number of OV LV BPL topologies 

with 3 branches is significantly higher than the number of OV LV BPL topologies 

with 2 branches that is again significantly higher than the number of OV LV BPL 

topologies with 1 branch. Note that the LOS case, which is an OV LV BPL 

topology with no branches, is unique. The aforementioned distribution has no 

impact on the performance of TIM-BNI but greatly affects the approximations 

and the performance of NNIM-BNI (e.g., the approximation values present almost 

equal values, when 1 hidden layer is assumed). Therefore, the structure of  

the TIM OV LV BPL topology database mainly affects the NNIM-BNI 

performance. 

 Apart from the structure of the TIM OV LV BPL topology database,  

the randomness during the three phases of the operation of NNIM-BNI,  

which comes from the participation percentages, justifies the stochastic nature of 

NNIM-BNI. In general, the participation percentages of the three phases of the 

operation of NNIM-BNI imply that different OV LV BPL topologies of  

the TIM OV LV BPL topology database are considered during the training of the 

neural networks that further affect the arrays of weights and biases of  

the hidden layers as denoted in eq. (6). Anyway, the NNIM-BNI approximation 

differences remain low, when hidden layers below or equal to 3 are assumed as  

it is shown among the different executions for given hidden layer number. 

 Apart from the operation settings of TIM-BNI and NNIM-BNI, it is obvious from  

the previous observations that the accuracy detail and the structure of the TIM OV LV 

BPL topology database critically affect the performance of both methodologies.  

In the following subsection, the impact of the accuracy detail and the structure of  

the TIM OV LV BPL topology database are assessed according to the performance of 

TIM-BNI and NNIM-BNI. 
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4.2 The Impact of TIM OV LV BPL Topology Database on TIM-BNI and  
NNIM-BNI Performance 
 In this subsection, the impact of TIM OV LV BPL topology database on the 

performance of TIM-BNI and NNIM-BNI is presented. First, it is evident that a more 

detailed TIM OV LV BPL topology may have a positive effect on the RMSDs of TIM-

BNI and NNIM-BNI. Similarly to Table 2, the branch number approximations of TIM-

BNI and NNIM-BNI are reported in Table 3. When the aforementioned default operation 

settings are assumed, but the frequency span remains equal to 1 MHz, the wider 

frequency range is 3-88 MHz. Apart from the branch number approximations, the actual 

branch numbers of the four examined OV LV BPL topologies of Table 1 and the RMSDs 

of TIM-BNI and NNIM-BNI for the four examined OV LV BPL topologies are 

presented. Again as in Table 2, three executions of NNIM-BNI are reported for each of 

the four examined OV LV BPL topologies. 

 By comparing Tables 2 and 3, the following remarks can be pointed out: 

 The wider frequency range of 3-88 MHz for each of the OV LV BPL topologies 

of the TIM OV LV BPL topology database implies that 86 checks should occur 

during the operation of TIM-BNI and NNIM-BNI in Table 3 instead of the 

respective 28 checks of Table 2. Hence, a more rigorous approximation with 

higher accuracy is expected in Table 3, which is anyway reflected on the better 

RMSD values of both identification methods; say, the best RMSDs of TIM-BNI 

and NNIM-BNI are equal to 0.65 and 1.31 in Table 3 in contrast with 0.81 and 

1.72 in Table 2, respectively. TIM-BNI again better approximates the branch 

numbers of the indicative OV LV BPL topologies in Table 3. Note that the best 

branch number approximation per examined OV LV BPL topology is highlighted 

in green color in Table 3 as well the best RMSD. 

 As the branch number approximations of the four indicative OV LV BPL 

topologies are discussed, the higher accuracy of the TIM OV LV BPL topology 

database of Table 3 helps as follows: 

o NNIM-BNI accurately approximates the branch number of the urban case 

A. Now, TIM-BNI and NNIM-BNI can accurately identify the 3 branches 

of the urban case A. 

o The approximation performance of both identification methodologies 

remains almost the same, when the suburban case is examined. 

o Significant improvement of the approximation performance is achieved by 

TIM-BNI, when the rural case is investigated (i.e., from 2 to 0.80 branches 

when the actual branch number of rural case is equal to 1). Here, it should 

be noted that the result of TIM-BNI is a deterministic approximation. 

Conversely, the accuracy performance of NNIM-BNI as reported in  

Table 3 remains almost the same with the one of Table 2 in the rural case. 

o As the LOS case is examined, the approximation performance of both 

identification methodologies remains almost the same. 

 When below or equal to 3 hidden layers are examined, RMSD values of  

NNIM-BNI steadily remain low and comparable to the one of TIM-BNI. 

Anyway, for the following analysis, only one execution is going to be applied 

during the performance assessment of NNIM-BNI. 
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Table 3. 

Branch Number Approximations of TIM-BNI and NNIM-BNI for the Default Operation Settings but for 

the Frequency Range of 3-88MHz  

Indicative OV LV BPL 

Topologies of Table 1 

Urban 

case A 

(Typical 

urban 

case) 

Suburban 

case 

Rural 

case 

LOS 

case 

RMSD Notes 

Actual Number of 

Branches 
N 

3 2 1 0 - - 

TIM-BNI 

(Approximated Number of 

Branches) 

𝑁TIM−BNI 

3 3 0.80 0.80 0.65 Default 

Operation 

Settings 

(Frequency 

Range 3-

88MHz) 

NNIM-BNI 

(Approximated 

Number of 

Branches) 

𝑁NNIM−BNI 

 

 

1
st
 

execution 

3 2.46 2.46 2.46 1.45 Default 

Operation 

Settings  

(Frequency 

Range 3-

88MHz) 

+ 

1 hidden 

layer 

2
nd

 

execution 

3 2.27 2.27 2.27 1.31 

3
nd

 

execution 

2.47 2.47 2.47 2.47 1.48 

1
st
 

execution 

-1894.52 -1894.01 2.70 2.38 1341.22 Default 

Operation 

Settings 

(Frequency 

Range 3-

88MHz) 

+ 

2 hidden 

layers 

2
nd

 

execution 

-338.59 -1041.68 3.47 2.47 549.08 

3
nd

 

execution 

3.28 2.89 2.73 2.72 1.68 

1
st
 

execution 

3.35 2.72 2.70 2.69 1.64 Default 

Operation 

Settings 

(Frequency 

Range 3-

88MHz) 

+ 

3 hidden 

layers 

2
nd

 

execution 

-4.47 45.72 2.73 2.71 22.23 

3
nd

 

execution 

3.13 4.20 2.65 2.48 1.86 

1
st
 

execution 

-23.31 38.16 2.61 2.52 22.41 Default 

Operation 

Settings 

(Frequency 

Range 3-

88MHz) 

+ 

4 hidden 

layers 

2
nd

 

execution 

2.99 48.46 2.90 2.10 23.27 

3
nd

 

execution 

4.46 0.71 3.46 1.90 1.83 

1
st
 

execution 

-0.21 51.89 2.76 2.25 25.04 Default 

Operation 

Settings 2
nd

 6.44 3.47 2.59 2.52 2.39 
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execution (Frequency 

Range 3-

88MHz) 

+ 

5 hidden 

layers 

3
nd

 

execution 

2.47 25.95 2.62 2.37 12.06 

 

 

Similarly to Table 2, RMSDs of NNIM-BNI approximations remain greater than 

the RMSD of TIM-BNI regardless of the number of the hidden layers and the number of 

executions considered. In fact, the approximated numbers of branches of suburban case, 

rural case and LOS case remain almost the same during the most successful NNIM-BNI 

approximations. This is because of the preparation of TIM OV LV BPL topology 

database. Due to the operation settings of TIM OV LV BPL topology database, 0.0035%, 

0.19%, 4.75% and 95.05% of the OV LV BPL topologies of the TIM OV LV BPL 

topology database of Table 3 are OV LV BPL topologies of 0, 1, 2 and 3 branches, 

respectively. The aforementioned participation percentage of OV LV BPL topologies in 

TIM OV LV BPL topology affects the approximation performance of  

stochastic approximations of NNIM-BNI, thus explaining the almost equal approximated 

numbers of branches of the suburban case, rural case and LOS case. 

Although the performance of both identification methodologies significantly 

depends on the accuracy degree of the TIM OV LV BPL topology database as shown  

in Table 3, the RMSD values can get improved even more especially in the cases of the 

stochastic NNIM-BNI approximations, when representative sets of the TIM OV LV BPL 

topology database are applied. A good representative set should capture  

the most information from the original TIM OV LV BPL topology database [58]. 

Algorithms (such as Maximum Coverage, k-medoid clustering, etc [59, 60]) can generate 

balanced subsets that capture original information from the initial TIM OV LV BPL 

topology database. Here, three representative sets of the TIM OV LV BPL topology 

database of Table 3 are applied, where the number of OV LV BPL topologies of 1, 2 and 

3 branches remains the same in the representative sets. The selection of OV LV BPL 

topologies with 2 and 3 branches is random among the available ones from the TIM OV 

LV BPL topology database of Table 3. In Table 4, the branch number approximations of 

TIM-BNI and NNIM-BNI are reported, when the aforementioned default operation 

settings of Sec.4.1 are assumed but for three representative sets of the TIM OV LV BPL 

topology database of Table 3. Apart from the branch number approximations, the actual 

branch numbers of the four examined OV LV BPL topologies of Table 1 are again 

presented. Also, RMSDs of TIM-BNI and NNIM-BNI for the four examined OV LV 

BPL topologies are demonstrated. Note that the three representative sets consist of 

random OV LV BPL topologies of 2 and 3 branches from the initial TIM OV LV BPL 

topology database, so the different deterministic TIM-BNI and stochastic NNIM-BNI 

approximations are expected in Table 4.  
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Table 4. 

Branch Number Approximations of TIM-BNI and NNIM-BNI for the Default Operation Settings but for 

Frequency Range 3-88MHz and Three Representative Sets of OV LV BPL Topologies from the  

TIM OV LV BPL Topology Database 

Indicative OV LV BPL 

Topologies of Table 1 

Urban 

case A 

(Typical 

urban 

case) 

Suburban 

case 

Rural 

case 

LOS 

case 

RMSD Notes 

Actual Number of Branches 
N 

3 2 1 0 - - 

TIM-BNI 

(Approximated 

Number of 

Branches) 

𝑁TIM−BNI 

1
st
 

representative 

set 

2.40 2.20 0.80 0.80 0.52 Default 

Operation 

Settings  

(Frequency 

Range 3-

88MHz + 

Representative 

Sets) 

2
nd

 

representative 

set 

3 2.80 0.80 0.80 0.57 

3
nd

 

representative 

set 

2.60 2.40 0.80 0.80 0.50 

NNIM-BNI 

(Approximated 

Number of 

Branches) 

𝑁NNIM−BNI 

 

 

1
st
 

representative 

set 

2.46 1.76 1.57 1.56 0.88 Default 

Operation 

Settings  

(Frequency 

Range 3-

88MHz + 

Representative 

Sets) 

+ 

1 hidden layer 

2
nd

 

representative 

set 

3.42 2 0.99 0.94 0.52 

3
nd

 

representative 

set 

3.59 1.81 1.06 1.01 0.590 

1
st
 

representative 

set 

14.32 1.10 1.07 0.650 5.69 Default 

Operation 

Settings  

(Frequency 

Range 3-

88MHz + 

Representative 

Sets) 

+ 

2 hidden 

layers 

2
nd

 

representative 

set 

1.94 1.85 1.85 1.84 1.15 

3
nd

 

representative 

set 

3.83 2.09 0.930 0.870 0.61 

1
st
 

representative 

set 

2.92 1.95 1.03 0.980 0.490 Default 

Operation 

Settings  

(Frequency 

Range 3-

88MHz + 

Representative 

Sets) 

+ 

3 hidden 

layers 

2
nd

 

representative 

set 

2.02 2.02 2.02 2.02 1.23 

3
nd

 

representative 

set 

3.05 2.03 1.06 1.03 0.52 

1
st
 

representative 

set 

4.77 2.77 1 0.920 1.07 Default 

Operation 

Settings  

(Frequency 2
nd

 2.93 1.94 1.30 1.29 0.66 
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representative 

set 

Range 3-

88MHz + 

Representative 

Sets) 

+ 

4 hidden 

layers 

3
nd

 

representative 

set 

2.45 1.81 1.37 1.36 0.76 

1
st
 

representative 

set 

1.60 1.68 1.83 1.84 1.24 Default 

Operation 

Settings  

(Frequency 

Range 3-

88MHz + 

Representative 

Sets) 

+ 

5 hidden 

layers 

2
nd

 

representative 

set 

3.56 5.62 1 0.68 1.86 

3
nd

 

representative 

set 

5.64 2.24 1.01 0.94 1.41 

 

 

 By comparing Tables 2-4, it is clear that the approximation performances of  

TIM-BNI and NNIM-BNI have significantly been improved, while RMSDs of  

NNIM-BNI become comparable to the ones of TIM-BNI. Indeed, the best RMSDs of 

TIM-BNI and NNIM-BNI after the selection of representative sets from the TIM OV LV 

BPL topology database of Table 3 are equal to 0.50 and 0.52, respectively, which are the 

best RMSDs among the Tables 2, 3 and 4. Among the indicative OV LV BPL topologies 

of Table 1, TIM-BNI better approximates the branches of urban case A  

(i.e., the best TIM-BNI approximation is equal to 3, while the actual number of branches 

is equal to 3), whereas NNIM-NMI better approximates the branches of suburban, rural 

and LOS case A (i.e., the best NNIM-BNI approximations are equal to 2, 1 and 0.68 

when the actual numbers of branches are equal to 2, 1 and 0, respectively).  

In addition, the representative sets from the TIM OV LV BPL topology database first 

differentiate the NNIM-BNI approximations among the suburban rural and LOS cases 

and second improve the NNIM-BNI performance, when high number of hidden layers are 

applied. Note that the best branch number approximation per examined OV LV BPL 

topology is highlighted in green color in Table 4 as well the best RMSD. In general, the 

findings of this subsection highlight the problem of AI bias while the representative sets 

can define cleaner datasets from conscious or unconscious prejudices thus allowing more 

accurate approximations. 

 In this subsection, the performance improvement of TIM-BNI and NNIM-BNI 

has been highlighted when: (i) higher accuracies for the preparation of TIM OV LV BPL 

topology database, and (ii) representative sets depending on the examined indicative OV 

LV BPL topologies are applied. Apart from the impact of more sophisticated TIM OV 

LV BPL topology databases on TIM-BNI and NNIM-BNI performance,  

significant improvement can be achieved when the operation settings of TIM-BNI  

(i.e., see Sec.4.3) and NNIM-BNI (i.e., see Sec.4.4) are further explored as follows. 

 

4.3 The Impact of R on TIM-BNI Performance 

 Apart from the operation settings that affect the preparation of the TIM OV LV 

BPL topology database and, thus, the performance of TIM-BNI and NNIM-BNI,  
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the operation settings of TIM-BNI that affect its approximation performance is studied  

in this subsection. 

As already been mentioned in Sec. 3.1, the TIM-BNI branch number 

approximation 𝑁TIM−BNI  comes from the average value of the branch numbers of  

the R OV LV BPL topologies of the TIM OV LV BPL topology database, which presents 

the R lowest RMSDs among the P computed ones, while the default value of R is equal to 

5. In Table 5, the branch number approximations of TIM-BNI are reported, when  

the aforementioned default operation settings of Sec.4.1 are assumed but for six different 

values of R (i.e, 1, 2, 3, 5, 7 and 10). Apart from the branch number approximations, the 

actual branch numbers of the four examined OV LV BPL topologies of Table 1 are again 

presented. Also, RMSDs of TIM-BNI for the four examined OV LV BPL topologies and 

the six different values of R are demonstrated.  

 From Table 5, it is evident that RMSD depends on the value of R.  

As the TIM-BNI branch number approximations of urban case A, suburban case and 

rural case do not depend on the value of R, RMSD is only affected by the branch number 

approximation of LOS case. Since the LOS case is unique in the TIM OV LV BPL 

topology database, when R increases, this implies that (R-1) OV LV BPL topologies of 

the TIM OV LV BPL topology database of different number of branches but with  

the (R-1) lowest RMSDs are taken into account during the computation of the average of 

branch numbers. Therefore, as R increases, the number of approximate branches in the 

LOS case will also increase. Note that the best branch number approximation per 

examined OV LV BPL topology and the best RMSD are highlighted in green color in 

Table 5. 

 

 

4.4 The Impact of Participation Percentages on NNIM-BNI Performance 
 Until now, the operation settings that affect the preparation of the TIM OV LV 

BPL topology database and the operation of TIM-BNI have been studied.  

In this subsection, the factors that affect the approximation performance of NNIM-BNI 

are analyzed. More specifically, the main factor that affects the operation of NNIM-BNI 

is the participation percentages of the three phases, i.e., training, validation and testing. In 

Table 6, the branch number approximations of NNIM-BNI are reported, when  

the aforementioned default operation settings of Sec.4.1 are assumed  

but for seven participation percentage combinations –i.e., (10%,45%,45%), 

(30%,35%,35%), (50%,25%,25%), (70%,15%,15%), (80%,10%,10%), (80%,10%,10%), 

(90%,5%,5%) and (98%,1%,1%)–. Apart from the branch number approximations,  

the actual branch numbers of the four examined OV LV BPL topologies of Table 1 are 

again presented. Also, RMSDs of TIM-BNI for the four examined OV LV BPL 

topologies and the seven different participation percentage combinations are 

demonstrated. Note that up to 5 hidden layers and one execution per hidden layer and 

participation percentage combination are assumed in Table 6. 
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Table 5. 

Branch Number Approximations of TIM-BNI for the Default Operation Settings and Different R Values 

Indicative OV LV BPL 

Topologies of Table 1 

Urban 

case A 

(Typical 

urban 

case) 

Suburban 

case 

Rural 

case 

LOS 

case 

RMSD Notes 

Actual Number of 

Branches 
N 

3 2 1 0 - - 

TIM-BNI 

(Approximated 

Number of 

Branches) 

𝑁TIM−BNI 

R=1 3 3 2 0 0.71 Default 

Operation 

Settings  

 R=2 3 3 2 0.50 0.75 

R=3 3 3 2 0.67 0.78 

R=5 

(Default) 

3 3 2 0.80 0.81 

R=7 3 3 2 1 0.87 

R=10 3 3 2 1.30 0.96 

 

 
Table 6. 

Branch Number Approximations of NNIM-BNI for the Default Operation Settings and Different 

Participation Percentage Values of Training, Validation and Testing 

Indicative OV LV BPL Topologies 

of Table 1 

Urban case 

A (Typical 

urban case) 

Suburban 

case 

Rural 

case 

LOS 

case 

RMSD Notes 

Actual Number of Branches 
N 

3 2 1 0 - - 

 Participation 

Percentages for 

Training, 

Validation and 

Testing 

(%,%,%) 

      

NNIM-BNI 

(Approximated 

Number of 

Branches) 

𝑁NNIM−BNI 

 

 

(10%,45%,45%) 2.94 2.94 2.94 2.94 1.82 Default 

Operation 

Settings 

+ 

1 hidden layer 

(30%,35%,35%) 3.07 2.83 2.62 2.59 1.58 

(50%,25%,25%) 2.41 2.41 2.41 2.41 1.44 

(70%,15%,15%) 

Default 
2.94 2.81 2.82 2.82 1.73 

(80%,10%,10%) 3 2.49 2.49 2.49 1.47 

(90%,5%,5%) 3.06 2.86 2.77 2.76 1.70 

(98%,1%,1%) 3 3 2.55 2.55 1.58 

(10%,45%,45%) 5.03 2.82 2.58 2.52 1.85 Default 

Operation 

Settings 

+ 

2 hidden layers 

(30%,35%,35%) 4.96 3.33 2.61 2.52 1.91 

(50%,25%,25%) 5.71 3.44 2.53 2.44 2.10 

(70%,15%,15%) 

Default 
8.26 1.35 2.72 2.70 3.09 

(80%,10%,10%) 5.58 3.47 2.61 2.56 2.12 

(90%,5%,5%) -51.36 54.23 2.60 2.53 37.72 

(98%,1%,1%) 759.24 3.02 2.77 1.57 378.12 
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(10%,45%,45%) 6.15 6.14 2.56 2.40 2.97 Default 

Operation 

Settings 

+ 

3 hidden layers 

(30%,35%,35%) 2.98 3.35 2.47 2.23 1.50 

(50%,25%,25%) 3.18 2.81 2.51 2.41 1.48 

(70%,15%,15%) 

Default 
2.87 2.86 2.84 2.83 1.74 

(80%,10%,10%) 5.40 3.39 2.61 2.56 2.05 

(90%,5%,5%) -0.250 0.40 2.93 2.66 2.45 

(98%,1%,1%) 3.89 3.07 2.64 2.61 1.69 

(10%,45%,45%) 4.82 0.99 2.55 2.45 1.78 Default 

Operation 

Settings 

+ 

4 hidden layers 

(30%,35%,35%) 2.21 5.93 2.51 2.36 2.44 

(50%,25%,25%) 5.73 3.50 2.62 2.56 2.17 

(70%,15%,15%) 

Default 
3.01 -15.36 2.72 2.70 8.82 

(80%,10%,10%) 4.72 3.43 2.62 2.58 1.89 

(90%,5%,5%) 4.89 3.24 2.61 2.58 1.90 

(98%,1%,1%) 2.98 2.87 2.87 2.86 1.76 

(10%,45%,45%) 3.65 2.90 2.64 2.62 1.64 Default 

Operation 

Settings 

+ 

5 hidden layers 

(30%,35%,35%) 4.38 2.87 2.63 2.58 1.73 

(50%,25%,25%) 3.01 2.01 2.64 2.57 1.52 

(70%,15%,15%) 

Default 
354.21 2.15 2.06 2.19 175.61 

(80%,10%,10%) 2.24 1.63 2.71 2.49 1.57 

(90%,5%,5%) 3 3 3.48 2.41 1.80 

(98%,1%,1%) 5.50 3.51 2.59 2.55 2.09 

 

 

From Table 6, the significance of the validation and testing phases is outlined, 

since low RMSDs can be detected when high participation percentages of the previous 

phases (i.e., above 15%) are assumed regardless of the number of hidden layers.  

Indeed, the highest RMSDs occurring are equal to 378.1 and 175.61, when participation 

percentage of validation phase is equal to 1% and 15%, respectively.  

Note that the lowest RMSD that is equal to 1.44 occurs, when one hidden layer is applied 

and the participation percentages for training, validation and testing are equal to 50%, 

25% and 25%, respectively. Finally, 1 and 3 hidden layers offer more secure 

approximations regardless of the participation percentage combinations, since  

in all the other numbers of hidden layers, there is at least one participation percentage 

combination whose RMSD is above 5 renders inacceptable an approximation.  

Note that the best branch number approximation per examined OV LV BPL topology is 

highlighted in green color in Table 6 as well the best RMSD. 

 Concluding this Section, the approximation performance impact of a variety of 

settings that affects the preparation of the TIM OV LV BPL topology database and the 

operation of TIM-BNI and NNIM-BNI has been assessed. The factors that affect the 

preparation of the TIM OV LV BPL topology database, such as its accuracy degree and 

its representativeness, has the most significant effect on the approximation performance 

of TIM-BNI and NNIM-BNI thus rendering NNIM-BNI equivalent to TIM-BNI. On the 

basis of the factors that affect the accuracy degree of the TIM OV LV BPL topology 

database, the effect of lower values of the length spacing Ls for both branch distance and 

branch length and of higher values of the maximum branch length Lb,max during the 

preparation of the TIM OV LV BPL topology database on the approximation 

performance of NNIM-BNI is as subject of future research. 
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5. Conclusions 
 

 In this paper, the branch number approximation methods of TIM-BNI and 

NNIM-BNI have been proposed, while the factors that affect their approximation 

performance have been recognized and benchmarked. The factors that affect  

the preparation of the TIM OV LV BPL topology database, which is the big data input of 

TIM-BNI and NNIM-BNI, have a significant impact on their approximation 

performance; the accuracy degree and the representativeness of  

the TIM OV LV BPL topology database have significantly improved RMSDs of  

the branch number approximations of both TIM-BNI and NNIM-BNI.  

As the operation settings of TIM-BNI are concerned, it has been revealed that  

the least the number of OV LV BPL topologies of the TIM OV LV BPL topology 

database are taken into account during the deterministic TIM-BNI branch number 

approximation, the better the RMSDs of the TIM-BNI approximations get.  

As the operation settings of NNIM-BNI are regarded, the hidden layers and  

the participation percentages of training, validation and testing may affect the stochastic 

NNIM-BNI branch number approximations. In fact, the best approximation 

performances with reference to RMSD have been reported when below three hidden 

layers and high participation percentages of the validation and testing phases are 

assumed. In the future research steps, TIM-BNI and NNIM-BNI are going to be further 

elaborated and expanded in order to cope with the fervent issues of the operation of  

the smart grid. 
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