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Abstract

Modeling the processes underlying social network and attribute change al-

lows researchers to better identify and understand dependencies present among

actors — people, places, or things. The connections that exist among these ac-

tors change over time, depend on the presence or absence of other connections,

and depend on the characteristics of the actors present. Advanced modeling

techniques have been proposed that are designed to capture changes in struc-

ture and actor attributes.

Fit measures have been developed for actor-based models of network struc-

tural evolution (Schweinberger, 2007; Snijders, 1996). Snijders et al. (2006) ex-

tended the actor-based structural evolution model to an actor-based co-evolutionary

model that includes actor attributes. Despite recent methodological advances

in the estimation of co-evolution models, measures have neither been developed

nor evaluated to assess how the inclusion of actor attributes contributes to the

model.

Four measures are developed in this paper, including an extension of Snijders’

t-test to a Pseudo-Wald test statistic, an extension of Schweinberger’s score test

for use in a co-evolution model, an entropy-based goodness-of-fit measure, and

an R2 goodness-of-fit measure for actor-based co-evolution models.

Following the theoretical development of each measure, the behavior and

performance of each are compared in a large simulation study. Results from

this simulation show that each proposed measure displays expected behavior,

especially as the number of actors increases, and shows promise for future use

as fit measures in co-evolution models.
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List of Notation

Table 1: Notation Summary

Variable Size Definition

n number of actors
M number of observed time periods
X(tm) n× n matrix of tie variables (network matrix) at time tm

x(tm) n× n observed network at time tm

xij 1× 1 observed network tie from actor i to actor j

x(i∆j) n× n observed network where actor i changes the tie to actor j

while all other ties remain the same
h specifies a particular attribute Zh

Z∗
h n× 1 vector of constant actor attributes on attribute h

z∗
h n× 1 observed vector of constant actor attributes on attribute h

Zh(tm) n× 1 vector of changing actor attributes on attribute h at time tm

zh(tm) n× 1 observed vector of changing actor attributes on attribute h

at time tm

z(i ↕h δ) n× 1 observed vector of actor attributes when actor i’s attribute
changes by δ = 1 on attribute h, while all other attributes
levels remain the same

Y (tm) n× (n+M) [X(tm),Zh(tm)] at time tm

y(tm) n× (n+M) observed network and attributes [x(tm), zh(tm)] at time tm

s
[X]
ik P × 1 network statistic k for actor i

s
[Zh]
ik Q× 1 attribute statistic k for actor i on attribute h

β[X] P × 1 vector of network parameters

β[Zh] Q× 1 vector of attribute parameters
K P +Q length of vector with both network and attribute parameters
βk K × 1 vector of both network and attribute parameters
ρm (M − 1)× 1 vector of time dependence parameters

α
[X]
k K × 1 captures the dependence between the rate function

and actor-dependent statistics

α
[Zh]
k K × 1 captures the dependence between the rate function

and actor-dependent statistics
Continued on the following page
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Variable Size Definition
a [X]ki (Y (t)) K × 1 the vector of actor-dependent statistics
a [Zh]ki (Y (t)) K × 1 the vector of actor-dependent statistics
θ L× 1 vector of parameters, (ρ,βk)

θ1 (L−R)× 1 vector of unrestricted parameters
θ2 R× 1 vector of parameters in hypothesis H0, set equal to 0

θ0 L× 1 vector of parameters under H0, θ′
0 = [θ′

1,θ
′
2]

Σ L× L covariance matrix of θ
gn(yn,θ) L× 1 estimating function of θ
∆(θ) L× L partial derivative matrix of gn with respect to θ

Γ(θ0) R× (L−R) ∆21∆
−1
11

bn(yn, (θ1,0)) g2n(zn, (θ1,0))− Γ(θ0)g1n(zn, (θ1,0))

Σ covariance matrix of bn
λ[X](Y ,m) n× 1 network rate function
λ[Zh](Y ,m) n× 1 attribute rate function

f [X](β[X],y) n× 1 network evaluation function

f [Zh](β[Zh], y) n× 1 attribute evaluation function
d−→ converges in distribution to
zi n× 1 vector of actor levels on attribute
simz

ij the similarity between actors i and j on attribute z

where simz
ij = 1− (|zi − zj |/maxi,j |zi − zj |)

I{zi = zj} an indicator that equals 1 if actor i has the same
covariate value as actor j, equals 0 if not
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1 Introduction

Statistical models of social networks represent dependencies among actors.

Difficulties in network modeling are largely due to the amount of dependency

present in the data. Ties depend on actors present in the network and on other

existing ties. Networks depend on previous network structures. Actor attributes

affect the presence of ties and the attributes of other actors. Changes over time

in network structure and of actor attributes depend on one another. Simple

longitudinal network models quickly become complex, exponentially increasing

the difficulty of modeling these dependent structures. In these models, three

main components — network structure, attributes of actors, and attributes of

the ties among actors (dyadic covariates) —allow for the development of complex

hypotheses across different areas of interest.

Statistical social network analysis gained popularity following the research

of Holland and Leinhardt (1970, 1971, 1977). Holland and Leinhardt (1977)

developed the idea of using continuous time sociometric Markov chain models

for dynamic network models, proposing that changes from a current network

to a future network were determined by a continuous time Markov process.

Using the assumption that network dynamics can be thought of as a Markov

chain, this research allowed for a network evolution model where the probability

distribution of future states, given the present state, does not depend on past

states.1

Wasserman (1979, 1980), Wasserman and Iacobucci (1988), and Leenders

(1995, 1996) extended the work of Holland and Leinhardt (1977) and devel-

oped several continuous-time Markov chain models, though the models were

limited in that they only accounted for reciprocity among pairs of actors. These

dynamic statistical models assume conditional dyad independence. When con-
1The stochastic process proposed may not be appropriate in all applications, including

models with third level and higher dependencies, but does allow for a first approximation.
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ditioning on the observation immediately prior, the ties among two actors are

stochastically independent of all other dyads. The assumption that dyads evolve

as independent Markov chains ignores more complex network structures. Ad-

vances in network co-evolution models allow for the inclusion of actor attributes

(Snijders, Steglich & Schweinberger, 2006). Co-evolution models evaluate and

estimate changes in network structure and changes in actor attributes, also

called covariates. One example of how attributes affect network change can be

seen in homophily behaviors, often described by the phrase ‘birds of a feather

flock together’. According to theories of homophily, actors are more likely to

have ties with similar others and actors who are similar are more likely to have

ties. Two mechanisms included in the co-evolution model describe how struc-

ture and attributes affect each other: social selection and social influence. Social

selection explains how actor attributes influence the underlying processes that

drive network change over time. Research has shown that during elementary

school, friendship ties remain mostly within boys or girls, with few ties cross-

ing among genders. The gender of each actor drives friendship tie formation.

Gender is considered an exogenous attribute; it is constant and cannot be influ-

enced by network structure. Social influence explains how network ties influence

actor attributes. Actors become like the others who they share ties with. For

example, expertise spreads among actors who communicate. Expertise levels

change over time and must be measured at each observation, making expertise

an endogenous attribute. Allowing additional dependencies and more complex

parameters, the actor-based modeling approach adopted in this paper allows

for higher order effects (such as transitivity among groups of three actors) and

inclusion of actor attributes (such as how expertise levels of actors change over

time).

Alternative models for dynamic networks have been developed by several

research efforts (see Snijders, van de Bunt, & Steglich (2009) and Doreian &

Stokman (1997) for lists of additional references). Actor-based models rely on

simulations to explain probabilities of future behaviors. Actor-based simulation

models have not been explored with estimation theory. If done, they would

allow one to estimate and test effect inclusion or to test the theory supporting
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a statistical model. These simulation models allow for general simulation of

network evolution, without relying on underlying theoretical statistical models.

Alternative estimation techniques have been considered, however given the cur-

rent research available, the actor-based modeling approach dominates network

co-evolution modeling.2

Longitudinal network data are essentially panel data, where time is consid-

ered to be continuous between discrete observation points, suggesting the use

of continuous time Markov models (Norris, 1997). The research presented here

focuses on an actor-based modeling approach documented by Snijders (1996,

2001, 2005). Snijders’ approach provides a great deal of flexibility, allowing for

higher order parameters that include dependencies among multiple actors. This

approach also has the ability to test statistical theories, including hypothesis

testing for effect inclusion. Snijders proposed stochastic, actor-based models

where non-deterministic rules guide the decisions of actors within a probabilis-

tic framework called the actor-based model that uses method of moments to

estimate a vector of parameters. Using method of moments allows estimation

that is otherwise problematic due, in part, to an intractable likelihood func-

tion. The actor-based model will be discussed in greater detail in the following

sections on model specification and estimation.

The goodness-of-fit of a model measures how well a statistical model repre-

sents the observed data. After a statistical model is fit to the data, the model

generates a set of expected values for observations. Goodness-of-fit measures

compare observed and expected data. The method of comparison often depends

on the technique used to estimate the model. There are challenges involved in

estimation and testing goodness-of-fit in these complicated modeling techniques.

As the number of actors increases, the universe of possible combinations of ties

becomes very large very quickly. An intractable likelihood function and lack of

a saturated model make modeling network change a challenge, and make the

usual goodness-of-fit measures impossible. Until alternative estimation meth-

ods are found, options for goodness-of-fit measures are limited. To help with
2The DEDICOM model also provides an alternative way to approach square tables that

describe asymmetric relationships among a number of actors (Harshman, 1978, 1981; Kiers,
1989; Kiers & Takane, 1993; Kiers, ten Berge, Takane, & de Leeuw, 1990; ten Berge & Kiers,
1989).
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the interpretation of statistical co-evolution models, a measure of how well the

model fits the observed data is needed. Measures of unexplained variance in

regression models are common in standard statistical techniques but none exist

for co-evolution models.

Currently there are only two available measures to assess inclusion of effects,

both appropriate for estimation by method of moments. Snijders (1996) sug-

gested dividing parameter estimates by their estimated standard errors. When

the test statistic indicates that a parameter estimate is large compared to its

standard error, this is evidence that inclusion of the parameter significantly

improves the overall fit of the model. The test statistic is assumed to have a

t-distribution; however, this test is more of a guideline since the behavior of

these estimated t-statistics is still not fully understood. The standard errors are

most likely underestimated. This t-test can only test one parameter at a time.

Chapter 4.1 generalizes this statistic to a Pseudo-Wald statistic that can test

multivariate hypotheses.

Recently, Schweinberger (2007) developed a generalized Neyman-Rao score

test for testing parameters in a network evolution model, though not in a

co-evolution model. However, generalization of the available measure to co-

evolution modeling is reasonable and desirable. The score test has been imple-

mented for the co-evolution model; however, the use of score tests in co-evolution

models remains unsupported by either theory or empirical study. Theory must

support the use of the score test for a co-evolution model to fully understand its

properties. This dissertation uses Schweinberger’s previous work on the score

test to address the lack of theory behind its use to determine effect inclusion

for the co-evolution model. The score test will be extended to the co-evolution

model in Chapter 5.

The need to understand stochastic actor-based models has been brought to

attention by the researchers who developed the actor-based co-evolution models.

As Snijders, van de Bunt and Steglich (2010) state

Especially important will be the further development of ways to assess the

goodness-of-fit of these models and to diagnose what in the data-model

combination may be mainly responsible for a possible lack of fit. (p.37)
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In the following chapters, I present background information on modeling

changes in network structure and actor attributes. Chapter 2 on model specifi-

cation provides a summary of the rate and objective functions of the actor-based

co-evolution model using recent notation and discusses assumptions and impor-

tant effects. Following this summary, Chapter 3 covers model estimation using

a method of moments approach. Previous work on fit measures is presented in

Chapter 4, including an extension of Snijders’ t-test to a multivariate case and

an extension of the score test to the co-evolution model. Chapter 5 proposes

two new measures of overall goodness-of-fit, followed by a simulation study in

Chapters 6 and 7 that evaluates the performance of the proposed entropy-based

measure, along with the proposed Pseudo-Wald test statistic and the general-

ization of Schweinberger’s score test to the network co-evolution model.
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2 Specification of Co-evolution
Models

Modeling co-evolution of networks and actor attributes requires an extension

of the methods for modeling network dynamics. Background information on this

modeling framework comes from several sources (Snijders, 1996; Snijders, 2001;

Snijders, 2005; Snijders, Steglich & Schweinberger, 2006; Steglich, Snijders &

Pearson, 2009; Steglich, Snijders & Pearson, 2010).

The goal of a co-evolution model is to capture changes in the ties among ac-

tors, the attributes of actors, or the attributes of the ties among actors (dyadic

covariates) that occur over time. The co-evolution model consists of rate func-

tions and objective functions. These are described in the two sections following

the presentation of useful notation and simplifying assumptions.

2.1 Notation

Let X(tm) be a stochastic n × n matrix of ties at time tm, where n is the

number of actors present. The matrix x(tm) is the observed network at time tm,

where element xij has a value of 1 if a tie exists from actor i (an ego) to actor j

(an alter), and a value of 0 if the tie does not exist. Note that this is a directed,

binary network. Thus, tie xij may be different than xji and ties may only have

values of 1 (tie present) or 0 (tie not present). The network is also assumed to be

nonreflexive, forcing the diagonal xii(tm) to be undefined. The observations are

panel data; that is, observed networks are snapshots of a continuous underlying

Markov process. Although time is assumed to be continuous, the network is

only observed at two or more discrete, ordered time points (t1 < t2 < ... < tM ).

Actor attributes may also change over time. Exogenous, constant actor

attributes (such as gender) comprise an n × 1 vector of values and denoted

by Z∗
h. Endogenous, time-varying actor attributes comprise an n ×M matrix

of values on attribute h for each time point and denoted by Zh(tm). This
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matrix consists of rows of actors with columns capturing the attribute level

at each observed time point. To simplify notation, the network matrix and

one time varying attribute is represented as Y (tM ) = [X(tM ),Zh(tM )] and

has dimension n × (n +M) for a time varying attribute. For a constant actor

attribute (e.g., gender), M = 1 and the dimension of Y (tM ) = [X(tM ),Z∗
h)] is

n × (n + 1). Matrix Y (tM ) combines all the information on an attribute and

network at each time point. All available observed data are represented by the

series of matrices, y(t1), ...,y(tM ).

For the purposes of this work, a model with one network relation and one

time varying actor attribute (h = 1) is considered. Further generalizations to

additional actor attributes, multiple relations, and to valued or undirected net-

works are possible, but not considered here. The actor-based modeling approach

is not appropriate for coordination networks where tie creation is determined

by a coordinated action among actors. Coordination networks (such as actors

entering into agreements with one another) can be modeled using undirected or

alternative directed network modeling approaches that do not have the assump-

tions of the actor-based model.

2.2 Background

Statistical social network analysis gained popularity following the research of

Holland and Leinhardt (1970, 1971, 1977). Holland and Leinhardt (1977) de-

veloped the idea of using continuous time sociometric Markov chain models for

dynamic network models, proposing that changes from a current network to

a future network were determined by a continuous time Markov process. The

Markov process has a transition matrix that determines the rate that changes

occur. The transition matrix is defined as

qx,x(i∆j)(t) =

 λij(x, t) if x and x(i∆j) differ in one element

0 if x and x(i∆j) differ in more than one element

 .

Using the assumption that network dynamics can be thought of in this way as

a Markov chain, this research allowed for a network evolution model where the
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probability distribution of future states, given the present state, does not depend

on past states. The Markov process proceeds in small micro-steps, changing one

tie at a time. This framework was later extended to co-evolution models and

the Markov process generalizes to small micro-steps where an actor can change

one tie or a level of attribute at a time. A method of moments approach to

estimation was proposed to estimate the stochastic process. The stochastic

process proposed in Holland and Leinhardt (1977) may not be appropriate in

all applications, including models with third level and higher dependencies, but

it does allow for a first approximation.

Snijders (1996, 2001) extended Holland and Leinhardt’s continuous time

Markov chain models and introduced random utility models (McFadden, 1974;

Maddala, 1983) to longitudinal network modeling. Snijders also proposed esti-

mation methods that allowed for dependencies beyond dyads, better capturing

structural changes in a network. Snijders assumed that the rate of changes follow

the transition matrix proposed in Holland and Leinhardt (1977), but separated

the rate function into two parts λij(y, t) = λ∗
i (y, t)pi(j|y), where λ∗

i (y, t) cap-

tures the rate that actor i changes one of his ties, and pi(j|y) is the conditional

probability that actor i changes the tie with actor j from xij to x∗
ij = 1 − xij .

pi(j|y) can be modeled as having multinomial logit form.

pi(j|x(t), z(t)) =
exp(fi(β,x(i∆j)(t), z(t)))∑
h exp(fi(β,x(i∆h)(t), z(t)))

Taking this multinomial logit form, the conditional probability equates to as-

suming that actor i selects the other actor that maximizes the value of actor i’s

objective function plus a random element, fX ,i(j|x) + ϵ
[X]
i (y), where ϵ

[X]
i (y)

is distributed Gumbel (0, 1). Snijders (2001) allowed for third and higher order

dependencies and signifies a huge step forward in longitudinal network modeling.

2.3 Assumptions

Dependencies among ties and attributes can be difficult to formulate math-

ematically. The following simplifying assumptions make co-evolution processes

estimable and interpretable.
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1. Each actor has control over their out-degree Xij(j = 1, ...n, i ̸= j) and

over changing attributes Zhi(h = 1, ..., H). A directed relation allows us

to assume that an actor who initiates the tie, controls the tie. Self-ties

Xii are ignored.

2. Data are observed and measured at discrete time points. Changes are

occurring throughout the evolution of a network, but not all changes are

directly measured. Differences between two consecutive measured time

points are the sum of many simple, unobserved changes that occur between

time points.

3. Either a tie will be created, maintained, or dissolved; or an attribute will

increase or decrease by one unit or stay the same. During each small, un-

observed segment of continuous time between measured time points, only

one tie or attribute change can be made. Complex changes in structure

or attribute level are the result of many small, simple changes.

4. The observed network and attributes at the first time period (Y (t1)) are

assumed and are conditioned upon for modeling future states. Given net-

work and attribute levels at time tm (i.e., X(tm) and Zh(tm)), the dis-

tribution of the future state of the network and attributes (i.e., X(tm+1)

and Zh(tm+1)) is independent (lag 1) of what occurred before time tm.

The distribution of future states depends only on the state immediately

preceding it.

2.4 Timing Of Decisions: The Rate Functions

The Markov property of the actor-based model leads to the decomposition

of changes in ties among actors and in attributes into very small actor decisions.

Large changes are the result of many small changes. Between each measured

time point, many small changes are made that dissolve, maintain, or form net-

work ties; or that change behavior or attitude.

The rate functions capture how much and how quickly network and attribute

change occur. When the series of opportunities to make decisions satisfy the
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Poisson processes with a rate of λ, the interval between consecutive events (ran-

dom variable C) follows an exponential distribution:

fC(c) = λe−λc.

The rate parameters capture how frequently these choices are made between

observed time points. A rate parameter for actors over each time interval is

hypothesized for both network and attribute change. Therefore, there are two

types of parameters: network rate parameters and attribute rate parameters.

The network rate parameter λ[X](Y ,m) captures the rate actors make de-

cisions to change or maintain the presence of a tie. By ignoring the endowment

component of the objective function as described in the following section, it is

assumed that all actors share the same rate function. Thus, a rate parameter

will be estimated for each time interval for both network and attribute change.

A high value for a network rate parameter means that actors are making fre-

quent changes their outgoing ties, while a low value means that the actors tend

not to change their outgoing ties. The behavioral rate parameter λ[Zh](Y ,m)

describes how quickly actors change attribute levels by one unit. A high value

for an attribute rate parameter means that actors’ attribute levels are frequently

updated. A low value means that actors’ attribute levels remain rather constant.

The network rate parameter captures the opportunities for actor i to make

changes to outgoing ties. The network rate parameter is randomly distributed

and follows a Poisson process where times between changes are modeled by an

exponential distribution with a parameter given by the rate function λ
[X]
i .

The network rate function for each actor in the time period (t) between

times tm and tm+1 is given by

λ
[X]
i (Y ,m) = ρ

[X]
m exp

(∑
k

α
[X]
k a [X]ki (Y (tm))

)
,

where ρ
[X]
m is the vector of time dependent parameters for network structure,

α
[X]
k captures the dependence between the rate function and actor-dependent
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statistics (such as the degree distribution and covariates), and a [X]ki (Y (tm),

is the vector of actor-dependent statistics.

The attribute rate parameter captures the opportunity for an actor to make

changes to the level of an attribute. The attribute rate parameter is randomly

distributed and follows a Poisson process where the time between changes is

modeled by an exponential distribution, with parameters given by the rate func-

tion λ
[Zh]
i . The attribute rate function is given by

λ
[Zh]
i (Y ,m) = ρ

[Zh]
m exp

(∑
k

α
[Zh]
k a [Zh]ki (Y (tm))

)
,

where ρ
[Zh]
m is the vector of time dependency parameters for actor attributes,

α
[Zh]
k captures the dependence between the rate function and actor-dependent

statistics (such as the degree distribution and covariates), and a [Zh]ki (Y (tm),

is the vector of actor-dependent statistics. The actor dependent statistics in the

network and attribute rate functions may differ. For example, if the statistic

does not take into account network structure but does represent attribute levels,

it will appear in the attribute rate function but not the network rate function.

A critical property of the exponential distribution associated with the rate

function is the ‘forgetfulness property’. Unequal durations between observed

times become meaningless since the time scale is absorbed into the ρm param-

eters. The forgetfulness of this distribution also justifies the use of the Markov

property for the stochastic process, Y (tm).

2.5 Actors’ Decisions To Form Or Dissolve Ties:

The Objective Functions

The objective function works with the rate functions. The rate functions de-

termine the rate that actors’ make changes, and the objective function captures

what changes are made. The objective function can be broken down into three

main components: the evaluation function f , the endowment function, and a

random component ϵ. Each part of the objective function has an important job.
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The evaluation function f captures the overall structure of the network. The

probability that a tie will change depends on the different structures present in

the network. For example, a network with a high transitive triplet structure

would show that ties would have a higher probability of forming if they close a

transitive triple, or a higher probability of a tie among actors i and k if actor i

chooses j and actor j chooses k.

The endowment function attempts to capture differences in the value be-

tween forming and dissolving ties. This component allows for different costs

for making or dissolving a tie. An example provided in Snijders, Steglich and

Schweinberger (2006) states that the cost of losing a reciprocal tie may be greater

than the cost of forming a reciprocal tie. Although theoretically important, in-

cluding the endowment function in practice adds little to a co-evolution model.

It is important to look at how forming a tie and dissolving a tie differ in strength,

but in practice, including this function increases model complexity and makes

the estimation process more difficult. In this paper, the endowment function

is ignored and explanations focus on the evaluation function associated with

forming, dissolving or maintaining a tie.

The random component, ϵ, of the objective function represents residual noise

and is a function of the intermediate state of the network. The random residuals

are assumed to be independent and to follow a standard Gumbel (or extreme

value) distribution. This assumption for residuals implies a logistic model (i.e.

a logit link function).

The objective function captures the probability that a tie will be main-

tained, formed or dissolved among two actors. The objective function for net-

work change optimized by actor i is the weighted sum of parameters β
[X]
k and

variables s
[X]
ik that are statistics computed from observed data (see table 2.1

for a reference of possible effects).

Recall that the matrix Y is the observed network and attribute, (X,Zh).

The objective function for network change optimized by actor i is the weighted

sum of parameters β
[X]
k and variables s

[X]
ik , such that
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f
[X]
i (β[X],y) + ϵ

[X]
i (y) =

∑
k

β
[X]
k s

[X]
ik (y) + ϵ

[X]
i (y).

The objective function for attribute or behavior change is the weighted sum

of parameters β[Zh] and variables s
[Zh]
ik that are statistics computed from ob-

served data (see table 2.1 for a reference of possible effects).

f
[Zh]
i (β[Zh],y) + ϵ

[Zh]
i (y) =

∑
k

β
[Zh]
k s

[Zh]
ik (y) + ϵ

[Zh]
i (y).

The most intuitive formulation of this modeling technique has to do with

the probability that actor i will change the tie variable to actor j represented

as a function of the current state of the network. The matrix x(i∆j) for i ̸= j

describes the network configuration where actor i changes the tie variable to

actor j, but all other ties remain the same. With fixed attribute levels at time t

and where l is the set of all other actors, excluding actors i and j, the resulting

choice probability for network ties is

P (x(i∆j)|x(t), z(t)) = exp(f
[X]
i (β[X],x(i∆j)(t),z(t)))∑

l exp(f
[X]
i (β[X],x(i∆l)(t), z(t)))

.

The inclusion of the matrix x(i∆j) compares the matrix only excluding actor

j in the numerator with the matrices that result from leaving out each of the

present actors in the denominator.

With fixed network ties at time t, the probability of attribute change is

P (z(i ↕h δ)|x(t), z(t)) = exp(f
[Zh]
i (β[Zh],x(t), z(i ↕h δ)(t)))∑

τ∈{−1,0,1} exp(f
[Zh]
i (β[Zh],x(t), z(i ↕h τ)(t)))

,

(2.1)

where z(i ↕h δ) is the vector when actor i changing his or her level by δ = 1

on attribute h. The summation in the denominator of Equation (2.1) looks at
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attribute level changes for the actor, when each actor can maintain, decrease

by one unit or increase by one unit his or her attribute level. The summation

also ensures that probabilities sum to 1. The inclusion of the vector z(i ↕h δ)

compares the vector when actor i changes his level on attribute h by 1 in the

numerator with the vectors that result from other attribute level changes in the

denominator.

2.6 Effects

Networks and attributes can be explanatory and dependent variables, either

in separate models or simultaneously in the co-evolution model. For example, in

social selection models the attribute is the explanatory variable and the network

is the dependent variable. The model of how network structure changes over

time depends on an actors’ likelihood of establishing, maintaining, or dissolving

a tie and the rate that decisions about ties are made.

The evaluation function in the model includes effects that describe structure

and actor attributes. A small subset of possible network effects s
[X]
ik are pre-

sented in the upper part of table 2.1 and a small subset of possible attribute

effects s[
Zh]
ik are presented in the lower part of table 2.1. As more co-evolution

theories and applications develop, the number of effects can be expected to ex-

pand. The list of possible attribute effects contain some additional notation.

The vector zi is a vector of attributes, and simz
ij is defined as the similarity be-

tween actors i and j on covariate v, where simz
ij = 1−(|zi−zj |/maxi,j |zi−zj |).As

an example, the transitivity network effect considers the ties present among a

group of three actors. Three actors exhibit transitive structure if actor i has a

tie with actor j, actor j has a tie with actor h, and actor i has a tie with actor

h. The covariate-related similarity x reciprocity interaction parameter compares

the attribute level of actors that have reciprocal ties. The total similarity effect

measures how similar actor i is with each actor on the attribute.
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Table 2.1: Possible Effects
Parameter Network Statistic

Density (or out-degree) xi+ =
∑

j xij

Reciprocity
∑

j xijxji

Transitive Triplets
∑

j,h xijxihxjh

Transitive Ties
∑

h xihmaxj(xijxjh

Number of 3-cycles
∑

j,h xijxjhxhi

Balance 1
n−2

∑
j=1 xij

∑
h=1,h ̸=i,j(bo− | xih − xjh)

where bo is the mean of |xih − xjh|
Betweenness

∑
j,h xhixij(1− xhj)

In-degree Popularity (Square Root)
∑

i xij
√
x+j

Out-degree Popularity (Square Root)
∑

i xij
√
xj+

Activity (1/n)
∑

j xij

∑
h xjh

Covariate similarity mjxij(sim
z
ij − ̂simz

ij)

Covariate-alter
∑

j xijzj

Same Covariate
∑

j xijI{zi = zj}

where I{zi = zj} = 1 if zi = zj and 0 otherwise

Covariate-related similarity x reciprocity
∑

j xijxji(sim
z
ij − ̂simz

ij)

Covariate-ego
∑

j xijzi = zixi+

Covariate-ego x alter
∑

j xijzizj

Behavioral tendency (linear shape) zi

Behavioral quadratic shape z2i

Behavioral total similarity
∑

j xij(sim
z
ij − simz)

Behavioral in-degree zi
∑

j xji

Behavioral out-degree zi
∑

j xij

Behavioral average alter zi
(
∑

j xijzj)∑
j xij

Average Similarity x−1
i+

∑n
j=1 xij(simz

ij)− ̂simz
ij)
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3 Estimation of Co-evolution
Models - Method of Moments

The likelihood function for this model cannot be computed explicitly; there-

fore, maximum likelihood estimation is difficult. Using the general framework

of Markov Chain Monte Carlo (Besag, 2001; Schweinberger & Snijders, 2007),

method of moments estimation procedures can be specified for network and at-

tribute co-evolution. Method of moments makes estimation easier, since there

is no need for a likelihood function. It also serves as the basis for using a gen-

eralized Neyman-Rao score test as a measure of fit. The method of moments

estimation algorithm compares the observed network to hypothetical networks

generated in the simulations, generally yielding consistent estimates. However,

because the estimation uses a stochastic algorithm, results vary from one model

run to the next. In addition, estimates are often not efficient, where efficiency

depends on the choice of statistics.

In the general case (for data Y and vector of parameters θ), the method of

moments estimator is based on the statistic u(Y ), where u(y) is the observed

value of u(Y ). The moment equation gives the value θ̂ where the expected value

of u(Y ) equals the observed value, u(y); that is,

E
θ̂
(u(Y )) = u(y). (3.1)

Equation (3.1) gives a locally unique (and often globally unique) moment

equation solution. The delta method and implicit function theorem provide an

asymptotic covariance matrix for the estimated vector of parameters. Under

regularity conditions, if θ̂ is a consistent solution to the moment equation, the

asymptotic covariance matrix for θ̂ is given by the equation:
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covθ(θ̂) ≈ Dθcovθ(u(Y ))D′
θ, (3.2)

where Dθ is inverse of the vector of first partial derivatives,

Dθ =
(∂Eθ(u(Y ))

∂θ

)−1

.

The moment estimate parameters (θ̂) provide the solution to the following

equation (note: this equation shows that given the network and attributes at

time tm, the sum of the expected values at time tm+1 minus the observed values

at time tm+1 will equal zero):

gn(yn,θ) =
M−1∑
m=1

Eθ[um(Y (tm+1))|Y (tm) = y(tm)]− um(y(tm+1)) = 0. (3.3)

The function gn is an unbiased estimating function for all n and all θ such that

Eθ[gn(Y n, θ) | Y (t1) = y(t1)] = 0

with covariance Σ. Additionally, the diagonal matrix ∆n(θ) is the partial deriva-

tive matrix of gn with respect to θ,

∆n(θ) =
∂gn(yn,θ)

∂θ′ =
∂

∂θ′Eθ[u(Y (t2)) | Y (t1) = y(t1)]. (3.4)

Within this general framework, four main components must be estimated:

rate functions for network and attribute change, and evaluation functions for

network and attribute change.

The natural statistic to estimate ρ[
X]
m , u(ρ[

X]
m ), for the network rate function

is
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u(ρ
[X]
m ) =

∑
i,j

a
[X]
ki (Y (tm−1))|X(tm)−X(tm−1)|.

The natural statistic to estimate ρ
[Zh]
m for the attribute rate function is

u(ρ
[Zh]
m ) =

∑
i

a
[Zh]
ki (Y (tm−1))|Zhi(tm)− Zhi(tm−1)|.

The statistic used to estimate β
[X]
k , the vector of network change parameters,

is

um(Y (tm−1),Y (tm)) =
∑
i

s
[X]
ik (X(tm),Z(tm−1)).

The statistic used to estimate β
[Zh]
k , the vector of attribute change parameters,

is

um(Y (tm−1),Y (tm)) =
∑
i

s
[Zh]
ik (X(tm−1),Z(tm−1),Z(tm)).

The stochastic processes of the moment equations (3.3) can be easily sim-

ulated using approximation methods such as the one proposed in Robbins and

Monro (1951) described in Snijders (2001, 2002). Using the delta method and

the implicit function theorem within the method of moments framework, the

covariance matrix of θ̂ can be derived in Equation (3.2). Monte Carlo methods

can estimate the covariance matrix Σθ and the partial derivative matrix, Dθ.

The estimation algorithm is implemented in three phases in the RSiena pack-

age.

1. In phase 1, the parameter vector is held constant at its initial value and

is used to obtain an initial estimate of the derivative matrix.
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2. In phase 2, parameter values vary between runs, reflecting deviations be-

tween generated and observed values of the statistics.

3. In phase 3, the parameter vector is held constant at its final value and is

used to estimate the covariance matrix and the derivative matrix used for

computing standard errors.

The estimation of standard errors of the MoM estimates requires the es-

timation of derivatives that indicate how sensitive the expected values of the

statistics are with respect to the parameters. The chosen method to estimate

derivatives in the RSiena package uses the score function. This methods avoids

a bias-variance dilemma present in finite differences methods, is unbiased, re-

quires less computation time, and is consistent. Using the estimation approach

detailed in this chapter, the following chapter outlines currently available and

proposed measures used to test for inclusion of effects.
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4 Tests For Effect Inclusion

Four main goals drive the research presented in the remainder of this docu-

ment.

1. Extend Snijders’ t-test to a Pseudo-Wald statistic to accommodate mul-

tivariate hypotheses, including

(a) determining a suitable estimate for Σ̂
β̂

,

(b) studying the distribution of the Pseudo-Wald statistic, and

(c) comparing the performance of the Pseudo-Wald statistic to the per-

formance of the generalized score test.

2. Extend Schweinberger’s network score test to a co-evolution model.

3. Develop an entropy-based goodness-of-fit measure.

4. Propose the framework for a generalized R2 goodness-of-fit measure.

5. Conduct a simulation to compare model selection procedures, including

(a) comparing the distribution and behavior of the Pseudo-Wald test,

the generalized score test, and the proposed entropy goodness-of-fit

measure, and

(b) comparing results of effect inclusion using the Pseudo-Wald test, the

score test, and the entropy goodness-of-fit measure.

4.1 Snijders’ t-Test Extended To A

Pseudo-Wald for Multivariate Tests

Snijders (1996) proposed a statistic for assessing the significance of a pa-

rameter. With a null hypothesis for testing whether a parameter is significantly
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different than 0, this statistic consists of dividing a parameter estimate by its

estimated standard error. The sampling distribution of this statistic is assumed

(based on simulation studies) to be approximately standard Gaussian. The dis-

tributional assumption gives a suggested cut-off value of |2| corresponding to a

p < 0.05. Values greater than |2| are considered large and signify that associated

parameters should be included in a model.

The Pseudo-Wald test approximates a likelihood ratio test in that it works

by testing the null hypothesis that a set of parameters is equal to some value (in

this case, equal to zero). Unlike the t-test, the Pseudo-Wald test can be used

to test multiple parameters and linear combinations of them simultaneously.

If β̂ ≈ Multivariate Normal(β,Σβ) and the null hypothesis, for example, is

specified as H0 : βk − β⋆
k = βk+1 − β⋆

k+1 = 0 when testing for 2 parameters

equal to one another. This test equals

H0 :

1 0

0 1



 βk

βk+1

 −

 β⋆
k

β⋆
k+1


 =

0

0

 ,

L (βk − β⋆
k) = 0,

where β⋆
k and β⋆

k+1 are some specified values. When testing for inclusion of

effects, β⋆ equals the vector 0, simplifying the equation above to H0 : Lβ = 0.

The Pseudo-Wald test statistic can be computed by

β̂
′
L′(LΣ̂

β̂
L′)−1Lβ̂ ∼ χ2

number of rows in L.

During the simulation study, the global hypothesis was broken down and the

Pseudo-Wald test was used to look at all possible combinations of parameters,

ranging from testing if all parameters are equal to the equality of each pair

of parameters. A subset of all possible Pseudo-Wald tests was included in the

analysis. The covariance matrix, Σ̂
β̂

, is already estimated by the algorithm

used to find parameter estimates as part of the RSiena package. Type 1 errors

may be inflated by the break down of the global hypothesis. For the purpose of

this study, no correction is made, though in practice, an appropriate correction
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should be used.

4.2 Schweinberger’s Score Test Extended To

The Co-evolution Model

Recall, obstacles inherent to longitudinal social network co-evolution mod-

eling include an intractable likelihood function, functions that are difficult to

estimate, problems with model convergence, and the absence of a saturated

model. Schweinberger (2007) developed a score-type test for measuring inclu-

sion of effects (i.e. parameters equal to zero) that overcomes these obstacles and

provides a tool for model evaluation that can be used in forward model selec-

tion. The theory presented only considered for network evolution, not network

and attribute co-evolution; Schweinberger did not extend the statistic for both

network and attribute parameters. However, the SIENA program allows for its

use while developing co-evolution models. Further theoretical generalization is

needed to ensure testing accuracy.

Schweinberger’s test is similar to a Rao score test. It is found by generalizing

the C(α) test (Neyman and Pearson, 1928 parts i and ii) and replacing the

Fisher score function with regular estimating functions (Basawa, 1991). This

test has several appealing features, notably that the restricted model of the

null hypothesis is the only model that must be estimated and that it relies on

method of moment estimators. These features allow for faster estimation and

overcome the obstacles associated with an unavailable likelihood function.

This derivation follows Schweinberger’s assumption of two time points, M =

2. This is done only for ease of presentation, as underlying Markov processes

allow for generalization to a larger M .

The vector of parameters θ can be partitioned into two parts θ′ = (θ′
1,θ

′
2).

The vector θ1 is composed of all unrestricted parameters included in the model,

both structural and behavioral. The parameters in θ1 are both included in H0

and H1. The vector θ2 is composed of the parameters to be tested (of length R

and with all parameters set equal to zero). The null hypothesis is H0: θ2 = 0,

versus the alternative hypothesis H1 : θ2 ̸= 0. These hypotheses can also be
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generalized to have nonzero values. In this argument, the vector θ contains

network and attribute parameters (i.e. the β
[X]
k and β

[Zh]
k parameters). For

this case, where the null hypothesis is that θ2 = 0, the vector θ′
0 = (θ′

1,0
′). The

values in the vector wn are appropriate normalizing constants. To take a closer

look at the partitioned θ0 vector, it is important to divide other quantities with

respect to θ′ = (θ′
1,θ

′
2):

Σ =

Σ11 Σ12

Σ′
12 Σ22

 ,

gn(yn,θ) =

g1n(yn,θ)

g2n(yn,θ)

 ,

∆(θ) =

∆11(θ) ∆12(θ)

∆′
12(θ) ∆22(θ)

 ,

where gn(yn,θ) is an unbiased estimating function. These vectors and matrices

are split to compare distributions of the null and alternative hypotheses. For

more description, see equations (3.3) and (3.4), where details of the estimating

equation and its covariance structure were presented.

Assume as n → ∞ and where L is the length of gn,

w1/2
n gn(Y n,θ) d−→ MVNL(0,Σ).

Under the null hypothesis H0 : θ2 = 0, this assumption implies the following

two asymptotic distributions, where MVN(L−R) is (L − R)-variate normality

and MVN(R) is R-variate multinormal: as n → ∞,

w1/2
n g1n(Y n, (θ1,0)) d−→ N(L−R)(0,Σ11)
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and

w1/2
n g2n(Y n, (θ1,0)) d−→ N(R)(0,Σ22),

where bn(yn, (θ1,0)) = g2n(zn, (θ1,0)) − Γ(θ0)g1n(zn, (θ1,0)), Γ = ∆21∆
−1
11 ,

and ∆11 is non-singular.

These convergent distributions are based on the assumption that n → ∞.

This assumption is examined in the simulation study presented later to deter-

mine how large a sample needs to be for this test to perform well. Especially

with finite samples of actors (that may mean a small number of actors), the size

of n needed for convergence should be studied. (In Schweinberger’s simulation

study, an n = 30 showed good convergence.)

This equation for bn and the converging distributions of g1n and g2n provide

the variance-covariance matrix of bn. In general form, the covariance matrix of

bn(yn, (θ1,0)), noted by the term Σ, is

cov (bn(yn,θ0)) =

var(g2n(zn,θ0)) + var(Γ(θ0)g1n(zn,θ0))− 2cov(g2n(zn,θ0),Γ(θ0)g1n(zn,θ0)).

Substituting in terms for the general form, the covariance matrix becomes

Σ = Σ22 + Γ(θ0)Σ11Γ(θ0)
′ − (Σ′

12Γ(θ0)
′ + Γ(θ0)Σ12). (4.1)

Both g1n and g2n have expected values equal to 0, implying that bn has an

expected value of 0. Given this expected value and the covariance matrix in

Equation (4.1), as n → ∞

w1/2
n bn(Y n,θ0) d−→ NR(0,Σ).
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Therefore, as n → ∞

wnb
′
n(Y n,θ0)Σ

−1bn(Y n,θ0) d−→ χ2
R.

In summary, the two-tailed proposed multivariate score test (MST) is based

on the statistic:

MST = wnb
′
n(Y n,θ0)Σ

−1bn(Y n,θ0).

Under the null hypothesis, given that variables are defined across their entire

range and the sample size approaches infinity, the test statistic converges in

distribution to an asymptotically central chi-square with R degrees of freedom.

Notice that since bn(Y n, (θ1,0)) contains θ2 = 0, there is no need to estimate

θ2, making the estimation process more efficient. This test is based on asymp-

totic properties, although in a finite sample this test approximates a chi-squared

distribution with R degrees of freedom, as seen in a simulation study discussed

in a following section. The score test compares the expected value of some

function (evaluated under some assumed model) to the observed value of the

function.

4.3 Remarks About Current Measures

For each of the current measures, various comments should be made about

the behavior and interpretation of each measure. Snijders’ t-test remains a

guideline with an unknown error distribution. This measure provides informa-

tion when selecting effects that should be investigated further, although the

actual properties of the distribution must be further researched. Concerns re-

main about the theoretical and applied distribution of extending Snijders’ t-test

to a multivariate null hypothesis.

Because Snijders’ t-test and the Pseudo-Wald test statistic have unknown

theoretical distributions, these measures of fit are more guidelines than statisti-
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cal tests. Empirical evidence for the distributions of these statistics is provided

in this paper. Combining the Pseudo-Wald test with the extended score test

provides a better indication of the contribution effects make to a model’s fit

and enables better decisions regarding whether particular explanatory variables

or effects should be included in the model. Concerns about the score test have

been raised within research, though the extent that those concerns apply to the

present model remains unknown (Freedman, 2007; Morgan, Palmer & Ridout,

2007; Verbeke & Molenberghs, 2007)

The two tests previously discussed — the Pseudo-Wald test and the score

test — approximate the likelihood ratio test, though they only require estima-

tion of one model. Because the co-evolution model has an intractable likelihood

function and lacks a saturated model, a likelihood ratio test (Neyman & Pear-

son, 1928) is not possible; therefore the other two options are relied upon. Both

the Pseudo-Wald and score tests are asymptotically equivalent to the likelihood

ratio test, and therefore to each other. In general statistical theory, as the num-

ber of observations increases, the three test statistics converge to one another.

With a finite number of observations, the three test statistics may differ from

one another. How close these statistics are to one another provides some evi-

dence about whether the number of observations is large enough, shown by their

asymptotic equivalence.

4.4 Previous Simulation Study

The following section describes a simulation study from Schweinberger (2007)

that evaluated the behavior of the proposed network score test statistic and Sni-

jders’ Pseudo-t-test. The simulation study consisted of two parts: testing for

triadic structure and testing for covariate effects. The two parts considered the

behavior of test statistics for parameters that capture structural features of the

data and the impact of covariates on digraph evolution. The study did not

consider the impact of covariates on attributes or the co-evolution of attributes

and network structure (although the score test has been applied in these cir-

cumstances, this simulation will focus on the impact of covariates).
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Table 4.1: Simulation Statistics

Notation Mathematical Definition Operational Definition

s
[X]
i1 (x)

∑n
j=1 xij the number of arcs (density)

s
[X]
i2 (x)

∑n
j=1 xijxji the number of reciprocated arcs

s
[X]
i3 (x)

∑n
j,l=1 xijxjlxil the number of transitive triplets

s
[X]
i4 (x)

∑n
j,l=1(1− xij)maxlxjlxil the number of indirect connections

s
[X]
i5 (x, c)

∑n
j=1 xijcij interaction of arcs and dyadic covariate ci

s
[X]
i6 (x,d)

∑n
j=1 xijdj interaction of arcs and node-bound covariate d

Assuming rate parameters are constant over time and one observed time

point, t0, the following two network observations, t1 and t2, were generated

from a set of varying distributions, giving multiple sets of networks that can be

used to determine the behavior of the two available goodness-of-fit measures.

Using the first time point t0 and the objective function of the null models,

the behavior of the score test and Snijders’ Pseudo-t-test were compared for

t1 and t2. Using samples of n = 30 and n = 60 with 500 replications of each

model, Schweinberger tested two separate groups of hypotheses. The first part

of the simulation only considered the structural model. In the second part

of the simulation study, a dyadic covariate was randomly generated by taking

independent draws from a Poisson distribution with µ = 1 and a node-bound

covariate was randomly generated by taking independent draws from a Bernoulli

distribution with π = 1/2. Using the first time point t0, the generated dyadic

and node-bound covariates, and the objective functions of the null models, the

behavior of the score test and Snijders’ Pseudo t-test were compared for t1

and t2. The statistics, s[
X]
ik (x, j), chosen for both parts of the simulation are

presented in Table 4.1. As a reminder, given a constant rate parameter (ρm for

m = 1 and m = 2), the objective function is given by

f
[X]
i (β[X],x) =

∑
k

β
[X]
k s

[X]
ik (x, j).

Part 1 of the simulation evaluated the distributions of t-test and score test
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statistics for H0 : β3 = 0 and H0 : β4 = 0, and score tests for H0 : β3 =

β4 = 0. Using two different types of triadic structure - transitive triplets and

number of actors at distance two (or number of indirect connections). Setting

the rate parameters and the first two network parameters (number of arcs and

reciprocated arcs) to constant values, the following vector of parameters was

manipulated:

θ = (ρ1, ρ2, β1, β2, β3, β4)
′ = (4, 4,−1, 1, β3, β4)

′.

To measure the strength and behavior of the test statistics, three levels of each

effect were combined. The parameter β3 had values 0, .2, and .4, and β4 had

values 0, −0.3, and −0.6. Pairwise combinations of these estimates provided

nine total models, in a 3 × 3 factorial design of β3 and β4. Schweinberger

chose the fixed parameter values based on his experience in fitting models as

reasonable initial parameter estimates. The values chosen should not have an

effect on the results, though in the proposed simulation study, these values were

tested against other initial values.

Part 2 of the simulation evaluated the distributions of t-test and score test

statistics for H0 : β5 = 0 and H0 : β6 = 0, and score tests for H0 : β5 = β6 = 0.

Setting the rate parameters and three network parameters to constant values,

the following vector of parameters was manipulated:

θ = (ρ1, ρ2, β1, β2, β3, β5, β6)
′ = (4, 4,−1, 1, 0.2, β5, β6)

′.

The parameter β5 had values 0, .1, and .2, and β6 had values 0, 0.2, and 0.4.

Pairwise combinations of these estimates equal nine total models.

Findings from the two parts of the simulation study support the use of

the score test. The score test was shown to have an approximate chi-square

distribution. Snijders’ Pseudo-t-test appeared conservative, finding fewer sig-

nificant parameter estimates than expected. The findings also confirm Snijders’
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Pseudo-t-test as having a standard normal distribution, even for small sample

sizes (n = 30). Although an additional simulation study is needed to evaluate

performance of the score test for a co-evolution model, the results from Schwein-

berger’s study indicate that the score test has great power and offers a promising

tool for co-evolution modeling.
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5 Proposed Measures of
Goodness-of-fit

5.1 Entropy-based Goodness-of-fit Measure

With the complexities present in co-evolution network models, many mea-

sures of explained variation could be proposed to quantify reduction in uncer-

tainty present. It is difficult enough to predict the tendency towards structure

within a network without attempting to predict the specific behavior of individ-

ual ties or actors. By narrowing the focus to single actors making small changes

between time periods, uncertainty can be better accounted for. As the number

of actors becomes large, the co-evolution model becomes exponentially more

complex. An entropy-based measure for explained variation offers an alterna-

tive to traditional goodness-of-fit measures. Borrowing from thermodynamics

and information theory, this entropy measure captures how much order can

be drawn from the disorder, or how much information can be gathered in the

network model.

Entropy is a measure of the uncertainty associated with a random variable

(Shannon, 1948). The entropy of a discrete random variable is equal to the

expected value of the information of that random variable.

Entropy = H(Y ) = −
n∑
i

pi log2 pi,

where pi is the probability of actor i creating or dissolving a tie and n is the

number of actors. The base of 2 was adopted from Shannon’s (1948) equation

for uncertainty, based on information theory where 2 refers to bits of information

(i.e., 0 or 1). The maximum amount of entropy log2(n) is found when all possible

events are equally probable, such as with a uniform distribution.
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To obtain a goodness-of-fit measure within the range of (0, 1), the entropy

measure may be transformed(Vasicek, 1976; Park & Park, 2003; Theil, 1980;

Dudewicz & van der Meulen, 1981; Gokhale,1983). This goodness-of-fit measure

relies on Jensen’s inequality, that shows us

Entropy = H(Y ) = E

[
log2

(
1

pi(Y )

)]
≤ log2

[
E

(
1

pi(Y )

)]
= log2(n).

This simple measure divides the entropy by the maximum possible entropy to

obtain a goodness-of-fit measure; that is,

E[R(t)] = 1− H(pi(y))

log2(n)
.

This measure has a value of R = 1 when events are certain and a R = 0 when

all events are equiprobable and there is the greatest uncertainty). The en-

tropy goodness-of-fit is measured during the implementation of the Metropolis-

Hastings algorithm part of the RSiena estimation process when the final pa-

rameter estimates are calculated. Basing this goodness-of-fit measure on an

estimation technique that relies on the Metropolis-Hastings algorithm, lays the

groundwork for a Bayesian goodness-of-fit measure. Because the Gibbs sampling

of Bayesian estimation is a special case of the Metropolis-Hastings algorithm,

the adaptation of this proposed entropy-based goodness-of-fit measure can be

completed once more research has been completed on the Bayesian estimation

technique.

This measure is not constant over time, depending on the rate parameter for

each time period. Snijders suggested that an average of measures could be used

(2004). Taking the average of this measure seems reasonable for networks where

rate parameters are somewhat constant over time. For longitudinal networks

with nonconstant rate parameters, this assumption may not make sense. For

generality, rate is not assumed to be constant over time. If change does occur

at a constant rate, the proposed entropy measure can simply be averaged over
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time. An entropy measure is reported for each time period, where time period

is the difference between two consecutive observations. The entropy measure

is an average measure of change within a time period. A separate entropy

measure is reported for each time period. When the rate parameter is somewhat

constant across time periods, this measure can be averaged to find an overall

measure of model fit. For the purposes of this study, rate is not assumed to be

constant across time periods. While the entropy measure is reported for each

time period, the model should be fit over all available time periods. Modeling

each time period separately will lead to degenerate solutions and the model will

force important parameters out of the model.

5.2 Generalized R2 Goodness-of-fit Measure

As an alternative to the entropy-based measure of goodness-of-fit, a general-

ized R2 can be found for co-evolution models. The generalized R2 is tradition-

ally estimated with Maximum Likelihood techniques, where likelihood of the

model of interest is bounded by (0, 1) (Cameron & Windmeijer, 1997; Menard,

2000). This proposed goodness-of-fit measure is more appropriate within the

Maximum Likelihood framework and with normal response variables. However,

the relationship between method of moments and Maximum Likelihood estima-

tion in co-evolution models must be better understood before goodness-of-fit

measures can be compared across estimation techniques. The discussion section

outlines recent work that explores a Maximum Likelihood estimation method

for co-evolution models. This generalized R2 measure cannot be implemented

at this time. When the framework for Maximum Likelihood estimation is better

understood, this goodness-of-fit measure should be compared using the intended

estimation technique. This dissertation takes a cursory look at this measure,

establishing a foundation for comparison in future research. Emphasis is placed

on the three other proposed measures: the Pseudo-Wald test, the score test,

and the entropy-based goodness-of-fit measure.

The proposed R2 measure has several appealing characteristics. The gen-

eralized R2 is bounded by (0, 1), should be asymptotically independent of the
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number of actors, can be interpreted as the proportion of variation explained

by the model, is scale-free, and can be maximized using a Maximum Likeli-

hood estimation of the co-evolution model. No additional computation time

will be required; All components are gathered during the estimation process.

The saturated model is not needed, only an intercept only model and the hy-

pothesized model. Because this measure compares the hypothesized model to

the intercept only model, testing for inclusion of effects in a model similar to the

other measures described earlier should be based on the difference among two

R2 measures. Thus, this goodness-of-fit measure is a simple calculation using

existing statistical results.

The generalized R2 is defined as

R2 =

1−

 L(0)

L

(
θ̂
)
 2

n

(1− L(0))
2
n

where L(0) is the likelihood of the model that only contains the intercept (den-

sity), L(θ̂) is the likelihood of the hypothesized estimated model, and n is the

number of actors.
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6 Simulation Study

6.1 Application

The estimation process applied was originally implemented in the SIENA

program, part of the StOCNET package. Recently, an R package has been

written that allows for a similar procedure. In this simulation, an early version

of this R package was adapted to work from.

The RSiena package (Ripley & Snijders, 2009) provides the basis for the

estimation procedures used in this document. The simulation study and de-

velopment of additional fit measures was completed using altered commands

from the RSiena package. Because RSiena is still in development, the general

programming will be adapted to include the proposed goodness-of-fit measures.

Several important features were missing that necessitated additional program-

ming.

6.2 Simulation Study Outline

The following simulation compares the behavior of Snijders’ Pseudo t-test,

the proposed Pseudo-Wald statistic for multivariate tests, Schweinberger’s score

test, and the entropy-based measure. By comparing sensitivity and power, the

strengths and weaknesses of each measure can be investigated. Two types of

models are considered, a simulation study using a structural model and a simu-

lation study using a co-evolution model, with attributes following two distribu-

tions. A general outline of the proposed simulation study extends and supports

the previous study by Schweinberger (2007) in his evaluation of the score test

for network evolution.
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Table 6.1: Statistics Included in Structural Model for Simulation

Operational Definition Mathematical Definition Tested/Included

Density
∑n

j=1 xij included

Reciprocity
∑n

j=1 xijxji tested

Transitive Triplets
∑n

j,h=1 xijxjhxih tested

3-cycles
∑n

j,h=1 xijxjhxhi tested

Transitive Ties
∑n

h=1 xihmaxj(xijxjh) tested

Table 6.2: Statistics Included in Co-evolution Model for Simulation

Operational Definition Mathematical Definition Tested/Included

Outdegree-Popularity (Sq Root)
∑n

j=1 xij
√
xj+ tested

Attribute Alter
∑

j xijzj tested

Attribute Ego
∑

j xijzi = zixi+ tested

Same Attribute
∑

j xijI{zi = zj} tested

where I{zi = zj} = 1 if zi = zj

and 0 otherwise

Linear Shape zi included

Attribute Average Similarity x−1
i+

∑n
j=1 xij(simz

ij)− ̂simz
ij) tested

1. Randomly generate three 200 by 200 adjacency matrices that have model

convergence, some significant structural parameter estimates, and — along

with the randomly generated attribute matrix — some significant co-

evolution parameter estimates. Parameters of interest for the structural

model included structural rate parameters and the parameters listed in

Table (6.1). Parameters of interest for the co-evolution model included all

parameters from the structural model, attribute rate parameters, and the

parameters listed in Table (6.2).

2. Randomly generate a 200 by 3 matrix of attribute levels for actors based

on a bernoulli distribution. This matrix had to be manipulated some to

allow for significant co-evolution parameter estimates. The attribute lev-

els were randomly generated from a bernoulli (π = 0.3) distribution for

the first time point, a bernoulli (π = 0.4) distribution for the second time

point, and a bernoulli (π = 0.5) distribution for the third time point.
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To ensure significant attribute parameter estimates, the attribute levels

within an actor were rearranged to loosely reflect the actor’s network ac-

tivity, measured by outdegree. Without this crucial reordering, none of

the parameters emerged as significant when the solution did converge, nor

would one expect them to. For example, multiple actors with attribute lev-

els 0, 1, 0 or 1, 0, 1 resulted in models that would not converge. For actors

with relatively high outdegree over time, attribute levels across time were

rearranged to be constant or increasing. For actors with relatively low

outdegree over time, levels were rearranged to be constant or decreasing.

3. Randomly generate a 200 by 3 matrix of attribute levels for actors based

on a normal distribution (µ = 3, σ = 1), to avoid negative attribute levels.

Negative attribute levels are not allowed due to how attributes are stan-

dardized within the estimation routine. To ensure significant attribute

parameter estimates, the attribute levels within an actor were rearranged

to reflect the actor’s outdegree.

4. Choose a sample of the largest (200 by 200) network and attribute levels for

the smaller networks of size 25, 50, and 100. All samples needed to meet

the criteria set for the largest network and attribute files (convergence,

some significant structural and co-evolution parameter estimates). With

the difficulty involved with generating the 200 by 200 network that fit

all the criteria and with the relative stability seen in preliminary results,

larger networks were not considered.

5. For each number of actors included (25, 50, 100, and 200), 1000 models

were simulated for the structural model, 1000 models for the co-evolution

model with bernoulli generated attribute levels, and 1000 models for the

co-evolution model with normal generated attribute levels.1

1To gain some efficiency in estimation and capturing results, the simulation first ran for
the score test statistic and then for the entropy and Pseudo-Wald test statistics. The score
test statistic models ran quicker because of the restricted parameters but takes much longer
to gather results. The programming of the score test does not allow for directly obtaining
score test statistics, so the resulting output for each model run must be manually gathered
from an output text file. Both one-sided and two-sided score test statistics are provided for
each parameter, along with an overall joint score test (see Appendix A). Score test output
provides both a two-sided and one-sided test for each parameter estimate. The one-sided test
statistic is distributed standard normal. Squaring the one-sided test statistic produces the
two-sided test statistic, distributed chi squared. The focus of this analysis is on the one-sided
test because of the additional information provided on the sign of the statistic.
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6.3 Andrea Knecht’s Friendship Data

To validate simulation results using observed data, a dataset with

multiple time points was selected. This dataset is publicly available and

was investigated following the simulation to confirm findings on previously

collected data.

Knecht (2008) collected data on the co-evolution of friendship ties and

other attributes among 26 secondary school students. The data were col-

lected at four time points between September 2003 and June 2004. The

four time points were three months apart during the students’ first year

in secondary school. Several attributes (both endogenous and exogenous)

were concurrently collected. Attributes included gender, delinquency, al-

cohol use, age, ethnicity, religion, and attending the same primary school,

the first two that are highlighted in this paper.

The observed network captured responses to the question "Who are

your best friends in class?". This question was transformed into an adja-

cency matrix where the 26×26 matrix reports the relation of strong friend-

ship. For a delinquency measure, the researchers asked for frequency (us-

ing the categories "never", "once", "two to four times", "five to ten times"

and "more than 10 times") of stealing, vandalism, graffiti, and fighting in

the last three months. A delinquency scale was created by averaging the

four items, with values ranging from 1 (no delinquency) to 5 (very high

level of delinquency). Out of the 26 students in the observed classroom,

17 were female and 9 were male. One student left the classroom midway

through the year, resulting in structural zeros for the tie strength between

this student and all others following her departure.

The four diagrams in Figure 6.1 show how the friendship network and

delinquency measure change over the four observed time points. The shape

of the nodes reflects the gender of the student (males are squares, females

are circles) and the size of the nodes reflects the students’ delinquency

measure, where larger nodes have higher self-reported delinquency. Table

6.1 contains the parameters tested for inclusion.
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(a) Time 1 (b) Time 2

(c) Time 3 (d) Time 4

Figure 6.1: Knecht’s Friendship Data

Table 6.3: Statistics Included in Structural and Co-evolution Models for Knecht
Data
Parameter Network Statistic

Density (or out-degree) xi+ =
∑

j xij

Reciprocity
∑

j xijxji

Transitive Triplets
∑

j,h xijxihxjh

Number of 3-cycles
∑

j,h xijxjhxhi

Transitive Ties
∑

h xihmaxj(xijxjh

Out-degree Popularity (Square Root)
∑

i xij
√
xj+

Gender Alter
∑

j xijz
∗
j

Gender Ego
∑

j xijz
∗
i = z∗i xi+

Same Gender
∑

j xijI{z∗i = z∗j }

where I{z∗i = z∗j } = 1 if z∗i = z∗j and 0 otherwise

Similarity on Delinquency
∑

j xij(simij − sim)

Delinquency Linear Shape zi

Delinquency Quadratic Shape z2i

Average Similarity on Delinquency x−1
i+

∑n
j=1 xij(simz

ij)− ̂simz
ij)
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7 Simulation Results

This chapter presents the results from the simulation study. The

estimates associated with parameters were allowed to vary with each model

and supplemental results are included in Appendices B, C, and D.

7.1 Pseudo-Wald Test for Effect Inclusion

t-tests are included in the following results sections, along with a

subset of available Pseudo-Wald test statistics. A complete set of Wald

statistics for all possible combinations of parameters was calculated, but

a limited number were chosen for inclusion in the following chapters. All

model runs included in this analysis had a t-value for convergence less

than 0.2 for all non-fixed parameters. Model runs with poor convergence

were ignored in this study, though most of these model runs were from

networks with a larger number of actors. The important highlights of this

section are to understand the shape of the distribution of each parameter

t-test and the Wald tests and the direction of the parameter. Significant

versus nonsignificant results and the magnitude of scale are worth noting,

but are of secondary importance because of the dependence on the data.

The shape of distributions should be consistent across different input data

and the direction of the parameter estimate should be consistent within

models that have the same input data and included parameters.

7.1.1 Structural Model Results

The reciprocity t-test in Figure 7.1 displays consistent behavior for

models with 25 and more actors. All reported t-test values are large,
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Figure 7.1: Structural Model Pseudo-Wald - Reciprocity t-Test

and significantly greater than zero. The reciprocity t-test displays an ap-

proximately normal distribution when modeling each number of actors.

The values for all t-test statistics are positive, showing that the simulated

data display consistent reciprocity behavior, though of differing magni-

tude, where the size of the t-test increases as the number of actors in-

creases.

The transitive triplet t-test in Figure 7.2 displays similar distributional

shape as the reciprocity t-test in Figure 7.1. The transitive triplet t-test

does not provide consistent significant values. The most interesting be-

havior in the transitive triplet t-test distribution is the number of negative

t-tests reported. Most t-test values are reported as positive, with a small

subset having negative values. This behavior shows that on a number

of model runs, the transitive triplet parameter may be reported with the

opposite direction than is typically seen. The number of negative t-values

reported depends on the number of actors included in the model. Models

with 25 and 50 actors had fewer negative transitive triplet t-values re-

ported than models with 100 and 200 actors. While there were relatively

few model runs that had negative values, the presence of any negative

values reiterates the importance of running models multiple times when
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Figure 7.2: Structural Model Pseudo-Wald - Transitive Triplets t-Test

building a either network or co-evolution model.

The Pseudo-Wald statistic in Figure 7.3 includes information on all

effects tested in the structural model. The normal shape of the distri-

butions confirm that all parameter estimates are consistent and close to

one another. All reported Pseudo-Wald values are positive and significant

when compared to the critical χ2 value of 9.49 for four degrees of freedom,

calculated by the number of variables included in the test. In this statistic,

models appear to have a normal, significant distribution regardless of the

number of actors included in the model. By testing the reciprocity, tran-

sitive triplets, 3-cycles, and transitive ties parameters concurrently, this

Wald test provides evidence that the parameters are statistically different

than zero and the effects should be included in the model. The Q-Q plots

for this Pseudo-Wald statistic are included in Figure 7.4.

The scale of the reported Pseudo-Wald measures is one cause of con-

cern. As the sample sizes increases, the covariances of parameter estimates

become small, resulting in increasingly large Pseudo-Wald test statistics.

This behavior is displayed throughout most reported Pseudo-Wald tests.

Pseudo-Wald statistics for inclusion of the same parameter values increase
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Figure 7.3: Structural Model Pseudo-Wald - Reciprocity, Transitive Triplets,
3-Cycles, and Transitive Ties
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Figure 7.4: Structural Model Pseudo-Wald - Q-Q plots for Reciprocity, Transi-
tive Triplets, 3-Cycles, and Transitive Ties
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Figure 7.5: Structural Model Pseudo-Wald - Transitive Triplets, 3-Cycles, and
Transitive Ties

as the sample size increases. The degrees of freedom used in calculating

p-values for individual tests controls for only a small part of this relation-

ship.

The Pseudo-Wald statistic in Figure 7.5 tests the transitive triplets, 3-

cycles, and transitive ties parameters. When comparing the test statistics

in figures 7.3 and 7.5, the inclusion of the reciprocity parameter appears

to significantly increase the value of the Pseudo-Wald statistic, seen in the

range of reported values at each network size. The scale of the Wald test

in Figure 7.3 is much larger (for example, when n = 25, the median value

is around 105 compared with the median value of around 11 in Figure 7.5)

and has an additional degree of freedom. This large increase in magnitude

provides evidence of the importance of reciprocity in the model.

The Pseudo-Wald test for 3-cycles and transitive ties also continues

the pattern of distributional shape. For illustrative purposes, Figure 7.7

provides the distribution of p-values for the Wald test for 3-cycles and

transitive ties in Figure 7.6. Figure 7.8 provides the Q-Q plots for this

Wald test. Only models with n = 200 display findings consistent with a

significant test, though there is a number of reported tests reported as non-
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Figure 7.6: Structural Model Pseudo-Wald - 3-Cycles and Transitive Ties

significant. The shape of the distribution both for parameter estimates and

the associated p-values follow the expected pattern. Additional Pseudo-

Wald tests that display similar patterns are included in Appendix C.
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Figure 7.7: Structural Model Pseudo-Wald - 3-Cycles and Transitive Ties p-
values
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Figure 7.8: Structural Model Pseudo-Wald - Q-Q plots for 3-Cycles and Tran-
sitive Ties
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7.1.2 Co-evolution Model With Bernoulli Attribute

Results

The following two figures, Figure 7.9 and 7.10, provide examples of

the t-test distributions for parameters in the co-evolution model with

a bernoulli distributed attribute. Additional t-test distributions are in-

cluded in Appendix C. The structural model is assumed as the baseline

model, along with the attribute rate parameters for each time period and

a linear shape parameter, considered an intercept term for the attribute.
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Figure 7.9: Co-evolution Model With Bernoulli Attribute Pseudo-Wald -
Outdegree-Popularity (Square Root) t-Test

The outdegree-popularity (square root) t-tests in Figure 7.9 signal

that model size seems to play a part in the direction of the parameter.

For each network size, there are a number of model runs that produced

contradictory evidence about the direction of the parameter. For models

with varying number of actors, a number of model runs result in param-

eter estimates with the opposite direction. The shape of the distribution

approximates normal as the number of actors increases.

The attribute ego t-test distribution in Figure 7.10 shows non-significant

positive values for models with 25 actors, and non-significant negative
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Figure 7.10: Co-evolution Model With Bernoulli Attribute Pseudo-Wald - At-
tribute Ego t-Test

values for models with 50 actors. Models with 100 or more actors have

significant negative parameter estimates. The shape of the t-test distribu-

tion for models with 25 actors shows some model runs that display the a

non-significant negative effect, despite a similar pattern among standard

error estimates.

The Pseudo-Wald test statistic for all parameters available to be tested

in Figure 7.11 shows results consistent with previous patterns in reported

Pseudo-Wald values. The models with 50 or less actors have high p-values

corresponding to non-significant Wald statistics. The models with 100 or

more actors have low p-values, exceeding the threshold for significance.

Based on p-values less than 0.05, models with more actors support includ-

ing more effects. The distribution of the Wald test statistic that includes

all tested co-evolution parameters has more degrees of freedom that any

subsequently reported test. The behavior of this overall Wald test confirms

that the Wald test statistic statistic behaves as expected.

The Pseudo-Wald test statistic for a joint test in Figure 7.12 for at-

tribute alter, attribute ego, attribute same, and average similarity param-

eters provides conflicting information about inclusion depending on the
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Figure 7.11: Co-evolution Model With Bernoulli Attribute - Pseudo-Wald for
Outdegree-Popularity (Square Root), Attribute Alter, Attribute Ego, Attribute
Same, and Average Similarity

48



0 1 2 3 4 5 6 7

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

(a) Pseudo-Wald Test Statistic n=25

0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

(b) Pseudo-Wald P-value n=25

3.5 4.0 4.5 5.0 5.5 6.0 6.5

0.
0

0.
2

0.
4

0.
6

0.
8

(c) Pseudo-Wald Test Statistic n=50

0.2 0.3 0.4 0.5

0
2

4
6

(d) Pseudo-Wald P-value n=50

10 12 14 16 18

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

(e) Pseudo-Wald Test Statistic n=100

0.00 0.01 0.02 0.03 0.04 0.05

0
20

40
60

80
10

0

(f) Pseudo-Wald P-value n=100

0 200 400 600

0.
00

00
0.

00
05

0.
00

10
0.

00
15

0.
00

20
0.

00
25

(g) Pseudo-Wald Test Statistic n=200

0.00 0.01 0.02 0.03 0.04

0
10

0
20

0
30

0
40

0
50

0

(h) Pseudo-Wald P-value n=200

Figure 7.12: Co-evolution Model With Bernoulli Attribute - Pseudo-Wald for
Attribute Alter, Attribute Ego, Attribute Same, and Average Similarity
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Figure 7.13: Co-evolution Model With Normal Attribute Pseudo-Wald -
Outdegree-Popularity (Square Root) t-Test

size of the network. Smaller networks (n = 25 and 50) have nonsignificant

Wald test statistics, while larger networks (n = 100 and 200) reported

significant Wald test statistics. The distribution of the Wald test follows

the pattern seen when including other parameters. Additional Pseudo-

Wald tests are included in Appendix C that show similar distributional

patterns.

7.1.3 Co-evolution Model With Normal (µ = 3, σ = 1)

Attribute Results

This section presents the results of the simulation study that looked at

the Pseudo-Wald test statistics for a co-evolution model using an matrix

of attribute values that was generated from a normal (µ = 3, σ = 1) dis-

tribution. The same parameters are tested with the normal attribute that

were tested with a bernoulli attribute. Pseudo-Wald distributions that

follow the same pattern across different attributes may be less sensitive

and more immune to attribute change. This may mean that the test is

less likely to detect attribute changes.

50



−1.0 −0.5 0.0 0.5

0.
0

0.
5

1.
0

1.
5

2.
0

(a) n=25

0.6 0.8 1.0 1.2

0
1

2
3

4

(b) n=50

−40 −35 −30 −25 −20 −15

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

(c) n=100

−8.0 −7.5 −7.0 −6.5 −6.0 −5.5 −5.0 −4.5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

(d) n=200

Figure 7.14: Co-evolution Model With Normal Attribute Pseudo-Wald - At-
tribute Ego t-Test

The distribution of the t-test statistic values for the outdegree-popularity

(square root) parameter in Figure 7.13 has an expected pattern. The pa-

rameter estimates, and respective t-test estimates, provide different infor-

mation on the direction of the estimate. Each of the different sized models

displays a similar behavior. This finding was also seen in the co-evolution

models with a bernoulli attribute. A t-test distribution that covers both

positive and negative values shows that the results from model runs pro-

vide contradictory information.

The distribution of the attribute ego t-test in Figure 7.14 closely ap-

proximates a normal distribution, especially as the number of actors in-

creases. An obvious similarity between the t-test distribution for a normal

attribute and a bernoulli attribute exists across network sizes. Each net-

work with more than 25 actors results in t-test values that do not span

between negative and positive values, a good indication that consecutive

model runs will result in consistent results. As the number of actors in-

creases, less contradictory evidence is provided. Additional t-test and

Pseudo-Wald distributions are included in Appendix C.

The distribution of the Pseudo-Wald test statistic that includes all
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Figure 7.15: Co-evolution Model With Normal Attribute - Pseudo-Wald for
Outdegree-Popularity (Square Root), Attribute Alter, Attribute Ego, Attribute
Same, and Average Similarity
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available parameters in Figure 7.15 displays the expected approximately

normal shape. The significance of the Wald test varies between models

with different numbers of actors, but the overall shape of the distribution

describes the expected behavior. The possibility of a floor effect is appar-

ent when n = 25 in this and subsequent Pseudo-Wald test figures. When

the model uses data on 25 actors to model behavior, the Wald test seems

to have a number of values that are very low, almost at the minimum.

When this happens, the shape of the distribution appears to be exponen-

tial, but the shape is forced due to the restriction on possible values at

the low end.

Figure 7.16 shows the distribution for the Pseudo-Wald test for at-

tribute alter, attribute ego, attribute same, and average similarity that

follows a similar pattern of shape across models of increasing size. Models

with more actors have a normal shape to the distribution of values, with

the shape becoming more normal as the number of actors increases. As

the number of actors increases, the Pseudo-Wald test has more significant

model runs.

7.2 Score Test for Effect Inclusion

Critical values for score tests vary depending on the available degrees

of freedom. Joint score test for structural models have four degrees of

freedom, equivalent to a critical χ2 value of 9.49. Co-evolution models

have five degrees of freedom and a critical χ2 value of 11.07. Score tests

for individual parameters have one degree of freedom and critical χ2 value

of 3.84 for two-sided score tests. Transforming from a one-sided test to a

two-sided test can be accomplished by squaring the one-sided value. The

results provided focus on one-sided score test results for individual param-

eters. These one-sided values follow a standard normal distribution and

have a critical z value of ±1.96. The one-sided value provides additional

information on the direction of the parameter estimates.
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Figure 7.16: Co-evolution Model With Normal Attribute - Pseudo-Wald for
Attribute Alter, Attribute Ego, Attribute Same, and Average Similarity
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7.2.1 Structural Model Results

Score test results support the theory presented in Schweinberger (2007)

for network evolution models. The score test statistics are distributed ap-

proximately normal, signaling that the statistic is consistent and reliable

across model runs for a structural model. These results support the sim-

ulation study summarized in Schweinberger (2007), and support the use

of this statistic in models with structural components, not explored in

Schweinberger’s model. This section with structural model results is in-

cluded to display the consistency of findings with previous work. The

extension of the score test to include attributes does not apply to the

structural model, but does provide the basis for comparison later.

Joint score tests were calculated (in Figure 7.17) that include the

reciprocity, transitive triplets, 3-cycles, and transitive ties parameters (also

all individually tested). All of the individually tested parameters show a

nicely behaved normal distribution, with minimal skewness. All parameter

estimates have consistent direction within models with a specified number

of actors.
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Figure 7.17: Structural Model - Joint Score Test
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Figure 7.18: Structural Model - Reciprocity Score Test - one sided
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Figure 7.19: Structural Model - Transitive Triplet Score Test - one sided

56



−0.35 −0.30 −0.25 −0.20 −0.15

0
2

4
6

8
10

12
14

(a) n=25

6.0 6.2 6.4 6.6 6.8

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

(b) n=50

13.5 14.0 14.5 15.0 15.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

(c) n=100

36 37 38 39 40 41
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5

(d) n=200

Figure 7.20: Structural Model - 3-cycles Score Test - one sided
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Figure 7.21: Structural Model - Transitive Ties Score Test - one sided
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7.2.2 Co-evolution Model With Bernoulli Attribute

Results

Score test results support the theory presented in Section 4.2 of this

paper. The score test statistics are distributed approximately normal,

signaling that the statistic is consistent and reliable across model runs.

These results support the extension of the score test to co-evolution mod-

els, particularly for the inclusion of attribute information. This extension

and simulations results provide the theoretical framework for the use of

the score test in additional applications beyond structural models.

Joint score tests were calculated that include the alter attribute, ego

attribute, outdegree-popularity (square root), same attribute, and average

similarity parameters (all also individually tested). The shape of the dis-

tributions seen in the Figures 7.22, 7.23 and in Appendix B have a strong

relationship with the number of actors. For one-sided tests of individ-

ual parameters, the test statistics theoretically follow a standard normal

distribution. All score tests for the co-evolution model with a bernoulli

attribute follow a normal pattern (histograms provided in Appendix B).
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Figure 7.22: Co-evolution Model With Bernoulli Attribute - Joint Score Test
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Figure 7.23: Co-evolution Model With Bernoulli Attribute - Attribute Alter
Score Test - one sided

7.2.3 Co-evolution Model With Normal (µ = 3, σ = 1)

Attribute Results

The results from this section mirror the findings from the previous co-

evolution model that used a bernoulli distributed attribute. The results

for each size of network cluster together, though some of the distribu-

tions display a slight skewness, especially in the scenarios where n = 25.

Distributions of score test estimates for certain parameters are mirror im-

ages of each other across the two attributes. For example, the outdegree-

popularity one-sided score test is indistinguishable between the two models

(see in Figures B.28 and B.52). The score test appears to be consistent in

the extension to a co-evolution model across attributes with different dis-

tributions. These findings support the use of the score test when modeling

the co-evolution of network structure and attributes. The joint score test

in Figure 7.24 and the attribute alter score test in Figure 7.25 are used to

show the shape of the distributions seen in other parameters (included in

Appendix B).
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Figure 7.24: Co-evolution Model With Normal Attribute - Joint Score Test
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Figure 7.25: Co-evolution Model With Normal Attribute - Attribute Alter Score
Test - one sided
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7.3 Entropy-based Goodness-of-fit Test

The results of four models are compared in this section. The baseline

model includes rate, density, reciprocity, and transitive triplets parame-

ters. The structural model consists of the same parameters included in

previous structural analysis - rate, density, reciprocity, transitive triplets,

3-cycles, and transitive ties. Two models consider co-evolution parameters:

a model with all parameters from the structural model plus outdegree-

popularity (square root), attribute alter, attribute ego, attribute rate,

and linear shape, and a full co-evolution model comparable to the pre-

vious analysis. Each model has separate entropy measures for each time

period, where time period is the difference between two consecutive ob-

servations. When the rate parameter is somewhat constant across time

periods, this measure can be averaged to find an overall measure of model

fit. For the most general case, in this study the rate parameters were not

assumed to be constant across time. The entropy-based goodness-of-fit

values range from 0 to 1 where a measure of 1 indicates perfect model fit.

7.3.1 Structural Model Results

For the base model in Figure 7.26, time 1 fit statistics appear rather

constant, normally distributed for models with any number of actors.

Time 2 fit statistics also appear rather constant and normal, with a slightly

higher fit than the time 1 results. For the structural model in Figure 7.27,

the shape of the distribution mirrors the shape seen in the base model, but

there is a shift in values where structural model fit statistics are higher

than the respective base fit statistics.
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Figure 7.26: Entropy Base Model
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Figure 7.27: Entropy Structural Model
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7.3.2 Co-evolution Model Results

For structural and additional parameters (structural plus), models for

both bernoulli attribute in Figure 7.28 and normal attribute in Figure

7.30, fit statistics are higher than the structural model and similar in

shape and value. It appears that based on the entropy fit statistics, the

structural plus model fits similarly well for both types of attributes. The

co-evolution models for both bernoulli attribute in Figure 7.29 and normal

attribute in Figure 7.31 have similar shape and values, and show higher

values than each respective structural plus model.
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Figure 7.28: Entropy Structural Plus Model - Bernoulli Attribute
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Figure 7.29: Entropy Co-evolution Model - Bernoulli Attribute
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Figure 7.30: Entropy Structural Plus Model - Normal Attribute
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Figure 7.31: Entropy Co-evolution Model - Normal Attribute
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7.4 Knecht’s Friendship Data

7.4.1 Pseudo-Wald Test Results

Based on of the t-test and Pseudo-Wald test statistics, a strong case

can be made for the inclusion of all tested parameters in the structural

model. The distributions of t-test statistics are all positive and signif-

icantly different than zero, along with all reported Wald statistics and

p-values were well under the guideline of p < 0.05
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Figure 7.32: Structural Model Pseudo-Wald - Knecht Data - Structural Model
t-Tests
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Figure 7.33: Structural Model Pseudo-Wald - Knecht Data - Reciprocity, Tran-
sitive Triplets, 3-cycles, and Transitive Ties

Results from the Pseudo-Wald test for the co-evolution model do not

support inclusion of all available parameters. Using the structural model
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Figure 7.34: Structural Model Pseudo-Wald - Knecht Data - Transitive Triplets,
3-cycles, and Transitive Ties

from above as the baseline model, the t-test statistic distributions suggest

the outdegree-popularity parameter is the only t-test that would have

strong evidence for inclusion in the model. The p-value distributions from

the Wald tests provide quality information about how often a parameter

or set of parameters would be included or removed. With p-values both

above and below the p = 0.05 standard cut-off, the t-test values and Wald

statistics vary among model runs, providing somewhat contradictory find-

ings. As an example, the Wald test statistic in Figure 7.36 has a large

majority of observations below the p = 0.05 cut-off, signaling that overall,

all tested parameters should be included in the model. While a large ma-

jority are below the cut-off, there are still several model runs that resulted

in resulted in non-significant Pseudo-Wald test statistics, and in the case

of a few non-significant Pseudo-Wald test statistics, contributing to Type

2 error. This behavior is mirrored in several other reported Pseudo-Wald

statistics.
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Figure 7.35: Co-evolution Model Pseudo-Wald - Knecht Data - Co-evolution
Model t-Tests
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Figure 7.36: Co-evolution Model - Knecht Data - Pseudo-Wald for Outdegree-
Popularity, Gender Alter, Gender Ego, Same Gender, Similarity on Delinquency,
Quadratic Shape, and Average Similarity on Delinquency
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Figure 7.37: Co-evolution Model - Knecht Data - Pseudo-Wald for Outdegree-
Popularity and Gender Alter

5 10 15 20 25 30 35

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

(a) Pseudo-Wald Test Statistic

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
2

4
6

8
10

12

(b) Pseudo-Wald P-value

Figure 7.38: Co-evolution Model - Knecht Data - Pseudo-Wald for Gender Alter,
Gender Ego, Same Gender, Similarity on Delinquency, Quadratic Shape, and
Average Similarity on Delinquency
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Figure 7.39: Co-evolution Model - Knecht Data - Pseudo-Wald for Gender Alter,
Gender Ego, Same Gender, Similarity on Delinquency, and Quadratic Shape
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Figure 7.40: Co-evolution Model - Knecht Data - Pseudo-Wald for Gender Alter,
Gender Ego, Same Gender, and Similarity on Delinquency
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Figure 7.41: Co-evolution Model - Knecht Data - Pseudo-Wald for Gender Alter,
Gender Ego, and Same Gender
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Figure 7.42: Co-evolution Model - Knecht Data - Pseudo-Wald for Same Gen-
der, Similarity on Delinquency, Quadratic Shape, and Average Similarity on
Delinquency
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Figure 7.43: Co-evolution Model - Knecht Data - Pseudo-Wald for Same Gender,
Similarity on Delinquency, and Quadratic Shape

73



7.4.2 Score Test Results - Structural and

Co-evolution Model

The following score test results for the structural and co-evolution

models support the findings of Schweinberger (2007), and the extension

to a co-evolution model from Section 4.2 of this paper. The score test

is well-behaved for the joint test and tests of individual parameters, and

reports values that cluster together in a distribution that appears normal.

The Knecht data set has a structural model identical to the simulation,

but has additional tested parameters in the co-evolution model. The joint

score test for the structural model has four degrees of freedom and a critical

χ2 value of 9.49, while the joint score test for the co-evolution model has

seven degrees of freedom and a critical χ2 value of 14.07.
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Figure 7.44: Structural Model Score - Knecht Data
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Figure 7.45: Co-evolution Model Score - Knecht Data
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7.4.3 Entropy-based Test Results

Entropy-based fit statistics presented in the following two sets of fig-

ures shows the expected pattern for this fit statistic. Across time, the

fit of the model varies to a small degree, providing evidence that averag-

ing the fit measure over time may provided accurate results. Looking at

one time point across models, the more parameters that are included in a

model, the higher the value of the fit measure. There is a noticeable shift

in values between the base and structural models, providing evidence that

the structural model fits the data better than the base model. Comparing

the structural and structural plus models, there is not a large difference

in the fit between these two models, mirroring results from the other mea-

sures considered in this paper. Adding parameters to the structural plus

model to obtain the full co-evolution model, there is another increase in

entropy-based test statistics, again mirroring findings from previous mea-

sures. The entropy-based measure shows that when parameters that have

evidence for inclusion either from the Pseudo-Wald or score tests are added

to the model, the model has increased fit.
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Figure 7.46: Knecht Data - Entropy Base and Structural Models
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Figure 7.47: Knecht Data - Entropy Structural Plus and Co-evolution Models
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7.4.4 Summary of Knecht Results
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8 Discussion

The bell shaped distribution of t-test statistics in models confirms

Snijders’ (1996) proposal that states the behavior of this Pseudo t-test is

approximately normally distributed. The standard errors for models with

25 actors have larger values and a number of outlier observations, a result

of limited information and greater variability within the estimation tech-

nique. When more information is available, either for additional actors or

attributes, modeling consistent behaviors improves. The behavior of t-test

distributions show that on a small number of model runs, the parameter

estimate may be reported with opposite direction than is typically seen.

While there were relatively few model runs that had opposite signs, the

presence of any values with unexpected signs reiterates the importance of

multiple model runs when building a model. This pattern of unexpected

negative values for t-test statistics disappeared in Pseudo-Wald test statis-

tics when considering the same parameters.

The Pseudo-Wald statistic behaves in expected ways as the number

of actors increases. Even in the simulation with 100 actors, the stan-

dard errors for parameter estimates become so small that most t-values

for paramters were significant. When two or more of these parameters are

combined into a Pseudo-Wald test, the test statistics become very large,

very quickly. For example, in the co-evolution model with a normally dis-

tributed attribute Pseudo-Wald test simulation, every model run resulted

in a significant Pseudo-Wald joint test statistic. The degrees of freedom

used in calculating p-values for individual Pseudo-Wald tests does not

account for much of this relationship.

The Pseudo-Wald tests for a variety of subsets of possible parameters

were presented in Chapter 7. The Pseudo-Wald test part of the simulation
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study revealed some interesting and unexpected behaviors. The more

parameters included, the less an impact an individual parameter will have,

though highly significant parameters will continue to have a large influence

on the test.

Future work on transforming the Pseudo-Wald test statistic to better

mediate this relationship would increase the proposed measure’s usability.

The systematic relationship between the magnitude of the Pseudo-Wald

and the number of parameters tested should be further researched. The

fewer the parameters tested, the less this relationship is apparent. The

relationship between the Pseudo-Wald test statistic and the size of the net-

work should be more appropriately controlled. As the number of actors

increases, the covariances of and between parameter estimates becomes

smaller resulting in Pseudo-Wald test statistics of increasing magnitude.

For use in applications, this suggests that testing a small subset of param-

eters at a time may provide better information for parameter inclusion.

The score test results support the theory presented in Section 4.2 of

this paper, for both structural and co-evolution models. This extension

provides the theoretical framework for the use of the score test in applica-

tions beyond structural models. The score test statistics are distributed

approximately normal, signaling that the statistic is consistent and reli-

able across model runs. These results support the extension of the score

test to co-evolution models, for the inclusion of attribute information.

The entropy-based goodness-of-fit measure displayed expected behav-

ior across models of different sizes in the simulation study. Models with

fewer actors had fit statistics that were lower and had greater variance. As

parameters were added to the model, the model fit increased. The pattern

seen in this measure confirm the recommendations of effect inclusion of

the Pseudo-Wald and score test results, though in a different manner. The

Pseudo-Wald and score tests are measures for effect inclusion, while the

entropy-based measure allows for model fit comparisons.

Vexler and Gurevich (2010) warn of applying goodness-of-fit tests

based on sample entropy to real data studies. The power of entropy-
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based tests may be affected by sample entropy estimation, particularly in

testing distributional assumptions of normality and uniformity. However,

the results from the simulation based on the Knecht data set did not raise

concerns when applying this entropy-based goodness-of-fit statistic to real

data.

It is interesting to note the connection between a Bayesian approach

and the use of an entropy-based goodness-of-fit measure. The principle

of maximum entropy in Bayesian probability states that the probabil-

ity distribution that best represents the current state of knowledge has

the largest entropy. The entropy measure proposed in this paper can be

adapted to a Bayesian estimation technique, when that approach becomes

more widely used for co-evolution network models. The entropy measure

is calculated from the Metropolis-Hastings algorithm approach used in

the method of moments estimation technique. Because the Gibbs sam-

pling of Bayesian estimation is a special case of the Metropolis-Hastings

algorithm, altering this entropy goodness-of-fit measure in future work to

use Bayesian estimation would not be difficult. Overall, this proposed

entropy-based goodness-of-fit measure provides information about how

well a model fits the data. The efficiency and power of this measure

need to be further studied, but preliminary results presented here signal

the usefulness of the measure.

Because the Pseudo-Wald for all parameters and joint score test are

asymptotically equivalent to the likelihood ratio test, the comparison of

the two should validate for the asymptotic equivalence of the two measures.

The Pseudo-Wald test in Figure 7.3 and joint score test in Figure 7.17 for

the structural model both have similar shape, though the relationship of

the values depends on the number of actors in the model. For models with

25 actors, the score test has lower values than the Pseudo-Wald test (a

mean of about 58 versus 105), but has higher values for models with more

than 25 actors. The values of the tests allow a decision to be made about

effect inclusion, though at a certain point the difference between p-values is

so small that values are indistinguishable. A similar relationship between
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the Pseudo-Wald and score test can also be seen in both of the co-evolution

models. The entropy-based goodness-of-fit measure provides one source of

information about how well the overall model fits the data, a different test

than those for effect inclusion. When building a model, multiple sources of

information should be considered when determining what effects should be

included. When using a method of moments estimation approach, using

the Pseudo-Wald test, the score test, and the entropy-based test together

would help the researcher make informed decisions.

The main focus of this paper was to compare the proposed measures

with currently available measures. Goodness-of-fit measures will become

available with the development of additional estimation techniques. How-

ever, recent developments in the Bayesian (Koskinen, 2004; Koskinen &

Snijders, 2007) and Maximum Likelihood estimation (Snijders, Steglich,

& Schweinberger, 2009) methods will lead to additional goodness-of-fit

possibilities. An approximated likelihood function in the Maximum Like-

lihood estimation procedure will allow for an alternative way of estimating

co-evolution models and will present additional measures of model fit.

Snijders (2001) used a method of moments approach for continuous

time Markov models to estimate longitudinal network data models. The

panel data available and prior work done on Markov models for longitu-

dinal network analysis make continuous time Markov models a natural

choice for a framework for actor-based co-evolution models. The method

of moments approach gives an easy estimation technique that can lay the

foundation for future development. Although the method of moments ap-

proach can be used for estimation, new approaches have advantages over

this initially proposed technique. Bayesian (Koskinen, 2004; Koskinen &

Snijders, 2007) and Maximum Likelihood estimation (Snijders, Steglich &

Schweinberger, 2009) approaches offer unique and shared benefits over a

method of moments approach. With actors that change connections and

attributes over time, Bayesian inference seems a natural fit for co-evolution

models. Bayesian methods have theoretical and applied benefits when

compared to the alternative estimation methods. Bayesian methods allow
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for improved estimation with a small increase in computation time. The

randomly generated networks needed for the estimation process adapted

in this paper can be used as a Gibbs sample in a Bayesian approach.

Gibbs sampling is a special case of the more general Metropolis-Hastings

approach taken in this paper and in the estimation of Exponential Family

of Random Graph Models (ERGMs).

Both the Bayesian and Maximum Likelihood approaches have asymp-

totic advantages, although the asymptotic behavior of the three estimation

techniques is not well understood. On a practical note, using the method

of moment estimation technique in the specification of a prior distribution

in Bayesian estimation would provide the benefit of an educated guess for

starting parameters.

The R2 for Maximum Likelihood estimation outlined in this paper can

be applied once the Maximum Likelihood estimation technique is incorpo-

rated into the RSiena package and becomes more widely used. For now,

the fit measure is unavailable for use, but as the methodology becomes

more widely adopted, its use seems straightforward and desirable. The

adoption of the Maximum Likelihood estimation and the use of Bayesian

estimation will be seen with increased frequency.

Further work could also look at the behavior of models for networks

with between 25 and 50 actors. Many of the reported results showed that

models with 25 actors behaved differently than models with 50 or more

actors. A more detailed look could help us understand for understanding

of how large a network must be to begin seeing consistent results. Simu-

lating network and attribute data for networks varying between 25 and 50

would allow for conclusions about when distributions appear as expected,

and when unexpected results such as non-normal distributions no longer

appear in model results.

To ensure significant attribute parameter estimates, the attribute levels

within an actor were rearranged to loosely reflect the actor’s network ac-

tivity, measured by outdegree. Without this crucial reordering, none of the

parameters would have been significant significant when the model con-
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verged. For example, multiple actors with attribute levels 0, 1, 0 or 1, 0, 1

resulted in models that would not converge. For actors with relatively

high outdegree over time, attribute levels across time were rearranged to

be constant or increasing. For actors with relatively low outdegree over

time, levels were rearranged to be constant or decreasing.

Given how the network and attributes were randomly created, there

was no way to tell what parameters would show interesting results in a

sensitivity analysis. Parameter estimates that are either very significant

or never significant would not display interesting behavior. Future work

should include a sensitivity analysis, taking a detailed look at when a

parameter estimate alternates between inclusion and removal in the final

model. A sensitivity analysis provides information on how varying the

inputs into a model affect the outcomes of a model. The sensitivity of

each goodness-of-fit measure could explored by comparing the number

of instances a significant parameter is correctly included in the model.

Measures that are sensitive to small changes in the standard error of the

associated statistic may be too responsive to change. Measures that are

not sensitive enough lack the ability to differentiate among models and

ignore the preference for a parsimonious model.

The main goals of this dissertation were

(a) to extend Snijders’ Pseudo t-test statistic to a Pseudo-Wald test

statistic,

(b) to extend Schweinberger’s score test to a co-evolution model frame-

work,

(c) to propose an entropy-based goodness-of-fit measure for actor-based

co-evolution models,

(d) to propose a generalized R2 measure for use with Maximum Likeli-

hood estimation, and

(e) to conduct a simulation study to determine the behaviors and per-

formance of measures.
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Each of these goals was addressed in previous chapters 5, 6, and 7.

Results from the simulation study confirm the behavior of the measures

for effect inclusion and goodness-of-fit discussed. Some results highlight

the need for future research. For example, one area for future work should

address the behavior of parameters when both structural parameters and

parameters capturing co-evolution are jointly tested. The simulation here

dealt with structural parameters in the structural model and co-evolution

parameters (assuming structural effects were included) in the co-evolution

model. The real advantage of the work presented in this paper is the ability

to test parameters across both types of models concurrently. With an

appropriate approach to building a model, this advancement will shorten

the time it takes to build a model using a forward selection technique.
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A RSiena Code and Output

A.1 RSiena Score Test Example Code

The following R code produces 20 co-evolution model runs with 25 actors,

a bernoulli attribute, and reporting the score test statistic results.

library(RSiena)

n<-20

setwd(’C:/Documents and Settings/Bethany/Desktop/sim/’)

time1<-as.matrix(read.table("time1.txt"))

time2<-as.matrix(read.table("time2.txt"))

time3<-as.matrix(read.table("time3.txt"))

sim25time1<-time1[88:112,88:112]

sim25time2<-time2[88:112,88:112]

sim25time3<-time3[88:112,88:112]

att200<-as.matrix(read.table("att200u.txt"))

att25<-att200[88:112,]

at25<-sienaNet(att25,type=’behavior’)

sim25<-sienaNet(array(c(sim25time1,sim25time2,sim25time3),dim=c(25,25,3)))

projs <- paste(’sim25’, 1:20, sep=’’)

ans <- vector(’list’,20)

mydata<-sienaDataCreate(sim25,at25)

setwd(’C:/Documents and Settings/Bethany/Desktop/sim/sim25cb/round1/’)

myeff<-getEffects(mydata)

myeff[myeff$effectName==’outdegree(density)’ & myeff$type==’eval’,

’include’]=TRUE

myeff[myeff$effectName==’reciprocity’ & myeff$type==’eval’,

’include’]=TRUE
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myeff[myeff$effectName==’transitive triplets’ & myeff$type==’eval’,

’include’]=TRUE

myeff[myeff$effectName==’3-cycles’ & myeff$type==’eval’,’include’]

=TRUE

myeff[myeff$effectName==’transitive ties’ & myeff$type==’eval’,

’include’]=TRUE

myeff[myeff$effectName==’outdegree - popularity (sqrt)’ &

myeff$type==’eval’,’include’]=TRUE

myeff[myeff$effectName==’outdegree - popularity (sqrt)’ &

myeff$type==’eval’,’fix’] <- TRUE

myeff[myeff$effectName==’outdegree - popularity (sqrt)’ &

myeff$type==’eval’,’test’] <- TRUE

myeff[myeff$effectName==’outdegree - popularity (sqrt)’ &

myeff$type==’eval’,

’initialValue’] <- 0

myeff[myeff$effectName==’at25 alter’ & myeff$type==’eval’,

’include’]=TRUE

myeff[myeff$effectName==’at25 alter’ & myeff$type==’eval’,

’fix’] <- TRUE

myeff[myeff$effectName==’at25 alter’ & myeff$type==’eval’,

’test’] <- TRUE

myeff[myeff$effectName==’at25 alter’ & myeff$type==’eval’,

’initialValue’] <- 0

myeff[myeff$effectName==’at25 ego’ & myeff$type==’eval’,

’include’]=TRUE

myeff[myeff$effectName==’at25 ego’ & myeff$type==’eval’,

’fix’] <- TRUE

myeff[myeff$effectName==’at25 ego’ & myeff$type==’eval’,

’test’] <- TRUE

myeff[myeff$effectName==’at25 ego’ & myeff$type==’eval’,

’initialValue’] <- 0

myeff[57,9]=TRUE
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myeff[57,11]=TRUE

myeff[57,12]=TRUE

myeff[57,13]=0

myeff[myeff$effectName==’behavior at25 linear shape’ &

myeff$type==’eval’,’include’]=TRUE

#myeff[myeff$effectName==’behavior at25 quadratic shape’ &

myeff$type==’eval’,’include’]=TRUE

#myeff[myeff$effectName==’behavior at25 quadratic shape’ &

myeff$type==’eval’,’fix’] <- TRUE

#myeff[myeff$effectName==’behavior at25 quadratic shape’ &

myeff$type==’eval’,’test’] <- TRUE

#myeff[myeff$effectName==’behavior at25 quadratic shape’ &

myeff$type==’eval’,

’initialValue’] <- 0

myeff[myeff$effectName==’behavior at25 average similarity’ &

myeff$type==’eval’,’include’]=TRUE

myeff[myeff$effectName==’behavior at25 average similarity’ &

myeff$type==’eval’,’fix’] <- TRUE

myeff[myeff$effectName==’behavior at25 average similarity’ &

myeff$type==’eval’,’test’] <- TRUE

myeff[myeff$effectName==’behavior at25 average similarity’ &

myeff$type==’eval’,

’initialValue’] <- 0

for(i in 1:n){

mymodel25<-sienaModelCreate(useStdInits=TRUE,projname=projs[i])

print01Report(mydata,myeff,modelname = ’sim25’)

ans[[i]]<-siena07(mymodel25,data=mydata,effects=myeff,

batch=FALSE,verbose=TRUE)}

answer1<-cbind(ans[[1]]$theta,diag(ans[[1]]$covtheta),ans[[2]]$theta,

diag(ans[[2]]$covtheta),ans[[3]]$theta,diag(ans[[3]]$covtheta),

ans[[4]]$theta,diag(ans[[4]]$covtheta),ans[[5]]$theta,
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diag(ans[[5]]$covtheta),ans[[6]]$theta,diag(ans[[6]]$covtheta),

ans[[7]]$theta,diag(ans[[7]]$covtheta),ans[[8]]$theta,

diag(ans[[8]]$covtheta),ans[[9]]$theta,diag(ans[[9]]$covtheta),

ans[[10]]$theta,diag(ans[[10]]$covtheta),ans[[11]]$theta,

diag(ans[[11]]$covtheta),ans[[12]]$theta,diag(ans[[12]]$covtheta),

ans[[13]]$theta,diag(ans[[13]]$covtheta),ans[[14]]$theta,

diag(ans[[14]]$covtheta),ans[[15]]$theta,diag(ans[[15]]$covtheta),

ans[[16]]$theta,diag(ans[[16]]$covtheta),ans[[17]]$theta,

diag(ans[[17]]$covtheta),ans[[18]]$theta,diag(ans[[18]]$covtheta),

ans[[19]]$theta,diag(ans[[19]]$covtheta),ans[[20]]$theta,

diag(ans[[20]]$covtheta))

write.table(answer1, file ="answer1.csv", sep = ",", col.names = NA)

A.2 RSiena Output

The following is included as an example of what RSiena supplies as output

following a model run. Again, this example was for a co-evolution model

with three time points, 25 actors, a bernoulli attribute level, and reporting

the score test statistic results. Following the output is a brief description

of important parts.

-----------------------------------

New Analysis started.

Date and time: 18/03/2010 13:29:52

New results follow.

-----------------------------------

Siena version 1.0.9 (18 Jan 10) R-forge revision: 52

@1

Estimation by stochastic approximation algorithm.
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=================================================

Random initialization of random number stream.

Current random number seed is 39458.

Model Type 1: Standard actor-oriented model

Estimation method: unconditional moment estimation.

Time duration for simulations in each period is 1.0.

Standard errors are estimated with the likelihood ratio method.

Initial value of gain parameter is 0.2000000.

Number of subphases in Phase 2 is 4.

Initial parameter values are

1. rate: constant sim25 rate (period 1) 4.5840

2. rate: constant sim25 rate (period 2) 2.6705

3. eval: outdegree (density) -0.2292

4. eval: reciprocity 0.0000

5. eval: transitive triplets 0.0000

6. eval: 3-cycles 0.0000

7. eval: transitive ties 0.0000

8. eval: outdegree - popularity (sqrt) 0.0000(fixed)

9. eval: at25 alter 0.0000(fixed)

10. eval: at25 ego 0.0000(fixed)

11. eval: same at25 0.0000(fixed)

12. rate: rate at25 (period 1) 0.3800

13. rate: rate at25 (period 2) 0.6200

14. eval: behavior at25 linear shape 0.6105

15. eval: behavior at25 average similarity 0.0000(fixed)

Observed values of target statistics are

1. Amount of network change in period 1 55.0000
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2. Amount of network change in period 2 32.0000

3. Number of ties 252.0000

4. Number of reciprocated ties 216.0000

5. Number of transitive triplets 442.0000

6. 3-cycles 149.0000

7. Number of ties with transitive closure 208.0000

8. Sum of indegrees x sqrt(outdegree) 636.2672

9. Sum of indegrees x at25 -40.5200

10. Sum of outdegrees x at25 -34.5200

11. Same values on at25 160.0000

12. Amount of behavioral change in period 1 on at25 7.0000

13. Amount of behavioral change in period 2 on at25 13.0000

14. beh. at25 cent. sum 3.6667

15. beh. at25 average similarity 1.3017

15 parameters, 15 statistics

Estimation of derivatives by the LR method (type 1).

@2

End of stochastic approximation algorithm, phase 3.

---------------------------------------------------

Total of 3074 iterations.

Parameter estimates based on 2074 iterations,

convergence diagnostics, covariance and derivative

matrices based on 1000 iterations.

Information for convergence diagnosis.

Averages, standard deviations, and t-ratios for

deviations from targets:

1. -0.0990 6.9082 -0.0143
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2. -0.3210 5.9138 -0.0543

3. -0.2640 9.8531 -0.0268

4. -0.4700 11.7573 -0.0400

5. 4.7480 53.8898 0.0881

6. -1.5320 18.3439 -0.0835

7. -0.7090 14.4323 -0.0491

8. -8.0428 35.1712 -0.2287 (fixed parameter)

9. 6.8216 3.7002 1.8436 (fixed parameter)

10. 3.9766 3.9107 1.0169 (fixed parameter)

11. -9.8610 7.1906 -1.3714 (fixed parameter)

12. -0.0180 2.0823 -0.0086

13. -0.2620 2.4983 -0.1049

14. -0.1380 3.3042 -0.0418

15. -3.2063 2.1965 -1.4597 (fixed parameter)

Good convergence is indicated by the t-ratios

of non-fixed parameters being close to zero.

@2

Estimation Results.

-------------------

Regular end of estimation algorithm.

Total of 3074 iteration steps.

@3

Estimates and standard errors

Network Dynamics

1. rate: constant sim25 rate (period 1) 2.6765( 0.3933)

2. rate: constant sim25 rate (period 2) 2.8685( 0.7683)
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3. eval: outdegree (density) -2.9199( 0.4324)

4. eval: reciprocity 4.6090( 0.5973)

5. eval: transitive triplets -0.2129( 0.2558)

6. eval: 3-cycles 0.6265( 0.5061)

7. eval: transitive ties 0.2055( 0.3295)

8. eval: outdegree - popularity (sqrt) 0.0000( fixed )

9. eval: at25 alter 0.0000( fixed )

10. eval: at25 ego 0.0000( fixed )

11. eval: same at25 0.0000( fixed )

Behavior Dynamics

12. rate: rate at25 (period 1) 0.7489( 0.4667)

13. rate: rate at25 (period 2) 4.1803( 9.1345)

14. eval: behavior at25 linear shape 0.2753( 0.5091)

15. eval: behavior at25 average similarity 0.0000( fixed )

@3

Covariance matrices

(Values of the covariance matrix of estimates

are meaningless for the fixed parameters.)

Covariance matrix of estimates (correlations below diagonal):

0.155 0.020 -0.043 0.038 -0.008 0.026

-0.013 12.980 12.980 12.980 12.980 0.005

-0.212 0.004 12.980

0.067 0.590 -0.087 0.070 -0.005 0.003

-0.022 25.353 25.353 25.353 25.353 -0.002

-1.980 0.065 25.353

-0.253 -0.261 0.187 -0.135 0.012 -0.051

-0.024 14.269 14.269 14.269 14.269 0.010

0.441 -0.015 14.269
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0.163 0.152 -0.524 0.357 -0.050 0.121

-0.023 19.712 19.712 19.712 19.712 0.005

1.174 -0.047 19.712

-0.079 -0.028 0.109 -0.330 0.065 -0.119

-0.019 8.443 8.443 8.443 8.443 0.000

-0.276 0.010 8.443

0.131 0.007 -0.234 0.399 -0.922 0.256

-0.003 16.702 16.702 16.702 16.702 0.008

0.883 -0.036 16.702

-0.102 -0.088 -0.169 -0.116 -0.221 -0.019

0.109 10.874 10.874 10.874 10.874 -0.006

0.298 -0.004 10.874

1.044 0.688 2.415 0.687 2.065 2.063

1.246 999.000 134.864 134.864 134.864 33.000

12.980 16.702 134.864

2.039 0.448 1.127 1.343 1.345 0.963

2.434 0.130 999.000 129.502 129.502 15.400

25.353 10.874 129.502

1.148 1.359 22.057 0.756 4.081 18.844

1.370 0.125 0.125 999.000 124.653 301.438

14.269 33.000 124.653

1.586 1.359 1.229 1.044 4.081 1.050

1.893 0.190 0.190 0.190 999.000 16.801

19.712 33.000 189.571

0.029 -0.007 0.050 0.020 -0.003 0.035

-0.040 1.044 1.044 1.044 1.044 0.218

0.895 -0.088 15.400

-0.059 -0.282 0.112 0.215 -0.118 0.191

0.099 1.044 1.044 1.044 1.044 0.210

83.439 -3.197 301.438

0.019 0.167 -0.067 -0.154 0.080 -0.141

-0.024 1.044 1.044 1.044 1.044 -0.371
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-0.688 0.259 16.801

0.679 1.359 2.415 0.447 4.081 2.063

0.811 0.190 0.190 0.190 0.190 2.237

0.029 2.051 999.000

Derivative matrix of expected statistics X by parameters and

covariance/correlation matrix of X can be found using

summary(ans) within R, or by using the ’verbose’ option

in Siena07.

@2

Generalised score test <c>

--------------------------

Testing the goodness-of-fit of the model restricted by

(1) eval: outdegree - popularity (sqrt) = 0.0000

(2) eval: at25 alter = 0.0000

(3) eval: at25 ego = 0.0000

(4) eval: same at25 = 0.0000

(5) eval: behavior at25 average similarity = 0.0000

_________________________________________________

Joint test:

-----------

c = 9.9686 d.f. = 5 p-value = 0.0761

(1) tested separately:

-----------------------

- two-sided:

c = 1.3610 d.f. = 1 p-value = 0.2434

- one-sided (normal variate): 1.1666
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(2) tested separately:

-----------------------

- two-sided:

c = 3.6375 d.f. = 1 p-value = 0.0565

- one-sided (normal variate): -1.9072

(3) tested separately:

-----------------------

- two-sided:

c = 0.8482 d.f. = 1 p-value = 0.3570

- one-sided (normal variate): -0.9210

(4) tested separately:

-----------------------

- two-sided:

c = 3.3503 d.f. = 1 p-value = 0.0672

- one-sided (normal variate): 1.8304

(5) tested separately:

-----------------------

- two-sided:

c = 2.1721 d.f. = 1 p-value = 0.1405

- one-sided (normal variate): 1.4738

_________________________________________________

One-step estimates:

rate: constant sim25 rate (period 1) 2.7622

rate: constant sim25 rate (period 2) 3.1488

eval: outdegree (density) -4.8520

eval: reciprocity 4.7641

eval: transitive triplets -0.5671
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eval: 3-cycles 1.3316

eval: transitive ties 0.2029

eval: outdegree - popularity (sqrt) 0.3342

eval: at25 alter -1.0687

eval: at25 ego -0.6768

eval: same at25 2.2516

rate: rate at25 (period 1) 0.8171

rate: rate at25 (period 2) -0.4792

eval: behavior at25 linear shape 0.2854

eval: behavior at25 average similarity 1.7511

Total computation time 27.85 seconds.

There are four important sections of interest included in the out-

put above. First, the third column in the section titled "Information for

convergence diagnosis" contains t-ratios (average divided by standard de-

viation) for the deviations between simulated values of the statistics and

the observed values. As a guideline, convergence less than 0.1 in absolute

value is excellent, and less than 0.2 in absolute value is good.

The second important section, titled "Estimates and Standard Er-

rors," contains the parameter estimates and standard errors. Rate pa-

rameters reflect the average number of unobserved changes made during

that time period by an actor. The other parameters estimates are weights

in the evaluation function. Standard errors are useful in testing if the pa-

rameter is significantly different than zero. The convergence and the co-

variance matrix values for fixed parameters are meaningless and expected.

Fixing parameters that are significantly different than zero to zero should

cause those parameters to have poor fit.

The third important section is the covariance matrix, used to check

for collinearity among estimated parameters. Parameters that are highly

collinear may not contribute unique information to the model. This collinear-

ity check should not be used as the sole determination of effect inclusion

in a model. The collinearity is a good place to look when the model starts
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to produce unexpected outcomes or fails to converge. As noted before, the

need to remove the quadratic shape effect from the bernoulli co-evolution

model but not the normal co-evolution model was discovered in the co-

variance matrix of the bernoulli co-evolution model.

Last, the score tests are reported in the section titled "Generalised

score test". An overall, joint score test provides information about the

importance of including all tested parameters. Score tests for individual

parameters contribute information to how much added value of each pa-

rameter. When score test values are large, the restricted model shows a

large amount of misfit, implying that the parameter of interest should be

included in the final model.

For the two-sided test, as the number of observations increases the

distribution of the test approximates the chi-square distribution, with de-

grees of freedom equal to the number of restricted parameters. The one-

sided test can be approximated as standard normal. A negative value

for the one-sided score test implies that the parameter estimate should

be negative also. One-step estimates provide approximations of what the

estimates would be if the model were estimated again, but without restric-

tions.
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B Distributions of Parameter
Estimates - Certain
Parameters Restricted to
Equal 0

B.1 Structural Model

Three parameters were included in each model as baseline measures:

rate parameter time 1, rate parameter time 2, and density.
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Figure B.1: Structural Model Score - Network Rate Time 1
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Figure B.2: Structural Model Score - Network Rate Time 1 SE
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Figure B.3: Structural Model Score - Network Rate Time 2
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Figure B.4: Structural Model Score - Network Rate Time 2 SE
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Figure B.5: Structural Model Score - Density
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Figure B.6: Structural Model Score - Density SE
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B.2 Co-evolution Model - Bernoulli

Attribute
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Figure B.7: Co-evolution Model With Bernoulli Attribute Score - Network Rate
Time 1
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Figure B.8: Co-evolution Model With Bernoulli Attribute Score - Network Rate
Time 1 SE

2.80 2.85 2.90 2.95

0
5

10
15

(a) n=25

3.64 3.66 3.68 3.70 3.72

0
5

10
15

20
25

30

(b) n=50

111.5 112.0 112.5 113.0

0.
0

0.
5

1.
0

1.
5

(c) n=100

13.30 13.35 13.40 13.45

0
5

10
15

(d) n=200

Figure B.9: Co-evolution Model With Bernoulli Attribute Score - Network Rate
Time 2
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Figure B.10: Co-evolution Model With Bernoulli Attribute Score - Network
Rate Time 2 SE
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Figure B.11: Co-evolution Model With Bernoulli Attribute Score - Density
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Figure B.12: Co-evolution Model With Bernoulli Attribute Score - Density SE
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Figure B.13: Co-evolution Model With Bernoulli Attribute Score - Reciprocity
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Figure B.14: Co-evolution Model With Bernoulli Attribute Score - Reciprocity
SE
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Figure B.15: Co-evolution Model With Bernoulli Attribute Score - Transitive
Triplet
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Figure B.16: Co-evolution Model With Bernoulli Attribute Score - Transitive
Triplet SE
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Figure B.17: Co-evolution Model With Bernoulli Attribute Score - 3-cycles
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Figure B.18: Co-evolution Model With Bernoulli Attribute Score - 3-cycles SE
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Figure B.19: Co-evolution Model With Bernoulli Attribute Score - Transitive
Ties
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Figure B.20: Co-evolution Model With Bernoulli Attribute Score - Transitive
Ties SE
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Figure B.21: Co-evolution Model With Bernoulli Attribute Score - Attribute
Rate Time 1
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Figure B.22: Co-evolution Model With Bernoulli Attribute Score - Attribute
Rate Time 1 SE
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Figure B.23: Co-evolution Model With Bernoulli Attribute Score - Attribute
Rate Time 2
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Figure B.24: Co-evolution Model With Bernoulli Attribute Score - Attribute
Rate Time 2 SE
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Figure B.25: Co-evolution Model With Bernoulli Attribute Score - Linear Shape
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Figure B.26: Co-evolution Model With Bernoulli Attribute Score - Linear Shape
SE
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Figure B.27: Co-evolution Model With Bernoulli Attribute - Attribute Ego
Score Test - one sided
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Figure B.28: Co-evolution Model With Bernoulli Attribute - Outdegree-
Popularity (Square Root) Score Test - one sided
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Figure B.29: Co-evolution Model With Bernoulli Attribute - Same Attribute
Score Test - one sided

B.3 Co-evolution Model With Normal

(µ = 3, σ = 1) Attribute
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Figure B.30: Co-evolution Model With Bernoulli Attribute - Average Similarity
Score Test - one sided
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Figure B.31: Co-evolution Model With Normal Attribute Score - Network Rate
Time 1
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Figure B.32: Co-evolution Model With Normal Attribute Score - Network Rate
Time 1 SE
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Figure B.33: Co-evolution Model With Normal Attribute Score - Network Rate
Time 2
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Figure B.34: Co-evolution Model With Normal Attribute Score - Network Rate
Time 2 SE
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Figure B.35: Co-evolution Model With Normal Attribute Score - Density
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Figure B.36: Co-evolution Model With Normal Attribute Score - Density SE
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Figure B.37: Co-evolution Model With Normal Attribute Score - Reciprocity
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Figure B.38: Co-evolution Model With Normal Attribute Score - Reciprocity
SE
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Figure B.39: Co-evolution Model With Normal Attribute Score - Transitive
Triplet
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Figure B.40: Co-evolution Model With Normal Attribute Score - Transitive
Triplet SE
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Figure B.41: Co-evolution Model With Normal Attribute Score - 3-cycles
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Figure B.42: Co-evolution Model With Normal Attribute Score - 3-cycles SE
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Figure B.43: Co-evolution Model With Normal Attribute Score - Transitive Ties
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Figure B.44: Co-evolution Model With Normal Attribute Score - Transitive Ties
SE
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Figure B.45: Co-evolution Model With Normal Attribute Score - Attribute Rate
Time 1
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Figure B.46: Co-evolution Model With Normal Attribute Score - Attribute Rate
Time 1 SE
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Figure B.47: Co-evolution Model With Normal Attribute Score - Attribute Rate
Time 2
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Figure B.48: Co-evolution Model With Normal Attribute Score - Attribute Rate
Time 2 SE
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Figure B.49: Co-evolution Model With Normal Attribute Score - Linear Shape
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Figure B.50: Co-evolution Model With Normal Attribute Score - Linear Shape
SE
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Figure B.51: Co-evolution Model With Normal Attribute - Attribute Ego Score
Test - one sided
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Figure B.52: Co-evolution Model With Normal Attribute - Outdegree-
Popularity (Square Root) Score Test - one sided
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Figure B.53: Co-evolution Model With Normal Attribute - Same Attribute Score
Test - one sided
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Figure B.54: Co-evolution Model With Normal Attribute - Average Similarity
Score Test - one sided
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C Distributions of Parameter
Estimates For Full Model -
All Parameters Allowed To
Vary - Pseudo-Wald and
Entropy Tests

C.1 Structural Model
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Figure C.1: Structural Model Pseudo-Wald and Entropy Tests - Network Rate
Time 1
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Figure C.2: Structural Model Pseudo-Wald and Entropy Tests - Network Rate
Time 1 SE

135



33 34 35 36 37 38 39

0.
0

0.
1

0.
2

0.
3

0.
4

(a) n=25

3.64 3.66 3.68 3.70 3.72

0
5

10
15

20
25

30

(b) n=50

7.26 7.28 7.30 7.32 7.34

0
5

10
15

20
25

(c) n=100

13.36 13.38 13.40 13.42 13.44 13.46

0
50

10
0

15
0

20
0

(d) n=200

Figure C.3: Structural Model Pseudo-Wald and Entropy Tests - Network Rate
Time 2
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Figure C.4: Structural Model Pseudo-Wald and Entropy Tests - Network Rate
Time 2 SE
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Figure C.5: Structural Model Pseudo-Wald and Entropy Tests - Density
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Figure C.6: Structural Model Pseudo-Wald and Entropy Tests - Density SE
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Figure C.7: Structural Model Pseudo-Wald and Entropy Tests - Reciprocity
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Figure C.8: Structural Model Pseudo-Wald and Entropy Tests - Reciprocity SE
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Figure C.9: Structural Model Pseudo-Wald and Entropy Tests - Transitive
Triplets

C.2 Co-evolution Model With Bernoulli

Attribute
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Figure C.10: Structural Model Pseudo-Wald and Entropy Tests - Transitive
Triplets SE
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Figure C.11: Structural Model Pseudo-Wald and Entropy Tests - 3 Cycles
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Figure C.12: Structural Model Pseudo-Wald and Entropy Tests - 3 Cycles SE
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Figure C.13: Structural Model Pseudo-Wald - 3 Cycles t-Test
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Figure C.14: Structural Model Pseudo-Wald and Entropy Tests - Transitive
Ties
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Figure C.15: Structural Model Pseudo-Wald and Entropy Tests - Transitive
Ties SE
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Figure C.16: Structural Model Pseudo-Wald - Transitive Ties t-Test
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Figure C.17: Structural Model Pseudo-Wald - Reciprocity, Transitive Triplets
and 3-Cycles
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Figure C.18: Structural Model Pseudo-Wald - Transitive Triplets and 3-Cycles
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Figure C.19: Structural Model Pseudo-Wald - Reciprocity and Transitive
Triplets
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Figure C.20: Co-evolution Model With Bernoulli Attribute Pseudo-Wald and
Entropy Tests - Network Rate Time 1
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Figure C.21: Co-evolution Model With Bernoulli Attribute Pseudo-Wald and
Entropy Tests - Network Rate Time 1 SE
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Figure C.22: Co-evolution Model With Bernoulli Attribute Pseudo-Wald and
Entropy Tests - Network Rate Time 2
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Figure C.23: Co-evolution Model With Bernoulli Attribute Pseudo-Wald and
Entropy Tests - Network Rate Time 2 SE
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Figure C.24: Co-evolution Model With Bernoulli Attribute Pseudo-Wald and
Entropy Tests - Density
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Figure C.25: Co-evolution Model With Bernoulli Attribute Pseudo-Wald and
Entropy Tests - Density SE
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Figure C.26: Co-evolution Model With Bernoulli Attribute Pseudo-Wald and
Entropy Tests - Reciprocity
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Figure C.27: Co-evolution Model With Bernoulli Attribute Pseudo-Wald and
Entropy Tests - Reciprocity SE
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Figure C.28: Co-evolution Model With Bernoulli Attribute Pseudo-Wald and
Entropy Tests - Transitive Triplets
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Figure C.29: Co-evolution Model With Bernoulli Attribute Pseudo-Wald and
Entropy Tests - Transitive Triplets SE
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Figure C.30: Co-evolution Model With Bernoulli Attribute Pseudo-Wald and
Entropy Tests - 3 Cycles
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Figure C.31: Co-evolution Model With Bernoulli Attribute Pseudo-Wald and
Entropy Tests - 3 Cycles SE
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Figure C.32: Co-evolution Model With Bernoulli Attribute Pseudo-Wald and
Entropy Tests - Transitive Ties
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Figure C.33: Co-evolution Model With Bernoulli Attribute Pseudo-Wald and
Entropy Tests - Transitive Ties SE
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Figure C.34: Co-evolution Model With Bernoulli Attribute Pseudo-Wald and
Entropy Tests - Outdegree-Popularity (Square Root)
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Figure C.35: Co-evolution Model With Bernoulli Attribute Pseudo-Wald and
Entropy Tests - Outdegree-Popularity (Square Root) SE
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Figure C.36: Co-evolution Model With Bernoulli Attribute Pseudo-Wald and
Entropy Tests - Attribute Alter
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Figure C.37: Co-evolution Model With Bernoulli Attribute Pseudo-Wald and
Entropy Tests - Attribute Alter SE
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Figure C.38: Co-evolution Model With Bernoulli Attribute Pseudo-Wald - At-
tribute Alter t-Test
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Figure C.39: Co-evolution Model With Bernoulli Attribute Pseudo-Wald and
Entropy Tests - Attribute Ego
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Figure C.40: Co-evolution Model With Bernoulli Attribute Pseudo-Wald and
Entropy Tests - Attribute Ego SE
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Figure C.41: Co-evolution Model With Bernoulli Attribute Pseudo-Wald and
Entropy Tests - Attribute Same
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Figure C.42: Co-evolution Model With Bernoulli Attribute Pseudo-Wald and
Entropy Tests - Attribute Same SE
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Figure C.43: Co-evolution Model With Bernoulli Attribute Pseudo-Wald and
Entropy Tests - Attribute Rate Time 1
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Figure C.44: Co-evolution Model With Bernoulli Attribute Pseudo-Wald and
Entropy Tests - Attribute Rate Time 1 SE
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Figure C.45: Co-evolution Model With Bernoulli Attribute Pseudo-Wald and
Entropy Tests - Attribute Rate Time 2
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Figure C.46: Co-evolution Model With Bernoulli Attribute Pseudo-Wald and
Entropy Tests - Attribute Rate Time 2 SE
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Figure C.47: Co-evolution Model With Bernoulli Attribute Pseudo-Wald and
Entropy Tests - Linear Shape
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Figure C.48: Co-evolution Model With Bernoulli Attribute Pseudo-Wald and
Entropy Tests - Linear Shape SE
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Figure C.49: Co-evolution Model With Bernoulli Attribute Pseudo-Wald and
Entropy Tests - Average Similarity
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Figure C.50: Co-evolution Model With Bernoulli Attribute Pseudo-Wald and
Entropy Tests - Average Similarity SE

C.3 Co-evolution Model With Normal

(µ = 3, σ = 1) Attribute
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Figure C.51: Co-evolution Model With Bernoulli Attribute Pseudo-Wald and
Entropy Tests - Same Attribute t-Test
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Figure C.52: Co-evolution Model With Bernoulli Attribute Pseudo-Wald and
Entropy Tests - Average Similarity Attribute t-Test
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Figure C.53: Co-evolution Model With Bernoulli Attribute - Pseudo-Wald for
Outdegree-Popularity (Square Root), Attribute Alter, Attribute Ego, and At-
tribute Same
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Figure C.54: Co-evolution Model With Bernoulli Attribute - Pseudo-Wald for
Outdegree-Popularity (Square Root), Attribute Alter, and Attribute Ego
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Figure C.55: Co-evolution Model With Bernoulli Attribute - Pseudo-Wald for
Outdegree-Popularity (Square Root) and Attribute Alter
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Figure C.56: Co-evolution Model With Bernoulli Attribute - Pseudo-Wald for
Attribute Alter, Attribute Ego and Attribute Same
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Figure C.57: Co-evolution Model With Bernoulli Attribute - Pseudo-Wald for
Attribute Alter and Attribute Ego
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Figure C.58: Co-evolution Model With Bernoulli Attribute - Pseudo-Wald for
Attribute Ego, Attribute Same, and Average Similarity
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Figure C.59: Co-evolution Model With Bernoulli Attribute - Pseudo-Wald for
Attribute Ego and Attribute Same
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Figure C.60: Co-evolution Model With Bernoulli Attribute - Pseudo-Wald for
Attribute Same and Average Similarity
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Figure C.61: Co-evolution Model With Normal Attribute Pseudo-Wald and
Entropy Tests - Network Rate Time 1
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Figure C.62: Co-evolution Model With Normal Attribute Pseudo-Wald and
Entropy Tests - Network Rate Time 1 SE
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Figure C.63: Co-evolution Model With Normal Attribute Pseudo-Wald and
Entropy Tests - Network Rate Time 2
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Figure C.64: Co-evolution Model With Normal Attribute Pseudo-Wald and
Entropy Tests - Network Rate Time 2 SE
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Figure C.65: Co-evolution Model With Normal Attribute Pseudo-Wald and
Entropy Tests - Density
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Figure C.66: Co-evolution Model With Normal Attribute Pseudo-Wald and
Entropy Tests - Density SE
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Figure C.67: Co-evolution Model With Normal Attribute Pseudo-Wald and
Entropy Tests - Reciprocity
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Figure C.68: Co-evolution Model With Normal Attribute Pseudo-Wald and
Entropy Tests - Reciprocity SE
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Figure C.69: Co-evolution Model With Normal Attribute Pseudo-Wald and
Entropy Tests - Transitive Triplets
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Figure C.70: Co-evolution Model With Normal Attribute Pseudo-Wald and
Entropy Tests - Transitive Triplets SE
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Figure C.71: Co-evolution Model With Normal Attribute Pseudo-Wald and
Entropy Tests - 3 Cycles
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Figure C.72: Co-evolution Model With Normal Attribute Pseudo-Wald and
Entropy Tests - 3 Cycles SE
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Figure C.73: Co-evolution Model With Normal Attribute Pseudo-Wald and
Entropy Tests - Transitive Ties
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Figure C.74: Co-evolution Model With Normal Attribute Pseudo-Wald and
Entropy Tests - Transitive Ties SE
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Figure C.75: Co-evolution Model With Normal Attribute Pseudo-Wald and
Entropy Tests - Outdegree-Popularity (Square Root)
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Figure C.76: Co-evolution Model With Normal Attribute Pseudo-Wald and
Entropy Tests - Outdegree-Popularity (Square Root) SE
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Figure C.77: Co-evolution Model With Normal Attribute Pseudo-Wald and
Entropy Tests - Attribute Alter
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Figure C.78: Co-evolution Model With Normal Attribute Pseudo-Wald and
Entropy Tests - Attribute Alter SE
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Figure C.79: Co-evolution Model With Normal Attribute Pseudo-Wald and
Entropy Tests- Attribute Alter t-Test
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Figure C.80: Co-evolution Model With Normal Attribute Pseudo-Wald and
Entropy Tests - Attribute Ego
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Figure C.81: Co-evolution Model With Normal Attribute Pseudo-Wald and
Entropy Tests - Attribute Ego SE
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Figure C.82: Co-evolution Model With Normal Attribute Pseudo-Wald and
Entropy Tests - Attribute Same
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Figure C.83: Co-evolution Model With Normal Attribute Pseudo-Wald and
Entropy Tests - Attribute Same SE
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Figure C.84: Co-evolution Model With Normal Attribute Pseudo-Wald and
Entropy Tests - Attribute Rate Time 1
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Figure C.85: Co-evolution Model With Normal Attribute Pseudo-Wald and
Entropy Tests - Attribute Rate Time 1 SE
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Figure C.86: Co-evolution Model With Normal Attribute Pseudo-Wald and
Entropy Tests - Attribute Rate Time 2
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Figure C.87: Co-evolution Model With Normal Attribute Pseudo-Wald and
Entropy Tests - Attribute Rate Time 2 SE
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Figure C.88: Co-evolution Model With Normal Attribute Pseudo-Wald and
Entropy Tests - Linear Shape
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Figure C.89: Co-evolution Model With Normal Attribute Pseudo-Wald and
Entropy Tests - Linear Shape SE
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Figure C.90: Co-evolution Model With Normal Attribute Pseudo-Wald and
Entropy Tests - Average Similarity
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Figure C.91: Co-evolution Model With Normal Attribute Pseudo-Wald and
Entropy Tests - Average Similarity SE
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Figure C.92: Co-evolution Model With Normal Attribute Pseudo-Wald - Same
Attribute t-Test
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Figure C.93: Co-evolution Model With Normal Attribute Pseudo-Wald - Aver-
age Similarity Attribute t-Test
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Figure C.94: Co-evolution Model With Normal Attribute - Pseudo-Wald for
Outdegree-Popularity (Square Root), Attribute Alter, Attribute Ego, and At-
tribute Same
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Figure C.95: Co-evolution Model With Normal Attribute - Pseudo-Wald for
Outdegree-Popularity (Square Root), Attribute Alter, and Attribute Ego
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Figure C.96: Co-evolution Model With Normal Attribute - Pseudo-Wald for
Outdegree-Popularity (Square Root) and Attribute Alter
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(h) Pseudo-Wald P-value n=200

Figure C.97: Co-evolution Model With Normal Attribute - Pseudo-Wald for
Attribute Alter, Attribute Ego and Attribute Same
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Figure C.98: Co-evolution Model With Normal Attribute - Pseudo-Wald for
Attribute Alter and Attribute Ego
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Figure C.99: Co-evolution Model With Normal Attribute - Pseudo-Wald for
Attribute Ego, Attribute Same, and Average Similarity
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Figure C.100: Co-evolution Model With Normal Attribute - Pseudo-Wald for
Attribute Ego and Attribute Same
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Figure C.101: Co-evolution Model With Normal Attribute - Pseudo-Wald for
Attribute Same and Average Similarity
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D Knecht’s Friendship Data

D.1 Score Test
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Figure D.1: Structural Model Score - Knecht Data
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Figure D.2: Co-evolution Model Score - Knecht Data - Network Rate
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Figure D.3: Co-evolution Model Score -Knecht Data - Density
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Figure D.4: Co-evolution Model Score -Knecht Data - Reciprocity
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Figure D.5: Co-evolution Model Score - Knecht Data - Transitive Triplets
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Figure D.6: Co-evolution Model Score - Knecht Data - 3-cycles
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Figure D.7: Co-evolution Model Score - Knecht Data - Transitive Ties
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Figure D.8: Co-evolution Model Score - Knecht Data - Attribute Rate
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Figure D.9: Co-evolution Model Score - Knecht Data - Linear Shape
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D.2 Pseudo-Wald and Entropy Tests
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Figure D.10: Structural Model Pseudo-Wald and Entropy Tests - Knecht Data
- Network Rates and Density
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Figure D.11: Structural Model Pseudo-Wald and Entropy Tests -Knecht Data
- Reciprocity
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Figure D.12: Structural Model Pseudo-Wald and Entropy Tests - Knecht Data
- Transitive Triplets
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Figure D.13: Structural Model Pseudo-Wald and Entropy Tests - Knecht Data
- 3-cycles
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Figure D.14: Structural Model Pseudo-Wald and Entropy Tests - Knecht Data
- Transitive Ties

207



30 35 40 45

0.
00

0.
05

0.
10

0.
15

(a) Pseudo-Wald Test Statistic

0.0e+00 5.0e−08 1.0e−07 1.5e−07 2.0e−07

0e
+0

0
1e

+0
7

2e
+0

7
3e

+0
7

4e
+0

7

(b) Pseudo-Wald P-value

Figure D.15: Structural Model Pseudo-Wald - Knecht Data - 3-cycles, and
Transitive Ties
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Figure D.16: Structural Model Pseudo-Wald - Knecht Data - Reciprocity, Tran-
sitive Triplets, and 3-cycles
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Figure D.17: Structural Model Pseudo-Wald - Knecht Data - Transitive Triplets,
and 3-cycles
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Figure D.18: Structural Model Pseudo-Wald - Knecht Data - Reciprocity, and
Transitive Triplets
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Figure D.19: Co-evolution Model Pseudo-Wald - Knecht Data - Network Rates
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Figure D.20: Co-evolution Model Pseudo-Wald - Knecht Data - Density and
Reciprocity
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Figure D.21: Co-evolution Model Pseudo-Wald - Knecht Data - Transitive
Triplets, 3-cycles, and Transitive Ties
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Figure D.22: Co-evolution Model Pseudo-Wald - Knecht Data - Attribute Net-
work Rate
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Figure D.23: Co-evolution Model - Knecht Data - Pseudo-Wald for Similarity
on Delinquency, Quadratic Shape, and Average Similarity on Delinquency
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Figure D.24: Co-evolution Model - Knecht Data - Pseudo-Wald for Quadratic
Shape and Average Similarity on Delinquency
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Figure D.25: Co-evolution Model Pseudo-Wald - Knecht Data - Linear
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Figure D.26: Co-evolution Model - Knecht Data - Pseudo-Wald for Outdegree-
Popularity, Gender Alter, Gender Ego, Same Gender, Similarity on Delinquency,
and Quadratic Shape
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Figure D.27: Co-evolution Model - Knecht Data - Pseudo-Wald for Outdegree-
Popularity, Gender Alter, Gender Ego, Same Gender, and Similarity on Delin-
quency
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Figure D.28: Co-evolution Model - Knecht Data - Pseudo-Wald for Outdegree-
Popularity, Gender Alter, Gender Ego, and Same Gender
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Figure D.29: Co-evolution Model - Knecht Data - Pseudo-Wald for Outdegree-
Popularity, Gender Alter, and Gender Ego
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Figure D.30: Co-evolution Model - Knecht Data - Pseudo-Wald for Gender
Alter, and Gender Ego
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Figure D.31: Co-evolution Model - Knecht Data - Pseudo-Wald for Gender
Ego, Same Gender, Similarity on Delinquency, Quadratic Shape, and Average
Similarity on Delinquency
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Figure D.32: Co-evolution Model - Knecht Data - Pseudo-Wald for Gender Ego,
Same Gender, Similarity on Delinquency, and Quadratic Shape
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Figure D.33: Co-evolution Model - Knecht Data - Pseudo-Wald for Gender Ego,
Same Gender, and Similarity on Delinquency
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Figure D.34: Co-evolution Model - Knecht Data - Pseudo-Wald for Gender Ego
and Same Gender
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Figure D.35: Co-evolution Model - Knecht Data - Pseudo-Wald for Same Gender
and Similarity on Delinquency
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Figure D.36: Co-evolution Model - Knecht Data - Pseudo-Wald for Similarity
on Delinquency and Quadratic Shape
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Figure D.37: Co-evolution Model - Knecht Data - Pseudo-Wald for Similarity
on Delinquency, Quadratic Shape, and Average Similarity on Delinquency
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Figure D.38: Co-evolution Model - Knecht Data - Pseudo-Wald for Quadratic
Shape and Average Similarity on Delinquency
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