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Abstract. This paper presents a dynamic model of smoking with optimal control. 

The mathematical model is divided into 5 sub-classes, namely, non-smokers, 

occasional smokers, active smokers, individuals who have temporarily stopped 

smoking, and individuals who have stopped smoking permanently. Four optimal 

controls, i.e., anti-smoking education campaign, anti-smoking gum, anti-nicotine 

drug, and government prohibition of smoking in public spaces are considered in 

the model. The existence of the controls is also presented. The Pontryagin 

maximum principle (PMP) was used to solve the optimal control problem. The 

fourth-order Runge-Kutta was employed to gain the numerical solutions. 
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1 Introduction 

Cigarettes are among the most dangerous killers in the world. The content of 

chemical compounds in cigarettes can be bad for the health of smokers and also 

for people in their environment. The chemicals in cigarettes can trigger various 

diseases, such as heart failure, hypertension, lung cancer, etc. This is caused by 

approximately 4000 chemical compounds contained in cigarettes, of which at 

least 200 are poisonous and dangerous to health, while 43 other chemicals can 

provoke cancer. Inhaling cigarettes can cause coma or even death. The cigarette 

compound that is most often mentioned is nicotine. Possible effects of nicotine 

exposure are vomiting, convulsions, and stress on the central nervous system. 

Tar, another major compound found in cigarettes, is carcinogenic. Tar also 

increases the risk of diabetes, heart disease, and fertility problems. Another 

toxic compound that makes up cigarettes is hydrogen cyanide. The effects of 

this compound can weaken the lungs and cause fatigue, headaches, and nausea. 

Benzene is a residue from burning cigarettes that can damage white blood cells, 

reducing endurance and increasing the risk of leukemia. Another residue of 

burning cigarettes is formaldehyde. Formaldehyde increases the risk of 

nasopharyngeal cancer. Arsenic is a compound in cigarette smoke that is a first-
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class carcinogen. A high level of arsenic exposure increases the risk of skin 

cancer, lung cancer, urinary tract cancer, kidney cancer, and liver cancer. As for 

cadmium, about 40-60 percent of the cadmium found in cigarette smoke is 

absorbed into the lungs when smoking. High levels of cadmium in the body can 

cause sensory disorders, vomiting, diarrhea, seizures, muscle cramps, kidney 

failure, and cancer. One last dangerous compound found in cigarettes is 

ammonia. Ammonia is a colorless poisonous gas with a strong smell. The 

cigarette industry uses ammonia to boost the effects of nicotine addiction. Long-

term impacts are pneumonia and throat cancer. 

The above description of the chemical substances contained in cigarettes shows 

the danger of smoking, but public awareness about the related health risks is 

insufficient and in Indonesia smoking is still commonplace. Some children in 

Indonesia start smoking as early as at the age of 9. The age of smoking the first 

cigarette is generally well before the age of 18, ranging from 11-13 years. There 

are some factors that stimulate addiction. Biologically, the nicotine contained in 

cigarettes can suppress the brain’s ability to gain pleasure from cigarettes, so 

that smokers always need higher levels of nicotine to achieve the same level of 

satisfaction, causing dependency on cigarettes. 

Phenomena in the real world and their dynamics can be studied by using 

mathematical modeling, i.e., converting real-world phenomena into 

mathematical formulations. Several studies on smoking with a mathematical 

approach have been reported [1-6]. The results can be used for example to 

inform policymaking. Many mathematical models on smoking have been built 

based on the assumptions of the researchers. In [7], the used mathematical 

model was divided into four sub-classes, namely potential smokers, individuals 

who smoke < 20 cigarettes per day, heavy smokers who smoke > 20 cigarettes 

per day, and people who have stopped smoking. Control was carried out using 

two optimal controls, namely anti-smoking campaign and media campaign. 

Sikander et al. [8] used the mathematical model that was developed in [9]. 

Another smoking mathematical model is presented in [10], where the 

population is divided into five sub-classes, namely potential smokers, 

occasional smokers, active smokers, smokers who have temporarily stopped 

smoking, and smokers who have stopped permanently. In the present study, a 

mathematical model based on [10] was used. The main contribution of this 

study lies in providing four controls with the ultimate aim of reducing the 

population of individuals who smoke and increase the population of individuals 

who permanently stop smoking. 

The rest of this paper is organized as follows. Section 2 explains the dynamic 

model of smoking used in this study. Section 3 is about the formulations, the 

existence of optimal controls and their solution. The simulation results and 
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discussion are presented in Section 4. The last section provides the conclusion 

of this research. 

2 Dynamic Model of Smoking 

In this section, the mathematical model used in this study is discussed. 𝑁(𝑡) is 

the total population at time 𝑡, divided into five subclasses, i.e., 𝑃(𝑡) is the 

population of potential smokers, 𝑂(𝑡) is the population of occasional smokers, 

𝑆(𝑡) is the population of active smokers, 𝑄𝑡(𝑡) is the population of individuals 

who have temporarily stopped smoking, and 𝑄𝑃(𝑡) is the population of 

individuals who have stopped smoking permanently. The mathematical 

representation of the smoking dynamic model is as follows [10]: 

 
𝑑𝑃

𝑑𝑡
= 𝛬 − 𝛽𝑃(𝑡)𝑆(𝑡) − 𝜇𝑃(𝑡)  

 
𝑑𝑂

𝑑𝑡
= 𝛽𝑃(𝑡)𝑆(𝑡) − 𝛼1𝑂(𝑡) − 𝜇𝑂(𝑡)  

 
𝑑𝑆

𝑑𝑡
= 𝛼1𝑂(𝑡) + 𝛼2𝑆(𝑡)𝑄𝑡(𝑡) − (𝜇 + 𝛾)𝑆(𝑡) (1) 

 
𝑑𝑄𝑡

𝑑𝑡
= −𝛼2𝑆(𝑡)𝑄𝑡(𝑡) − 𝜇𝑄𝑡(𝑡) + 𝛾(1 − 𝜎)𝑆(𝑡)  

 
𝑑𝑄𝑃

𝑑𝑡
= 𝜎𝛾𝑆(𝑡) − 𝜇𝑄𝑃(𝑡)  

This model can be represented in graphic form as in Figure 1. 

 

Figure 1 Compartmental diagram. 

This dynamic model of smoking was employed with optimal control, consisting 

of government prohibition of the utilization of smoking in public spaces, anti-

smoking gum, anti-nicotine drug, and anti-smoking education campaign. The 

goals are to minimize the cost function of reducing the number of people who 

smoke and increasing the number of individuals who stop smoking 

permanently. 
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3 Optimal Control 

3.1 Optimal Control Formulations 

This section discusses a strategy of optimal control that is suitable for the 

dynamics of model in Eq. (1). A classical control system design, generally 

speaking, is a process of trial and error to determine an ‘acceptable’ or 

‘admissible’ system design. Modern technology is needed for complex systems 

and multi-input/multi-output (MIMO) systems. For this reason, a new approach 

using optimal control theory has been developed [11,12]. Optimal control 

theory was first developed in the 1950s. There are two methods to solve optimal 

control problems, namely dynamic programming, introduced in [13], and the 

PMP method, introduced in [14]. 

The goal of optimal control is to determine the optimal input while satisfying 

the physical constraints by minimizing or maximizing some performance 

criteria. In simple terms, the control has to bring the system from the state at 

time 𝑡0, 𝑥(𝑡0), to the final state at terminal time 𝑡𝑓, 𝑥(𝑡𝑓) in such a way that it 

produces a result in terms of the maximum or minimum value of the defined 

objective function. 

Four controls were considered in this study. The controls were constructed in 

Eq. (1), by combining them into the standard model, which can be represented 

as follows: 

 
𝑑𝑃

𝑑𝑡
= 𝛬 − 𝛽𝑃(𝑡)𝑆(𝑡) − (𝜇 + 𝑢1 + 𝑢4) 𝑃(𝑡)  

 
𝑑𝑂

𝑑𝑡
= 𝛽𝑃(𝑡)𝑆(𝑡) − (𝛼1 + 𝜇 + 𝑢2 + 𝑢4)𝑂(𝑡)  

 
𝑑𝑆

𝑑𝑡
= 𝛼1𝑂(𝑡) + 𝛼2𝑆(𝑡)𝑄𝑡(𝑡) − (𝜇 + 𝛾 + 𝑢3 + 𝑢4)𝑆(𝑡) (2) 

 
𝑑𝑄𝑡

𝑑𝑡
= −𝛼2𝑆(𝑡)𝑄𝑡(𝑡) − (𝜇 + 𝑢2 + 𝑢4)𝑄𝑡(𝑡) + 𝛾(1 − 𝜎)𝑆(𝑡)  

 
𝑑𝑄𝑃

𝑑𝑡
= 𝜎𝛾𝑆(𝑡) − 𝜇𝑄𝑃(𝑡) + (𝑢1 + 𝑢4)𝑃(𝑡) + (𝑢2 + 𝑢4)𝑂(𝑡) +

(𝑢3 + 𝑢4)𝑆(𝑡) + (𝑢2 + 𝑢4)𝑄𝑡(𝑡)  

Providing suitable controls can reduce the number of individuals who smoke 

and the number of potential smokers to lower levels. Conversely, if the four 

controls are not given, the number of individual smokers and potential smokers 

will increase and the number of individuals who stop smoking will decrease. In 

establishing the objective function, we considered the control problems in Eq. 

(2). The following objective function was obtained: 
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 𝐽(𝑢(𝑡)) = ∫ (𝑆(𝑡) − 𝑄𝑃(𝑡) +
1

2
(𝑘1𝑢1

2(𝑡) + 𝑘2𝑢2
2(𝑡) + 𝑘3𝑢3

2(𝑡) +
𝑡𝑓
0

𝑘4𝑢4
2(𝑡))) 𝑑𝑡 (3) 

The aim of this study was to minimize 𝐽(𝑢(𝑡)) subject to its constraints by 

using the optimal control method. 

3.2 Optimal Control Existence 

The methodology was used to demonstrate the presence of ideal control to be 

applied to the model [15-16]. It was assumed that the control system in Eq. (2) 

can be rewritten as follows: 

 𝜁𝑡 = 𝐶𝜁 + 𝐹(𝜁) (4) 

where the vector of the state variables is 

 𝜁 = [𝑃(𝑡), 𝑂(𝑡), 𝑆(𝑡), 𝑄𝑡(𝑡), 𝑄𝑃(𝑡)]
𝑇, 

and 

 𝐶 =

(

 
 

−𝑎
0
0

0
−𝑏
𝛼1

0 0 0
0 0 0
−𝑐 0 0

0
𝑓

0
𝑔

𝑑 −𝑒 0
ℎ 𝑚 −𝜇)

 
 

  

where, 

a = (𝜇 + 𝑢1 + 𝑢 + 4) 
b = (𝛼1 + 𝜇 + 𝑢2 + 𝑢4) 
c = (𝜇𝛾 + 𝑢3 + 𝑢4) 

d = 𝛾(1 − 𝜎) 

e = (𝜇 + 𝑢2 + 𝑢4) 
f = 𝑢1 + 𝑢4 
g = 𝑢2 + 𝑢4 
h = 𝜎𝛾 + 𝑢3 + 𝑢4 
i = 𝑢2 + 𝑢4 

 𝐹(𝜁) = (𝛬 − 𝛽𝑃𝑆 𝛽𝑃𝑆 𝛼2𝑆𝑄𝑡  − 𝛼2𝑆𝑄𝑡  0  )  

Eq. (4) is a nonlinear differential equation with bounded coefficients, where 𝜁𝑡 
is the time derivative of 𝜁. We have: 

 𝐵(𝜁) = 𝐶(𝜁) + 𝐹(𝜁)  
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 𝐹(𝜁1) − 𝐹(𝜁2) = (−𝛽𝑃1𝑆1 + 𝛽𝑃2𝑆2 + 𝛽𝑃3𝑆3 + 𝛽𝑃4𝑆4 𝛽𝑃1𝑆1 −

𝛽𝑃2𝑆2 − 𝛽𝑃3𝑆3 − 𝛽𝑃4𝑆4 𝛼2𝑆1𝑄𝑡1 − 𝛼2𝑆2𝑄𝑡2 −

𝛼2𝑆3𝑄𝑡3 − 𝛼2𝑆4𝑄𝑡4  − 𝛼2𝑆1𝑄𝑡1 + 𝛼2𝑆2𝑄𝑡2 +

𝛼2𝑆3𝑄𝑡3 + 𝛼2𝑆4𝑄𝑡4 0  )  

Therefore, 

|𝐹(𝜁1) − 𝐹(𝜁2)| = |−𝛽𝑃1𝑆1 + 𝛽𝑃2𝑆2| + |𝛽𝑃1𝑆1 − 𝛽𝑃2𝑆2|
+ |𝛼2𝑆1𝑄𝑡1 − 𝛼2𝑆2𝑄𝑡2|

+ |−𝛼2𝑆1𝑄𝑡1 + 𝛼2𝑆2𝑄𝑡2| 

 ≤ 2𝛽|𝑃1𝑆1 + 𝑃2𝑆2| + 2𝛼2|𝑆1𝑄𝑡1 + 𝑆2𝑄𝑡2| 

 = 
2𝛽|𝑆1(𝑃1 − 𝑃2) + 𝑃2(𝑆1 − 𝑆2)|

+ 2𝛼2|𝑄𝑡1(𝑆1 − 𝑆2) + 𝑆2(𝑄𝑡1
− 𝑄𝑡2| 

 ≤ (2𝛽|𝑃2| + 2𝛼2|𝑄𝑡1|)|𝑆1 − 𝑆2|
+ 2𝛽|𝑆1||𝑃1 − 𝑃2|
+ 2𝛼2|𝑆2||𝑄𝑡1 − 𝑄𝑡2| 

 
 

≤ (2𝛽 + 2𝛼2)
𝛬

𝜇
|𝑆1 − 𝑆2| + 2𝛽

𝛬

𝜇
|𝑃1 − 𝑃2|

+ 2𝛼2
𝛬

𝜇
|𝑄𝑡1 − 𝑄𝑡2| 

We have |𝐵(𝜁1) − 𝐵(𝜁2) ≤ 𝑍|𝜁1 − 𝜁2|, where 𝑍 = 𝑚𝑎𝑥{(2𝛽 + 2𝛼2)𝛬/

𝜇, ||𝐶||} < ∞. It can be seen that 𝐵(𝜁) is uniformly Lipschitz continuous, so 

that by looking at the definition of 𝑢𝑖 it can be concluded that a solution of the 

controlled system (4.1) exists. 

3.3 Optimal Control Solutions 

Let optimal control Eqs. (2)-(3) be written with a Hamiltonian function as 

follows: 

 𝐻 = 𝐿 + 𝛴𝑗=1
5 𝜆𝑗(𝑡)𝑔𝑗 (5) 

where the Lagrangian function can be written as: 

 𝐿(𝑆, 𝑄𝑡 , 𝑢𝑖) = 𝐴1𝑆(𝑡) − 𝐴2𝑄𝑃(𝑡) +
1

2
[𝑘1𝑢1

2(𝑡) + 𝑘2𝑢2
2(𝑡) + 𝑘3𝑢3

2(𝑡) +

𝑘4𝑢4
2(𝑡)] (6) 

and 

 𝑔1 =
𝑑𝑃

𝑑𝑡
, 𝑔2 =

𝑑𝑂

𝑑𝑡
, 𝑔3 =

𝑑𝑆

𝑑𝑡
, 𝑔4 =

𝑑𝑄𝑡

𝑑𝑡
, 𝑔5 =

𝑑𝑄𝑃

𝑑𝑡
 (7) 
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Thus, the following Hamiltonian function is obtained: 

 𝐻 = (𝑆(𝑡) − 𝑄𝑃(𝑡) +
1

2
(𝑘1𝑢1

2(𝑡) + 𝑘2𝑢2
2(𝑡) + 𝑘3𝑢3

2(𝑡) + 𝑘4𝑢4
2(𝑡)) +

𝜆1(𝛬 − 𝛽𝑃(𝑡)𝑆(𝑡) − 𝜇𝑃(𝑡)) + 𝜆2(𝛽𝑃(𝑡)𝑆(𝑡) − 𝛼1𝑂(𝑡) −

𝜇𝑂(𝑡)) + 𝜆3(𝛼1𝑂(𝑡) + 𝛼2𝑆(𝑡)𝑄𝑡(𝑡) − (𝜇 + 𝛾)𝑆(𝑡)) +

𝜆4(−𝛼2𝑆(𝑡)𝑄𝑡(𝑡) − 𝜇𝑄𝑡(𝑡) + 𝛾(1 − 𝜎)𝑆(𝑡) + 𝜆5𝜎𝛾𝑆(𝑡) −

𝜇𝑄𝑃(𝑡)))  

The PMP method was used to obtain the adjoint variables [17-23]. 

Theorem Given the solutions 𝑃∗(𝑡), 𝑂∗(𝑡), 𝑆∗(𝑡), 𝑄𝑡
∗(𝑡), 𝑄𝑃

∗(𝑡) and the optimal 

controls 𝑢1
∗(𝑡), 𝑢2

∗(𝑡), 𝑢3
∗(𝑡), 𝑢4

∗(𝑡) of the appropriate condition system in Eqs. 

(2)-(4) are adjoint variables that satisfy the following equations: 

 𝜆1̇ = −(𝜆1(−𝛽𝑆 − (𝜇 + 𝑢1 + 𝑢4)) + 𝜆2(𝛽𝑆) + 𝜆5(𝑢1 + 𝑢4))  

 𝜆2̇ = −(𝜆2(𝛼1 + 𝜇 + 𝑢2 + 𝑢4) + 𝜆3𝛼1 + 𝜆5(𝑢2 + 𝑢4))  

 𝜆3̇ = −1 + 𝜆1(𝛽𝑃) + 𝜆2(𝛽𝑃) + 𝜆3(𝛼2𝑄𝑡 − (𝜇 + 𝛾 + 𝑢3 + 𝑢4)) +

𝜆4𝛼2𝑄𝑡 + (𝛾(1 − 𝜎)) + 𝜆5(𝜎𝛾 + (𝑢3 + 𝑢4)) (8) 

 𝜆4̇ = −𝜆3(𝛼2𝑆) + 𝜆4(−𝛼2𝑆 − (𝜇 + 𝑢2 + 𝑢4)) + 𝜆5(𝑢2 + 𝑢4)  

 𝜆5̇ = −(−1 − 𝜆5𝜇)  

 𝜆𝑗(𝑡𝑓) = 0, 𝑗 = 1,2,3,4,5. (9) 

 𝑢1
∗(𝑡) = 𝑚𝑖𝑛 (𝑚𝑎𝑥 (0,

𝜆1(𝑡)𝑃(𝑡)−𝜆5(𝑡)𝑃(𝑡)

𝑘1
) , 1) (10) 

 𝑢2
∗(𝑡) = 𝑚𝑖𝑛 (𝑚𝑎𝑥 (0,

𝜆2(𝑡)𝑂(𝑡)+𝜆4(𝑡)𝑄𝑡(𝑡)−𝜆5(𝑡)(𝑂(𝑡)+𝑄𝑡(𝑡))

𝑘2
) , 1) (11) 

 𝑢3
∗(𝑡) = 𝑚𝑖𝑛 (𝑚𝑎𝑥 (0,

𝜆3(𝑡)𝑆(𝑡)−𝜆5(𝑡)𝑆(𝑡)

𝑘3
) , 1) (12) 

 𝑢4
∗(𝑡) = 𝑚𝑖𝑛 (𝑚𝑎𝑥 (0,

𝐴

𝑘4
) , 1) (13) 

where, 

A = 𝜆1(𝑡)𝑃(𝑡) + 𝜆2(𝑡)𝑂(𝑡) + 𝜆3(𝑡)𝑆(𝑡) + 𝜆4(𝑡)𝑄𝑡(𝑡)
− 𝜆5(𝑡)(𝑃(𝑡) + 𝑂(𝑡) + 𝑆(𝑡) + 𝑄𝑡(𝑡) 

Proof: Distinguish the Hamiltonian equation 𝐻 by its respective conditions and 

use the PMP method to obtain the equations of the adjoint variables. 

 𝜆1(𝑡)̇ = −
𝜕𝐻(𝑡)

𝜕𝑃
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 𝜆1(𝑡)̇ = −
𝜕𝐻(𝑡)

𝜕𝑂
  

 𝜆3(𝑡)̇ = −
𝜕𝐻(𝑡)

𝜕𝑆
  

 𝜆4(𝑡)̇ = −
𝜕𝐻(𝑡)

𝜕𝑄𝑡
  

 𝜆5(𝑡)̇ = −
𝜕𝐻(𝑡)

𝜕𝑄𝑃
  

We use the optimal conditions and obtain the following equations: 

 
𝜕𝐻

𝜕𝑢1
= 𝑘1𝑢1

∗(𝑡) − 𝜆1(𝑡)𝑃(𝑡) + 𝜆5(𝑡)𝑃(𝑡) = 0, 𝑎𝑡 𝑢1 = 𝑢1
∗(𝑡)   

 
𝜕𝐻

𝜕𝑢2
= 𝑘2𝑢2

∗(𝑡) − 𝜆2(𝑡)𝑂(𝑡) − 𝜆4(𝑡)𝑄𝑡(𝑡) + 𝜆5(𝑡)(𝑂(𝑡) + 𝑄𝑡(𝑡))0,  

at 𝑢2 = 𝑢2
∗(𝑡)  

 
𝜕𝐻

𝜕𝑢3
= 𝑘3𝑢3

∗(𝑡) − 𝜆3(𝑡)𝑆(𝑡) + 𝜆5(𝑡)𝑆(𝑡) = 0, 𝑎𝑡 𝑢3 = 𝑢3
∗(𝑡)   

 
𝜕𝐻

𝜕𝑢4
= 𝑘4𝑢4

∗(𝑡) − 𝜆1(𝑡)𝑃(𝑡) − 𝜆2(𝑡)𝑂(𝑡) + 𝜆3(𝑡)𝑆(𝑡) − 𝜆4(𝑡)𝑄𝑡(𝑡) +

𝜆5(𝑡)(𝑃(𝑡) + 𝑂(𝑡) + 𝑆(𝑡) + 𝑄𝑡(𝑡)) = 0,   𝑎𝑡    𝑢4 = 𝑢4
∗(𝑡)  

Then we obtain: 

 𝑢1
∗(𝑡) = 𝑚𝑖𝑛 (𝑚𝑎𝑥 (0,

𝜆1(𝑡)𝑃
∗(𝑡)−𝜆5(𝑡)𝑃

∗(𝑡)

𝑘1
) , 1)  

 𝑢2
∗(𝑡) = 𝑚𝑖𝑛 (𝑚𝑎𝑥 (0,

𝜆2(𝑡)𝑂
∗(𝑡)+𝜆4(𝑡)𝑄𝑡

∗(𝑡)−𝜆5(𝑡)(𝑂
∗(𝑡)+𝑄𝑡

∗(𝑡))

𝑘2
) , 1)  

 𝑢3
∗(𝑡) = 𝑚𝑖𝑛 (𝑚𝑎𝑥 (0,

𝜆3(𝑡)𝑆
∗(𝑡)−𝜆5(𝑡)𝑆

∗(𝑡)

𝑘3
) , 1)  

 𝑢4
∗(𝑡) = 𝑚𝑖𝑛 (𝑚𝑎𝑥 (0,

𝜆1(𝑡)𝑃
∗(𝑡)+𝜆2(𝑡)𝑂

∗(𝑡)+𝜆3(𝑡)𝑆
∗(𝑡)+𝜆4(𝑡)𝑄𝑡

∗(𝑡)

𝑘4
) , 1)  

Thus, we obtain the following optimal control function: 

 𝑢1
∗(𝑡) = {0, 𝑖𝑓 

𝜆1(𝑡)𝑃
∗(𝑡)−𝜆5(𝑡)𝑃

∗(𝑡)

𝑘1
≥ 0 

𝜆1(𝑡)𝑃
∗(𝑡)−𝜆5(𝑡)𝑃

∗(𝑡)

𝑘1
, 𝑖𝑓 0 <

𝜆1(𝑡)𝑃
∗(𝑡)−𝜆5(𝑡)𝑃

∗(𝑡)

𝑘1
< 1 1, 𝑖𝑓 

𝜆1(𝑡)𝑃
∗(𝑡)−𝜆5(𝑡)𝑃

∗(𝑡)

𝑘1
≤ 0   

 𝑢2
∗(𝑡) = {0, 𝑖𝑓 𝑞 ≥ 0 𝑞, 𝑖𝑓 0 < 𝑞 < 1 1, 𝑖𝑓 𝑞 ≤ 0   

 𝑢3
∗(𝑡) = {0, 𝑖𝑓 

𝜆3(𝑡)𝑆
∗(𝑡)−𝜆5(𝑡)𝑆

∗(𝑡)

𝑘3
≥ 0 

𝜆3(𝑡)𝑆
∗(𝑡)−𝜆5(𝑡)𝑆

∗(𝑡)

𝑘1
, 𝑖𝑓 0 <

𝜆3(𝑡)𝑆
∗(𝑡)−𝜆5(𝑡)𝑆

∗(𝑡)

𝑘3
< 1 1, 𝑖𝑓 

𝜆3(𝑡)𝑆
∗(𝑡)−𝜆5(𝑡)𝑆

∗(𝑡)

𝑘3
≤ 0   

 𝑢4
∗(𝑡) = {0, 𝑖𝑓 𝑟 ≥ 0 𝑟, 𝑖𝑓 0 < 𝑟 < 1 1, 𝑖𝑓 𝑟 ≤ 0   
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where, 

 𝑞 =
𝜆2(𝑡)𝑂

∗(𝑡)+𝜆4(𝑡)𝑄𝑡
∗(𝑡)−𝜆5(𝑡)(𝑂

∗(𝑡)+𝑄𝑡
∗(𝑡))

𝑘2
  

 𝑟 =
𝜆1(𝑡)𝑃

∗(𝑡)+𝜆2(𝑡)𝑂
∗(𝑡)+𝜆3(𝑡)𝑆

∗(𝑡)+𝜆4(𝑡)𝑄𝑡
∗(𝑡)

𝑘4
  

The optimal control system is given by: 

 
𝑑𝑃∗(𝑡)

𝑑𝑡
,
𝑑𝑂∗(𝑡)

𝑑𝑡
,
𝑑𝑆∗(𝑡)

𝑑𝑡
,
𝑑𝑄𝑡

∗(𝑡)

𝑑𝑡
,
𝑑𝑄𝑃

∗ (𝑡)

𝑑𝑡
  

 𝜆1̇ = −(𝜆1(−𝛽𝑆 − (𝜇 + 𝑢1 + 𝑢4)) + 𝜆2(𝛽𝑆) + 𝜆5(𝑢1 + 𝑢4))  

 𝜆2̇ = −(𝜆2(𝛼1 + 𝜇 + 𝑢2 + 𝑢4) + 𝜆3𝛼1 + 𝜆5(𝑢2 + 𝑢4))  

 𝜆3̇ = −(1 + 𝜆1(𝛽𝑃) + 𝜆2(𝛽𝑃) + 𝜆3(𝛼2𝑄𝑡 − (𝜇 + 𝛾 + 𝑢3 + 𝑢4)) +

𝜆4(𝛼2𝑄𝑡 + (𝛾(1 − 𝜎)) + 𝜆5 (𝜎𝛾 + (𝑢3 + 𝑢4)))  

 𝜆4̇ = −(𝜆3(𝛼2𝑆) + 𝜆4(−𝛼2𝑆 − (𝜇 + 𝑢2 + 𝑢4)) + 𝜆5(𝑢2 + 𝑢4))  

 𝜆5̇ = −(−1 − 𝜆5𝜇)  

 𝑢1
∗(𝑡) = 𝑚𝑖𝑛 (𝑚𝑎𝑥 (0,

𝜆1(𝑡)𝑃(𝑡)−𝜆5(𝑡)𝑃(𝑡)

𝑘1
) , 1)  

 𝑢2
∗(𝑡) = 𝑚𝑖𝑛 (𝑚𝑎𝑥 (0,

𝜆2(𝑡)𝑂(𝑡)+𝜆4(𝑡)𝑄𝑡(𝑡)−𝜆5(𝑡)(𝑂(𝑡)+𝑄𝑡(𝑡))

𝑘2
) , 1)  

 𝑢3
∗(𝑡) = 𝑚𝑖𝑛 (𝑚𝑎𝑥 (0,

𝜆3(𝑡)𝑆(𝑡)−𝜆5(𝑡)𝑆(𝑡)

𝑘3
) , 1)  

 𝑢4
∗(𝑡) = 𝑚𝑖𝑛 (𝑚𝑎𝑥 (0,

𝐴

𝑘4
) , 1)  

Thus, it is easy to see that the theorem has been proven. 

4 Results and Discussion 

In this section, we use a numerical method to solve the optimal control problem 

[24-27]. In this study we used the PMP method by employing the fourth-order 

Runge-Kutta. The parameter values are presented in Table 1. 

Figure 2 shows the numerical solution of the smoking problem with initial 

conditions 𝑃(0) = 40, 𝑂(𝑡) = 10, 𝑆(𝑡) = 20,𝑄𝑡(𝑡) = 10, 𝑄𝑃(𝑡) = 5. It shows 

the dynamic behavior of the smoking model without control. From this figure it 

can be seen that the population of potential smokers decreased drastically in the 

beginning but then gradually increased. The number of occasional smokers 

increased, the number of active smokers decreased, while the number of 
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smokers who temporarily stop smoking also decreased. Lastly, the number of 

individuals who permanently stop smoking showed an increase. 

Table 1 Parameter value and descriptions. 

Parameters Values Descriptions 

𝛬 1 Recruitment rate in 𝑃(𝑡) 
𝜇 0.001 Natural death rate 

𝛽 0.14 Effective contact rate between 𝑆(𝑡) and 𝑃(𝑡) 
𝛼1 0.002 Rate at which occasional smokers become 

regular smokers 

𝛼2 0.0025 Contact rate among smokers and people who 

stop smoking but return to smoking 

𝛾 0.8 Rate of people who stop smoking 

𝜎 0.1 Rate of people who stop smoking permanently 

The treatment with an anti-nicotine drug for 25 days was considered here, since 

long-term treatment with drugs has the potential to have dangerous side effects 

and the best time for vaccination is probably in the early stages of a disease. The 

non-smoking population who can potentially become smokers is shown in 

Figure 3(a). This population showed a significant decrease on the first day. For 

the following day the graph shows an increase but not a significant one. After 

giving control, the number of potential smokers on the 20th day increased 

slightly compared to before introducing the control. This shows that this 

population is likely to continue decreasing if it is given this control for a longer 

period of time. 

 

Figure 2 Plot of the model without control. 
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Figure 3 (a) The non-smoking population who can potentially become smokers 

with and without control. (b) The population of individuals who smokes 

occasionally with and without control. (c) The population of individuals who 

actively smoke with and without control. (d) The population of individuals who 

temporarily stopped smoking with and without control. (e) The population of 

individuals who have stopped smoking permanently with and without control. 

For the population who smokes occasionally, control was given in the form of 

anti-smoking gum and government prohibition of smoking in public spaces. In 

Figure 3(b) it can be seen that on the first day a significant increase occurred 

and on the following days it further increased. After being given the control, the 

population who smoke occasionally showed a significant increase on the first 

day but a decrease on the following days. In contrast to before control, on the 
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first day this population also showed an increase but not as large as before 

control. After that, the control started to show an effect. 

Figure 3(c) shows the population of individuals who actively smoke with and 

without control. The control suggested for this population is anti-nicotine drug 

treatment and government prohibition of smoking in public spaces. The 

performed simulations showed that the population of active smokers decreased 

from the first day to the end of the simulation. The population with control also 

showed a decrease, but more significantly than before being given the controls. 

Thus, the controls had a good result in this case. 

The population of individuals who temporarily stopped smoking is presented in 

Figure 3(d). The red line describes the simulation results without control and the 

green line shows the simulation results with control. For this population, the 

control given was in the form of anti-smoking gum and government prohibition 

of smoking in public spaces. Without control, the simulation results showed a 

decrease of this population from the first day to the 25th day, but with control 

this population decreased exponentially. 

This study recommends providing controls in the form of anti-smoking 

education campaign, anti-smoking gum, anti-nicotine drug, and government 

prohibition of smoking in public spaces to the population of individuals who 

have stopped smoking permanently, see Figure 3(e). The simulation results 

show that from the beginning to the end of the simulation period there was an 

increase of the number of individuals who stopped smoking permanently. After 

giving control, there was a more significant increase. Giving control to this 

population gave better results compared to without control. Thus, this strategy 

shows the effectiveness of giving control. 

5 Conclusion 

A mathematical model of smoking was presented by considering four control 

variables, namely anti-smoking education campaign, 𝑢1(𝑡); anti-smoking gum, 

𝑢2(𝑡); anti-nicotine drug treatment, 𝑢3(𝑡); and government prohibition of 

smoking in public spaces, 𝑢4(𝑡). The aim of the control was to reduce the 

population of individuals who smoke and increase the population of individuals 

who permanently stop smoking. The existence of optimal control in the 

mathematical model of smoking dynamics was proven. In this study, we find 

that the PMP method gives the optimal control solution for the fourth-order 

Runge-Kutta as the numerical method. According to the obtained simulation 

results, it can be concluded that the control variables that were used have an 

impact in accordance with the desired purposes. 
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