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A B S T R A C T   

Fountains (negatively buoyant jets) are commonly used in numerous engineering applications, 
such as the natural ventilation in buildings and the smoke spread in compartment fires. In this 
study, the long-term behavior of weak round fountains in homogeneous ambient confined in a 
cylindrical container was analyzed using three-dimensional direct numerical simulation over a 
range of the Froude number (Fr), Reynolds number (Re), dimensionless radius of the container 
(λ), respectively. The confined weak round fountain behaves in the manner of a ‘fountain filling 
box’ flow, experiencing five development stages, i.e., the formation of the fountain flow, the 
intrusion flow, the wall fountain, the reversed flow and the stratification. Three stages of the 
development of the bulk entrainment rate are identified and the dominant mechanisms involved 
are analyzed. Fr = 1 and 2 are identified as the approximate critical values to distinguish the 
behavior of the intrusion, wall fountain and stratification. Re = 200 is determined as the 
approximate critical value to distinguish the influence of Re. These are consistent with the 
existing results about the round fountains.   

1. Introduction 

Fountains (negatively buoyant jets), are widely involved in numerous natural and industrial settings [1]. When a dense jet is ejected 
upward into a lighter ambient fluid, a fountain is formed. Due to the negative buoyancy, the vertical velocity of the dense jet flow is 
gradually decreased until zero when the flow attains its maximum penetration height and the fountain flow subsequently falls back to 
form a downflow, which interacts with the upflow of the dense jet flow within the core of the fountain and the ambient fluid. The same 
flow is also found in the process where a light jet is discharged downward into a denser ambient fluid. The downflow fountain can 
produce strong secondary shear flows in the ambient after it impinges on the bottom floor. Without confinement, a radially outward 
spreading intrusion is resulted from the downflow after it impinges on the bottom floor. The intrusion behaves in a similar manner to a 
free-propagating radial gravity current as discussed by Chen [2], which may experience the ‘wall-jet’ (W-J) regime, the ‘buoy
ancy-inertial’ (B–I) regime, and finally the ‘buoyancy-viscosity’ (B-J) regime, in terms of the governing forces. Such free fountain cases 
are usually involved in large-scale environmental flows, e.g., discharging the brine from desalination plants into the sea or the 
explosive volcanic eruptions [1]. However, in many applications of practical interest, a fountain usually occurs in a confined space, 
such as the natural ventilation and the reverse cycle air-conditioning systems in the building [3–5], smoke spread in compartment fires 
[6], and the leakage of hazardous gas in a limited space [1]. Inherently, the behavior of the confined fountain is different from that of a 
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free fountain flow due to the confinement. When the confinement is not large, the intrusion will impinge with the vertical sidewall and 
move upwards along the wall to form a wall fountain. Since the flow remains denser than the ambient fluid, the wall fountain will then 
fall back after reaching its maximum penetration height, which will subsequently form a reversed flow moving toward the core region 
of the fountain flow ejected from the fountain source, interacting with the intrusion and the ambient fluid on the way. With the 
continuous ejection of the fountain fluid, a density stratification of fluid is then gradually formed in the confined space. Such a confined 
fountain flow was denoted as the ‘fountain filling box model’ by Baines, Turner & Campbell [7], which is a complementary model to 
the ‘plume filling box model’ proposed by Baines & Turner [8]. 

The behavior of a fountain in an unconfined homogeneous ambient fluid (termed ‘free fountain’), is mainly governed by the 
Reynolds number Re and the Froude number Fr. Round fountains ejected from a round source, can be classified as very weak, weak, 
intermediate, forced, and highly forced in terms of Fr alone [1], or laminar, transitional and turbulent in terms of Re alone [9], 
although there is no definite explicit classification in terms of both Fr and Re. To date, extensive studies have been on free fountains, 
with earlier ones mainly on turbulent fountains in homogeneous ambient and more recent ones being extended to weak, laminar and 
transitional fountains in both homogeneous and stratified ambient. A good understanding of the behavior of free fountains has been 
obtained, mainly in terms of the fountain penetration height and the entrainment rate, as summarised in e.g., Refs. [1,9–15]. However, 
the behavior of confined fountains is much less understood. 

In the early study of the confined turbulent round fountain, Baines et al. [7] took into account of the entrainment, but the influence 
of the confinement extent was not addressed. A similar shortage also exists in the research to determine the entrainment rate of 
fountains by using plumes impinging with a density interface (see, e.g., Refs. [16–18]). Shrinivas & Hunt [19] experimentally studied 
the influence of the confinement on the entrainment of fountain when buoyant fluid turbulently entrained across a density interface 
which separates two uniform layers within the confines of a box, in terms of the confinement parameter λi which is denoted as the ratio 
of the interfacial turbulence length scale to the depth of the upper layer. They noted that when λi is small, the entrainment is influenced 
by a weak secondary flow, following the scaling relation of Ei∝Fri

2, where Ei and Fri are the dimensionless entrainment flux across the 
interface and the interfacial Froude number respectively, and when λi becomes large, a strong secondary flow formed significantly 
influences the entrainment, with the scaling relation of Ei∝Fri

3. More recently, Debugne & Hunt [20] experimentally identified four 
flow regimes for the spanwise confined turbulent round fountains over 0.5 ≤ Fr ≤ 96 and 2 < λ < 24, where λ is the dimensionless 
radius of the container non-dimensionalized by the fountain source radius R0. In their study, a ‘confined’ Froude number Frc ≡

Fr(W/R0)
− 5/4 was determined as the governing parameter to encompasses the confinement influence. Xue, Khodaparast & Stone [21] 

conducted a series of experiments to investigate the behavior of round fountains over Re < 500 and 5 ≤ Fr ≤ 35 in confined square 
tanks, and found that both the volume entrainment flux ratio and the fountain penetration height reach a local peak at an intermediate 
Reynolds number (Re ≈ 200). Additionally, the confinement effect was observed to enhance the horizontal mixing within the layer of 
the mixture formed at the top. Nevertheless, with only two square tanks of relatively large aspect ratios to provide weak confinement, 
no clear understanding of the confinement influence was obtained. The present paper is motivated to provide a better understanding of 
the long-term behavior of confined weak round fountains in homogeneous ambient. 

The remainder of this paper is organized as follows. The details of the three-dimensional DNS runs and the mesh and time-step 
independence test results are briefly described in § 2. The DNS results are benchmarked in § 3 by comparing the numerical results 
produced by several representative DNS runs with the corresponding experimental results obtained with high-speed cameras and 
visualization experiments. In § 4, the evolution of the typical confined weak round fountain is described qualitatively with the DNS 
results, along with the qualitative discussions of the influence of Fr, Re and λ. A quantitative analysis is also presented in § 4 to quantify 
the influence of Fr, Re and λ on the characteristics of the transient behavior of confined weak round fountains, including the intrusion, 
wall fountain, stratification and bulk entrainment/dilution rate. Finally the conclusions are drawn in § 5. 

2. Numerical methodology 

The physical system under consideration is a vertical cylindrical container of radius Rc and height H, with a non-slip and insulated 
sidewall and an open top surface. An orifice of radius R0 located on the bottom center is used as the round fountain source. The rest 
region of the bottom is rigid, non-slip and insulated. The container initially contains a quiescent homogeneous Newtonian fluid at the 
uniform temperature Ta. At t = 0, a dense jet at temperature T0 (T0 < Ta) is ejected upward into the container from the source at the 
uniform velocity W0 and this discharge is maintained thereafter. For a three-dimensional round fountain in a confined homogeneous 
ambient fluid, the governing equations, i.e., the three-dimensional incompressible Navier-Stokes equations and the temperature 
equation can be written in cylindrical coordinates (R, Φ, Z) as follows, 
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in which the dimensional quantities R, Z and Φ are the coordinates, UR, UZ and Uφ are velocity components in the R, Z and Φ directions, 
T is temperature, t is time, g is the acceleration due to gravity, ρ, ν, β and κ are the density, kinematic viscosity, volumetric expansion 
coefficient and thermal diffusivity of fluid, respectively. 

The appropriate initial and boundary conditions are as follows, 

UR = UΦ = UZ = 0, T = Ta, at ​ all R, Φ, Z and t < 0 (6)  

and at t ≥ 0, 
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These variables can be made dimensionless by their respective scales as follows, 
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where r and z are the dimensionless coordinates, ur, uz and uφ are the dimensionless velocity components in the r, z and φ directions, φ 
(in radiant) is itself dimensionless, τ, p and θ are the dimensionless time, pressure and temperature, respectively. 

Re, Fr and Pr are the Reynolds, Froude and Prandtl numbers, defined as follows, 

Re =
W0R0

ν (9)  

Fr =
W0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
gR0(ρ0 − ρa)/ρa

√ =
W0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
gβR0(Ta − T0)

√ (10)  

Pr =
ν
κ

(11)  

where ρ0 and ρa are the densities of the jet fluid and the ambient fluid at the source, respectively. For fountains resulted from the 
temperature difference between the jet and ambient fluid, Fr can also be calculated with the temperature difference using the 
Oberbeck-Boussinesq approximation as the second expression in Eqn. (10), which requires the density ratio of (ρ0 − ρa)/ρa to be 
significantly less than unity. 

The dimensionless confinement size parameter of the cylindrical container, λ, is non-dimensionalized by R0 as follows, 

λ =
Rc

R0
. (12)  

The above governing equations are discretized using the finite volume method and solved by the SIMPLE algorithm. The 2nd-order 
central difference schemes and 3rd-order QUICK scheme are used for the viscous diffusive terms and the advective terms, respec
tively. For the time integration of the advective terms and the diffusive terms, the 2nd-order Adams-Bashforth and Crank-Nicolson 
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schemes are used. The PRESTO scheme is used for the pressure gradient. All DNS runs were carried out using ANSYS Fluent 17.0. 
There are 40 DNS runs carried out in this paper, with the key information of these runs presented in Table 1. Water was selected as 

the fluid in the numerical simulations, with density, kinematic viscosity and volume expansion coefficient of ρa = 996.6 kg/m3, υ =
8.58 × 10− 7 m2/s and β = 2.76 × 10− 4 1/K at the reference temperature of Ta = 300 K. The maximum temperature difference between 
the source and the ambient fluid (Ta − T0) of all DNS runs is (300–296.602) = 3.398K, which results in a small enough density ratio to 
ensure that the Oberbeck-Boussinesq approximation is valid. 

Non-uniform meshes were used for this study. A fine uniform mesh was used in the bottom region (below H/2), while for the top 
region (over H/2) a coarse and stretched mesh was used. Extensive mesh and time-step size independence tests were carried out to 
ensure accurate results to be obtained for the DNS runs. As an example of the tests, the comparison of the DNS results obtained with 
three different meshes and three different time-step sizes was made for the case of Fr = 1.5, Re = 200, Pr = 7 and λ = 20. The three 
meshes (coarse, basic and fine) were created by the ANSYS ICEM software. For the basic mesh of 4.06 million grids, the uniform grids 
of the sizes of Δr = 0.067 and Δz = 0.067, which are made dimensionless by R0, are used in the region of 0 ≤ z ≤ 10, while in the 
remaining region, the grid sizes expand at a rate of 0.5% in the vertical direction until they reach the open top boundary, along with 40 
uniform grids created in the angular direction. When larger grid sizes of Δr = 0.1 and Δz = 0.1 were used in the uniform region and the 
grid size expansion rate is unchanged for the non-uniform region, the coarse mesh is created with 1.5 million grids. In the uniform 
region of the fine mesh, the grid sizes are reduced to Δr = 0.05 and Δh = 0.05, resulting in 5.2 million grids. The very small variations 
between the solutions with different meshes and different time-step sizes indicate that the basic mesh of 4.06 million grids with the 
time-step size of Δτ = 0.0076 can produce a sufficient resolution for Re ≤ 200. Similar mesh and time-step independence tests had also 
been carried out for other cases to ensure the accuracy of the numerical solutions. 

3. DNS results benchmark 

To ensure the DNS results are accurate, the DNS results of several typical confined weak round fountains are compared against the 
experimental results of approximately the same corresponding fountains, both qualitatively and quantitatively. The selected DNS runs 
include those of Fr = 1.0, 1.5, 2.0, and 3.0 at Re = 200 and λ = 20 (i.e., Runs 14, 22, 30 and 35), and Re = 100 and 500 at Fr = 1.5 and λ 
= 20 (i.e., Runs 21 and 23). The experiments chosen for the DNS benchmark are those of Fr = 1.0, 1.5, 2.0 and 3.0 at Re = 204 and λ =
27.9, and Re = 102 and 511 at Fr = 1.5 and λ = 27.9 with each experiment corresponding to the closest to its counterpart of the DNS 
run. 

The details of the experimental system, setup, and methods were described in our recent experimental study on confined turbulent 
round fountain [22, 23], and the key data of these experiments are presented in Table 2. 

In the experiments, saline water of various densities was ejected upward into a cylindrical container with quiescent tap water at 
specific constant flow rates, to form the confined round fountains. The inner diameter of the cylindrical Perspex-sided test tank is 0.39 
m, with a nozzle of diameter 0.014 m on the bottom center, resulting in the dimensionless confinement size λ = 27.9. Since the fluid for 
the experiments is water, Pr is fixed as Pr = 7. By using flow visualization technique, the transient behavior of confined fountains was 
recorded by a system of two Photron FASTCAM Mini UX100 High-Speed Cameras and a SONY HDR-PJ810 video camera. 

As will be detailed in § 4.1.1, the evolution of the flow behavior of a typical confined weak round fountain consists of five major 
distinct development stages, i.e., the formation of the fountain flow in the ambient, the intrusion flow on the bottom of the container, 
the wall fountain flow on the sidewall, the reversed flow, and the density stratification. In Fig. 1, the images of the density field from 
the experiment for the confined weak round fountain of Fr = 1.5, Re = 204, Pr = 7 and λ = 27.9 and the contours of the temperature 
field from the DNS for the corresponding confined weak round fountain of Fr = 1.5, Re = 200, Pr = 7 and λ = 20 are presented for the 
stages of the intrusion flow, the wall fountain flow and the stratification, respectively. The results demonstrate that the experimental 

Table 1 
Key data for the DNS runs (Note: h = H/R0).  

Runs Fr Re λ × h Grids (million) 

1, 2 0.25 100, 200 20 × 20 4.06 
3, 4, 5, 6 0.5 10, 50, 100, 200 20 × 20 4.06 
7, 8 0.5 500, 800 20 × 12 5.88 
9, 10, 11, 12, 13, 14 1.0 5, 10, 20, 50, 100, 200 20 × 20 4.06 
15, 16 1.0 500, 800 20 × 12 5.88 
17, 18 1.25 100, 200 20 × 20 4.06 
19, 20, 21, 22 1.5 10, 50, 100, 200 20 × 20 4.06 
23, 24 1.5 500, 800 20 × 12 5.88 
25, 26 1.75 100, 200 20 × 20 4.06 
27, 28, 29, 30 2.0 10, 50, 100, 200 20 × 20 4.06 
31 2.0 800 20 × 12 5.88 
32, 33 2.5 100, 200 20 × 20 4.06 
34, 35 3.0 100, 200 20 × 20 4.06 
36 1.0 200 10 × 30 3.84 
37 1.0 200 15 × 30 5.78 
38 1.0 200 25 × 20 4.07 
39 1.0 200 30 × 20 4.89 
40 1.0 200 35 × 20 5.70  
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results and the DNS results are qualitatively in good agreement, as the DNS results captures the major features of the flow behavior 
with sufficient accuracy. 

The quantitative comparison between the numerical and experimental results of the time series of the penetration height of the 
fountains and the intrusion front was also made and presented in Ref. [22] (due to the limit of figures the figures showing these results 
are not presented here). It was found that the DNS results are quantitatively in good agreement with the experimental results as well, 
although it is also noted that there are some noticeable quantitative differences presented in the results with the possible factors 
contributed to the differences discussed by Mahmud and his co-workers [24,25]. 

Nevertheless, all the benchmark results clearly show that the code used for the DNS runs is able to provide satisfactorily accurate 
and reliable numerical results which capture all the major features of the bulk behavior of confined round fountains in homogeneous 
ambient. 

4. Results and discussions 

4.1. Qualitative observations 

4.1.1. Evolution of a typical confined weak round fountain flow 
A series of snapshots of the transient temperature contours of the fountain of Fr = 0.5, Re = 200, Pr = 7 and λ = 20 are presented in 

Fig. 2, which provide an overview of the evolution of a typical confined weak round fountain. After the formation of the fountain flow, 
the development of a typical confined weak round fountain can be divided into another four stages, i.e., the intrusion flow, the wall 
fountain on the sidewall, the reversed flow, and the stratification. 

When the fountain and intrusion flow are initially formed, the influence of the confinement is negligible, resulting in the essentially 
same behavior as that of its counterpart of the free round fountain, which has been illustrated in detail by Lin & Armfield [11]. Thus the 
description of the behavior in this period is omitted here. With the weak momentum flux at the source, the downflow of the fountain 
spreads outward along the bottom as shown in Fig. 2(a)–(c), behaving as a radial gravity current. The evolution of the radial intrusion 
flow experiences several regimes, i.e., the ‘wall-jet’ (W-J), the ‘buoyancy-inertial’ (B–I), and the ‘buoyancy-viscosity’ (B–V) regimes in 
terms of the dominant governing forces. A detailed discussion of the intrusion flow will be presented in § 4.2.1. 

A secondary wall fountain flow is created after the intrusion impinges with the sidewall as shown in Fig. 2(d)–(f), where the denser 
flow moves upward on the sidewall to reach a finite height and then falls down due to the negative buoyancy. The fountain behavior 
will be further studied in § 4.2.2. A flow reversal moving from the sidewall to the fountain is subsequently created due to the stagnation 
pressure from the sidewall, resulting in a two-layer structure as presented in Fig. 2(g)–(i). The thickness of the bottom denser fluid layer 
increases due to the interaction between the reversed flow and the intrusion, the fountain flow and the ambient fluid. The interaction is 
strengthened with the reversed flow approaching the fountain core. Subsequently, a collision of the intrusion flows from both sidewalls 
occurs at the center region of the container, pushing the ejected fountain flow from the source to a higher height, which subsequently 
falls down due to the negative buoyancy as shown in Fig. 2(k). With the continuous supply of the fountain flow from the source, a 
thermal stratification is eventually created, with the fountain flow submerged in the stratified fluid in the long run as shown in Fig. 2(l). 
After that filling and thermal conduction dominate the development of the thermal stratification. 

4.1.2. The influence of Re, Fr, and λ 
Fig. 3 presents the snapshots of the temperature contours of the fountains of Fr = 1.0, Fr = 1.5 and Fr = 2.0 with Re = 200, Pr = 7 

and λ = 20 at different time instants to illustrate the influence of Fr on the behavior of confined weak round fountains. When Fr in
creases, it is seen that it will take longer for the intrusion front to impinge with the sidewall and for the wall fountain flow to reach its 
maximum height, as shown in the first and second rows. Meanwhile, the intrusion thickness and the wall fountain’s maximum 
penetration height increase when Fr increases. The reversed flow and thermal stratification shown in the next two rows indicate a 
stronger interaction among the reversed flow, intrusion and ambient fluid with increasing Fr, which results in a longer time for the 
reversed flows from both sidewalls to collide at the center region, but a shorter time for the thermal stratified surface to reach the same 
height. For a certain thickness of thermal stratification, as shown in the last row of Fig. 3, the difference between the temperatures at 
the top and the bottom indicates the strength of the stratification. With the dimensionless temperature of -1 and 0 represented by color 
of blue and red, the stratification is found to be weaker with increasing Fr. In the long run, the increase of Fr changes the behavior of the 
fountain and its secondary flows from symmetric (at Fr = 1.0) to asymmetric (at Fr > 1.0), as can be seen Fig. 3. 

The influence of Re on the fountains with Fr = 1.0, Pr = 7 and λ = 20 is presented in Fig. 4. It is seen that with the increase of Re the 

Table 2 
Key data of the experiments and the corresponding DNS runs.  

Run Fr Re R0 (m) W0 (m/s) ρ0 (kg/m3) ρa (kg/m3) DNS run 

1 1 204 0.007 0.0271 996.5 1007.6 14 
2 1.5 102 0.007 0.0135 996.5 997.7 21 
3 1.5 204 0.007 0.0271 996.5 1001.3 22 
4 1.5 511 0.007 0.0677 996.6 1026.1 23 
5 2 204 0.007 0.0271 996.5 999.3 30 
6 3 204 0.007 0.0271 996.6 997.8 35  
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Fig. 1. The comparison between the images of the density field from the experiment for the confined weak round fountain of Fr = 1.5, Re = 204, Pr 
= 7 and λ = 27.9 and the contours of the temperature field from the DNS run for the corresponding confined weak round fountain of Fr = 1.5, Re =
200, Pr = 7 and λ = 20 during the intrusion flow stage (rows 1 and 2); during the wall fountain flow stage (rows 3 and 4); and during the strat
ification stage (rows 5 and 6), respectively. 
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thickness of the intrusion, the wall fountain maximum penetration height, and the stratification height all become smaller, but the 
stratification turns stronger, i.e., the temperature difference between the top and bottom becomes larger. From the first row, it is seen 
that the intrusion speed becomes larger when Re increases but the time for the wall fountain to reach the maximum height is reduced, 
as shown in the second row. However, it takes longer to form the stratification with a larger Re as shown in the last row. The interaction 
between the fountain flow and its secondary flows becomes more significant when Re becomes larger, resulting in the enlargement of 
the region of the fountain core (the blue part at the region center). This is because a stratified structure with a denser fluid (blue) 
surrounding the fountain is formed, which will reduce the stability of the fountain flow. Hence, a very weak asymmetric behavior 

Fig. 2. The evolution of the temperature contours of the round fountain with Fr = 0.5, Re = 200, Pr = 7 and λ = 20 over the duration of 2.7 ≤ τ 
≤ 261.7. 
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appears for the intrusion near the fountain core for the fountain with Re = 800. It should be noted that no falling of the wall fountain is 
observed for the fountains with Re ≤ 20, although the results are not presented here. 

When λ increases, it is found from the results that the wall fountain reaches a higher maximum height, and it takes longer to 
establish a weaker stratification in the container, as shown in Fig. 5. 

4.2. Quantitative observation 

4.2.1. Intrusion 
The time series of the intrusion front for the confined round fountains over 0.25 ≤ Fr ≤ 3.0, 5 ≤ Re ≤ 800, and 10 ≤ λ ≤ 35 at Pr = 7 

are presented in Fig. 6 (left column). The intrusion front is determined as the r-location where the temperature is T(r) = Ta − 1%(Ta −

T0) within the whole cylindrical domain. The end point of the times series is defined as the characteristic time-scale for the intrusion 
front impinging with the sidewall, τw. The intrusion speed is found to increase when Fr decreases or when Re increases, as shown in 
Fig. 6(a) and 6(b), respectively. Only the early stages of the intrusion passages overlap for fountains with Re ≥ 500, while a larger 
intrusion velocity is observed for the cases with larger Re at the later stages. The influence of λ is presented in Fig. 6(c), which shows 
that the λ effect becomes significant only in the region close to the sidewall. All these are consistent with the qualitative observations 
described above, indicating that the effect of thermal conduction becomes more significant with a larger Fr or a smaller Re. 

For practical examples such as the reverse cycle air-conditioning systems in the building and the leakage of hazardous gas in a 
limited space, τw represents the time taken for the cold/hot air or hazardous gas to reach the sidewall, which is important for evaluating 
the performance of the air-conditioning systems and guiding the relief. To illustrate the influence of the governing parameters on τw, τw 
is also plotted against Fr, Re and λ respectively in Fig. 6 (right column). From Fig. 6(d), combined with the behavior of the wall 
fountain, the stratification and the entrainment with variable Fr studied in § 4.2.2, § 4.2.3 and § 4.2.4, two critical values, around Fr =
1.0 and Fr = 2.0, are identified to distinguish the influence of Fr into three ranges, with three different correlations are determined as 
follows: 

Fig. 3. The snapshots of the temperature contours of the fountains with different Fr values, all with Re = 200, Pr = 7 and λ = 20. The left, middle 
and right columns are for Fr = 1.0, Fr = 1.5 and Fr = 2.5, respectively. 
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τw =

⎧
⎨

⎩

94Fr0.61 − 0.26, 0.25 ≤ Fr ≤ 1.0,
50.8Fr + 43.7, 1.0 ≤ Fr ≤ 1.75,
35.2Fr + 66.1, 2.0 ≤ Fr ≤ 3.0,

(13)  

with R2 = 1, 0.998 and 0.999, respectively. It should be noted that Fr = 1 and 2 are only the approximate critical values. To determine 
the exact Fr critical values, many more numerical runs with different Fr values should be carried out. It should also be noted that the 
values obtained for the exponents and the constants in the above equation and the subsequent equations are indicative only as many 
more numerical runs for different Fr values and other governing parameters (Re and λ) should be carried out to determine their values 
more accurately. Fig. 6(e) demonstrates the influence of Re on τw. Similarly, two ranges of Re, i.e., 5 ≤ Re ≤ 200 and 200 ≤ Re ≤ 800 
are determined, with the correlations between τw and Re can be quantified as follows: 

τw =

{
217.4Re− 0.159 + 3.8, 5 ≤ Re ≤ 200,
377.8Re− 0.263 + 0.1, 200 ≤ Re ≤ 800, (14)  

with R2 = 0.985 and 1 respectively. Similarly, Re = 200 is only the approximate critical value and the exact Re critical value should be 
determined with many more numerical runs with different Re values. From the results shown in Fig. 6(f), the following power law 
correlation between τw and λ over 10 ≤ λ ≤ 35 is obtained, 

Fig. 4. The snapshots of the temperature contours of the fountains with different Re values, all with Fr = 1.0, Pr = 7 and λ = 20. The left, middle and 
right columns are for Re = 50, Re = 200 and Re = 800, respectively. 
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τw = 0.5λ1.73 + 1.7, (15)  

with R2 = 1. 

4.2.2. Wall fountain 
After the impingement of intrusion with the sidewall, the flow is turned upward and moves on the sidewall up to a certain height 

due to the negative buoyancy before it falls down, forming a wall fountain flow. The behavior of wall fountain mainly depends on Re. 
There is no falling down observed for the wall fountain with Re ≤ 20, while the wall fountain slumps down after reaching its maximum 
penetration height for 50 ≤ Re ≤ 800. However, no rolling down behavior similar to the counterpart of the ‘plume filling box’ flow [26] 
is found for the wall fountain of the confined fountains considered here. 

The time series of the wall fountain front in the region close to the sidewall are plotted in Fig. 7 (top row) over 0.25 ≤ Fr ≤ 3.0, 5 ≤
Re ≤ 800 and 10 ≤ λ ≤ 35, all at Pr = 7, with the wall fountain front defined as the vertical location in the region close to the sidewall 
where the temperature is T(y) = Ta − 1%(Ta − T0). The maximum penetration height of the wall fountain, zm (non-dimensionalized by 
R0), is determined at the largest value of z in the time series, and the corresponding time, τm (non-dimensionalized by R0/W0), is 
determined as the time-scale for the wall fountain reaches its maximum penetration height, as shown in Fig. 7(a). In the practical 
situation of hazardous gas leakage, for example, zm indicates the maximum height of the region close to the sidewall to be initially 
influenced, which is necessary information for the evacuation and relief. 

For Fr ≤ 1.75, zm is found to increase with Fr, along with a larger corresponding τm, while this conclusion is not valid for Fr ≥ 2.0, 
due to the stronger convection as shown in Fig. 3. Similarly, with the increase of λ, zm and τm increase. The increase of Re results in a 
smaller zm and also shortens the time for the wall fountain to reach its maximum height. 

The middle and bottom rows in Fig. 7 demonstrate the quantitative influence of Fr, Re and λ on τm and zm, respectively. From Fig. 7 
(d), Fr = 1.0 and Fr = 2.0 are determined as the approximate critical values to distinguish the influence of Fr into three different ranges, 
with the following correlations obtained between τm and Fr, 

Fig. 5. The snapshots of the temperature contours of the fountains with different λ values, all with Fr = 1.0, Re = 200 and Pr = 7. The left, middle 
and right columns are for λ = 10, 20 and 30, respectively. 
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τm =

{
109.4Fr0.68 − 0.21, 0.25 ≤ Fr ≤ 1.0,
92.1Fr + 20.1, 1.0 ≤ Fr ≤ 1.75, (16)  

with R2 = 1 and 0.998, respectively. There is no clear correlation obtained for the range of 2.0 ≤ Fr ≤ 3.0, due to the small number of 
points. 

No τm is obtained for the fountains with Re ≤ 20 since there is no slumping down behavior for their wall fountain flows. For the 
fountains with 50 ≤ Re ≤ 800, the influence of Re is distinguished into two ranges approximately by Re = 200, as shown in Fig. 7(e), 
and the following two power-law correlations are obtained, 

τm =

{
270.9Re− 0.17 − 1.47, 50 ≤ Re ≤ 200,
410.5Re− 0.25 + 0.45, 200 ≤ Re ≤ 800, (17)  

with R2 = 0.99 and 1, respectively. 
The results shown in Fig. 7(f) indicate a power-law correlation for the influence of λ on τm, which is quantified with the numerical 

results as follows, 

τm = 1.1λ1.53 + 1.16, (18) 

Fig. 6. The time series of the passage of the intrusion front (left column) and τw (right column) for confined weak round fountains with (a) and (d) 
0.1 ≤ Fr ≤ 3.0, all at Re = 200, Pr = 7, and λ = 20; (b) and (e) 5 ≤ Re ≤ 800, all at Fr = 1.0, Pr = 7, and λ = 20; and (c) and (f) 10 ≤ λ ≤ 35, all at Fr 
= 1.0, Re = 200, and Pr = 7. 
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with R2 = 0.999. 
From Fig. 7(g), it is seen that the influence of Fr on zm is again divided into three ranges approximately by Fr = 1.0 and Fr = 2.0, with 

following correlations obtained over 0.25 ≤ Fr ≤ 1.0 and 1.0 ≤ Fr ≤ 1.75, 

zm =

{
1.92Fr0.3 − 0.01, 0.25 ≤ Fr ≤ 1.0,
0.86Fr + 1.06, 1.0 ≤ Fr ≤ 1.75, (19)  

with R2 = 0.995 and 0.998 respectively, but again there is no clear correlation over 2.0 ≤ Fr ≤ 3.0 due to the same reason as mentioned 
above. Fig. 7(h) shows the influence of Re on zm. For Re ≥ 200, the effect of Re on zm is minimal, while for 50 ≤ Re ≤ 200, the following 
correlation is obtained, 

zm = 8.38Re− 0.28 − 0.03, (20)  

with R2 = 0.995. The influence of λ on zm presented in Fig. 7(i) can be quantified by the following linear correlation, 

zm = 0.027λ + 1.41, (21)  

with R2 = 0.985. 

4.2.3. Stratification 
With the continuous ejection of the fountain fluid, a time-dependent thermally stratified structure is formed in the container. The 

stratification height is defined as the z-location at which the temperature is T(z) = Ta − 1%(Ta − T0) within the whole container, which 
is the interface between the stratified fluid created by the filling of cold fluid through the fountain flow and the ambient fluid. The time 
series of the maximum, minimum and averaged stratification heights presented in Fig. 8 (left column) are used to demonstrate the 

Fig. 7. The time series of the wall fountain front (top row), τm (middle row), and zm (bottom row) for fountains with (a), (d), (g) Re = 200, Pr = 7, λ 
= 20, and 0.25 ≤ Fr ≤ 3.0; (b), (e), (h) Fr = 1.0, Pr = 7, λ = 20, and 5 ≤ Re ≤ 800; and (c), (f), (i) Fr = 1.0, Re = 200, Pr = 7, and 10 ≤ λ ≤ 35. 
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influence of Fr, Re, and λ. The time series of the stratification height in the figure starts from the instant when the intrusion impinges 
with the sidewall until a quasi-steady stratification is formed when the differences among the maximum, averaged and minimum 
heights become small enough or overlap. At the initial stage, the differences among these height time series are significant. This is 
because convection and mixing play dominant roles in the flow development, which is mainly resulted from the interactions among the 
fountain flow, its secondary flows (wall fountain and reversed flow) and the ambient fluid. In the long run, the three time series follow 
the same trend and converge together, indicating that thermal conduction and filling become the dominant mechanism at the later 
stratification stage. 

Fig. 8(a) shows that the extents of differences among the time series of the stratification height become larger when Fr increases, 
and the time for the formation of the quasi-steady stratification also increases. However, the results in Fig. 8(b) indicate that the 
increase of Re results in smaller extents of the differences among the time series, a shorter time for the stratification to reach steady, 
and a smaller development rate of the quasi-steady stratification, which is approximately represented by the slope of the averaged time 
series of the height, due to the influence of thermal conduction. It is also found that the extents of the differences among the time series 
become larger when λ increases, as shown in Fig. 8(c), which is due to the higher penetration height of the wall fountain. 

While the development rate of the stratification, vs, which is dz/dτ, can be approximately obtained through the slope of the 
averaged time series after the quasi-steady stratification is formed, its counterpart for a purely filling flow in a cylindrical container can 
be calculated by vs = 1/λ2 based on the conservation of mass. Fig. 8 (right column) presents the development rate of the averaged 

Fig. 8. The time series of the maximum, minimum and average stratification heights (left column) and vs (right column) for fountains with (a) and 
(d) varying Fr, all at Re = 200, Pr = 7, λ = 20; (b) and (e) varying Re, all at Fr = 1.0, Pr = 7, λ = 20; and (c) and (f) varying λ, all at Fr = 1.0, Re =
200, Pr = 7. 
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stratification of the confined fountains and that of the purely filling flow to illustrate the influence of Fr, Re and λ on vs for confined 
fountains. Again, Fr = 1.0 and Fr = 2.0 are determined as the approximate critical values to distinguish the influence of Fr into three 
ranges, as shown in Fig. 8(d). For 0.25 ≤ Fr < 1.0, the increase of Fr results in a declining vs. But vs remains almost constant for 1.0 ≤ Fr 
≤ 2.0, whereas the further increase of Fr causes vs to increases noticeably over 2.0 < Fr ≤ 3.0. Fig. 8(e) illustrates the influence of Re on 
vs, where the influence of Re can be distinguished into two ranges by a specific value between Re = 100 and Re = 200, with two power- 
law correlations obtained as follows, 

vs =

{
0.09Re− 0.362, 5 ≤ Re ≤ 100,
0.07Re− 0.173, 200 ≤ Re ≤ 800, (22)  

with R2 = 0.998 and 1.0 respectively. With the results presented in Fig. 8(f), the following correlation is obtained between vs and λ, 

vs = 0.5077Pr− 1.574 − 0.0002, (23)  

with R2 = 0.998. 

4.2.4. Bulk entrainment or dilution 
The bulk entrainment rate determined by η = QE/Q0 is used to describe the mean dilution of the buoyancy scalar over the filling box 

as a whole, which is again used here to investigate the entrainment/dilution behavior of the filling flow with weak round fountains. QE 
is the bulk entrainment by the fountain and Q0 is the source volume flux. For a confined round fountain, the source volume flux is Q0 =

πR2
0W0, whereas the bulk entrainment QE is calculated by QE = Qs − Q0, where Qs is the volume flux of the stratified fluid, which is 

calculated by integrating the volume under the thermal stratified surface. 
The entrainment rates η for the confined round fountains over 0.25 ≤ Fr ≤ 3.0, 5 ≤ Re ≤ 800, and 10 ≤ λ ≤ 35 at Pr = 7 are 

calculated and plotted against τ as shown in Fig. 9 (top row) to demonstrate the influence of these governing parameters. The time 
series of the entrainment rate starts from the formation stage of the fountain until the formation of the quasi-steady stratification, 
performing a saddle-like profile with two peak points. The first peak point, also the maximum value of η in the time series, is denoted as 
ηm, and the corresponding time, τe (non-dimensionalized by R0/W0), is determined as the time-scale for the filling flow to reach its 
maximum entrainment rate, as shown in Fig. 9(a). The middle and bottom rows in Fig. 9 demonstrate the influence of Fr, Re and λ on τe 
and ηm, respectively. 

The results show that the entrainment rate time series can be approximately distinguished into three stages with the two peak 
points. In the first stage, the entrainment rate increases monotonically with time until reaching the first peak point. This stage cor
responds to the period of the intrusion development, where the ambient fluid is mainly engulfed by the eddy over the intrusion head. 
With the intrusion front impinging with the sidewall and the formation of the wall fountain, the entrainment rate time series reaches its 
maximum value, due to the stronger convection and mixing resulted from the impingement and the subsequent wall fountain flow. 
This is demonstrated by comparing Fig. 9(d)–(e) with Fig. 6(d)–(e) and Fig. 7(d)-(e), in which the value of τe under different parameters 
is similar to its counterpart of τw and τm, except for the case of Fr ≥ 2.0 due to the stronger convection. 

Then the convection and the interactions among the intrusion, the reversed flow and the ambient fluid keep the entrainment rate at 
a relatively high value until the reversed flows from both sidewalls collide at the center region of the container, when the second peak 
point appears. As shown in Fig. 9 (top row), the second peak point becomes less significant with increasing Re or decreasing λ. For Fr ≤
1.75, the time series of entrainment rate is relative smooth with a more significant second peak point for the smaller Fr, while the 
profile turns considerably fluctuating for Fr ≥ 2.0. 

After the quasi-steady stratification is formed, thermal conduction becomes the main contribution to the development of the 
stratification, with η increasing with increasing Fr or decreasing Re as shown in the third stage of the time series of Fig. 9(a)–(b). It 
should be noted that thermal conduction keeps influencing the dilution process at all stages. The influence of Fr, Re and λ on η is 
consistent with the results presented in § 4.2.3 for the stratification rate. 

τe is plotted against Fr, Re and λ in Fig. 9(d)–(f) respectively to illustrate the influence of the governing parameters on τe. Similarly, 
Fr = 1.0 and Fr = 2.0 are determined as the approxinate critical values to distinguish the influence of Fr into three different ranges, with 
the following correlations obtained from the numerical results, 

τe =

{
102.43Fr0.63 − 0.17, 0.25 ≤ Fr ≤ 1.0,
54.46Fr + 48.28, 1.0 ≤ Fr ≤ 1.75, (24)  

with R2 = 1 and 0.999, respectively. From Fig. 9(e), a specific value between Re = 100 and Re = 200 should exist to distinguish the 
influence of Re into two ranges, with two power-law correlations obtained from the numerical results as follows, 

τe =

{
223.08Re− 0.15 + 6.68, 5 ≤ Re ≤ 100,
311.94Re− 0.21 − 1.18, 200 ≤ Re ≤ 800, (25)  

with R2 = 0.993 and 0.952 respectively. With the results presented in Fig. 9(f), the following correlation is obtained from the numerical 
results, 

τe = 0.68λ− 1.66 + 1.69, (26)  
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with R2 = 0.999. 
Fig. 9(g)–(i) demonstrate the quantitative influence of Fr, Re and λ on ηm, respectively. Again, Fr = 1.0 and Fr = 2.0 are determined 

as the approximate critical values to distinguish the influence of Fr into three ranges, as shown in Fig. 9(g). For 0.25 ≤ Fr < 1.0, ηm 
decreases with the increase of Fr. However, an almost constant ηm is observed for 1.0 ≤ Fr < 2.0. After that, the further increase of Fr 
causes ηm to increase noticeably over 2.0 ≤ Fr ≤ 3.0. Fig. 9(h) illustrates the influence of Re on ηm. For Re ≥ 200, the effect of Re on ηm is 
minimal, while for 5 ≤ Re ≤ 200, the following correlation is obtained from the numerical results, 

ηm = 14.94Re− 0.32 − 0.19, (27)  

with R2 = 0.996. The influence of λ on ηm presented in Fig. 9(i) can be quantified by the following linear correlation, 

ηm = 0.106λ + 0.68, (28)  

with R2 = 0.999. 

5. Conclusion 

For confined weak round fountains, a secondary radial intrusion flow is created with the impingement of the fountain downflow on 
the bottom of the container. The intrusion flow behaves as a radial gravity current. The behavior of the secondary wall fountain for the 
confined fountains with specific values of Fr and Re is also significantly influenced by the confinement λ. The wall fountain front on the 
sidewall changes from no falling to falling with the increase of λ. The maximum penetration height zm is found to increase with λ and Fr 
for Fr ≤ 2.0, whereas it decreases with increasing Re. Three stages are determined from the time series of the bulk entrainment rate. At 
the first stage, the entrainment rate monotonically increases due to the ambient fluid engulfed by the intrusion head. With the intrusion 
impinging with the sidewall and the formation of the wall fountain, the entrainment rate reaches a peak value. Subsequently, the 

Fig. 9. The time series of the entrainment rate η (top row), τe (middle row), and ηm (bottom row) for fountains with (a), (d), (g) Re = 200, Pr = 7, λ 
= 20, and 0.25 ≤ Fr ≤ 3.0; (b), (e), (h) Fr = 1.0, Pr = 7, λ = 20, and 5 ≤ Re ≤ 800; and (c), (f), (i) Fr = 1.0, Re = 200, Pr = 7, and 10 ≤ λ ≤ 35. 
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interactions among the intrusion, the reversed flow and the ambient fluid create convection and mixing, leading to the second stage 
with a relatively high entrainment rate. After the second peak, the entrainment rate gradually decreases, which is because the 
dominant mechanisms for the stratification development switch to filling and thermal conduction. The stratification rate vs deceases 
with the increase of Re, which reduces the effect of thermal conduction. The results show that Fr = 1.0 and 2.0 are the critical values to 
distinguish the behavior of the intrusion, wall fountain and stratification. This is consistent with the existing classifications of the 
round fountains [1], while Re = 200 is determined as the critical value to divide the influence of Re, which also agrees well with the 
existing results [13]. 
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