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Abstract 
 

Preparatory neural activity in premotor areas is critical for planning and execution of 

voluntary movements. Previous studies in monkeys and mice have revealed how the 

discharges of pyramidal, excitatory neurons (PNs) encode a motor plan for an upcoming 

movement (Afshar et al., 2011; Chen et al., 2017; Li et al., 2015).  However, the contribution 

of GABAergic interneurons, specifically fast-spiking interneurons (FSNs), to voluntary 

movements remains poorly understood. 

Putative premotor areas involved in action planning have been demonstrated in rodents. In 

particular, in mice, a premotor area controlling voluntary licking has been identified in the 

anterior-lateral motor cortex (ALM) (Komiyama et al., 2010). Also, ALM  partially overlaps with 

the rostral forelimb area (RFA), the previously defined premotor region involved in the control 

of paw movement in rats and mice (Rouiller et al., 1993; Tennant et al., 2011).  

To understand the excitatory-inhibitory microcircuit involved in action planning, here I compare 

directly the response properties of PNs and FSNs during licking behaviour and forelimb 

retraction in the mouse. Recordings are carried out with both acute electrodes and chronic 

microelectrode arrays from both the  two premotor areas, i.e. the ALM – responsible for licking 

–, and RFA – involved in paw movement.  

Specifically, in a first set of experiments, I used head-restrained mice that spontaneously lick 

a reward delivered at random intervals from a drinking spout. Mice voluntary performed either 

single isolated or a burst of consecutive licks, which I categorized, a posteriori, in single (= 1 

lick) and multiple licks (≥ 3 licks). During the task, I extracellularly recorded single units’ activity 

from ALM, using acute in vivo electrophysiology. I identified putative PNs and FSNs, based on 

well-established features of their waveforms, and investigated their functional properties during 

the movement. 

Unexpectedly, I report that optogenetically-verified FSNs showed an earlier and more 

sustained activation than PNs. In particular, most of the neurons’ activity anticipated the licking 

onset, consistently with an involvement of the ALM in movement planning. The majority of the 

neurons (~90%) increased their firing frequency in correspondence with the movement, but 

suppressive modulations were also observed in a subset of units. For both PNs and FSNs, I 

found significantly greater discharge during multiple than single licks and the peak discharge 

was significantly delayed for both subclasses during multiple licking events. However, FSNs 

modulated their activity about 100ms earlier than PNs. Furthermore, almost all FSNs showed 
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a peak in their response before the beginning of the sequence of licks. Analysis of mean 

information content confirms that FSNs predict licking onset not only significantly better, but 

even earlier, than PNs.  

Chronic electrode arrays covering both the ALM and RFA were next used to simultaneously 

probe neural responses during (i) licking and (ii) forelimb pulling in a robotic device (Spalletti 

et al., 2017). I report that most of the FSNs respond with a stereotyped increase in their firing 

rates during both licking and pulling. In stark contrast, PNs show a variety of behaviours, 

dependent on movement type. At least for a minority of them, licking behaviour and forelimb 

retraction are represented as two different motor acts, reaching significant levels in the PNs. 

Accordingly, computational analysis shows that PNs carry more independent information than 

FSNs.  

Altogether, these data indicate that a global rise of GABAergic inhibition mediated by FSNs 

firing contributes to early action planning. 

Next, encouraged by the deeper understanding of the cortical microcircuits underlying 

movement planning in mice, I exploited this knowledge to explore more complex mechanisms, 

as action understanding. The neural circuits that integrate performed and observed actions 

have been found in the premotor cortex of monkeys and named as ‘mirror neurons system’ (di 

Pellegrino et al., 1992). Recently, the presence of  mirror neurons have been demonstrated in 

rodents in the anterior cingulate cortex (Carrillo et al., 2019), but whether they could contribute 

to action understanding in the premotor cortex is still unclear. 

At behavioural level, the observation of actions can actually lead, in some cases, to the 

repetition of those same actions. This phenomenon has been named social facilitation, and 

the underlying motor program has been attributed to the mirror system (Ferrari et al., 2005). 

Here, I set up a behavioural task similar to the one exploited in monkeys to explore social 

facilitation in mice. I took advantage of licking behaviour to set up the social facilitation 

experiment. Therefore, head-restrained mice were allowed to lick water from a feeding needle. 

I found that mice can actually facilitated to lick more when another individual was engaged in 

the same action, supporting the hypothesis of a social facilitation in mouse.  

Altogether these results indicate that the observers’ behaviour was actually influenced by the 

demonstrators’ one, laying the groundwork for the study of mirror neurons in mice at cellular 

level. 
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1. Introduction 
 

1.1 Voluntary Movement and Preparatory Activity 

Voluntary movement is ensured by one of the most elaborate circuitries in our body. It 

involves the coordinated activity of many different neurons, located both in the cerebral cortex 

and in the spinal cord. However, the heart of the voluntary movement is essentially in the motor 

cortex.  

The cortical structures most involved in motor control include a primary motor area, M1, a 

nonprimary motor cortex, the supplementary area, and, lateral to that and rostral to M1, the 

premotor cortex. 

Voluntary movements involve at least two stages, i.e. planning and execution. Specifically, the 

motor planning of the action involves the decision of what is the action or series of action to 

perform to fulfil an intention, linking past events to future movements. On the other hand, 

execution orchestrates actual movement, with central information-processing stages that 

culminate in the activation of muscles (Flanders et al., 1992; Ghez et al., 1997; Gordon et al., 

1994; Requin et al., 1988). Neural correlates of motor planning, referred here as “preparatory 

activity”, anticipate movement execution and have selectivity for specific movements (such as 

saccade location, or movement direction of the hand, wrist, or tongue). 

Studies of nearly every cortical area, involved in arm movement, have attempted to identify the 

neural pathways specific to planning or execution. It is widely assumed that early planning 

stages involve cognitive processes, such as identification of stimulus properties and saliency, 

and response selection, that are initiated by sensory signals but are not causally related to 

muscle activation and so are theoretically dissociable from overt motor output (Lecas et al., 

1986; Rosenbaum et al., 1983). This provides the rationale for instructed-delay tasks in which 

a preparatory signal provides information about a desired movement whose execution must 

be delayed until a subsequent response signal. This allows the subject to plan the signalled 

attributes of the ensuing movement and consequently reduce the amount of information 

processing needed after the go signal. These studies show that movement planning and 

execution are not completely segregated at the level of single neurons or neuronal population 

in a given cortical area. Some neurons discharge only during the planning phase of the task, 

whereas others are active mainly during the execution and others show activity changes during 

both stages (Figure I1).  
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In nonhuman primates, preparatory activity has been detected in the primary motor cortex 

(Alexander and Crutcher, 1990; Riehle and Requin, 1989; Tanji and Evarts, 1976), the 

premotor or supplemental motor cortex (Alexander and Crutcher, 1990; Churchland, 2006; 

Riehle and Requin, 1989), but also in the frontal eye field (FEF) (Bruce and Goldberg, 1985; 

Hanes and Schall, 1996), the parietal cortex (Gnadt and Andersen, 1988; Maimon and Assad, 

2006), the striatum (Alexander and Crutcher, 1990; Ding and Gold, 2010), the superior 

colliculus (Goldberg and Wurtz, 1972), the motor-related thalamus (Tanaka, 2007), and the 

cerebellum (Ohmae et al., 2017). Within each of these brain regions, neurons show activity 

patterns with diverse dynamics. The major difference between cortical areas is whether the 

predominant neural activity is correlated with planning and execution. The premotor areas 

typically contain more neurons that are strongly activated during the planning stage 

(Crammond and Kalaska, 2000).  

A subset of these preparatory neurons ramp in anticipation of movement onset (Bruce and 

Goldberg, 1985; Funahashi et al., 1989; Riehle and Requin, 1989). Indeed, as a neural 

correlate of motor planning, preparatory activity has to meet three criteria (Riehle and Requin, 

1993): 

1. Changes in neural spike rate must precede movement initiation;  

2. Neural activity must be selective for specific movements, such as saccade location, or 

movement direction of the hand, wrist or tongue; 

3. Details of the neural activity predict aspects of the subsequent movement execution, 

such as reaction time.  
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Figure I1. Neural process related to movement preparation and movement execution dissociate in time 
using a instructed-delay task. A sensory preparatory signal instructs the subject where to perform a 
movement (preparatory signal, vertical line at left) and when to move (response signal, vertical line at 
right). The knowledge provided by the first signal permits the subject to plan the upcoming movement. 
Changes in activity, which occur after the preparatory signal, but before the second signal are presumed 
to be neuronal correlates of the planning stage. Histograms show the response of three premotor cortex 
neurons. The activity in A appears to be strictly related to the planning phase of the task, as there is no 
execution-related activity after the response signal in the instructed-delay task. The B cell shows a 
different degree of activity related to both planning and execution; whereas in C the activity is limited to 
the execution of the movement. 

 

1.2  The Premotor Cortex 

The premotor cortex has been identified to be the principal core for movement planning, 

preparation and the sensory guidance of a movement, acting as a conductor to orchestrate the 

network activity of the rest of the motor modules on a moment-by-moment basis (Churchland, 

2006; Godschalk et al., 1985; Guo et al., 2014b; Murakami et al., 2014; Weinrich and Wise, 

1982). In contrast, the primary motor cortex is closer to movement execution (Wise and 

Mauritz, 1985). While primary motor cortex neurons discharge mainly during execution, 

premotor cortex contains more neurons that are strongly activated during the planning stage. 

In 1905, Campbell was the first one to introduce the concept of a premotor cortex, while the 

first use of the term was proposed by Hines (1929) and adopted later by Fulton and his 

collaborators (Bucy and Fulton, 1933; Fulton, 1937, 1935, 1932; Jacobsen, 1935; Kennard et 

al., 1934). However, their "premotor area" contained the supplementary motor cortex, as it was 

later defined by physiological methods (Penfield, 1951; Woolsey et al., 1952).  

The premotor region is located in the frontal cortex, commonly designed as motor field and 

lacks a clearly defined internal granular layer, layer IV, and thus is referred to as agranular 

frontal cortex.  

Neural activity consistent with motor planning was first recorded in non-human primates 

(Alexander and Crutcher, 1990; Crutcher and Alexander, 1990). Monkeys were instructed to 

pull or push a lever, but only after a delayed go cue. A subset of neurons in the primary motor 

cortex increased their activity seconds before the go cue. This activity was selective for the 

movement. On error trials (i.e., a wrong movement in response to an instruction), the activity 

still reflected the future movement rather than the instruction, a key signature of preparatory 

activity. The upper motor neurons in the premotor cortex influence motor behaviour both 

through extensive reciprocal connections with the primary motor cortex, and directly via axons 

that project through the corticobulbar and corticospinal pathways to influence local circuit and 

lower motor neurons of the brainstem and spinal cord. Indeed, over 30% of the axons in the 

corticospinal tract arise from neurons in the premotor cortex. In general, a variety of 
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experiments indicate that the premotor cortex uses information from other cortical regions to 

select movements appropriate to the context of the action. 

Substantial interest in the premotor cortex has focused on motor programming, one aspect of 

motor set. Roland et colleagues (Roland et al., 1980) have speculated on the basis of their 

regional cerebral blood flow studies in man that the "premotor areas are activated when a new 

motor program is established or a previously learned motor program is modulated", i.e. during 

nonrepetitive voluntary movements, or when a program is "changed on the basis of sensory 

information, as will be the case during exploratory manipulation of objects" (Rizzolatti et al., 

1983, 1981). Based on their studies of macaque monkeys, it has also been suggested a role 

for premotor cortex in programming ("praxic") functions for complex movements, with 

subregions of the premotor cortex involved in the organization of specific motor acts, such as 

bringing food to the mouth by hand. 

Functions of the premotor cortex are usually considered in terms of the lateral and medial 

components of this region. As many as 65% of the neurons in the lateral premotor cortex have 

responses that are linked in time to the occurrence of movements; as in the primary motor 

area, many of these cells fire most strongly in association with movements made in a specific 

direction (Cisek et al., 2003). However, these neurons are especially important in conditional 

motor tasks. Thus, in contrast to the neurons in the primary motor area, when a monkey is 

trained to reach in different directions in response to a visual cue, the appropriately tuned 

lateral premotor neurons begin to fire at the appearance of the cue, well before the monkey 

receives a signal to actually make the movement (Chen et al., 1995). As the animal learns to 

associate a new visual cue with the movement, appropriately tuned neurons begin to increase 

their rate of discharge in the interval between the cue and the onset of the signal to perform 

the movement. Rather than directly commanding the initiation of a movement, these neurons 

appear to encode the monkey's intention to perform a particular movement; thus, they seem 

to be particularly involved in the selection of movements based on external events (Chen et 

al., 1995; Weinrich and Wise, 1982). 

Further evidence that the lateral premotor area is concerned with movement selection comes 

from studies of the effects of cortical damage on motor behaviour. Lesions in this region 

severely impair the ability of monkeys to perform visually cued conditional tasks, even though 

they can still respond to the visual stimulus and can perform the same movement in a different 

setting. Similarly, patients with frontal lobe damage have difficulty learning to select a particular 

movement to be performed in response to a visual cue, even though they understand the 

instructions and can perform the movements. Individuals with lesions in the premotor cortex 

may also have difficulty performing movements in response to verbal commands (Rizzolatti 

and Fabbri-Destro, 2009). 
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The medial premotor cortex, like the lateral area, mediates the selection of movements. 

However, this region appears to be specialized for initiating movements specified by internal 

rather than external cues (Chen et al., 1995). In contrast to lesions in the lateral premotor area, 

removal of the medial premotor area in a monkey reduces the number of self-initiated or 

“spontaneous” movements the animal makes, whereas the ability to execute movements in 

response to external cues remains largely intact (Thaler et al., 1995). Imaging studies suggest 

that this cortical region in humans functions in much the same way. For example, PET scans 

show that the medial region of the premotor cortex is activated when the subjects perform 

motor sequences from memory (i.e., without relying on an external instruction) (Sakai et al., 

2002). In accord with this evidence, single unit recordings in monkeys indicate that many 

neurons in the medial premotor cortex begin to discharge one or two seconds before the onset 

of a self-initiated movement (Baker et al., 1999; Jerjian et al., 2020). 

In summary, both the lateral and medial areas of the premotor cortex are intimately involved 

in selecting a specific movement or sequence of movements from the repertoire of possible 

movements. The function of the areas differs, however, in the relative contributions of external 

and internal cues to the selection process. 

1.2.1  The Rodent Premotor Cortex 

More recently, preparatory activity has been studied in rodents. Although rodent motor 

behaviours are less sophisticated compared to non-human primates, rodents allow a more 

comprehensive analysis of neural activity and a wider range of experimental manipulations. In 

particular, two putative premotor areas have been identified in mice and rats: the rostral 

forelimb area, mainly involved in the forelimb movement, and the anterior lateral motor cortex, 

involved in the movement of the mouth/tongue region (Guo et al., 2014b; Komiyama et al., 

2010; Rouiller et al., 1993; Tennant et al., 2011). 

Evidence for a second, putative premotor area in frontal cortex of rats first came from the report 

of Neafsey and Sievert (Neafsey and Sievert, 1982), which indicated that a forelimb movement 

could be evoked from a second cortical region in addition to the forelimb portion of M1. The 

second forelimb region was rostral to the M1 forelimb region, and clearly separate from it. 

Neurons in this area project to hind limb regions of the spinal cord, as well as spinal cord and 

brain stem regions devoted to the forelimb and vibrissae (Li et al., 1990). This second motor 

region in rats resembles the supplementary motor area (SMA) or premotor cortex (PM) of 

primates (Neafsey and Sievert, 1982; Rouiller et al., 1993). It has firstly been found within the 

medial agranular field (AGm) of rats. However, as M1 now appears to include part of AGm, a 

clear architectonic distinction between M1 and the second motor area has not been made. 

Other studies in rats indicate that microstimulation of the field results in less muscle activity 
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and a slower build-up of muscle activity, when measured electromyographically, than when 

M1 is stimulated (Liang et al., 1993). In addition, there is evidence that the somatotopy of the 

second motor area is less plastic as forelimb reach training does not result in the same extent 

of reorganization as is observed in M1 (Kleim et al., 1998). 

 

1.3  The Rostral Forelimb Area 

The newly identified area in rats was defined as the rostral forelimb area (RFA) to 

distinguish it from the caudal forelimb area (CFA). CFA has connections mainly with the 

ventrolateral thalamic nucleus, and RFA has connections mainly with the ventromedial 

nucleus. The RFA corresponds to the location where a population of corticospinal neurons is 

labelled by an injection of tracers into the cervical spinal cord. However, both forelimb motor 

fields are interconnected, and RFA has more dense interconnections with insular cortex 

(Rouiller et al., 1993).  

Since its first identification in rats, RFA has been extensively investigated in rodent species, 

specifically, there are suggestive intracortical microstimulation (ICMS) evidence for this motor 

representation in mice (Li and Waters, 1991; Pronichev and Lenkov, 1998). In particular, 

smaller forelimb representation has been found at about 2.5 mm anterior to bregma (Figure 

I2). Cytoarchitectural analyses to characterize the mouse motor map reveal that the mouse 

motor cortex resembles, in its general organization, those found also in other species, such as 

rats (Donoghue and Wise, 1982), cats (Asanuma and Sakata, 1967), and monkeys (Nudo et 

al., 1996). Specifically, it has general similarities to the rat motor cortex, including its relative 

size, location to other movement representations, and, in particular, the existence of the 2 

distinct forelimb areas, RFA and CFA (Tennant et al., 2011).  

Mice RFA and CFA motor maps comprise a large representation of both digits and the elbow 

or the wrist movement, even if the first are more represented in CFA and the second in RFA; 

in RFA movement thresholds of digits were higher than those of wrist and elbow, despite the 

greater prevalence of digit-responsive sites (Tennant et al., 2011). 

The majority of the mouse motor map was found in the agranular field, but it extended into 

adjacent cytoarchitecturally distinct regions. The medial AG is characterized by a compact 

layer II and a pale-staining layer III, while the lateral AG is characterized by more homogenous 

superficial layers and a broad layer V that contains particularly large pyramidal cells. The 

granular field is characterized by the presence of densely packed granule cells in layer IV 

(Bates and Killackey, 1984; Donoghue and Wise, 1982; Neafsey et al., 1986). An intermediate 

zone, named overlap cortex, is characterized, cytoarchitecturally, by the presence of both 
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densely packed granule cells in layer IV and large, widely spaced layer V pyramidal cells 

(Brecht et al., 2004). 

Specifically, the most prevalent location of forelimb representations was in the lateral AG, 

however, approximately half of the RFA was in the medial one and approximately half of the 

CFA in the overlap cortex. Based on cytoarchitectural and ICMS studies of rats (Donoghue 

and Wise, 1982; Kleim et al., 1998), the RFA has approximately the same placement relative 

to cytoarchitecture in both rats and mice. Moreover, in rats and in mice – using Nissl-stained 

coronal sections –, the posterolateral portion of the CFA is known to overlap with the 

anteromedial portion of the forelimb somatosensory map (Donoghue and Wise, 1982; Hall and 

Lindholm, 1974). This area is cytoarchitecturally distinct from either M1 or S1 areas, as it 

contains both a distinct layer IV with densely packed granular cells and layer V characteristics 

of lateral AG (Donoghue and Wise, 1982; Tennant et al., 2011). This pattern was also 

described by Caviness (Caviness, 1975) as characteristic of the interface of frontal and parietal 

cortex in mice. 

Beyond the cytoarchitecture, it has been found that the RFA displayed a slightly higher current 

threshold for evoking limb movements as compared to the CFA (Alia et al., 2016). Moreover, 

the two homotopic RFAs are connected through excitatory transcallosal transmission, which 

drives local GABAergic neurons with consequent GABA-B dependent inhibition of cortical 

neurons (Spalletti et al., 2017). 

 

Figure I2. Motor maps of naive animals obtained by the intracortical microstimulation (ICMS) technique 
following a grid of stimulation sites. A schematic representation of the dorsal surface of the mouse cortex 
showing movement representation regions simplified by colour coding all forelimb-responsive sites as 
green and head movement representations as yellow. Transparent overlays of all maps are shown in 
the right hemisphere (top). The left hemisphere approximates their relative positions and sizes. Numbers 
are millimetre distances relative to bregma (point 0 on the horizontal axis). Adapted from Tennant et al. 
(2011). 
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1.3.1  Behavioural Paradigms for Assessing Forelimb Motor Function  

The presence in mice of motor and premotor areas resembling those of primates has 

shifted the attention on well-controlled behavioural paradigms suited for head-fixed mice that, 

at the same time, have ethological and translational value.  

Joystick or lever tasks emulating human behaviour have been employed in mice, yet most of 

them constrain the behavioural repertoire to pull or push movements. Specifically, in some 

experiments a lever press beyond the set threshold during an auditory cue was rewarded with 

water; the motor cortex is necessary for this task, as lesions before training prevented the 

emergence of movement and acute inactivation by pharmacology or optogenetics impaired 

task performance (Peters et al., 2014). A pull lever task has also been used in head-restrained 

mice; it required the maintenance of grasping, pulling, and holding, which are all forelimb 

movements, during a certain period of time to receive a water drop (Hira et al., 2013). 

Moreover, a two-choice forelimb joystick task, in which the motor action was separated from 

the sensory stimulation by a delay period, has also been implemented in mice. CFA and RFA 

of trained mice has been demonstrated to be involved during the stimulus delivery for correct 

choice and during the answer period for motor execution, since their transient silencing with 

optogenetic inactivation affected different task phases (Morandell and Huber, 2017).  

Similarly to primates, rodents perform forelimb skilled movements for manipulating and 

reaching objects, which share many common traits with those of primates. Indeed, the close 

resemblance of the reach-to-grasp sequence supports the hypothesis that reaching behaviour 

is homologous in rodents and primates (Sacrey et al., 2009; Whishaw et al., 1992) and has led 

to the development of widely used food pellet reaching tasks for rats and mice. Moreover, 

rodent models of Parkinson’s disease, Huntington’s disease, and stroke display impairments 

in reaching performance similar to human patients. Skilled reaching for food pellets has 

therefore been proposed as a translational tool for investigating neurological diseases (Klein 

et al., 2012) and is widely used to study motor skill learning (Chen et al., 2014; Harms et al., 

2008; Kleim et al., 2004; Xu et al., 2009). Reaching for pellets in mice currently has also been 

used under head-fixed conditions (Guo et al., 2015; Whishaw et al., 2017). 

Forelimb movements in mice can be successfully monitored using a robotic platform (M-

platform), designed to train mice during forelimb retraction tasks (Pasquini et al., 2018; 

Spalletti et al., 2014). The M-platform was exploited for its ability to extract kinetic and 

kinematic parameters of the retraction movement, in healthy and pathological conditions. 

Indeed, head-restrained mice can be trained to perform intensive and highly repeatable 

exercises by retracting their forelimb previously extended by a linear actuator. Forces exerted 

during the task, time required for task execution (t-target), number of submovements and 
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attempts can be quantified for each trial. Also, the M-platform allows to perform an isometric 

task, which provides additional parameters associated with the maximal force the animals is 

able to generate. This system is combined with advanced techniques, such as optogenetics 

and in vivo electrophysiology, to allow investigation at cellular level underlying the forelimb 

movements (Pasquini et al., 2018). 

Moreover, a directional reaching paradigm (reaching for water droplets) has been proposed in 

mice (Galiñanes et al., 2018). This task combines the reach-to-grasp movement and the 

convenience of water-based training in mice, with the multi-directionality and cue-guided 

principles of the primate tasks. Reaching for water is quickly learned and easily implemented. 

Head-fixed mice use a chemosensory system to locate water droplets and reaching is strongly 

affected by motor cortex inactivation. Importantly, layer 2/3 neurons of the motor cortex display 

direction-selective responses, as shown by calcium imaging in behaving animals (Galiñanes 

et al., 2018).  

 

1.4  The Anterior-Lateral Motor Cortex 

 In 2010 Karel Svoboda and his group identified two non-overlapping candidate tongue 

motor cortical areas controlling licking: the anterior-lateral motor cortex (ALM) and posterior-

medial motor cortex (PMM) in mice. Inactivation of either area impaired licking, showing their 

requirement for voluntary licking (Komiyama T et al., 2010).  

These authors described a new procedure for a licking behavioural training in mice. In each 

trial, mice were exposed to one of several sensory stimuli and had to choose one of two 

responses based on the sensory stimuli (Figure I3). Specifically, mice used their whiskers to 

detect and locate a vertical pole during a head-fixed condition, that facilitated precise 

measurements of the dynamics of whiskers and their interactions with objects. The 

measurement of the locations of object features is a critical aspect of object identification and 

navigation. The vertical pole was presented in one of two positions (anterior or posterior) during 

a sample epoch. During a subsequent delay epoch, mice planned the upcoming response. An 

auditory “go” cue signalled the beginning of the response epoch, and the behavioural choice 

was signalled by mice touching a water port with their tongue, by licking one of two ports 

(posterior→ lick right; anterior→ lick left). Mice were water restricted, and thus motivated by 

thirst. Mice performed many hundreds of behavioural trials per session for water rewards (Guo 

et al., 2014a). 
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Figure I3. A. Mice were trained to lick the right (blue) lickport for the posterior pole location or the left 
(red) lickport for the anterior pole location. B. The pole was within reach of the whiskers during the 
sample epoch (1.2 s). Mice responded with licking after a delay (3 s) and an auditory cue. Licking the 
correct port was rewarded with water. Licking the wrong port was neither rewarded nor punished. C. 
Whisker and tongue movements tracked for the four trial types (correct right, CR; correct left, CL; error 
right, ER; error left, EL). Shaded area indicates standard deviation (SD). Adapted from Chen et al., 2017. 

 

The two identified areas for licking behaviour both project to the brainstem reticular formation, 

where rhythmic licking is generated (Travers et al., 1997). Moreover, the projections of ALM 

pyramidal tract neurons overlap with regions of superior colliculus (Rossi et al., 2016) that have 

been implicated in the control of licking. ALM was first identified as the brain area with the 

lowest microstimulation threshold for activating rhythmic licking in rats (Travers et al., 1997) 

and mice (Komiyama et al., 2010), and may play roles in controlling cognitive aspects of tongue 

movements, similar to the roles of frontal eye fields in the control of eye movements (Bruce 

and Goldberg, 1985; Funahashi et al., 1989; Schall and Thompson, 1999). ALM  also overlaps 

with RFA, the previously defined premotor region in rats and mice involved in the control of 

limb movement (Rouiller et al., 1993; Tennant et al., 2011).  
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ALM contains a large fraction of neurons with preparatory activity (Figure I4), predicting 

upcoming movements (Guo et al., 2014b), similar to primate premotor cortex (Alexander and 

Crutcher, 1990; Riehle and Requin, 1989; Shenoy et al., 2013; Tanji and Evarts, 1976). These 

functional data, as well as anatomical studies (Reep et al., 1987; Rouiller et al., 1993), suggest 

that ALM is homologous to the premotor cortex in non-human primates. Indeed, although ALM 

is studied in the context of licking, ALM and nearby motor cortical areas also have roles in 

planning other movements (Erlich et al., 2011; Murakami et al., 2014; Sul et al., 2011). 

Simultaneous recordings of multiple neurons have provided a comprehensive description of 

the population dynamics underlying motor planning. The preparatory activity in ALM has been 

demonstrated to be able to predict the directional licking (Chen et al., 2017; Guo et al., 2014b); 

in particular, in head-restrained mice performing the previous described task, in which there is 

a tactile delayed-response licking (Guo et al., 2014b), using calcium imaging and 

electrophysiological recordings, there was a large proportion of neurons exhibited preparatory 

activity with precise directionality. The preparatory activity for licking direction appeared 

earliest in the ALM and remained localized to ALM until movement onset. A large proportion 

of ALM neurons showed preparatory activity, especially in layer V, and ALM neurons selective 

for either movement direction were intermingled in approximately equal proportions in both 

hemispheres (Erlich et al., 2011; Li et al., 2015). 

These results were supported by optogenetic manipulations (Guo et al., 2014b; Li et al., 2015; 

Svoboda and Li, 2018). Indeed, in mice, ALM was first defined in an optogenetic inactivation 

screen (Guo et al., 2014b). It has been demonstrated that transient unilateral inactivation of 

ALM, but not surrounding cortical areas, during motor preparation impaired upcoming licking 

in the contralateral direction, causing an ipsiversive bias in future licking direction, without 

impairing licking in general (Guo et al., 2014b); and transient unilateral activation of ALM 

pyramidal tract neurons had persistent effects on ALM population activity and biases the 

direction of future licking in the contralateral direction, even in untrained mice (Li et al., 2015). 

Moreover, inactivation of ALM biased the future movement only when applied right before 

movement onset, but was ineffective if it terminated more than several hundred milliseconds 

earlier (Li et al., 2016), similar to the microstimulation experiments in primates (Churchland 

and Shenoy, 2007) or to the effects of the spatial contralesional neglect observed after 

unilateral lesion of the primate premotor cortex (Kerkhoff, 2001; Rizzolatti et al., 1983). 

Transient bilateral inactivation of ALM perturbed preparatory activity and randomized licking 

direction. After inactivation, activity recovered on average, but selectivity did not. Over time, 

populations of neurons trace out a trajectory in activity space, where each neuron corresponds 

to a dimension of activity space. These activity trajectories occupy a low-dimensional manifold 

(Gao and Ganguli, 2015). The detailed structure of the activity trajectories during motor 
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planning predicts parameters of the future movements (Li et al., 2016; Shenoy et al., 2013). 

The endpoints of trajectories could reflect optimal “initial conditions” for specific planned 

movements (Churchland, 2006). 

Dynamics of populations of ALM neurons were explored in several types of delayed-response 

tasks, showing that ALM is required for motor planning independent of the sensory modality. 

Indeed, ALM neurons showed direction-selective ramping activity for more tasks, involving 

different sensory modality, auditory or tactile. Although there was heterogeneity in the 

dynamics across individual ALM neurons, many features of ALM activity were similar across 

the tasks, and similar to findings in nonhuman primates and rats, including direction selectivity, 

the properties of ramping activity, the dimensionality of the neural dynamics, and the spike-

count correlations across neurons (Inagaki et al., 2018). High spike-count correlations among 

neurons sharing the same coding preference indicate that such neurons have strong functional 

connections or receive the same inputs.  

The preparatory activity in ALM was not static but evolved with complex dynamics: subsets of 

neurons showed selective activity during the sample epoch whereas other neurons showed 

“bumps” of activity during different times of the delay epoch (Figure I4a). Despite these 

fluctuating responses at the level of the single neuron, selectivity for the upcoming movement 

remained stable at the level of the population (Figure I4b). On average, selectivity emerged in 

the sample epoch and ramped up throughout the delay epoch, reaching a maximum at the 

beginning of the response epoch (Figure I4b). This ramping activity in ALM during the delay 

epoch is similar to the ramping activity reported in frontal (Hanes and Schall, 1996; Murakami 

et al., 2014), parietal (Harvey et al., 2012; Maimon and Assad, 2006; Roitman and Shadlen, 

2002), and motor cortex (Erlich et al., 2011; Thura and Cisek, 2014), anticipating voluntary 

movements in primates and rodents. The ALM preparatory activity could provide a substrate 

for the maintenance of the motor plan during the delay epoch. Information about the upcoming 

movement is likely coded at the level of the population (Harvey et al., 2012; Laurent, 2002; 

Murakami and Mainen, 2015; Shenoy et al., 2013). 
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Figure I4. a. Head-fixed tactile decision behaviour and involved cortical regions. (a) Nine examples of 
ALM neurons. Top, spike raster. Bottom, PSTH. Correct “lick right” (blue) and “lick left” (red) trials only. 
Dashed lines, behavioural epochs. b. Average ALM population selectivity in spike rate (± s.e.m. across 
neurons, bootstrap). Selectivity is the difference in spike rate between the preferred and non-preferred 
movements. Time zero is the onset of the go cue. Averaging window, 200 ms. Vertical dotted lines 
represent the beginning of the sample (whiskers vertical pole localization), delay and response (go 
signal) epochs. Figure adapted from Guo et al., 2014b.  

 

1.4.1 The Licking Behaviour in Rodents 

For many animals the consummatory phase of ingestion is characterized by rhythmic 

oromotor activity. Functional morphologists have described these motor patterns as an 

intricate sequence of movements produced by the tongue, jaws and related structures. 

Variations in the motor sequence of consumption reflect both evolutionarily imposed 

adaptation of the musculo-skeletal system and the moment to moment adaptation to the 

changing nature of the ingesta (Thexton, 1992). Thus, the consumption of solid food by 

chewing requires continuous sensory monitoring to optimally position food between the teeth, 

resulting in more stages of processing compared to fluid consumption. Fluids do not require 

mechanical repositioning per se, but like solid food are transferred to the back of the tongue 
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for swallowing by the cyclic, coordinated action of many of the same muscles used to chew. 

Thus, the ingestion of fluids by licking appears simpler than mastication, but expresses many 

of the fundamental components of a common motor pattern used to consume all varieties of 

food (Thexton, 1992; Zeigler, 1991). 

Common to orolingual movements, there are rhythmical alternations between lingual protrudor 

and retractor muscles, the close functional coupling between lingual and masticator muscles 

during individual lick cycles, and coordination between licking and other oral motor function, 

particularly swallowing. Voluntary water-bottle licking (Figure I5) is characterized by rhythmic 

alternations of lingual protrudor and retractor muscles at about 6–8 Hz.  

Licking typically occurs in bursts at species-specific modal frequencies, posing the question of 

the neural origin of this modal frequency. Crucially, the mean number of licks per cluster (lick 

cluster size) is not random, but instead is lawfully related to the nature of the solution being 

consumed: lick cluster size shows a positive, monotonic relationship to the concentration of 

palatable fluids such as sucrose (e.g., Davis & Smith, 1992; Spector, Klumpp, & Kaplan, 1998), 

while lick cluster size decreases monotonically with increasing concentrations of unpalatable 

quinine solutions (Hsiao and Fan, 1993; Spector and St. John, 1998). 

Although it is atypical for rats to emit a single lick in isolation, they can do so spontaneously 

but also under specific conditions. For example, rats trained to alternate licking between two 

water-bottle spouts emit nearly three licks per spout, despite withdrawal of the spout after just 

one lick cycle, i.e. there is a tendency for one to two extra licks to be directed at the vacant site 

(Mamedov and Bureš, 1990). If, after training in the alternation procedure, one of the spouts 

no longer contains water, only one lick is directed at the empty site, i.e. sensory feedback 

indicating the lack of water inhibits further licks.  

There is some evidence that the 6–8 Hz modal licking frequency for rodents is controlled by a 

central timing mechanism that is somewhat impervious to disturbance. Indeed, repetitive 

tongue and jaw movements are controlled by a network of brainstem neurons forming a central 

pattern generator (Travers et al., 1997) located in lateral medullary reticular formation, 

receiving descending (orbital) cortical input (either directly or indirectly) and having the 

necessary oromotor connectivity and sensorimotor responsiveness to be potential neurons in 

a central pattern generator for licking/mastication. (Chen et al., 2001). This central pattern 

generator is itself modulated by olivocerebellar neuronal firing that is time locked to licking 

events (Bryant et al., 2010; Cao et al., 2012; Welsh et al., 1995). Moreover, differences in lick 

rate among different strains of mice have been exploited for mapping quantitative trait loci that 

are involved in controlling licking behaviour and for identifying the genes that modulate the 

rhythm generated by the central pattern generators located in the brainstem (Boughter et al., 

2012, 2007). 
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Lick sensors are routinely employed to monitor the licking behaviour. How do they work? 

Piezoelectric or electrical contact In numerous experiments they are used for counting the 

number of licks that are emitted, for detecting responses in operant conditioning and producing 

scheduled consequences. They are valuable tools in the investigation of micro- and macro 

behavioural aspects of licking (Davis, 1996; Davis and Smith, 1992; Fowler and Mortell, 1992). 

They can provide a trigger signal in the study of lick-synchronous electrophysiological activity: 

evoked potentials, single and multi-unit activity, electromyographic activity (Chen et al., 2017; 

Guo et al., 2014b; Komiyama et al., 2010; Weijnen, 1998; Weijnen et al., 1984). Access to the 

drinking tube or water surface should be restricted to the tongue. Operation of the lick sensor 

by paws, nose, jaw, lips or teeth should be made impossible. Each lick needs to be detected 

separately, so maintained contacts of the tongue with the drinking tube or water surface during 

two or more licks cannot be allowed. A lick sensor only detects part of the tongue trajectory, 

around the moment of maximal tongue extension. 

Because licking is a highly stereotyped rhythmic motor pattern, it is suitable to the study of 

motor microcircuits underpinning voluntary movements.  

 

Figure I5. A rat electromyographic activity from four oro-pharyngealmuscles while licking 0.3 M sucrose 
from a water bottle. There is a rhythmic alternations of muscles at about 6–8 Hz. One of the more salient 
features of this pattern is the coordinated movement of the jaw with the tongue. In the rectangle a 
sequence of lingual protruder, jaw opener and tongue retractor is represented. The anterior digastric 
contraction (jaw-opening) is more or less concomitant with lingual protrusion in voluntary licking. Figure 
adapted from Travers et al., 1997. 

 

1.4.2  ALM Pathways 

ALM could be considered part of a multi-regional loop that produces and maintains 

preparatory activity (Guo et al., 2017). Indeed, preparatory activity has been observed in 

structures of the brain that are directly or indirectly coupled to ALM, such as thalamus (Guo et 

al., 2017; Tanaka, 2007), cerebellum (Ohmae et al., 2013), striatum (Ding and Gold, 2010), 

and the basal ganglia (Howe et al., 2013).  
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Diverse patterns of behaviour-related activity, including preparatory activity, seen in motor 

cortex could be distributed differentially across cell types within a motor cortical area. Evidence 

for cell-type-specific coding has come from recordings from the two major projection neuron 

classes in motor cortex (Li et al., 2015; Sommer and Wurtz, 2000; Turner and DeLong, 2000): 

intratelencephalic (IT) neurons that project to other cortical areas and pyramidal tract (PT) 

neurons that project out of the cortex, including the superior colliculus, brainstem, and spinal 

cord (Shepherd, 2013). IT neurons connect to other IT neurons and excite PT neurons, but not 

viceversa. PT neurons are thus at the output end of the local motor cortex circuit (Brown and 

Hestrin, 2009; Hooks et al., 2013; Kiritani et al., 2012; Morishima and Kawaguchi, 2006). ALM 

PT neurons are present specifically in a sublayer of the layer V, named VB; they project to 

subcortical structures that control facial movements, including the contralateral intermediate 

nucleus of the reticular formation, which is presynaptic to the hypoglossal nucleus and the 

intrinsic and extrinsic muscles of the tongue (Komiyama et al., 2010; Stanek et al., 2014; 

Travers et al., 1997). A comparison of IT and PT neuron activity in ALM suggests that both 

populations show preparatory activity, but activity consistent with a movement command is 

specific to PT neurons.  

In particular, among PT neurons, there are two types of motor cortex output neurons which 

have specialized roles in motor control. Both types project to several targets in the basal 

ganglia and brainstem. Indeed, using single-cell transcriptional profiling and axonal 

reconstructions, it has been found that one type projects to motor centres in the medulla and 

mainly produced late preparatory activity and motor commands, and seem to control 

movement execution. The second type projects to thalamic regions that connect back to motor 

cortex and avoid motor centres in the medulla; populations of these neurons produced early 

preparatory activity that persisted until the movement was initiated (Economo et al., 2018). 

Projecting to the thalamus, they also seem to participate in the maintenance of a persistent 

neural activity related to motor planning in the ALM that requires direct excitation from the 

thalamus and vice versa, in a frontal thalamocortical loop. Indeed, similar to ALM neurons, 

thalamic neurons exhibited selective persistent delay activity that predicted movement 

direction. Unilateral photoinhibition of delay activity in the thalamus introduce a directional bias 

towards the ipsilateral side. Photoinhibition of the thalamus caused a short-latency and near-

complete collapse of ALM activity. Similarly, photoinhibition of the ALM diminished thalamic 

activity (Guo et al., 2017). 

The segregation of PT neurons into two distinct types persists across the motor cortex and 

may generalize to other cortical areas (Hattox and Nelson, 2007) and other mammals 

(Catsman-Berrevoets and Kuypers, 1981; Steriade et al., 1977). Consistent with roles in both 
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the planning and initiation of movement, PT neurons seem to be structurally heterogeneous 

(Guo et al., 2017; Kita and Kita, 2012; Wise and Jones, 1977).  

The preparatory activity in ALM has been observed across all cortical layers, however, the 

activity related to future licking direction was first detected in deep layers of the ALM, where 

PT and IT neurons were intermingled. PT neurons appeared to display stronger and earlier 

lick direction selectivity than IT neurons (Li et al., 2015). Specifically, cellular imaging in 

transgenic mice expressing the protein calcium indicator GCaMP6s (Chen et al., 2013; Dana 

et al., 2014) has allowed to measure the encoding of behaviour-related variables in tens of 

thousands of neurons distributed across the motor cortex. Neurons showing preparatory 

activity selective for upcoming licking directions emerged first in the deep layers of ALM. 

Preparatory activity was largely confined to ALM in the epoch before the lick event and spread 

to superficial ALM layers and other parts of motor cortex at the time of movement (Chen et al., 

2017). 

However, several key questions remain unsolved. What circuit mechanisms are responsible 

for the maintenance of motor plan? How do distinct neuronal classes contribute to this 

process? In particular, the role of different classes of GABAergic inhibitory neurons, which 

represent approx. 10-20% of cortical neurons, remain enigmatic. 

 

1.5  The role of Inhibition in the Motor Control 

A key challenge in systems neuroscience is to link intracortical mechanism underlying 

motor-command generation to behaviour. An important role in the generation and shaping of 

voluntary movement has been attributed to inhibitory circuits.  

Inhibitory interneurons constitute a small but crucial neuronal class in the cortex. While these 

cells comprise only 10%–20% of the total neural population, their connectivity and recruitment 

are essential in sensation, movement and cognition (Meyer et al., 2011; Ren et al., 1992). One 

difficulty in synthesizing the role of inhibitory cells lies in their diversity: these neurons express 

an array of molecular markers and have heterogeneous firing properties as well as distinct 

synaptic connectivity (Kubota, 2014; Lourenço et al., 2020). However, the diversity of inhibitory 

neurons allows these cells to provide the appropriate inhibition for a wide variety of stimuli and 

behaviours. Great strides have been made in identifying clusters of inhibitory interneuron 

groups based on their varying gene expression (Cauli et al., 2000; Kubota et al., 2011; Paul et 

al., 2017; Tasic et al., 2016). 

In the primary motor and premotor cortex, diverse subtypes of interneurons may play a role in 

planning and execution of voluntary movement. A major population of nonpyramidal, inhibitory 
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GABAergic interneurons consists of fast-spiking interneurons (mostly basket cells and 

chandelier cells), which fire narrow action potentials at a fast rate and usually express 

parvalbumin (Figure I6) (Cauli et al., 1997).  

 

Figure I6. Electrophysiological and biochemical characterization of a layer V fast spiking (FS) cell. 
Current-clamp recording during injection of depolarizing current pulses. Membrane potential was 
adjusted to -76 mV by continuous current injection, as indicated on the left of each recording. In response 
to a near-threshold current pulse (50 pA; bottom trace), this FS cell emitted a single fast action potential 
with a large AHP followed by a silent period and a late discharge of action potentials. Note the membrane 
potential oscillations during the silent period. Application of a larger depolarizing current (200 pA; top 
trace) induced a continuous discharge at high frequency. On the right, a picture of the FS cell. The FS 

cell is located at the center and has a small round soma (diameter, 10 m). Note the large layer V 
pyramidal cell immediately on the left. On the bottom right, agarose gel analysis of the RT-mPCR 
products of the same FS cell. Figure adapted from Cauli et al., 1997. 

 

Parvalbumin-expressing (PV+) GABAergic interneurons might gate spike outputs from the 

pyramidal cells with powerful inhibitory synapses on somata or axons (Markram et al., 2004). 

Indeed, with their extensive somatic targeting of neighbouring excitatory glutamatergic 

pyramidal neurons (Hu et al., 2014), they are ideally placed to inhibit the activity of M1 output 

neurons (van brederode et al., 1991) that target downstream motor centres. In mouse sensory 

and prefrontal cortex, genetically identified GABAergic neurons have been shown to have 

distinct roles in information processing and discrete firing dynamics (Fu et al., 2014; Gentet et 

al., 2012; Isaacson and Scanziani, 2011; Kepecs and Fishell, 2014; Kvitsiani et al., 2013; 

Lagler et al., 2016; Lee et al., 2013, 2012; Pi et al., 2013; Pinto and Dan, 2015; Polack et al., 

2013; Sachidhanandam et al., 2016). 
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In general, inhibitory interneurons are more broadly tuned than pyramidal cells and tend to 

respond more strongly to inputs throughout many cortical areas. In the sensory system, these 

increased response properties facilitate feedforward inhibition in response to thalamo-cortical 

input. Across primary visual cortex (V1) (Gur et al., 1999; Mitchell et al., 2007; Shapley et al., 

2003; Swadlow, 1988; Swadlow and Weyand, 1987), somatosensory cortex (S1) (Barthó et 

al., 2004a; McCormick et al., 1985; Simons, 1978; Swadlow, 1989, 2003), and the primary 

auditory cortex (Atencio and Schreiner, 2008), for example, fast spiking cells show broader 

tuning curves and higher response to stimuli and to thalamic stimulation than pyramidal cells. 

Hence, the inhibition-mediated sculpting of excitatory cortical input is thought to be a key 

feature of perceptual processing. Furthermore, similar FSNs properties have been found in the 

inferior temporal cortex (Tamura et al., 2004), the frontal eye field (Cohen et al., 2009), but 

also in the primary motor cortex (Isomura et al., 2009; Merchant et al., 2008; Murray and Keller, 

2011), dorsal premotor cortex (Kaufman et al., 2010), and posterior parietal cortex (Yokoi and 

Komatsu, 2010).  

As in sensory cortices (Lee et al., 2012; Wilson et al., 2012), motor cortex PV+ neurons have 

been proposed to be a broadly tuned cell type that modulates the tuning properties of adjacent 

pyramidal neurons (Merchant et al., 2008). The finding that interneurons are more strongly 

modulated across conditions than pyramidal neurons is consistent with their larger dynamic 

range (Connors and Gutnick, 1990). More specifically, in rat motor cortex, it has been found 

that the majority of identified fast-spiking interneurons participate in an on-going modulation of 

command-like activity of pyramidal cells during the execution of a single voluntary movement 

(Isomura et al., 2009). It has also been demonstrated that the activity of fast-spiking 

interneurons was less specific to movement direction than that of pyramidal neurons and was 

independent of the preferred direction of neighbouring pyramidal neurons (Isomura et al., 

2009).  

Experimentally induced inhibition of rodent motor cortex typically reduces the ability to perform 

movements (Guo et al., 2015; Otchy et al., 2015; Sreenivasan et al., 2016), one straightforward 

interpretation being that the function of motor cortex inhibitory neurons is to suppress voluntary 

movements. However, the role of fast spiking neurons seems to cover a more complex pattern. 

Indeed, motor cortex PV+ neurons may also act as an “inhibitory gate” preventing premature 

movements during preparatory phases with high firing rates that drop transiently to release a 

correctly timed reach. However, an increase in the amplitude of movements and in the number 

of false positive movements has also been observed after inhibition of the motor cortex 

(Ebbesen et al., 2017; Huber et al., 2012; Zagha et al., 2015). Furthermore, 

electrophysiological recordings suggesting an increase rather than a decrease in firing of fast-

spiking cells during movement (Isomura et al., 2009; Kaufman et al., 2013). Another suggestion 
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is that PV+ neurons track firing rate changes in putative excitatory pyramidal units to maintain 

a balance between cortical synaptic excitation and inhibition during behaviour (Isomura et al., 

2009). The functional significance of the rise in inhibition during movement could be that once 

the incoming and local excitation rises, the relative rise in internal inhibition may serve to 

maintain a balance of excitation and inhibition (Shadlen and Newsome, 1998; van Vreeswijk 

and Sompolinsky, 1996). While task design and off-target effects (Otchy et al., 2015)  may play 

a role on the impact of experimentally altered motor cortex inhibition, another possibility is that 

different subtypes of GABAergic neurons have distinct functional roles in motor control. 

More surprising was the finding that putative interneurons are more likely to have firing rates 

that rise during movement planning, while putative pyramidal neurons showed firing rate 

changes only later. This is perhaps remarkable - one usually supposes that overall activity 

goes up during motor planning - yet the results indicated the average rate of a population of 

pyramidal neurons rises only slightly. In Merchant et al 2008, an analysis of onset response 

latencies showed that despite the large overlap in the onset response distributions, the FSNs 

activity occurred before pyramidal neurons directional responses (Merchant et al., 2008). 

Although, the onset response analysis is an indirect measure of functional relationships 

between cell types, these results suggest a potential functional link between FSNs and 

pyramidal neurons. Moreover, in layer V of mouse primary forelimb motor cortex, GABAergic 

PV+ neurons rapidly increased their firing rate to stimuli and are positively correlated to the 

amplitude of reaching. Fast spiking neurons fired with shorter latency than pyramidal neurons 

at reaching onset and have high rates throughout sensory-triggered and spontaneous reaches. 

Thus, an early activation of PV+ neurons may play a critical role in the release of reaching 

(Figure I5) (Estebanez et al., 2017). 

 

 



25 
 

Figure I5. A. Average firing rate of all PV+ (cyan), fast spiking neurons (FSUs, blue), and pyramidal 
neurons (RSUs enh) with increased activity after reach onset (red, Z score > 0), and pyramidal neurons 
(RSUs supp) with decreased activity (orange, Z score < 0), aligned to (left) vibrotactile-triggered and 
(right) spontaneous reach onset. The background represents SEM. B. Same as (a), but firing rates have 
been normalized by subtraction of baseline firing −500 ms to −250 ms before reach. Figure adapted 
from Estebanez et al., 2017. 

 

Therefore, broad and balanced inhibition might work effectively at the surround as well as the 

center of the tuning curve, presumably to sharpen the feature specificity of pyramidal cells 

through the so-called iceberg effect, across many areas and behavioural functions (Isaacson 

and Scanziani, 2011; Wehr and Zador, 2003).  

However, it is still unclear whether and how, during action initiation in the premotor cortex - the 

first node in the downstream pathway to motor neurons, pyramidal and fast-spiking, 

GABAergic neurons, differently contribute into representing movement or distinguishing 

specific motor tasks. In particular, little is known regarding how different representations of 

movements are encoded by PNs and FSNs for building the motor command. 

 

1.6  Electrophysiological Approach: Single-Units Recordings 

To investigate the role of distinct neuronal classes, an electrophysiological approach is 

often suited to that purpose. Electrophysiological recordings from behaving animals provide, 

indeed, an important view into the functional role of individual neurons. These recordings have 

yielded fundamental insights into the cellular and circuit mechanisms underlying neural activity 

during natural behaviours in such areas as sensory perception, motor sequence generation, 

and spatial navigation, forging a direct link between cellular and systems neuroscience. 

The behavioural spectrum of head-restrained mice is limited, but, as mentioned above, the 

animals will perform spontaneous orofacial behaviours such as whisker movements (Ferezou 

et al., 2007) and rhythmic fluid licking (Hayar et al., 2006). These behaviours also yield a large 

number of repetitions, which is an important prerequisite for electrophysiological investigations 

of the underlying neuronal processes. Head fixation allows the investigator to exert fine control 

over stimulus presentation, collect high-quality extracellular single-unit recordings, and 

precisely measure behaviours. 

Specifically, in vivo single-unit electrophysiological recording techniques provide a unique and 

powerful window through which to observe the functioning brain. Single-unit recording involves 

sampling the activity of single neurons, or small clusters of neurons, using a multichannel acute 

electrode or an array of microelectrodes chronically implanted in the brain. When recordings 

are conducted during the performance of tasks that engage observable sensory or behavioural 
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processes, the contribution of the sampled cells to processing task-relevant information can 

be evaluated. 

1.6.1  Spike sorting 

Advances in our understanding of how populations of neurons represent and process 

information has been enabled by tightly packed multi-electrode arrays that allow for isolation 

of large numbers of simultaneously recorded neurons (Csicsvari et al., 2003; Gray et al., 1995; 

McNaughton et al., 1983; Mora Lopez et al., 2017). Data collected from these devices comprise 

multiple channels of continuously sampled extracellular voltages. A key step in making these 

data interpretable is spike sorting, the process of detecting spiking events and assigning those 

events to single units corresponding to putative individual neurons (Einevoll et al., 2012; Harris 

et al., 2016; Lewicki, 1998; Muller, 1996; Quiroga, 2012). 

Spike sorting is typically done using dedicated software (e.g., Offline Sorter from Plexon, Boss 

from Blackrock to name a few). There are three stages between the recording of extracellular 

unit activity and the identification of spikes representing the activity of a single neuron. The first 

stage is spike detection, in which the electrical activity measured on the electrodes is used to 

derive the times corresponding to extracellular spikes. This is usually achieved by high-pass 

filtering followed by thresholding and may be done by hardware or software. The second stage 

is feature extraction. During this stage, a feature vector (i.e., an array of quantitative 

parameters) is calculated for every spike. More advanced methods quantify additional 

information about the spikes, such as waveshape and discharge pattern. Wave shapes may 

be quantified by measuring parameters such as spike width, or by principal component 

analysis (Abeles and Goldstein, 1977). The third stage is “clustering” of spikes. In this stage 

spikes with similar feature vectors are grouped into clusters, assumed to represent the spikes 

of a single neuron. The majority of spike sorting algorithms comprise the sequence of steps 

such as bandpass filtering, spatial whitening, detection of threshold-crossing events, and 

clustering based on voltage waveform shape in a suitable feature space (such as amplitude 

on channel 1, peak-to-trough ratio on channel 3, etc.), computed from filtered waveforms 

(Einevoll et al., 2012; Lewicki, 1998; Marre et al., 2012; Quiroga, 2012). Clustering is 

automated, but the user must curate the results by selecting which clusters to reject, merge, 

or even split (Hill et al., 2011; Kadir et al., 2014; Rossant et al., 2016). There also exist post-

processing steps that resolve overlapping spikes (Ekanadham et al., 2014; Franke et al., 2015; 

Pachitariu et al., 2016; Pillow et al., 2013).  

A deep understanding of the microcircuits underlying movement planning, using animal 

models, can lay the foundations for understanding mechanisms of motor control and how they 

could be modified in pathological conditions. 
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1.7  Action Understanding: Mirror Neurons System  

About 30 years ago, the group of Giacomo Rizzolatti in Parma reported findings on 

macaques showing the existence of a “surprising new class” of neurons in a particular region 

of the premotor cortex (F5) of the macaque brain (Figure I6) (di Pellegrino et al., 1992). These 

neurons were active not only when the macaque performed an action – like grabbing an object 

–  but also when the macaque watched the same action being performed by a person or 

another monkey. Researchers named these neurons as “mirror neurons” and proposed that 

they provide the basis for what became known as “action understanding”, allowing a subject 

to interpret the intentions or goals of the person whose actions they are observing. They were 

first characterized in premotor cortex (di Pellegrino et al., 1992; Gallese et al., 1996) then in 

posterior parietal cortex (PPC) (Fogassi, 2005; Fogassi and Luppino, 2005) in monkeys. Later, 

these neural circuits, that integrate performed and observed actions, have been found in 

different species of primates, also humans (Mukamel et al., 2010) and songbirds (Prather et 

al., 2008). 

Based on these properties, mirror neurons have been postulated to enable specific social 

functions, ranging from selecting appropriate actions in response to observed behaviours (di 

Pellegrino et al., 1992) to understanding the intentions and imitating the actions of others 

(Iacoboni, 2009; Rizzolatti et al., 2001). After years of investigation, however, it is still debated 

whether mirror cells are at the basis of action understanding or if their physiological properties 

can be better explained by simple, temporally contingent sensory-motor associations (Hickok, 

2009). It is also debated whether specific alterations of the mirror neuron system might be at 

the basis of neurological alterations in brain disorders, such as autism spectrum disorders 

(Cattaneo et al., 2007; Fabbri-Destro et al., 2009). It is also unclear how the mirror neuron 

system develops and how this development is related to early experiences. Are mirror neurons 

the result of sensorimotor learning processes or genetic prewiring? Finding mechanistic 

resolutions to these questions would benefit tremendously if it will be possible to access cellular 

networks underlying action understanding in a genetically tractable animal model.  

Therefore, a major challenge is to establish whether mirror-like neurons occur in specific areas 

of the rodent brain.  

1.7.1  Searching for Mirror Neurons in Rodents 

The first attempt has been made in 2013. Ushakov et al (2013) employed functional 

mapping of brain activity by using the expression of induced transcription factor c-Fos to 

determine the spatial localization of the mirror neurons systems in mice of the C57/BL6 line. 
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This method has been applied in mice performing the supervision task of swimming mice-

demonstrators in Morris water maze. The experimental setup is a standard Morris water maze 

filled with clear water and mice are not inherent in swimming (although they can do it), so this 

is the expected motivation in mice in the monitoring of the floating-mouse-demonstrator. The 

behavioural test was aimed to verify the hypothesis that mice sitting in boxes located in the 

corners of the Morris water maze observe the mice freely swimming in the pool. They showed 

the presence of c-Fos positive, putative mirror neurons systems, in the motor and premotor 

cortices, cingular cortex and hippocampus of mice having direct experience of the swimming 

(Ushakov et al., 2013) and observing the test. However, c-Fos is an indirect marker of neuronal 

activity, prompting the search for more compelling evidence. 

The electrophysiological proof of the mirror neurons system existence in rodents has come a 

few years later. Recording multi- and single-unit activity using chronically implanted silicon 

probes, it has been showed that the rat’s anterior cingulate cortex (ACC, area 24) contained 

neurons responding when a rat experiences pain as triggered by a laser and while observing 

another rat that receives a foot-shock. Most of these neurons do not respond to a mere fear-

conditioned sound (CS). Deactivating this region reduces freezing while witnessing footshocks 

to others but not while hearing the CS. Moreover, deactivating this region reduces socially 

triggered freezing without compromising freezing to the CS (Carrillo et al., 2019). 

Another recent study has attempted, unsuccessfully, to understand whether mirror-like 

neurons occur in frontal motor areas, specifically in the secondary motor cortex, or posterior 

parietal cortex in mice. They used a miniaturized, head-mounted fluorescent microscope to 

image the activity of hundreds of individual neurons at a time while mice performed or observed 

pellet-reaching and wheel-running tasks. Cell populations in both areas robustly encoded 

several naturalistic behaviours, showing clear differences in the structure of ensemble 

responses during performed and observed behaviours. However, neural responses to the 

same set of observed actions were absent, although, monitoring pupil dynamics, it has been 

shown that observer animals were attentive to performers and showed reliable neural 

responses to visual stimuli in the task. The neural coding of observed behaviour was below 

chance levels in both brain areas, suggesting that the representation of the observed actions 

occurs outside the parieto-frontal circuit in mice (Tombaz et al., 2020). 

However, we are still far from understanding whether the mirror neuron system is actually 

present also in the rodents’ motor cortex and, if present, its meaning.  
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Figure I6. Example of a unit selectively discharging during monkey grasping movements and during 
monkey observation of grasping movements made by the experimenter. a. The experimenter grasps 
the food; b. the monkey grasps the food. Arrows indicate the (approximate) onset of grasping. Figure 
adapted from di Pellegrino et al., 1992. 

 

1.7.2  Social Facilitation  

Rizzolatti and co-workers (Iacoboni, 1999; Rizzolatti et al., 2002, 2001) proposed that 

the internal motor representation of the observed action can be used for response facilitation, 

i.e. for triggering the repetition of an observed action that is already in the observer’s motor 

repertoire. According to this view, response facilitation is achieved by means of a “resonance” 

mechanism (Rizzolatti et al., 2002) in which the motor system of the observer (or of the listener) 

is activated specifically by observing (or listening) actions. 

It is worth to note that action observation recruits mirror areas to the extent that the observed 

action is represented in the subject's personal motor repertoire, i.e. if the subject has acquired 

the motor skills to perform such actions. Premotor and parietal cortices of humans show 

greater activity, in a fMRI study, when dancers watched their own dance style compared to 

movements they had not been trained to, showing that the response to seeing an action is 

influenced by the acquired motor skills of the observer; whereas no such differences were 

detected in subjects not trained in dancing (Calvo-Merino et al., 2005). In addition, pianists 

showed stronger activations within a fronto–parietal–temporal network while observing piano 

playing compared to controls, using fMRI. Observation of silent piano playing additionally 

recruited auditory areas in pianists. Perception of piano sounds coupled with serial finger–
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thumb opposition movements evoked increased activation within the sensorimotor network. 

This indicates specialization of multimodal auditory– sensorimotor systems within a fronto-

parieto-temporal network by professional musical training. The transmodal audiovisual network 

stronger activated in pianists during passive observation of musical motor activity could 

functionally couple motor observation, auditory feedback, and imitation for learning of musical 

skills (Haslinger et al., 2005). However, within the context of the adult mirror neuron system, 

the infant mirror neuron system is characterized by a network circuit not well defined yet. 

Indeed, exploiting the desynchronization of the mu band (8-10 Hz) occurring during the mirror 

neuron activity, it has been shown that infants show strong desynchronization to human motion 

in the mu frequency band in the sensorimotor regions, irrespective of their own motor 

experience. Infants, who had not yet started to walk, responded equally to motion depicting 

walking and reaching. In addition, infants showed similar mu desynchronization in the 

sensorimotor regions to observation of coherent object motion in the form of movement of toy 

cars or balls (Virji-Babul et al., 2012). Therefore, early in life, infants may display a broadband 

response to human motion and coherent motion in the form of moving objects (Shimada and 

Hiraki, 2006). This response may be refined with experience through a process of Hebbian 

learning (Del Giudice et al., 2009), providing a mechanism for the integration of perceptual-

motor learning with a genetic predisposition to motion resulting in the emergence of the mirror 

neuron system.  

However, in adults, at behavioural level, the observation of actions can actually lead, in some 

cases, to the repetition of those same actions. This phenomenon has been named social 

facilitation. Indeed, it has been demonstrated that the observation and hearing of eating actions 

activate the motor programs underlying similar actions, thus facilitating their execution (Ferrari 

et al., 2005). 

Specifically, social facilitation is a psychological phenomenon that an individual’s performance 

improves in frequency and intensity due to the presence of other individuals doing the same 

action (Wöhr and Scattoni, 2013), and affects behaviours, such like food consumption and 

cognitive behaviour (Bond and Titus, 1983; Herman, 2017). The underlying mechanism has 

been mainly explained as Zajonc’s drive theory, in which the arousal level is heightened 

(driven) through the perception of the presence of other individuals and it induces a dominant 

response of the performance on the task (Zajonc, 1965). Since Zajonc (1965) proposed that 

the presence of others involved in the same task was enough to facilitate well-learned 

behaviours or to retard new learning or complex behaviours via the increase in drive or arousal, 

a number of studies have been conducted on the effect of the mere presence of others on the 

performance of a task (Guerin and Innes, 1993). Intriguingly, observational learning is learning 

that occurs through observing the behaviour of others (Taylor and DeQuinzio, 2012). Many 
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primate species, such as chimpanzee and monkey, can effectively learn from others (Hopper 

et al., 2013; Horner and Whiten, 2005). However, the phenomenon has been observed in many 

species, including not only primates, but also birds and insects (Chabaud et al., 2009; Dindo 

et al., 2009; Jesse and Riebel, 2012). 

Mice and rats are social species with a wide repertoire of social behaviours that range from 

parenting and communal nesting their pups, juvenile play to sexual and aggressive behaviours 

as adults.  Social facilitation is observed also in rats (Zentall and Levine, 1972). Specifically, it 

has been demonstrated that performance and food intake were modified by the presence of 

conspecifics (Sekiguchi and Hata, 2019; Takano and Ukezono, 2015). Similar to primate 

species, rodents also exhibit observational learning of spatial exploration and operant learning 

(Carlier and Jamon, 2006; Takano et al., 2017).  

Takano and Ukezono (Takano and Ukezono, 2015) investigated the performance of rats using 

a motor task in the presence of another non-competitive observer rat. These authors required 

a subject rat to perform a skilled reaching task (Metz and Whishaw, 2000) in front of a cage-

mate which could not interfere with the subject. In the original task, rats were trained to reach 

and grasp a pellet placed on the shelf inside of the wall slit. Takano and Ukezono (Takano and 

Ukezono, 2015) partly modified the original task by adding an observational room opposite the 

reaching room; moreover rats were trained to spin in front of the wall slit before the reach-to-

grasp movement to reduce wasteful motions. They alternately trained rats to reach or observe 

every other day. Results showed that rats spun faster in the presence of the cage-mate, in 

comparison to when they performed the task solitarily. Thus, the presence of conspecifics has 

been shown to commonly accelerate motor behaviours. 
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2.  Aim of the project 
 

Preparatory neural activity related to direct initiation of voluntary movements is critical 

for action planning and execution (Churchland, 2006; Godschalk et al., 1985; Guo et al., 2014b; 

Murakami et al., 2014; Weinrich and Wise, 1982; Wise et al., 1986). This activity is more 

frequently found in premotor cortical areas than in the motor cortex (Afshar et al., 2011). 

Indeed, premotor areas act as a conductor to orchestrate the network activity of the rest of the 

motor modules, on a moment-by-moment basis, and exhibit tuning for specific movements 

(Churchland, 2006; Churchland and Shenoy, 2007; Georgopoulos et al., 1982; Godschalk et 

al., 1985; Hocherman and Wise, 1991; Messier and Kalaska, 2000; Riehle and Requin, 1993). 

How do distinct neuronal classes contribute to this process?  

While previous studies have examined anticipatory activity in populations of pyramidal 

neurons (PNs; reviewed in Svoboda and Li, 2018), little is known on the contribution of 

GABAergic interneurons to these cortical computations (Merchant et al., 2008; Isomura et al., 

2009; Kaufman et al., 2013). Specifically, how pyramidal and GABAergic cells in the different 

layers of the premotor cortex interact and process information to build a voluntary motor 

command remains enigmatic. 

To fill this gap, here I extracellularly recorded single units activity in the premotor area from 

head-restrained mice, classifying neurons into PNs and FSNs, accordingly to well established 

waveforms parameters.  

In the first set of experiments, I explored PNs and FSNs properties in animals allowed to 

spontaneously lick a reward delivered at random intervals. In particular, I exploited a 16-

channel single shank silicon probe to record neurons from all cortical layers of the ALM, the 

putative premotor area controlling voluntary licking in mice. Using a custom-made Matlab code, 

I analyzed peristimulus time histograms for each recorded neuron, built aligning spike events 

on the start lick, and I extrapolated information about the onset of the response, the peak time 

of the activity, the duration and the intensity of the activation. Moreover, I compared the firing 

of sorted units during either single or multiple licks, exploring the difference between an 

isolated event and a burst of consecutive movements. 

Next, I performed a computational analysis to determine the mean information content for all 

the recorded units, analysing the mutual information between the local firing rate and the 

behavioural states (i.e., rest, single lick and multiple licks). 
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In the second set of experiments, we studied the role of FSNs, specifically their interplay with 

PNs, during the computation of the preparatory activity in both ALM and the premotor area for 

the forelimb, the RFA. I used chronically implanted microelectrode arrays to cover both areas. 

As during acute recordings, I evaluated onset and duration of the activity. Moreover, I explored 

PNs and FSNs selectivity for the two types of movements, i.e. licking and forelimb retraction, 

and the effect of their interaction on the neuronal firing rate.  

Finally, based on this electrophysiological background I started a project aimed at identifying 

mirror-like neurons in the mouse premotor cortex. Mirror neurons have been characterized in 

monkeys and other species and they are active not only when animals perform an action but 

also when they watch the same action being performed by another conspecific (di Pellegrino 

et al., 1992; Pineda, 2005; Prather et al., 2008). Their discovery in the macaque monkey 3 

decades ago prompted the notion that action execution and observation are closely related 

processes, and indeed that our ability to interpret the actions of others requires the involvement 

of our own “mirroring” motor system (Kilner and Lemon, 2013; Rizzolatti and Fabbri-Destro, 

2009). 

Since the discovery of the monkey mirror neuron system, there has been much speculation 

over the existence of mirror neurons in animal genetically tractable models, allowing the access 

to cellular networks underlying action understanding. Therefore, a challenge is to establish 

whether mirror-like neurons occur in rodent models, which could allow a detailed 

understanding of the properties, connectivity and function of these neurons. However, currently 

there is no compelling proof that the mirror neuron system is actually present also in the 

rodents’ motor cortex. 

Here, I set up in mice a behavioural paradigm, the social facilitation test, previously used in 

monkeys (Ferrari et al., 2005), to verify whether the same behaviour was present also in 

rodents, as a first step to explore the possibility of the presence of mirror neurons in mice 

premotor cortex.  
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3.  Materials and Methods 
 

3.1 Animals 

All experiments were carried out in accordance with the EU Council Directive 

2010/63/EU on the protection of animals used for scientific purposes, and were approved by 

the Italian Ministry of Health. Animals were housed in rooms at 22 °C with a standard 12h 

light/dark cycle. Food (standard diet, 4RF25 GLP Certificate, Mucedola) and water were 

available ad libitum, except for the experimental period, during which mice were water deprived 

overnight. Electrophysiological recordings were conducted on 13 subjects. Experiments were 

carried out on 3–5 months old wild-type mice (C57BL6/J), males. For optogenetic experiments 

2 PV-Cre mice (Tanahira et al., 2009) (B6;129P2-Pvalb tm1(cre)Arbr/J, Jackson Laboratories, 

USA) were used, injected with 600 nl of an AAV vector (AAV1.EF1.dflox.hChR2(H134R)-

mCherry.WPRE.hGH, Addgene, USA), into the motor cortex. The AAV vector contains the 

doublefloxed channelrhodopsin-2 (ChR2) gene, which is thus expressed in parvalbumin 

interneurons through Cre-mediated recombination (Spalletti et al., 2017; Tantillo et al., 2020). 

We referred to them as PV+FSNs (Figure 1d). 6 B6.Cg-Tg(Thy1-COP4/EYFP)18Gfng (ChR2) 

were used to map mouth/tongue movements in the ALM. 

 

3.2  Surgery Procedure and Animal Preparation  

Mice were deeply anesthetized with an intraperitoneal injection of avertin (0.020 ml/g), 

and positioned on a stereotaxic frame; the scalp was partially removed, the skull cleaned and 

dried. A ground screw was implanted above the cerebellum. Mice were implanted with a 

custom-made lightweight head post, placed on the skull on the left hemisphere, aligned with 

the sagittal suture and cemented in place with a dental adhesive system (Super-Bond C&B). 

A thin layer of the dental cement was used to cover the entire exposed skull. 

For the acute recordings, a recording chamber was built using a dental cement (resin adhesive 

cement, Ivoclar Vivadent) and centred on the ALM (1.8 mm lateral and 2.5 mm anterior to 

Bregma). The skull over the recording area was covered by sterile low melting agarose Type 

III (A6138, Sigma-Aldrich, Inc.) and sealed with Kwik-Cast (WPI). On the day before the first 

acute recording session, 6 B6.Cg-Tg(Thy1-COP4/EYFP)18Gfng (ChR2) mice were 

anaesthetized with ketamine (100 mg/kg) and xylazine (10 mg/kg) cocktail, the chamber 

covering removed and cortex was optogenetically stimulated following a grid with nodes 
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spaced 500 μm. For each site, optogenetic stimulation (3 ms single pulses, 0.2Hz) was 

delivered by means of PlexBright Optogenetic Stimulation System (PlexonInc, USA) with a 

PlexBright LD-1 Single Channel LED Driver (PlexonInc, USA) and a 473 nm Table-top LED 

Module connected to a 200 μm Core 0.39 NA optic fiber (ThorlabsInc, USA). Movements of 

tongue/mouth were collected by a second experimenter, blinded to the stimulation coordinates. 

A small craniotomy (diameter, 0.5 mm) was then performed over sites where the larger 

tongue/mouth movements could be evoked. In wild-type mice, the craniotomy was performed 

in the same region of Thy1-ChR2 mice. Finally, the chamber was filled with agarose and 

sealed. 

For chronic implants, a craniotomy (diameter, 0.8 mm) was made over the ALM, partially 

covering the Rostral Forelimb Area (RFA, 1.2 mm lateral and 2 mm anterior to bregma). A 

planar multi shank 4x4 array (Microprobes for Life Science) was positioned over the craniotomy 

and microwires were inserted into the cortex, up to ~800 µm depth. Then the craniotomy was 

covered with low melting agarose and the array fixed and embedded with dental cement 

(Super-Bond C&B and Paladur). Mice were allowed to awaken and then housed separately. 

 

3.3  Behavioural Training and Data Analysis  

After recovering from surgery, mice were water restricted in their home cages, with food 

still available. Condensed milk was provided as a reward during the tasks and mice were also 

provided water ad libitum for about 1 hour/day, following each recording session. 

During the shaping phase, mice were placed in a U-shaped restrainer (3 cm inner diameter), 

head-fixed through the metal post cemented on their skull and habituated to lick drops provided 

randomly by the experimenter through a feeding needle mounted on a piezoelectric sensor 

sensing the movement of the tongue. 

Each shaping session lasted from 15 min up to 60 min for at least 3 consecutive days. Digital 

signals from the licksensor provided information about the licking movements directly to the 

recording apparatus. The licking behavioral strategy was categorized into two groups: single 

and multiple licks. The start lick was defined as a movement that was not preceded for at least 

0.6 s from any other licking event. The single lick was a start lick not followed by any other lick 

for at least 0.6 s; multiple licks were defined as start licks followed by at least two other 

consecutive licks (≤ 0.4 s among consecutive licks). Time intervals lasting for ≥ 1 s and distant 

at least 0.5 s from the end or the start of licking trials were considered as resting intervals and 

used as a baseline for the analysis of neural activity. 
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For identification of PV neurons in PV-cre mice, the site of AAV injection was illuminated with 

an optic fiber (200µm Core 0.39 NA, Thorlabs, USA). Optogenetic stimulation (50 0.2 s pulses, 

0.2 Hz) was delivered by means of PlexBright System (Plexon, USA) with a PlexBright LD-1 

Single Channel LED Driver (Plexon, USA) and a 473 nm Table-top LED Module. After spike 

sorting, PV-positive neurons were defined as neurons increasing their firing rate by 5ms from 

the beginning of the blue light pulse (i.e. ChR2-positive neurons) and with a sustained activity 

for the entire stimulation length (i.e. FSNs).  

For the chronic recordings, in which forelimb-driven response was also assessed, mice were 

shaped and trained on a robotic platform, the M-Platform (Spalletti et al., 2014) that comprises 

a 1-axis load cell, a linear slide connected to a custom-designed handle that was fastened to 

the left wrist of the animal. During recording sessions, the forepaw, contralateral to the 

implanted ALM, was maintained in a slightly extended position and the force peaks exerted to 

attempt retractions were detected by the load-cell and offline aligned with neural signals.  

 

3.4  Single-Unit Recording 

The electrophysiological data were continuously sampled at 40 kHz and bandpass 

filtered (300 Hz to 6 kHz), using a 16-channel Omniplex recording system (Plexon, Dallas, TX).  

For the acute recordings, a NeuroNexus Technologies 16-channel linear silicon probe with a 

single-shank (A1x16-3mm-50-177, 50μm spacing among contacts) was slowly lowered into 

the ALM; the tip of the probe was placed at about 1000 µm depth using a fine micromanipulator. 

The recording chamber was filled with sterile saline solution (NaCl 0.9%). Before the beginning 

of the recording, the electrode was allowed to settle for about 10 min. For each animal, a 

number of one up to seven extracellular recording sessions were performed. 

For chronic recordings, mice were recorded on ~ 10 separate daily sessions over a 15 days 

period. 

 

3.5  Single Unit Spike Sorting 

The extracellular recording data were processed to isolate spike events by a spike 

sorting software (Offline Sorter™ v3.3.5, Plexon), using principal component analysis; events 

(spike-detection interval > 1.0 ms) that exceeded a 4 SDs threshold above the background 

were sorted (Figure M1). The spike waveforms were aligned at global minimum and the artifact 

waveforms were removed. The single-unit clusters were manually defined. 
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Figure M1. Offline spike sorting was used to extract information from extracellular recordings. Head-
restrained preparation allowed recordings of well-isolated single units at multiple sites during repeated 
experimental sessions. On the left an example of single-unit waveform is represented in yellow. The 
detected spikes are grouped into different clusters (on the right) and each separated cluster is 
associated to a single unit (yellow). 

 

3.6 Data Analysis  

The recorded units were classified based on their average waveforms into putative 

pyramidal neurons (PNs) and putative fast-spiking neurons (FSNs). Two waveform parameters 

were used for the classification: the ratio between the height of the maximum peak and the 

initial negative trough, and the trough-peak time. A k-means clustering was applied. The 

clustering was verified by optogenetic tagging of PV-positive neurons. 

The relation between single neuron activity and the events of the behavioral task was analyzed 

using MATLAB (MathWorks). Peristimulus Time Histograms (PSTHs) were built aligning spike 

events on the start lick, for both single and multiple licks, and on the onset of the force during 

forelimb pulling evaluation; only intervals with stable unit activity were included and spikes 

were averaged over 0.05 s with 0.01 s steps. The PSTH covered a time window of 1 s, from 

0.6 s before the starting event (lick or force onset) and 0.4 s after it. Neurons were tested for 

licking or forelimb selectivity comparing spikes/s activity in the PSTHs with the mean firing rate, 

calculated during resting periods (lasting ≥ 0.5 s, and distant from event trials ≥ 0.5 s) ± an 

upper or a lower threshold. Bootstrapping was used to estimate the thresholds; lower and 

upper thresholds were, respectively, the 2.5 and 97.5 percentile of the probability distribution 

function obtained during the resting intervals. A unit was considered responsive for the licking 

behaviour or forelimb retraction when, for at least three consecutive bins (0.03 s), its firing rate 

went over (enhanced neurons) or under (suppressed neurons) the considered thresholds.  
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The onset of activity was defined as the first bin of the ≥ 3 consecutive bins above/below the 

upper/lower threshold; the time of the bin in which the firing rate (spk/s) was 

maximum/minimum was considered as the peak      time. Selectivity indices were measured 

considering the firing rate (spk/s) of the peak time; they were defined as: 

[|𝑃𝑒𝑎𝑘 (
𝑠𝑝𝑘

𝑠
) 𝑑𝑢𝑟𝑖𝑛𝑔 𝑠𝑖𝑛𝑔𝑙𝑒 𝑙𝑖𝑐𝑘| – |𝑃𝑒𝑎𝑘 (

𝑠𝑝𝑘
𝑠

) 𝑑𝑢𝑟𝑖𝑛𝑔 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑙𝑖𝑐𝑘𝑠|] 

[|𝑃𝑒𝑎𝑘 (
𝑠𝑝𝑘

𝑠 ) 𝑑𝑢𝑟𝑖𝑛𝑔 𝑠𝑖𝑛𝑔𝑙𝑒 𝑙𝑖𝑐𝑘|  + |𝑃𝑒𝑎𝑘 (
𝑠𝑝𝑘

𝑠 ) 𝑑𝑢𝑟𝑖𝑛𝑔 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑙𝑖𝑐𝑘𝑠|] 
 

and: 

[|𝑃𝑒𝑎𝑘 (
𝑠𝑝𝑘

𝑠
) 𝑑𝑢𝑟𝑖𝑛𝑔 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑙𝑖𝑐𝑘𝑠|  – |𝑃𝑒𝑎𝑘 (

𝑠𝑝𝑘
𝑠

) 𝑑𝑢𝑟𝑖𝑛𝑔 𝑓𝑜𝑟𝑒𝑙𝑖𝑚𝑏 𝑟𝑒𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛|] 

[|𝑃𝑒𝑎𝑘 (
𝑠𝑝𝑘

𝑠
) 𝑑𝑢𝑟𝑖𝑛𝑔 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑙𝑖𝑐𝑘𝑠 + |𝑃𝑒𝑎𝑘 (

𝑠𝑝𝑘
𝑠

) 𝑑𝑢𝑟𝑖𝑛𝑔 𝑓𝑜𝑟𝑒𝑙𝑖𝑚𝑏 𝑟𝑒𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛|] 
 

 

The duration of the response was the number of bins above/below the upper/lower threshold. 

The intensity of activation was defined as:  

𝑎𝑟𝑒𝑎 𝑎𝑏𝑜𝑣𝑒/𝑏𝑒𝑙𝑜𝑤 𝑡ℎ𝑒 𝑢𝑝𝑝𝑒𝑟/𝑙𝑜𝑤𝑒𝑟 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒
 

The interaction between licking and forelimb pulling was measured only for those neurons that 

increased their firing rate during both licking and forelimb movements. As a reference of 

activity, the mean firing rate of each considered neuron, over 11 bins, 150 ms (bin size 50 ms, 

with a sliding time window of 10 ms width), centered on the expected peak time of licking and 

pulling (calculating using PSTHs) in isolated (>  0.6 s distant from other movements) single 

licks events or forelimb pulling respectively, was measured. 

After that, single licking events (or force onset event) spontaneously occurring in a - 0.6  s – + 

0.6  s interval from a force onset event (or single lick event) were selected. For each couple of 

co-occurring events the expected distance among the two expected peak times (calculating 

using PSTHs) was computed. 

Finally, only the events (single lick or force onset events) with an expected distance ranging 

from -0.1 s to 0.1 s were selected; for each considered neuron the mean firing rate was 

calculated as for the isolated events (over 11 bins, 150 ms (bin size 50 ms, with a sliding time 

window of 10 ms width)). 

Firing rates of different neurons were reported as normalized on their baseline firing rate and 

were averaged.  
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3.7  Information Content 

We measured the information content (Shannon, 1948), carried out by the mean firing 

rate of each neuron about two different sets of conditions. Set 1: 0.8 s  intervals centred at 

single licks (see above) vs rest, i.e. randomly selected 0.8 s intervals during which animals 

were at rest, distant at least 1.5 s from other licking or rest intervals.  Set 2: 0.8 s  intervals 

centred at  the onset of multiple licks (see above) vs rest.  

The mean firing rate mf associated to each trial was measured over the whole window. The 

mutual information ISF(E, Mf) between mf and each set of events E was computed as follows: 

ISF(E, Mf) =   ∑ P(e)
e

∑ P(mf | 𝑒) ∗ 𝑙𝑜𝑔2(
P(mf | 𝑒)

P(mf)
)

 mf

 

 

where P(e) was the probability of the presentation of the specific event e, P(m) the probability 

over all trials and all conditions of the neuron to have the mean firing rate mf  in a given interval, 

P(mf | 𝑒) the probability of the mean firing rate mf to be associated to the event e. Mean firing 

rates were binned in N equipopulated bins, where N was the minimum value between the 

square root of the number total number of trials and the number of unique values in the array 

of mean firing rates. 

To reduce the bias in the estimation of the information due to the limited dataset, a quadratic 

extrapolation method was used (Panzeri et al., 2007). A statistically significant threshold was 

obtained bootstrapping 100 times (shuffling the conditions associated to each trial), and, for a 

major solidity, only neurons with an IC > 95 percentiles of the bootstrapped distribution, in at 

least one of the two combinations, were included, generating a subset of informative neurons. 

We also calculated the information content over time: we considered 0.8 s before and 0.4 s 

after the licking event, and we computed a local mean firing rate (LMF) over a moving average 

of 50 ms with steps of 10 ms. Then, for each step we repeat the procedure described above. 

For this analysis we only used the subset of informative neurons described above.  

For each recording session, we computed animal-wise the amount of information carried by 

the summed firing rate (ISF) of the recorded FSNs and PNs population. Each recording session 

has a different number of neurons and a different ratio between FSNs and PNs, for this reason, 

to be able to compare results from different recording sessions, the ISF was computed 

considering N couples of neurons belonging to the same class for each recording. N was the 

minimum value between all the possible combinations of same-class-neurons and 40.  

For each couple of neurons, ISF was calculated with the following equation: 



40 
 

ISF(E, MF 12) =   ∑ P(e)
e

∑ P(mf 12 | 𝑒) ∗ 𝑙𝑜𝑔2(
P(mf 12 | 𝑒)

P(mf 12 )
)

 mf 12

 

Where ISF(E, ISF 12) is the information given by the summed firing rate of neuron 1 and 2, P(e) 

was the probability of the presentation of the specific event e,  P(mf 12 ) the probability that the 

sum firing rate of the neurons to have the mean firing rate mf 12  over all trials of all conditions, 

P(mf 12 | 𝑒) is the probability of the mean firing rate mf 12  to occur during the event 𝑒.  

We used the same bias correction method and the same statistically significant threshold of 

the previous analysis. Only couples with a ISF > 95 percentiles of the bootstrapped distribution, 

in at least one of the two combinations, were considered. 

We then normalized the I𝑆𝐹(E, 𝐼𝑆𝐹 12) (Nisf) to the sum of the information contained in the 

mean firing rate of neuron 1 and 2 calculated separately with the following equation: 

Nisf(12) = 1 − (
ISF(E, ISF12)

I(E, Mf1) +  I(E, Mf2)
) 

 

Where Nisf(12) is the normalized information carried by the sum of the firing rate of neuron 1 

and 2, ISF(E, ISF 12) and I(E, Mf1) are defined above.  

When Nisf(12) is equal to 0 it suggests that the information carried by the means of the two 

neurons are mostly independent, while higher values suggest that the information are more 

dependent.  

 

3.8  Social Facilitation Test 

Mice were divided into two groups: observers (12 animals) and demonstrators (20 

animals).  

Observers were deeply anesthetized with an intraperitoneal injection of avertin (0.020 ml/g), 

and positioned on a stereotaxic frame; the scalp was partially removed, the skull cleaned and 

dried. Mice were implanted with a custom-made lightweight head post, placed on the skull on 

the left hemisphere, aligned with the sagittal suture and cemented in place with a dental 

adhesive system (Super-Bond C&B). A thin layer of the dental cement was used to cover the 

entire exposed skull. Observers were allowed to recovery from surgery for at least two days. 

Before the experimental sessions, observers were habituated for at least three days to the 

head restrained condition, starting from 5 min/day until 20-30 min/day. 
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One to two days before the first experiment, demonstrators were water deprived in their home 

cages, with food still available. Water was provided during the tasks and mice were also 

provided water ad libitum for about 1 hour/day, following each session. In contrast, observers 

were given abundant food and water, in order to satiate them. 

The apparatus (Figure M2) included a chamber in which a demonstrator can freely move; a 

head-restrained observer was positioned so that the side of chamber and the A-P axis of the 

observer formed an angle of 45° (see Figure M2 below). A drinking spout was always 

positioned in front of the observer' snout; the tip of the drinking spout was covered with a 

sponge constantly soaked with water. The observer and the chamber were positioned at a 

distance of about 10 cm, to allow visual and auditory contact of the demonstrator. Before 

beginning the session, demonstrators were left in the experimental chamber for at least 1h to 

familiarize with it. 

 

Figure M2. On the tom the social facilitation apparatus is represented: 1. Head-restrained position; 2. 
Drinking snout; 3. Head-restrain tool; 4. Camera position; 5. Demonstrator’s chamber; 6. Water delivery 
system. On the bottom a head restrained mouse is represented.  

 

The social facilitation test lasted 15 min and comprised three consecutive periods of 5 min 

each: (B) baseline period, during which the demonstrator was obscured, (D) a control period, 

during which the demonstrator was present but not drinking because the bottle was not 

available in the chamber and (D + B) a testing period, in which the demonstrator was present 
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and allowed to drink. The baseline period was always administrated as first condition. The 

order of the two conditions “D” and “D + B” was randomly balanced. The experiment was 

repeated for 3 weeks for each observer. 

In a second set of experiments, a bottle condition (B), lasted 5 min, in which the  demonstrator 

was not present and there was only the bottle in the empty chamber, has been also performed. 

The order of the two conditions “D”, “D + B” and “B” was randomly balanced. 

Observers’ and demonstrators’ licking intervals were measured. Observers’ total amount of 

time spent to lick and the first lick latency calculated. For a deeper analysis the demonstrator’s 

licking intervals were scrambled using MATLAB (Figure M3) (MathWorks). 

 

Figure M3. A time scale of a social facilitation analysis. The time segments indicate (from top to bottom): 
1. Demonstrator’s licking interval; 2. Demonstrator’s licking intervals scrambled (scr); 3. Observer’s 
licking intervals; 4. The overlapped licking intervals between the observer’s and demonstrator’s 
intervals; 5. The overlapped licking intervals between the observer’s licking intervals and demonstrator’s 
scrambled licking intervals (scr overlapping). 

 

3.9 Statistics and data  

All data are expressed as mean ± standard error of the mean (SEM). Statistical tests 

were performed using Graphpad Prism 8.0 or SigmaPlot 12.0. Statistical significance was 

assessed using Wilcoxon matched paired Signed Rank Tests, Mann-Whitney Test, Two 

Proportion Z Test, Paired t-test, Two way Repeated Measure ANOVA, Friedman Test or Chi-

square Test, as appropriate. Cumulative distributions were tested using Kolmogorov-Smirnov 

(K-S) two-sample Test. All statistical analyses were performed on raw data. The level of 

significance was set at *p < 0.05, **p < 0.01, ***p < 0.001. 
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4. Results 
 

4.1  Activity of PNs and FSNs in the ALM during licking 

To precisely target extracellular recordings within the ALM, we carried out initial 

optogenetic mapping experiments in 6 Thy1-ChR2 mice (Spalletti et al., 2017) expressing the 

light-gated cation channel ChR2 in layer V neurons. We confirmed that the stimulation of a 

cortical area centred 2.5 mm anterior and 1.8 mm lateral to lambda (data not shown), evoked 

mouth/tongue movements, as expected for the ALM (Svoboda and Li, 2018). 

Water-restricted, head-fixed mice were allowed to lick spontaneously drops of condensed milk 

which were made available through a drinking spout, positioned in front of the animals' snout 

and equipped with a piezoelectric element to signal licking events. Mice performed rapid, 

rhythmic and stereotyped protrusions of the tongue at 7-8 Hz, as previously described (Guo et 

al., 2014b). Offline, we categorized licking events into isolated, “single” licks, or “multiple” licks 

(defined as isolated licks within -0.4/+0.4s and as clusters of at least 3 consecutive licks 

respectively; Figure 1a). 

We extracellularly recorded neuronal activity with either an acutely inserted single shank, 16-

channels silicon probe (electrode contacts spaced by 50 μm to span all cortical layers; n = 10 

mice, n = 693 units) or a chronic 16-microelectrodes array (n = 3 mice; n = 759 units, up to 10-

15 recording sessions per animal) from the ALM (and RFA) of the right hemisphere. Spike 

detection and sorting were performed offline (see Methods for cluster separation criteria) and 

individual neurons’ spikes were classified based on their shape, as described previously 

(Barthó et al., 2004b; Mitchell et al., 2007; Niell and Stryker, 2010). Specifically, we projected 

in a 2D-feature space the distribution of waveforms according to two parameters: the trough 

to peak time and the peak-trough ratio (Figure 1b). This analysis allowed us to separate 

neurons with a thin spike shape (i.e., narrow-spiking neurons) from broad-spiking cells (Figure 

1c).  

Peristimulus time histograms (PSTHs) were created by aligning the spiking activity of each 

neuron to the first event of each licking bout (timed as “0”). For each PSTH, the mean firing 

rate in a 1s time window (0.6s before and 0.4s after “0”) was compared to thresholds delimiting 

a range of baseline activity during resting periods (Figure 1d; see Methods for details) to 

identify responsive neurons. Overall, in both acute and chronic recordings, we found n = 624 

units (indicated by violet and green squares in Figure 1b) which were significantly modulated 

by movement (n = 828, PNs and FSNs, not modulated by the task are indicated by light violet 
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and light green squares, respectively; Figure 1b and Table 1). Responsive neurons with a thin 

spike shape displayed higher baseline discharge and shorter inter-spike intervals (ISI) than 

broad-spiking neurons (Figure 1e, f), consistent with their classification as fast-spiking, 

putative GABAergic interneurons (FSNs). Broad-spiking neurons were instead considered as 

putative pyramidal neurons (PNs). 

To further validate the identification of FSNs, we performed extracellular recordings in 

Parvalbumin (PV)-Cre mice, inoculated with a floxed AAV vector expressing ChR2 to allow 

expression of the light-gated cation channel selectively in PV-positive, fast-spiking 

interneurons (Tantillo et al., 2020). FSNs were identified based on their latency and sustained 

response to a blue light stimulation (0.2s), and their waveforms added to data for PNs/FSNs 

clustering. Notably, all the optogenetically tagged PV+-FSNs displayed a small trough to peak 

time and peak-trough ratio, coherently with their identification as putative interneurons, thereby 

confirming the reliability of our identification method (Figure 1b). 
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Figure 1. a. Schematic representation of a head-fixed mouse in the behavioral setup. Spontaneous licks 
of drops of water are tracked using a licksensor. The electrode is positioned into the ALM during acute 
recordings, while a chronic electrode array covers both ALM and RFA during chronic recordings. The 
force applied during forelimb pulling is evaluated using a robotic platform. In the bottom right, a scale 
bar of the licking behaviour and onset force is represented. The single licks are isolated events, neither 
followed nor preceded by other licks for at least 0.6 s. Multiple licks are clusters of at least 3 consecutive 
licks (≤ 0.4 s) not preceded by other licks for at least 0.6 s. b. Scatter plot of spike waveform parameters 
for all units recorded (n = 1452). The violet and green filled squares represent individual putative 
pyramidal neurons (PNs, task related or not, violet and light violet, respectively) and fast-spiking neurons 
(FSNs, task related or not, green and light green, respectively). The orange filled triangles show spike 
shapes of individual PV+-tagged FSNs (activated at short latency by light). c. Average spike waveforms 
for all units, PNs and FSNs, aligned to minimum and normalized by trough depth. d. A representative 
peristimulus time histogram. The black line represents the mean firing rate calculated during resting 
periods, black dotted lines an upper and a lower threshold. The three black squares show the first, the 
maximum and the last point over the threshold. The orange dotted lines and the orange arrows indicate 
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the onset of the activity and the peak time, respectively. The blue line shows the duration of the activity, 
representing the time over the threshold. The pink area is the area above the threshold. The intensity of 
activation is defined as the pink area divided by duration of the activity. e, f. Mean firing rate (e) and 
maximum position of interspike intervals (ISI, f) of PNs and FSNs. Baseline firing rate, K-S Test, D = 
0.188, p = 0.0043; maximum position ISI, K-S Test, D = 0.206, p = 0.0013, **p < 0.01. 

 

 
Table 1. Total number of recorded units during acute and chronic experiments and the modulated units 
for both PNs and FSNs are reported.  

 

In the first set of experiments (performed with acutely inserted silicon probes in the ALM), we 

found that n = 251 neurons (203 putative PNs, 48 putative FSNs) showed a modulation of 

activity during licking behaviour. The majority of putative PNs showed a firing rate enhanced 

by licking, and only about 15% of them exhibited a decrease in firing rate during licking epochs 

(Figure 2a, b, c). The proportion of licking-suppressed FSNs tended to be lower (about 6%; 

Figure 2d, e, f; PNs Supp vs FSNs Supp, Two Proportion Z Test, z = 1.65, p = 0.09). In the 

case of multiple licks, PNs and FSNs showed the maximum response modulation in 

correspondence with the first licking event. This was demonstrated by building mean PSTHs 

aligned with the first or second lick in the series. In particular, the alignment with the second 

lick resulted in a negative shift (about -150 ms) for both onset of the response and peak latency 

(Figure 2g, h). These data suggest that neuronal discharges of both PNs and FSNs in the 

ALM are mainly related to the planning of rhythmic oral activity (i.e., a licking bout) rather than 

the execution of each lick of the series. 

 Total Recorded Units Modulated Units PNs FSNs 

Acute Exp 693 251 203 48 
Chronic Exp 759 373 313 60 
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Figure 2. a. Proportion of all responsive putative Pyramidal Neurons (PNs) enhanced (violet) or 
suppressed (light violet) during the licking activity; the majority of PNs responds increasing their basal 
firing rate, a small percentage of neurons show a decrease in their basal firing rate in response to the 
movement. b, c. Representative examples of raster plots and corresponding firing-rate-time-histograms 
showing enhanced (b) and suppressed (c) PNs, the red dotted lines represent the upper thresholds, the 
green dotted lines the lower ones, the black line is the mean baseline firing rate. Time = 0 corresponds 
to the first lick, not preceded by other licks for at least 0.6 s. d. Proportion of all responsive putative Fast 
Spiking Neurons (FSNs) enhanced (green) or suppressed (light green) during the licking activity. e, f. 
Representative examples of raster plots and firing-rate-time-histograms of enhanced (e) and 
suppressed (f) FSNs, the red dotted lines represent the upper thresholds, the green dotted line the lower 
ones, the black line is the mean baseline firing rate. Time = 0 corresponds to the first lick, not preceded 
by other licks for at least 0.6 s. g, h. Histograms of the onset of the response (g) and the peak time (h) 
of PNs and FSNs obtained aligning the firing-rate-time-histograms to the first or the second lick of a 
licking bout: units’ activity is related to the beginning of the movement rather than the isolated licking 
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event. Onset of the response: Wilcoxon matched paired Signed Rank Test, PNs, W = -15010, p = < 
0.001; FSNs, W= -914, p = < 0.001; Peak Time: Wilcoxon matched paired Signed Rank Test, PNs, W 
= -14760, p = < 0.001; FSNs, W= -913, p = < 0.001,***p < 0.001. 

 

4.2  FSNs display less tuned responses during single vs. multiple licks 

We next compared the discharges of PNs and FSNs during either single or multiple 

licks. To this aim, we computed a selectivity index (see Methods), ranging from “-1” to “1”, 

based on the peak of neuronal modulation which indicates the degree of tuning of each neuron 

for the two different licking strategies (Figure 3a, “1” indicates exclusive selectivity for single 

licks, “-1” for multiple licks). The analysis showed that a great proportion (> 70%) of both PNs 

and FSNs modulated their firing rate during both single and multiple licks. Negative values 

tended to predominate for both PNs and FSNs, indicating an overall greater activity during the 

multiple licks (see also below). However, we also found units showing an absolute tuning for 

either single (+1) or multiple licks (-1). Thus, single and multiple licks are likely to be 

represented, at least by those neurons, as different motor acts.  

To further quantify possible differences in neuronal tuning, we plotted the percentages of PNs 

and FSNs that responded only during single licks, multiple licks, or during both (Figure 3b). 

The statistical analysis revealed that the distribution was different for PNs vs. FSNs. 

Specifically, the proportion of neurons responsive for both single and multiple licks was greater 

for FNs. These data indicate a more specific activity of PNs compared to FSNs, which showed 

instead a broader tuning. 

 

Figure 3. a. The peak of the response (spk/s) is used to calculate a selectivity index (see methods) 
towards the two identified licking strategies, going from -1 (neurons selective for multiple licks) to +1 
(neurons selective for single licks). The black horizontal line corresponds to the median value (PNs, 
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median = -0.084; FSNs, median = -0.077). b. Percentage of neurons selective for: both single and 
multiple licks, for single or multiple licks individually, Chi-square Test, 6.13, p = 0.046. Single & Multiple 
PNs vs Single & Multiple FSNs, Z-Test, z = 2.5, p = 0.01. 

 

4.3  FSNs show earlier and more sustained activation than PNs during 

licking 

Based on the observed differences in the neuronal responses during single and 

multiple licks, we further investigated the changes in firing rates of PNs and FSNs during the 

two types of licking behaviour. 

We first analysed the onset of the (enhanced or suppressed) response (see Methods and 

Figure 1d). The majority of the recorded neurons showed an increase - or a reduction - of their 

firing rates prior to movement onset, independently from the forthcoming licking behaviour 

strategy (Figure 4a). Onset of PN discharge was slightly earlier in single than in multiple licks 

(Figure 4a). Comparison of the onset of the response between PNs and FSNs showed that 

FSNs fired ~ 0.1 s earlier than PNs, similarly across the two behavioural conditions. A 

cumulative distribution curve of the onset for individual neurons demonstrated a clear shift to 

the left for FSNs vs. PNs (Figure 4b, c). This indicates an earlier recruitment of FSNs than 

PNs, hence suggesting that the modulation of putative GABAergic neurons may be critical for 

the initiation of the movement. 

Then, we examined the timing of the peak of activity (or suppression) for each individual neuron 

with respect to licking onset. First, we evaluated the difference between the two licking 

strategies: for the multiple licks, the average peak time was significantly delayed for both PNs 

and FSNs (Figure 4d). Cumulative distributions of the peak latency during single and multiple 

licks are reported in Figure 4e, f. A robust statistical difference between PNs and FSNs was 

present for multiple licks (Figure 4f). Specifically, the cumulative distribution of the peak time 

for multiple licks showed that about 50% of PNs reached their maximum firing rate before the 

onset of the licking bout, whereas about 75% of FSNs already reached their peak of activity 

prior to licking onset (Figure 4f). Altogether, these data suggest a more direct and earlier 

involvement of FSNs in the planning and generation of licking movement than PNs. 
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Figure 4. a. Histograms of the changes in the onset of the response, defined as the first latency above 
or below the thresholds on PSTHs, for PNs (left) and FSNs (right), during single and multiple licks. Mean 
onset: PNs, Single = -0.141 s, Multiple = -0.157 s; FSNs, Single = -0.235 s, Multiple = -0.240 s. Wilcoxon 
matched paired Signed Rank Test, PNs, W = -2035, p = 0.046; FSNs, W = -158,0, p = 0. 36. *p < 0.05. 
b, c. Cumulative distribution of the onset of the response for all the neurons, PNs and FSNs, during the 
single isolated lick (b) or consecutive multiple licks (c): FSNs modulated their activity generally earlier 
than the PNs. K-S Test, Single, D = 0.3163, p = 0.001; Multiple, D = 0.3351, p < 0.001. d. Histograms 
of the changes in the peak time of PNs (left) and FSNs (right) during single and multiple licks: the peak 
discharge is significantly delayed for both PNs and FSNs. Mean latency: PNs, Single = -0.0475 s, 
Multiple = 0.0104 s; FSNs: Single = -0.0820 s, Multiple = -0.020 s; Wilcoxon matched paired Signed 
Rank Test, PNs, W = 4707, p < 0.0001; FSNs, W = 321, p = 0.048, *p < 0.05, ***p < 0.001. e, f. 
Cumulative distribution of the peak time for all the neurons, PNs and FSNs, during the single isolated 
lick (e) or consecutive multiple licks (f): FSNs show their peak latency generally earlier than the PNs. K-
S Test, Single, D = 0.1933, p = 0.064; Multiple, D = 0.2766, p = 0.0063,. 

 

Next, we explored the neuronal response duration, defined as the time interval during which 

the activity remained above - or below - the defined thresholds (see Figure 1d and Methods 

for details). The duration of the response was greater when mice performed multiple licks for 

both subpopulations of neurons (Figure 5a). By comparing PNs and the FSNs response 

duration, we found that the duration of the response was greater in the FSNs during both single 

and multiple licks compared to PNs (Figure 5b, c).  

Finally, to compare the magnitude of the activation of the two neuronal classes, we measured 

the mean firing rate above – or below – the thresholds. During multiple licks, both PNs and 

FSNs showed greater discharge than during a single lick (Figure 5d). Furthermore, the FSNs 

displayed a higher activity relative to PNs, and this was more evident in multiple than in single 

licks (Figure 5e, f). These findings suggest the idea that the single or multiple licks are coded 

by the differential activity patterns of both PNs and FSNs, in terms of onset, peak discharge, 

duration and magnitude of neuronal activity. 
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Figure 5. a. Histograms of the changes in the duration of the response of PNs (left) and FSNs (right), 
during single and multiple licks: during the multiple licks the time above (or below) the threshold is 

greater for both PNs and FSNs. Mean duration: PNs, Single = 0.201 s, Multiple = 0.350 s; FSNs, Single 
= 0.297 s, Multiple = 0.436 s; Wilcoxon matched paired Signed Rank Test, PNs, W = 8645, p < 0.0001; 
FSNs, W = 606, p = 0.0002, , *** p < 0.001. b, c. Cumulative distribution of the duration of the response 
for all the neurons, PNs and FSNs, during the single isolated lick (b) and consecutive multiple licks (c): 
a higher percentage of FSNs has a greater duration for both the conditions, single or multiple. K-S Test, 
Single, D = 0.2611, p = 0.0158; Multiple, D = 0.2394, p = 0. 0269. d. Histograms of the intensity of 
activity of PNs (left) and FSNs (right), during single and multiple licks: during multiple vs single licking 
events, the intensity of activation is significantly higher for both PNs and FSNs. Wilcoxon matched paired 
Signed Rank Test, PNs, W = 4917, p < 0.001; FSNs, W = 534, p = 0.0014, ** p < 0.01, *** p < 0.001. e, 
f. Cumulative distribution of the intensity of activation for all the neurons, PNs and FSNs, during the 
single isolated lick (e) and consecutive multiple licks (f): note that FSNs have a greater intensity of 
activation for both the conditions, single or multiple. K-S Test, Single, D = 0.2194, p = 0.0655; Multiple, 
D = 0.2819, p = 0. 0051. 

 

4.4  Information content of Firing Rate 

The data reported in the previous section demonstrate robust differences in the 

discharge pattern of PNs and FSNs during single and multiple licks. FSNs were active prior to 

movement onset and PNs activation, showing a more sustained and intense activity than PNs. 

The distinct behaviour of PNs and FSNs can be appreciated by building mean PSTHs for the 

two classes of neurons (Figure 6a, b).  

We next computed for all the recorded units the mutual information between the local firing 

rate and the behavioural states (i.e., rest, single lick and multiple licks; see Methods).The 

fraction of informative neurons was 0.74 for FSNs and 0.63 for PNs. Within the subset of 

significantly informative neurons, FSNs carried vastly more information than PNs about the 

onset of both single and multiple licks:  0.074 bits for PNs, 0.130 bits for FSNs (p<0.001, 

rank test), comparing single lick and rest; 0.140 bits for PNs, 0.221 bits for FSNs, (p<0.001, 

rank test), comparing multiple licks and rest (Figure 6c, d). 

Coherently with an earlier onset of the response, FSNs information content ramped up earlier 

than PNs. Information brought by FSNs became 3 SD larger than baseline (calculating in the 

interval from -0.8 s to -0.4 s before the event) for, at least, two consecutive bins, 40-50 ms in 

anticipation of that carried by PNs. When comparing single lick and rest, the information 

exceeded the previously described threshold 250 ms before onset of the movement in FSNs 

and 200 ms in PNs. Peak was then reached at 0 ms from the event in FSNs and 30 ms after 

the event in PNs.  

The comparison of multiple licks with rest yielded similar results. The information exceeded 

the threshold 330 ms before the onset of the movement in FSNs and 270 ms in PNs. Peak 

was then reached 20 ms after the event in FNS and 50 ms after the event in PNs. This 
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dynamics was similar to the responsivity illustrated by the PSTHs results (compare Figure 6c, 

d with Figure 6a, b).  

 

We then computed animal-wise the amount of information carried by the summed firing rate 

of the recorded FSNs and PNs population and we found that FSNs carried more redundant 

information. The Normalized Information carried by the sum of firing rate (Nisf, see methods) 

is significantly higher for FSNs than for PNs (mean 0.08 for PNs, 0.26 for FSNs, comparing 

single lick and rest; mean 0.20 for PNs, 0.25 for FSNs, comparing multiple licks and rest) 

(Figure 6e).  

 

Overall, these results suggest that the local firing rate of FSNs conveys a considerable 

amount of information prior to PNs activation, further supporting the idea that a robust and 

coherent inhibitory activity might be important during the planning of the movement. 
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Figure 6. a, b. Average PSTHs for all recorded PNs (violet) and FSNs (green) in a 1 s window (0.6 s 
before and 0.4 s after the licking event) during single (a) and multiple (b) licks. c, d. Information carried 
by firing rate of PNs (violet) and FSNs (green) about the onset of single (c) and multiple (d) licks. 
Information is computed over 50 ms bins in a 1 s window (0.6 s before and 0.4 s after the licking event). 
lower and higher shades represent, respectively, the 25 and 75 percentile. e. Information content 
redundancy for couple of PNs and FSNs of the same recording session for both single and multiple 
licks. Mann-Whitney Test, Single, U = 6864, p = 0.0058; Multiple, U = 7456, p = 0.044, **p < 0.01 and 
*p < 0.05.  

 

4.5  Layer-specific responses of PNs and FSNs 

The use of linear probes allowed us to investigate the laminar distribution of the 

response properties of the recorded neurons. Specifically, units were classified as superficial 

(channels 1-8, i.e. recorded at a cortical depth ~ < 400 µm) or deep (channels 9-16, ~ > 400 

µm depth) neurons. In our sample, about 25% of PNs and FSNs were recorded from superficial 

layers. Figures 7a, b report the onset of activity for each recorded unit as a function of depth 

(i.e. channel number). From the plot, it is clear that while the average onset of the response of 

FSNs precedes the one of PNs (consistent with the data reported in Figures 4a-c), a small 

proportion of PNs appear to increase their firing rate early in time, simultaneously with FSNs 

(Figure 7a, b).  

The early-birds PNs appeared to be more prevalent in deep than in superficial layers. Indeed, 

by splitting the temporal window before licking onset into two segments of 0.3 s each (-0.6/0.3 

s and 0.3/0 s), we found that the percentage of deep PNs was higher in the first vs. the second 

segment (Figure 7c, d).  

These results confirm that preparatory activity related to licking begins in deep layers of ALM 

(Chen et al., 2017), and involves both FSNs and PNs. 
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Figure 7. a, b. PNs (violet) and FSNs (green) depth distribution (across sixteen channels probe) of the 
onset of the activity in a 1 s window (0.6 s before and 0.4 s after the licking event) during single (a) and 
multiple (b) licks. c, d. Percentage of deep PNs (violet) and FSNs (green) into two time segments before 
the licking event ( - 0.6, - 0.3 and - 0.3, 0.0) during single (c) and multiple (d) licks. *p < 0.05. 

 

4.6  Direct comparison of the neuronal responses of PNs and FSNs 

during two types of movement 

Several hypotheses may explain the precocious and sustained activation of FSNs in 

preparation of licking. We tested the idea that this early inhibition occurs during action planning, 

independent of the type of movement. Therefore, we went on to compare FSNs and PNs 

activity during two types of motor tasks, i.e. licking and forelimb retraction. We took advantage 

of a robotic platform (M-Platform) (Allegra Mascaro et al., 2019; Spalletti et al., 2017), which 

allows mice to perform several trials of forelimb pulling. Neuronal discharges were aligned on 
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the onset of force peaks generated by the forepaw and recorded by a load cell (Pasquini et al., 

2018; Spalletti et al., 2014). Animals also performed spontaneous licking within the same 

experimental session, allowing us to simultaneously probe neural responses to the two 

different motor tasks. We start by describing the neuronal discharges during “isolated” (i.e. 

spaced by more than 1 s) pulling and multiple licking events (see below for interactions 

between the two movements). 

For these experiments we employed a chronic microelectrode array (4x4) which was 

purposefully centered on the ALM but exceeding the boundary with the adjacent RFA. The 

RFA, a putative premotor area mapping the mouse forelimb (Alia et al., 2016; Tennant et al., 

2011), is centered at 2 mm anterior and 1.2 mm lateral to Bregma and partially overlaps with 

the ALM. Electrode contacts were positioned in deep layers; we isolated n = 373 responsive 

single units (PNs, n = 313; FSNs, n = 60; mice, n = 3) in 10-15 experimental sessions per 

animal. 

During these chronic recordings, we found a higher proportion of neurons whose discharge 

was suppressed by movement, with respect to previous data collected in acute recordings. 

Specifically, 40% of PNs, whose discharge was modulated during forelimb retraction, showed 

movement-related suppression of their discharge; a similar proportion (37.0%) of PNs 

responsive for licking behaviour were also suppressed. For FSNs, the percentages of 

suppressed neurons were similar (39.1%) for forelimb retraction, and lower (20.3%) for licking. 

These data suggest that corticofugal pyramidal neurons as well as FSNs located in deep layers 

are particularly susceptible to movement-related suppression. Therefore, we analysed the 

enhanced and suppressed neurons separately. A summary of the number and properties of 

isolated units is reported in Table 2.  

 

 Lick 
Enh 

Lick 
Supp 

Lick Enh / 
FP Supp  

Lick Enh 
/ FP Enh 

Lick Supp / 
FP Supp  

Lick Supp 
/ FP Enh 

FP 
Supp 

FP 
Enh 

PNs 52 31 31 96 55 27 6 15 
FSNs 7 2 9 31 11 - - - 

 
Table 2. Number of neurons in different functional classes. Lick, licking; FP, forelimb pulling; Enh, 
enhanced; Supp, suppressed. 

 

4.7  FSNs exhibit lower selectivity than PNs for licking behaviour and 

forelimb retraction 

Overall, the analysis of single neurons properties revealed no evidence of clear 

segregation of function in the ALM and the sampled portion of RFA. Indeed, the majority of the 
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recorded units modulated their firing rate during both licking and limb retraction, confirming 

partially overlapping neuronal networks for the two movement patterns. The selectivity for each 

type of movement was quantified based on the amplitude of the discharge modulation by 

means of an index ranging from “1” to “-1”, with “1” indicating pure selectivity for licking, “-1” 

for forelimb retraction, and “0” an identical response during both acts (Figure 8a).  We found 

that licking was the preferred neuronal response for all the recorded units, consistent with the 

position of the array which was centered on the ALM. Overall, we found that PNs displayed 

more variability in their responses to the two different motor acts compared to FSNs. We 

categorized neurons into either “forelimb retraction-specific”, “licking-specific”, and 

“forelimb+licking” based on their selectivity indexes. This analysis revealed that FSNs were 

less tuned than PNs (Figure 8b; Chi-square test, 9.13, p = 0.01), consistent with the data 

previously reported for “single” and “multiple” licks (Figure 3b).   

To further investigate the response properties of PNs and FSNs during the two motor tasks, 

we subdivided the recorded units into different functional classes, according to the movement-

induced modulation of their discharge. Specifically, neurons responsive to only one type of 

movement were classified as enhanced/suppressed by licking (L+, L-) or forelimb pulling (F+, 

F-). Neurons responsive to both movements showed either a concordant (L+/P+, L-/P-) or 

opposite modulation (L+/P-, L-/P+) during each motor task. We found that PNs (violet bars in 

Figure 8c) were distributed across all functional classes. In contrast, the vast majority of FSNs 

(> 72%) were consistently modulated (i.e., suppressed or enhanced) by the two different 

movements (i.e., L+/F+, 50% and L-/F-, 20%). The functional distributions of PNs and FSNs 

were significantly different (Figure 8c). These data are in agreement with the previous findings 

which indicate a broader tuning of FSNs, most of which appear to increase their discharge 

irrespective of the movement type. 
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Figure 8. a. The peak of the response (spk/s) is used to calculate a selectivity index (see methods) for 
the two spontaneous movements, licking vs forelimb, going from -1 (neurons selective for forelimb 
retraction) to +1 (neurons selective for licking behavior). The black horizontal line corresponds to the 
median value. b. Percentage of neurons selective for: both licking and forelimb retraction, for licking or 
forelimb pulling individually. c. Functional distribution of neurons responsive for licking (L), forelimb 
pulling (F) or both of them (L/F), classified as enhanced (+) or suppressed (-) by the movement. PNs 
show a broader functional distribution across classes, while most of the recorded FSNs are enhanced 
by L and F. Chi-square test, 20.19, p = 0.0052.  

 

4.8  Onset and duration of discharge of PNs and FSNs during licking 

and forelimb pulling 

The majority of FSNs, in keeping with previous results, were facilitated during 

movement execution and started to discharge before facilitated PNs (Figure 9a, b). The onset 

of the suppressed PNs was even more delayed during licking but not forelimb retraction 
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(Figure 9a, b). Note, however, that, consistent with the laminar recordings (Figure 7), a small 

subset of pyramidal neurons (approx. 15%) modulated their discharges very early, especially 

during forelimb retraction (Figure 9a). Interestingly, the suppressed FSNs showed a delayed 

discharge onset relative to the enhanced FSNs, especially during licking (Figure 9a, b). 

In terms of duration of the response, this was significantly greater for the FSNs, specifically 

those excited, considering both pulling (Figure 9c) and licking (Figure 9d). The small 

proportion of suppressed FSNs showed a shorter duration of modulation, although not 

statistically different from that of enhanced FSNs (Figure 9c, d). There was no difference in 

the discharge duration between enhanced and suppressed PNs (Figure 9c, d). 

Altogether, these data concur with the previous laminar recordings indicating an early and 

prolonged discharge of fast-spiking, GABAergic neurons activated by movement. Interestingly, 

the suppressed neurons were modulated at longer latencies during movement generation. 

 



62 
 

Figure 9. a, b. Cumulative distribution of the onset of the response for all neurons during the forelimb 
retraction (a). Cumulative distribution of the onset of the response for all neurons during a licking bout 
(b).  
Enhanced PNs vs suppressed PNs: Licking, K-S Test, D = 0.171, p = 0.0431; Forelimb Retraction, K-S 
Test, D = 0.0761, p = 0.906.  
Enhanced FSNs vs suppressed FSNs: Licking, K-S Test, D = 0.533, p = 0.0090; Forelimb Retraction, 
K-S Test, D = 0.342, p = 0.116.  
Enhanced PNs vs enhanced FSNs: Licking, K-S Test, D = 0.280, p = 0.0069; Forelimb Retraction, K-S 
Test, D = 0.252, p = 0.081.  
c, d. Cumulative distribution of the duration of the response for all neurons during the forelimb retraction 
(c). Cumulative distribution of the duration of the response for all neurons during a licking bout (d).  
Enhanced PNs vs. enhanced FSNs: Forelimb Retraction, K-S Test, D = 0.288, p = 0.029; Licking, K-S 
Test, D = 0.326, p = 0.0009. 
Enhanced FSNs vs suppressed FSNs: Licking, K-S Test, D = 0.246, p = 0.610; Forelimb Retraction, K-
S Test, D = 0.621, p = 0.216. 
Enhanced PNs vs suppressed PNs: Licking, K-S Test, D = 0.0558, p = 0.987; Forelimb Retraction, K-S 
Test, D = 0.156, p = 0. 137. 
Enhanced neurons are represented as continuous lines (PNs, violet; FSN, green), dotted lines indicate 
the suppressed PNs and FSNs (PNs, violet; FSN, green). 

 

4.9  Modulation of neuronal discharges of PNs and FSNs by nearby 

licking and pulling events 

During the experimental sessions, we noted that mice occasionally performed single 

licks in close temporal proximity with forelimb retractions. This allowed us to evaluate how the 

interaction of the two movements impacted PNs and FSNs discharges.  

In the subset of PNs and FSNs enhanced by both licking and forelimb retraction – since they 

represented most of the recorded neurons –, we compared the mean firing rate of each neuron 

during isolated trials, to trials in which the licking and forelimb peaks of activation were in close 

proximity (distance between two peaks < 0.1 s) (Figure 10; see Methods for details). Mean 

licking (Figure 10a) or pulling (Figure 10b) firing rates of FSNs did not change when there 

was a concomitant pulling or licking trial, respectively. Instead, PNs increased both licking- 

(Figure 10c) and forelimb pulling- (Figure 10d) induced firing rates in the presence of a nearby 

movement.  

These findings indicate that FSNs firing rates are not influenced by a concomitant movement. 

In contrast, discharges of PNs appear to be enhanced by nearby pulling/licking events.  
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Figure 10. a, b. The mean firing rate during isolated, single licks (L), measured around the expected 
peak of activity, of enhanced PNs and FSNs, far from other tongue or forelimb movements (> 1 s), 
compared with the mean firing rate, of the same neurons when a forelimb discharge occurs 0.1 s before 
or after the lick discharge. Paired t-test, t = 0.91, p = 0.39 (a). Paired t-test, t = 0.58, p = 0.57 (b).  c, d. 
The mean firing rate during isolated, single forelimb pulling (FL), measured around the expected peak 
of activity, of enhanced PNs and FSNs, far from other tongue or forelimb movements (> 1 s), compared 
with the mean firing rate, of the same neurons when a lick discharge occurs 0.1 s before or after the 
forelimb discharge. Wilcoxon matched paired Signed Rank Test, W = 183, p = 0.0007 (c). Paired t-test, 
t = 2.70, p = 0.015 (d), * p < 0.05, ** p < 0.01. 

 

4.10  Social Facilitation during Licking Behaviour 

The observation of an action can lead to an increase in the frequency or intensity of 

behaviours already present in an animal’s repertoire, or in the initiation of particular behaviours, 

recruiting similar motor programs. Since the phenomenon occurs in the presence of others, 

engaged in the same behaviour, it has been marked as social facilitation. A behaviour 

particularly sensitive to social input is eating (Clayton, 1978; Fragaszy and Visalberghi, 2004). 

In fact, social facilitation of eating behaviour has been reported for a variety of animals (Birch 
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and Marlin, 1982; De Castro, 1990; de Castro and Brewer, 1992; Keeling and Hurnik, 1993). 

The mechanism allows individuals to recognise other’s actions has been recognized as the 

mirror system. Indeed, observing or hearing actions related to feeding behaviour activate the 

motor representation of those same actions (Ferrari et al., 2005). 

To analyse social facilitation in mice, first we implemented a novel behavioural test based on 

the one used in monkeys (Ferrari et al., 2005). We took advantage of licking behaviour to set 

up the social facilitation experiments. Therefore, head-restrained mice were allowed to lick 

condensed milk from a feeding needle. In order to isolate the effects of action observation on 

the observer’s motor behaviours related to drinking, we compared the observer’s drinking 

behaviour during three periods: (B) baseline period, during which the demonstrator was 

obscured, (D) a control period, during which the demonstrator was present but not drinking 

because the bottle was not available and (D + B) a testing period, in which the demonstrator 

was present and allowed to drink. The drinking spout was always positioned in front of the 

observer' snout. The baseline period was always the first condition, because it was supposed 

that at the end of it the mouse observer was satiated. The order of the two conditions “D” and 

“D + B” was randomly balanced. During testing (condition “D+ B”), all demonstrators provided 

the input required by the experimental design, i.e. they drank many times from the water bottle 

available in the cage.  

We measured the observer’s behaviour and we found that the observer’s licking was by far 

longer in duration and more frequent during the testing period “D + B” and the baseline than 

during the “D” condition (Figure 11a, b). We also evaluated the first time the observers started 

to lick, showing that during the control period the first latency occurred later (Figure 11c). The 

results were independent from the order of the presentation of “D” and “D + B”, as shown in 

Figure 11d, e, where we splitted sessions in which the “D” or the “D + B” were carried out as 

the second condition, immediately after the baseline period. We did not find any difference for 

both licking duration (Figure 11d) and frequency of licking events (Figure 11e). 

These findings suggest that, although the mouse was not motivated to drink after baseline, it 

was facilitated to lick more when another individual was engaged in the same action, 

supporting the hypothesis of a social facilitation in mouse.  

To exclude that the mere presence of the bottle can increase the time and the frequency of 

licking in the observer, in another cohort of animals, we introduced a bottle condition (B), in 

which the  demonstrator was not present and there was only the bottle in the empty cage. 

During the test condition (“D + B”), the total duration of the observer’s licking behaviour was 

greater than the two control periods, “D” and “B” (Figure 11f). This suggests that the observed 

increase in licking was not due to the presence of the demonstrator or the bottle per se, rather 

the time spent to lick was higher when the action was elicited by the demonstrator. 
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Finally, we focused our analysis during the testing period (condition “D + B”). We took the start 

and the end time of the demonstrator’s and observer’s licking intervals. The percentage of (i) 

licking bouts of the observer begun when the demonstrator was licking and (ii) duration of the 

overlapping demonstrator’s and observer’s licking intervals were calculated. Then, we 

scrambled the position of the demonstrator’s licking intervals and same percentages were re-

measured. In Figures 11g, h we compared the real data set with the scrambled data set; we 

showed that the probability that the observer started to lick was higher when the demonstrator 

was actually licking (real data) than a randomized data set. (Figure 11g). Moreover, the 

duration of the overlapping intervals was also higher (Figure 11h). 

Altogether these results indicate that the observers’ behaviour was actually influenced by the 

demonstrators’ one. 
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Figure 11. Social facilitation in mouse during the licking behaviour. a, b, c. Total time spent to lick 
by the observer (a), total number of observer start licking events (b) and time of the first lick of the trial 
(c) during 3 periods: baseline (BL), demonstrator (D), in which the demonstrator cannot lick, and 
demonstrator plus bottle (D + B), in which the demonstrator is allowed to lick. Time licking, F = 5.58, p 
= 0.005; Start Licking Events, F = 5.99, p =  0.005; One Way RM ANOVA, Tukey post-hoc. F = 13.74, 
p =  0.001; Friedman Test, Dunn’s test (c). d, e. Total time spent to lick by the observer (d, Two way 
RM ANOVA, Interaction, F (2, 86) = 0.76, p = 0.47, Condition, F (2, 86) = 5.48,  p = 0.0057, Group, F (1, 43) = 
0.002, p = 0.97) and total number of observer start licking events (e, Two way RM ANOVA, Interaction, 
F (2, 86) = 1.35, p = 0.26, Condition, F (2, 86) = 5.92,  p = 0.0039, Group, F (1, 43) = 0.11, p = 0.74) during 3 
periods, baseline (BL), demonstrator (D), in which the demonstrator cannot lick, and demonstrator plus 
bottle (D + B), in which the demonstrator is allowed to lick, splitting sessions when the D period or the 
D + B period are presented as the second condition after BL. f. Total time spent to lick by the observer 
during 3 periods: demonstrator (D), in which the demonstrator cannot lick, demonstrator plus bottle (D 
+ B), in which the demonstrator is allowed to lick, and bottle (B), when there is only the bottle and the 
demonstrator is not present in the cage, F = 1.99, p = 0.0023; One way RM ANOVA, Tukey’s Post Hoc. 
g, h. The percentage of the overlapped duration between the demonstrator and the observer licking 
intervals (g, Paired t-test; t = 1.94, p = 0.038) and the percentage of the observer licking start events 
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when the demonstrator is licking (h, Paired t-test; t = 3.044, p = 0.0051), in the real data and a scrambled 
data set, in which the demonstrator licking intervals were scrambled in time and the percentage of the 
overlapping intervals re-measured. 
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5.  Discussion 
 

5.1 Distinct roles of PNs and FSNs during action planning 

To directly initiate voluntary movements, preparatory activity is relevant to the 

upcoming action (Wise at al., 1985). This activity is prevalent in premotor areas, less in the 

primary motor cortex (Afshar et al., 2011), and it has a predictive role regarding the selection 

of specific movements (Georgopoulos et al., 1982; Churchland et al., 2006; Godschalk et al., 

1985; Hocherman et al., 1991; Messier et al., 2000; Riehle et al., 1993; Churchland et al., 

2007). Planning and execution of voluntary movement depend on the mutual contribution of 

distinct classes of neurons in premotor areas. However, the specific functional role of pyramidal 

and GABAergic, fast-spiking inhibitory neurons, to these computations, remains only partly 

understood.  

In this thesis, I have directly compared the firing properties of two types of neurons mostly 

represented in the cortex, i.e. PNs and FSNs – since PV interneurons are more abundant in 

the motor areas (Whissell et al., 2015) –, during the execution of two distinct motor acts – 

licking behaviour and forelimb pulling in a robotic device. In particular, in vivo extracellular 

recordings were carried out from the ALM and RFA, which represent possible homologues of 

mouth and forelimb premotor cortices in primates. While the role played by PNs in the different 

layers has been elegantly dissected (Guo et al., 2014b; Li et al., 2016, 2015), little is known on 

the contribution of FSNs within the premotor areas. In these experiments, I demonstrate for 

the first time a crucial involvement of GABAergic neurons, specifically FSNs, during movement 

planning.  

Altogether, my data reveal that FSNs carry a great amount of information during the planning 

of the action in the premotor cortex, showing an early and sustained discharge during the 

preparatory epoch. High inter-neuron redundancy suggests that FSNs act at a population level. 

Indeed, FSNs display a broad selectivity regarding the type of licking strategy used, i.e. a single 

lick or a burst of multiple licks, and the type of movement, tongue/mouth or forelimb pulling, 

compared to PNs. Concurrent execution of two different motor acts is ineffective on FSNs 

discharge, while it increases the averaged PNs firing rate. 

First of all, recorded neurons were distinguished into narrow- and broad-spiking based on their 

spike waveforms (Figure 1c, d). Broad-spiking cells were classified as putative PNs, 

consistent with previous literature (Niell and Stryker, 2010). Narrow-spiking neurons showed 

higher baseline firing rates and shorter interspike intervals, consistent with their identification 
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as FSNs, which was further validated by optogenetic experiments in PV-Cre mice. However, 

we cannot rule out that a subpopulation of neurons with thin spike shapes actually represents 

pyramidal neurons, as shown in the monkey (Vigneswaran et al., 2011). On the other hand, 

our sample of putative PNs may include non-fast- spiking-interneurons (e.g., somatostatin-

positive cells), which have spike shapes overlapping with those of PNs. 

Our data (Figure 2g, h) confirmed that ALM pyramidal neurons show an activity that anticipate 

movement execution (Guo et al., 2014b; Li et al., 2016, 2015). Evidence for a premotor cortex 

in rodents has been accumulated since 1982 (Neafsey and Sievert, 1982). Specifically, the 

first identified area was the premotor area involved in the control of limb movements, defined 

as the RFA to distinguish it from the CFA in the primary motor cortex. More recently, a series 

of experiments have elucidated in the mouse the role of the ALM (partly overlapped with the 

RFA) in the preparation and execution of directional licking (Svoboda and Li, 2018).  

On average, we clearly show that putative FSNs fire in anticipation of putative PNs within the 

same cortical module. Specifically, they start to modulate and reach their peak of activity earlier 

than broad-spiking cells (Figure 4). These findings are in agreement with a previous 

electrophysiological study examining discharges of FSNs and PNs in mouse primary motor 

cortex during sensory-triggered as well as voluntary forelimb reaches (Estebanez et al., 2017). 

Thus, the early involvement of FSNs appears to be a characteristic feature of both primary 

motor and premotor areas. Interneurons also appear to increase their firing rates more than 

putative PNs during movement planning and execution.  

A novel finding of the present study is that the duration of activation appears to be greater for 

FSNs as compared to PNs (Figure 5). GABAergic interneurons, in addition to inhibit pyramidal 

neurons, connect strongly with one another. Moreover, these interneurons are coupled by 

electrical synapses formed by gap-junctions (Connors and Long, 2004; Galarreta and Hestrin, 

1999; Gibson et al., 1999). These inhibitory networks do not result from random connections 

between different interneurons, but rather follow a precise logic (Pfeffer et al., 2013). PV cells, 

connect preferentially with each other strongly and at very high connectivity rates (Deleuze et 

al., 2019; Pfeffer et al., 2013; Szabadics et al., 2001; Tamás et al., 2000). Therefore, although 

sparse, PV cells are strongly and reliably inter- and self-connected and these features could 

be the basis of FSNs greater intensity of activation and duration of the response during the 

preparatory activity in premotor areas.  

It is worth noting that, our analysis on the onset of the activity across all cortical layers revealed 

that, although PNs were, on average, involved later than FSNs during motor planning, 

especially in deep layers, there was a fraction of early-birds neurons, that could be 

characterized as PNs (Figure 7).  
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Our experiments do not yet determine the origin of preparatory activity. However, the presence 

of early birds neurons in deep layers is in agreement with the finding that preparatory activity 

appears first in deep layers of ALM (Chen et al., 2017). Moreover, preparatory/ramping activity 

in PNs within the ALM has been shown to be maintained by a recurrent excitatory loop that 

involves both the cortex and the ipsilateral thalamus (Guo et al., 2017). It is worth mentioning 

that deep layer pyramidal neurons (specifically, those located in layer VI) project to the 

ipsilateral thalamus (Molnár and Cheung, 2006; Reiner et al., 2003; Saiki et al., 2018; 

Shepherd, 2013). On the other hand, the thalamus has a powerful functional influence on the 

ALM, indeed inactivation of thalamus resulted in strong hyperpolarization of ALM PNs (Guo et 

al., 2017). Therefore, these data lead to the speculation that early birds PNs located in deep 

layers represent preparatory “master” neurons which are necessary to maintain the cortico-

thalamic loop necessary for the preparatory activity, and which subsequently may command 

downstream, more executive PNs and FSNs.  

However, although PNs seem to be involved at the forefront in the generation of this cortico-

thalamic loop, it cannot be excluded that long-range excitatory thalamic afferents that directly 

target FSNs are also present. Indeed, in granular cortex, monosynaptic sensory thalamo-

cortical input has been found on layer IV FSNs (Beierlein et al., 2003; Bruno and Simons, 2002; 

Cruikshank et al., 2010, 2007; Daw et al., 2007; Gabernet et al., 2005; Sun et al., 2013; Wilent, 

2004). Thalamic inputs onto FSNs are stronger and faster than those impinging on neighboring 

layer IV pyramidal neurons (Bagnall et al., 2011; Cruikshank et al., 2010, 2007; Hull et al., 

2009; Inoue and Imoto, 2006). Indeed, the short monosynaptic delay creates a tight window of 

opportunity for the integration of sensory inputs, and strongly increases both spatial and 

temporal resolution of incoming sensory signals. Therefore, this recurrent cortico-thalamic loop 

may sustain persistent firing activity in the FSNs. 

How the information propagates across cortical layers of the same area is still unknown. 

However, FSNs receive the strongest glutamatergic input by local principal neurons 

(Avermann et al., 2012). In cytoarchitectonically less differentiated areas, as in rodent 

agranular frontal cortex,  there is a weak interlaminar inhibitory-to-excitatory connectivity 

(Kätzel et al., 2011). The study by van Haeften et al. (van Haeften et al., 2003) in medial 

entorhinal cortex, which reports an absence of inhibitory-to-excitatory synapses from deep to 

superficial layers, supports the same conclusion. Van Haeften et al. furthermore report that 

only a small percentage of the observed synapses could potentially be classified as inhibitory-

to-inhibitory, thus giving little evidence for such a connection from deep to superficial layers. 

By contrast, there is abundant evidence for rich intralaminar connectivity including excitatory-

to-inhibitory and inhibitory-to-excitatory connections (Barthó et al., 2004b; Fino and Yuste, 

2011; Kang and Brorsen, 1995; Kätzel et al., 2011; Kawaguchi, 2002; Otsuka and Kawaguchi, 
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2009; Somogyi et al., 1998). It might be that the early-birds PNs will excite FSNs, that might 

be responsible to regulate the appropriate PNs response locally and the response in both PNs 

and others FSNs also in more superficial cortical layers. 

The earlier and stronger activity of FSNs compared to PNs is also accompanied by a reduced 

selectivity for the type of licking strategy, (i.e. single vs. multiple licks) (Figure 3). PNs showed 

a more specific activity than FSNs, which showed instead a broader tuning. It has been 

proposed that cortical interneurons inhibit their target without much specificity providing a 

blanket of inhibition onto PNs, and disinhibitory circuits can open holes in this blanket to allow 

local computations (Fino et al., 2013; Karnani et al., 2016, 2014). Fast-spiking interneurons 

are coupled by electrical synapses formed by gap-junctions, which efficiently propagate slow 

membrane potential fluctuations between FSNs (Connors and Long, 2004; Galarreta and 

Hestrin, 1999; Gibson et al., 1999). FSNs synchronize themselves as an inhibitory network 

that is formed exclusively by other FSNs. This property may result in a poor selectivity for the 

type of motor act, as the discharge of few FSNs may trigger activation of other cells of the 

network. This is in keeping with the high intra-neuron redundancy that we observed in our 

computational analyses (Figure 6).  

In different cortical areas, it has been shown that specific PNs types are differently inhibited by 

FSNs (Allene et al., 2015; Hilscher et al., 2017; Lee et al., 2014). This highly specific inhibitory 

diagram ultimately defines the activity of specific subnetworks, layers and cortical areas. 

Therefore, the specific expression and connectivity of FSNs could likely define the output 

properties of PNs and the functional characteristics of a specific cortical layer and area.  

In the second set of experiments, using chronically implanted silicon microelectrode arrays, 

we found a higher percentage of suppressed neurons, including both PNs and FSNs. For what 

concerns FSNs suppressed by movement, the onset data (Figure 9a, b) clearly show that they 

are consistently delayed with respect to other populations. This late involvement of suppressed 

FSNs is in line with findings obtained during spontaneous forelimb reaching in the mouse 

(Estebanez et al., 2017). Since parvalbumin-positive FSNs form a highly interconnected set of 

neurons (Lourenço et al., 2020), it is likely that the suppressed fast-spiking population receive 

direct synaptic input from the enhanced FSNs.  

PNs and FSNs recorded in the present study exhibited robust differences in tuning for the type 

of movement. Indeed, FSNs were less selective for movement type than PNs, not only for the 

licking strategy used, i.e. multiple vs single licks (Figure 3), as mentioned above, but also for 

two completely different movements, i.e. tongue vs paw movements.  

When forelimb retraction and licking were considered, PNs showed a variety of behaviours 

and were distributed in several functional classes, with enhancement or suppression of 



72 
 

discharge depending on the specific movement (Figure 9). On the contrary, the percentage of 

suppressed FSNs were lower, and they often displayed increased firing rate relative to baseline 

during both pulling and licking. This is in line with previous results showing that in the prefrontal 

cortex of mice performing a sensory discrimination task, parvalbumin-positive interneurons are 

activated by all task-related events (sensory cues, motor action, and trial outcomes), while 

responses of PNs are diverse and more selective (Pinto and Dan, 2015). Recordings from the 

monkey dorsal premotor cortex consistently demonstrate a higher functional heterogeneity of 

PNs as compared to interneurons (Kaufman et al., 2010). The broad tuning of FSNs is 

consistent with data in sensory cortices, where inhibitory interneurons are poorly selective for 

stimulus features, such as orientation selectivity (Hofer et al., 2011; Kerlin et al., 2010). 

It has been hypothesized that the activity of interneurons, including FSNs, provides an 

inhibitory gate that prevents preparatory activity from causing undesired movements. If this 

were the case, interneuron firing rates should be reduced around the time of movement, which 

was not observed in the present experiments. Another possibility is that FSN-mediated 

inhibition may serve to suppress other actions (e.g., movement of other body parts). If FSNs 

act to prevent adjacent cortical modules from producing other movements, one would predict 

the existence of distinct licking- and forelimb-related FSNs which reciprocally inhibit the 

respective PNs. We tested this idea in an experimental setting where the animal is monitored 

for spontaneous licks and forelimb pulling. However, our data do not provide support for such 

a model, as more than 50% of FSNs increase their discharge during both licking and forelimb 

retraction. Thus, a sustained, overall rise in FSN inhibitory activity appears to be required 

during action planning.  

This idea is supported by our analysis of nearby licking/pulling events, performed on neurons 

excited in both conditions, thus those neurons shared among pulling and licking pathways. Our 

results show that PN (but not FSN) activity is increased by a nearby (closer than 0.1 s) motor 

action. Interestingly, a nearby movement triggers the same sustained firing of FSNs observed 

when the mouse is performing a single action, possibly providing a sufficient inhibitory milieu 

for correct execution of the subsequent lick/forelimb retraction. Instead, PN activity appears to 

be dependent on the number of upstream activated motor commands (Figure 10). 

Several hypotheses may be put forward to explain the early, prolonged and broadly tuned 

activation of FSNs reported in the present study. (i) The discharge of fast-spiking interneurons 

may be required to sculpt the response selectivity of nearby pyramidal neurons. In the visual 

cortex, optogenetic enhancement of the spiking activity of parvalbumin-positive interneurons 

leads to sharpened orientation tuning and improved direction selectivity of PNs (Lee et al., 

2012). In the auditory system, activation of parvalbumin cells increases the signal-to-noise 

ratio and reduces receptive field bandwidths, indicative of a narrower range of effective stimuli 
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(Hamilton et al., 2013). In the motor cortex, PNs discharge according to the direction of 

upcoming movement, with a peak of activity in the preferred direction (Galiñanes et al., 2018; 

Georgopoulos et al., 1982), and the magnitude of inhibition directly affects tuning of individual 

PNs before and during movement execution. Specifically, an increase of inhibition is coupled 

to a decrease in tuning dispersion, i.e. greater selectivity (Merchant et al., 2008). (ii) Activity of 

FSNs might provide an inhibitory constraint that maintains firing rates of PNs within an “optimal 

subspace” (Afshar et al., 2011) that allows accurate movement. The dynamics of preparatory 

activity in the ALM and other motor areas (Svoboda and Li, 2018) can be described in a 

multidimensional space, where each dimension corresponds to the activity of one neuron. 

During motor planning, firing rates are brought from their initial state to the optimal subspace 

which allows to start an effective movement (Churchland et al., 2006), and inhibitory inputs 

from FSNs may help to stabilize PN firing rates within that subspace. Experimental testing of 

these and other possibilities requires optogenetic modulation of the activity of FSNs at specific 

times of motor planning in delayed response tasks (Svoboda and Li, 2018). These 

manipulations are difficult to implement in the case of spontaneous motor actions such as 

those studied in the present project. 

Altogether, the present data reveal an early and prolonged involvement of FSNs during 

movement planning in premotor areas. These data will guide future investigations on the key 

role of inhibition in shaping PNs response properties. 

 

5.2 Social facilitation and identification of mirror neurons in mice: 

ongoing experiments 

In the second part of this project, we took advantage of our experimental tools and 

acquired knowledge on motor behaviours to evaluate social facilitation in mice. Rodents are 

commonly considered social species with a wide repertoire of social behaviours, however the 

social facilitation effect, that was considered to rely on the mirror neuron system in monkeys  

(Ferrari et al., 2005), has not been extensively explored in mice.  

Our experiments demonstrate that licking behaviour is facilitated in mice when they observe 

the same action performed by another mouse. The licking behaviour is actually triggered by 

seeing its occurrence in a conspecific. Moreover, the licking increase can be attributed neither 

to the mere presence of water (since in a control condition the mouse was allowed to see the 

bottle but the demonstrator was not present), nor to the presence of another individual allowed 

to freely move in the cage but without water available.  
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Social facilitation is a concept relating to the tendency for the presence of others to initiate an 

action or to improve an individual's performance on a task. Observing or hearing actions 

related to experienced behaviours activate the same neuronal motor representation of those 

actions in the observer (Ferrari et al., 2005), allowing individuals to recognise other’s actions. 

In humans, thanks to fMRI studies, it has been shown that action observation recruits mirror 

areas in premotor and parietal cortices if the observed action is represented in the subject's 

personal motor repertoire (Calvo-Merino et al., 2005; Haslinger et al., 2005). 

The spontaneous repetition of the same action is not commonly observed in animals, however, 

social facilitation for behaviours essential for survival are advantageous for individual survival, 

promoting group cohesiveness or acceptance of novel food sources (Coussi-Korbel and 

Fragaszy, 1995). Licking is a spontaneous behaviour in mice and has an ecological and 

evolutionary significance; therefore we speculate that the neural basis for social facilitation of 

licking behaviour in mice could be the mirror neuron system through a mechanism of 

resonance of the observed motor act onto the motor system of the observer  representing the 

same licking behaviour. In monkeys, mirror neurons related to the movement of the 

mouth/tongue (Fragaszy and Visalberghi, 2004), as well as related to the sound of a specific 

action (Kohler, 2002), have been found. 

Therefore, observing action related to licking behaviour could activate the motor representation 

of those same actions. This basic mechanism could allow individuals to recognise other’s 

actions. In addition, once the motor system related to eating actions ‘resonates’, this motor 

information can be used, subsequently, to reproduce the observed action. 

Our results can be considered the first clear-cut evidence in mice of a social facilitation effect 

that is simply triggered by action observation, leading to the idea that mirror neurons can be 

involved in facilitating behaviours with essential social meaning, as licking, also in mice. 

However, one crucial issue would be to directly demonstrate the presence of mirror neurons 

in premotor and  motor areas of mice during the social facilitation paradigm. In an evolutionary 

perspective, the properties of the mirror neuron system could be suitable for social purposes 

in rodent species. Future experiments are needed to gain a finer-grained understanding of the 

observer behaviour. 

In view of these considerations, since the listening of a sound could activate mirror neurons 

response (Kohler, 2002), I plan to improve the social facilitation test, used in this thesis, 

coupling the licks of the demonstrator with a specific and audible sound, to focalize observer 

attention to the action performed by the conspecific.  

Moreover, it has been demonstrated that the eye’s pupil undergoes dynamic changes in 

diameter associated with cognitive effort and arousal, emotional state and motor activity, and 
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can be used to index brain state across mammalian species. Since in head-fixed mice pupil 

dynamics have been associate with licking (Lee and Margolis, 2016), I will evaluate pupil 

diameter during the execution and the observation of the social facilitation paradigm.  

As a last step, I am going to chronically implant electrode arrays in premotor and motor areas, 

dissecting the neuronal dynamics during the observation and execution of the licking 

behaviour. 
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Abstract 

Pathogenic NR2F1 variants cause a rare autosomal dominant neurodevelopmental disorder 
referred to as the Bosch-Boonstra-Schaaf Optic Atrophy Syndrome (BBSOAS). Although 
visual loss is a prominent feature seen in affected individuals, the molecular and cellular 
mechanisms contributing to visual impairment is still poorly characterized. We conducted a 
deep phenotyping study on a cohort of 22 individuals carrying pathogenic NR2F1 variants to 
document the neurodevelopmental and ophthalmological manifestations, in particular the 
structural and functional changes within the retina and the optic nerve, which have not been 
detailed previously. The visual impairment became apparent in early childhood and in addition 
to optic atrophy, small and/or tilted hypoplastic optic nerves were observed in 10 cases. High-
resolution optical coherence tomography imaging confirmed significant loss of retinal ganglion 
cells (RGCs) with thinning of the ganglion cell layer, consistent with electrophysiological 
evidence of RGC dysfunction. Interestingly, for those individuals with available longitudinal 
ophthalmological data, there was no significant deterioration in visual function during the period 
of follow-up. Diffusion tensor imaging tractography studies in one case showed defective 
connections and disorganisation of the extracortical visual pathways. To further investigate 
how pathogenic NR2F1 variants impact on retinal and optic nerve development, we took 
advantage of a Nr2f1 mutant mouse disease model and the availability of non-pathological 
human foetal samples. Abnormal retinogenesis in early stages of development was observed 
in Nr2f1 mutant mice with reduction of RGC number and disruption of optic nerve axonal 
guidance from the neural retina into the optic stalk, accounting for the development of 
malformations such as optic nerve hypoplasia. Electrophysiological analysis of visual acuity in 
mice showed reduced visual acuity linked to significant conduction delay and decreased 
amplitude in superficial layers of the visual cortex. The clinical observations in our study cohort, 
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supported by the mouse data, suggest an early neurodevelopment origin for the retinal and 
optic nerve head defects caused by pathogenic variants in NR2F1, ultimately resulting in stable 
and non-progressive decreased visual acuity, which differs from gradual vision loss found in 
classical inherited optic neuropathies. We propose NR2F1 as a major gene orchestrating early 
retinal and optic nerve head development and playing a key role in the maturation of the visual 
system.  

Brain Communications (in revision after review). 
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Abstract 

Despite recent progresses in robotic rehabilitation technologies, their efficacy for post-stroke 
motor recovery is still limited. These limitations might stem from the insufficient enhancement 
of plasticity mechanisms crucial for functional recovery. Here, we designed a clinically relevant 
strategy that combines robotic rehabilitation with chemogenetic stimulation of serotonin 
release to boost plasticity. Mice treated with our combined therapy showed substantial 
functional gains that persisted beyond the treatment period and generalized to non-trained 
tasks. Motor recovery was associated with a reduction in GABAergic markers, suggesting 
disinhibition in perilesional areas. To unveil the translational potentialities of our approach, we 
specifically targeted the serotonin 1A receptor by delivering buspirone, a clinically approved 
drug, in stroke mice undergoing robotic rehabilitation. Administration of buspirone restored 
motor impairments similarly to what observed with chemogenetic stimulation, showing the 
immediate translational potential of this combined approach to significantly improve motor 
recovery after stroke.   

Prog Neurobiol. 2021 May 11;102073. doi: 10.1016/j.pneurobio.2021.102073. Online 
ahead of print.  
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Dysregulated autophagy as a new aspect of the molecular pathogenesis of Krabbe 
disease 
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56127 Pisa, Italy. Electronic address: marco.cecchini@nano.cnr.it. 
 

Abstract 

Krabbe disease (KD) is a childhood leukodystrophy with no cure currently available. KD is due 
to a deficiency of a lysosomal enzyme called galactosyl-ceramidase (GALC) and is 
characterized by the accumulation in the nervous system of the sphingolipid psychosine (PSY), 
whose cytotoxic molecular mechanism is not fully known yet. Here, we study the expression 
of some fundamental autophagy markers (LC3, p62, and Beclin-1) in a KD murine model [the 
twitcher (TWI) mouse] by immunohistochemistry and Western blot. Moreover, the autophagy 
molecular process is also shown in primary fibroblasts from TWI and WT mice, with and without 
PSY treatment. Data demonstrate that large p62 cytoplasmic aggregates are present in the 
brain of both early and late symptomatic TWI mice. p62 expression is also upregulated in TWI 
sciatic nerves compared to that measured for WT nerves. In vitro data suggest that this effect 
might not be fully PSY-driven. Finally, we investigate in vitro the capability of autophagy 
inducers (Rapamycin, RAP and Resveratrol, RESV) to reinstate the WT phenotype in TWI 
cells. We show that RAP administration can partially restore the autophagy markers levels, 
while RESV cannot, indicating a line along which new therapeutic approaches can be 
developed. 

Neurobiol Dis. 2019 Sep;129:195-207. doi: 10.1016/j.nbd.2019.05.011. Epub 2019 May 17. 
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Abstract 

Krabbe disease is a rare, childhood lysosomal storage disorder caused by a deficiency of 
galactosylceramide beta-galactosidase (GALC). The major effect of GALC deficiency is the 
accumulation of psychosine in the nervous system and widespread degeneration of 
oligodendrocytes and Schwann cells, causing rapid demyelination. The molecular 
mechanisms of Krabbe disease are not yet fully elucidated and a definite cure is still missing. 
Here we report the first in-depth characterization of the proteome of the Twitcher mouse, a 
spontaneous mouse model of Krabbe disease, to investigate the proteome changes in the 
Central and Peripheral Nervous System. We applied a TMT-based workflow to compare the 
proteomes of the corpus callosum, motor cortex and sciatic nerves of littermate homozygous 
Twitcher and wild-type mice. More than 400 protein groups exhibited differences in expression 
and included proteins involved in pathways that can be linked to Krabbe disease, such as 
inflammatory and defense response, lysosomal proteins accumulation, demyelination, 
reduced nervous system development and cell adhesion. These findings provide new insights 
on the molecular mechanisms of Krabbe disease, representing a starting point for future 
functional experiments to study the molecular pathogenesis of Krabbe disease. Data are 
available via ProteomeXchange with identifier PXD010594. 

Mol Cell Proteomics. 2019 Jun;18(6):1227-1241. doi: 10.1074/mcp.RA118.001267. Epub 
2019 Mar 29. 
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Abstract 

Transplantation of human bone marrow mesenchymal stromal cells (hBM-MSC) promotes 
functional recovery after stroke in animal models, but the mechanisms underlying these effects 
remain incompletely understood. We tested the efficacy of Good Manufacturing Practices 
(GMP) compliant hBM-MSC, injected intravenously 3.5 hours after injury in mice subjected to 
transient middle cerebral artery occlusion (tMCAo). We addressed whether hBM-MSC are 
efficacious and if this efficacy is associated with cortical circuit reorganization using 
neuroanatomical analysis of GABAergic neurons (parvalbumin; PV-positive cells) and 
perineuronal nets (PNN), a specialized extracellular matrix structure which acts as an inhibitor 
of neural plasticity. tMCAo mice receiving hBM-MSC, showed early and lasting improvement 
of sensorimotor and cognitive functions compared to control tMCAo mice. Furthermore, 5 
weeks post-tMCAo, hBM-MSC induced a significant rescue of ipsilateral cortical neurons; an 
increased proportion of PV-positive neurons in the perilesional cortex, suggesting GABAergic 
interneurons preservation; and a lower percentage of PV-positive cells surrounded by PNN, 
indicating an enhanced plastic potential of the perilesional cortex. These results show that 
hBM-MSC improve functional recovery and stimulate neuroprotection after stroke. Moreover, 
the downregulation of "plasticity brakes" such as PNN suggests that hBM-MSC treatment 
stimulates plasticity and formation of new connections in the perilesional cortex. 

Sci Rep. 2017 Jul 31;7(1):6962. doi: 10.1038/s41598-017-07274-w. 
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