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Abstract

Magic Squares as a mathematical structure have existed for 5000 years, yet they are

still an interesting topic of new research. This thesis presents general definitions, examples

and important properties of Strictly Concentric Magic Squares (SCMS). Using the known

minimum centre cell value of Prime Strictly Concentric Magic Squares (PSCMS) of order

5, some structural properties are established, enabling the production of an algorithm for

construction of minimum PSCMS. The number of minimum PSCMS of order 5 is enumerated.

Partial SCMS are then introduced with important definitions on completability of grids,

with relation to known concepts in Latin Squares and Sudoku grids. The cardinality of sets

for different types of completability are given in general, where possible, for grids of order n.

The idea of unavoidable sets is introduced on SCMS before specific patterns for the minimum

PSCMS of order 5 are given.

Having focused on PSCMS of order 5, this thesis then investigates the structure in general

for PSCMS of higher odd order. Using the known minimum centre cell value of PSCMS of

order 7, an algorithm for construction of these grids is given and the number of minimum

PSCMS of order 7 is enumerated. PSCMS of even order are discussed briefly with definitions

that differ from the odd order given as well as an algorithm for construction of a PSCMS of

order 6.

The concept of water retention is introduced, firstly on Normal Number Squares, then

Prime Number Squares before applying the concept to the minimum PSCMS of order 5.

Definitions of patterns are given formally as well as a comparison of known results. Maximum

water retention is found in specific cases and compared on identified types of minimum

PSCMS of order 5.

Finally, this thesis concludes with a discussion of possible future work.
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Chapter 1

Literature Review and Notation

This thesis addresses Strictly Concentric Magic Squares with particular emphasis on squares

of odd order that contain primes. While there has been interest in the literature on Magic

Squares, their properties and enumeration, there is very limited material addressing Prime

Concentric Magic Squares. Examples have been provided by hobbyists but there is an ab-

sence of any formal theoretical framework or mathematical underpinning or results in peer

reviewed journals or archivable form. Hence, in providing necessary background material and

definitions, new results and mathematical foundations for such squares are provided in this

introductory chapter. These are highlighted where appropriate.

A literature review relating to Magic Squares and prime numbers is given in this chapter.

Likewise, useful background material is provided on Latin Squares, which have similar prop-

erties to those of Magic Squares. Those definitions for Magic Squares that apply in general

are given first, before presenting definitions that apply just to squares of odd order.

1.1 Magic Squares

Definition 1.1. A Magic Square of order n is an n by n grid containing n2 distinct integers

positioned such that all rows, columns and main diagonals sum to the same value, Sn, known

as the magic constant [1]. A Normal Magic Square, NMS, contains the integers 1 to n2.
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A Prime Magic Square, PMS, contains n2 distinct primes.

A Magic Square of order 2 does not exist as it is not possible to locate distinct integers into

the four cells so that each row and column sums to the same magic constant. Consider a row

containing the values a and p and a column containing the values a and q, where a 6= p 6= q,

then a+ p 6= a+ q.

The position of the cell of a grid of order n at row i, i = 1, . . . , n, and column j, j = 1, . . . , n,

is denoted (i, j) and has value aij. For example the centre cell of such a grid for n odd is in

position (n+1
2
, n+1

2
) and has value an+1

2
n+1
2

.

Definition 1.2. A subsquare of order m of a Magic Square of order n is comprised of the

centre m by m cells of the Magic Square.

Definition 1.3. A magic subsquare of order m of a Magic Square of order n is a subsquare

which is itself a Magic Square.

Definition 1.4. A Magic Square of order n for which its order (n− 2) subsquare is a magic

subsquare is termed a Concentric Magic Square, CMS [2]. A CMS containing n2 distinct

primes is denoted a Prime Concentric Magic Square, PCMS.

Definition 1.5. If all sums of values in pairs of cells symmetric about the centre are equal

then the Magic Square is referred to as associative [31].

The above definitions are used to provide further definitions and properties for Magic Squares

of odd order here and of even order in Chapter 4.

1.1.1 Magic Squares of Odd Order

The following definitions and results are provided by the current author to provide founda-

tions for future results.

Lemma 1.6. For n odd, the subsquares of a Magic Square of order n are of order m = n−2i,

i = 1, . . . , n−1
2

. The smallest such subsquare is of order 1.

2



Proof. Proof follows immediately from Definition 1.2.

The subsquare of order 1 is here considered a trivial magic subsquare, hence the smallest

possible Concentric Magic Square is of order 3, which is itself considered trivial.

Definition 1.7. A Magic Square of order n, n ≥ 5 and odd, is Strictly Concentric,

denoted a SCMS, if each of its order m = n − 2i subsquares, i = 1, . . . , n−3
2

, is a CMS.

A subsquare of order 3 is here considered a trivial SCMS. A SCMS containing n2 distinct

primes is denoted a PSCMS.

In the construction and enumeration of SCMS later in this thesis, the concept of paired cells

will be of importance due to constraints on the values in such cells.

Definition 1.8. For a SCMS of order n, n odd, a cell in row i, column j has a paired cell

in row ī, column j̄, such that

(̄i, j̄) =



(n− i+ 1, n− j + 1) i = 1, . . . , n, i 6= n+1
2
, j = i (1)

(n− i+ 1, i) i = 1, . . . , n, i 6= n+1
2
, j = n− i+ 1 (2)

(i, n− j + 1) i = 2, . . . , n− 1, j 6= i, i+ j ≤ n when i > j

and i+ j ≥ n+ 2 when i < j (3)

(n− i+ 1, j) j = 2, . . . , n− 1, j 6= i, i+ j ≤ n when j > i

and i+ j ≥ n+ 2 when j < i (4)

Figure 1.1 illustrates the conditions on paired cells given in Definition 1.8 for a SCMS of

order 5.
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1a 4a 4b 4c 2a

3a 1b 4d 2b 3a

3b 3c 3c 3b

3d 2b 4d 1b 3d

2a 4a 4b 4c 1a

Figure 1.1: Illustration of Paired Cells for a SCMS of Order 5; the Cell Numbers Relate
to the Equation Numbers Given in Definition 1.8, Followed by a Letter Denoting Pairings

Definition 1.9. A SCMS of order n, n odd, and each of its subsquares, has a border which

comprises those cells which are adjacent to its respective outer edge. Let Bn be the set of

border cells of the SCMS of order n, and Bn−2i be the set of border cells of its subsquares

of order n − 2i, i = 1, . . . , n−3
2

. Bn denotes the set of all such border cells for an SCMS of

order n; Bn = ∪Bn−2i, i = 0, . . . , n−3
2

.

Definition 1.10. A border pair (aij, aīj̄) is a pair of values placed in cells in Bn for a

SCMS of order n, where (i, j) and (̄i, j̄) are paired cells. Let Bn be the set of border pairs

of the SCMS of order n, and Bn−2i be the set of border pairs of its subsquares of order

n− 2i, i = 1, . . . , n−3
2

. Let Bn denote the set of all such border pairs for a SCMS of order n;

Bn = ∪Bn−2i, i = 0, . . . , n−3
2

, |Bn| = |Bn|
2

.

Lemma 1.11. The number of border pairs, |Bn|, of a SCMS of order n, n odd, n ≥ 3 is

|Bn| = 2(n− 1) + |Bn−2| where |B1| is taken to be 0.

Proof. Let n = 3, |B3| = 4 from observation and satisfies the given recurrence. Assume

the recurrence is true for some n = k, k > 3 and odd, |Bk| = 2(k − 1) + |Bk−2|. Now

consider the case n = k + 2, for which 2((k + 2) − 1) border pairs are added to Bk, hence

|Bk+2| = 2((k + 2)− 1) + |Bk|. By induction the recurrence holds for any n odd.
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From the recurrence the integer sequence obtained is A046092 [36], and is discussed by the

current author in [34].

Theorem 1.12. The number of border pairs, |Bn|, of a SCMS of order n, n odd, n ≥ 3 is

|Bn| = n2 − 1

2
.

Proof. For j odd, j = (2i + 1) where i = 1, . . . , n−1
2

, the number of pairs for each border of

an order j subsquare is |Bj| = 2(j − 1). From the proof of Lemma 1.11, the order n SCMS

has |Bn| = 2(n − 1) border pairs. Hence, |Bj| = 2((2i + 1) − 1) = 4i. Hence, |Bn| = 4

n−1
2∑

i=1

i.

Since
n∑

i=1

i = 1
2
n(n+ 1), then 4

n−1
2∑

i=1

i = 4
2
(n−1

2
)(n−1

2
+ 1) = (n−1

2
)(n+ 1) = n2−1

2
.

|Bn| = n2 − 1

2
.

Definition 1.13. Denote the centre cell value of a SCMS of order n, n odd, by M .

Lemma 1.14. A Magic Square of order 3 has magic constant 3M and has four border pairs

that each sum to 2M .

Proof. As the values in each column sum to the magic constant, S3, then a11 + a21 + a31 +

a13 + a23 + a33 = 2S3. Consider the pairs a11, a33 and a13, a31 which form diagonals with a22,

and likewise the pair a21, a23 which forms the centre row with a22; these all sum to S3.

As M = a22, then a11 + a33 = a13 + a31 = a21 + a23 = S3 −M

Hence, 2S3 = 3(S3−M) and S3 = 3M , and it follows that each border pair sums to 2M .

Lemma 1.15. All Magic Squares of order 3 are associative.

Proof. From Lemma 1.14, all values in pairs of cells symmetric about the centre sum to the

same value (2M), hence all Magic Squares of order 3 are associative.

It is shown in Chapter 2 that Concentric Magic Squares of order n, n odd and n > 3, cannot

be associative.
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Example 1.16. A PSCMS of order n = 7 is given in Figure 1.2 [24]. The shading (dark

grey, light grey and white) is employed to highlight that the PCMS is strictly concentric,

specifically that it has a magic subsquare of order n − 2 = 5 which is itself a PSCMS and a

magic subsquare of order n− 4 = 3 which is a trivial PSCMS.

6367 4597 4723 6577 4513 4831 6451

4603 5527 4993 5641 6073 4951 6271

4663 4657 9007 1861 5443 6217 6211

6547 5227 1873 5437 9001 5647 4327

4783 5851 5431 9013 1867 5023 6091

6673 5923 5881 5233 4801 5347 4201

4423 6277 6151 4297 6361 6043 4507

Figure 1.2: A Prime Strictly Concentric Magic Square of Order 7 [24]

W.S. Andrews has published extensively on Magic Squares and has specifically explored

Prime Magic Squares having the lowest possible magic constant [3]. In this thesis it is

formalised that for Strictly Concentric Magic Squares of odd order the lowest possible magic

constant is dependent on the centre cell value, M .

Definition 1.17. A SCMS of order n that has minimum M is termed a minimum SCMS.

When the values in the SCMS are primes this is termed a minimum PSCMS.

1.2 Prime Numbers

A prime number is a positive integer which is divisible only by itself and 1, and by Euclid’s

Theorem there are known to be infinitely many such primes [43]. The focus of study for this
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thesis is the PSCMS and therefore it is necessary to note which primes can be included in

such grids.

Definition 1.18. The difference between successive primes, pk and pk+1 is Gk = pk+1 − pk.

Gk is also referred to as the prime gap following the prime in the kth position pk and the

next possible prime pk+1 [27].

The topic of prime distribution, and in particular the finding of patterns of prime gaps, has

been the focus of much research. Just under 45% of prime gaps, up to the 3 × 107th prime

number, are of the form 6k, k ∈ N [38]. In this thesis the gaps considered are between

relatively small primes. In Chapters 2 and 4 all the primes used in the PSCMS of order 5

and the PSCMS of order 7 have gaps of the form 6k.

In Chapter 2 it is proved that a PSCMS of order n, n odd, can only contain prime numbers

of one of the forms 6k+ 1 or 6k− 1, k ∈ N and hence a PSCMS of order n, n odd, can never

include the integer 3, since 3 is neither of the form 6k + 1 nor 6k − 1, k ∈ N.

1.3 Latin Squares

Latin Squares are structurally similar to Magic Squares. The same types of permutation

operations can be applied to both types of grid and similar enumerative techniques, using

permutations, are suitable for them both. Other structural properties and known concepts

identified in Latin Squares are also relevant in Chapter 3, where they are explored in relation

to Magic Squares.

Definition 1.19. A Latin Square of order n is a square grid with n2 entries from n

different elements, with no element occurring twice within any row or column of the grid

[17]. Typically these use the symbol set 1, 2, . . . , n or 0, 1, . . . , n− 1.

Definition 1.20. A Latin Square of order n (on the symbol set 1, 2, . . . , n or 0, 1, . . . ,

n − 1) is referred to as reduced, or in standard form, if in the first row and the first

column the elements occur in natural order [8].
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Figure 1.3 gives an example of a reduced Latin Square of order 3.

1 2 3

2 3 1

3 1 2

Figure 1.3: A Reduced Latin Square of Order 3

Definition 1.21. Two Latin Squares L and L′ of order n are isomorphic if there is a

bijection φ : S → S such that φL(i, j) = L′(φ(i), φ(j)) for every i, j in S, where S is not

only the symbol set of each square, but also the indexing set for the rows and columns of each

square [8]. An isomorphism that maps L to itself is an automorphism.

An example of a reduced Latin Square of order 9 is given in Figure 1.4(a) and an isomorphic

Latin Square is given in Figure 1.4(b). A similar reduced form argument is used in Chapter 2

for all examples of PSCMS.

1 2 3 4 5 6 7 8 9

2 3 4 5 6 7 8 9 1

3 4 5 6 7 8 9 1 2

4 5 6 7 8 9 1 2 3

5 6 7 8 9 1 2 3 4

6 7 8 9 1 2 3 4 5

7 8 9 1 2 3 4 5 6

8 9 1 2 3 4 5 6 7

9 1 2 3 4 5 6 7 8

(a) A Reduced Latin Square of order 9

1 2 3 4 5 6 8 7 9

2 3 4 5 6 7 9 8 1

5 6 7 8 9 1 3 2 4

3 4 5 6 7 8 1 9 2

4 5 6 7 8 9 2 1 3

6 7 8 9 1 2 4 3 5

7 8 9 1 2 3 5 4 6

8 9 1 2 3 4 6 5 7

9 1 2 3 4 5 7 6 8

(b) A Latin Square Isomorphic to (a)

Figure 1.4: Two Isomorphic Latin Squares of Order 9

The definition of a critical set in a Latin Square is taken directly from [9] and given here as

a similar definition is used in Section 3.3 for critical sets of SCMS.

8



Definition 1.22. A critical set in a Latin Square L, of order n, is a set A = {(i, j, k)|i, j, k ∈

{1, . . . , n}} such that:

(1) L is the only Latin Square of order n which has entry i in position (j, k) for each (i, j, k) ∈

A;

(2) no proper subset of A satisfies (1).

1.4 Equivalent Magic Squares

Definition 1.23. Two Magic Squares A1
n and A2

n, with values aij and bij respectively, are

equal if aij = bij for all cells (i, j).

Two isomorphic Latin Squares can be referred to as equivalent as one can be mapped to the

other. Similar to isomorphisms in Latin Squares, all SCMS can undergo permutations, that

are here defined, to form other equivalent SCMS.

Definition 1.24. Two Strictly Concentric Magic Squares A1
n and A2

n are equivalent if one

can be obtained from the other by undergoing permutations of the rows, columns or border

pairs in cells, Bn, given in Table 1.1, while maintaining all Magic Square properties including

the magic constant. Otherwise A1
n and A2

n are non-equivalent.

Permutation Order
Permutation of border pairs in columns 2, . . . , n− 1 (n− 2)!
Permutation of border pairs in rows 2, . . . , n− 1 (n− 2)!
Permute row 1 and row n 2
Permute column 1 and column n 2
Interchange row 1 with column n and row n with column 1 2

Table 1.1: Permutation Operations on the Border Pairs in Cells of a SCMS of Order n,
Where the Permutation Order Given is the Smallest Number of Such Permutations

Required to Return to the Initial State
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The cardinality of the set of operations, P, on the SCMS is given by the product of the

orders of each permutation operation in Table 1.1:

|P| = 23 × [(n− 2)!]2 (1.1)

Every SCMS of order n, n odd, along with its subsquares of order n− 2i, i = 1, . . . , n−3
2

, can

undergo these permutations, and every permutation forms an equivalent SCMS.

Figure 1.5 shows two Magic Squares which are equivalent but not equal.

2 7 6

9 5 1

4 3 8

(a) A Magic Square of Or-
der 3

2 9 4

7 5 3

6 1 8

(b) A Magic Square of Or-
der 3 which is Equivalent
But Not Equal to (a)

Figure 1.5: Two Equivalent Magic Squares of Order 3

1.5 Enumeration in the Literature

There is interest in the enumeration of Magic Squares in general, but thus far the number of

Magic Squares is only known up to n = 5 for NMS. It is an unsolved problem to determine

the number of Magic Squares of an arbitrary order. Frénicle de Bessy enumerated the 880

NMS of order 4 in 1693 [28] and Schroeppel enumerated the 275,305,224 NMS of order 5

in 1973 [23]; both of these enumerations were found by exhaustive search. Statistical tests

and algorithms can be used for prediction, such as the Monte Carlo Method [30], to give

an estimate of the number of higher order NMS and randomised algorithms can be used to

enumerate using quasi-polynomials [5]. The number of NMS of order 6 has been estimated

by Xin using a Euclid style algorithm in 2012 [44]. NMS with additional properties have also

been enumerated, for example the number of associative Normal Magic Squares of order 7
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were enumerated by Kato and Minato in 2019 [14]. To enumerate Magic Squares that do not

have the normal property, simplifications have been made, such as neglecting the diagonal

sums (i.e. treating Magic Squares as though they are structures termed semi-magic [40])

or neglecting the requirement that the integers within the Magic Squares are distinct [6],[37].

The above simplifications have been made due to larger order cases seeming computationally

infeasible. In Chapter 2, the magic constant is fixed in order to enumerate PSCMS of order

5. It is intuitive to narrow down the enumeration in order to perform any analysis, as there

are infinitely many primes and therefore it could be conjectured that there exist infinitely

many PSCMS.

1.6 Structure of Thesis

In Chapter 2 some additional properties of PSCMS of odd order are presented, followed by

a novel analysis of the minimum PSCMS of order 5. This includes a proof of the value of M

for the minimum PSCMS of order 5 as well as providing details on how to construct the grid

to satisfy the constraints of a Magic Square, and an enumeration of the minimum PSCMS

of order 5.

Chapter 3 investigates the completability of partial SCMS using known concepts identified in

both Latin Squares and Sudoku grids, namely critical sets and unavoidable sets. Unavoidable

sets are then defined for minimum PSCMS of order 5.

PSCMS of higher order are the subject of Chapter 4. Firstly, the minimum PSCMS of order

7 is considered and an algorithm for construction and a full enumeration presented. This

is followed by an algorithm for the construction for PSCMS of general odd order. PSCMS

of even order are then introduced, with necessary general definitions given where they differ

from the odd order definitions, before a minimum PSCMS of order 6 is discussed with an

algorithm for construction. An algorithm is then presented for the construction for PSCMS

of general even order.

11



In Chapter 5 the idea of water retention in a Magic Square is introduced. The literature

review for this topic is given as an introduction to the chapter as the literature differs from

the rest of the thesis. Some basic definitions are given for Number Squares before introducing

water retention to Magic Squares. This concept is then applied to the minimum PSCMS of

order 5 from Chapter 2.

Finally Chapter 6 is a conclusion chapter to summarise the main results in this thesis and

identify some possible avenues for future work.

1.6.1 Significant Contributions of the Thesis

Chapter 2 provides the enumeration of a subclass of Magic Squares. The number of non-

equivalent minimum PSCMS of order 5 is 35 and therefore there are 80,640 minimum PSCMS

of order 5. In Chapter 3 the cardinality of the minimal forced completable set of a SCMS of

order n, n odd is given as

|Fmin
n | = 1

2
(n2 − 2n+ 3).

A bound is given for the cardinality of a minimal critical set of a SCMS of order n, n odd,

n ≥ 5

1

2
(n2 − 4n+ 9) ≤ |Vmin

n | ≤ 1

2
(n2 − 2n+ 3).

A complete classification of the unavoidable sets of minimum PSCMS of order 5 is given with

the minimum cardinality of the different unavoidable sets calculated. No formal treatment of

SCMS has previously been published, and hence these results along with the new definitions

provide a framework useful for further work in this area.
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Chapter 2

Prime Strictly Concentric Magic

Squares of Order 5

2.1 Introduction

Using the definitions from Chapter 1, this chapter provides novel, foundational work on the

properties of SCMS and addresses the absence in the literature of enumeration of SCMS;

this chapter focuses on PSCMS of order 5. Firstly, some additional properties of PSCMS

of odd order are given, and where the properties are general for SCMS they are given as

such. The proof of the minimum PSCMS of order 5 is presented, followed by a construction

and enumeration of minimum PSCMS of order 5. While work has addressed Concentric

Magic Squares, most results presented concern Normal Magic Squares. Such work offers

constructions for odd and even order [7][10], and notes primarily that methods of construction

are somewhat complicated [33]. Prime Strictly Concentric Magic Squares have been addressed

far less; one noteworthy PSCMS of order 13 formed by a hobbyist was published in [24]

without construction. Makarova [26] observed the following relationship for which no proof

is evident in the literature, and so is here provided by the current author.
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Lemma 2.1. A SCMS of order n, n odd, with centre cell value M has magic constant

Sn = nM .

Proof. By Lemma 1.14, S3 = 3M . Assume that for some n = k, k > 3 and odd, Sk = kM .

Now consider the case n = k + 2. Using arguments similar to Lemma 1.14, as the values

in each column sum to the magic constant, Sk+2, take the first and the (k + 2)th columns,

then a11 + a(k+2)(k+2) + a(k+2)1 + a1(k+2) +
k+1∑
i=2

ai1 +
k+1∑
i=2

ai(k+2) = 2Sk+2. Consider the pairs

a11, a(k+2)(k+2) and a(k+2)1, a1(k+2) which form diagonals with cells in the subsquare of order

k; these sum to Sk+2. Likewise the pairs ai1, ai(k+2), i = 2, . . . , k + 1, which form the

centre rows with the subsquare of order k; these also all sum to Sk+2. Since Sk = kM ,

then a11 + a(k+2)(k+2) = a(k+2)1 + a1(k+2) = Sk+2 − kM likewise ai1 + ai(k+2) = Sk+2 − kM ,

i = 2, . . . , k + 1. Hence, 2Sk+2 = (k + 2)(Sk+2 − kM) and therefore Sk+2 = (k + 2)M . By

induction the recurrence holds for any n odd. Hence, for all n odd, Sn = nM .

Recall the definition of border pairs (Definition 1.10).

Lemma 2.2. The elements of each border pair of a SCMS of order n, n odd, sum to 2M

where M is the centre cell value of the SCMS.

Proof. Consider a SCMS of order n, n > 3 and odd. By Lemma 2.1 the SCMS has magic

constant Sn = nM . Removing the cells in Bn, and the corresponding border pair values in

those cells, yields a magic subsquare of order n−2. The magic subsquare has magic constant

Sn−2 = (n − 2)M = nM − 2M . Returning to the SCMS of order n, each row, column and

main diagonal contains one border pair, in the outer border, and hence the elements of each

border pair must sum to 2M . By Lemma 1.14, when n = 3 the four border pairs in B3 sum

to 2M , therefore the lemma holds for all n odd.

Definition 2.3. Denote two values summing to 2M as a pair of complement values.

Hence, all border pairs of a SCMS are pairs of complement values. Two prime numbers

summing to 2M are therefore denoted as a pair of complement primes. Hence, all

border pairs of a PSCMS are pairs of complement primes.
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Recall from Lemma 1.15 that all Magic Squares of order 3 are associative.

Lemma 2.4. A Concentric Magic Square of order n, n > 3 and odd, cannot be associative.

Proof. The positions of paired cells in a Strictly Concentric Magic Square of odd order are

provided in Definition 1.8, and from Lemma 2.2 the values in these paired cells have the same

sum. Assume for contradiction that the Magic Square is associative; the pairs symmetric

about the centre sum to the same value. To fulfil both of these requirements there needs to

be repeated values in cells. Therefore a Concentric Magic Square of order n, n > 3 and odd,

cannot be associative. Only for n = 3 are all the positions of paired cells symmetric about

the centre.

Lemma 2.5. A PSCMS of order n, n odd, can only contain prime numbers of one of the

forms 6k + 1 or 6k − 1, k ∈ N.

Proof. It is well known that all prime numbers greater than 3 can be written in the form

6k + 1 or 6k − 1. By Lemma 2.2 each border pair of a PSCMS of order n, n odd, must sum

to twice the centre cell value. In order for this property to hold, every entry must be of the

same form as the centre cell value, which is itself of the form either 6k + 1 or 6k − 1.

Corollary 2.6. A PSCMS of order n, n odd, can never include the integer 3.

Proof. By Lemma 2.5, since 3 is neither of the form 6k + 1 nor 6k − 1, k ∈ N.

Recall Section 1.4 on equivalent Magic Squares. Every SCMS of order n, n odd, along with its

subsquares of order n− 2i, i = 1, . . . , n−3
2

, can undergo the permutations given in Table 1.1,

and every permutation forms an equivalent SCMS. Figure 2.1 shows two PSCMS which are

equivalent, in which the grid of order 5 in Figure 2.1(a) undergoes a permutation of the outer

border pairs in rows 2, 3 and 4 to form the grid in Figure 2.1(b).
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311 11 113 401 419

149 461 23 269 353

263 59 251 443 239

449 233 479 41 53

83 491 389 101 191

(a) A PSCMS

311 11 113 401 419

263 461 23 269 239

449 59 251 443 53

149 233 479 41 353

83 491 389 101 191

(b) A PSCMS Equivalent to (a)

Figure 2.1: Two Equivalent PSCMS of Order 5

2.2 Minimum PSCMS of Order 5

2.2.1 Introduction

A SCMS of order 5 comprises a centre cell value, M , and twelve distinct pairs of values

summing to 2M , four of which surround the centre cell forming the subsquare of order 3, and

eight of which form the border of order 5. One such border example is shown in Figure 2.2(a)

with one border pair shaded in grey. By Lemma 2.1, a SCMS of order 5 has magic constant

S5 = 5M .

Recall, from Definition 1.17, a minimum PSCMS has minimum M value. A minimum PSCMS

of order 5 is given in [25] to have S5 = 1255 with centre cell value M = 251, and border pairs

summing to 2M = 502. The magic constant for the subsquare of order 3 is 3M = 753, as is

evident in Figure 2.2(b). It is proved by the current author in Lemma 2.7 that the minimum

PSCMS of order 5 has M = 251 and hence from Lemma 2.1, S5 = 1255 and therefore the

placement of primes in Figure 2.2 form a minimum PSCMS of order 5.
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311 53 71 419 401

113 389

239 251 263

491 11

101 449 431 83 191

(a) Border of a Minimum PSCMS of Order 5
with Centre Cell Value 251 with one Border
Pair Shaded in Grey

461 23 269

59 251 443

233 479 41

(b) Magic Subsquare of Order 3 for a Mini-
mum PSCMS of Order 5

Figure 2.2: Border and Magic Subsquare of Order 3 for a Minimum PSCMS of Order 5

The following notation is used: denote by P the set of all prime numbers, and P′ any subset

of P.

Lemma 2.7. The minimum PSCMS of order 5 has centre cell value of 251, and hence magic

constant of 1255.

Proof. Assume for contradiction that the centre cell value, M , is less than 251. Let P be the

set of all prime numbers. To construct a PSCMS for which M < 251 and prime, there must

exist at least twelve distinct pairs of complement primes xi, x̄i ∈ P such that xi + x̄i = 2M ,

where xi, x̄i are the values in paired cells. These pairs of complement primes form P′. Four

of these pairs form the border pairs of the subsquare of order 3, and eight form the outer

border pairs of the PSCMS of order 5. Only for M = 233 are there as many as twelve distinct

pairs of complement primes. However, one of these pairs contains the integer ‘3’ which from

Corollary 2.6 cannot appear in a PSCMS. It is known that a PSCMS of order 5 with centre

cell value 251 exists, and one example is given in Figure 2.3. Hence, any PSCMS of order 5

with centre cell value 251 and magic constant of 1255 is a minimum PSCMS.
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311 53 71 419 401

113 461 23 269 389

239 59 251 443 263

491 233 479 41 11

101 449 431 83 191

Figure 2.3: A Minimum PSCMS of Order 5

2.2.2 Construction of Minimum PSCMS of Order 5

Having established M for all minimum PSCMS of order 5, this section details the construction

of such a square. Given the centre cell value M = 251, there are thirteen pairs of complement

primes satisfying Lemma 2.2. With trial and error, it can easily be found that there are only

two possible non-equivalent magic subsquares of order 3, shown in Figure 2.4.

461 23 269

59 251 443

233 479 41

(a) Magic Subsquare 1

431 83 239

59 251 443

263 419 71

(b) Magic Subsquare 2

Figure 2.4: The Two Non-Equivalent Magic Subsquares of Order 3 for a Minimum
PSCMS of Order 5

All minimum PSCMS of order 5 consist of a centre cell value and twelve pairs of complement

primes formed from the following set of 26 prime numbers: P′ = {11,23,41,53,59,71,83,101,113,

149,191,233,239,263,269,311,353,389,401,419,431,443,449,461,479,491}. For subsquare 1

(Figure 2.4(a)), six different combinations of the required eight pairs of complement primes,
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from P′, can be used to form a minimum PSCMS. For subsquare 2 (Figure 2.4(b)), nine

different combinations of the required eight pairs of complement primes, from P′, can be

used to form a minimum PSCMS. These different combinations were found by hand using

exhaustive search and are each referred to as a type and are given in Table 2.1.

Type List of Primes in the Border of Order 5
1A 11, 53, 71, 83, 101, 113, 191, 239, 263, 311, 389, 401, 419, 431, 449, 491
1B 11, 53, 83, 101, 113, 149, 191, 239, 263, 311, 353, 389, 401, 419, 449, 491
1C 11, 71, 83, 101, 113, 149, 191, 239, 263, 311, 353, 389, 401, 419, 431, 491
1D 53, 71, 83, 101, 113, 149, 191, 239, 263, 311, 353, 389, 401, 419, 431, 449
1E 11, 53, 71, 83, 101, 113, 149, 239, 263, 353, 389, 401, 419, 431, 449, 491
1F 11, 53, 71, 83, 101, 149, 191, 239, 263, 311, 353, 401, 419, 431, 449, 491

2A 11, 23, 41, 53, 101, 113, 149, 191, 311, 353, 389, 401, 449, 461, 479, 491
2B 11, 23, 41, 53, 101, 113, 149, 233, 269, 353, 389, 401, 449, 461, 479, 491
2C 11, 23, 41, 53, 101, 113, 191, 233, 269, 311, 389, 401, 449, 461, 479, 491
2D 11, 23, 41, 101, 113, 149, 191, 233, 269, 311, 353, 389, 401, 461, 479, 491
2E 11, 23, 41, 53, 101, 149, 191, 233, 269, 311, 353, 401, 449, 461, 479, 491
2F 11, 23, 41, 53, 113, 149, 191, 233, 269, 311, 353, 389, 449, 461, 479, 491
2G 11, 23, 53, 101, 113, 149, 191, 233, 269, 311, 353, 389, 401, 449, 479, 491
2H 11, 41, 53, 101, 113, 149, 191, 233, 269, 311, 353, 389, 401, 449, 461, 491
2I 23, 41, 53, 101, 113, 149, 191, 233, 269, 311, 353, 389, 401, 449, 461, 479

Table 2.1: Primes Used in the Border of the Minimum PSCMS of Order 5, B5, with
Magic Subsquares 1 and 2

In order to construct a PSCMS of order 5, first we must construct the magic subsquare

of order 3. A PSCMS of order 3 for any given M (if one exists) can be generated using

Algorithm 1.
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Algorithm 1 Algorithm to form a PSCMS of order 3

1: Begin
2: Input M and form P′, the set of all primes that form pairs summing to 2M .
3: Place M into the centre of an empty grid of order 3.
4: repeat
5: Take a set of three distinct non-paired primes from P′ that sum to 3M , to form a set

S, and their complements to form a set S̄.
6: Take a prime from P′ and call it T , and its complement T̄ .
7: repeat
8: Take an element x of S, and an element y of S̄ that is not paired with x.
9: Let X be the sum of x, y and T

10: until X = 3M , or no further combinations of x, y are possible.
11: until X = 3M , or no further combinations of S are possible.
12: if X = 3M then
13: Begin
14: Place x in (1, 1), y in (1, 3) removing them from S and S̄, and place their complements

in the paired cells, removing them from S̄ and S.
15: Place T in (1, 2) and place T̄ in (3, 2)
16: Place the remaining element of S in (2, 1) and place its complement from S̄ in (2, 3).
17: End
18: else
19: no PSCMS exists for the placed M .
20: end if
21: End

Algorithm 2 uses Algorithm 1 to form a subsquare of order 3, with chosen M and P′, before

using a similar process to construct a PSCMS of order 5 around the given subsquare, if one

exists.
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Algorithm 2 Algorithm to form a PSCMS of order 5

1: Begin
2: Input M and form P′, the set of all primes that form pairs summing to 2M .
3: repeat
4: Construct a PSCMS of order 3 with chosen M and P′ using Algorithm 1.
5: Place the magic subsquare of order 3, with centre cell value M , into the centre of an

empty grid of order 5.
6: Form a set Q of the primes from P′ not used in the subsquare.
7: repeat
8: Take a set of five distinct non-paired primes from Q that sum to 5M , to form a set

S, and their complements to form a set S̄.
9: Take a set of three distinct non-paired primes from Q to form a set T , and their

complements to form a set T̄ .
10: repeat
11: Take an element x of S, and an element y of S̄ that is not paired with x.
12: Let X be the sum of x, y and the elements of T .
13: until X = 5M , or no further combinations of x, y are possible.
14: until X = 5M , or no further combinations of S are possible.
15: until X = 5M , or no further PSCMS of order 3 can be generated using Algorithm 1.
16: if X = 5M then
17: Begin
18: Place x in (1, 1), y in (1, 5) removing them from S and S̄, and place their complements

in the paired cells, removing them from S̄ and S.
19: Place the elements of T in (1, 2), (1, 3), (1, 4) in any order, and place their complements

from T̄ in the paired cells.
20: Place the remaining elements of S in (2, 1), (3, 1), (4, 1) in any order and place their

complements from S̄ in the paired cells.
21: End
22: else
23: No PSCMS exists for the placed centre subsquare.
24: end if
25: End

Theorem 2.8. A minimum PSCMS of order 5 with centre cell value 251 is always formed

using Algorithm 2 when magic subsquare 1 or 2 (shown in Figure 2.4) is placed in the centre

of the grid.

Proof. For M = 251, the set of complement primes (primes summing to 502)

P′ = {11,23,41,53,59,71,83,101,113,149,191,233,239,263,269,311,353,389,401,419,431,443,

449,461,479,491}. Recall from Definition 2.3 that all border pairs are pairs of complement

primes. Eight of these primes must be used in the subsquare and removed from P′ to form a set
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Q. In the case of subsquare 1, Q = {11,53,71,83,101,113,149,191,239,263,311,353,389,401,419,

431,449,491}, and in the case of subsquare 2, Q = {11,23,41,53,101,113,149,191,233,269,311,

353,389,401,449,461,479,491}. In both cases |Q| = 18, and Q consists of nine pairs of com-

plement primes, of which eight pairs are needed to form the border of order 5.

It can easily be seen that five distinct pairs of complement primes satisfy conditions (1) and

(3) below. From the remaining primes in Q it is easy to check that there is always three

more pairs of complement primes that can be chosen to satisfy conditions (2) and (4) below.

(1) a11 + a12 + a13 + a14 + a15 = 1255

(2) a11 + a21 + a31 + a41 + a51 = 1255

(3) a51 + a52 + a53 + a54 + a55 = 1255

(4) a15 + a25 + a35 + a45 + a55 = 1255.

The primes are placed in the manner specified in Algorithm 2 (with the subsquare of order

3 having been determined in line 4, through a call to Algorithm 1, the paired values being

determined in lines 7 to 15, and the border of the PSCMS of order 5 then being filled by

lines 18 to 20). A minimum PSCMS is thereby formed.

2.2.3 Enumeration of Minimum PSCMS of Order 5

Algorithm 2 and Tables 1.1 and 2.1 are utilised to determine the number of minimum PSCMS

of order 5. Each of the fifteen types (given in Table 2.1) is enumerated separately, firstly

in Section 2.2.3.1 the six types with magic subsquare 1 (shown in Figure 2.4(a)), and in

Section 2.2.3.2 the nine types with magic subsquare 2 (shown in Figure 2.4(b)).

Within each type, the primes listed in Table 2.1 are placed in pairs of complement sets. That

is, the elements of each set sum to the required magic constant, and each element of each set

is uniquely paired with a complement element in the other. A unique label is given to each

such pairing. The possible pairs are shown in Tables 2.2, 2.3, 2.4 and 2.5.
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2.2.3.1 Enumeration With Magic Subsquare 1

The squares are divided into types such that the types do not share the same list of prime

numbers; therefore a square of one type is non-equivalent to a square of another type. Recall

that there are thirteen pairs of complement primes, and each type omits a different pair.

Within each type there are non-equivalent variants which use different pairs of complement

sets. Using Equation 1.1 each variant can undergo 2,304 permutations, using Table 1.1.

Enumeration of Type 1A

Table 2.2 shows the possible pairs of complement sets used in the construction of a minimum

PSCMS of type 1A. These pairs, as well as those used in the enumeration of all other types,

were found by hand using exhaustive search. Using these pairs it is possible to construct all

variants and then employ these to determine the number of PSCMS of each type.

Type Labels Pairs of Complement Sets, S and S̄
A1 {53, 71, 311, 401, 419}, { 83, 101, 191, 431, 449}
A2 {11, 113, 263, 419, 449}, { 53, 83, 239, 389, 491}

1A A3 {11, 191, 263, 389, 401}, {101, 113, 239, 311, 491}
A4 {53, 71, 239, 401, 491}, { 11, 101, 263, 431, 449}
A5 {11, 113, 311, 401, 419}, { 83, 101, 191, 389, 491}

Table 2.2: Pairs of Complement Sets of Primes, S and S̄, Assigned to B5 of the Minimum
PSCMS of Type 1A

Figure 2.5 shows examples of placements of the complement pairs from Table 2.2 around the

magic subsquare of order 3 in order to form a PSCMS of order 5. This approach is consistent

through all types and hence no other such examples are given.
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Example 2.9.

419 71 311 401 53

11 491

113 389

263 239

449 431 191 101 83

(a) Type 1A using A1 and A2

401 53 71 419 311

11 491

263 239

389 113

191 449 431 83 101

(b) Type 1A using A1 and A3

401 53 71 239 491

113 389

311 191

419 83

11 449 431 263 101

(c) Type 1A using A4 and A5

Figure 2.5: Three Borders for a Type 1A Minimum PSCMS of Order 5

Lemma 2.10. There are three non-equivalent PSCMS of type 1A.

Proof. Given the primes shown in Table 2.1 for type 1A, there are five pairs of complement

sets, shown in Table 2.2, for magic subsquare 1 that satisfy the constraints (1) to (4) in

the proof of Theorem 2.8; there are only three non-equivalent squares which are generated

by Algorithm 2, shown in Figure 2.5. These squares are non-equivalent as the values in

the corner cells are different, and hence the permutation operations in Table 1.1 cannot be

applied.

Enumeration of Type 1B

Table 2.3 shows the possible pairs of complement sets used in the construction of a minimum

PSCMS of type 1B.

Type Labels Pairs of Complement Sets, S and S̄
B1 { 53, 191, 239, 353, 419}, { 83, 149, 263, 311, 449}
B2 { 11, 191, 263, 389, 401}, {101, 113, 239, 311, 491}

1B B3 { 83, 101, 191, 389, 491}, { 11, 113, 311, 401, 419}
B4 { 53, 149, 263, 389, 401}, {101, 113, 239, 353, 449}
B5 { 53, 101, 191, 419, 491}, { 11, 83, 311, 401, 449}
B6 {113, 149, 263, 311, 419}, { 83, 191, 239, 353, 389}

Table 2.3: Pairs of Complement Sets of Primes, S and S̄, Assigned to B5 of the Minimum
PSCMS of Type 1B
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Lemma 2.11. There are five non-equivalent PSCMS of type 1B.

Proof. Given the primes shown in Table 2.1 for type 1B, there are six pairs of complement

sets, shown in Table 2.3, for magic subsquare 1 that satisfy the constraints (1) to (4) in

the proof of Theorem 2.8; there are only five non-equivalent squares which are generated by

Algorithm 2. These squares are non-equivalent as for each of the five, either the combination

of paired cells in columns and rows 2, 3, 4 differ, or the values in the corner cells are different,

and hence the permutation operations in Table 1.1 cannot be applied.

Enumeration of Types 1C, 1D, 1E and 1F

Table 2.4 shows the possible pairs of complement sets used in the construction of a minimum

PSCMS of types 1C, 1D, 1E and 1F.

Type Labels Pairs of Complement Sets, S and S̄
C1 { 11, 71, 353, 401, 419}, { 83, 101, 149, 431, 491}
C2 { 83, 191, 239, 353, 389}, {113, 149, 263, 311, 419}

1C C3 { 11, 113, 311, 401, 419}, { 83, 101, 191, 389, 491}
C4 {101, 149, 263, 311, 431}, { 71, 191, 239, 353, 401}
C5 { 11, 149, 263, 401, 431}, { 71, 101, 239, 353, 491}
C6 {101, 113, 191, 419, 431}, { 71, 83, 311, 389, 401}
D1 { 53, 113, 239, 419, 431}, { 71, 83, 263, 389, 449}

1D D2 { 71, 101, 311, 353, 419}, { 83, 149, 191, 401, 431}
D3 { 71, 191, 239, 353, 401}, {101, 149, 263, 311, 431}
E1 { 11, 71, 353, 401, 419}, {83, 101, 149, 431, 491}

1E E2 {101, 113, 239, 353, 449}, {53, 149, 263, 389, 401}
E3 { 71, 83, 263, 389, 449}, {53, 113, 239, 419, 431}
E4 { 11, 149, 263, 401, 431}, {71, 101, 239, 353, 491}
F1 { 53, 101, 191, 419, 491}, {11, 83, 311, 401, 449}
F2 {101, 149, 263, 311, 431}, {71, 191, 239, 353, 401}

1F F3 { 11, 101, 263, 431, 449}, {53, 71, 239, 401, 491}
F4 { 71, 101, 311, 353, 419}, {83, 149, 191, 401, 431}
F5 { 11, 149, 263, 401, 431}, {71, 101, 239, 353, 491}
F6 { 53, 71, 311, 401, 419}, {83, 101, 191, 431, 449}

Table 2.4: Pairs of Complement Sets of Primes, S and S̄, Assigned to B5 of the Minimum
PSCMS of Types 1C, 1D, 1E and 1F
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Lemma 2.12. There are:

(1) three non-equivalent PSCMS of type 1C;

(2) two non-equivalent PSCMS of type 1D;

(3) three non-equivalent PSCMS of type 1E;

(4) three non-equivalent PSCMS of type 1F.

Proof. Cases (1), (2) and (3) follow similarly to Lemma 2.10, with (1) having six pairs of

complement sets and three non-equivalent squares, (2) having three pairs of complement sets

and two non-equivalent squares, and (3) having four pairs of complement sets and three non-

equivalent squares. Case (4) follows similarly to Lemma 2.11 with six pairs of complement

sets and three non-equivalent squares.

Lemma 2.13. There are 19 non-equivalent minimum PSCMS of order 5 with magic sub-

square 1.

Proof. This proof follows directly from Lemmas 2.10, 2.11 and 2.12.

Theorem 2.14. There are 43,776 minimum PSCMS of order 5 with magic subsquare 1.

Proof. This proof follows directly from Lemma 2.13 and Equation 1.1.

2.2.3.2 Enumeration With Magic Subsquare 2

The squares are divided into non-equivalent types in the same manner as subsquare 1 in

Section 2.2.3.1. Table 2.5 shows the possible pairs of complement sets used in the construction

of a minimum PSCMS with magic subsquare 2.
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Type Labels Pairs of Complement Sets, S and S̄
A1 { 11, 41, 353, 401, 449}, { 53, 101, 149, 461, 491}
A2 { 11, 113, 191, 461, 479}, { 23, 41, 311, 389, 491}

2A A3 { 11, 101, 311, 353, 479}, { 23, 149, 191, 401, 491}
A4 { 23, 41, 353, 389, 449}, { 53, 113, 149, 461, 479}
B1 { 11, 101, 233, 449, 461}, { 41, 53, 269, 401, 491}
B2 { 23, 41, 353, 389, 449}, { 53, 113, 149, 461, 479}

2B B3 { 11, 113, 269, 401, 461}, { 41, 101, 233, 389, 491}
B4 { 53, 101, 269, 353, 479}, { 23, 149, 233, 401, 449}
B5 { 11, 149, 233, 401, 461}, { 41, 101, 269, 353, 491}
B6 { 23, 113, 269, 401, 449}, { 53, 101, 233, 389, 479}
C1 { 11, 53, 311, 401, 479}, { 23, 101, 191, 449, 491}
C2 {101, 113, 269, 311, 461}, { 41, 191, 233, 389, 401}

2C C3 { 11, 113, 191, 461, 479}, { 23, 41, 311, 389, 491}
C4 { 23, 113, 269, 401, 449}, { 53, 101, 233, 389, 479}
D1 { 11, 101, 311, 353, 479}, { 23, 149, 191, 401, 491}

2D D2 { 11, 113, 269, 401, 461}, { 41, 101, 233, 389, 491}
D3 { 11, 113, 191, 461, 479}, { 23, 41, 311, 389, 491}
D4 { 41, 191, 269, 353, 401}, {101, 149, 233, 311, 461}
E1 { 11, 53, 311, 401, 479}, { 23, 101, 191, 449, 491}

2E E2 {101, 149, 233, 311, 461}, { 41, 191, 269, 353, 401}
F1 { 11, 113, 191, 461, 479}, { 23, 41, 311, 389, 491}

2F F2 {113, 149, 233, 311, 449}, { 53, 191, 269, 353, 389}
G1 { 11, 53, 311, 401, 479}, { 23, 101, 191, 449, 491}

2G G2 { 53, 191, 269, 353, 389}, {113, 149, 233, 311, 449}
G3 { 11, 101, 311, 353, 479}, { 23, 149, 191, 401, 491}
H1 { 11, 41, 353, 401, 449}, { 53, 101, 149, 461, 491}

2H H2 { 53, 191, 269, 353, 389}, {113, 149, 233, 311, 449}
H3 { 11, 113, 269, 401, 461}, { 41, 101, 233, 389, 491}
I1 { 23, 113, 269, 401, 449}, { 53, 101, 233, 389, 479}

2I I2 { 53, 149, 191, 401, 461}, { 41, 101, 311, 353, 449}

Table 2.5: Pairs of Complement Sets of Primes, S and S̄, Assigned to B5 of the Minimum
PSCMS with Magic Subsquare 2

Lemma 2.15. There are:

(1) two non-equivalent PSCMS of type 2A;

(2) three non-equivalent PSCMS of type 2B;

(3) two non-equivalent PSCMS of type 2C;
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(4) two non-equivalent PSCMS of type 2D;

(5) one PSCMS of type 2E;

(6) one PSCMS of type 2F;

(7) two non-equivalent PSCMS of type 2G;

(8) two non-equivalent PSCMS of type 2H;

(9) one PSCMS of type 2I.

Proof. Cases (1), (3), (4), (7) and (8) follow similarly to Lemma 2.10, with (1), (3) and

(4) each having four pairs of complement sets and two non-equivalent squares, and (7) and

(8) each having three pairs of complement sets and two non-equivalent squares. Case (2)

follows similarly to Lemma 2.11 with six pairs of complement sets and three non-equivalent

squares. Cases (5), (6) and (9) have only two pairs of complement sets and therefore just

one square.

Lemma 2.16. There are 16 non-equivalent minimum PSCMS of order 5 with magic sub-

square 2.

Proof. This proof follows directly from Lemma 2.15.

Theorem 2.17. There are 36,864 minimum PSCMS of order 5 with magic subsquare 2.

Proof. This proof follows directly from Lemma 2.16 and Equation 1.1.

2.2.4 Results

Lemma 2.18. There are 35 non-equivalent minimum PSCMS of order 5.

Proof. This proof follows directly from Lemmas 2.13 and 2.16.

Theorem 2.19. There are 80,640 minimum PSCMS of order 5, these have magic constant

1255.

Proof. This proof follows directly from Theorems 2.14 and 2.17.
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2.2.5 Conclusion of Minimum PSCMS of Order 5

This chapter provides the first formal analysis of minimum PSCMS of order 5. It is proved

that SCMS of order n, n odd, have magic constant Sn = nM . Other important properties are

formally defined and novel algorithms are provided, the first to construct a magic subsquare

of order 3 and the second to construct a PSCMS of order 5 around the given subsquare.

The centre cell value of the minimum PSCMS of order 5 is M = 251. It is here established

that there are two possible non-equivalent grids of order 3 that are valid subsquares. A full

classification of types of minimum PSCMS of order 5 using the subsquares and the lists of

primes is given, which facilitates the enumeration of 80,640 minimum PSCMS of order 5,

35 of which are non-equivalent. These foundations provide a framework for future study in

enumeration, however for PSCMS of higher order, the value of M is larger, and hence there

are more pairs of complement primes summing to 2M . This enables a greatly increased

number of valid magic subsquares of order 3, and hence the enumeration becomes more

complex. If border cells are placed around any minimum PSCMS of order 5, then a grid of

order 7 is formed. However, it is not possible to form a PSCMS of order 7 with the minimum

PSCMS of order 5 as a subsquare.

Lemma 2.20. A border cannot be placed around the minimum Prime Strictly Concentric

Magic Square of order 5 to form a Prime Strictly Concentric Magic Square of order 7.

Proof. Assume for contradiction that a border is placed around the minimum PSCMS of order

5. For a PSCMS of order 7 to be formed there must be twenty-four pairs of complement

primes, xi and x̄i where xi 6= x̄i such that xi + x̄i = 502. The PSCMS of order 5 requires

twelve of these complement pairs and the other twelve are required in the outer border. There

only exist thirteen distinct complement pairs that fulfil these requirements, hence a PSCMS

of order 7 cannot be formed with the minimum PSCMS of order 5 as a subsquare.

The minimum PSCMS of order 7 is detailed in Chapter 4 and the general concepts given in

this chapter and Chapter 1 are utilised.
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The minimum PSCMS of order 5 given in this chapter is now used in Chapter 3, to explore

the concept of completability of partial grids and to analyse patterns of unavoidable sets. In

Chapter 5 the maximum water retention is found on each type of minimum PSCMS of order

5.
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Chapter 3

Partial Low Order SCMS and

Completability

3.1 Introduction

The idea of incomplete grids is common to both Latin Squares and Sudoku literature, the

latter being mainly for recreational puzzle solving. The same ideas are formally applied

here to Magic Squares for both puzzle solving and for exploring the mathematical structure

of specific grids. Keedwell [15] briefly considered partial Magic Squares along with Latin

Squares and Sudoku grids, investigating critical sets and unique completability of Normal

Magic Squares of orders 3 and 4. Keedwell postulated that Concentric Magic Squares may be

the easiest of the Magic Squares to investigate for the determination of critical sets (defined

for Latin Squares in Definition 1.22 and for SCMS in Definition 3.18) for grids of larger order.

The terminology in this chapter follows from the literature on Latin Squares and is formally

defined by the current author for SCMS [16].

The following novel results rely on the idea that a SCMS of order n, n odd, has a known

centre cell value. This chapter focuses on SCMS of order n, n odd, but where the definitions

apply to both odd and even orders they are given in general.
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Definition 3.1. A triple (i, j, aij) specifies a value aij in row i and column j of a grid.

Definition 3.2. Denote by An the cells of a grid of order n, i.e. a set of (i, j) tuples, and

denote by An a set of triples (i, j, aij) where aij is the value in cell (i, j).

Recall, from Definition 1.24, that two Magic Squares A1
n and A2

n are termed equivalent if

one can be formed from the other using the permutation operations in Table 1.1 and non-

equivalent otherwise. Denote the set of natural numbers by N and any subset of N by N′; for

a Normal Magic Square, N′ is the set containing the first n2 numbers. Recall, from Chapter 2,

that P denotes the set of all prime numbers, and P′ any subset of P. There exist complement

pairs of values aij, āij ∈ N (or P) such that aij + āij = 2M , where M is the centre cell value

of a SCMS (or PSCMS) of order n, n odd, and aij, āij are the values in paired cells.

Firstly, general SCMS are considered before discussing PSCMS. Recall, from Lemma 2.1,

that the magic constant Sn of a SCMS of order n, n odd, is Sn = nM where M is the centre

cell value (Definition 1.13), and from Lemma 2.2 that all border pairs sum to 2M . Hence,

once the centre cell value of the SCMS is fixed, the pairs of values summing to 2M form the

corresponding set N′, likewise for a PSCMS the pairs of primes summing to 2M form the

corresponding set P′. As M increases, the number of combinations of values summing to 2M

grows, and hence the cardinality of the set of values in N′ (or P′) is larger. As N′ (or P′) is

used to fill the remaining cells in the SCMS (PSCMS) then M must be suitably large in order

to have enough values for the given grid. Throughout this chapter the centre cell is always

taken to be non-empty, hence the value M is known and the set N′ (or P′) is easily determined.

The concept of partial SCMS is introduced and different kinds of completability explored,

with results given to aid an understanding of the relationship between completability on

SCMS of order 3 and then general SCMS. This leads to the novel results of the cardinality of

the minimal forced completable set and minimal critical set of a SCMS of order n, n odd. The

concept of unavoidable sets is then defined for partial SCMS in general, with the concepts

of proper and improper unavoidable sets, and their forms, defined. A full classification of

32



unavoidable sets on minimum PSCMS of order 5 is then given with the minimum cardinality

of each form found.

3.2 Completability of Partial SCMS

Definition 3.3. A grid of order n is termed partial if between 1 and n2 − 1 cells are non-

empty. The set of tuples (i, j) of the non-empty cells is denoted Hn. When the non-empty

cells have values such that the partial grid is completable to a SCMS (Definition 1.7) then

the set of triples (i, j, aij) is denoted Hn and termed a partial SCMS.

An example of a partial PSCMS of order 3 is given in Figure 3.1(a).

Definition 3.4. Let AH
n be the set of all SCMS to which Hn can be completed. Hence,

if |AH
n | = 1 then Hn is uniquely completable, and if |AH

n | > 1 then Hn is multiply

completable.

That is, if there is only one way of completing the grid then it is uniquely completable, and

if there is more than one way of completing the grid then it is multiply completable. Only

partial grids which are partial SCMS, Hn, are considered, i.e. the partial grid is completable

to a SCMS. Operations can be defined for assigning values, aij, to empty cells.

Definition 3.5. A cell is row-completable (or column-completable) if n − 1 cells are

non-empty in the given row (or column). A cell (i, j) is pairwise-completable if its paired

cell (̄i, j̄) is non-empty.

Definition 3.6. An empty cell (i, j) in a partial SCMS, Hn, that can be filled uniquely using

a row/column/pairwise completable operation is referred to as forced.

Definition 3.7. A partial SCMS, Hn, is termed strongly completable if every empty cell

becomes forced at some iteration of completion, otherwise it is weakly completable.

In order to understand critical sets, the completability of partial SCMS is explored.
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Lemma 3.8. A strongly completable partial SCMS, Hn, is uniquely completable. A weakly

completable partial SCMS, Hn, is either uniquely or multiply completable.

Proof. From Definition 3.7, all empty cells in a strongly completable partial SCMS, Hn, are

forced, hence there is only one way to complete the grid. A weakly completable partial

SCMS, Hn, has at least one cell which is not forced. For specific partial SCMS, one or more

given cells that are not forced can be completed in more than one way, and one such example

is given in Figure 3.2(c). For other specific partial SCMS having one or more given cells that

are not forced, all such cells are completable in only one way, and one such example is given

in Figure 3.2(a).

A strongly completable grid is one which can be considered a valid puzzle as one or more

logical deductions can be made at every iteration in order to always be able to uniquely

fill one cell until the grid is complete. A weakly completable grid, even if it is uniquely

completable, is not here considered a valid puzzle as there is trial and error involved in its

completion.

Recall, from Chapter 1, that grids of order 3 are trivial SCMS. Attention will be given first

to SCMS of order 3 before looking at SCMS of order 5 and of order n. Completability will be

important for finding critical sets of SCMS of odd order, all of which will have a subsquare

of order 3.

Lemma 3.9. A completable partial SCMS of order 3, H3, with two non-empty, non-paired

cells in the border, B3, including at least one corner cell, is strongly completable and hence

uniquely completable.

Proof. Without loss of generality, assume the completable partial SCMS includes (1, 1, a11)

and one other non-paired triple, (i, j, aij), in addition to the centre cell triple (2, 2, a22).

If i = 1 (or j = 1), then the third cell in the row (or column) is forced completable and the

row (or column) is completed, and hence (3, k, a3,k) for k = 1, . . . , 3 are pairwise completable

(or likewise for (l, 3, al,3) for l = 1, . . . , 3). The remaining two cells are forced.
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If i 6= 1 and j 6= 1 then the paired cell of aij is in either row 1 or column 1 and forced. Hence,

the above argument applies. Hence, the grid is strongly completable and from Lemma 3.8 is

uniquely completable.

Corollary 3.10. A completable partial SCMS of order 3, H3, with two non-empty non-paired

cells in the border, Bn, neither of which is a corner cell, is weakly and uniquely completable.

Proof. The paired cells of the two non-empty cells in the border are forced, leaving just the

corner cells empty. When all corner cells are empty no cell is forced, therefore the grid is

not strongly completable. However, there is only one way of completing the four corners to

satisfy the magic constant constraint of a Magic Square.

Lemma 3.11. A completable partial SCMS of order 3, H3, with fewer than two non-empty

cells in the border, B3, is weakly completable and multiply completable.

Proof. Consider the case of a single non-empty corner cell, in addition to the centre cell.

Without loss of generality, assume the completable partial SCMS includes (1, 1, a11), hence

(3, 3, a33) is pairwise completable and no other cell is immediately forced. There exists

a12, a13 ∈ N′ such that
3∑

j=1

a1j = 3M and a12, a13 are not paired, and a21, a31 ∈ N′ such that

3∑
i=1

ai1 = 3M , a21, a31 are not paired and a31 = ā13. As a12 + a13 = a21 + a31, then another

completion of the partial SCMS exists in which both the paired values in positions (1, 3) and

(3, 1) are permuted, and the non-paired values in positions (1, 2) and (2, 1) are permuted.

Hence there are at least two completions, and therefore the SCMS is multiply completable.

Consider the case of a single non-empty, non-corner cell, in addition to the centre cell.

Without loss of generality assume the completable partial SCMS includes (1, 2, a12), hence

(3, 2, a32) is pairwise completable and no other cell is immediately forced. There must exist

two complement sets of three values in N′ summing to 3M in order to form the first column

and the third column, such that the column and row sums are satisfied. Each of these can

be placed in either the first or the third column, and hence there are always at least two

completions and therefore the SCMS is multiply completable.
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With all cells empty, other than the centre cell, there are no fewer solutions than in the cases

above.

Lemma 3.11 is illustrated for M = 251 in Figure 3.1, with a multiply completable partial

PSCMS of order 3 shown in Figure 3.1(a) and its two equivalent completions shown in

Figures 3.1(b) and 3.1(c).

461

251

(a) Two Non-empty Cells in a
Grid of Order 3

461 23 269

59 251 443

233 479 41

(b) First Completion of Fig-
ure 3.1(a)

461 59 233

23 251 479

269 443 41

(c) Second Completion of Fig-
ure 3.1(a)

Figure 3.1: A Mutliply Completable Partial PSCMS of Order 3 and its Two Equivalent
Completions

Corollary 3.12. For a completable partial SCMS of order 3 to be strongly completable it

must contain at least two non-empty, non-paired cells, including at least one corner cell in

addition to the centre cell.

Proof. Follows directly from Lemmas 3.9 and 3.11 and Corollary 3.10.

Now again consider PSCMS of order 5. From Lemma 3.8 a weakly completable partial

SCMS, Hn, is either uniquely or multiply completable, and an example of each case is given

in Example 3.13 for n = 5 with M = 251. A weakly and uniquely completable partial

PSCMS is given in Figure 3.2(a) with its unique completion given in Figure 3.2(b). A weakly

and multiply completable partial PSCMS is given in Figure 3.2(c) with its two completions

given in Figures 3.2(b) and 3.2(d).

Example 3.13. Figures 3.2(a) and 3.2(c) each show a partial PSCMS, H5, with M = 251

and a non-empty subsquare of order 3. In Figure 3.2(a) the triples (1, 1, 419), (1, 2, 71),
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(1, 3, 311), (2, 1, 11), (3, 1, 113) and their complement pairs are non-empty and highlighted.

The empty cells A, B, C and their complements have only one completion, which is given

in Figure 3.2(b). In Figure 3.2(c) the triples (1, 1, 419), (1, 2, 71), (2, 1, 11), (3, 1, 113) and

their complement pairs are non-empty and highlighted. The empty cells A, B, C, D and their

complements have two possible completions given in Figures 3.2(b) and 3.2(d).

419 71 311 A B

11 461 23 269 491

113 59 251 443 389

C 233 479 41 C̄

B̄ 431 191 Ā 83

(a) A Uniquely Completable Partial
PSCMS, H5

419 71 311 401 53

11 461 23 269 491

113 59 251 443 389

263 233 479 41 239

449 431 191 101 83

(b) Unique Completion of the Partial
PSCMS Given in Figure 3.2(a) and
One Completion of the Partial PSCMS
Given in Figure 3.2(c)

419 71 D A B

11 461 23 269 491

113 59 251 443 389

C 233 479 41 C̄

B̄ 431 D̄ Ā 83

(c) A Multiply Completable Partial
PSCMS, H5

419 71 401 311 53

11 461 23 269 491

113 59 251 443 389

263 233 479 41 239

449 431 101 191 83

(d) Second Completion of the Partial
PSCMS Given in Figure 3.2(c), Equiv-
alent to Figure 3.2(b)

Figure 3.2: Two Partial PSCMS, H5, and Two Completions

Theorem 3.14. For any partial SCMS, Hn, of order n, n odd:

(1) If Hn is strongly completable then it is uniquely completable.

(2) If Hn is multiply completable then it is weakly completable.

(3) If Hn is weakly completable then it is either uniquely completable or multiply completable.
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(4) If Hn is uniquely completable then it is either strongly completable or weakly completable.

Proof. (1) This follows immediately from Lemma 3.8.

(2) If a grid is multiply completable then it cannot be strongly completable, hence it is

weakly completable.

(3) This follows immediately from Lemma 3.8.

(4) From conditions (1) and (3), as both strongly and weakly completable can imply uniquely

completable.

3.3 Forced Completable Sets and Critical Sets of

Partial SCMS

The above exploration of completability is now used to determine bounds on the cardinality

of critical sets of partial SCMS, and the exact cardinality for minimum PSCMS of order 5.

Definition 3.15. A forced completable set is a set which contains the non-empty cells of

a partial SCMS, Hn, that is strongly completable. Let Fn denote the set of cells of a forced

completable set and Fn denote the set of triples defining that forced completable set.

Hence, for clarity, an alternative definition is:

Definition 3.16. A forced completable set Fn defines a partial SCMS that is uniquely com-

pletable to An (i.e. |AF
n | = 1) using only row/column/pairwise completion operations.

Definition 3.17. A minimal forced completable set of a SCMS of order n, denoted as

Fmin
n , is a forced completable set of minimum cardinality.

A given grid, An, may have more than one minimal forced completable set. Two examples of

partial grids specified by minimal forced completable sets, Fmin
5 , are given in Figures 3.3(a)
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and 3.3(b) which are uniquely completable to the grid in Figure 3.3(c). It is shown that these

partial grids are specified by a minimal set in Theorem 3.26.

311 113 401

461 23 239

251

53

491

(a) First Partial PSCMS Specified by
a Minimal Forced Completable Set

11 419

269

251 353

449 41

389 191

(b) Second Partial PSCMS Specified
by another Minimal Forced Com-
pletable Set

311 113 11 401 419

263 461 23 269 239

149 59 251 443 353

449 233 479 41 53

83 389 491 101 191

(c) Unique Completion of the Partial
PSCMS in (a) and (b)

Figure 3.3: Two Partial PSCMS, H5, Specified by Minimal Forced Completable Sets,
Fmin

5 , and their Unique Completion, A5

Similar to the definition of a critical set of a Latin Square, given in Section 1.3 [9], a critical

set of a SCMS is here defined.

Definition 3.18. A critical set, Vn, of a SCMS, An, of order n, is a set Vn = {(i, j, aij) | i, j ∈

{1, . . . , n}, aij ∈ N′} such that:

(1) An is the only SCMS of order n which has entry aij in position (i, j) for all (i, j, aij) ∈ Vn.

(2) no proper subset of Vn satisfies (1).
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Definition 3.19. Let Vn denote the set of cells of a critical set, Vn, of a SCMS, An, where

Vn defines a partial SCMS, and let VA
n be the set of all critical sets of An.

Definition 3.20. A critical set Vn is a partial SCMS that is uniquely completable to a SCMS

An, i.e. |AV
n | = 1, and is such that if any triple is removed from Vn the resulting partial

SCMS is multiply completable, i.e. for any Hn ⊂ Vn, |AH
n | > 1.

Definition 3.21. A critical set, Vn, is termed a strong critical set if it is also a forced

completable set, else it is a weak critical set.

Definition 3.22. A minimal critical set of a SCMS of order n, denoted as Vmin
n , is a

critical set of minimum cardinality.

Consider, ∃Vmin
n ∈ VA

n such that ∀Vn ∈ VA
n , |Vmin

n | ≤ |Vn|, and hence Vmin
n is a minimal

critical set of An. There may be more than one minimal critical set of a given SCMS.

Lemma 3.23. A critical set, Vn, describes a partial SCMS, Hn, which is uniquely com-

pletable.

Proof. This follows immediately from Definition 3.18, using strong completability or weak

completability.

A comparison of the cardinality of the minimal forced completable set, Fmin
n , and the cardi-

nality of the minimal critical set, Vmin
n , of a SCMS of order n, n odd, is now given and the

cardinality of the minimal forced completable set for a SCMS of order n, n odd, is calculated.

Bounds are given below for the cardinality of a minimal critical set of a SCMS of order n, n

odd.

Lemma 3.24. |Vmin
n | ≤ |Fmin

n |

Proof. For any given SCMS, An, any minimal forced completable set, Fmin
n , is a strong critical

set, Vn, if by removing an element from Fmin
n the partial SCMS, Hn, is no longer uniquely

completable to An. If no set of smaller size than all |Fmin
n | forms a critical set on the SCMS
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then |Vmin
n | = |Fmin

n |. If for any Fmin
n , an element can be removed to form a weak critical set

for An, then |Vmin
n | < |Fmin

n |.

Lemma 3.25. If a SCMS of order n, n odd, exists then the cardinality of its minimal forced

completable set is given by the recurrence |Fmin
n | = 2n− 4 + |Fmin

n−2| where |Fmin
1 | = 1.

Proof. The centre cell M is always non-empty hence |Fmin
1 | = 1, and both N′ and Sn are

known. Firstly, consider a SCMS of order 3, from Corollary 3.12; two non-paired cells,

including at least one corner cell must be non-empty in the border for the grid to be strongly

completable, hence |Fmin
3 | = 3, which satisfies the given recurrence. Assume the recurrence

is true for some n = k, k > 3 and odd, |Fmin
k | = 2k − 4 + |Fmin

k−2|. Now consider the case

n = k + 2, where k cells are added in each of the new border rows and k − 2 further cells

are added in each new border column. Of these, (2(k+ 2)− 4) must be non-empty else there

would be empty cells that were not forced completable, and hence (2(k + 2)− 4) triples are

added to Fmin
k , hence |Fmin

k+2| = 2(k + 2)− 4 + |Fmin
k |. By induction the recurrence holds for

any n odd.

From the recurrence the integer sequence obtained is A058331 [11], and is discussed by the

current author in [34].

Theorem 3.26. If a SCMS of order n, n odd, exists then the size of its minimal forced

completable set is |Fmin
n | = 1

2
(n2 − 2n+ 3).

Proof. For j odd, j = (2i + 1) where i = 1, . . . , n−1
2

, the size of the set of non-empty cells,

Zj, for the outer border where j = n and for each border of an order j subsquare j ≥ 3 is

|Zj| = 2j−4. Hence, |Zj| = 2(2i+1)−4 = 4i−2. Hence, |Zn| = 4

n−1
2∑

i=1

i−
n−1
2∑

i=1

2. Since
n∑

i=1

i =

1
2
n(n+1), then 4

n−1
2∑

i=1

i = 4
2
(n−1

2
)(n−1

2
+1) and

n−1
2∑

i=1

2 = n−1 giving |Zn| = 1
2
(n2−2n+1). Since

the centre cell is not included in a border but is always non-empty, then |Fmin
n | =

n∑
j=3

Zj + 1

hence |Fmin
n | = 1

2
(n2 − 2n+ 1) + 1 = 1

2
(n2 − 2n+ 3).
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Theorem 3.27. A partial grid of order n, n odd, is a minimal forced completable set if the

centre cell is non-empty and 2j − 4 cells are non-empty in the outer border where j = n and

in the border of each subsquare of order j, j = 3, 5, . . . , n − 2, with at most one cell of any

pair non-empty and at least one non-empty corner cell in each border.

Proof. From the proof of Lemma 3.25, the minimal forced completable set of a SCMS of

order n must contain the centre cell and within the border of each subsquare of order j,

j = 3, 5, . . . , n − 2, and within the outer border (j = n) it must contain 2j − 4 non-empty

cells, out of 4j − 4 border cells.

Suppose all corner cells are empty, the requirement for 2n−4 cells being non-empty necessarily

means that all non-corner cells in one row and one column are non-empty. All cells are

pairwise completable except the corner cells and given there are two empty cells in each row

and column, the four corner cells are not forced. Hence, it is required that there is at least

one non-empty corner cell in each border for the grid to be strongly completable.

Theorem 3.28. Given a SCMS of order n, n odd, n ≥ 5, the size of the minimal critical

set, |Vmin
n |, satisfies 1

2
(n2 − 4n+ 9) ≤ |Vmin

n | ≤ 1
2
(n2 − 2n+ 3).

Proof. First consider the upper bound of the size of the minimal critical set, from Lemma 3.24

|Vmin
n | ≤ |Fmin

n | and from Theorem 3.26 |Fmin
n | = 1

2
(n2 − 2n+ 3).

Now consider the SCMS of order 3, from Lemma 3.9 and Corollary 3.10 there are two non-

empty cells in the border for the grid to be uniquely completable. Hence a critical set contains

no fewer than two triples, and with the inclusion of the centre cell value contains three triples.

When n = 3, |Fmin
3 | = 3 hence there are exactly three non-empty cells for the minimal critical

set, |Vmin
3 | = 3.

For j odd, j = (2i+3) where i = 1, . . . , n−3
2

, the borders of order j of the subsquares, and the

outer border (j = n), of the SCMS of order n each have 4j − 4 cells. For an SCMS of order

n, n > 3, 2j − 6 non-empty cells are required in each border for the SCMS to be uniquely

completable, else it is multiply completable due to the permutation operations in Table 1.1.
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Hence, |Zj| = 2j − 6 = 2(2i + 3) − 6 = 4i. Hence, |Zn| = 4

n−3
2∑

i=1

i. Since
n∑

i=1

i = 1
2
n(n + 1),

then 4

n−3
2∑

i=1

i = 4
2
(n−3

2
)(n−3

2
+ 1), giving |Zn| = 1

2
(n2 − 4n+ 3).

The subsquare of order 3 has three non-empty cells, and hence |Vmin
n | =

n∑
j=5

Zj +3 and hence

|Vmin
n | = 1

2
(n2 − 4n+ 9).

Construction 3.29. Take an empty grid of order 3 and fill in the centre cell to form a valid

partial SCMS. Secondly place one value in a corner to form a valid partial SCMS. Thirdly,

place a further value in any cell that is not paired with that of the previously placed value to

form a valid partial SCMS.

Theorem 3.30. A forced completable set of a SCMS of order 3, that is also a minimal

critical set, is specified by a partial grid obtained by Construction 3.29.

Proof. Using Construction 3.29 the number of non-empty cells is 3 which satisfies 1
2
(n2 −

2n+ 3) which is both the size of the minimal forced completable set and the upper bound of

the size of the minimal critical set. If either of the values in the border are removed then the

resulting grid is multiply completable, and hence the remaining triples do not form a critical

set nor a forced completable set.

Without loss of generality, let the two non-empty cells of a partial SCMS of order 3, specified

in Construction 3.29, be the cells (1, 1) and (1, 2) illustrated using a PSCMS in Figure 3.4(a)

with its completion given in Figure 3.4(b). Hence, |Vmin
3 | = 3 which satisfies the upper

bound of Theorem 3.28.
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461 23

251

(a) Three Non-Empty Cells in
a Grid of Order 3

461 23 269

59 251 443

233 479 41

(b) Unique Completion to
Figure 3.4(a)

Figure 3.4: A Partial PSCMS, H3, Specified by a Minimal Critical Set, Vmin
3 and its

Unique Completion, A3

The cardinality of the minimal critical set, |Vmin
n |, of a PSCMS of order n, n odd, with known

M and hence known P′, can be determined. For a specific example, the minimum PSCMS

of order 5 have been taken from Chapter 2, [35] and the cardinality of their minimal critical

set is given.

Theorem 3.31. The cardinality of the minimal critical set of a minimum PSCMS of order

5 is |Vmin
5 | = 7, which satisfies 1

2
(n2 − 4n+ 9), the lower bound of Theorem 3.28.

Proof. Suppose for contradiction there are six non-empty cells, including the centre cell. It

can be clearly seen using the permutation operations in Table 1.1 that, irrespective of which

cells are non-empty, the remaining values can be placed in the empty cells to complete the

grid in multiple ways. An example of a critical set of size 7 of a minimum PSCMS of order

5 is given in Figure 3.5, and hence the cardinality of the minimal critical set of a minimum

PSCMS of order 5 is 7.
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71 311

11 461 23

113 251

(a) A Grid Specified by a Minimal Crit-
ical Set of a Minimum PSCMS of Order
5

419 71 311 401 53

11 461 23 269 491

113 59 251 443 389

263 233 479 41 239

449 431 191 101 83

(b) Unique Completion of the Partial
PSCMS in (a)

Figure 3.5: A Partial PSCMS, H5, Specified by a Minimal Critical Set, Vmin
5 , of a

Minimum PSCMS and its Unique Completion, A5

In the literature on Latin Squares, the concepts of strong and weak critical sets are presented

as well as a definition of a ‘totally weak’ critical set where no cell is forced initially [17]. The

concept of ‘totally weak’ does not apply to SCMS, as to avoid any empty cell being forced

the only cells that could be non-empty are the centre cell, or both values of given paired cells.

Given a centre cell, the completion of any single cell results in the availability of a forced

cell completion by a pairwise-completion operation. A set containing only the centre cell is

not a critical set as the partial grid so defined is not uniquely completable. If both values in

paired cells are non-empty and the grid is uniquely completable, then one of the values can

be removed and the grid is still uniquely completable, and so the filled cells do not form a

critical set. Hence, the concept of a totally weak critical set does not exist for any SCMS.

3.4 Unavoidable Sets of SCMS

Recall that Hn denotes the non-empty cells of the partial SCMS, Hn. Correspondingly denote

by H ′n the set of empty cells.

As with Latin Squares, an unavoidable set of a SCMS is defined here (Definition 3.32) to

be a set of tuples such that if all those cells are empty in a partial SCMS, Hn, then Hn is

multiply completable.
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Let Dn denote the set of cells of an unavoidable set of a SCMS An. (There is no corresponding

set of triples, Dn, as the values in the cells of Dn are not defined.) Hence, Dn ⊂ An, where

An is the set of cells corresponding to An.

Definition 3.32. An unavoidable set, Dn, of a SCMS, An, is such that the partial SCMS,

Hn, for which Hn = An \Dn, is multiply completable, i.e. |AH
n | > 1 and either

(1) the addition to Hn of any triple (i, j, ai,j) ∈ An where (i, j) ∈ Dn, produces a partial

SCMS, Gn, which is uniquely completable; or

(2) the addition to Hn of any triple (i, j, ai,j) ∈ An where (i, j) ∈ Dn, produces a partial

SCMS, Gn, which is either uniquely completable or multiply completable to grids that are

equivalent.

A given SCMS can have more than one unavoidable set, and these sets can overlap. Strictly,

unavoidable sets are sub-structures present in all of the SCMS to which a given partial grid

completes. However, the remainder of this chapter will refer to unavoidable sets being present

in partial SCMS.

Definition 3.33. Some partial SCMS, Hn, completable to any An ∈ AH
n , may contain cells

that are forced completable and a number of unavoidable sets. Let the set of unavoidable sets

of a partial SCMS, Hn, be DH
n , and so

⋃
Dn∈DH

n

Dn ⊆ H ′n.

This thesis does not address overlapping unavoidable sets as it is not of benefit in classifying

the forms of unavoidable sets. Note that, analysis of partial grids possessing overlapping un-

avoidable sets is not possible without first having a classification of forms of unavoidable sets.

Hence only partial SCMS with a set of empty cells that correspond to a single unavoidable

set of all grids in AH
n are considered.

Recall from critical sets and forced completable sets that whenever one half of a complement

pair is included in a partial SCMS, its partner is immediately forced. For the purpose of the

following analysis of unavoidable sets it is assumed that for any partial SCMS considered,
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either both triples of a given complement pair are included or neither. Hence any unavoidable

set will be a collection of paired cells.

3.4.1 Proper and Improper Unavoidable Sets

In order for a partial SCMS to be completed as a puzzle it must be strongly completable.

In this thesis a grid is considered a puzzle only if it is solvable using logical deductions

and therefore a weakly, uniquely completable grid which requires some trial and error is

not considered a puzzle. From Definition 3.32, condition (1) relates to a legitimate puzzle

and is referred to as a proper unavoidable set. In this thesis, interest extends beyond

the properties of SCMS relating to puzzles, as defined here, in particular as the analysis

of PSCMS of order 5 explored non-equivalent completions (Section 2.2.3). Therefore the

unavoidable sets relating to Definition 3.32 condition (2) are also of interest, and these

patterns are referred to as improper unavoidable sets.

A complete classification of the unavoidable sets of minimum PSCMS of order 5 is given.

There are only five forms, and these are detailed in Sections 3.4.2 and 3.4.3. Note that all

figures in examples in these sections are formed from the minimum PSCMS of order 5 in

Chapter 2, using logical reasoning and a knowledge of paired values.

Definition 3.34. An unavoidable set is here considered a proper unavoidable set if it

conforms to condition (1) of Definition 3.32.

In such cases AH
n contains multiple completions of the partial grid, Hn, which are non-

equivalent, equivalent or both, and the addition of a further triple constrains the completion

to a unique grid in AH
n .

Definition 3.35. An unavoidable set is here considered an improper unavoidable set if

it conforms to condition (2) of Definition 3.32.

In such cases AH
n contains non-equivalent and equivalent completions of the partial grid Hn,

and the addition of a further triple constrains the completion either to a unique grid or to
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only multiple equivalent grids in AH
n .

Corollary 3.36. Any two empty, non-corner cells in any single row or column of a border

of a SCMS of order n, n ≥ 5, (with their paired cells also empty) form a proper unavoidable

set.

Proof. From Table 1.1 the values in the paired cells in rows (columns) 2, . . . , n−1 of the grid

can be permuted to form another valid completion, and hence the cells form an unavoidable

set.

A Normal SCMS of order 7 from [2] is used in Figure 3.6 to illustrate two separate proper

unavoidable sets, the first in the border of order 7 (highlighted blue) and the second in the

border of order 5 (highlighted grey).

46 1 2 3 42 41 40

45 35 13 14 32 31 5

44 34 28 21 26 16 6

7 17 23 25 27 33 43

11 20 24 29 22 30 39

12 19 37 36 18 15 38

10 49 48 47 8 9 4

Figure 3.6: Normal SCMS of Order 7 Containing Two Unavoidable Sets

Different patterns of empty cells are now explored on partial PSCMS of order 5, completable

to minimum PSCMS, where the interest is in the minimum number of empty cells in a given

form of unavoidable set (defined below).

There are two forms of proper unavoidable set (Definitions 3.37 and 3.42) and an additional

48



three forms of improper unavoidable set (Definitions 3.46, 3.51, 3.56) that can be identified for

SCMS of order 5. These are applied to the minimum PSCMS of order 5 given in Chapter 2.

Forms 1 and 2, proper unavoidable sets (Definitions 3.37 and 3.42) define patterns of empty

cells that are mutually exclusive. Likewise Forms 3, 4 and 5, improper unavoidable sets

(Definitions 3.46, 3.51, 3.56), define patterns of empty cells that are mutually exclusive to

each other and to those patterns of proper unavoidable sets. It is possible, that for multiple

patterns of empty cells, the corresponding partial grids complete to the same PSCMS. That

is, two partial PSCMS with different patterns of empty cells could have one or more of their

completions in common.

Given a PSCMS with fixed prime M , P′ denotes the set of all primes that can be paired to

sum to 2M . Recall from Chapter 2 the minimum PSCMS of order 5 has M = 251, |P′| = 26

and the grids are split into types depending on the subsquare of order 3 and the primes in

the border.

3.4.2 Proper Unavoidable Sets on Minimum PSCMS of Order 5

3.4.2.1 Form 1 Unavoidable Sets on Minimum PSCMS of Order 5

Definition 3.37. Consider a partial PSCMS of order 5, H5, such that all empty cell tuples

form a single unavoidable set and are located within the outer border. If all the multiple

completions of H5, in AH
5 , use a single subset of P′ and are equivalent using the permutations

of paired cells in columns 2, 3, 4 of the grid or the permutations of paired cells in rows 2, 3, 4

of the grid (from Table 1.1) then the unavoidable set is defined to be of Form 1 denoted DH,1
5 .

An unavoidable set of Form 1 is given in Figure 3.7 in a minimum PSCMS of order 5. A

Form 1 unavoidable set is always a proper unavoidable set, and this is shown in Lemma 3.39.

Example 3.38 illustrates a partial PSCMS, H5, multiply completable to minimum PSCMS

of order 5, and its two equivalent completions, |AH
5 | = 2.
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Example 3.38. Figure 3.7 shows a partial PSCMS of order 5 with a Form 1 unavoidable

set of size 4 in cells (1, 2), (1, 3), (5, 2), (5, 3) and the two equivalent completions.

419 401 53

11 461 23 269 491

113 59 251 443 389

263 233 479 41 239

449 101 83

(a) Form 1 Unavoidable Set in a Mini-
mum PSCMS of order 5

419 71 311 401 53

11 461 23 269 491

113 59 251 443 389

263 233 479 41 239

449 431 191 101 83

(b) First Completion of (a)

419 311 71 401 53

11 461 23 269 491

113 59 251 443 389

263 233 479 41 239

449 191 431 101 83

(c) Second Completion of (a)

Figure 3.7: Form 1 Unavoidable Set of Size 4 in a Minimum PSCMS of Order 5 with its
Two Completions

The completions shown in Figures 3.7(b) and 3.7(c) are equivalent, using the same 24 border

pairs, and are minimum PSCMS of order 5 of type 1A using complement sets of primes A1

and A3 from Table 2.2 in Chapter 2. The addition of any triple to the partial PSCMS in

Figure 3.7(a) determines a unique completion, and hence the empty cells describe a proper

unavoidable set.

Lemma 3.39. An unavoidable set of Form 1 is a proper unavoidable set.

Proof. A Form 1 unavoidable set satisfies Definition 3.34 and hence condition (1) of Defini-

tion 3.32.
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Theorem 3.40. If a partial PSCMS, Hn, contains an unavoidable set of Form 1, DH,1
n , then

|DH,1
n | = 4.

Proof. Consider first a partial PSCMS with fewer than four empty cells, it is uniquely com-

pletable. Next consider a partial PSCMS with exactly four empty cells, the addition of any

triple determines a unique completion. Finally, consider a partial PSCMS with more than

four empty cells, the addition of a triple does not guarantee a uniquely completable grid.

Corollary 3.41. If a partial PSCMS, H5, completable to a minimum PSCMS, contains an

unavoidable set of Form 1, DH,1
5 , then |DH,1

5 | = 4.

Proof. Follows immediately from Theorem 3.40.

3.4.2.2 Form 2 Unavoidable Sets on Minimum PSCMS of Order 5

Definition 3.42. Consider a partial PSCMS of order 5, H5, such that all empty cell tuples

form a single unavoidable set and are located within the outer border. If all the multiple

completions of H5, in AH
5 , are non-equivalent and each completion uses a different subset of

P′, then the empty cell tuples form an unavoidable set of Form 2 denoted DH,2
5 .

An unavoidable set of Form 2 is given in Example 3.43 in a minimum PSCMS of order 5,

this is a minimal unavoidable set of Form 2 and is a proper unavoidable set, and this is

shown in Lemma 3.44. If a partial PSCMS of order 5 has an unavoidable set of Form 2, then

there are multiple completions and these are all non-equivalent. Example 3.43 illustrates

a partial PSCMS, H5, multiply completable to minimum PSCMS of order 5, and its two

non-equivalent completions, |AH
5 | = 2.

Example 3.43. Figure 3.8 shows a partial PSCMS of order 5 with a Form 2 unavoidable set

of size 6 in cells (1, 4), (1, 5), (4, 1), (4, 5), (5, 1), (5, 4) and the two non-equivalent completions.
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311 11 113

149 461 23 269 353

263 59 251 443 239

233 479 41

491 389 191

(a) Minimal Form 2 Unavoidable Set in
a Minimum PSCMS of order 5

311 11 113 419 401

149 461 23 269 353

263 59 251 443 239

431 233 479 41 71

101 491 389 83 191

(b) First Completion of (a)

311 11 113 401 419

149 461 23 269 353

263 59 251 443 239

449 233 479 41 53

83 491 389 101 191

(c) Second Completion of (a)

Figure 3.8: Minimal Form 2 Unavoidable Set of Size 6 in a Minimum PSCMS of Order 5
with its Two Completions

The completions shown in Figures 3.8(b) and 3.8(c) are non-equivalent and use different

subsets of P′. Both of these completions are minimum PSCMS of order 5, the first completion

is of type 1C using complement sets of primes C3 and C4 from Table 2.4 and the second

completion is of type 1B using complement sets of primes B1 and B3 from Table 2.3. The

addition of any triple to the partial PSCMS in Figure 3.8(a) determines a unique completion,

and hence the empty cells describe a proper unavoidable set.

Lemma 3.44. An unavoidable set of Form 2 is a proper unavoidable set.

Proof. A Form 2 unavoidable set satisfies Definition 3.34 and hence condition (1) of Defini-

tion 3.32.

Theorem 3.45. If a partial PSCMS, H5, completable to a minimum PSCMS, contains an

unavoidable set of Form 2, DH,2
5 , then |DH,2

5 | ≥ 6, and partial PSCMS of order 5 exist that
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contain such unavoidable sets of size 6.

Proof. Consider first a partial PSCMS, completable to a minimum PSCMS of order 5, with

fewer than six empty cells. Assume for contradiction that the grid has four empty cells then

either it is uniquely completable, and hence the cells do not form an unavoidable set, or it

is a Form 1 unavoidable set. Now assume that the grid has any fewer than four empty cells,

then it does not contain an unavoidable set as the grid is uniquely completable. An example

of an unavoidable set, DH,2
5 , for which |DH,2

5 | = 6 is given in Figure 3.8.

3.4.3 Improper Unavoidable Sets on Minimum PSCMS of

Order 5

3.4.3.1 Form 3 Unavoidable Sets on Minimum PSCMS of Order 5

Definition 3.46. Consider a partial PSCMS of order 5, H5, such that all empty cell tuples

form a single unavoidable set and are located in both the outer border and the subsquare of

order 3. For the empty cell tuples to form an unavoidable set of Form 3, denoted DH,3
5 , then:

(1) all completions of H5, in AH
5 , that use the same subset of P′ are equivalent; and

(2) all completions of H5, in AH
5 , that use different subsets of P′ are non-equivalent.

It follows that a partial PSCMS, completable to a minimum PSCMS of order 5, having a

single unavoidable set of Form 3 will have multiple equivalent and non-equivalent completions

and trivially all completions that have different subsquares of order 3 are non-equivalent.

Figure 3.9(a) shows a minimal unavoidable set of Form 3 in a minimum PSCMS of order

5. If a minimum PSCMS of order 5 has a Form 3 unavoidable set then there are empty

cells in both the border of order 3 and the border of order 5. The fixing of any empty

cell either gives a uniquely completable partial PSCMS or it gives a partial PSCMS where

all completions are equivalent. Example 3.47 illustrates a partial PSCMS, H5, multiply
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completable to minimum PSCMS of order 5, and its two non-equivalent completions. The

multiple equivalent completions are not given.

Example 3.47. Figure 3.9 shows a partial PSCMS of order 5 with a Form 3 unavoidable

set of size 12 in cells (1, 3), (1, 5), (2, 2), (2, 3), (2, 4), (3, 1), (3, 5), (4, 2), (4, 3), (4, 4),

(5, 1), (5, 3) and the two non-equivalent completions.

353 11 401

191 311

59 251 443

389 113

491 101 149

(a) Minimal Form 3 Unavoidable Set in
a Minimum PSCMS of order 5

353 11 41 401 449

191 431 83 239 311

269 59 251 443 233

389 263 419 71 113

53 491 461 101 149

(b) First Completion of (a); note each
added complement pair is given a dis-
tinct colour

353 11 71 401 419

191 461 23 269 311

239 59 251 443 263

389 233 479 41 113

83 491 431 101 149

(c) Second Completion of (a); note
each added complement pair is given a
distinct colour, using the same colours
as in (b) where appropriate.

Figure 3.9: Minimal Form 3 Unavoidable Set of Size 12 in a Minimum PSCMS of Order
5 with its Two Non-Equivalent Completions
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The completions shown in Figures 3.9(b) and 3.9(c) are non-equivalent and use different sub-

sets of P′. Both of these completions are minimum PSCMS of order 5, the first completion

is of type 2H using complement sets of primes H1 and H2 from Table 2.5 and the second

completion is of type 1C using complement sets of primes C1 and C2 from Table 2.5. The

addition of any triple to the partial PSCMS in Figure 3.9(a) determines either a unique com-

pletion or multiple equivalent completions, and hence the empty cells describe an improper

unavoidable set.

Lemma 3.48. An unavoidable set of Form 3 is an improper unavoidable set.

Proof. A Form 3 unavoidable set satisfies Definition 3.35 and hence condition (2) of Defini-

tion 3.32.

Example 3.49 repeats the partial PSCMS from Figure 3.9(a) and illustrates the outcome of

the addition of two different triples, the first producing a partial PSCMS that is completable

to two equivalent grids and the second producing a uniquely completable partial PSCMS.

Hence the unavoidable set is improper.

Example 3.49. Figure 3.10(a) shows a partial PSCMS, completable to a minimum PSCMS

of order 5, with a Form 3 unavoidable set of size 12. Figure 3.10(b) shows, in yellow, the

triple (1,3,41) added to (a) and the two equivalent completions are given in Figures 3.10(c)

and 3.10(d). Figure 3.10(e) shows, in yellow, the triple (2,2,431) added to (a) and the one

completion is given in Figure 3.10(f).
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353 11 401

191 311

59 251 443

389 113

491 101 149

(a) Multiply Completable Partial
PSCMS with a Form 3 Improper
Unavoidable Set

353 11 41 401

191 311

59 251 443

389 113

491 101 149

(b) Placing the Triple (1,3,41) into (a)

353 11 41 401 449

191 431 83 239 311

269 59 251 443 233

389 263 419 71 113

53 491 461 101 149

(c) First Completion of (b)

353 11 41 401 449

191 263 419 71 311

269 59 251 443 233

389 431 83 239 113

53 491 461 101 149

(d) Second Completion of (b) Equiva-
lent to (c)

353 11 401

191 431 311

59 251 443

389 113

491 101 149

(e) Placing the triple (2,2,431) into (a)

353 11 41 401 449

191 431 83 239 311

269 59 251 443 233

389 263 419 71 113

53 491 461 101 149

(f) Unique Completion of (e) (which is
also Equal to First Completion of (b))

Figure 3.10: Demonstration of Placing Two Different Triples in a Form 3 Unavoidable set

Theorem 3.50. If a partial PSCMS, H5, completable to a minimum PSCMS of order 5,

contains a Form 3 improper unavoidable set, DH,3
5 , then |DH,3

5 | ≥ 12, and partial PSCMS of

order 5 exist that contain such unavoidable sets of size 12.

56



Proof. There are exactly two possible subsquares for the minimum PSCMS of order 5 and

these differ by three pairs. Hence, in order for the subsquare to have more than one unique

completion there must be six cells empty in the subsquare of order 3. If there are fewer than

four empty cells (two pairs) in the border then it is forced completable and hence the border

is uniquely completable and therefore the grid is uniquely completable.

Recall from Section 2.2.2 for the minimum PSCMS of order 5 |P′| = 26, so each grid uses

twelve pairs out of a possible thirteen and hence each subset can only differ by one pair. If

there are exactly four empty cells in the border then either, the grid is uniquely completable

or all multiple completions of the grid are equivalent. An example of a Form 3 unavoidable

set of size 12 is given in Figure 3.9 and hence the smallest cardinality of a Form 3 unavoidable

set is 12.

3.4.3.2 Form 4 Unavoidable Sets on Minimum PSCMS of Order 5

Definition 3.51. Consider a partial PSCMS of order 5, H5, such that all empty cell tuples

form a single unavoidable set and are located within the outer border. For the empty cell

tuples to form an unavoidable set of Form 4, denoted DH,4
5 , then all completions use the

same subset of P′ for each of the multiple equivalent and non-equivalent completions in AH
5 .

From Definition 3.51, the multiple completions in AH
5 will always be a mix of equivalent and

non-equivalent completions, but the addition of any triple always results in a partial grid

that has multiple equivalent completions. Figure 3.11(a) shows a minimal unavoidable set of

Form 4 in a minimum PSCMS of order 5. Like Form 1 and Form 2, Form 4 unavoidable sets

are comprised of cells entirely in the border of order 5, and contain the minimum number

of empty cells in a border for there to be multiple completions such that at least two are

non-equivalent and the list of primes is fixed. Example 3.52 illustrates a partial PSCMS, H5,

multiply completable to minimum PSCMS of order 5, and its two non-equivalent completions.

The multiple equivalent completions are not given.
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Example 3.52. Figure 3.11 shows a partial PSCMS of order 5 with a Form 4 unavoidable set

of size 8 in cells (1, 2), (1, 3), (2, 1), (2, 5), (4, 1), (4, 5), (5, 2), (5, 3) and the two non-equivalent

completions.

101 449 431

461 23 269

353 59 251 443 149

233 479 41

71 53 401

(a) Minimal Form 4 Unavoidable Set in
a Minimum PSCMS of order 5

101 11 263 449 431

311 461 23 269 191

353 59 251 443 149

419 233 479 41 83

71 491 239 53 401

(b) First Completion of (a)

101 83 191 449 431

239 461 23 269 263

353 59 251 443 149

491 233 479 41 11

71 419 311 53 401

(c) Second Completion of (a)

Figure 3.11: Minimal Form 4 Unavoidable Set of Size 8 in a Minimum PSCMS of Order
5 with its Two Non-Equivalent Completions

The completions shown in Figures 3.11(b) and 3.11(c) are non-equivalent and use the same

subset of P′. Both completions are minimum PSCMS of order 5, the first completion is of type

1F using complement sets of primes F3 and F4 from Table 2.4 and the second completion is

of type 1F using complement sets of primes F5 and F6 from Table 2.4. The addition of any

triple to the partial PSCMS in Figure 3.11(a) determines multiple equivalent completions,

and hence the empty cells describe an improper unavoidable set.
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Lemma 3.53. An unavoidable set of Form 4 is an improper unavoidable set.

Proof. A Form 4 unavoidable set satisfies Definition 3.35 and hence condition (2) of Defini-

tion 3.32.

Example 3.54 repeats the partial PSCMS from Figure 3.11(a) and illustrates the outcome of

the addition of a triple, producing a partial PSCMS that is completable to two equivalent

grids. Hence the unavoidable set is improper.

Example 3.54. Figure 3.12(a) shows a partial PSCMS, completable to a minimum PSCMS

of order 5, with a Form 4 unavoidable set of size 8. Figure 3.12(b) shows, in yellow, the

triple (1,2,11) added to (a) and the two equivalent completions are given in Figures 3.12(c)

and 3.12(d).

101 449 431

461 23 269

353 59 251 443 149

233 479 41

71 53 401

(a) Multiply Completable Partial
PSCMS with a Form 4 Improper
Unavoidable Set

101 11 449 431

461 23 269

353 59 251 443 149

233 479 41

71 53 401

(b) Placing the Triple (1,2,11) into (a)

101 11 263 449 431

311 461 23 269 191

353 59 251 443 149

419 233 479 41 83

71 491 239 53 401

(c) First Completion of (b)

101 11 263 449 431

419 461 23 269 83

353 59 251 443 149

311 233 479 41 191

71 491 239 53 401

(d) Second Completion of (b) Equiva-
lent to (c)

Figure 3.12: Demonstration of Placing a Triple in a Form 4 Unavoidable Set
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Theorem 3.55. If a partial PSCMS, H5, completable to a minimum PSCMS, contains an

unavoidable set of Form 4, DH,4
5 , then |DH,4

5 | ≥ 8, and partial PSCMS of order 5 exist that

contain such unavoidable sets of size 8.

Proof. Consider first a partial PSCMS, completable to a minimum PSCMS of order 5, with

fewer than six empty cells. If the grid has four empty cells then either it is uniquely com-

pletable, and hence the cells do not form an unavoidable set, or it has a Form 1 unavoidable

set. Any fewer than four cells can never be an unavoidable set as the grid is always uniquely

completable. If the partial PSCMS had exactly six empty cells, then it is immediately

uniquely completable, or completable only to equivalent grids, as the subset of P′ is fixed.

An example of an unavoidable set, DH,4
5 , for which |DH,4

5 | = 8 is given in Figure 3.11.

3.4.3.3 Form 5 Unavoidable Sets on Minimum PSCMS of Order 5

Definition 3.56. Consider a partial PSCMS of order 5, H5, such that all empty cell tuples

form a single unavoidable set and are located in both the outer border and the subsquare of

order 3. For the empty cell tuples to form an unavoidable set of Form 5, denoted DH,5
5 ,

then all completions use the same subset of P′, there are completions with each of the two

subsquares of order 3 present, and all completions having the same subsquare are equivalent.

All grids with Form 5 unavoidable sets have completions using both subsquares, and trivially

all pairs of completions using different subsquares are non-equivalent. As with Form 4, the

multiple completions in AH
5 will always be a mix of equivalent and non-equivalent completions,

but the addition of any triple always results in a partial grid that has multiple equivalent

completions.

Figure 3.13(a) shows a minimal unavoidable set of Form 5 in a minimum PSCMS of order 5.

Example 3.57 illustrates a partial PSCMS, H5, multiply completable to minimum PSCMS

of order 5, and its two non-equivalent completions. The multiple equivalent completions are

not given.
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Example 3.57. Figure 3.13 shows a partial PSCMS of order 5 with a Form 5 unavoidable

set of size 14 in cells (1, 2), (1, 4), (2, 2), (2, 3), (2, 4), (3, 1), (3, 5), (4, 1), (4, 2), (4, 3),

(4, 4), (4, 5), (5, 2), (5, 4) and the two non-equivalent completions.

311 53 401

113 389

59 251 443

101 449 191

(a) Minimal Form 5 Unavoidable Set in
a Minimum PSCMS of order 5

311 71 53 419 401

113 461 23 269 389

239 59 251 443 263

491 233 479 41 11

101 431 449 83 191

(b) First Completion of (a)

311 11 53 479 401

113 431 83 239 389

269 59 251 443 233

461 263 419 71 41

101 491 449 23 191

(c) Second Completion of (a)

Figure 3.13: Minimal Form 5 Unavoidable Set of Size 14 in a Minimum PSCMS of order
5 with its Two Non-Equivalent Completions

The completions shown in Figures 3.13(b) and 3.13(c) are non-equivalent and use the same

subset of P′. Both completions are minimum PSCMS of order 5, the first completion is of type

1A using complement sets of primes A1 and A3 from Table 2.2 and the second completion is

of type 2C using complement sets of primes C1 and C2 from Table 2.4. The addition of any

triple to the partial PSCMS in Figure 3.13(a) determines multiple equivalent completions,

and hence the empty cells describe an improper unavoidable set.

A further, detailed analysis of minimal Form 5 unavoidable sets in the minimum PSCMS of

order 5 from Chapter 2 is given later in the section. It shall be determined, given a partial

PSCMS, completable to a minimum PSCMS of order 5, with a Form 5 unavoidable set, that
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there are two non-equivalent completions, one of which is a grid of type 1 and the other is a

grid of type 2. This is discussed in Theorem 3.64.

Lemma 3.58. An unavoidable set of Form 5 is an improper unavoidable set.

Proof. A Form 5 unavoidable set satisfies Definition 3.35 and hence condition (2) of Defini-

tion 3.32.

Example 3.59 repeats the partial PSCMS from Figure 3.13(a) and illustrates the outcome of

the addition of a triple, producing a partial PSCMS that is completable to four equivalent

grids. Hence the unavoidable set is improper.

Example 3.59. Figure 3.14(a) shows a partial PSCMS, completable to a minimum PSCMS

of order 5, with a Form 5 unavoidable set of size 14. Figure 3.14(b) shows, in yellow, the triple

(1,2,71) added to (a) and the four equivalent completions are given in Figures 3.14(c), 3.14(d), 3.14(e)

and 3.14(f).
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311 53 401

113 389

59 251 443

101 449 191

(a) Multiply Completable Partial
PSCMS with a Form 5 Improper
Unavoidable Set

311 71 53 401

113 389

59 251 443

101 449 191

(b) Placing the Triple (1,2,71) into (a)

311 71 53 419 401

113 461 23 269 389

239 59 251 443 263

491 233 479 41 11

101 431 449 83 191

(c) First Completion of (b)

311 71 53 419 401

113 461 23 269 389

491 59 251 443 11

239 233 479 41 263

101 431 449 83 191

(d) Second Completion of (b) Equiva-
lent to (c)

311 71 53 419 401

113 233 479 41 389

239 59 251 443 263

491 461 23 269 11

101 431 449 83 191

(e) Third Completion of (b) Equivalent
to (c) and (d)

311 71 53 419 401

113 233 479 41 389

491 59 251 443 11

239 461 23 269 263

101 431 449 83 191

(f) Fourth Completion of (b) Equiva-
lent to (c), (d) and (e)

Figure 3.14: Demonstration of Placing a Triple in a Form 5 Unavoidable set

Lemma 3.60. If a partial PSCMS, H5, completable to a minimum PSCMS, contains an

unavoidable set of Form 5, DH,5
5 , then |DH,5

5 | ≥ 12.

Proof. There exist two unique subsquares of order 3 for the minimum PSCMS of order 5,

and these subsquares consist of the centre cell value M and four pairs of complement primes,

63



one of which is common to both subsquares. Hence, the existence of completions using both

subsquares requires that three paired cells (six cells) are empty in the centre subsquare and

three paired cells (six cells) in the border are empty. Therefore, at least twelve cells are

empty. If fewer cells are empty in the border, since all completions use the same subset of P′

the partial grid is completable only to equivalent grids.

If three pairs of cells are empty in the subsquare of order 3 and three pairs are empty in

the border, there are five distinctly different patterns in which these empty cells could be

arranged, shown in Figure 3.15 where the cells with letters are the empty ones.

g h i

a b c

d e f

j k l

(a) Case 1

g

i a b c k

j l

d e f

h

(b) Case 2

g

h a b c j

i k

d e f

l

(c) Case 3

g h

i a b c j

d e f

k l

(d) Case 4

i k g

a b c

d e f

h l j

(e) Case 5

Figure 3.15: Patterns of Twelve Empty Cells in Grids of Order 5 Where Six of the Empty
Cells are in the Order 3 Subsquare

It will now be shown that none of these patterns of twelve empty cells can form a Form 5

unavoidable set.

Lemma 3.61. There is no unavoidable set of Form 5, DH,5
5 , such that |DH,5

5 | = 12.

Proof. It can easily be seen that the patterns relating to Cases 2 and 3 in Figure 3.15 are

always completable only to equivalent grids since they contain a forced completable cell in the
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border. Now considering Cases 3, 4 and 5, for every pattern of empty cells, where M = 251,

either the partial grid is completable only to equivalent grids or the multiple completions

use different lists of primes. Hence there are no Form 5 unavoidable sets in any minimum

PSCMS of order 5 having only twelve empty cells.

Theorem 3.62. If a partial PSCMS, H5, completable to a minimum PSCMS, contains an

unavoidable set of Form 5, DH,5
5 , then |DH,5

5 | ≥ 14, and partial PSCMS of order 5 exist that

contain such unavoidable sets of size 14.

Proof. From Lemmas 3.60 and 3.61, |DH,5
5 | > 12. Since an unavoidable set consists of paired

cells, then |DH,5
5 | ≥ 14, and an example of an unavoidable set of Form 5 consisting of 14 cells

is given in Example 3.57.

If a partial PSCMS, completable to a minimum PSCMS of order 5 (given in Chapter 2),

contains a single Form 5 unavoidable set, then it has completions including both subsquares

of order 3. The requirement to use the same subset of P′ to complete the grid restricts the

completions to two non-equivalent grids, one of which is type 1 and one of which is type

2. This establishes a relationship between pairs of specific subtypes. The following Lemma

establishes which subtypes cannot be in such a pairing, and Theorem 3.64 specifies all valid

pairings.

Lemma 3.63. No unavoidable set of Form 5 exists in minimum PSCMS of order 5 of types

1B, 2A, 2G, 2H or 2F.

Proof. For a minimum PSCMS of order 5, P′ = {11, 23, 41, 53, 59, 71, 83, 101, 113, 149,

191, 233, 239, 263, 269, 311, 353, 389, 401, 419, 431, 443, 449, 461, 479, 491}.

For type 1B the omitted pair is (71, 431), which occurs in the subsquare of type 2. Hence an

unavoidable set of Form 5 does not exist in a PSCMS of type 1B.

For types 2A, 2G and 2H the omitted pairs are (233, 269), (41, 461) and (23, 479) respectively,

which all occur in the subsquare of type 1. Hence an unavoidable set of Form 5 does not

exist in PSCMS of types 2A, 2G and 2H.
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For type 2F the omitted pair is (101, 401), which is not found in the type 1 subsquare, however

it is in every type 1 border of order 5. Hence an unavoidable set of Form 5 does not exist in

a PSCMS of type 2F.

Theorem 3.64. Form 5 unavoidable sets exist in minimum PSCMS of order 5 of types 1A,

1C, 1D, 1E, 1F, 2B, 2C, 2D, 2E, 2I.

Proof. For a minimum PSCMS of order 5, P′ = {11, 23, 41, 53, 59, 71, 83, 101, 113, 149,

191, 233, 239, 263, 269, 311, 353, 389, 401, 419, 431, 443, 449, 461, 479, 491}.

Consider a partial PSCMS, H5, completable to a minimum PSCMS, with an unavoidable

set of Form 5. If H5 is completable using P′ by omitting the pair (149, 353) then H5 is

completable to either type 1A or type 2C, and |AH
5 | > 2, exactly two of which are non-

equivalent. If the omitted pair from P′ is (53, 449) then H5 is completable to either type 1C

or type 2D, and |AH
5 | > 2, exactly two of which are non-equivalent. If the omitted pair from

P′ is (11, 491) then H5 is completable to either type 1D or type 2I, and |AH
5 | > 2, exactly two

of which are non-equivalent. If the omitted pair from P′ is (191, 311) then H5 is completable

to either type 1E or type 2B, and |AH
5 | > 2, exactly two of which are non-equivalent. If the

omitted pair from P′ is (113, 389) then H5 is completable to either type 1F or type 2E, and

|AH
5 | > 2, exactly two of which are non-equivalent.

3.4.3.4 Summary of Unavoidable Sets on Minimum PSCMS of Order 5

Theorem 3.65. If a partial PSCMS, H5, completable to a minimum PSCMS, contains an

unavoidable set of:

(1) Form 1, the minimum cardinality of the unavoidable set is 4.

(2) Form 2, the minimum cardinality of the unavoidable set is 6.

(3) Form 3, the minimum cardinality of the unavoidable set is 12.

(4) Form 4, the minimum cardinality of the unavoidable set is 8.
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(5) Form 5, the minimum cardinality of the unavoidable set is 14.

Proof. Follows from Theorems 3.40, 3.45, 3.50, 3.55 and 3.62.

It can be noted that, from Definition 3.15, a forced completable set of a SCMS, Fn, is a

set of triples such that the partial SCMS, Hn, so defined is strongly completable. A forced

completable set ensures that there are no possible unavoidable sets of any form in the partial

completable grid. If this is not the case then the grid is not strongly completable. Hence,

the forced completable set includes at least one triple from every possible unavoidable set.

3.5 Conclusion of Partial SCMS

Generalising known concepts for Latin Squares and Sudoku grids, definitions of completability

are defined for Magic Squares. The notion that a strongly completable grid is a valid puzzle

is introduced as such a grid is completable using logical deductions. The idea of a forced

completable set is then defined as the set of triples specifying the non-empty cells of a

strongly completable partial SCMS, before defining a critical set of a SCMS as a set of triples

which specify the non-empty cells of a uniquely completable SCMS. The latter differs from

a forced completable set as grids exist that are weakly uniquely completable. Comparisons

are then made between the cardinality of forced completable sets and critical sets and the

minimal cardinality in each case is found in a minimum PSCMS of order 5 from Chapter 2.

This is followed by the introduction of unavoidable sets, again a concept from Latin Squares

literature, however these differ because of the added constraints of a SCMS, namely the grid

being strictly concentric and all values being distinct. Due to the complex nature of these

unavoidable sets they are split into proper/improper categories and subcategorised into forms

based on cell patterns. The cardinality of each form of unavoidable set is investigated for the

minimum PSCMS of order 5 (given in Chapter 2).
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Chapter 4

Prime Strictly Concentric Magic

Squares of Higher Order

Having provided the foundational work concerning properties of SCMS and PSCMS, and the

enumeration of minimum PSCMS of order 5, it is now possible to explore PSCMS of higher

order. Recall that no formal results on PSCMS of higher order are present in the literature.

In this Chapter, fundamental work is presented on PSCMS of higher order. Section 4.1

provides an algorithm for the construction of minimum PSCMS of order 7, and a full novel

enumeration with some analysis. Then a general algorithm for minimum PSCMS of order

n, n odd, is given with a discussion of why enumeration rapidly increases in complexity

with increasing order. Section 4.2 explores PSCMS of even order and new definitions are

given where they necessarily differ from the odd order. An algorithm for the construction of

minimum PSCMS of order 6 is given, followed by a general algorithm for minimum PSCMS

of order n, n even.

4.1 General PSCMS of Odd Order

Using the definitions in Chapters 1 and 2, recall the following information for PSCMS of odd

order. From Theorem 1.12, the number of border pairs of a SCMS of order n, n odd, is n2−1
2
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and so in order to form a PSCMS of order n, n odd, there must exist a prime M and n2−1
2

pairs of complement primes summing to 2M . Then from Theorem 2.1, the Magic Square has

magic constant Sn = nM .

4.1.1 Minimum PSCMS of Order 7

4.1.1.1 Introduction

A SCMS of order 7 comprises a centre cell value, M , and twenty-four distinct pairs of values

summing to 2M , four of which surround the centre cell forming the subsquare of order 3,

eight of which form the border of the subsquare of order 5, and twelve of which form the

outer border of order 7. One such order 7 border example is shown in Figure 4.1(a) and one

such order 5 border example is shown in Figure 4.1(b) with one border pair in each shaded

in grey. By Lemma 2.1, a SCMS of order 7 has magic constant S7 = 7M .

Recall, from Definition 1.17, a minimum PSCMS has minimum M value. From Lemma 2.20,

the minimum PSCMS of order 7 cannot have a minimum PSCMS of order 5 as a subsquare,

and nor can it have a minimum PSCMS of order 3 as a subsquare due to the requirement

on M. A minimum PSCMS of order 7 is given in [25] to have S7 = 4, 487 with centre cell

value M = 641, and border pairs summing to 2M = 1, 282. The magic constant for the

subsquare of order 5 is 5M = 3, 205 and the magic constant for the subsquare of order 3 is

3M = 1, 923, as is evident in Figure 4.1(c). It is proved by the current author in Lemma 4.1

that the minimum PSCMS of order 7 has M = 641 and hence from Lemma 2.1, S7 = 4, 487

and therefore the placement of primes in Figure 4.1 (generated by [42]) form a minimum

PSCMS of order 7.
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1151 311 461 521 881 929 233

59 1223

251 1031

269 641 1013

599 683

1109 173

1049 971 821 761 401 353 131

(a) Border of a Minimum PSCMS of Order 7
With Centre Cell Value 641 with one Border Pair
Shaded in Grey

1277 263 773 839 53

89 1193

191 641 1091

419 863

12291019 509 443 5

(b) Border of Order 5 of a Minimum PSCMS of
Order 7 With Centre Cell Value 641 with one Bor-
der Pair Shaded in Grey

1181 179 563

23 641 1259

719 1103 101

(c) Magic Subsquare of Order 3 for a Minimum
PSCMS of Order 7

Figure 4.1: Border and Magic Subsquares of Order 3 and Order 5 for a Minimum PSCMS
of Order 7

Recall that P denotes the set of all primes numbers and P′ any subset of P.

Lemma 4.1. The minimum PSCMS of order 7 has centre cell value of 641 and magic

constant of 4,487.

Proof. Assume for contradiction that the centre cell value, M, is less than 641. Let P be

the set of all prime numbers. To construct a PSCMS for which M < 641 and prime, there

must exist at least twenty-four distinct pairs of complement primes xi, x̄i ∈ P such that

xi + x̄i = 2M , where xi, x̄i are the values in paired cells. These pairs of complement primes
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form P′. Four of these pairs form the border pairs (B3) of the subsquare of order 3, eight

form the border pairs (B5) of the subsquare of order 5, and twelve form the outer border

pairs (B7) of the PSCMS of order 7. There does not exist a prime M < 641 for which there

are twenty-four such pairs of complement primes. It is known that a PSCMS of order 7 with

centre cell value 641 exists, and one example is given in Figure 4.2. Hence, any PSCMS of

order 7 with centre cell value 641 and magic constant S7 = 4, 487 is a minimum PSCMS.

1151 311 461 521 881 929 233

59 1277 263 773 839 53 1223

251 89 1181 179 563 1193 1031

269 191 23 641 1259 1091 1013

599 419 719 1103 101 863 683

1109 1229 1019 509 443 5 173

1049 971 821 761 401 353 131

Figure 4.2: A Minimum PSCMS of Order 7

4.1.1.2 Construction of Minimum PSCMS of Order 7

Having established M for all minimum PSCMS of order 7, this section details the construction

of such a square.

Lemma 4.2. There are six possible non-equivalent magic subsquares of order 3 for the min-

imum PSCMS of order 7.

Proof. Given the centre cell value M = 641, it can be easily determined that there are twenty-

four pairs of complement primes satisfying Lemma 2.2, with squares given in Figure 4.3.
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To enumerate the minimum PSCMS of order 7, either the PSCMS of order 5 with M = 641

can be generated to explore whether a border can be added to form a grid of order 7, or the

grids of order 7 can be formed directly around the grids of order 3 from Figure 4.3.

Consider first the generation of the PSCMS of order 5 with M = 641. The current author

requested that a computationally efficient program be written to employ Algorithms 2 and 3

[42]. Results given in previous chapters were calculated by the current author, and checked

using this implementation of algorithms devised by the author. In this chapter, due to

the number of the PSCMS, this implementation of the algorithms was used to provide the

results. The program generated 162436 PSCMS of order 5. Two illustrative examples are

given in Figure 4.4, the first (Figure 4.4(a)) containing magic subsquare 1 of order 3 shown in

Figure 4.3(a) and the second (Figure 4.4(b)) containing magic subsquare 6 of order 3 shown

in Figure 4.3(f). Figure 4.4 also shows two examples of PSCMS of order 7 with the first

(Figure 4.4(c)) containing the grid in Figure 4.4(a) as the magic subsquare of order 5 and the

second (Figure 4.4(d)) containing the grid in Figure 4.4(b) as the magic subsquare of order

5. It is not known a priori which PSCMS of order 5 are subsquares of valid PSCMS of order

7 and, given the large number of generated PSCMS of order 5, it is considered beyond the

scope of this thesis to explore them.

Consider instead forming the PSCMS of order 7 around one of the six grids of order 3. The

existing program [42] enables manual entry of a subsquare of order i for i ≥ 1 and odd, into an

empty grid of order n and (if computationally feasible) the PSCMS of order n are generated.

While the entry of 162436 grids of order 5 was infeasible as an approach to generate the grids

of order 7, having only six grids of order 3 to enter made this a feasible approach.
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1181 179 563

23 641 1259

719 1103 101

(a) Magic Subsquare 1

1151 173 599

89 641 1193

683 1109 131

(b) Magic Subsquare 2

971 599 353

23 641 1259

929 683 311

(c) Magic Subsquare 3

971 443 509

179 641 1103

773 839 311

(d) Magic Subsquare 4

971 353 599

269 641 1013

683 929 311

(e) Magic Subsquare 5

761 599 563

443 641 839

719 683 521

(f) Magic Subsquare 6

Figure 4.3: The Six Non-Equivalent Magic Subsquares of Order 3 for a Minimum PSCMS
of Order 7
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761 173 443 1229 599

1193 1181 179 563 89

509 23 641 1259 773

59 719 1103 101 1223

683 1109 839 53 521

(a) Magic Subsquare of Order 5 with Subsquare 1
(Figure 4.3(a)) of Order 3

821 233 419 1223 509

1277 761 599 563 5

311 443 641 839 971

23 719 683 521 1259

773 1049 863 59 461

(b) Magic Subsquare of Order 5 with Subsquare 6
(Figure 4.3(f)) of Order 3

881 251 269 419 929 1277 461

1091 761 173 443 1229 599 191

1019 1193 1181 179 563 89 263

311 509 23 641 1259 773 971

233 59 719 1103 101 1223 1049

131 683 1109 839 53 521 1151

821 1031 1013 863 353 5 401

(c) PSCMS of Order 7 with (a) as the Subsquare
of Order 5

1019 251 269 353 1091 1103 401

1193 821 233 419 1223 509 89

1109 1277 761 599 563 5 173

131 311 443 641 839 971 1151

101 23 719 683 521 1259 1181

53 773 1049 863 59 461 1229

881 1031 1013 929 191 179 263

(d) PSCMS of Order 7 with (b) as the Subsquare
of Order 5

Figure 4.4: Two Examples of Magic Subsquares of Order 5 Generated by [42] and
Completed to Minimum PSCMS of Order 7

All minimum PSCMS of order 7 consist of a centre cell value and twenty-four pairs of comple-

ment primes formed from the following set of 48 prime numbers: P′ = {5, 23, 53, 59, 89, 101, 131,

173, 179, 191, 233, 251, 263, 269, 311, 353, 401, 419, 443, 461, 509, 521, 563, 599, 683, 719, 761, 773,

821, 839, 863, 881, 929, 971, 1013, 1019, 1031, 1049, 1091, 1103, 1109, 1151, 1181, 1193, 1223, 1229,

1259, 1277}. All minimum PSCMS of order 7 include all the primes in this set as there are

exactly the number required to fill a grid of order 7.
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Algorithm 3 uses Algorithm 2 to form a subsquare of order 5, with chosen M and P′, before

using a similar process to construct a PSCMS of order 7 around the given subsquare, if one

exists.

Algorithm 3 Algorithm to form a PSCMS of order 7

1: Begin
2: Input M and form P′, the set of all primes that form pairs summing to 2M .
3: repeat
4: Construct a PSCMS of order 5 with chosen M and P′ using Algorithm 2.
5: Place the magic subsquare of order 5, with centre cell value M , into the centre of an

empty grid of order 7.
6: Form a set Q of the primes from P′ not used in the subsquare.
7: repeat
8: Take a set of seven distinct non-paired primes from Q that sum to 7M , to form a

set S, and their complements to form a set S̄.
9: Take a set of five distinct non-paired primes from Q to form a set T , and their

complements to form a set T̄ .
10: repeat
11: Take an element x of S, and an element y of S̄ that is not paired with x.
12: Let X be the sum of x, y and the elements of T .
13: until X = 7M , or no further combinations of x, y are possible.
14: until X = 7M , or no further combinations of S are possible.
15: until X = 7M , or no further PSCMS of order 5 can be generated using Algorithm 2.
16: if X = 7M then
17: Begin
18: Place x in (1, 1), y in (1, 7) removing them from S and S̄, and place their complements

in the paired cells, removing them from S̄ and S.
19: Place the elements of T in (1, 2), (1, 3), (1, 4), (1, 5), (1, 6) in any order, and place their

complements from T̄ in the paired cells.
20: Place the remaining elements of S in (2, 1), (3, 1), (4, 1), (5, 1), (6, 1) in any order and

place their complements from S̄ in the paired cells.
21: End
22: else
23: No PSCMS exists for the placed centre subsquare.
24: end if
25: End

Theorem 4.3. A minimum PSCMS of order 7 with centre cell value 641 is always formed

using Algorithm 3 when magic subsquare 1,2,3,4,5 or 6 (shown in Figure 4.3) is placed in

the centre of the grid.
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Proof. For M = 641, the set of complement primes (primes summing to 1282) P′ = {5, 23, 53,

59, 89, 101, 131, 173, 179, 191, 233, 251, 263, 269, 311, 353, 401, 419, 443, 461, 509, 521, 563, 599,

683, 719, 761, 773, 821, 839, 863, 881, 929, 971, 1013, 1019, 1031, 1049, 1091, 1103, 1109, 1151,

1181, 1193, 1223, 1229, 1259, 1277}. Recall from Definition 2.3 that all border pairs are pairs

of complement primes. Twenty-four of these primes must be used in the subsquare of order

5 and removed from P′ to form a set Q.

In each case the remaining twenty-four primes are all used in the border of order 7. Using a

valid subsquare of order 5, there are seven distinct pairs of complement primes in Q which

satisfy conditions (1) and (3) below. From the remaining primes in Q it is possible to check

that there are always five more pairs of complement primes that can be chosen to satisfy

conditions (2) and (4) below.

(1) a11 + a12 + a13 + a14 + a15 + a16 + a17 = 4487

(2) a11 + a21 + a31 + a41 + a51 + a61 + a71 = 4487

(3) a71 + a72 + a73 + a74 + a75 + a76 + a77 = 4487

(4) a17 + a27 + a37 + a47 + a57 + a67 + a77 = 4487.

The primes are placed in the manner specified in Algorithm 3 (with the subsquare of order

5 having been determined in line 4, through a call to Algorithm 2, the paired values being

determined in lines 7 to 15, and the border of the PSCMS of order 7 then being filled by

lines 18 to 20). A minimum PSCMS is thereby formed.

4.1.1.3 Enumeration of Minimum PSCMS of Order 7

The program based on Algorithm 3 [42], and Table 1.1 are used to determine the number

of minimum PSCMS of order 7. Firstly, each of the six magic subsquares of order 3 with

M = 641, shown in Figure 4.3, are placed into an empty grid of order 5 and the number of

PSCMS of order 5 with each magic subsquare of order 3 is:
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(1) 28594 with magic subsquare 1

(2) 31462 with magic subsquare 2

(3) 28591 with magic subsquare 3

(4) 27001 with magic subsquare 4

(5) 26136 with magic subsquare 5

(6) 20652 with magic subsquare 6

These six values give a total of 162436 non-equivalent Magic Squares of order 5 which could

potentially be subsquares of a minimum PSCMS of order 7.

As discussed in Section 4.1.1.2, the subsquares of order 3 are used to generate the grids of

order 7 rather than the subsquares of order 5. Therefore, each of the six magic subsquares of

order 3 with M = 641 are placed into an empty grid of order 7 and the number of PSCMS

of order 7 with each magic subsquare of order 3 is:

(1) 2255115 with magic subsquare 1

(2) 2383510 with magic subsquare 2

(3) 2008431 with magic subsquare 3

(4) 1782479 with magic subsquare 4

(5) 1777400 with magic subsquare 5

(6) 1261292 with magic subsquare 6

This gives a total of 11,468,227 non-equivalent minimum PSCMS of order 7.

Lemma 4.4. There are 11,468,227 non-equivalent minimum PSCMS of order 7.
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Proof. Using centre cell value 641 and the list of primes P′, there are six Magic Squares of

order 3 and each of these are magic subsquares of minimum PSCMS of order 7. The total of

the generated squares with each of the six subsquares of order 3 is 11,468,227.

Theorem 4.5. There are 3,043,905,984,921,600 minimum PSCMS of order 7 and these have

magic constant 4,487.

Proof. This proof follows directly from Lemma 4.4 and Equation 1.1 at each border.

4.1.1.4 Conclusion of Minimum PSCMS of Order 7

It has been determined that there exist 11,468,227 non-equivalent minimum PSCMS of order

7, and these have magic constant 4,487. Hence, using the permutations from Table 1.1 there

exist 3,043,905,984,921,600 minimum PSCMS of order 7. Having enumerated the minimum

PSCMS of both order 5 and 7, it can be conjectured that similar techniques could be used to

enumerate higher order PSCMS of order n where n is fixed and odd. Considering the increase

from the number of PSCMS of order 5 to the number of PSCMS of order 7, substantial

computing power is currently necessary in order to gain exact results for any higher order

grid. The minimum centre cell values of PSCMS of odd order 5 to 19 have previously been

determined [25] and using these values the number of Magic Squares of order 3 with the given

centre cell value are generated by the current author using [42].

Order Centre [25] No. Subsquares of Order 3
5 251 2
7 641 6
9 1361 9

11 2411 23
13 3803 38
15 4973 74
17 7541 75
19 10061 119

Table 4.1: Number of Subsquares of Order 3 for Minimum PSCMS
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As the number of potential subsquares of order 3 increases, the number of non-equivalent

Magic Squares of order 5 increases. For the minimum PSCMS of order 5 there are 35 non-

equivalent squares, for the minimum PSCMS of order 7 there are 162436 Magic Squares of

order 5 with M = 641 and for the minimum PSCMS of order 9 there are 13456126 Magic

Squares of order 5 with M = 1361 generated using [42].

4.1.2 Construction of PSCMS of Odd Order

Algorithm 4 uses Algorithm 1 to form a subsquare of order 3, with chosen M and P′, before

using a similar process to construct a PSCMS of order n, n odd, around the given subsquare,

if one exists.
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Algorithm 4 Algorithm to form a PSCMS of order n, n odd

1: Begin
2: Input M and form P′, the set of all primes that form pairs summing to 2M .
3: repeat
4: Construct a PSCMS of order 3 with chosen M and P′ using Algorithm 1.
5: Place the magic subsquare of order 3, with centre cell value M , into the centre of an

empty grid of order n.
6: Form a set Q of the primes from P′ not used in the subsquare.
7: Let i = 3.
8: repeat
9: repeat

10: Let i = i+ 2.
11: Take a set of i distinct non-paired primes from Q that sum to iM , to form a set

S, and their complements to form a set S̄.
12: Take a set of i − 2 distinct non-paired primes from Q to form a set T , and their

complements to form a set T̄ .
13: repeat
14: Take an element x of S, and an element y of S̄ that is not paired with x.
15: Let X be the sum of x, y and the elements of T .
16: until X = iM , or no further combinations of x, y are possible.
17: until X = iM , or no further combinations of S are possible.
18: until X = iM , or no further PSCMS of order 3 can be generated using Algorithm 1.
19: if X = iM then
20: Begin
21: Place x in (1, 1), y in (1, i) removing them from S and S̄, and place their complements

in the paired cells, removing them from S̄ and S.
22: Place the elements of T in (1, 2),. . . , (1, i− 1) in any order, and place their comple-

ments from T̄ in the paired cells.
23: Place the remaining elements of S in (2, 1),. . . , (i − 1, 1) in any order, and place

their complements from S̄ in the paired cells.
24: End
25: else
26: No PSCMS exists for the placed centre subsquare.
27: end if
28: until i = n
29: End

For a PSCMS of order n, n ≥ 5 the number of magic subsquares of order 3 depends on

M and therefore, it is not known in general how many are valid for a given PSCMS. In

Section 2.2.2 there are two valid subsquares of order 3 for the minimum PSCMS of order 5

and in Section 4.1.1.2 there are six valid subsquares of order 3 for the minimum PSCMS of
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order 7.

Theorem 4.6. A PSCMS of order n, n odd, with centre cell value M is always formed using

Algorithm 4 when every subsquare of order n− 2i, i = 1, . . . ,
(n− 3)

2
, is a valid PSCMS.

Proof. For a given M , the complement primes (primes summing to 2M) form a set P′. The

set must have cardinality |P′| ≥ n2−1. Now, n2−4n−5 of these primes must be used in the

subsquare and removed from P′ to form a set Q. Then 4(n − 1) primes from Q are used in

the border of order n. Given that the subsquare of order n− 2 is a valid PSCMS, there are

n distinct pairs of complement primes in Q which satisfy conditions (1) and (3) below. From

the remaining primes in Q it is possible to check that there are always n − 2 more pairs of

complement primes that can be chosen to satisfy conditions (2) and (4) below.

(1) a11 + a12 + · · ·+ a1n = nM

(2) a11 + a21 + · · ·+ an1 = nM

(3) an1 + an2 + · · ·+ ann = nM

(4) a1n + a2n + · · ·+ ann = nM

The primes are placed in the manner specified in Algorithm 4 (with the subsquare of order

3 having been determined in line 4, through a call to Algorithm 1, the paired values being

determined in lines 9 to 18, and the border of the PSCMS of order n then being filled by

lines 21 to 23). A PSCMS is thereby formed.

4.2 General PSCMS of Even Order

4.2.1 Introduction

This section provides an introduction to PSCMS of even order. Firstly definitions are given

where they necessarily differ from the odd order and then an algorithm for the construction

of minimum PSCMS of order 6 is given.
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Lemma 4.7. For n even, the subsquares of a Magic Square of order n are of order m = n−2i,

i = 1, . . . , n−2
2

. The smallest such subsquare is of order 2.

Proof. Proof follows immediately from Definition 1.3.

As shown in Section 1.1 the squares of order 2 do not conform to the properties of a Magic

Square and hence the smallest magic subsquare of a PSCMS of order n, n even, is of order 4.

In order to conceptualise SCMS of even order in a similar way to that of odd order, the

subsquare of order 2 is here considered to be similar to a centre cell value for odd order as

pairs of primes can be placed around the subsquare of order 2 to form a Magic Square of

order 4. Hence the Magic Square of order 4 is here considered a trivial Concentric Magic

Square.

Definition 4.8. A Magic Square of order n, n ≥ 6 and even, is Strictly Concentric,

denoted a SCMS, if each of its order m = n − 2i subsquares, i = 1, . . . , n−4
2

, is a CMS.

A subsquare of order 4 is here considered a trivial SCMS. A SCMS containing n2 distinct

primes is denoted a PSCMS.

Consideration is now given to construction of the subsquares of order 4. There are many

subsets of Magic Squares of order 4, and one such subset is associative Magic Squares. Re-

call Definition 1.5, if all sums of values in pairs of cells symmetric about the centre are equal

then the Magic Square is referred to as associative. In order to generalise analysis on SCMS

of even order it is important that all subsquares are formed in the same way and that the

placement of complement pairs of values is consistent. Therefore this thesis will only consider

associative Magic Squares of order 4 as valid subsquares for SCMS of higher even order.

Hence, for paired cells in Definition 4.9 it is assumed that the subsquare of order 4 is as-

sociative, then once the border of order 6 is added the square is concentric and no longer

associative. It is proven that a Magic Square of order n, n ≥ 6 and even, cannot be both

associative and concentric in Lemma 4.18.
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Definition 4.9. For a SCMS of order n, n even, a cell in row i, column j has a paired cell

in row ī, column j̄, such that

(̄i, j̄) =



(n− i+ 1, n− j + 1) i = j, i = 1, . . . , n (1)

(n− i+ 1, i) j = n− i+ 1, i = 1, . . . , n (2)

(i, n− j + 1) i = 2, . . . , n− 1, j 6= i, j = 1, . . . , n−4
2

and j = n+6
2
, . . . , n

i+ j ≤ n when i > j and i+ j ≥ n+ 2 when i < j (3)

(n− i+ 1, j) j = 2, . . . , n− 1, j 6= i, i = 1, . . . , n−4
2

and i = n+6
2
, . . . , n

i+ j ≤ n when j > i and i+ j ≥ n+ 2 when j < i (4)

(n+4
2
, n+2

2
) i = n−2

2
, j = n

2
(5)

(n+4
2
, n

2
) i = n−2

2
, j = n+2

2
(6)

(n+2
2
, n+4

2
) i = n

2
, j = n−2

2
(7)

(n
2
, n+4

2
) i = n+2

2
, j = n−2

2
(8)

Figure 4.5 illustrates the conditions on paired cells given in Definition 4.9 for a SCMS of

order 8.

1a 4a 4b 4c 4d 4e 4f 2a

3a 1b 4g 4h 4i 4j 2b 3a

3b 3g 1c 5 6 2c 3g 3b

3c 3h 7 1d 2d 8 3h 3c

3d 3i 8 2d 1d 7 3i 3d

3e 3j 2c 6 5 1c 3j 3e

3f 2b 4g 4h 4i 4j 1b 3f

2a 4a 4b 4c 4d 4e 4f 1a

Figure 4.5: Illustration of Paired Cells for a PSCMS of Order 8; the Cell Numbers Relate
to the Equation Numbers Given in Definition 4.9, Followed by a Letter Denoting Pairings
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Definition 4.10. A SCMS of order n, n even, and each of its subsquares, has a border

which comprises those cells which are adjacent to its respective outer edge. Let Bn be the set

of border cells of the SCMS of order n, and Bn−2i be the set of border cells of its subsquares

of order n − 2i, i = 1, . . . , n−4
2

. Bn denotes the set of all such border cells for an SCMS of

order n; Bn = ∪Bn−2i, i = 0, . . . , n−4
2

.

Definition 4.11. A border pair (aij, aīj̄) is a pair of values placed in cells in Bn for a

SCMS of order n, n even, where (i, j) and (̄i, j̄) are paired cells. Let Bn be the set of border

pairs of the SCMS of order n, and Bn−2i be the set of border pairs of its subsquares of order

n− 2i, i = 1, . . . , n−4
2

. Let Bn denote the set of all such border pairs for a SCMS of order n;

Bn = ∪Bn−2i, i = 0, . . . , n−4
2

, |Bn| = |Bn|
2

.

Lemma 4.12. The number of border pairs, |Bn|, of a SCMS of order n, n even, n ≥ 4 is

|Bn| = 2(n− 1) + |Bn−2| where |B2| is taken to be 2.

Proof. Although the order 2 subsquare of a SCMS is not itself a Magic Square, it is intuitive

to say that it has two border pairs, and this aids analysis.

Let n = 4, |B4| = 8 from observation and satisfies the given recurrence. Assume the recur-

rence is true for some n = k, k > 4 and even, |Bk| = 2(k − 1) + |Bk−2|.

Now consider the case n = k+2, for which 2((k+2)−1) border pairs are added to Bk, hence

|Bk+2| = 2((k + 2)− 1) + |Bk|. By induction the recurrence holds for any n even.

From the recurrence the integer sequence obtained is A001105 [39].

Theorem 4.13. The number of border pairs |Bn| of a SCMS of order n, n even, n ≥ 4 is

|Bn| = n2

2
.

Proof. For j even, j = 2i where i = 1, . . . , n
2
, the number of pairs for each border of an

order j subsquare is |Bj| = 2(j − 1). From the proof of Lemma 4.12, the order n SCMS has

|Bn| = 2(n− 1) border pairs. Hence, |Bj| = 2(2i− 1) = 4i− 2. Hence, |Bn| =
n
2∑

i=1

4i− 2. This
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can be rewritten as

n
2∑

i=1

4i−
n
2∑

i=1

2 and since
n∑

i=1

i = 1
2
n(n+ 1), then 4

n
2∑

i=1

i = 4(1
2
n
2
(n

2
+ 1)) and

n
2∑

i=1

2 = n therefore |Bn| = n(n
2

+ 1)− n = n2

2
.

For Magic Squares of odd order, the centre cell value, denoted M , is employed to form

constraints on the row, column and diagonal constants. A similar approach is taken for

Magic Squares of even order, but the value M to be used in the equivalent constraints is

taken as the mean of the values in the paired cells of the centre subsquare of order 2.

Definition 4.14. A SCMS of order n, n even, has value M equal to half the sum of the

values in paired cells.

11 193 179 37

79 137 151 53

157 59 73 131

173 31 17 199

Figure 4.6: A PSCMS of Order 4 Where M = 105 [26]

Unlike SCMS of odd order, not all pairs of complement values reside in the borders as two

pairs are in the centre subsquare of order 2.

Lemma 4.15. An associative Magic Square of order 4 has magic constant S4 = 4M and has

eight pairs of complement values.

Proof. From Definitions 1.5, 4.9 and 4.14, a22 +a33 = a23 +a32 = a11 +a44 = a14 +a41 = 2M ,

hence the main diagonals of the SCMS of order 4 sum to 4M . For the order 4 grid to be

a Magic Square, all rows, columns and main diagonals must equal the same constant, S4,

hence S4 = 4M .
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Lemma 4.16. A SCMS of order n, n even, with the value M of half the sum of the pairs of

complement values (Definition 4.14), has magic constant Sn = nM .

Proof. By Lemma 4.15, S4 = 4M . Assume that for some n = k, k > 4 and even, Sk = kM .

Now consider the case n = k + 2. As the values in each column sum to the magic constant,

Sk+2, take the first and the (k + 2)th columns, then a11 + a(k+2)(k+2) + a(k+2)1 + a1(k+2) +
k+1∑
i=2

ai1 +
k+1∑
i=2

ai(k+1) = 2Sk+2. Consider the pairs a11, a(k+2)(k+2) and a(k+2)1, a1(k+2) which form

diagonals with cells in the subsquare of order k; these all sum to Sk+2. Likewise the pairs

ai1, ai(k+2),∀i = 2, . . . , k+ 1, which form the centre rows with the subsquare of order k; these

also sum to Sk+2. Since Sk = kM , then a11 + a(k+2)(k+2) = a(k+2)1 + a1(k+2) = Sk+2 − kM

likewise ai1 + ai(k+2) = Sk+2 − kM , i = 2, . . . , k + 1.

Hence, 2Sk+2 = (k + 2)(Sk+2 − kM) and therefore Sk+2 = (k + 2)M .

By induction the recurrence holds for any n even. Hence, for all n even, Sn = nM .

Lemma 4.17. Each border pair (Definition 4.11) of a SCMS of order n, n even, sums to

2M .

Proof. Proof follows immediately from Definition 4.14.

Lemma 4.18. A Strictly Concentric Magic Square of order n, n ≥ 6 and even, cannot be

associative.

Proof. The positions of paired cells in a Strictly Concentric Magic Square of even order

are provided in Definition 4.9, and from Lemma 4.17 the values in these paired cells have

the same sum. Assume for contradiction that the Magic Square is associative; the pairs

symmetric about the centre sum to the same value. To fulfil both of these requirements there

need to be repeated values in cells. Therefore, a Strictly Concentric Magic Square of order

n, n > 4 and even, cannot be associative.

Every border of order n ≥ 6, n even, of a SCMS of order n, n even, can undergo the

permutations given for SCMS of odd order in Table 1.1 to form equivalent SCMS. Figure 4.7
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shows two PSCMS which are equivalent, in which Figure 4.7(a) undergoes a permutation of

the border pairs in rows 2 and 4 to form Figure 4.7(b).

13 109 113 149 163 83

29 11 193 179 37 181

103 79 137 151 53 107

167 157 59 73 131 43

191 173 31 17 199 19

127 101 97 61 47 197

(a) A PSCMS

13 109 113 149 163 83

167 11 193 179 37 43

103 79 137 151 53 107

29 157 59 73 131 181

191 173 31 17 199 19

127 101 97 61 47 197

(b) A PSCMS Equivalent to (a)

Figure 4.7: Two Equivalent PSCMS of Order 6 [26]

4.2.2 Minimum PSCMS of Order 6

As stated in Section 4.2.1, only associative subsquares of order 4 are considered in this thesis.

This section explores the minimum PSCMS of order 6 with an associative subsquare of order

4.

4.2.2.1 Introduction

A SCMS of order 6 comprises eighteen distinct pairs of primes summing to 2M. Two of these

pairs form the centre subsquare of order 2, six form the border B4 of the magic subsquare of

order 4 and ten form the outer border B6. One such border example is shown in Figure 4.8(a),

with one border pair shaded grey. By Lemma 4.16, a SCMS of order 6 has magic constant

S6 = 6M .

Recalling Section 1.1, a Magic Square of order 2 does not exist, hence the subsquare of order

2 in this analysis is not a magic subsquare. Recall from Definition 1.17, a minimum PSCMS

has minimum M value. A minimum PSCMS of order 6 is given in [25] to have S6 = 630 with
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M = 105, and border pairs summing to 2M = 210. The magic constant for the subsquare

of order 4 is 4M = 420, as is evident in Figure 4.8(b). It is proved by the current author in

Lemma 4.19 that the minimum PSCMS of order 6 has M = 105 and hence from Lemma 4.16,

S6 = 630 and therefore the placement of primes in Figure 4.8 form a minimum PSCMS of

order 6.

13 109 113 149 163 83

29 181

103 107

167 43

191 19

127 101 97 61 47 197

(a) Border of a Minimum PSCMS of
Order 6

11 193 179 37

79 137 151 53

157 59 73 131

173 31 17 199

(b) Magic Subsquare of Order 4 for a
Minimum PSCMS of Order 6

Figure 4.8: Border and Magic Subsquare of Order 4 for a Minimum PSCMS of Order 6
[26]

Recall that P denotes the set of all prime numbers and P′ any subset of P.

Lemma 4.19. The minimum PSCMS of order 6 has M = 105, and hence S6 = 630.

Proof. Assume for contradiction that the M value is less than 105. Let P be the set of all

prime numbers. To construct a PSCMS for which M < 105 there must exist at least eighteen

distinct pairs of complement primes xi, x̄i ∈ P′ such that xi + x̄i = 2M , where xi, x̄i are the

values in paired cells. Two of these pairs form the subsquare of order 2, six of these pairs form

the border of the subsquare of order 4, and ten form the outer border pairs of the PSCMS

of order 6. There is no smaller M value for which there exist eighteen or more such pairs

summing to 2M . It is known that a PSCMS of order 6 with M value 105 exists. Hence, any

PSCMS of order 6 with M = 105 and (from Lemma 4.16) S6 = 630 is a minimum PSCMS,

and one example is given in Figure 4.9.
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13 109 113 149 163 83

29 11 193 179 37 181

103 79 137 151 53 107

167 157 59 73 131 43

191 173 31 17 199 19

127 101 97 61 47 197

Figure 4.9: A Minimum PSCMS of Order 6 [26]

4.2.2.2 Construction of Minimum PSCMS of Order 6

Having established M for all minimum PSCMS of order 6, this section details the construction

of such a square. Given the value M = 105, there are nineteen pairs of complement primes

satisfying Lemma 4.17.

All minimum PSCMS of order 6 consist of eighteen pairs of complement primes formed from

the following set of 38 prime numbers: P′ = {11, 13, 17, 19, 29, 31, 37, 43, 47, 53, 59, 61, 71, 73,

79, 83, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191,

193, 197, 199}. Therefore, all squares require all apart from one pair from the list.

An Associative Prime Magic Square of order 4 for any given M , if one exists, can be generated

using Algorithm 5. This uses a slightly different process to Algorithms 2 and 3, used for the

generation of grids of odd order, as the border of order 4 is built around a subsquare of order

2 which is not a magic subsquare, requiring additional constraints to ensure that all rows

and columns satisfy the magic constant.
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Algorithm 5 Algorithm to form an associative PMS of order 4

1: Begin
2: Input M and form P′, the set of all primes that form pairs summing to 2M .
3: repeat
4: Take two complement pairs of primes from P′ and place into the order 2 subsquare of

an empty grid of order 4 in paired cells.
5: Form a set Q of the primes from P′ not used in the subsquare.
6: repeat
7: Take a set of four distinct non-paired primes from Q that sum to 4M , to form a set

S, and their complements to form a set S̄.
8: Take a set of two distinct non-paired primes from Q to form a set T , and their

complements to form a set T̄ .
9: repeat

10: Take an element x of S, and an element y of S̄ that is not paired with x.
11: Take elements s2 and s3 from S such that s2 6= s3 6= x and neither are paired with

y.
12: Take elements t1 and t2 from T .
13: Let the values in the subsquare of order 2 be a22, a23, a32, a33.
14: Let R1 be the sum of x, t1, t2 and y.
15: Let R2 be the sum of s2, a22, a23, s̄3.
16: Let R3 be the sum of s3, a32, a33, s̄2.
17: Let C2 be the sum of t1, a22, a32, t̄2.
18: Let C3 be the sum of t2, a23, a33, t̄3.
19: until R1 = R2 = R3 = C2 = C3 = 4M , or no further combinations of x, y, ti, si are

possible.
20: until R1 = R2 = R3 = C2 = C3 = 4M , or no further combinations of S are possible.
21: until R1 = R2 = R3 = C2 = C3 = 4M , or no further order 2 subsquares are possible.
22: if R1 = R2 = R3 = C2 = C3 = 4M then
23: Begin
24: Place x in (1, 1), y in (1, 4) removing them from S and S̄, and place their complements

in the paired cells, removing them from S̄ and S.
25: Place the elements of T in (1, 2), (1, 3) in any order, and place their complements from

T̄ in the paired cells.
26: Place the remaining elements of S in (2, 1), (3, 1) in any order, and place their com-

plements from S̄ in the paired cells.
27: End
28: else
29: No PSCMS exists for the input value of M .
30: end if
31: End

Algorithm 6 uses Algorithm 5 to form a subsquare of order 4, with chosen M and P′, before

using a similar process to Algorithms 2 and 3 to construct a PSCMS of order 6 around the
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given subsquare, if one exists.

Algorithm 6 Algorithm to form PSCMS of order 6

1: Begin
2: Input M and form P′, the set of all primes that form pairs summing to 2M .
3: repeat
4: Construct a Prime Magic Square of order 4 with chosen M and P′ using Algorithm 5.
5: Place the magic subsquare of order 4, with chosen M value, into an empty grid of order

6.
6: Form a set Q of the primes from P′ not used in the subsquare.
7: repeat
8: Take a set of six distinct non-paired primes from Q that sum to 6M , to form a set

S, and their complements to form a set S̄.
9: Take a set of four distinct non-paired primes from Q to form a set T , and their

complements to form a set T̄ .
10: repeat
11: Take an element x of S, and an element y of S̄ that is not paired with x.
12: Let X be the sum of x, y and the elements of T .
13: until X = 6M , or no further combinations of x, y are possible.
14: until X = 6M , or no further combinations of S are possible.
15: until X = 6M , or no further Prime Magic Squares of order 4 can be generated using

Algorithm 5.
16: if X = 6M then
17: Begin
18: Place x in (1, 1), y in (1, 6) removing them from S and S̄, and place their complements

in the paired cells, removing them from S̄ and S.
19: Place the elements of T in (1, 2), (1, 3), (1, 4), (1, 5) in any order, and place their

complements from T̄ in the paired cells.
20: Place the remaining elements of S in (2, 1), (3, 1), (4, 1), (5, 1) in any order, and place

their complements from S̄ in the paired cells.
21: End
22: else
23: No PSCMS exists for the placed centre subsquare.
24: end if
25: End

Theorem 4.20. A minimum PSCMS of order 6 with M = 105 is always formed using

Algorithm 6 when a valid prime magic subsquare of order 4 is placed in the centre of the grid.

Proof. For M = 105, the set of complement primes (primes summing to 210) P′ = {11, 13, 17,

19, 29, 31, 37, 43, 47, 53, 59, 61, 71, 73, 79, 83, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149,

151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199}. Recall from Definition 2.3 that all border
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pairs are pairs of complement primes. Sixteen of these primes must be used in the subsquare

and removed from P′ to form Q.

In each case twenty of the remaining twenty-two primes are used in the border of order 6.

Using a valid subsquare of order 4 there are six distinct pairs of complement primes in Q

which satisfy conditions (1) and (3) below. From the remaining primes in Q it is possible to

check that there are always 4 more pairs of complement primes that can be chosen to satisfy

conditions (2) and (4) below.

(1) a11 + a12 + a13 + a14 + a15 + a16 = 630

(2) a11 + a21 + a31 + a41 + a51 + a61 = 630

(3) a61 + a62 + a63 + a64 + a65 + a66 = 630

(4) a16 + a26 + a36 + a46 + a56 + a66 = 630.

The primes are placed in the manner specified in Algorithm 6 (with the subsquare of order

4 having been determined in line 4, through a call to Algorithm 5, the paired values being

determined in lines 7 to 15, and the border of the PSCMS of order 6 then being filled by

lines 18 to 20). A minimum PSCMS is thereby formed.

In Sections 2.2.3 and 4.1.1.3 an enumeration is given for the minimum PSCMS of order 5 and

order 7 respectively. However, enumeration is not provided here for the minimum PSCMS

of order 6. For PSCMS of even order, the order 2 subsquare centre can be formed in many

different ways, in contrast to the single cell of PSCMS of odd order. This leads to a far larger

number of cases to be considered in any enumeration, and this work is outside the scope of

the thesis. Such enumeration is the focus of further work.

4.2.2.3 Conclusion of Minimum PSCMS of Order 6

The minimum PSCMS of order 6 with associative magic subsquare of order 4 is given with

magic constant S6 = 630, along with the possible pairs that can be used in the grid. An
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algorithm is given for construction as long as the magic subsquare of order 4 is associative.

The enumeration even at this small order is difficult without substantial computing power,

due in part to the fact that the subsquare of order 4 can undergo many more permutations

than the squares of odd order. The subsquare of order 4 forms the basis for the addition of

borders for PSCMS of order n, n even, when n ≥ 6. Makarova [25] postulates that there

exists a minimum PSCMS of order 6 with a non-associative magic subsquare of order 4 with

a smaller M value but one is not given.

4.2.3 Construction of PSCMS of Even Order

Algorithm 7 uses Algorithm 5 to form a subsquare of order 4, with chosen M and P′, before

using a similar process to Algorithm 6 to construct a PSCMS of order n, n even, around the

given subsquare, if one exists.
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Algorithm 7 Algorithm to form a PSCMS of order n, n even

1: Begin
2: Input M and form P′, the set of all primes that form pairs summing to 2M .
3: repeat
4: Construct a PSCMS of order 4 with chosen M and P′ using Algorithm 5.
5: Place the magic subsquare of order 4, with chosen M value, into the centre of an empty

grid of order n.
6: Form a set Q of the primes from P′ not used in the subsquare.
7: Let i = 4.
8: repeat
9: repeat

10: Let i = i+ 2.
11: Take a set of i distinct non-paired primes from Q that sum to iM , to form a set

S, and their complements to form a set S̄.
12: Take a set of i − 2 distinct non-paired primes from Q to form a set T , and their

complements to form a set T̄ .
13: repeat
14: Take an element x of S, and an element y of S̄ that is not paired with x.
15: Let X be the sum of x, y and the elements of T .
16: until X = iM , or no further combinations of x, y are possible.
17: until X = iM , or no further combinations of S are possible.
18: until X = iM , or no further PSCMS of order 4 can be generated.
19: if X = iM then
20: Begin
21: Place x in (1, 1), y in (1, i) removing them from S and S̄, and place their complements

in the paired cells, removing them from S̄ and S.
22: Place the elements of T in (1, 2),. . . , (1, i− 1) in any order, and place their comple-

ments from T̄ in the paired cells.
23: Place the remaining elements of S in (2, 1),. . . , (i − 1, 1) in any order, and place

their complements from S̄ in the paired cells.
24: End
25: else
26: No PSCMS exists for the placed centre subsquare.
27: end if
28: until i = n.
29: End

For a PSCMS of order n, n ≥ 6 the number of magic subsquares of order 4 depends on M

and therefore in general, it is not known how many are valid for a given PSCMS.

Theorem 4.21. A PSCMS of order n, n even, with given M value is always formed using

Algorithm 7 when every subsquare of order n− 2i, i = 1, . . . ,
(n− 4)

2
, is a valid PSCMS.
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Proof. For a given M , the complement primes (primes summing to 2M) form a set P′. The

set must have cardinality |P′| ≥ n2. Now, n2 − 4n − 4 of these primes must be used in the

subsquare and removed from P′ to form a set Q. Then 4(n − 1) primes from Q are used in

the border of order n. Given that the subsquare of order n− 2 is a valid PSCMS, there are

n distinct pairs of complement primes in Q which satisfy conditions (1) and (3) below. From

the remaining primes in Q it is possible to check that there are always n − 2 more pairs of

complement primes that can be chosen to satisfy conditions (2) and (4) below.

(1) a11 + a12 + · · ·+ a1n = nM

(2) a11 + a21 + · · ·+ an1 = nM

(3) an1 + an2 + · · ·+ ann = nM

(4) a1n + a2n + · · ·+ ann = nM

The primes are placed in the manner specified in Algorithm 7 (with the subsquare of order

4 having been determined in line 4, through a call to Algorithm 5, the paired values being

determined in lines 9 to 18, and the border of the PSCMS of order n then being filled by

lines 21 to 23). A PSCMS is thereby formed.

4.3 Conclusion of PSCMS of Higher Order

In this chapter PSCMS of higher order are formally explored for the first time. Initially,

properties of PSCMS of odd order are generalised, building on the definitions from Chap-

ters 1 and 2. The minimum PSCMS of order 7 is then considered using the framework for

the minimum PSCMS of order 5 and an algorithm for construction presented. The centre

cell value of the minimum PSCMS of order 7 is 641. It is here established that there are

six possible non-equivalent grids of order 3 that are valid subsquares which facilitates the

enumeration of 3,043,905,984,921,600 minimum PSCMS of order 7, 11,468,227 of which are
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non-equivalent. Finally in this section, an algorithm for the construction of PSCMS of gen-

eral odd order is given.

This is followed by an introduction to SCMS of even order, with definitions which differ

from the odd order definitions provided here, to establish properties for all SCMS of even

order with an associative magic subsquare of order 4. Although some of the concepts are

similar, structurally odd and even squares are very different. An introduction to the mini-

mum PSCMS of order 6, which has M = 105, is then given with two novel algorithms for

construction provided. The first constructs an associative magic subsquare of order 4 and

the second constructs a PSCMS of order 6 around the given subsquare. An algorithm is then

presented for constructing PSCMS of general even order.
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Chapter 5

Water Retention

5.1 Literature Review

The water retention problem in relation to Number Squares conceptualises the values assigned

to cells as blocks of height proportionate to the values. Water is then ‘poured’ over the grid

and is only retained in those cells which are surrounded, horizontally and vertically, by cells

which are taller [18].

The idea of water retention on a Magic Square was postulated by Knecht in 2007 [18] and in

2010 Zimmermann held an online programming contest to try and find the maximum water

retention a Normal Magic Square (NMS) could contain [45]. Proposed solutions were found

on Magic Squares up to order 28 by various mathematicians around the world, with Trump

being the overall winner. This contest and the results found were the benchmark for a paper

by Öfverstedt [12] in 2012 which discussed maximizing water retention as the order of the

Magic Squares increased. Achieving maximum water retention becomes increasingly difficult

as the number of existing grids increases. Öfverstedt uses a constraint-based local search in

order to tackle the problem in a non-exhaustive way.

In the same year (2012), Knecht, Trump, ben-Avraham and Ziff [21] reported on the retention

capacity of random surfaces. This was based on water retention on a Magic Square, but the
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focus instead was on bounded surfaces with varying heights. They looked at differently

levelled systems and explained the behaviour using percolation theory for which the reader

is referred to [21] for further details. The authors presented the average amount of water

retained on grids up to order 60, for n-level system where n = 2, . . . , 8. For example, when

n = 2, a 2-level system has a uniform distribution of heights 0 and 1 across the surface whereas

a 3-level system would include heights of 0, 1 and 2. As the order of the grid increases the

average amount of water retained increases exponentially for all n-level systems. However,

it is noted that when the order is greater than 51 the 2-levelled system retains, on average,

more water than the 3-levelled system.

Baek and Kim [4], also in 2012, used percolation theory to find the critical condition of the

water retention model. This led to an upper bound of water retention in a random landscape

which the authors note, if “the global landscape on the Earth can be roughly regarded as

random, we may retrospectively understand that too much of the Earth is covered by water

to be believed to be a flat disk with steep cliffs at the boundary as once believed.”

In 2014 Schrenk, Araujo, Ziff and Herrmann [32] published an extension of Knecht et al’s

water retention model to correlated random surfaces. They extended the research to study

the impact of correlating the heights in the landscape and showed that long range correlations

decrease the retention capacity. White [41] has written a multitude of programming tools

in order to formulate different kinds of Magic Squares, and one of these includes a water

retention program which allows the user to upload a Magic Square and check where water is

retained. The program then enables the permutation of cells in order to compare the water

retention.

In 2019 Hasan and Polash [13] published a paper for maximizing water retention on Magic

Squares which uses the same approach as Öfverstedt, constraint-based local search. They

note that their program gives them close to the maximum known retention and is more

efficient than previous algorithms.

This chapter gives an introduction to the concept of water retention on Number Squares with
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relevant definitions and basic examples given. This concept is applied to Normal Number

Squares and then NMS with a comparison of maximum retention given. The idea of a

maximal lake is introduced and implemented on Normal Number Squares, with a comparison

given of the maximum water retention on the grid and the water retention of a maximal lake.

Finally maximal lakes on Normal Prime Squares is given followed by the maximum water

retention on the minimum PSCMS of order 5 presented in Chapter 2.

5.2 Introduction

Water retention is here considered on Normal Number Squares, Normal Magic Squares, Prime

Number Squares and Prime Strictly Concentric Magic Squares.

Definition 5.1. A Number Square of order n is an n by n grid containing n2 distinct

integers. A Normal Number Square contains the integers 1 to n2. A Prime Square

of order n is an n by n grid containing n2 distinct primes. A Normal Prime Square

contains the first n2 primes.

Knecht collated the maximum water retention on Normal Number Squares of order n, n ≤ 30,

in 2015 [19] and it is his notation which is used throughout this chapter. Figure 5.1 shows a

Normal Number Square of order 3 with maximum water retention and a visual representation

of these cells as block heights; the equation to quantify the amount of water retained is given

in Section 5.2.1.
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2 6 3

7 1 8

4 9 5

(a) Order 3 Normal Number
Square

(b) Representation of Heights as Blocks

Figure 5.1: A Normal Number Square of Order 3 with Maximum Water Retention

5.2.1 Islands, Lakes and Ponds

Water can be retained on grids in many different patterns and these patterns are referred to

as islands, lakes and ponds using definitions given by Knecht and Trump [20].

Definition 5.2. A lake is a body of water on a grid of order n which reaches the dimensions

(n−2) by (n−2) where all cells in the body of water are horizontally or vertically contiguous.

Figure 5.2(a) shows the largest possible lake pattern on a grid of order 4, and the smallest

in Figure 5.2(b).

Definition 5.3. A pond is any body of water which does not fulfil the size requirements of

a lake.

There can be just one pond on a grid or there can be multiple and the larger the grid the

more possibilities there are for multiple ponds. Figure 5.2(c) shows a pond pattern of one

cell on a grid of order 4.

Definition 5.4. A spillway is defined to be the smallest integer directly horizontal or vertical

to a cell, or group of cells, which retains water.
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Definition 5.5. An island describes a cell, or a collection of cells that are horizontally or

vertically contiguous, which do not contain water, within an area of water. An island occurs

when a cell, or collection of cells, inside a lake or a pond have values higher than the spillway.

Figure 5.2(d) shows an island pattern of one cell inside a lake pattern on a grid of order 5.

(a) Largest Lake Pattern on a Grid of
Order 4

(b) Smallest Lake Pattern on a Grid of
Order 4

(c) A Pond Pattern on a Grid of Order
4

(d) An Island of Order 1 Pattern Inside
a Lake Pattern

Figure 5.2: Water Retention Patterns

Let s denote the value of a spillway, w denote the number of water retaining cells this spillway

applies to and the base b denote the sum of the values inside the water retaining cells. Then

the volume of water retained V is given in Equation 5.1 and can be used for each body of

water on any Number Square [22].

V = (s× w)− b (5.1)
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Where the grid has more than one spillway, the volume of water retained is the sum of the

volumes in each body of water.

The maximum water retention on a grid is the maximum amount of water it can hold, and this

value has been determined on Normal Number Squares up to n = 30. This information has

been collated by Knecht [19] and is available on the OEIS, Knecht comments that a program

has been written by Trump to calculate the maximum water retention of a Normal Number

Square up to order 250. Maximum water retention on NMS can be found using similar

techniques, and an example for each case up to n = 28 has been collated by Zimmermann,

based on the contest he held, and is available at [45]. There were improvements made to

the volume of water retention on some grids after the competition ended and these are also

detailed, and given that there have been no further documented improvements since 2010

these results for maximum water retention on Magic Squares are, in this thesis, considered

final. The results up to order 9 are given on the OEIS [29]. Table 5.1 shows the maximum

water retention for both Normal Number and Normal Magic Squares for order n where

n = 3, . . . , 15.

Order (n)
Normal Number

Square
Normal Magic

Square
3 5 0
4 26 15
5 84 69
6 222 192
7 488 418
8 946 797
9 1664 1408
10 2723 2267
11 4227 3492
12 6277 5185
13 8993 7445
14 12514 10397
15 16976 14154

Table 5.1: Comparison of Maximum Water Retention Between Normal Number Squares
and Normal Magic Squares [19] [29] [45]

102



Figure 5.3(a) shows the maximum water retention on a NMS of order 5 which occurs by

forming a lake, shown in blue and the spillway in yellow. The maximum water retention on

a NMS of order 6 is shown in Figure 5.3(b) which occurs by forming two ponds, shown in

blue with the spillways in yellow.

3 12 22 17 11

16 18 7 4 20

25 2 14 5 19

8 23 1 24 9

13 10 21 15 6

(a) A Normal Magic Square of Order 5
with Maximum Water Retention

8 15 22 26 24 16

20 33 30 2 3 23

32 4 13 36 1 25

29 5 11 14 31 21

12 35 7 6 34 17

10 19 28 27 18 9

(b) A Normal Magic Square of Order 6
with Maximum Water Retention

Figure 5.3: Two Normal Magic Squares with Maximum Water Retention [45]

Definition 5.6. Consider a grid of order n, then if every cell in the subsquare of order (n−2)

retains water, this is referred to as a maximal lake.

Through the placement of values, a Normal Number Square of any order can be formed to

contain a maximal lake. Table 5.2 shows a comparison between the water retention when

a Normal Number Square is constructed to form a maximal lake, which is further explored

in Section 5.3, and the maximum water retention possible on a Normal Number Square by

forming lakes and ponds.
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Order
Maximal

Lake
Maximum
Retention

3 5 5
4 26 26
5 81 84
6 200 222
7 425 488
8 810 946
9 1421 1664
10 2336 2723
11 3645 4227
12 5450 6277
13 7865 8993
14 11016 12514
15 15041 16976

Table 5.2: Comparison of Maximal Lake Retention and Maximum Possible Retention on
Normal Number Squares [19]

5.3 Normal Number Squares

Consider a Normal Number Square of order n which contains a maximal lake, i.e. all cells

in the subsquare of order (n− 2) contain water. This can be formed, with maximum water

retention using Construction 5.7.

Construction 5.7. Given an empty grid of order n, place the (n − 2)2 smallest values in

the centre subsquare of order (n − 2). Place the next four smallest values in the corners of

the grid. The remaining values may be placed in the empty edge cells arbitrarily.

This construction ensures the maximum possible difference between the values in the water

retaining cells and the spillway, in order to have maximum possible water retention given the

structure. The value of the spillway for a Normal Number Square of order n is s = (n−2)2+5.

Example 5.8. Figure 5.4 shows a maximal lake formed using Construction 5.7 on a grid of

order 6. The water retaining cells are shown in blue and the spillway is shown in yellow.
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17 21 22 23 24 18

25 1 2 3 4 26

27 5 6 7 8 28

29 9 10 11 12 30

31 13 14 15 16 32

19 33 34 35 36 20

Figure 5.4: A Normal Number Square of Order 6 with a Maximal Lake

Theorem 5.9. Given a Normal Number Square of order n, a maximal lake with maximum

water retention has V = 1
2
(n− 2)2(n2 − 4n+ 13).

Proof. From Equation 5.1, V = sw−b, using Construction 5.7, s = (n−2)2 +5, w = (n−2)2

and b is the sum of the first (n − 2)2 integers. Since
n∑

r=1

r = 1
2
n(n + 1), b =

(n−2)2∑
r=1

r =

1
2
(n− 2)2((n− 2)2 + 1). Hence, V = ((n− 2)2 + 5)((n− 2)2)− (1

2
(n− 2)2((n− 2)2 + 1)) =

1
2
(n− 2)2(n2 − 4n+ 13).

Figure 5.4 shows a maximal lake formed using Construction 5.7 on a Normal Number Square

of order 6 where V = 200.

When n is greater than 4, the maximum water retention is not obtained by forming a maximal

lake. Shown in Table 5.2, as n increases, the maximum water retention on a Normal Number

Square is approximately 1.1 times that of the maximum water retention of a maximal lake.

Example 5.10. Figure 5.5 shows two Normal Number Squares of order 5, the first of which

is a grid with a maximal lake 5.5(a) where V = 81, and the second of which is a grid with

maximum water retention 5.5(b) where V = 84. The cells containing water are given in blue

and the spillways are yellow.
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10 14 15 16 11

25 1 2 3 17

24 4 5 6 18

23 7 8 9 19

13 22 21 20 12

(a) A Normal Number Square of Order
5 with a Maximal Lake

8 9 23 22 11

10 24 1 2 21

25 3 4 5 20

13 16 6 7 19

14 15 17 18 12

(b) A Normal Number Square of Order
5 with Maximum Water Retention [19]

Figure 5.5: Comparison of Water Retention on Normal Number Squares of Order 5

5.4 Normal Magic Squares

Given the added constraints of a Magic square, the maximum water retention (shown in Ta-

ble 5.1) is approximately 0.8 times that of the maximum water retention of a Normal Number

Square. There exists only one NMS of order 3 up to equivalence, given in Figure 5.6(a). Since

M = 5 and the pairs of cells adjacent to the centre sum to 2M , each row and column con-

tains an integer smaller than five and therefore a NMS of order 3 cannot retain water. The

maximum water retention of a Normal Number Square of order 4, using Theorem 5.9, is

26. However, the maximum water retention of a NMS of order 4 is 15, with the difference

being due to the strict positioning of the values in order to satisfy the constraints of the

magic constant [45]. The maximum water retention on a NMS of order 4 is not obtained by

forming a maximal lake, or any smaller lake, instead there are two ponds on the grid shown

in Figure 5.6(b). The list of comparisons up to order 15 can be seen in Table 5.1.

Example 5.11. The single Normal Magic Square of order 3 is given in Figure 5.6(a). The

maximum water retention on a Normal Magic Square of order 4 is shown in Figure 5.6(b),

there are two ponds and the total water retained is 15 units.
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4 9 2

3 5 7

8 1 6

(a) The Normal Magic Square of Order
3

1 7 10 16

8 14 3 9

12 2 15 5

13 11 6 4

(b) A Normal Magic Square of Order 4
with Maximum Water Retention [45]

Figure 5.6: The Normal Magic Square of Order 3 and A Normal Magic Square of Order 4
with Maximum Water Retention

5.5 Prime Number Squares

Recall that, a Prime Number Square consists of all the properties of a Number Square but

with the added constraint that all the entries must be prime numbers. To achieve the maximal

lake where the prime numbers are sequential starting at 2 (Normal Prime Number Squares)

Construction 5.7 can be used. This forms a maximal lake on the grid, where for a Prime

Number Square of order n the spillway is the prime number in the sequential list in position

((n − 2)2 + 5). For example, in a Prime Number Square of order 4 the spillway is the 9th

prime number in the sequential list which is 23. Equation 5.1 can be used to calculate the

water retention on a Prime Number Square and is applied to this case in Theorem 5.12.

Theorem 5.12. Given a Normal Prime Number Square of order n, a maximal lake with

maximum water retention has V = x(n−2)2+5× (n−2)2−
(n−2)2∑
i=1

xi where xi refers to the prime

number in the ith position in the ordered list of primes 1 to n2.

Proof. Follows directly from Theorem 5.9.

Example 5.13. Figure 5.7 shows a maximal lake on a Normal Prime Number Square of

order 4, retaining 75 units of water.
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11 23 29 13

53 2 3 31

47 5 7 37

19 43 41 17

Figure 5.7: A Prime Number Square of Order 4 with a Maximal Lake

The volume of water retained, much like Normal Number Squares, is greatly reduced when

the grid is magic. The maximum volume of water retained is unknown for Prime Number

Magic Squares in general as there are no constraints on the primes that can be used. However,

by giving additional structure to these grids it is possible to generalise the water retention

in certain cases. In Sections 5.5.1 and 5.5.2 the maximum water retention on the minimum

PSCMS of order 5 is explored. Equation 5.1 and the permutations from Table 1.1 are used to

quantify the maximum amount of water retention on each of the types of minimum PSCMS

of order 5 from Section 2.2. In Figure 5.8 an example of each type 1 minimum PSCMS of

order 5 is given and in Figure 5.9 an example of each type 2 minimum PSCMS of order 5 is

given; these PSCMS were explored in Chapter 2, Section 2.2.

5.5.1 Minimum PSCMS of Order 5 with Magic Subsquare 1

For the minimum PSCMS of order 5 with magic subsquare 1, there are six non-equivalent

types which each use a different list of primes. Within these types there are variants which,

although having the same list of primes, are non-equivalent and may have different water

retention. Consider only the variant which retains maximum water retention, where several

variants retain the same maximum volume of water, just one example is given. Results were

obtained exhaustively by hand. Figure 5.8 shows each type with the cells retaining water in

blue and the spillways in yellow.
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Lemma 5.14. The maximum amount of water retained on the minimum PSCMS of order

5 with magic subsquare 1 is:

(1) 804 units for type 1A;

(2) 1002 units for type 1B;

(3) 792 units for type 1C;

(4) 792 units for type 1D;

(5) 804 units for type 1E;

(6) 804 units for type 1F.

Proof. All minimum PSCMS of order 5 with magic subsquare 1 are of types 1A,...,1F (given

in Section 2.2.2). Consider only the variant in each type which retains the most water. Since

all variants have been considered for each type there are no non-equivalent grids which retain

more water and using Table 1.1, no equivalent grids to those given in Figure 5.8 contain more

water.
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401 71 419 53 311

389 461 23 269 113

263 59 251 443 239

11 233 479 41 491

191 431 83 449 101

(a) Type 1A PSCMS Using
A1 and A3 with 804 Units of
Water Retained

191 53 419 353 239

11 461 23 269 491

401 59 251 443 101

389 233 479 41 113

263 449 83 149 311

(b) Type 1B PSCMS Using
B1 and B2 with 1002 Units of
Water Retained

401 113 419 11 311

353 461 23 269 149

239 59 251 443 263

71 233 479 41 431

191 389 83 491 101

(c) Type 1C PSCMS Using C3
and C4 with 792 Units of Wa-
ter Retained

71 83 449 389 263

191 461 23 269 311

401 59 251 443 101

353 233 479 41 149

239 419 53 113 431

(d) Type 1D PSCMS Using
D1 and D3 with 792 Units of
Water Retained

401 71 419 11 353

389 461 23 269 113

263 59 251 443 239

53 233 479 41 449

149 431 83 491 101

(e) Type 1E PSCMS Using E1
and E2 with 804 Units of Wa-
ter Retained

401 149 263 11 431

419 461 23 269 83

311 59 251 443 191

53 233 479 41 449

71 353 239 491 101

(f) Type 1F PSCMS Using F5
and F6 with 804 Units of Wa-
ter Retained

Figure 5.8: Maximum Water Retention For Type 1 Minimum PSCMS of Order 5

The minimum PSCMS of order 5 with magic subsquare 1 that contains the highest volume

of water is of type 1B. This has six water retaining cells, five of which form a lake and a

single cell forms a pond. The grid with maximum retention of type 1D has the same pattern

of retention as type 1B however the spillway of the lake is 311 rather than 353 which means

it holds 210 units less of water. The most common volume of water to be retained is 804

units; this is a pattern of three single cell ponds such that each spillway is another cell in the

subsquare of order 3.

5.5.2 Minimum PSCMS of Order 5 with Magic Subsquare 2

For the minimum PSCMS of order 5 with subsquare 2, there are nine non-equivalent types

which each use a different list of primes. Within these types there are variants which although

they use the same list of primes, are non-equivalent. The same process is used here as for the

minimum PSCMS of order 5 with magic subsquare 1 in order to find the maximum water
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retention on each type. Figure 5.9 shows each type with the cells retaining water in blue and

the spillways in yellow.

Lemma 5.15. The maximum amount of water retained on the minimum PSCMS of order

5 with magic subsquare 2 is:

(1) 696 units for type 2A;

(2) 912 units for type 2B;

(3) 696 units for type 2C;

(4) 648 units for type 2D;

(5) 696 units for type 2E;

(6) 696 units for type 2F;

(7) 696 units for type 2G;

(8) 696 units for type 2H;

(9) 696 units for type 2I.

Proof. All minimum PSCMS of order 5 with magic subsquare 2 are of types 2A,...,2I (given

in Section 2.2.2). Consider only the variant in each type which retains the most water. Since

all variants have been considered for each type there are no non-equivalent grids which retain

more water and using Table 1.1, no equivalent grids to those given in Figure 5.9 contain more

water.
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353 101 311 11 479

449 431 83 239 53

389 59 251 443 113

41 263 419 71 461

23 401 191 491 149

(a) Type 2A PSCMS Using
A3 and A4 with 696 Units of
Water Retained

101 41 491 389 233

53 431 83 239 449

479 59 251 443 23

353 263 419 71 149

269 461 11 113 401

(b) Type 2B PSCMS Using
B3 and B4 with 912 Units of
Water Retained

401 53 479 11 311

233 431 83 239 269

389 59 251 443 113

41 263 419 71 461

191 449 23 491 101

(c) Type 2C PSCMS Using C1
and C2 with 696 Units of Wa-
ter Retained

491 149 191 23 401

233 431 83 239 269

389 59 251 443 113

41 263 419 71 461

101 353 311 479 11

(d) Type 2D PSCMS Using
D1 and D2 with 648 Units of
Water Retained

191 449 491 23 101

269 431 83 239 233

353 59 251 443 149

41 263 419 71 461

401 53 11 479 311

(e) Type 2E PSCMS with 696
Units of Water Retained

191 479 461 11 113

269 431 83 239 233

353 59 251 443 149

53 263 419 71 449

389 23 41 491 311

(f) Type 2F PSCMS with 696
Units of Water Retained

353 101 479 11 311

269 431 83 239 233

389 59 251 443 113

53 263 419 71 449

191 401 23 491 149

(g) Type 2G PSCMS Using
G3 and G2 with 696 Units of
Water Retained

269 461 401 11 113

191 431 83 239 311

353 59 251 443 149

53 263 419 71 449

389 41 101 491 233

(h) Type 2H PSCMS Using
H3 and H2 with 696 Units of
Water Retained

449 113 269 23 401

311 431 83 239 191

353 59 251 443 149

41 263 419 71 461

101 389 233 479 53

(i) Type 2I PSCMS with 696
Units of Water Retained

Figure 5.9: Maximum Water Retention For Type 2 Minimum PSCMS of Order 5

The minimum PSCMS of order 5 with magic subsquare 2 that contains the highest volume

of water is of type 2B. Similar to type 1B, this has six water retaining cells, five of which

form a lake and a single cell forms a pond. There is no other type with subsquare 2 that has

the same pattern of water retention. The most common volume of water to be retained is

696 units; this is a pattern of three single cell ponds such that each spillway is another cell

in the subsquare of order 3.
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5.5.3 Comparison of Maximum Water Retention on Minimum

PSCMS of Order 5

The volume of water retained is substantially lower on the minimum PSCMS of order 5 with

subsquare 2, the type with the highest volume of water, type 2B at 912 units, is 90 units

lower than the grid with the highest volume of water for subsquare 1, type 1B with 1002

units.

In both cases the most common patterns of water retention are those of the three lowest

cells in the subsquare retaining water and the three spillways also being in the subsquare;

ten out of the fifteen types have this pattern. In this pattern, the grids with subsquare 1

retain 804 units of water, 108 units more than the grids with subsquare 2 which retain just

696 units. This is because the cells containing water in subsquare 1 have values 23, 41 and

59 which sum to 123, whereas the cells containing water in subsquare 2 have values 59, 71

and 83 summing to 213. Hence subsquare 1 has a lower base level and if the spillways were

the same the grid would retain 90 units more of water. The spillways then on subsquare 1

have values 233, 251 and 443 which sum to 927 whereas the spillways on subsquare 2 have

values 239, 251 and 419 which sum to 909. The spillways are higher on subsquare 1 allowing

18 units more of water. Hence, with this pattern, the grids with subsquare 1 retain 108 units

more.

The actual patterns of water retention of the individual types rely on which values are in the

non-corner edge cells, so a combination of the corner cells and the omitted pair from each

list of primes affects the volume of water each grid can retain.

5.6 Conclusion of Water Retention

The idea of water retention on Number Squares is introduced in this chapter with some basic

results for Normal Number Squares and NMS from the literature given. Notation is formally

defined, and comparisons are given between maximum water retention on Normal Number
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Squares and maximum water retention on NMS as well as maximum retention given specific

patterns of cells retaining water. Prime Number Squares are then introduced with the focus

being the minimum PSCMS of order 5 from Chapter 2. It is found that those PSCMS with

magic subsquare 1 contain more water than those with magic subsquare 2 due to the values

in subsquare 1 allowing for a lower base and higher spillways.
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Chapter 6

Conclusion

Chapter 1 of this thesis gives an overview of known concepts of Magic Squares as well as

the first formal definitions of structure for Strictly Concentric Magic Squares and Prime

Strictly Concentric Magic Squares. Relevant definitions for Latin Squares are taken from

the literature and provided here for context before being applied in subsequent chapters to

Magic Squares. There is a discussion on enumeration in the literature on Magic Squares

which provides background as to how difficult enumeration is in general as well as providing

context for the research in this thesis.

A known minimum PSCMS of order 5 is given in Chapter 2 along with notation and additional

structural properties for a SCMS. This chapter uses the concept of Strictly Concentric Magic

Squares of order n, n odd, with magic constant Sn = nM , being built from a centre cell

M through the addition of successive borders of each larger order grid, and provides the

first formal analysis of minimum PSCMS of order 5. A proof of the minimum PSCMS of

order 5 having magic constant S5 = 1255 is provided with the first classification into types

of all grids satisfying this minimum based on the subsquare of order 3 and the list of primes,

P′, associated with M . It is noted that there are two non-equivalent subsquares of order 3

and each has different possible borders which, along with allowable permutation operations,

facilitates the first enumeration of the 80,640 grids of which 35 are non-equivalent.
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Concepts already established for Latin Squares and Sudoku grids form the basis of Chapter 3

with completable partial SCMS of odd order being formally defined. The cardinality of the

minimal forced completable set, the minimum number of triples specifying the non-empty

cells of a grid in order for it to be strongly completable, is established for SCMS of odd order.

A bound is established for the cardinality of a minimal critical set, the minimum number

of non-empty cells for the grid to be uniquely completable, either strongly or weakly, for

SCMS of odd order. The minimal critical set is then found on the minimum PSCMS of order

5 from Chapter 2. Unavoidable sets in SCMS are defined in this thesis and the different

forms explored on individual minimum PSCMS of order 5 from Chapter 2. The results of

this chapter are a significant contribution to the literature on Magic Squares, as no formal

treatment of Strictly Concentric Magic Squares has previously been published. This work

provides a framework and definitions useful for further work in this area, in addition to the

specific results provided.

Chapter 4 uses the definitions and concepts from Chapters 1 and 2 and these are applied to

PSCMS of order n, n > 5. Initially, the construction and enumeration of PSCMS of order

7 are detailed. This leads to a construction of PSCMS of odd order in general. The former

begins with a similar approach to that used in the analysis of the minimum PSCMS of order

5 but with six non-equivalent subsquares of order 3 and 162,436 potential subsquares of order

5 to give the total number of PSCMS of order 7 as 3,043,905,984,921,600 grids with a magic

constant of 4,487. Given sufficient computing power, the same approach could theoretically

be taken for Prime Strictly Concentric Magic Squares of higher order n, n odd, as long as the

centre cell value M is known and a valid PSCMS can be formed. SCMS of even order are then

introduced and definitions where they differ from odd order are given. Similar techniques

for analysis, construction and enumeration can be used, noting that as a Magic Square of

order 2 does not exist the Magic Square of order 4 must be formed first. An algorithm for

construction of a PSCMS of even order is presented, and the minimum PSCMS of order 6

considered. In general, enumeration of PSCMS of even order is much harder than that of
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odd order, since there are more possibilities for the construction of the subsquare of order 4.

Hence enumeration is not provided. Note, however, that after the initial subsquare of order

4 is formed, the borders are built up using the same techniques as for odd order, and could

in theory be analysed in the same way.

Chapter 5 describes the concept of water retention on Number Squares, Prime Number

Squares, Magic Squares and PSCMS. A literature review is provided on previous work on

water retention on Number Squares and Magic Squares. Definitions from the literature are

formalised and patterns of cells in which water is retained are explored. Maximum water

retention on Normal Number Squares and Normal Magic Squares is given before maximum

water retention is found on each type of minimum PSCMS of order 5 as given in Chapter 2.

6.1 Future Work

This thesis provides a first formal treatment of the structure, enumeration and analysis of

properties of SCMS. As such, the foundational work and results presented suggest many

avenues of future study.

Using the concepts from Chapters 1 and 2, PSCMS of order 5 with different centre cell values

could be explored. Only the minimum PSCMS were investigated and so the same analysis

could be carried out on PSCMS of order 5 having larger centre cell value, and hence different

lists of primes.

More research could be conducted into the minimal critical sets on SCMS in order to deter-

mine whether an exact equation for the size of the minimal critical set based on the order

can be found, or whether it always depends on the values in the cells in each grid. Minimal

forced completable sets and minimal critical sets, as well as patterns of unavoidable sets,

could be investigated in general for SCMS of all orders. The forms of unavoidable sets iden-

tified on minimum PSCMS of order 5 will exist on subsquares of PSCMS of higher order. It

is here conjectured that additional forms may exist on PSCMS of higher order. It may also
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be interesting to explore whether these forms exist on other categories of Magic Squares.

The minimum centre cell values of PSCMS of order n, n ≤ 19 and odd, are known. The

number of pairs of complement primes as well as the number of potential subsquares of order

3 could be used to determine the rate of increase as the order of the square increases. This

rate of increase could be used to predict the number of minimum PSCMS of order n, for

any given value of n, n odd. Given sufficient computing power, full enumeration could in

theory be achieved for PSCMS of higher order and minimums determined for n > 19 in order

to establish whether there is an exponential relationship between order and the number of

PSCMS. It is conjectured that:

Conjecture 6.1. For a minimum PSCMS of order n, the centre cell value M is of the form

6k − 1.

Conjecture 6.2. A PSCMS of order n, n odd, with fixed M , can be formed if there exist at

least
n2 − 1

2
pairs of complement primes summing to 2M .

The focus of this thesis is the investigation of PSCMS of odd order. Much investigation

is possible of PSCMS of even order, beyond the initial results provided in Chapter 4. Full

enumeration of minimum PSCMS of order 6 could be completed with sufficient computing

power using Algorithm 6.

Finally, a fuller analysis could be completed regarding water retention on Magic Squares.

This may highlight common patterns leading to maximum water retention. Also, it would

be worth investigating whether direct analysis of the lists of primes for each type of PSCMS

could offer prediction of water retention, without requiring exhaustive analysis of the PSCMS.
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